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ABSTPACT

A review of the D-region ionization measurements and its solar
zenith angle variation reveals that a unified model of the D regiom,
incorporating both ‘the netural chemistry and the ion chemistry, is
required for a proper understanding of this region of the ionosphere.
Model calculations are carried out with a view to interpreting the
solar zenith angle variation of D-region ionization as measured on
July 24, 1968 at Wallops Island. All input data are taken cor-
responding to this day,

The model developed for the neutral chemistry includes the trans-
port terms relating to molecular and eddy diffusion. It describes the
diurnal behavior of the minor neutral constituents formed in an oxygen-
hydrogen-nitrogen atmosphere, in the height interval between 30 and
120 km., Computations carried out for two cases of the eddy diffusion
coefficient models indicate that the constituents which are important
for the D-region positive-ion chemistry do not show a significant
variation with zenith angle for values up to 75° over the D-region

heights.

ii

In the ion chemistry model, ion-pair production rates are calculated

for solar X-rays between 1 R and 100 R, EUV radiations from 100 R up to

the Lyman-a line, precipitating electrons and galactic cosmic rays. Two

+ . . . .
cases of O2 production rates due to different fluxes of precipitating

plectrons and X-rays below 3 & have been considered. The model describes
the solar zenith angle variation of the positive-ion composition, negative-

ion composition and the electron densities up to 75° zenith angle, in the

height interval between 60 and 100 km.

e m————
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A comparison of the computed electron-density profiles with the
rocket measured profiles reveals that good overall agreement is obtained
when the neutral chemistry model associated with the low eddy diffusion
coefficient values is used, The computed solar zenith angle variation,
however, is oniy a fraction of the measured variation. This discrebancy
is probably due to short-term variations in the mesopause temperatures

and X-ray fluxes below 3 A&,
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1. INTRODUCTION

1.1 The Ionospheric D Region

Solar and other extra-terrestrial radiations incident on the upper
atmosphere of a planet ionize its neutral molecules producing pairs of free
electrons and positive ions. The region where such free electrons occur in
significant amounts is known as the ionosphere. The single parameter that
;haracterizes the ionosphere is the electron density, which is a function
of the height, latitude and time of the day, among other factors.

The propagation of 2 high frequency radio wave through the ionosphere
is influenced by the, free electrons present in it. These free electrnns
give rise to a complex refractive index for the propagating radio wave,
resulting in its deviation from the origiral path, and also causing its
attenvation. It was in fact, the experiments conducted to study the long-
distance propagation of radio waves in the 1920's that led to the discovery
of the Earth's ionosphere.

In these early experiments, different layers of the ionosphere which
cause reflection of radio waves of different frequency bands were identified
and were designated D, F, and F. Later studies on the ionospheric structure
revealed that these layers could be identified with different regions, simi-
larly designated, where the electron-density profile exhibits a plateau or a
peak, as illustrated in Figure 1.1. It is sometimes possible to identify
more than one layer within the same region, depending on the time of the day.
For example, during the sunrise period a ¢ layer, having a distinct peak
develops in the lower part of the D region. During nighttime, the F region

exhibits two distinct peaks known as the F1 and F2 layers.
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The present investigation is concerned with the D region, or the
region below about 90 km of the ionosphere. This region exhibits several
distinct features not found in the other regions of the ionosphere. The
main reason for this distinction is the fact that the neutral atmosphere
over this region has sufficiently high density so as to cause strong
coupling between itself and the D region. The features referred to above
are: (1) high absorption of radio waves, (2) complexity of the ion chemis-
try and (3) the occurrence of negative ions.

The absorption of radio waves in the ionosphere at a given height
depends on the product of the electron density and the collision frequency
between the electrons and the neutral particles. The collision frequency
is directly proportional to the atmospheric pressure, and hence decreases
with the height. The electron density, on the other hand, generally
increases with height, at least in the D and E regions. The product of
these two quantities, thérefore, reaches a maximum, which happens to occur
at D-region heights. Thus, the absorption of high frequency radio waves
propagating in the ionosphere takes place mostly in the D region. The re-
ception of radio signals from long-distance transmitters is limited by this
ionosphe-:. absorption. Therefore, a knowledge of the behavior of the D
region is important for the proper operation of high-frequency radio
networks.

- The second feature mentioned above is really a consequence of the neutral
chemistry of the region., The composition of the major constituents of the
atmosphere up to the top of the D.region is similar to that near the ground.
In addition, a variety of active minor neutral constituents is produced in

this part of the atmosphere as a result of the photodissociation of the

major constituents as well as others that are transported from the ground.

;
i
1
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The primary ioniza!ion process produces electron-ion pairs. The posi-

| tive ion will either undergo dissociative recombination with the electron,
or react with other neutral species in a charge transfer process to yield

a large number of new positive ions. Some of these positive ions can undergo

S

three-body reactions producing complex cluster ions. 7These reactions hecome

important only when the third-body density is high; the necessary density
being found at D-region heights and below. The D-region positive-ion
chemistry is, therefore, much more complex than that of the higher reginns.
% Finally, the high cfficiency of the three-body rcactions at thesec
heights is also revealed in the formation of the negative ions. These are
formed when a free electron gets attached to a neutral molecule through a
three-body reaction. These ions also undergo a series of charge transfer

and attachment reactions producing a variety of negative molecular and

complex cluster ions. In the D region during daytime, negative ions become
important below about 75 km, the negative-ion and electron concentrations
becoming equal around 70 km. At heights below, the negative-ion chemistry
controls the electron concentration. At nighttime, negative ions dominate
; most of the D-region heights.
. 1.2 Methods for D-Region Investigations

The methods available for invéstigating D-regior ionospheric processes

fall into two main catepories: pground-based and rocket-borne. Until about : &

a decade ago, when the rocket techniques were developed, studies on the
ionosphere were totally dependent on ground-based radio sounding experi- ; i3
ments. The ground-based methods can also be classified into two groups;

the conventional methods which provide only an integrated picture of the

D region, and the more recent methods which directly provide the electron-

density values as a function of the height. The rocket-borne experiments




measure the electron densities as well as the positive-ion densities
in situ, and are considered to give the most reliable picture of the D
region at present. In this section, a brief review of these methods will
be given. .

1.2.1 Ground-based experiments. In these experiments, a radio
wave is employed as a tool for probing the ionosphere. The propagation of
a radio wave in the ionosphere is governed by its refractive index, which
is a function of both the electron density and the wave frequency. When
the electron density increases with height, the refractive index continues
to decrease, causing the wave normal to deviate more and more from its
original path. When the refractive index becomes zero, which happens when
the plasma frequency of the medium is equal te the wave frequency, the
wave begins to return to the ground.

According to the simple ray theory of propagation, the frequency of a

vertically incident wave that is reflected from a point having an electron

density, ¥ cm's, is given by
f = 8.98/N  KkHz. (1.1)

For a wave incident at an angle 9, this is multiplied by sec 8. The
maximum frequency that gets reflected from a peak or a plateau in the
electron-density profile is called the critical frequency of the corre-
sponding layer. The electron density at the top of the D region is about

4

10" electrons cm's, and hence the maximun frequency that is reflected

from the D region is of the order of 1 MHz, when incident vertically on

the ionosphere.

T e T T P
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| ‘ Low frequency and very low frequency propagation experiments were among

E the early experiments carried out to investigate the D region. Frequencies

in the range 15~100 kHz are reflected from the low and middle portions of

the daytime D region, Signals from transmitters generally used for navi-

é gational purposes were monitored at various distances, ranging from 100's
to 1000's of kilometers. The amplitude of the skywave as well as its phase
relative to the phase of the ground wave was recorded. From these re-

é cordings, the diurnal behavior of the region near the reflecting level,
and also effects such as the sunrise and sunset phenomena were studied.

In the vertical incidence absorption measurements, the signals from a
pulse transmitter, after reflection from the ionosphere, are received in a
receiver located near the transmitter. Usually, frequencies ranging from

gbout 1.8 to about 6 MHz are used. The received echoes are displayed on a

cathode ray tube, and the amplitude and the delay are recorded. At night-
time when the D-region ionization vanishes and the absorption is low, ; {i
multiple echoes are observed. The amplitude of these yield the calibra-
tion constant of the system, or the unattenuated amplitude of the signal.
Hence, the absorption during daytime is determined by deducting the observed
amplitude from this calibration constant. The time delay gives the virtual

i height of the refiecting layer.

Generally, the lowest frequencies, i.e., those between 1.8-2.0 MHz
return from heights in the range 95-100 km, well above the D region.
However, most of the absorption takes place at D-region heights, between
about 80 and 90 km, as mentioned before. Any changes in the observed : <

absorption could, therefore, be attributed to changes in the electron-
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density values at these heights. However, the absorption, being an




integrated effect, cannot yield information about the fine structure of
the D region.

The exper;ments developed more recently to study particularly the
D region are: (1) Partial-Reflection Method, and (2) Cross-Modulation
Method., A third method, developed for studying the upper ionosphere and
applied recently for lower ionosphere studies, is the Incoherent-Scatter
Method.

In the partial-reflecticn method, weak signals reflected from irregu-
larities in the electron-density profile at D-region heights are recorded
in both the ordinary and extraordinary modes [Gardner and Pawsey, 1953].

From the ratio of these amplitudes, the electron-density values are
derived over the height range 65-80 km. In view of the very low invensity
of these echoes, high-power transmitters and low-noise receiving sites
have to be used. The finite pulse width, the errors in reading the echo
amplitudes, and the long sampling periods are some of the factors that
limit the accuracy of the electron densities derived from this method.
Coyne and Belrose [1973] estimated the accuracy in the absolute values
of the electron densities at any height to be about 50%, while the
accuracy of any changes was estimated to be within & 20%.

The cross modulation of two radio waves in the ionosphere was long
known, and was commonly referred to as the Luxembourg Effect. This method,
first applied to ionospheric studies by Fejer [1955], essentially consists
of measuring the difference between the absorption of two downcoming waves,
one passing through the normal icnospheric region, and the other passing
through a heated or disturbed region. The heating or the disturbing of

the ionosphere is done by a high-power transmitter whose signal is directed
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to meet the downcoming radio wave at a required height. The high power
beam raises the electron temperature of the plasma, which in turn, modifies
the collision frequency. The resulting change in absorption, which is of
the order of 1-2%, is measured. From these data, both the electron
density as well as the collision frequency could be determined as ar
function of the height [Thrane et al., 1968; Lee and Ferraro, 1969],

Incocherent-scatter facilities have been in existence for a number
of years to study the ivnospheric £ and F regions. In view of the
variety of information this method provides, it has proved to be a power-
ful tool for investigating the middle and upper regions of the ionosphere
[Bowles, 1958]. In the original systems, the presence of interferring
ground clutter signals has made it impracticable to obtain useful signals
from the lower ionosphere, particularly below about 150 km. Recently,
Armistead et al. [1972] have shown that, with certain system modifica-
tions, it is possible to bring down the heights of measurement to about
80 km. However, this technique has not been perfected yet to provide
D-region profiles with sufficient accuracies. At present, results could
be considered reliable down to about 90 km only.

1.2.2 Rocket experiments. In situ measurements of ionospheric
parameters by rocket experiments have been widely used in recent years.
0f these, the experiments designed for D-region studies can be divided
into two groups: (1) radio propagation experiments and (2) ion-probe
experiments. In radio experiments, the generalized magnetoionic theory
is employed to deduce the electron densities, while in ion-probe experi-
ments, the total p:obe current gives the electron demnsities.

The radio experiment essentially consists of sending two signals, one

in the ordinary mode and the other in the extraordinary mode, on the same




frequency from ground-based transmitters, and receiving them on a rocket-
borne receiver. The two signals are recorded separately and telemetered
to the ground [Mechtly et al., 1967]. The Faraday rotation or the
rotation of plane of polarization of the wave containing both the ordinary
and the extraordinary modes is also measured and telemetered to the ground.
From the two independent signals, the differential absorption is measured.
By combining these two measurements, the collision frequency is determined.
This value, in turn, is used with either of the two measurements to yield
electron densities. The Faraday rotation method gives reliable electron
densities at the upper portion of the D region, while the differential
absorption gives reliable results in the lower half of the D region. Both
methods give overlapping electron densities in the central part. In view
of the approximations made in the formulations, iterative techniques are
employed to arrive at the final results. Recently, the accuracy and the
height resolution of the measurements have been improved by employing two
independent propagation experiments operating on two different frequencies
[Mechtly, 1974].

Propagation experiments by themselves do not yield high resolution
data to reveal the fine structure of the electron-density profiles.
Usually, in the measurement of absorption below 90 km, large fluctuations
occur in the telemetered data. The differential absorption is therefore
determined by eﬁploying a sampling technique, and averaging over a selected
range of points. This results in poor height resoiution in the final
electfon deﬁsities. | |

Ion probes which respond to the electron or ion concentrations in the

immediate neighborhood of the probe are widely used in rocket experiments.

B T T _‘A.‘A—.AL.—.AA-‘A.A;A

’I
o
-]

a

.




10

This method has the advantage over the propagation experiments in that
it reveals the fine structure of the electron-density profiles, but certain
types lack the capability of yielding absolute values of electron concen-
trations. Though several types of in situ probes are available for
jonospheric investigations [Sayers, 1970], only the following used |
specifically for D region studies will be discussed here: (1} Langmuir
probe, (2) Gerdien condenser, and (3) electrostatic probe.

The Langmuir probe technique was developed for ionospheric studies
by Smith [1964]. This consists of a metallic electrode mounted axially
on the nose tip of a rocket. The probe is biased at a fixed potential
relative to the rocket body and it collects either the positive or the
negative ions depending on the polarity of the bias potential. The probe
current is directly proportional to the concentration of the ions or
electrons collected, the constant of proportionality being a function of
the probe shape and size. In view of the uncertainties involved in deter-
mining this parameter, direct measurement of the ion or electron concentra-
tion by this method is not possible. Therefore, it is customary to convert
the collector current into electron concentrations with the help of radio
propagation experiments or ionosonde data. The most reliable D-region
electron densities have been obtained by calibrating the Langmuir probe
current profiles with the electron densities deduced from differential
absorption and Faraday rotation experiments described previously.

The Gerdian condenser hgs been generally used to measure the positive-
ion concentrations. In the upper part of the D region where the abundance
of negative ions is negligible, the electron density could be obtained

from this measurement. This is essentially a pair of two concentric
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metallic cylinders located axially at the nose tip of the rccket. The
passage of the rocket through the plasma maintains a flow of ionized air
through the two cylinders. An electric field applied across the annular
region between the two cylinders causes a flow of electric current through
the condenser,. When'the applied electric field exceeds a certain value,
this current reaches saturation. At this saturation mode, the current
collected is equal to the product of the charge density of the plasma,
aperture area, electronic charge, and the effective velocity of ion flow
into the condenser. The velocity is deduced from the rocket speed and its
inclination to the trajectory. Thus, frem the current measurements, charge
density can be determined directly, At D.-region heights where the mean
free path of the particles is small compared to the dimensions of the con-
denser, reflection of particles take piace at supersonic speeds., At
altitudes above 70 km, this effect can cause errors up to about 25% [Xane,
1972], which can become serious at lower altitudes. Further, at altitudes
above about 85 km, vehicle potential can cause errors up to a factor of two
in the measurement of positive-ion densities. Thus, the Gerdien condenser
is best suited for measurements in the middle part of the D region.

Sagalyn and Smiddy [1964] developed a technique for measuring inde-
pendently the positive and negative charge densities of a plasma. Their
instrument consists of two spherical electrostatic probes, one for the
collection of positively-charged particles, and the other for the collection
of negatively-charged particles, enclosed in outer spherical grids. The
collector is maintained at a fixed bias voltage relative to the outer grid,
which is maintained at the vehicle potential for the positive-ion probe,
and at a slightly positive value for the negative-ion probe. Under normal

operation, the fixed bias voltage collects all the charged particles
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entering the outer grid, and the resulting current flow is measured. To
evaluate the corrections due to vehicle potentials, the outer grid voltage
is swept linearly and the resultant currents are measured. From a knowledge
of the dimensions of the probes and pre-determined parameters, the total

ion densities are evaluated in terms of the collector currents. |

In addition to the above probes which measure the total ion or electron
densities, mass spectrometers are also flown in rockets to measure the dis-
tribution of different ionic species in the ionosphere. With the develop-
ment of this technique, a complete new picture of the D region has emerged.
The presence of complex cluster ions in the lower part of the D region was
first detected by Nareisi and Bailey [1965] who flew a quadrupole mass
spectrometef in a2 rocket.

This instrument has four rods mounted axially at the four corners of a
square. The ions are drawn in through an aperture at one end, while the
ion detector is located at the opposite end. Suitable RF and DC potentials
are applied across these rods which make it possible for an ion of only a
certain charge-to-mass ratio to reach the ion detector. Sweeping of the
RF voltage results in the collection of ions of different charge-to-mass
ratios sequentially. In order to make the trajectory time smaller than
the collision period, the spectrometer chamber is evacuated continuously
and maintained at liquid nitrogen temperatures. The collector currents
are proportional to the respective ion densities. The absolute values are
obtained by conducting an independent experiment which measures the total
ion density, using a different method such as the electrostatic ﬁrobes
described before. Inaccuracies in reading the current peaks, drifts in

the DC amplifier could result in overall errors up to about 50%.
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1.3 Evidence for Diwrmal Variation

Both the LF and VLF recordings and the absorption measurements pro-
vided the first evidence of the strong solar control of the D region.
[Bracewell et al., 1951; Appleton and Piggott, 1954]. Figure 1.2 illus-
trates a typical recording of the phase variations cbtained more recently
by Belrose [1963], The phase variations could be attributed to variations
in the apparent height of reflection. For a fixed path and frequency, the
apparent height corresponds to a level having a given electron density.
Hence, these curves in effect show the displacement of the electron-density
profile near the level of reflection. For the shorter path, which corre-
sponds to a2 higher level of reflection, the variation between sunrise and
sunset is rather smooth. For the longer path, the variation is abrupt
near the sunrise and sunset, and in between, there is no significant varia-
tion. These results indicate that the upper portion of the D region has
a strong solar control, while the lower region has virtually no solar
control during the daytime hours.

In suﬁmer, the daytime variations over short paths are so regular and

constant, that the observed variations can be represented by the exnression
hx = ho + A loge (sec x), (1.2)

where hx and ha are.the apparent heights when the solaf zenith angie is
x and o, respectively, and A is a constant for the day. A closer look
at the résults show that the curves are not quite syﬁmetrical dbout the
local noon. This becomes apparent when 2 values are plotted against loge

{sec x). The straight lines passing through the morning values do not fail
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on the straight line connecting the afterncon values., There is a delay of

about 20-30 minutes in the appearance of the minimum points in these curves.
Vertical-incidence absorption measurements have been carried out in

the past over long periods of time, both at mid-latitudes and low latitudes

[Appleton and Piggoti, 1954; Gnanalingam, 1974] . These measurements show

that the absorption varies linearly with the sunspot number, has a diurnal

variation, seasonal variation, and also a day-to-day variation. The diurnal

variation of absorption is usually expressed in the form
n
L= Lo cos X, (1.3)

where L and Lo are the absorption values at solar zenith angles x and o,
respectively; and » is a constant. The simple ray theory predicts that
the index »n for the diurnal variation of the total nondeviative absorp-
tion for waves traveling in a Chapman layer is 1.5, However, observations
show that »n takes the value 0.75 for mid-latitude stations [Beynon and
Davies, 1955]. Using the method of oblique incidence absorption, Schwentek
[1966] also found that » = 0.75 on most of the quiet days. On the other
hand, Gnanalingam [1974] found that, for a low latitude station, »n takes
the values 0.8 and 0.9 for the equinoctial months at solar maximum and
solar minimum, respectively. These results have important implications’
on the diurnal behavior of the D-region ionization.

The plots of absorption against loge (cos x) alsc exhibit the diurnal
asymmetry. The morning points lie on a straight line having a smaller
gradient than that joining the afternoon points. This asymmetry is again

of the order of 20-30 minutes._
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Coyne and Belrose [1972] used the partial-reflection system to measure
both the diurnal and seasonal variations of the electron densities between
65 and 81 km. They found a strong solar variability in these measurements,
at least up to a solar zenith angle of about 75°. Here again, the variation
was found to have a slight asymmetry about local noomn.

Using both the partial-reflection and cross-modulation techniques,
Thrane et al. [1968] measured the diurnal variation of the electron
densities between 65 and 85 km at a mid-latitude station during quiet solar
conditions. ZThrane [1969] attempted to interpret these measurements using
a D-region model where the electrcn losses are due to a recombination
process, for which the production rate g is proportional to Nz.

For a Chapman-type ionosphere, consisting of a single ionizable con-
stituent ionized by monochromatic radiation, which is attenuated by a

single absorbing gas, the rate of production g is related to x according

to

loge qgf{z,%x) = A - B(g) sec x, (i.4)

where A is a constant, and
B(z) is a function of the height z only.
From the measured values of ¥, the production rates were deduced using
known electron loss rates. The loge q values were then plotted against
sec x for different heights. It was observed that the gradients of these
plots were much steeper than.the values of B(z) calculated for the cor-
responding heights. According to Thrane, this discrepancy could be

explained if the ionizable constituent or the electron loss rate has a
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solar zenith angle variation, or if the dominant ionization is not produced
by a single gas.

Haug and Thrane [1970] have re-examined these measurements in the
light of a new D-region model suggested by Haug and Landmark {1970]. In
this model, electron losses take place through an attachment-like process.
Consequently, the production rate g is proportional to N under quasi-
equilibrium conditions. Haug and Thrane compared the plots of log ./ versus
sec x made on the basis of this theory, with the experimental plots, and
found that the discrepancy is smaller with this model than with that used
by Thrane. In view of the uncertainties involved in the measurements, as
well as in the other parameters used, this small discrepancy does not
appear to be significant.

The diurnal study of the ionosphere by rocket experiments is a diffi-
cult task due to the high costs and various operational problems. Hence
rocket experiments are not generally employed to study diurnal variations
of the ionosphere. Nevertheless, Mechtly and Smith [1970] were successful
in making four sets of reliable measurements of the electron-density
profiles at four zenith angles on the same day (Figure 1.3). The extent of
the solar control of the D-region ionization becomes evident from this set
of measurements.

The two large angle profiles were measured during the sunrise hours.
The x = 18° profile corresponds to the noon. To study the variability of
the D-region ionization during the daytime, only the two profiles at
x = 18° &nd 60° are of interest.

1.4 Some Outstanding Problems of the D Region
Much pregress in our understanding of the D region has been made

during the past few years, though some problems still remain unsolved. The

: &
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Figure 1.3. Rocket measured D region electron-density profiles at solar zenith angles 90°, 84°,
18°, and 60° on July 24, 1968 [Mechtly and Smith, 1970].
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present status of the D region has been the subject of two recent reviews
by Sechrist [1972] and Thomas [1974]1. Some salient features of the D
region, its production and loss processes will be given here in order to
identify some of these outstanding problems.

A large number of D-region electron-density profiles have been
measured during the daytime at Wallops Island (latitude = 40°N) using
rocket-borne propagation and Langmuir-probe experiments [Mechtly et al.,
1972a]. A1l of these profiles were measured at the same zenith angle, viz
60°, and during different seasons and solar conditions. Yet, almost all
of them exhibit some consistent characteristic features.

Between about 82 and 88 km, the electron density inéreases very
rapidly with altitude. In most cases, this increase is more than an order
of magnitude and takes place within a height interval of about 2 km.

Above 90 km, the increase is rather gradual, varying between 104 and 105
electrons cmhs in the height range 90-105 km. A second ledge appears
around 60 km. This is more prominent in the active-sun profiles. In the
quiet-sun profiles, this ledge is absent, but they show a marked plateau
region between 60 and 80 km, where the increase in the electron density is
very slow.

These features of the electron-density profiles are closely associated
with some features ?resent in the ion distributions. Direct measurements
of the D-region positive-ion composition obtained from rocket-borne mass-
spectroscopic experiments reveal (Figure 1.4) that heavy cluster ions of
the type H+'(H20]n’ (=1, 2, ...} become dominant below about 82-85 km
level, and that molecular ions NO® and 02.+ dominate the altitudes above

[Varcisi and Bailey, 196S; Goldberg and Aikin, 1971; Krankowsky et al.,
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1972]. This sudden drop in the hydrated cluster ion concentration and the
sudden increase in the electron density at the same height range has been
interpreted as due to hydrated cluster ions having a higher recombination
coefficient than that of the molecular ions [Sechrist, 1970}. Though
laboratory measurements of the recombination coefficients of both the
molecular ions and the cluster ions are available, uncertainties in the
distributions of such minor constituents as H20, 0, NO, H, etc. which are
important in the reaction schemes yielding these cluster ions, have made
it difficult to interpret the observations quantitatively. Attempts by
several workers to reproduce theoretically the sudden disappearance of
the cluster ions and the sharp ledge in the electron densities near 82-
85 km have so far failed [Reid, 1970; Goldberg and Aikin, 1971; Hunt,
1971a].

More than the sharp drop of the cluster ions, the prediction of the
actual type of tﬁe dominant cluster ion present in the D region by itself
has remained an outstanding problem [Reid, 1971]. The known values of NO
and the ionization rates would yield water clusters of NO* around 80 km,
rather than those of the type H+~(H20)n which have been observed to
dominate these altitudes. Attempts to solve this problem have not been
successful so far, due to the lack of proper knowledge of either the rate
constants involved or the concentrations of the minor neutral species, or
due to both.

The other problem is concerned with the NO* production rates in the
D region. The strong solar Lyman-a line at 1216 R ionizes the neutral NO
present in the mesosphere producing No*. Direct measurements of NO con-
centration show that it varies between 1.5 x 107 and 1 x 108 cm"3 in the D

region with a minimum near 85 km [Meira, 1971]. Near 80 km, or immediately
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below the ledge in the electron-density profile, the major source of elec-
tron production is this ionization of NO. Through various ion-molecular
reactions, NO" produced will yield a variety of cluster ions including
the water clusters that are dominant at these altitudes. Under quasi-
equilibrium conditions, the final electron density values will be deter-
mined by the rate of recombination of these dominant ions and the
electrons,

The ion-pair production rates have been calculated using known values
of fluxes, ionization cross sections. The rocket-measured electron densi-
ties are then used to calculate the effective recombination coefficient,

defined as
o = /N2 (1,5)
eff = 4 '

Calculations show that near 80 km, ®oer has to be greater than
1x 10"5 cm3 seec:_1 in order to balance the production and loss rates
[Donahue, 1972]. Recent estimates by Mechtly et aql. [1972b] using rocket
observations of the changes in the electron-density profiles during

5

eclipses give values about 5§ x 10 em® sec”! for heights immediately

below the ledge in the electron-density profiles. However, the labora-
tory measurements of Leu et al. [1973] give values about 3 x 10—6 cm3
sec'l, almost an order of magnitude less than the values deduced from
jonospheric observations for the recombination coefficient of H+-(H20)2,
which is the dominant ion near 80 km.

This suggests that either the production rates used are too high, or

the actual dominant ion below the ledge is something other than Hf'(HZO)Z.
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According to Donahue [1972], a low production rate can be realized if a
reduced ionization rate is used for NO above 75 km. On the other hand,
the presence of a heavy cluster ion having a larger recombination coef-
ficient than that of H+-(H20)2 could be accepted if it is assumed that
these heavy clusters get fragmented during the process of rocket measure-
ments, resulting in the recording of a lower mass number than the mass
number of the ion actually present in the ambient D region,

Another problem that has drawn relatively little attention is the
production rates of 02+ between 70 and 90 km. Above 90 km, X-rays between

30 and 100 R ionizing both 02 and N, and the Lyman-f radiation ionizing

2

*. Below 70 km, galactic cosmic rays ionizing both 0, and

9 *
N2 produce the necessary 02

02, produce O
+. In between, there are several sources pro-
ducirg 02+, all of them being minor sources compared to NO ionization.
X-rays between 2 and 10 R ionizing both N2 and 02, solar EUV radiation
ionizing Oz(lAg] and precipitating electrons with initial energies greater

than 40 keV, all produce O Near equatorial latitudes, the precipitating

+
5
electrons are not considered important. The theoretical calculations of

Goldberg and Aikin [1971] show O " concentrations rapidly falling off

2
below 82 km, while their measurements show 02+ which remains almost
constant between 75 and 82 km. Thi indicates that either the precipi-
tating electrons are important near the equatorial latitudes where the
measurements are taken, or some other source of 02+ is present in this
height range. Comparing the 02+ production rates due to EUV photo-
ionization of OZ(IAg) witﬁ the results of Narcisi and Bailey [1965],

Huffmen et al. [1971] have also come to a similar conclusion, WNorton and

Reid [1972] have examined the possibility of such an additional source of
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02+, without success. A source of 02+ below the ledge can also solve, at
least partly, the problem of the formation of the water-cluster ions.

It will be possible to identify the origin of the 02+ ionizing source
if a diurnal study of the 02+ distribution could be made. A source such
as precipitating electrons has no diurnal variation, whereas one with solar
origin will show a diurnal variation, at least over the height range where
the optical depth for the ionizing radiation is comparable to or larger
than unity.

Thus, a realistic model of the D region should be able to explain:

1) the sharp ledge in the electron-density profile,
2) the formation of the dominant water-cluster ioms,
3} the balance of production and loss rates, and
4} the 02+ concentrations between 70 and 90 km.

1.5 Objeciives and the Outline

The ocbservation of the variation of ionization with the solar angle
will give information as to the height at which sources of different
origins, such as Lyman-o and precipitating electrons become important.
Such a deduction is straightforward, however, only if the incident radia-
tion alone is a function of the solar zenith angle. Departures from this
behavior will show that others, such as the concentration of ionizable con-
stituents and those responsible for the electron losses could also vary
with the zenith angle. Thus, an understanding of the phenomena occurring
in thé D region requires an understanding of the behavior of the neutral
constituents at different solar zenith angles, and zalso of the variations
in the ionizing radiations. In this report, an attempt will be made to

construct a unified diurnal model of the neutral atmosphere between 30 and
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120 km, and the D region., The neutral atmosphere will contain the major
constituents such as N2 and 02, as well as the minor constituents that are
either transported from the ground, or produced through photodissociation
and photoionization, The final objective is to compare the calculated
electron-density profiles with those measured by rocket experiments at

x = 18° and 60° on July 24, 1968 at Wallops Island [Mechtly and Smith,
1970]. Therefore, the input data taken for this study will correspond

to this date and location. The emphasis will be for the region where

the negative ions are not important.

In Chapter 2, the photochemistry of the minor neutral constituents,
including their photodissociation rates and the production-loss mechanisms
of different groups of constituents are discussed. The calculation of the
initial values using the steady-state transport and photochemical equa-
tions for use in the time-dependent transport model are presented in
Chapter 3. The solar zenith angle variation of the minor neutral con-
stituent concentrations is also investigated in this chapter. The ion-
pair production rates responsible for daytime D-region ionization are i

calculated in Chapter 4. In Chapter 5, the production and the loss o

processes, as well as the measurements of the composition of both the : A%
positive and negative ions are discussed. The results of the model cal- g }j
culations describing the solar zenith angle variation of the positive-

ion composition, negative-ion composition, and the electron densities are

given in Chapter 6. Chapter 7 presents the summary and the conclusions.
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2, PHOTQCHEMISTRY OF NEUTRAL SPECIES

The ionosphere is formed as a result of the ionization of neutral
molecules present in tle upper atmosphere, by solar and other radiations.
Therefore, a study of the ionosphere should necessarily include the study
of the behavior of the neutral constituents. If one begins with a simple
model of the atmosphere having only the two major constituents, molecular
oxygen and nitrogen and subject them to the effects of solar radiation,
the development of it into its present form can be followed up through
different stages.

This chapter begins with a discussion of the neutral atmosphere model
used in the present study. The calculation of the photodissociation co-
efficients of various comstituencs will be next given, followed up by a
discussion of the photochemical production and loss processes of different
groups of constituents.

2,1 Neutral Atmosphere

From direct measurements of the density of air it has been established
that the neutral atmosphere composition remains unchanged from the ground
level up to é height of about 100 km. Below this level the atmosphere is
considered to be well mixed maintaining constant mixing ratios for those
constituents that are not chemically active., At higher altitudes, the dis-
tribution of each constituent is governed by diffusive equilibrium.

The ground level composition adopted here is taken from the model of
Jacechia [1971], and is given in Table 2.1.

According to Jacchia's model, molecular oxygen hegins to photo-
dissociate at 90 km and form atomic oxygen. The mean molecular weight

is defined by a sixth order polynomial, from which the distribution
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Neutral atmosphere composition at ground level.

Table 2.1

Constituent

Nitrogen
Oxygen
Argon

Helium

Mixing Ratio

0.71110
0.20855
0.0093432

$.0000061
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of the individual species is calculated. The hydrostatic equations using
the scale heights corresponding to each constituent are used to calculate
the wnumber densities abova 100 km.

The temperature appearss as an independent parameter in Jacchia's
model. Up to 90 km, the temperature profile is constructed from three
cets of direct measurements carried out on July 24, 1968 at Wallops Island
[Smith et al., 1970]. The temperatures above 90 km are determined by
empirical formulas whose coefficients depend on the 10.7 cm solar flux,
latitude, longitude and the time of day. For the purpose of this study,

a 10.7 cm £lux of 150 units (10722 W m 2 Hz™') and local moon (x = 17.8°)
corresponding to Wallops Island geographic coordinates were used. The
density and temperature profiles thus obtained aré shown in Figure 2.1.

The calculation of the distribution of minor neutral constituents
involv=s the simultaneous solution of several continuity equations which
are in the form of parabolic type partial differenti=l eanations. The
solution of such equations call for the imposing of boundary conditions.
For many constituents these boundary conditions are not w.11 knmown, and
in some cases, suitable values have to be determined by initial trial cal-
culations. The departure of the solution from the exact situation due to
the use of incorrect boundary values will be largest near the boundaries.

- Therefore, in order to minimize such errors within D-region heights, the
.bouﬁéaiiéé a£e.ex£ended up to 120 km at the top, and down to 30 km at the
~bottom.
,1;252-.Pﬁoﬁo&issaeiat{an Coeffieients
Tﬁe.amount of radiation energy absorbed by a single molecule of a con-

stituent (denoted Z) at a given altitude over a wavelength interval AXx at
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Figure 2.1 The temperature and density profiles of the neutral atmosphere over Wallops
Island on July 24, 1968. Values up to 90 km are based on rocket measurements

by Smith et al. [1970] and above 90 km, on empirical formulas given by

Jacchia [1971].
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a wavelength A is given by
aJé(z,A) = T(A,4A%,3) oi(k), (z.1)

where I(A,AN,2) is the intensity of solar radiation at the altitude z

and wavelength A taken over the wavelength interval AA, and ci(l) is

~ the absorption cross section of the Zth constituent at the wavelength X.
The intensity of selar radiation remaining at a given height depends

on the amount absorbed by the column of air above that height measured

along the ray path, and is given by
I0,82) = I (3,80) exp(~t(x,2)) (2.2)

where Ib(A,AA) is the solar radiation flux integrated over the wavelength
interval A\ incident on top of the atmosphere, and t(x,2) is the optical
depth factor,

The ability of the solar radiation to penetrate the atmosphere for
different wavelengths is expressed in terms of the unit optical depth,
defined as the altitude where the optical depth factor is unity. It
follows from equation (2.2) that at this altitude, the fractional attenua-
tion of the incident radiation is equal to 1/e. Figure 2.2 illustrates
the penetration depths for radiation incident normally on the atmosphere,
as a function of the wavelength up to 3200 R. It is seen from this curve
that wavelengths abéve 1000 R could reach heights below 120 km. Between
1800 and 2000 &, there is a sharp drop in fhe optical depth, from a height
of 80 km to 40 km. This wavelength interval corresponds to the Schumann-

Runge bands in the 02 absorption spectrum. Beyond 2000 ! up to about
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Figure 2.2 The penetration depths of solar radiation incident normally on the atmosphere. 63% of
the incident energy in a given wavelength interval is lost above the altitude shown.

IE




P

prer e,

32

3000 R, the penetration depth lies more or less constant in the 30-40 km
interval. By comparing this curve with the absorption spectra of oxygen
and ozone, it becomes apparent that the penetration of wavelengths below
about 2000 & is controlled by absorption due to oxygen, while ozone
absorption controls the penetrstion of longer wavelengths.

In determining the optical depth factor, it is therefore necessary to
consider only the absorption by oxygen and ozone. It is calculated using

the formula

T(%,8) = {UOZ(A) J [Oz]da * GOS(A)J [Os]dz}secx (2.3)
2 2
where [02] is the number density of oxygen, and

[03] is the number density of ozone.
The photodissociation coefficient, J{ is obtained by summing up
the energy absorbed over the entire spectrum effective in dissociating

the given constituent, and is given by

J;(x:2) = ;IO(A,AAJ o, (1) exp(-1(x,2)) (2.4)

The height dependence of Ji is determined solely by the optical
depth factor. For small values of t, it is almost independent of the
height. In calculating the optical depth factor for wavelengths where
absorption by ozone is important, it is necessary to assume initially the
height distribution of this gas. The adopted distribution, which is based
on direct observations, is given by
[0,] = 1016~#/10 (2.5)

for heights above 30 km.
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2.2,1 Solar radiation iwn the 1000-4000 & region. The ranges of wave-
length that are of interest in photodissociation studies of the neutral
cnqstituents lies between 1000 and 4000 &. This is mainly a continuous
spectrum, being of thermal origin, except for the lines that appear towards
the 1000 & end. Of these, the more intense lines are the Lyman-g at
1025.7 & and Lyman-o at 1215.7 R. However, for the purpose of calculating
the photodissociation rates, only the latter is of importance. This line
has been under investigation over several years, and it has been observed
that it is a fairly stable line, with the intensity variation at most of
the order of 1.5 between the solar maximum and minimum [Weeks, 1967]. The
intensity of this line has also been measured using satellite-borne instru-
ments in the recent past. Timothy and Timothy [1970] have measured the
intensity variations of both the Hydrogen I Lyman-a (1215.7 R) and Helium 2
Lyman-a (304 R) lines from 1967 to 1969. The intensity of 1215.7 R lines
measured on July 24, 1968, the day that is of interest here, is 3.7 x 1011
photons cm_z sec-l. The average for the whole period is 3.6 X 1011 photons
cnf2 sec”l. This value, however, is slightly higher than 3 x 1011 photons
en™? sec'l, the value reported by Vidal-Madjar et al. [1973] as the average
for the years 1969 and 1970, monitored on board the 0SO 5.

The filux values used in the region 1027-1310 R are those recom-
mended by Hinteregger [1970] for medium solar activity. This region
includes a few SZ and 0 lines and a continuum which contains about 1/5
the total energy (excluding the Lyman-o line) in the band.

The fluxes between 1300 and 2000 R used in aeronomical calculations
in the past were taken from the observations of Detwiler et al. [1961].
Recent measurements of the spectrum between 1400 and 1875 R using photo-

electric instruments, carried out on 1968 September 24 (10.7 cm flux =
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143 units) by Parkinson and Reeves [1969], however, give values much less,
about 1/3 to 1/5 of those reported by Detwiler et al. Considering the
reliability of the experimental technique employed by Parkinson and Reeves,
Hinteregger [1970] suggests that the values quoted by Detwiler et al.

for the above range of wavelengths should be scaled dewn by a factor of 3. 3
In the present calculations, therefore, this correction was applied over
most of this region. Towards the two ends, this factor was made to reduce
gradually down to unity in order to join smoothly with the rest of the
spectrum.

The region between 2000 and 4000 R was measured by Tousey [1963] as

early as 1960, the intensities measured being averages over 50 R intervals
from 2000 to 2600 R, and over 100 R intervals from 2600 to 4000 R. More
recent measurements of Bonnet [1968] generally agree with Tousey's
measurements. Slight disagreement over small wavelength intervals could
be attributed to averaging effects by the measuring instruments. The

spectral distribution expressed in photons en? sec™t 71

over the entire
region 1000-4000 R, adopted in the present calculations, is shown in
Figure 2.3.

2.2,2 Absorption eross sections. The absorption cross section of
a constituent, which is a function of the wavelength, gives a measure of
the radiation absorbed by the constituent resulting in its disscciation,
In gencral, the absorption of energy need not necessarily give rise to dis-
sociation; instead the molecule which absorbs the energy could be raised
to a higher excitation level. However, in the present work, it is assumed

that the absorption of energy by a molecule results only in its

dissociation.
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Figure 2.3 The solar spectrum between 1000 and 4000 R, based on the measurements by
Detwiler et al. [1961], Parkinson and Reeves [1969] and Tousey [1963].
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As mentioned previously, wavelengths below 2000 & are absorbed mainly
by oxygen while wavelengths above are absorbed by ozone. Hence, the
absorption cross sections of these two constituents control the photo-
dissociation coefficients of all constituents, and their values adopted
in this study are illustrated in Figure 2.4. Of the wavelengths below
1300 &, only the window at the Lyman-a wavelength is of importance. The
presence of this atmospheric window allows the strong Lyman-o radiation
to reach D-region heights resulting in the photcionization of NO, which
is the major source of D-region icnization. This line is also important
in the photodissociation of constituents such as H20 and CH4 which have
large absorption cross sections around this wavelength. High resolution

measurements of the absorption cross section of 0, at the bottom of the

2
window were carried out by Ogawa [1968]. He finds that the minimum of

20 n? lies at 1216.0 R,

while the value at the center of Lyman-o line is 1.05 x 10_20 cm2. There

the transmission window, having a value 0.945 x 10~

fore, a value of 1.00 x 10720 cm2 is taken as the mean absorption cross
section of oxygen at the Lyman-c line.

The cross sections for wavelengths in the Schumann-Runge continuum
(1950-1750 R) and up to 1900 R were measured by Watanabe et al. [1953].
This region shows a peak between 1400 and 1500 R, and a sharp continuous
drop up to about 1750 R. Beyond this wavelength, up to about 2000 &, the
spectrum consists of a large number of rotational bands (Schumann-Runge
bands). The maxima of the rotational lines in each of the vibrational
bands lying in the region 1760-1900 R have been measured by Ackerman
et al. [1969]. The continuum (Herzberg continuum) in the 1850-2600 &

interval, underlying the Schumann-Runge bands, has been measured by
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Ogawa [1971], and it is found that this continuum 1ies more than 100
times below the peak values reported by Ackerman et al. In spite of these
measurements, a proper knowledge regarding the detailed structure of these
bands is still lacking, and this has caused much uncertainty is estimating
the extent of penetration of solar radiation down to lower mesospheric
heights. Even if such measurements are available, the calculation of the
contributions due to radiation penetrating through each of these windows
would be a difficult exercise in view of their‘fine structure,

To get over this problem, Hudson et ql. [1969] measured the trans-
mission factor for radiation of different wavelength bands passing through
a column of oxygen. These results can be conveniently used to calculate
the photodissociation rates in the corresponding wavelength bands, Mole-
cular oxygen actually undergoes predissociation at these wavelengths, and

the photodissociation coefficients of 0, include the contributions from

2
this effect.

The absorption cross section of many of the comnstituents, with the
5s Hy0, and HNO; fall off below 2000 A. For these

constituents the photodissociation coefficients are controlled solely by

exception of 03, N025 HO

02 absorption, and their values vanish off before reaching lower heights.
Since the solar fluxes below 2000 R are much less than those in the higher
wavelengths, the photodissociation coefficients of these constituents
generally have small values even at zero optical depths.

For the constituents mentioned above, however, the large flux above
2000 A, and the smaller attenuation due to ozone absorption result in
higher photodissociation coefficients. Further, they maintain almost

constant values down to about 50-40 km, where they begin to get attenuated
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due to the presence of the ozone layer. In fact, the second term in

equation (2.3) is important only for these comnstituents.
The ozone absorption spectrum is illustrated in Figure 2.5. Values
between 1100 and 2000 R are taken from Tanaka et al. [1953], and for the {

region above 2000 &, values are taken from Inn and Tanaka [1959]. The : :

ozone spectrum exhibits a peak in the Hartley continuum near 2600 /.

Above 3000 &, the cross section decreases with the wavelcngth allowing

the wavelengths in near ultraviolet and visible regions to reach the ground.

The photodissociation of HZO is most important in the chemistry of O-H

constituents, and also in estimating the residual HZO in the mesosphere.

The cross sections used for H,0 are taken from Watanabe and Zelikoff [1953]
and I%ompsbn et al. [1963]. 1In the SR continuum, this curve reaches a peak
near 1650 &, and drops off rapidly beyond about 1800 &, Since large values

of ¢ occur in the region of SR bands, any errors in estimating the pene-

H,0
tratign depth of the solar radiation at these wavelengths could cause a
certain amount of uncertainty in the corresponding photodissociation co-
efficients, Anderson [1971a] calculated the photodissociation coefficients
of H20 using the transmission factors determined by Hudson et al. [1969].
The values obtained by him are about a factor of 10 higher than the values
given by conventional data for similar solar zenith angles at 60 km, In i
the present work, the cross-section curve over the SR bands was modified ﬁ
i
1

to give H,0 dissociation rates close to those obtained by Anderson.

2

-

Of the other 0-H constituents, both HO2 and H202 can get photo- 1

dissociated producing OH molecules. Due to non-availability of absorption %
data for H02, it has been customary in the past to assume the same values

for HO2 cross sections as those measured for H202. However, recent measure-

ments of the absorption cross sections of H02 by Paukert and Joknston

LA
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[1972] have enabled independent calculation of the photodissociation
rates for this constituent. These new data give photodissociation rates

about six times higher than those of H,0, at zero optical depth. The data

272
Cross sections used for NO2 are taken from the work of Nakayama et al.

used for H,0, are those quoted by Paukert and Johnston.

[1959] for wavelengths between 1080 and 2700 R, while the values of Hall
and Blacet [1952] are used for higher wavelengths. In the case of NZO’
absorption cross sections measured over the region 1080-2100 R by Zelikoff
et al. [1953], and values quoted by Bates and Hays [1967] for higher wave-
lengths are adopted. The absorption spectrum of NO2 muainiains a high value
even ahove 2000 R, while the NZS spectrum falls off rapidly after reaching
its peak near 1800 A. Consequently, the photodissociation rates of N02 are
generally much higher than those of NZO' Cross sections used for HNO3 are
taken from the recent work of Johnston and Graham [1973].

Recently Strobel [1971b] suggested that §(0,0), 6(1,0) and §(1,0)
bands, among others, could produce predissociation of NO in the mesosphere.
The dissociation coefficients due to these three bands are also included in
the present work, assuming an average value for the absorption cross section
of 0, at the corresponding wavelengths.

For €0,, cross sections measured by Nakata et al. {1965] and Thompson
et al. [1963], and for CHy, values reported by Okabe and Becker [1963] are
adopted. In both of these, cross section profiles are important at wave-
lengths below 1800 & only, and hence, their photodissociation rates are
respectively small.

The complete set of absorption cross sections used in the present work

are shown in Figures 2.4 and 2.5,
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2,2.3 Solar variation of photodissoeiation coefficients. The entire
photochemistry of the upper atmosphere rests on the photodissociation of
its constituents. The rates of production, as well as the loss of certain
constituents are solely governed by their photodissociation processes.

The diurnal b.....vior of these constituents could, therefore, be expected
to have a strong dependence on the solar variation of the respective photo-
dissociation coefficients.

In certain constituents such as O2 and 03, different regions of the
spectrum yield different species. These have different chemical proper-
ties, aﬁd therefore, to evaluate their yields separately the photo-
dissociation coefficients over these different spectral regions have
been determined separately. The complete list of the photodissociative
reactions is given in Table 2.2. The calculated coefficients for both
x = 18° and 60° are illustrated in Figures 2.6 and 2.7.

For heights where the optical depth factor is small, the photo-
dissociation coefficients are independent of both the height and the
solar zenith angle. Towards the end of the penetration depth, the dis-
sociation curves tail off as the exponential term in equation (2.1} takes
large values. It is only at these heights that the effect of solar zenith
angle and the 02 column density become prominent on the photodissociation
values, As the zenith angle increases from 18° to 60°, the tail in the
dissociation curves can get lifted by about 4-5 km, while the values de-
crease by more than an order of magnitude. However, the role played by
the dissociation coefficients become less important as their values drop
off. Thus, it is really a limited height interval over which the solar
variation begins to show up in the chemistry of the constituents.

Exceptions to this behavior are the 0O, and H,0 dissociation coef-

2 2

ficients. These two curves are composed of contributions made by different
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Table 2.2

Photedissociation reacticns.

J1a 02 + hv
1 02 + hv
JSa 03 + hv
JSb 0y + hv
JSc 05 + hv
J4 N02 + hv
Jg - N0+ hv
J6 NO + hv
J7 H20 f hv
Jg HO, + hv
Jo HyOp + kv
JIO | HNO,. + hv
di1 €O, + hv
Ji2 CHy+ hv

o*m) + o¢®p)

oc®ey + of®m)

1 1 )
0,'a) + oc'D)

1 1.
02( Ag) + 0(°D)
3
02 + 0("P)

NO + O

+ el
N2 oD
N+Q

OH + H

0OH + QH
OH + NO

co + o¢'p)

CH, + Hy

< 1750 &

1750 R < ) < 2400 R

A< 2660 R

2600 R < A < 3100 R

3100 & < A

A < 3975 R

A < 3370 &

A < 2350 R

A < 1700 A
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regions of the respective spectra. Each component has a different pene-
tration depth and when one takes the sum, the height over which the solar
variation occurs is extended.

It should be noted that any variation of the 0., column density can

2
cause the dissociation coefficients to vary in a manner similar to that
caused by the zenith angle variation. Hence, in the time-dependent cal-
culations, the dissociation coefficient at time ¢ was computed by taking
02 column densities evaluated at the previous time step, (t-4%). At
zenith angles greater than 75°, the sec y terﬁ in equation (2.2) was
replaced by the Chapman functiomn, Ch(y).
2.3 Reactions of Oxygen Constituents

The problem of the production of atomic oxygen in the upper atmo-
sphere has been the topic of several investigators [Nicolet and Mange,
1954; Colegrove et al. 1965; Shimazaki, 1967]. The production of the
atomic oxygen species, as well as ozone, is a consequence of the photo-
dissociation of 02. The energy absorbed in the Schumann-Runge continuum
results in the formation of one atom in the ground state O(SP), and the
other in the metastable state 0(1D), out of one molecule of oxygen. Wave-
lengths above 1750 &, produce both atoms in the ground state. The shorter
wavelengths do not penetrate to lower heights, and therefore, the direct

production of the metastable species from 0, is restricted to higher alti-

2
tudes, generally above 80 km. The metastable atoms thus formed underge

quenching reactions with N2 and 02 making them to attain ground-state

energies, according to

1 : 3
0(D) + N, =+ OCP) + N,

1 3
oDy + O2 = 0O(P) + 02
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The oxygen atoms recombine with each other and with 02 in the presence
of a third body to give metastable 02(1Ag) and 03, respectively, according

to

0+0+M =+ 02(1Ag) + M,

0 + O2 + M > 03 + M

The metastable 02(1Ag) gets converted to ground level 0, in the quenching

reactions,

+ 0, + N

1
0,045) + N, 2 ¥ Nys

+ 0, + 0

1
0,(78,) + 0y 2 * 0y,

and also through the spontaneous emission

1
02( Ag) - 02 + hv.

Ozone, through photodissociation, yields both ground-state and excited-
state molecular and atomic oxygen (Table 2.2)., As the photodissociation
coefficients of 03 extend to lower heights, these processes become the
major sources of the atomic species and 02(1Ag) in the lower mesosphere
and the stratosphere.

The .ist of the reactions used in the present calculations is given
in Table 2.3, along with the adopted rate constants. Many of these re-
actions have been reviewed by Schiff [1969, 1972]. In reactions involving
atomic oxygen, quantitative measurements are generally difficult to make
because of the errors that creep in due to wall effects. Most of the
measurements of the rate constant of Reaction 1 have been made at high

temperatures where the temperature dependence is found to be T-l. However,
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Table 2.3

Oxygen reactions.

48

Reaction Reaction Rate Constant
n -1%*
No. cm sec
- 1 + -2.9
Ry S0+ M > 0,008 +M 3,0(-33) (T/300)
g Campbell and Thrush [1967]
L, 0+ 0,+M + 0y +M 6.57(-33) exp(1.01/RT)
Huie et al. [1972]
R, 0+ 0, + 0,+0, ('a) 1.05(-11) exp(-4.31/RT)
g MeCrumb and Kaufman [1972]
1
R 0,(t)+N, + 0, +N 4.0(-19)
4 2" g 2 22 Zipf [1969]
R 0,('a ) + 0, » 0, + 0, 2.22(-18) (1/300)°"78
g Findlay and Snelling [1971]
Re 02t1A )+ 0, + hv 2.6(-4)
g Badger et al. [1965]
R, o(lpy + 0, + 0+0, 5.5(-11)
Sehiff [1972]
Rg oc'm) + N, + 0+ N, 5.0(~11)
Schiff [1872]
1 1
Rg 0('D) + 0, + 0+ 0,('a) 1.0(-12)
g Vallance-Jones and
Gattinger [1963]
1
Rio 0('D) + 05 = 0, + 0, 3.0(~10)

Schiff [1969]

*
n = 3 for binary reactions, and 6 for 3-body reactions

*Read a(-n) as a x 107"
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at temperatures below 350 K, the temperature dependence was found to be
nearly T-S. At D-region heights, therefore, this reaction is relatively
unimportant. In his latest review, Schiff [1972] has recommended the
value 1.2 (-35) exp(2.1/RT) for the rate constant of Reaction 2 (Table 2.3).
In this work, however, a more recent measurement [Huie et al., 1972] has
been adopted. This reaction is different from many other 3-body reactions
in that it has a negative activation energy. It also happens to be the
main source of 03 in the upper atmosphere, and therefore plays an impor-
tant tole in aeronomical studies,

The binary reaction between O(3P) and O3 (Reaction 3; Table 2.3)
begins to dominate as a loss process for 03, when losses due to direct
photodissociation are absent. The value for its rate constant is taken
from the recent work of MeCrumb and Kaufman [1972]. This value agrees well
with the results of Krazenski et al. [1971] within experimental errors.
It is, however, smaller by nearly a factor of 2 than the values deduced by
previous workers [Schiff, 1969]. The rest of the reactions given in
Table 2.5 are all concerned with the excited species, Oz(lag) and 0(10)
which are produced in the photodissociation of 02 and 03, and also through
Reactions 1 and 3. Their loss mechanism is mainly through quenching by
N, and O

2 2°
of Zipf [1969] and Sehiff [1972].

and the corresponding rates have been adopted from the reviews

2.4 uiijgen-Hydrogen Reactions

Bates and Nicolet [1950] first introduced the oxygen-hydrogen reac-
tions into the upper atmosphere photochemical models. In their work, the
presence of various O-H products in the mesosphere was hypothesized in
order to explain the OH airglow emissions observed to originate in the

mesosphere. However, many of the parameters that went into the calculation

aadea S
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of the distribution of the species were not known at that time. Hence
their results were rather of a qualitative nature. A more detailed
calculation of the behavior of the 0-H products and their influence on the
ozone distribution was carried out by Hunt [1966]. He also included non-
equilibrium conditions in his calculations., Hesstvedt [1968! extended
these studies by introducing the effects of vertical eddy transport on
the distribution of the minor neutral species at mesospheric and lower
thermospheric heights. More recent studies of this subject which include
the solution of a system of time-dependent continuity equations having
transport terms were carried out by Shimazaki and Laird [1970], Hunt
[1971b] and Thomas and Bowman [1972].

The basic process responsible for the production of O-H constituents
in the upper atmosphere is the photodissociation and oxidation of water
vapor which is assumed to be constantly transported into the stratosphere
from the troposphere. The exact mechanism of this transport through
the tropopause is not well understood. It is expected that the tropopause
with temperatures below the freezing point would act as a barrier for any
transport of water vapor through it. The water vapor that is carried to
the stratosphere and above is subject to photochemical loss processes;

its dissociation by solar radiation, and oxidation by O(lD), according to

HZO + hv > H + OH

HO + 0('D) > OH + OH.

2
In the stratosphere where the photodissociation coefficients are small, the
main loss process is the oxidation reactiom.

The by-products of the H20 dissociation and oxidation reactions, viz.

OH and H are highly chemically active species. In the presence of ozone
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and atomic oxygen, these constituents participate in catalytic reactionms,
giving rise to other O-H products such as HO2 and H202, and also to molecu-

lar hydrogen, Hz. The two reactions

C"2) +0H » H=+ 02

H+0, - QOH+ 0

3 2

both of which have high rate constants greater than 1071 en® sec”!

[Kaufman, 1969}, however, do not yield any new constituents. They merely
interchange OH and V' while converting O(SP) and 03 into molecular oxygen.
Nevertheless, they are important as loss processes for O(SP) and 03.

The main sources of HO2 are the reactions

o%P) + OH + M + HO, + M,

2

3
H + O3 > H02 + 0("P).

Many workers in the past have also included the reaction

OH + O3 -+ H02 + 02

as a possible source of HO,. However, Sehiff [1972] has cautioned against
using this reaction as no direct evidence for its occurrence with the ground-

state OH is available. The HO2 thus formed undergoes fast reactions with

OCSP) and H destroying it to produce OH according to

HO, + O(°P) = OH + O

2 2

HO2 +H > OH + OH,

respectively. Another reaction that has been postulated as converting

H02 back to OH is

H02 + O3 -+ COH + 202
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According to Sehiff [1972]1, this again has to be dismissed as no direct
evidence is available for its occurrence. It is seen now that the produc- ‘ )
tion and loss of both OH and H02 are closely linked with the chemistry

of 0C3P) and 0. : :
- 1

Reactions between two HO2 molecules result in the production of a

single H202 molecule, according to

HO2 + H02 -+ H202 + 02

while the loss of Hzo2 is governed by its reactions with O(SP) and OH:

3
H,0, + OC’P) + OH + HO,

H202 + 0H - H20 + I-IO2

While breaking up H202, these reactions reproduce OH, HO2 and also H.,0.

2

The molecular hydrogen, H, is produced as a result of the reduction

2
of OH, H02 and H202 by atomic hydrogen, according to

H+ OH =+ H2 + 0,

H+HO, =+ Hy+0,, N
|

H + H202 -+ H2 + HOz.

Several reactions that take place between these newly formed O-H
constituents result in the reformation of HZO’ the original source of all

the O-H constituents. Some of these reactions are
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OH + OH - H20 + 0,

CH + HO2 > HZO + 02,

OH + H202 -+ HZO + H02.

In addition to the above reactions, a large number of other reactions
involving the hydrogen species take place at relatively slow rates. These
reactions, however, can become important at certain heights and hours of
the day when the concentrations of the constituents in the above-mentioned
reactions drop to insignificant values. Such instances occur during the
night time when both the O(SP) and H concentrations below about 60 km
decrease by several orders of magnitude from the values occurring in the
daytime.

The complete list of reactions involving O-H species, along with their
rate constants is given in Table 2.4. Many of these reactions and the
available data on the rate constants has been reviewed by Kaufman
[1964, 1969], and Schofield [1967]. For some of the fast reactions in-
cluding HO2 (Reactions 21, 23, 24, and 25) only the lower limits of the
rate constants have been estimated in these reviews, and these have been
used by all investigators in the past. For two of these reactions
(Reactions 21 and 24); improved estimates have been made recently by
Hochanadel et al. [1972], and these have been adopted in this study. For
the other two reactions, lower limits given by Kaufman [1964] have been
used. However, for the production of OH, as well as for the loss of H

and HO,, the role played by these reactions is of minor importance., Hence

2’

any errors in these rate constants are not expected to influence the results

of the present computations to any great extent.

T T T T T T U




Table 2.4

Oxygen-hydrogen reactions.

Reaction Reaction Rate Constant
1%
No. cm“ sec 1
Ry H+ 0y +M + HO, + M *3,0(-32) (273/T)1*3
Sehofield [1967]
Ry, HeH+M > Hy+ M 1.2¢-32) (273/1)%7
Kaufinan [1969]
Ri3 H+0, » OH+0, 2.6(-11)
Kaufiman [1969]
Rig Hy+0 > OH+H 7.0(~11) exp(-10.2/RT)
Kaufman [1969]
Ry Hy + O('D) + OH+H 7.5(-11)
da More [1967]
Rig H,0 + 0('D) + OH +OH 3.5(-10)
Schiff [1972]
Ryq OH+0 - H=+ 0, 5.0(-11)
Kaufmen [1969]
R18 OH + 03 - I-I(}2 + 02 See Text
ng OH + OH =~ H20 + 0 2.7(-12)
i Hochanadel et al. [1972]
Rap OH+H+M = HO+H 2.5(~31)
Haufman [1964]
R21 HO2 +0 -+ OH+ 02 6.6(-11)
Hoehanadel et aql. [1972)
R22 HC)2 + 03 + OH+ 2 02 See Text
R23 H02 + O0H =~ H20 + 02 2.0(-10)
Hocharadel et al, {1972]
R HO, +H - H,+0 > 3.0(-12)
24 2 2 2 Sehofield [1967]
st H(}2 +H =+ OH+ OH 1.0(-11)
Schofield [1967]
R HO, + HQ, <+ H,0., + 0 6.0(-12)
%6 2 2 272 2 HRochanadel et al. [1972]
Paukert and Johnston [1972]
R27 H2 + OH =~ H20 + H 6.3(-11) exp(-5.49/RT)
Kerufman [1969]
Rag H0, + 0 + OH + HO, 1.0(-15)
Foner and Hudaon [1962]
RZQ H202 +H -+ H2 + H02 lt%(~111 exp(-4.2/RT)
Kijewski and Troe [1971]
R30 H202 + 0OH -+ H20 + HOZ 4.0(-13)

Foner and Hudson [1962]

*

*Read a(-n) as a x 107"

n = 3 for binary reactions, and 6 for 3-bndy reactions
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The rate constant for Reaction 26 (Table 2.4) has been estimated
recently by Hochanadel et al. [1972]. The value quoted is the average of
the two measured values, The reaction between OH and 03 (Reaction 18) has
been observed to take place only when the OH is in the vibrationally ex-
cited state, and the rate constants have been measured for the states
v=2tov =29 [Coltharp et al., 1971]. This reaction becomes the major
source of H02 at nighttime when both O(SP) and H vanish at night below
80 km., Therefore, even a small value assumed for its rate constant can
make a significant contribution towards the production of HO,. Though
such a value can be assigned to this reaction by extrapolating the measured
values down to v = 0, this reaction has been left out from the calcula-
tions in view of the absence of direct evidence for its occurrence. For
similar reasons, Reaction 22 (Table 2.4) has also been left out of the
present calculations.

2.5 Nitrogen Reactions

The photochemistry of N-O reactions has been pursued in the past in
view of the importance of NO in the formation of the D region [Nicolet,
1865; Novton and Barth, 1970; Strobel et al., 1970; Strobel, 1971a, 1971b].
Nicolet, and also Norton and Barth, in their calculations included only
the photochemical continuity equations. Tdentifying the weakness of these
photochemical models, Shimazaki and Laird [1970], and Strobel et al.

[1970] introduced diffusive transport terms into the continuity equations.
Schimazaki and Laird's calculations are restricted to the chemistry of
the neutral species only, while the work of Strobel et al. and Strobel is

restricted only to the thermosphere and the mesosphere, respectively.
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The chemically inert nature of N2 make the photochemistry of N-0
reactions somewhat different to that of O-H reactions. The absorption
of ultraviolet radiation by N2 is very little. Its atomic species,
the ground-state N(4S) and the excited N(ZD) are produced from N2 through
ionization by high energy EUV radiation and X-rays. Therefore, the photo-
chemistry of these consfituents should also include the ionic species,
+

+ %
N, , NO', and 0,".

below about 90 km, and hence the production of these atomic species and

Most of the EUV radiation and X-rays do not penetrate

the subsequent formation of NO is restricted to altitudes above this level.

The ionization rates used in the calculation of production of ionic

species N2+, 0+, 02+, and NO© will be discussed in detail in Chapter 4.

The important reactions which produce the neutral atomic nitrogen species

from the above ions are:

or + N, + NO o+ N(45):
+ 0 =+ NO+ + N(4S) s N(2D) 3
NO + @ =+ (0 + N(4S) N N(ZD) 3

Nets) + Nets).

=
+
©
¥

In the reaction of N2+ with O and the recombination of NO+, the
formation of the excited state N(ZD) is energetically possible. The
yield of N(ZD) from these two reactions has important consequences in

the production of NO. The conversion of N(4S) to NO is effected through

the reactions:

R ‘:“‘-_J“: :




N(ds) + 0, + N0 +O,

4
N('S) + 03 -+ NO =+ 02,
N(ds) « 02(1Ag) > NO + O,

NeYs) 0+ M = NO+ M.

However, the lirgest contribution in the thermosphere comes from the

reaction
2
N("D) + 02 <+ NO + 0,
which has a rate constant of 6 x 10"12 cm3 sec'1 [Zin and Kaufman, 1971],
- 4 -
compared to 5 x 10 17 cm” sec 1 for the reaction between N(4S] and 0,.

The problem here is that the exact yield of N(ZD) in the above reactions
is sti1l not known accurately. Strobel [1971b] showed that a percentage
branching ratio of 100 for the N2+ + 0 reaction, and 75 for the NO© re-
combination reaction could give results in agreement with the observa-
tions of Meira [1971]. Strobel in his work has also included the
production of N(ZD) through the impact of fast electrons with NZ‘ How-
ever, the contribution of this process below 120 km is not very impor-
tant, and hence it was neglected in this study. The predissociation of
N2 has also been suggested as a possible source of atomic nitrogen in
the lower thermosphere. According to Hudsom and Carter [1969], however,
its yield of atomic nitrogen is small compared to other sources, and
therefore, this process has not been included here.

While NO is produced from N in the thermosphere, reactions between

the two also form major mutual loss processes for the two constituents:

57




58

NO + N = N2 + 0.

Therefore, the abundance of NO in the lower thermosphere is strongly
coupled to that of N.
In the lower regions the oxidation of N20 by O(ID) can produce NO

molecules as well as nitrogen molecules according to

1
N20 + 0("D) =~ N2 + 02,

+ NO + NO.

Nicolet and Peetermans [1972] in th: ir recent study of the stratospheric
N20 have assumed equal branching ratios for this reaction. The photo-
dissociation of NZO’ having a dissociation energy of 38.5 kcal, is

capable of producing Nz, O(ID), 0(18), N(ZDJ and NO, according to

N0 + kv + N, + 0('D), A < 3400 R
> N, + o(ls), A < 2100 R
> No + NC®), A < 2515 R
> NO + N(°D). A < 1695 R

However, photolysis studies of NZO carried out at wavelengths 1849, 2139,

and 2288 & show that the excited oxygen atom produced is exclusively the
é 0(1D) state, and that the yield of NOC and N makes only a negligible con-
tribution towards the photolysis of N20 [Preston and Barr, 1971]. Since
the major contributions to the photodissociation of N,0 come from wave-
lengths larger than 2100 &, the N,0 photodissociation is assumed to

produce only N2 and O(ID).




The main loss process for NO is due to its reactions with O and O

3}
which convert NO into NOZ:
0+NO+M =~ N02 + M,
NO + 03 -+ N02 * 02,
NO+0 - NO, + hv.
However, NO is reformed through the reaction of NO2 with atomic oxygen:
NO2 + 0 > NO + 02.
The photo&issociation of NOZ’ which has a coefficient as high as
5 x 1073 sec;l\during the daytime, also reproduces NO:
N
“NO, + v > NO + 0
The chemistry of NO and NO2 are, therefore, strongly coupled to
each other through O and 0., somewhat similar to the situation with HO2

and OH. During the daytime, NO2 is lost rapidly through these reactions
and photochemical equilibrium is attained. For NO, however, the loss
processes indicated above are not so rapid, having the lifetime against
chemical losses of the order of a day in the mesosphere. Though the
pre-dissociation of NO as suggested by Strobel [1971b] is a major sink
for NO in the mesosphere, it is not sufficiently fast enough to make the
lifetime of NO short. It is therefore necessary to include diffusive
transport in the continuity equations for NO. For the purpose of cal-
culating the initial values in the next chapter, however, only the
photochemistry has been used,

The reactions between nitrogen species and hydrogen species have

been thought as the final sinks for the odd nitrogen species produced in
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the thermosphere and the mesosphere. It is believed that species such
as HNO2 and HNO, produced in the stratosphere diffuse downwards and
finally get washed down with rain water [Sehiff, 1972]. The presence
of HNO3 above the tropopause has already been detected by Murcray et al.
[1969] and Harries [1973] using spectroscopic techniques, and found
mixing ratios to be about 3 x 10_3 ppm. Crutzen [1971] who studied

the production of 0, in a 0-H-N atmosphere found that the data available

3

at that time for the relevant reaction rates could not explain the
observed concentrations of HNOS.

The production of HNO2 and HNO3 takes place according to the 3-body
reactions

OH+ NO+M - HN02 + M,

OH + N02 + M = HNO3 + M

The HNO3 formed gets destroyed through the oxidation reaction
3
HNO, + O("P) - OH + NO.,

and by photodissociation, both of which occur only during the daytime
in the stratosphere.

The reaction between H and NOZ is a possible means of converting

NO2 into NO:
H + NO2 - NO + OH.

However, at heights where NO, concentrations are large, H concentrations

2

are much smaller than 0(3P) concentrations, so that it cannot compete

with the reaction between NO2 and 0(3P) in the conversion of NO2 and NO.

. \..‘:-k e der
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Strobel [1972b] has also included the reaction
N(*S) + OH » NO + H

in his study of the D-region nitric oxide abundance. As a means of

converting N(4S) into NO, this reaction has tc compete with the reaction

4
N{('S) + 03 -+~ NO + 02,

which has a rate constant of about 7 x 10"13 cm3 sec—l. Since the con-

centration of OH is much less than that of O3 at all heights, the reac-
tion between N(4S) and OH will be of no importance, unless its rate
constant is several orders higher than tha? of the reaction with 03.
This reaction is therefore not included in the present study.

The complete list of the neutral reactions between O-N species and
0-N-H species considered in this study are listed in Table 2.5. Some
of these O-N reactions and their rate constants have been discussed by
Sehiff [1969] in his review of reactions inveolving oxygen and nitrogen.
Unlike the case of the 0-H species, many of these reactions are relatively
slow, and the only fast reaction here involving ground-state species 1is
the Reaction 39. The reaction between N and NO2 may also be considered
fast, This reaction produces NZ and 0, and to a lesser extent NO
{Reactions 42 and 43).

The more recent data adopted here are the rate constants of Reaction 37
(Table 2.5) measured by Slanger and Black [1970], Reaction 34 measured
by Lin and Kaufman [1971], Reaction 41 measured by Davis et al. [1973],
and the oxidation reaction of N20 (Reactions 44 and 45} measured by

Scott et al. [1971]. Among the N-O-H reactions, the rate constants of

Reactions 46 and 47 are those measured recently by Westenberg and

I T T T
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Table 2.5

(}-N and O-N-H reactions.

Reaction Reaction Rate Constint
No. en® see!
Rgy N +0, +NO+0 *6,5(-12) exp(-7.0/RT)
Sehiff [1969]
Ry N+0,('a) > NO+O 2.8(-15)
g Clark and Wayne [1969]
R:,’3 N + 03 + NO + 02 3.4(-11) exp(-2.4/RT)
Phillips and Sehiff [1962]
Ry NCD) + 0, » NO+ 0O 6.0(-12)
Iin and Kaufman [1971]
Rys N(%D) +0 » N+ 0O 2.0(-13)
Weill [1969]
R36 NO+0 = N()2 + hv 6.4(-17)
Fontijin et al. [1964]
R57 NO+ 0O+ M + N()2 + M 6.8(-32)
Slanger and Black [1970]
Rsg NO + 07 + WO, + O, 9.5(-13) exp(-2.46/RT)
Sehiff [1969]
Reg NO# N > Ny+0 2.2(-11)
Prillips and Schiff [1962]
R NO + NO + 0, -+ NO, + NO 1.0(-33)
40 2 2 2 Sehiff [1969]
R41 NO2 +0 » NO + 02 9:12(-12)
Davis et al. [1973]
Ryn NO, + N = N0+ 0 7.3(-12)
Phillips and Schiff [1965]
R‘,(3 N02 + N -+ NO + NO 6,0(-12)
Phillips and Schiff [1965]
Ryy N0 + oll;y - N, + 0, 1.0(-10)
Seott et al. [1971]
| Ry N,0 + 0('p; + NO + NO 1.0(-10)
: Seott et al. [1971]
? Ry OH + NO + M > HNO, + M 9.2(-31) (1/300) %0
‘ Westenberg and de Haas [1972]
Ry OH + NO, + M ~+ HNOg + M 1.6(-30) (1/300) 28
: Westenberg and de Haas [1972]
: Ryg HNO; + 0 =+ OH + NO, < 2.0(-14)
; Morrie and Niki [1971]
;_ Ryg H + NO, + NO+ OH 1.2(-9) exp(-1.93/RT)
. Schofield [1967]
: Reg o+ N("s) + No s+ H See Text

*
n = 3 for binary reactions and 6 for 3-body reactians

*Read a(-n) as a x 107"




de Haas [1972]. The value for the HNO , oxidation reaction is only an
upper limit. These values differ widely from those used by Crutzen
{1971] in his calculations of HNO3 concentrations.
2.6 Carbon Reactions

The chemistry of carbon species has not drawn much attention in the
past as compared to the chemistry of other species, in photochemical
model calculations of the terrestrial atmosphere. The importance of
including the C-0-H chemistry in the studies of the other minor neutral
constituents was highlighted by Strobel [1972a] who suggested that CO

could act as a sink for OH above 80 km. Further, CH, is believed to

4
yield HZO through oxidation processes increasing the mixing ratio of HZO
in the upper stratosphere [Nicolet, 1970]. Both of these constituents,
OH and H20 play important roles in the ion chemistry of the D region.

Hence it is important to investigate the effects of the chemistry of

C-0-H species on the distribution of COH and H,0 in the mesosphere.

2
The sources of C-0-H species in the upper atmosphere are the photo-

dissociation and oxidation of C02 and CH Hays and Olivero [1970]

4
studied the production of CO due to photodissociation of CO2 only, while
Wofsy et al. [1972] investigated the production of CO due to photo-
dissociation and oxidation of CH4 in the troposphere and stratosphere,
and its effect cn the distribution of 0-H species.

CO2 is relatively inert and it does not piay any significant role
in the chemistry of neutral constituents. Howev>®r, it gets photo-
dissociated by solar radiation below about 2000 R yiclding CO and

atomic oxygen. These products recombine to form CO2 in a 3-body

reaction
CO+0+M = CO2 + M
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While this reaction converts CO into COZ efficiently u«t higher altitudes,

the reactieon
CO + OH =~ CO2 + H

becomes important in this oxidation process at lower altitudes. However,
as a sink for OH, this reaction becomes more important at higher alti-
tudes where the concentration of CO is expected to be large. According
to Hays and Olivero [1970], the CO profile obtained by considering only
the photodissociation of CO2 has a peak of about 30 ppm between 100 and
120 km, the exact height depending on the eddy diffusion values and the
rate constant of the recombination reaction used in the calculations.

It is known that CH4 is present in the lower stratosphere in con-
centrations slightly above 1 ppm around 24 km [Bainbridge and Heidt,
1966; Kyle et al., 1969). In the stratosphere, CH, is subject mainly
to oxidation losses. Reactions with both O and OH result in the removal
of one H atom from CH4 yielding CHS’ The removed H atom forms an OH

molecule with 0, and a H20 molecuie with OH, according to
CH4 +0 - CH3 + OH,

CH, + OH -~ CH, + Hzo.

4 3

The CH3 formed gets converted to CH20 by its reactions with O and

2’

3
CH3 + 0Py - CH20 + H

CH3 + 0, -+ CH20 + QOH.

2

2
Here, the by-products are H and OH, respectively. Next, O("P) and OH




oxidize CH20 to produce HCO through the reactions

CH,0 6e3p) » Hco + OH

CHZO + OH -+ HCO + H20,

yielding OH and HZO' In the final step, HCO is converted to CO

according to

HCO + O(°P) + CO + OH

HCC + 02 + CO + HOZ'

It is therefore seen that the four H atoms in the CH4 are removed
by O and OH, forming in the process OH and HZO’ respectively.

Table 2.6 shows the complete set of reactions used in the calcula-
tions. The rate constant for Reaction 51 was in dispute for several
vears, mainly in view of the uncertainty in its activation energy. The

latest values for this rate constant were obtained by Slanger et al.

. [1972]), who found that it has a positive temperature dependence, with

CO as the third body. In this wovk, the value obtained at 296 K with
N2 as the third body was employed along with the temperaturs dependence
obtained with CO.

Established rate constants for the reactions with CO and CH4
(Reactions 52-55) have been adopted here. For the rest of the C-H-O
species, most of the rate constants are not so well known. The value
for Reaction 56 is only a lower limit, while that of Reaction 57 is an

approximate figure. The values for Reactions 59 and 62 are lower

Iimits. The rate constant for Reaction 6l is only an estimate.
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Table 2.6
C-0-H reactions.

66

Reaction Reaction Rate Constint
No. en® sec”!
R, o+ 0C%P) + M > €O, + M *3.8(-33) exp(-4.34/RT)
Slanger et al. [1972]
R52 CO + OH = C02 + H 9.0(-13) exp(-1.0/RT)
Kaufman [1969]
Re, CH, + o) - CH, + OH 3.5(-11) exp(-8.1/RT)
" Herron [1969]
Re, CH, * o(lp) - CH, + OH 2.0(-11)
' de More and Raper [1967]
RSS CH4 + OH -+ CH3 + H20 1.2(-10) exp(-5.91/RT)
Sehofield [1967]
Re, CHy + 0C°P) > CH,0 + H 3(-11)
Wiki et al. [1968]
R CH, + 0, = CH.O + OH 5(-14)
57 5 2 2 Christie [1958]
R CH, +0,+M -+ CHO,+ M - 1.6(-31)
>8 502 52 Hoare and Walsh [1957]
ng CH20 + OH -» HCO + HZO 6.7(-12)
Herron and Penzhorn [1969]
Req CH,0 + o%) > HCo + oH 1.5(-13) |
Herron and Penzhorn [1969]
R61 CHO + 02 +~ CO + H02 1(-15)
Hoare ard Pearson [1964]
R62 CHO + O[3P) -+ (COQ + CH 1(-10)

Herron [1969]

*
n = 3 for binary reactions and 6 for

“Read a(-n) as a x 107"

3-body reactions
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In view of the uncertainties in the rate constants of these reac-
tions, the height profiles of these intermediate species cannot be con-

sidered as accurate. However, the loss rates of CH, as well as the

4
production and loss rates of CO can be evaluated with less uncertainty
as more reliable values for the rate constants of these processes

become available.
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3. MODEL CALCULATION OF NEUTRAL SPECIES DISTRIBUTION

Most of the minor neutral constituents discussed in the last chapter
are produced as a result of the photodissociation and oxidation processes of
the major constituents 0,5, No, o, and those transported from the tropo-
sphere to higher levels through various transport mechanisms. In this
chapter, a time-dependent transport model will be developed to investigate
the distribution and the diurnal behavior o! these minor neutral consti-
tuents in the height interval 30-120 km.,

It is necessary first to set up a model for the transport processes
which are responsible for carrying the constituents such as Hzo, N20 and

CH, from the troposphere into the stratosphere and above. This is discussed

4
in the following section. The method of sclution of the continuity equa-
tions which are in the form of second-order partial differential equations
is discussed next. It is then possible to calculate the set of initial
values required as input parameters for the solution of the time-dependent
continuity equations. These equations are next solved for the case of a
constant solar zenith angle which corresponds to noon conditions. From
the results of these calculations it is possible to eliminate those con-
stituents that need to be further investigated for their diurnal behavior.
Finally the solar zenith angle variation is incorporated to simulate the
diurnal behavior. These calculations are continued over several simulated
days until 24-hour reproducibility is reached.

3.1 Transport Processes in the lUpper Atmosphere

Several types of motions are responsible for the transport of minor

constituents in the upper atmosphere. These include macroscopic wotions

such as mean motions, wave motions, and winds as well as transport mechanisms
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such as turbulence and molecular diffusion. Of these motions, only those
which cause vertical transport of minor constituents are considered in the
present study.

Mean motions are associated with the large-scale general circulation
of the atmosphere. The vertical components of these circulations con-
stitute the mean-vertical motions. Thermodynamic considerations show that
mean-downward motion results in the heating of the atmosphere while the
upward motions cause cooling. The constrsints on the atmosphere heat
budget show that such mean-vertical motions cannot have velocities more
than a few centimeters per second. According to Gudiksen et al. [1968}],
however, the mean-meridional circulation is found to play cnly a minor
rele in the transport processes at stratospheric heights. At higher alti-
tudes its effect is considered to be further reduced. Hence, this motion
has not been included in this study. Zonal and other prevailing winds,
being associated with horizontal motions, are also excluded,

Transport effects caused by such irregular motions as wave motions,
tides, and turbulence are all described under a single mechanism, via.
eddy diffusion, in terms of a Iumped parameter called eddy diffusion co-
efficient. This quantity is analogous to the molecular diffusion coeffi-
cient, except that the former deals with the diffusion of 'eddies', while
the latter deals with the diffusion of molecules.

3.1.1 Eddy diffusion coefficients. Transport by eddy diffusion is
considered to be taking place through the exchange of 'eddies' having
scale lengths ranging from several meters to several kilometers. These
eddies are formed by such phenomena as wind shears, internal gravity waves,

tides, and in the case of large-scale eddies, by planetary waves.
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[Sheppard, 1959; Hines, 1963; Hodges, 1969; Geisler and Dickinson, 1968].
The main outcome of such exchange processes is local mixing.

The behavior of air parcels under eddy diffusion has been evident in
experiments conducted to study the dynamics of the upper atmosphere. 1In
these experiments chemiluminous vapor trails are released from rockets
and their rate of growth is observed visually or photographed from the
ground. Such observations have shown that the trails initially grow under
moiecular diffusion and later disperse into erratic shapes under eddy dif-
fusion below a certain level. Above this level, the growth is .ontrolled
only by molecular diffusion at all times [Blamont and de Jag.r, 1961;
Zimmerman and Champion, 1963; Justus, 1969]. This transition level where
the turbulence ceases allowing molecular diffusion to dominate is generally
known as the turbopause. Blamont and de Jager [1961] found that this
turbopause level appeared distinctly on each occasion the observations
were made, with its value lying between 102 and 110 km, According to
Zimmeyman and Champion [1963] the transverse growth of the turbulent clouds
observed in the height range 60-100 km showed two sequential time depen-

/2

dencies; an initial growth due to molecular diffusion with r = tl and a
subsequent growth due to eddy diffusion with r» « ¢, where r is the Gaussian
half-width of the clouds and ¢ is the time lcpse. The diameter of these
clouds generally indicates the order of magnitude of the scale length of

the edlies.

Lettau [1951] expressed the eddy diffusion coefficient, De, as

- 3.1
D, = Aty R (3.1}

g

T
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where KD is a length fixing the scale of turbulent displacements (mixing
length), and Lh is a velocity fixing the speed of turbulent motions.
Using this definition, Zimmrs -nan and Champion {1963] calculated the value

of De which was found to be between 2 x 106 and 1.5 x 107 cm2 sec:'1 at

7

7% km and between 1.5 x 10 and 108 at 100 km. More recent studies

by Keneshea and Zimmerman [1970] show D, having values between 2 x 10°

and 8 x 106 cm? sect around 100 km.

The observation of the vapor trails from ground level below can detect
only the horizontal spread of the turbulent clouds, and as such the values
obtained are in respect of the horizontal component of the eddy dirfusion
coefficient., In the lower thermosphere where the negative lapse rate of
the temperature tends to inhibit any vertical movements, one cannot expect
the turbulence to be isotropic. However, Keneshea and Zimmerman [1970],
considering the scale lengths of turbulent sources near 100 km, assumed
.+~ vertical component of the eddy diffusion coefficient to be equal to
the measured horizontal component.

In another method, it is possible to estimate De by studying the heat

budget of the lower thermosphere and the mesosphere. Here, the diffusion
coefficient for thermal condictivity of the atmosphere is calculated, and
from the equality between this parameter and the eddy diffusion coefficient,
the latter is estimated [Johnson and Gottlieb, 1971; Olivero, 1970].
This method really gives upper limits for the eddy diffusion coefficients,
and shows that the De values decrease from about 3 x 106 cm2 sec—1 near
100 km to about 10° cm® sec ! near 60 km.

In the stratosphere, the negative lapse rate of the temperature makes

the atmosphere stable against vertical convections. This in turn, lowers
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the value of vertical eddy diffusion coefficient. The effective values
for this quantity in the stratosphere have been determined by studying the
distribution of the radioactive debris from upper atmosphere nuclear ex-
plosions. Karol [1966] has deduced from aircraft measurements of radon
daughters RaD and RaF, values in the range (0.2-2.0) x IO4 cm2 sec"l for
the vertical eddy diffusion coefficient in the lower stratosphere between
35°N and 34°N latitudes. In a different method, Reed and German [1965]
attempted to explain the large-scale mixing processes using published heat

5 and 5 x 103 cm2

flux data, and arrived 4% values lying between 1 x 10
sec'1 for the vertical component of the lower stratosphere eddy diffusion
coefficient for the months of July and September.

Using a different approach, Shimazaki [1971] determined effective
eddy diffusion coefficients which yield solutions to model calculations
that would agree with the observed composition structure in the lower
thermosphere. He found that a De profile having a peak_value of 1 x 107
cm2 sec”! in the height range 95-105 km, and a peak half-width of about
8 km explains most of the rocket-obersved composition height variations.
However, in view of the uncertainties in other variables such as solar
flux, reaction rate constants, etc., it is difficult to arrive at uvnam-
biguous results from such model calculations.

From the results of previous workers [Kemeshea and Zimmermar, 1970;
Shimazaki and Laird, 1970] it is known that values of eddy diffusion coef-
ficient play a crucial role in determining the height profiles of minor
neutral species, Hence, in this work, two models for De height profiles
have been adopted, with the values fixed on the basis of the above dis-

2

cussions. In both cases, De is kept constant at 104 cm sec”l below
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*

40 km. Between 40 and 80 km, its values are given by (Figure 3.1).

D, = 10(@P82) ’ (3.2)

(z-80) km. The values of ¢ and b

2 x 10% cm® sec™! in the thigh®

where g and b are constants, and i3

are selected such that at 80 km, De
model, and De =4 x 105 cm2 sec-l in the "low' model. Abcve 80 km, De is

described by the following expression so that it peaks at 105 km.

D= 14

T b(az)? + caz)® (3.3)

where a, b, and ¢ are constants, and Az = (2-105) km. The 'high' model
has a peak value of 1 x 107 cn® sec™! and the 'low' model a peak value
of 5 x 106 cm2 secnl, both at 105 km. The above expression shows De to
drop rapidly near 110 km, so that molecular diffusion takes over above
these heights.

3.1.2 Molecular diffusion coe “ficients. From the kinetic theory of

gases, the molecular diffusion coefficient, Dm can be derived as

1/2
R ke
Zn = ¥4 {z 'n*} ; (3.4)

where [X] is the total number density, d is the mean molecular diameter, m*
is the reduced mass of the molecules and k is the Boltzmann's constant. In
the upper atmosphere, the molecular diffusien coefficients of constituent
gases is calculated for the motion of the gas molecules .in the medium of

an Nz-atmosphere. Hence, for a constituent other than oxygen, [X] is
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essentially equal to [Nz}. This quantity decreases exponentially in the
atniesphere, and up to about 100 km, the variation of T does not exceed a
factor of 1.,5. Therefore, in this height interval, Dm increases exponen-
tially with the same scale height as that of the density variation. About
100 km, the increase is further cnhanced due to the increase in T which
takes place in the thermosphere until it reaches a constant value.

The values of D, for atmospheric gases at standard temperature and
pressure lies between 0.14 and 0.21 cm2 sec_l, except for hydrogen and
atomic oxygen whose values are 0.67 and 0.47 cm2 sec-l, respectively,
[Lettau, 1951]. The variation of D for oxygen with altitude is illus—
trated in Figure 3.1. It is seen that Dm is much less than De below about
110 km. Above 110 km, molecular diffusion dominates over eddy diffusion.

Direct observations of the spread of rocket released vapor trails have
established the existence of a transition level separating the molecular
diffusion and eddy diffusion regions, as mentioned before.

The observation of the spread of vapor trails above the turbopause
yields the molecular diffusion coefficients. Values obtained by Golomb
and MacLeod [1966] and other workers are in general agreement with the
values calculated from equation (3.4).

3.2 Solution of Continuity Equation with Transpori Term

Diffusion results in the loss of a constituent within a given volume.
The rate of loss of its concentration is given by the divergeuce of its
flux caused by diffusion. Since the transport effects are considered

only in the vertical direction, this can be simply written as

a[xi 3¢
T = - {3.5)
3t dif a3z

SR e e e e

Dy

e s




76

where [X] is the concentration of the comstituent X, and ¢ is the
vertical flux.

The continuity equation with this *transport term then appears as
3[X1 _ 39
Tl Q - P[X] - 23 (3.6)

where @ is the production rate per unit volume and P is the loss co-
efficient, The loss due to recombination of two like particles is
neglected here.

1t is seen from equation (3.6) that the diffusion term is important.
only if the chemical loss rate is smaller than the loss rate due to dif-
fusion. These rates are described in terms of respective time constants,

which are given by (neglecting molecular diffusion)
t(chem) = 1/P (3.7)
T(dif) = H/D, 3.8

where H& is the scale height of the mixed atmosphere. With the Qg-
profiles used, the time constant against eddy diffusion in the meso-
sphere is of the order of a day. Therefore, for constituents having
fast chemical loss rates, it is not necessary to include the transport
term in their continuity equation. “For-SUch’¢é§es the continuity equa-

tion is simply

g
1
!
|
.
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For constituents having chemical time constants more than about a
day, the transport term is included. The total flux due to diffusion

is given by
(3.10)

vhere ¢m and ¢g are the flux contributions due to molecular diffusion
and eddy diffusion, respectively. The molecular diffusion flux is

expressed in the form [Chapman and Cowling, 1952]

. [ [x] 37 , [¥] o
b = = Dp { PG v H, ’ (3.11)
where o is the thermal diffusion factor and Hi is the scale height of

the constituent Xi. In the same manner, Colegrove et al. [1965] ex-

pressed the edﬂy-diffusion flux as

S
ll

-p {3X fx1ar  [X1L (3.2
De { %2 T 9z H& ' : (3.12)

where E& is the scale height of the mixed atmqsphere,

Combining equations (3.11) and (3.12) one gets
r _
where

A@) =D, +D | = (3.14)

Jr——
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D D
P N U . |
B(z) = {De + (1+a)Dm} T H& * T . (3.15)
Substituting equation (3.13} in the continuity equation for the ith
constituent (equation (3.6)),
2
a[xl,  A°[xl,  a[xl,
e A + b P c[X]'z: + d (3.16)
9"z -
where
. 94 3
b = E + B . . (u.l?)
8B | - <
3 - P ‘ (3.18)

If the distributions of all the constituents‘aie known at time
t-At, it is possible to evaluate the loss term P and fhé'productiqﬁ
term @, and in turn, the parameters ¢ and d.appearing_in equation (3.16) .
written for time ¢. Strictly. the values of F and @ deduced at time ¢
should be used to evaluate these*pa:amgters. This; however, is.pot -
possible, unless one does an iterative calculation for each time step.
Nevertheless, if the variation of the distributions between successive
time steps is small, the use of P and @ corresponding to time step

t-At) is not expected to .introduce any serious errors in.the solution
for'[X]i at time ¢. From trial calculations, this assumptiOn.was Ffound.
to be valid, except at sunrise. Since the emphasis of this work is to

study the variations occurring at daytime, this approximation was used.

" and any déviations occurring at sunrise were not comnsidered important. .

Y

) K L
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The concentrations of the constituents at height z and time ¢
are therefore given by a system of non-linear equations, comprising
a set of second-order partial-differential equations (equation (3,16))
and a set of single-order ordinary differential equations (equation
(3.9)). In view of the above mentioned assumption it is possible to
solve these equations taken individually.

In order to solve these non-Iinear equations, one has tu resort to
numericai techniques. It is customary in these methods to replace the
differentials with difference quantities;rand to solve the resulting
algebraic equations. . In cdnvérting the differential equation to a dif-
ference equation, the space between the two boundaries =z, and z, is

0 N
divided into ¥ intervals with spacing Az, so that

z =z, * ndz , n=0,1, 2, ...N . (3.19)
Similarly, the time lapsed from an initial time ¢ = 0 is expressed as
t = mht, m=0, 1, 2, ... : (3.20)

The concentration of a given constituent whose distribution is governed
by equation (3.16) can then be written as (see Appendix. IT for details
of converting the differential equation to its difference form)

m~1 m m _ -1l

m
% Ypa1 ¥ By Yy & Yo Y1 "‘Gn s (3.21)

B

R S ¢

3

)
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where

ol = IX1, (2,%)

and the coefficients o, Bn’ and Y, are functions of as b, Az, and At.

m-1
Bn

, in addition, includes terms containing [X]j(z,i:-at) R
while 6nm"~1 contains these terms as well as [X] i(z, t-At). For sim-
plicity omitting the prefix m and suffix # from the coefficients in

equation (3,21), one gets
oY, B yn + ¥ Yp1 = § (3.22)

For N intervals, one can write (#-2) such equations containing ¥
unknowns. The two boundary conditicns provide the two additional equa-
tions required for the solution of this set of simultaneous equations.
. The values of [X]z'. at £ = 0 also have to be specified as initial
conditions.

This system of equations can be expressed in the form

[4] [¥] = (5] - (3.23)

where- {A] is a tridiagonal matrix of order (#-2) and [B] is a column .
matrix. The most direct method of solving this system of equations is

to invert [4] and express [¥] in the form

=Wt e (.24
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The finite-difference scheme is only an approximate method and it
is expected that the solution obtained by this method is also an approxi-
mation to the exact solution of the differential equation. If the solu-
tion is stable, it will converge to the exact solution as Az + o.
However, in the computer splution of these equations, the accumulation
of round-off errors results in the solution diverging wore from thc exact
solution as the number of steps is increased by making Az smalier. This
problem was overcome by adopting a more efficient method than the above
one, developed mainly for the solution of a system of equations whose
coefficients form a tridiagonal matrix [Richtmyer, 1957]. The details ' -
of this method are found in Appendix TI.

The boundary conditions required for the solution of the above set | _;
of equations are obtained from kmown physical quantities at the two
boundaries. These can be either the number demsity or the flux across ? '_ 3
the boundary. With the number density, one specifies either Yo OT Yy
while with the flux as a boundary condition, one specifies the gradient
of Y, at the boundary. ?

In order to get the necessary information regarding the number densi-
ties or the flux at the boundaries, one has to. depend on direct meéghramentﬁ
of these quantities or estimates of them by other indirect means. In the
next section, sources of such information and the values adqpted as
boundary conditions are discussed.

The transformation of the ordinary diffgrential_equation (Qquation

(3.9)) into its difference form yields

Qz, )8t - [X]; (3,8-68)
[%]; (&%) = T+ PG, 08

(3.25)
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The use of this implicit form in the conversion from differential to
difference equation results in better stability [Shimazgki, 1967], and
does not impose restrictions on the choice of the height and time
increments.

From trial calculations it was found that height increments of 1 km
were most convenient with regard to resolution and computer time. Time
increments during the daytime were selected corresponding to x = 10° up
to x = 70° and thereafter x = 5° up to x = 100°. During nighttime one-
hour time increments were used.

3.3 Boundary Conditions

The boundary conditions requixed for the solution of the continuity
equations having the transport terms aﬁﬁear either 4s a mumber density
or a flux across the boundary. The gqnétituehts for which transport
effects are important can be divided iﬁto tﬁo groups, Those originating
in the tropgsPhere and transported ugwards into thé straquphere, such

as Hzo, N0, Cdz, and CH4 fa11 into one grouﬁ. The constituents in the

2
other group, such as 0, NO, CO, H'and H2 are produced in thes lower

thermosphere znd upper mesosphere and are transported either downwards

or upwards. The boundary conditions that are applicable for these two
groups are therefore‘quite distinct. ‘

3.3.1 Boundary conditions for lower atmosphere produced consti-
tuents. In the stratosphere and mesospheve, theée cénstituents are
subject to losses due to either oxidation or photndissqciation. Hence
an upward flux across the lower boundary is required to maintain their
concentrations at these high altitudes. The most suitable boundary con-

dition for them is to specify this upward flux. Values of this quantity,
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however, cannot be measured directly and can only be estimated from measure-
ments of their number densities at the lower boundary. Such measurements
have been carried out in the lower stratosphere using either air-borne or
balloon-borne instruments, and these have been employed in specifying

the lower boundary conditions for the above constituents.

Though HZO is one of the important minor constituents in the upper
atmosphere its concentration above the tropopause in only little known.
Early measurements carried out using frost-point hygrometers have shown
wide disparity in the mixing ratios obtained above the tropopause, with
the values varying from a few parts per million to about 40-50 ppm
[Gutnick, 1961]. More recent measurements carried out using improved
techniques, however, have shown consistently lower mixing ratios, in the
range 2-3 ppm between 100 and 40 mb levels or 16.and 22 km [Mastenbrook,
1968, 1971]. 1In view of the precautions taken in these measureménts to
minimize errors due to any contaminations and also, because of the con-
sistency in the measurements which have been taken over a period of six
years, the lower values are preferred to the high values reported pre-
viously. Water vapor concentrations deduced from solar spectra recordings
using air-borne instruments have also shown mixing ratios in the range
2.4 - 2,6 ppm at 18 km in the mid-latitudes [MeKinnon and Morewood,

19?0]. The measurement carried out near the stratopause by Scholz et al.
[1870], however has shown a high mixing ratio, about 6 ppm. This increase
in the water vapor concentration above the lower stratosphere values has
given rise to much speculation fegarding production of water vapor through
other means such as oxidation of methane, as mentioned before. For the
purpose of Fixing the boundary valué, ﬁowever, a mixing ratio of 3 ppm

at. 30 km has been adopted. From trial calculations it was found that an.
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upward flux of 1 x 10g cm"2 sec-l with an eddy-diffusion coefficient of

104 cm2 sec:'1

at 30 km gives rise to this mixing ratio.
For nitrous oxide, which is the most abundant nitrogen compound in i "

the lower atmosphere next to N,, direct measurements are available only up

29
to about 24 km. These measurements carried out by Schutz et al. [1970]

show mixing ratios about 0.1 ppm near 24 km. Some recent spectral obser-

vations have shown that the mixing ratio reduces from a tropospheric ; ii
value of 0,27 ppm to a value 0.21 ppm taken 3 km above the tropopause
[Harries, 1973]. Theoretical calculations of Bates and Hays [1967]
show that the mixing ratio at 30 km could lie in the range 0.02-0.15 g Ej
ppm for stratospheric eddy diffusion coefficients between 103 and 104

cm2 sec-l, corresponding to a tropospheric mixing ratio of 0.25 ppm.

On the basis of these data, a mixing ratio of C.1 ppm has been adopted

at 30 km, which corresponds to an upward flux of 1 x 107 (:m'2 sec:'1 at
this altitude.

In the case of COZ’ the loss rate due to photodissociation is rather
small, and hence it maintains a constant mixing ratio up to the mesopause
level {Hays and Olivero, 1970]. The mixing ratio in the troposphere has
been found to be in the range 310-320 ppm [Seiler and Junge, 1970] and
a similar value has been detected near the stratopause [Scholz et al.,
19701, To be compatible with a mixing ratio of 3.14 x 1074 ppm, a flux
value of 6.4 x 1011 c:m'2 sec:‘l has been assumed as the boundary condition
at 30 km.

Methane is a trace constituent of high abundance in the troposphere.
According to measurements of Bainbridge and Heidt [1966], it has a
constant mixing ratio of 1.6 ppm in the troposphere while around 24 km

its mixing ratio drops to about 1.0 - 1.3 ppm. ZKyle et al. [1969] found { £

C o 22
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that the total content of methane above 30 km is about i/5 that above

the tropopause. MeConnell et al., [1971] calculated the vertical dis-
tribution of CH4 below 20 km using eddy diffusion coefficients determined
i from trace studies, and arrived at a mixing ratio of 0.9 ppm and a flux

% of 1 x 10g cm_2 sec'1 at 20 km. Their results show that the flux drops

by about an order of magnitude between 10 and 20 km. Assuming the same

loss rate holds between 20 and 30 km, the same flux value, 1 x 108 cm'z

sec'1 was adopted as the lower boundary value for CH4, and from trial

¢ caleulations, this was found to yield a mixing ratio of 0.15 ppm at 30 km.

et

: In specifying the upper boundary conditions for these constituents
H20, NZO’ C02, and CH4, as well as for 02, one can make use of the fact
that all of these constituents are subject to photodissociation and are
g lost above the upper boundary. Upward flux across the upper boundary re-
; plenishes this loss. Near this altitude level the dissociation rates are

E independent of the height as their optical depths are nearly zero. In

—
bt ANt G el e e
P T T

é the case of 02, however, the level of zero optical depth is near 160 km.
Though its dissociation rate has a small variation between 120 and 160 km, ? i}
for the purpose of calculating the upward flux its value has been assumed s
to be constant. Assuming each of these constituents has a distribution

: under its own scale height abov. 120 km, the flux can be determined from

0p(ay) = X1y (ay) T5(zy) Byley) (3.26)

where Ji(zNJ and H%(zN) are the dissociation rates and the scale heights % Q;

B T T T T T T T LT e

of the constituents evaluated at 120 km.
3.3.2 Esundary econditions for upper atmosphere produced

constituents. The constituents in the second group all move downwards

TR TR T
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after being produced in the thermosphere, except in the case of H and
Ha. In the case of 0 and CO, the downward flux across the upper boundéry

is determined by the rate at which O, and CO2 are carried upwards. The

2
time average of the downward flux of O and CO has to be equal to that of

the upward flux of O, and 002’ respectively, in order to conserve the

2
total amounts of these species. Strictly speaking, this equality may
not hold if one takes the instantaneous values of the fluxes. However,

for the sake of simplicity the boundary values for these two species have

been calculated with this assumption, and are given by
¢0(2N1 = - 2¢0 CZN) ) (3.27)
2 ,
PeoEy) = - ‘5’002(3111) . (3.28)

The estimation of the downward flux of NO at 120 km is more complex,
and one has to go into the details of ion chemistry in the F and F
regions to evaluate this quantity. Strobel [1971a] has studied this
problem and found that the NO concentration at 120 km is about 1 x 108
cm"3 and that it has no diurnal variation below this heighf. This con~
centration is also in agreement with the measurements of Meira [1971].
Since no estimate of the flux value at 120 km is given, a number deﬁsity
of 1 x 108 Cm'3 is used as the upper boundary value for NO.

Atomic hydrogen, being light in weight escapes from the earth's
atmosphere, and gives rise to the geocorona surrounding the earth. From
measurements of the intensity of the geocoroﬁa radiation, and also from

measurements of the absorption of the solar Ly-a line by geocoronal
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atomic hydrogen the azbundance of this speciet in the thermosphere and
above can be deduced. In these calculations it is customary to use a
distribution profile such as the Kockarts-Nicolet model which takes into
account the: upward escaping flux, and normalize the concentration at the
base of the thermosphere to fit the observations. The atomic hydrogen
concentrations so determined near 100 km fall in the range (2.5 -.] X 107
cm"3 [Meier and Prinz, 1970; Meier and Mange, 1970; Vidal-Madjar et al.,
1973]. Based on these values, a number density of 1 x 107 cm'3 was
acopted as the upper boundary condition for H.

Molecular hydrogen is produced mostly in the mesosphere through
various chemical reactions, aﬁd it is possible to have both an upward
flux above the mesosphere as well as a downward flux below the mesosphere.
However, at the upper bouﬁdary level no evidence is available to estimate
flux. Hence, it has been assumed that this flux is zero at the upper
boundary. 8ince l-l2 is rather inactive in the ion chemistry of the D

region, any errors in the H, profile caused by improper upper boundary

2
value is not of much significance.

At the lower boundary, the above constituents which have their
source in the upper altitudes are subject to chemical reactions having
short time constants. A zero flux at the lower boundary is thurefore a
reasonably valid assumption for use in this study.
3.4 Caleculation of the Initial Values

In the solution oﬁ equations (3.22} and (3.25) for the number density
of the constituents at time ¢, a knowledge of these values at time (t-A%)
was required. Therefore, these initial values have to be calculated first,

before one can solve the above time dependent equations. This was done by

employing a steady-state semi-transport model,

P . 4
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First, the distribution of the pure oxygen constituents, O(SPJ,
0[1D), and 03 are obtained using the Chapman's reaction scheme. Next, the
height distribution of the constituents belcnging to the first group men-
tiocned in the last section, viz. H20, NZO, COZ’ and CH4 are calculated
using steady-state continuity equations which included transport terms
and loss terms due to photodissociation and oxidation subject to the
boundary conditions mentioned in the last section. Finally, the height
distributions of the rest of the constituents are obtained assuming photo-
chemical equilibrium corresponding to noon conditions.

By writing the continuity equations and assuming photochemical

equilibrium, the following expressions for the oxygen species are readily

obtained:
J. J., [0,] 1/2
3vq L 193 12
CeI = {(R1J3 * R,R,10,1) ) ’ 529
3
R, [0CP)] M +J, ) [0,]
1., _ 272 la 2 _
R,[0,1[#] [0C°P)]
[03] = JS » (3.31)
where
Jl =d at J b ?

e,
1

J2q* JSb * JSQ
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The production of O(SP) vanishes at nighttime, but its loss processes
are maintained throughout the day by collisional reactions. Hence, at
lower heights where the collisional rates ave large due to the high density g o
of the atmosphere, its concentration at night will vanish. At higher alti~ E LQ
tudes, where the collisional losses are small, the loss rates are con- | :
trolled by diffusive processes having lifetimes of a few days. Therefore,
the O(SP) concentrations are maintained at these heights even at nighttime.

The excited-state, 0(1D], abundance, on the other hand, vanishes at all

\
3

heights during the night. TIn the case of 03, its production is proportional
to the square of the neutral particle density while its loss rate, mainly
due to photodissociation, remains almost constant at all heights during the

day and vanishes during the night. Therefore, 0, is expected to have

3

higher values at nighttime than at daytime.

The photochemical loss term used in calculating the O(SP) concentra-
tions as given in equation (3.32), yields unrealistically high values
above about 90 km. It is known from the work of previous investigators
[Shimazaki and Laird, 1970; Keneshea and Zimmerman, 1970] that the O(SP)
profile has a peak around 90 km with the distribution above this peak
given approximately by the diffusive equilibrium conditions. Hence 0(3P}
values above 95 km were adjusted to have an exponential drop with the
scale height factor determined by its own molecular weight.

In calculating the height distribution of the O-H constituents, it f ﬁﬂ
is convenient to start with an H,0 profile that has already been trans- -
ported into the high altitudes subject to photodissociation and oxidation.
In this preliminary calculation, the recycling of HZO through reactions

between constituents such as HO2 and OH was neglected. Also steady-




90

state conditions were employed. Therefore, the continuity equation for
H20 was written independent of the concentrations of other species, and
the profile thus obtained depends only on the upward flux and the eddy
diffusion coefficient used.

The photodissociation products of H20, viz. OH, HOZ’ and HZOZ have
short time constants against chemical losses and under steady conditions
their production rates become equal to their photochemical loss rates.
This is not so in the case of H and HZ. However, to obtain the initial
distributions, photochemical equilibrium was assumed for these two species
as well. The production and loss terms for the odd hydrogen constituents,

H, OH, and HO, are written using the reaction scheme given in Table 2.4.

2
These three continuity equations when added together yield the expression

Ry, [HI[HO,] + R,5[HO,T[OH] = J,[H,0.] (3.32)

Next, taking the major terms in the equations for OH and HOZ’

Ryy [HO,1[0] + Ry ;[H] [0,]

= .3
voq - Pan 1014 -
0,1 = %707 (3.34)
Substituting these equations in equation (3.32) yield
7, [H,0] 1/2
[H] = { } ’ (3.35)
A®,, * B R,
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Figure 3.2 The height distributions of oxygen constituents at noon obtained

as initial values.
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necessary to calculate the distribution of the charged species which
appear in the continuity equation for N(4S) and N(ZD). For this purpose,
an electron-density profile given by

m(3—50)/10

je] = s 2 < 100 km

and (3.38)

[e] = 10° 100 < 3 < 120 km

was assumed. The region of the electron-density profile which is impor-
tant for the production of N(ZD), the principal source of NO, lies above
the ledge where the cluster ions are absent. Hence, the distribution of
the positive ions could be expressed in a straight forward mamner in terms
of the assumed electron densities. The calculation of the ion-pair pro-
duction functions required for this purpose will be given in detail in
the next chapter along with the relevant reaction rates.

The quasi-equilibrium photochemical continuity equations for N, N(ZD),

NO, and NO* can be combined to yield the equation

[N]J[NO] + a[NO] = b (3.39)

where

N ]
n

(Rgg[0] + Ry [01[M] + Ryg[041)/2 Reg

o
I

(Rys N,0110C'D) T + Ry  [07TIN,T + Ry, 1100 + NN, Tle])/Rg

Eliminating [N] in the above equation using the expression for [N] obtained
from the photochemical continuity equation one gets a quadratic equation

in [NO], the solution of which gives the required initial values.
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The [NOZ] and [N(ZD)] profiles are next calculated using the photo-
chemical equations,
[N(] ] ((R364'R37[M])[0] * R38[03]) [NO] (3.40)
2 Ty * Ry [0] ’
+ +
11 RyozIN,7T10] + v, 60 [NO"][e]
[N(ZD)] - .1 710372 2 "NO (3.41)
R34[02] +* RSS[O]

where Y1 and Y, are the branching ratios of the reactions N2+ + 0 and
NO' + e, which yield N(°D).

The resulting profiles of the O-N species are illustratel in Figure
3.4,

The initial distributions of CO2 and CH4 are first determined
employing the steady-state transport equations having loss terms due to
photodissociation and/or oxidation, subject to the boundary conditions
given in Section 3.3. The behavior of CO is somewhat similar to that of
O(SP) above the mesopause. Its chemical loss term has a long time constant
in this region and, thevefore, the profiles calculated using photochemical
equations alone would vield unrealistically high values. Hence, the
height distribution of this constituent was also obtained by solving the
steady-state transport equation. The profiles of [CH4] and [CO] thus
obtained are shown in Figure 3.5. .

In sldition to CO, the CH4 and CO2 dissociation and oxidation yield
minor compounds such as CH20, CHS’ and HCO.. Of these only CH20 reaches
any significant level, and this is shown in Figure 3.5 along with the

profiles of [CH4] and [COJ. i
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obtained as initial values.
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The calculated amounts of these two constituents, CH4 and CO were
found to have negligible effect on the distribution of the 0-H species,
OH, in particular [Ratnasiri and Sechrist, 1971}. Hence, these con-
stituents are not incorporated in the diurnal model calculations.

3.5 Constant Zenith Angle Calculations

The height distributions of the minor neutral constituents obtained
as initirl values in the last section do not represent any real situation.
The calculation of more realistic values involves the simulation of the
divrnal variation of the incident solar flux, and repeating the calcula-
tions over several diurnal cycles, 1In this study, however, an inter-
mediate set of calculations has also been made in order to investigate
the effects of transport mechanisms on the distribution of the long-lived
constituents. This is done by keepiﬁg the solar zenith angle constant at
18° corresponding to noon conditions. Only the high De values have been
ased in these calculations which are continued with time increments of
one~half hour until convergence in the distribution of most of the con-
stituents is reached. |

3.5.1 Oxygen and oxygen-hydrogen constituents. The height dis-
tributions of the oxygen species, O(SP], O(ID], OZ(IAQ) and 03 calculated
using the tfansport model with the solar zenith angle fixed at noon, are
shown in Figure 3.6, Comparing these with the corresponding distributions
obtained as initial values using the photochemical model, it is seen that
significant differences between the two sets of results appear mostly
above about 55 km. |

With the eddy diffusion coefficients adoptzd, the time constants
against eddy diffusion in the stratosphere are found to be of the order

of several months. As such, for any constituent having a small chemical
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Figure 3.6 The height distributions of oxygen constituents at noon, calculated using
the transport model corresponding to a constant zenith angle and high
eddy diffusion coefficient profile.
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loss rate, the effects of diffusion do not show up in a time-dependent
calculation where the simulation is carried out over a few days only. Any
changes in the height distributions in this regiomn, therefore, occur due
to changes in the photochemical loss and production rates, rather than
due to diffusive processes. In both sets of calculations discussed above,
the photochemical production and loss rates in the stratosphere are more
or less the same., This explains the similarity in the two sets of results
which appear belqw 55 km.

On the other hand, near the mesopause the time constants against
eddy diffusion are of the ordsr of a day. Hence eddy diffusion controls
the distribution of the species whose chemical loss wates have long time
constants. This.becomes apparent in the case of OCSP), where the two sets
of results show marked differences in the mesosphere and above. The
[0(3P)] profile reaches a peak between 90 and 95 km. Above this peak, the
distribution is determined by eddy diffusion and the upward flux across
the boundary. This upward flux causes the concentration in this altitude
range to deplete below the values given by the photochemical model. Belaw
the peak, both the photochemical and diffusive models show a sharp drop,
the drop b:ixg more prominent in the latter than in the former. This is a
consequence of the fact that the diffusive model is also time dependent
while the photochemical values are obtained on the assumption of quasi-
equilibrium conditions. When the oxygen species OCSP) and 0, are allowed
to remain with the hydrogen species H and OH, the resulting reactions cause

the net conversion

ocdpy + 0, ~— 20,
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Unless the eddy diffusion values are very high, the above conversion
proceeds with time, resulting in the sharp drop of OC;P) concentration.
This drop, however, is arrested below about 75 km when the H concentration

drops causing cne of the conversion reactions,

H + 03 ——= (QH + 02
to slow down. Further, in the initial set of calculations only thi§
hydrogen reaction was included, and the rest of the reactions involving
both OH and H02 were left outr in obtaining the O(SP) and O3 values.

The above reaction between H and 03 is also important as a loss
process for 03 in the mesosphere. During the daytime, ozone is lost
mainly through photodissociation which has a high rate of about 10'2

! down to the stratosphere, However, over a small height interval

sec
corresponding to the region where the peak in the [H] profile exists;
the loss through this reaction becomes comparable to or even dominate
the loss through photodissociation depending on the peak [H] value.
This causes a cyclic chain of reactions to take place among the consti-
tuents OCSP), 03, H and OH. The depletion of odd oxygcu species O(SP],
and US caused by these chain reactions is responsible for the irregulari-
ties present in both [O(SP)] and [03] profiles around this height 1ange.
When the eddy diffusion coefficients used are too low, this mechanism
can even produce a sharp valley in the [O(SP)] profile.

In the stratosphere, the production of odd oxygen species is con-

trolied mainly by the Herzberg band dissociation of 02. Because of the

high efficiency of the three-body reaction
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0+ 02 + M — 03 + M : } ?4

in the stratosphere, the oxygen atoms will get convertad to 03 molecules.
Between O and 03, therefore, the dominant species is 03 at these altitudes.

The time constants for the chemical loss of both 0(3P) and 0, are very

3
short, and the vertical diffusive processes have no significant effects on
their concentrations. As such, both the photochemical and the diffusive

models give more or less the same values for the [O(SP)] and EOS] profiles

in the stratosphere.

The distribution of the two metastable species 0(1D) and 02(1Ag) are
closely related to the distributions of the other oxygen species. The

changes in the profiles of these two species can therefore be attributed

to the changes taking place in the [0(3p)1 and [03] profiles.

In Figure 3.7, the height distributions of the hydrogen species, H,

H,, H.,0, OH, HO,, and H,0, are shown. The initial values of these consti-

22 72 2? 22 |
! tuents were determined first by calculating the distribution of H,0 using
a steady-state continuity equation having the transport term, and then

using the photochemical equations to determine the distribution of the rest

of the constituents. In these calculations, the reformation of H20 through
reactions occurring among other species was not considered. This, however,
was accounted for in the new set of calculations. However, the two H20

profiles do not shov any significant changes except that in the diffusive

model, the values are slightly higher towards the upper end.

Among the other 0-H species, the constituents that were affected mest

as a result of diffusive processes are H and Hz. Both of these have long
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Figure 3.7 The height distributions of hydrogen and oxygen-hydrogen constituents at

noon, calculated using the transport model corresponding to a constant

zenith angle and high eddy diffusion coefficient profile.
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time constants against chemical losses, particularly in the lower thermo-
sphere. Atomic hydrogen, in a manner similar to the atomic oxygen profile,
exhibits a peak abundance near 85 km. Above this peak, the profile re-
sembles one given by diffusive equilibrium. “elow the peak level, the
photochemical and the diffusive profiles are generally of the same shape,
though the absolute values differ by about a factor of 10 or more in the
stratosphere. In view of the approximations made in calculating the
initial values such a difference could be expected.

For the molecular hydrogen too, values are mostly affected in the
lower thermosphere where the diffusive processes cause an increase in
its concentration. Around 70 km, the profile has a broad peak, and
beiow this the {Hz] values are only slightly changed in the new profile.

The remaining O-H species, OH, HOZ’ and H202 all have short time
constants at all heights during the daytime. Hence their concentrations
could be determined by photochemical equations. Their chemistry is
closely linked with that of O(SP] and H, As mentioned before, both of
these constituents have their concentrations reduced in the lower thermo-
sphere due to the action of diffusive processes. As a consequence, the con-
centration of the species OH, HOZ’ and H202 also drop at a faster rate
above 80 km in the diffusive model., Below this height the three profiles
have almost the same features as those found in the photochemical model.
The differences in the absolute values that are present in these profiles
could be attributed to changes in the [D(SP)] and [03] profiles.

3.5.2 Nitrogen and oxygen-nitrogen constituents. This series of

calculations was done first by determining the height profile of N20. In

- both the initial and the new set of calculations, continuity equations
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with the diffusion term were used., Hence the profile of N0 appearing

in Figure 3.8 is similar to that shown in Figure 3.4. There is no signifi-
cant production and its abundance there is due to the particles carried
upwards from the troposphere.

The atomic species N(4S) and N(ZD) are calculated in a manner similar
to that discussed in the previous section. The branching ratios used for
the reactions producing N(ZD] were hoth 0.75. It is seen that while the
profiles of N(zD) in the two sets of calculations are similar, the
profiles of N(4S) differ widely, particularly in the mesosphere. This
difference can easily be attributed to the difference in the profiles of
NO. This constituent has a time constant of the order of several deys
in the mesosphere and therefore the photochemical equations, as used in
the initial set of calculations, do not yield correct values. Conse~
quently, the [NO] profile shows increased values with a peak near 75 km.
In the transport model, however, diffusion causes the profile peak to
move downwards as the NO, which is ﬁroduced in the thermosphere, is
allowed to diffuse downwards. This causes a minimum near 85 km in the
new NO profile, and above this height the profile remains almost constant

-3 . .
7 cm . Its broad maximum now lies around

at a concentration about 3 x 10
40 km with a value nearly 2 x 109 cm"s. The reduced NO concentration in
the mesosphere cauées the corresponding N(4S) concentration to increase,
as the loss of N(4S) is mainly due to its reaction with NO.

The changes occurring in the [NO] profile as a result of introducing
the diffusive transport term into its continuity equation are also reflected
in the distribution of NOZ' This constituent and NO are strongly coupled

to each other, as discussed in the previous chapter. During daytime,

NO2 is lost mainly through its reaction with 0(3P) down to about 50 km,
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Figure 3,8 The height distributions of nitrogen and oxygen-nitrogen constituents

at noon, calculated using the transport model corresponding to a
constant zenith angle and high eddy diffusion coefficient profile.
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and through photodissociation below 50 km. The time constants vary from
about one second in the lower thermosphere to about a few minutes in the
stratosphere. Hence, in this new set of calculations too, photochemical
equations were made use of for the determination of the NO2 profile. The
production of Noz, however, depends on the concentration of NO, For this
reason, the values of NO

o Were also reduced several orders of magnitude

below the levels obtained previously., Near 75 km, this value is about
3

3

1 x 1G” em ~, while above this height, it remains constant corresponding
to the constant values of NO. 1In the stratospheric height range 40-55 km,
the N02 concentration is of the order of 108 cm’s. The [NOZ}{[NO]

ratio given by these profiles is about 0.5 below 35 km, and drops through
several orders of magnitude in the mesosphere. In the photochemical

3

model, however, NO, has a value of 1 x 106 cm ~ at 75 kn, a factor of

2
1000 more than the corresponding transport model value. For values
towards the two boundaries, such as at 40 km and 100 km, the two models
give similar results.

The above results show that eddy diffusion affects not only the con-
stituents having long time constants, but also the constituents having
short 1life times as well. This is a consequence of the dependence of

»the short 1lived constituents.on the long 1ived types, whose height
distributions are determined by the transport processes.

3.6 Diurnal Variation of Neutral Species

The simulation of the diurnal variation of the constituent concen-
trations was next carried out using the results obtained in the previous
section as initial values. The zenith angle was varied in steps of 10°

between 20° and 70°, and in steps of 5° between 70° and 100°. Between

noon and sunset, and between sunrise and noon, the time increments required
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for the solution of the partial differential equations were obtained
from the above y increments, Beyond 100° of the zenith angle, time steps
of one hour were used., Since the scope of this work is to study the
changes of the D region taking place during the daytime, the detailed
variations occurring at sunrise and sunset were not included. In all the
calculations, the height increment was maintained at 1 km.

During daytime the photodissociation rates were determined at each
time step using the 0, concentrations required for the calculation of
the optical depth factor obtained from the previous time step. For y
angles greater than 100°, the photodissociation rates were all made equal
to zero. At the upper boundary, corstituents such as 02, HZO’ and N20
were subject to a flux boundary condition expressed in terms of their
dissociation rates. Since the dissociation ratesat night were zero,
the fluxes of these constituents across the upper boundary during night-
time were automatically made to vanish. In reality this may not be true.
However, the errors introduced by using this method are not expected to
affect the values below about 100 km.

The calculation of the diurnal variation was done for two eddy
diffusion models, discussed in Section 3.1.1. The simulation was con-
tinued until 24-hour reproducibility in values were obtained for most of
the constituents. .For certain constituents such as NO and H this condi-
tion was not reached within a reasonable period. Since this variation was
small, the computation was, however, terminated after 10 days of simulation.
On the final day of simulation, the concentration values of all the neutral
constituents were written onto a magnetic tape at every time step be-

tween sunrise and sunset, for use with the ionic species calculations.

“_\
P

é;:;,ﬁmw‘ﬁa1;,f..gu-~



v, g e

[

109

3.6.1 Oxygen constituents. The noon distributions of the oxygen
species 0., 0(*P), 0('D), and ozclag) obtained on the 10th day of simu-
lation are shown in Figures 3.9 and 3.10, which correspond to the high
and low eddy-diffusion models, respectively. Comparing the 0(3P) profile
in Figure 3.9 with that in Figure 3.6, which was given for a fixed sun,
it appears that the two profiles differ only above 70 km. The main
feature in the new profile is the reduced gradient between 70 and 85 km

and the reduced peak value, which is now about 1 x 1011 cm‘s.

In view

of the shorter duration.over which.photodissociation production of O(SP) is
allowed to take place, this reduction in the amount of O(SP) in the region
where diffusion occurs can be understood. With the low eddy diffusion

model (Figure 3.10), however, the rate of vemoval of the OCSP) into the
thermosphere is reduced and consequently the peak concentrations occurring

near 90 km increases to a new value of 3.2 x 1011 cm_3

. When the transport
effects becomes reduced, the coupling between the reactions involving
0(3P), OH, 03, and H become stronger, and as a result, irregularities in
the profiles of these constituents can occur in the regions where such
coupling dominates. This is shown in the low eddy diffusion profile

of O(SP) which has a minimum and a maximum near 80 km.

The diurnal variation of O(SP) under both high and low eddy diffusion
values are shown in Figures 3.11 and 3.12, respectively. The high eddy
profile shows a significant variation between noon and predawn in the |
lower thermosphere, whereas the corresponding variation in the low eddy 7
profile is not very significant. The behavior of the two profiles in the
mesosphere at x = 60°, both in the morning an&‘evening, is similar
though the absolute values differ slightly. In both &6f these sets of

curves, the higher values in the thermosphere are given by the afternoon

profile while tﬂe,@orning profile shows lower values.
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Figure 3.9 The height distribution of oxygen constituents at noon, calculated.using
the diurnal model with high eddy diffusion coefficient profile.
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Figure 3.10 The height distribution of oxygen constituents at noon, calculated using
the diurnal model with low eddy diffusion coefficient profile.
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An interesting feature in these profiles is the increase in the
morning values over the noon and evening values between 65 and 75 km.

This could probably be due to the higher contribvtion to O(SP) produc-
tion due to 03 dissociation which has higher values over this height range
in the morning than during noon or evening. The secondary peak appearing
around 60 km in both the noon profiles is also absent in the two x = ¢0°
profiles. At this height, the difference in the concentration between
the noon and the evening y = 60° concentration is about a factor of 4.

In the stratosphere, all three profiles have the same slopes though the
actual values are lower by about a factor of 2 in the afternoon than in
the noon. The predawn profiles, in both sets of profiles, vanish below
about 80 km.

The two ozone profiles shown in Figure 3.9 and 3.10 corresponding to
high and low eddy diffusion models have more or less the same values below
about 75 km. The low diffusion profile shows a small irregularity around
85 km as mentioned before, so that around this height the profile corre-
sponding to the low eddy diffusion has higher values. Between 85 and 75 km,
however, it has lower values than the profile corresponding to the high
eddy diffusion model. This behavior of 03 is directly governed by that of
O(SP}, whose profiles are influenced greatly by the transport effects.

The variations occurring in the 0, profiles are also reflected in
the profiles of Dz(lag) shown in Figures 3.13 and 3.14, for the two cases
of high and low eddy diffusion coefficients, respectively. Below about
65 km, the piiotodissociation of 0, is mostly responsible for the produc-
tion of OzflAgJ, and therefore its concentration follows closely that
of 03. Consequntly, both the high diffusion profile (Figure 3.13) and

the low diffusion profile (Figure 3.14) show similar values below 65 km.
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In these profiles, the evening values exceed the morning values between
55 and 65 km, while immediately below and above, the opposite takes place.
The exact height limits depend on the eddy diffusion coefficient used in
each case. The morning profile with the low De also shows an irregu-
larity at 80 km not shown in the other profiles, and this could be directly
related to the behavior of the 03 profile in the morning. Between 80 and
95 km, both sets of profiles do not show any variation with the zenith
angle. Above this height again, however, there is marked diurnal varia-
tion taking place, caused by the dependence of 02(1Ag) production on the
O(SP) concentrations.

The diurnal variation of the oxygen constituents has been studied
recently by Shimazaki and Laird [1970, 1972], Thomas and Bowman [1972]
and Hunt [1971b; 1973}. Direct comparison of the results of the present
study with the results of these workers is rather difficult in view of the
different parameters used by them. Nevertheless, the general features
found in the results of these studies are present in the profiles of the
present study.

Both the solar flux in the 1300 - 2000 & band and the eddy diffusion

coefficient used in this study agree closest with those used by Thomas

obtained here could be made with their results.

The O(SP) peak concentration at noon at 90 km obtained by Thomas and

11 cm"z

Bowman is about 1.6 x 10 while the corresponding value obtained by

Hunt is 3 x 1011 cm's. These agree well with the results obtained with

the low diffusion model which has a peak value of 2.5 x 1011 cmﬂs at

91 km. The minimum present near 70 km which has a value of 1 x 1010 cm'3

T T N A B S,
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also agrees well with the results of these workers. The nighitime values
in 211 these models vanish below about 80 km, while above this height the
profiles do not show any significant diurnal variatiom, as found in the
present study. The slight discrepancies present in these height distri-
butions are probably due to the different values adopted for various
parameters such as the eddy diffusion coefficients, recombination rate
constants and solar flux.

In recent times experimental determination of the O(SP) distribu-
tion in the lower thermosphere has been carried out using rocket-borne
instruments. Henderson [1971] obtained values betwesn 1 x 1011 and
8 x 10! cn™® in the height range 89-94 km. The presence of the peak
in the O(SP) profile near 100 km was demonstrated by Scholz and Offerman

1 -3 in two

[1974], who obtained peak values of 2.5 x 107" and 6 x 1011 cm
flights using mass spectrometric measurements incorporating cryoion
sources. Good and Golomb [1973], using NO/O chemiluminescence measure-
ments obtained peak values lying in the range 4 x 1011 and 8 x 1011 cm"s
under different solar conditions, with the average peax height near 99
km. It appears that generally, both the theoretical and experimental
peak values lie in the same range, while the experimental peak heights
are a little higher than tﬁe corresponding theoretical values. In view
of the present uncertainties in the various parameters mentioned earlier
the agreement between the model calculations and the measured values of
0(3P) can be considered as satisfactory.

The ozone profiles obtained in these model calculations all show

the irregularity around 75-85 km, which is obtained with the low dif-

fusion model in the present study. In Hunt's profile this has a value
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8 cm"s, while in Thomas and Bowman's profile the flat portion

has a value near 3 x 107 cm"s. The value of 3 x 107 3

around 1 x 10

cm - obtained in the
present study agrees with this latter value. These results are however

slightly less than the values deduced by Evans and Llewellyn [1970] who
8

en™3 in the height range

obtained peak concentrations of (1-3) x 10

85-90 km. The noon concentrations obtained near 60 km in all their
10

. -3 .
profiles have more or less the same value of 1 x 107" cm ~, in agreement

Rl s s A S SRS e S by

with the experimental values [#ilsenrath, 1971].

5 The observations by Evans and Liewellyn [1970] of the 1.27 u

: emissions gave 02(1Ag) distributions having peak values of 2.5 x 1010 : 2

cm~3 between 50 and 60 km during the daytime. These values are about a

factor bf 3 higher than the calculated values. Such a discrepancy

could easily arise in view of the many uncertainties in the production

rate of 02(1Ag), such as the reaction rate constants and solar flux
intensities responsible for the photolysis of 03. The calculated values,

however, are in closer agreement with the profiles obtained by Thomas

and Bowman [1972].

3.6.2 Omygen-hydrvogen comstituents. The noon profiles of the § fj

v hydrogen species, obtained after diurnal simulation are shown in Figures

3.15 and 3.16, corresponding to the high and low values of D , respec-

g tively. The two sets of curves are almost identical below about 60 km

while above this height the effects of using different eddy diffusion | 1ﬂ

values become evident,

T T

The [HZO] profile, under high eddy diffusion gives values higher
by nearly an order of magnitude in the thermosphere than under low eddy  $

diffusion. The loss of H20 in the mesosphere and above due to photo-
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dissociation is replenished by the upward flux generated in the troposphere.

T




120 I | i [ i I A 1 i
— -
H ‘
NOON (X=18°)
100 .
’ HIGH D MODEL
f'-E\ | —
=
L 80~ OH HOE ]
(] H.0 '
202
Eg ] H,0 |
}._
J
<I 60 | Ha o
H
40| 4
{ i | | | | i | i b
10’ 10° 103 107 10° io" 10'3

NUMBER DENSITY (cm-3)

Figure 3.15 The height distributions of hydrogen and oxygen-hydrogen constituents at
noon, calculated using the diurnal model with high eddy diffusion
coefficient profile.
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As such, the higher the eddy diffusion coefficient, the greater the con-
centration of H20 at high altitudes, subject to the limiting values given
by complete mixing ratios. Because of the large time constants involved
in the loss of H20, it has no significant diurnal variation.

The low De atomic-hydrogen profile, while showing reduced values
between 70 and 80 km, has increased values above this height range. At
heights below, the values remain unchanged. The increase of values above
the peak for this low De profile is somewhat similar to the behavior of
atomic oxygen in this height range. The values at 120 km are the same
for both curves, as constrained by the boundary condition. The profile of
molecular hydrogen corresponding to the low De model also shows increased
values above 65 km.

The more active constituents, OH and HO2 exhibit only a little change,
with the variation of the eddy diffusion coefficients, and even this was
evident above 70 km only. Since both OH and HO,, have short time constants
in this part of the atmosphere, their concentrations are not directly
affected by eddy diffusion. However, the variations in both [0] and [03],
or [H], easily produce significant changes in [OH] and [HOZ]. Both sets
of curves show near constant values below 70 km, while a sudden drop in
their concentrations become a characteristic feature above this height.
The [OH] profile shows an irregularity near 75 km, which is caused by the
corresponding variations in both [0] and [H] at 75 km. This irregularity
causes [OH] to have higher values than [H02] over the height range 73 and
78 km in the low -diffusion model. In the high diffusion model there is
no such cro§s~over. Further, the latter set of curves have slightly

higher gradients than the low diffusion curves above 80 km. The HZOZ
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profile for both low and high diffusion profiles give the same values
except over the region around 83 km where the low De values are slightly
higher than the high D, values.

The diwvrnal hehavior of H is shown in Figures 3.17 and 3.18 for the
high and low eddy models, respectively. As in the case of O(SP), the [H]
profile reache¢s a peak at 85 km and vanishes in the nighttime below
this height. The evening x = 60° curve and the noon curve do not differ
very much, except that the values cross over near 70 km. In both sets of
curves near the peak, the evening values are slightly higher than the
noon values, while below the peak, the noon values dominate. The morning
values in both cases, however, exhibit a large swing between 60 and 80 km.
The enhancements of H between 60 and 70 km can be regarded as a conse-
quence of the photodissociation processes., The photodissociation of H,0
at these heights produce sufficient amounts of H causing the ledge to

appear in the morning. Subsequent losses due to various chemical reac-

tions later in the day bring down its concentration to the calculated

value. The rate of production of H by photodissociation of H,0 near 75 km

is not adequate to yield concentrations as given by the noon profile, and
hence the presence of the minimum in the profiles at these altitudes.
The valley, however, is later filled in by the transport processes.

These results are generally in agreement with the results of Thomas

and Bowman [1972] and Hunt [1871b; 1973]. The [H] peak in Thomas and
-3
>

while in Hunt's profile, it occuis near 82 km with a value about 2 x 108 ; ?f

cm-s. In the present calculations with the low De model, the peak

8 n~® near 85 km, showing good agreement

Bowman's profile occurs near 83 km with a value of about 5 x 108 cn

ab'mmdance of H obtained is 4 x 10




120 ] T
B HIGH D, MODEL 7]
{00 — NOON X =18° _
—-— 0753 hrs. X=60°
. B ——— 1647 hrs. X=60° |
—-—- PRE-DAWN
ig 80 -
= L —
71]
()] - -
i
=
| o
Ef 60} -
i i ) 1 [

10° 10* 10® i0® o7 108 o}
NUMBER DENSITY (cni)
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with the results of the previous workers. However, the only experi-
mental estimate of the H concentration in the mesosphere carried out using
OH airglow data give values about 3 x 107 en™° in the height range 80 and
90 km [Bvgns and Llewellyn, 1973]. This is about an order of magnitude
lower than the corresponding theoretical values discussed above.

The diurnal variations of OH and HO2 are shown in Figures 3.19 and
3.20, respectively, for the low De model only. The nature of the diurnal
variation for the high diffusion model is also similar; and hence it is
not shown separately. For OH in the region below 70 km, the variation
between the two y = 60° profiles is not appreciable, at the most « factor
of 1.5 except below 35 km. Above 70 km, up to about 80 km, where the OH
curve has a moderate slope, the evening values exceed the moraing values
by a factor of about 4. Above 80 km, the diurnal variation is negligible.

The more prominent feature here is the behavior of the pre-dawn
profile of OH. The almost negligible loss rate in the night causes the
OH concentration to build up by pre-dawn, below about 7b km. The reaction
between OH and 03, when taken into consideration is the major loss process
of OH in the night. However, in this study, this reaction was not in-
cluded, because of the lack of experimental evidence in favor of this
reaction [Seniff, 1972]. The reaction between OH and H02 and that between
two OH molecules do not contribute significantly to the loss of OH in the
night, in view of the long time constants of these reactions.

A similar diurna; variation is also observed in the case of HO2
(Figure 3.20), 1In thé two x = 60° profiles, the difference occurring
below 68 km is rather small, while the noon profile gives the largest set

of values. Between 68 and 80 km, the evening values dominate while the

TV A O A S




i20 T T T T —

- oW LOW Dg MODEL ]
00F == | —— NOON X=18° 4
T s 0753 hrs. X=60°
—~ L Tl —~—— 1647 hrs. X=60° _
E S~ —-—- PRE-DAWN
w 80 -
O
-
t = —_
|....
-
< eof i
40 .
!
10% 10°

NUMBER DENSITY (cm™3)
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calculated using the diurnal model with low eddy diffusion coefficient
profile.
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morning values get reduced below the noon values. In this region, the
morning and evening values again differ by a factor of 4. Around 80 knm,
the morning values display an irregularity caused by similar variations
found in O(SP) and 03 profiles. Above 85 km, there is no significant
diurnal variation. The pre-dawn profile displays a much larger variation.
However, unlike in the case of OH, the stratospheric values of HO2 at
nighttime do not exceed the noon values. In the upper stratosphere HO,

3 -
cm 3. It has a deep valley

has a nighttime concentration of about 5 x 10
near 75 km, and reaches the daytime values above 80 km.

In the previous calculations of O-H species concentrations by other
workers, the inadequate knowledge of some of the rate constants (R27 and
RSD) gave rise to a certian degree of uncertainty in their height distri-
butions. However, recent determinations of more exact vaiues for these
rate constants have enabled the calculation of more accurate height dis-
tributions, in particular for OH and HO,. Further, the assumption of
zero-rate constants for the reactions of OH and HO2 with 03 causes
enhancement of these constituents in the stratosphere during nighttime.

Generally, the daytime profiles of both OH and HO2 agree with those
of the previous workers. The more or less constant values up to about
75 km, and the rapid drop thereafter are some noted features present in
these profiles. The calculated values of OH are also in agreement with
the measured values of stratospheric OH by Anderson [1971a, 1971b]. No
direct measurements are available for any of the other 0-H species at
mesospheric heights.

3.6.3 Nitrogen and oxygen-wnitrogen constituents. The results of

the previous set of calculations of the 0-N products were employed as

initial values in the calculations of the diurnal distribution of these
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species. The values obtained for the 10th day noon are given in Figures
3.21 and 3.22 corresponding to the high De and low De values,
respectively.

As expected, the new values of [NZOI in the mesosphere, are higher
than the corresponding values obtained in the previous calculations.
During nighttime, N0 is not subject to any losses due to photodissocia-
tion and hence the mixing ratio tends to reach the limiting values
determined by the lower boundary conditions. The concentrations in the
mesosphere and the lower thermosphere are controlled by eddy diffusion,
and as a result, the profile under low diffusion gives values at 120 km
which are higher by an order of magnitude compared to those given by the
high De model.

In the previous calculations, it was seen that eddy diffusion plays
an important role in the determination of the height distribution of NO
in the mesosphere. This is because of the long time constant NO has

against chemical losses, which is over two days between 70 and 90 km.

Below 70 km, it comes down due to the increasing concentration of 03, which

oxidizes NO into NO,. The two [NO] curves in Figures 3.21 and 3.22 demon-
strate this. The two curves are identical below about 65 km, while above
this height, the high diffusion model gives higher values than the low
diffusion model values. The difference in the concentrations is within a
factor of 3. The apparent coalescing of the values near the upper
boundary is due to the fixed boundary value, and does not represent
the real situation.

The production of NO in the thermosphere depends on the branching
ratios of the N)' recombination reaction and the reaction between NO' and

02. Different values between 0.5 and 1.0 were tried for these parameters
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Figure 3,21 The height distributions of nitrogen and oxygen-nitrogen constituents at
noon, calculated using the diurnal model with high eddy diffusion
coefficient profile.
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and their effect was noticeable only in the height range between 95 and
105 km. The differences obtained with these values of the branching
ratios appear to be within a factor of 2 at 100 km, The profiles shown
correspond to y = 0,75.

As mentioned in Section 2.5 of the last chapter, NO and NO2 are

strongly coupled through the reactions

R NO + O

38 3———* N02+0

2

R41 NO2 + 0 —» NO + 02 s

which are actually effective as a catalytic process for the conversion of
ozone and atomic oxygen into molecular oxygen. The reaction RSS acts as
the main loss process for NO, and also as the main production process for
NO, below 70 km. The other reaction R, is the main loss process for NO,
over the entire height range during the daytime. This reaction also acts
as the main production process for NO below about 95 km. In view of this
strong coupling, when the individual time-dependent equations are solved

for NO and NO, in sequence, any small errors introduced at the beginning

2
could get magnified leading to an instability in their solution. This

is particularly important in the height range below 70 km.

During the daytime, NO2 is in photochemical equilibrium with NO

and, therefore, its continuity equation can be used to eliminate terms

involving [O] and [03] which appear in the continuity equat:on for NO.
This procedure results in removing the instability mentioned above. The
profiles shown in Figures 3.21 and 3.22 have been obtained after incor-

porating the above procedure in the height range below 70 km. This
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simplification, however, was not introduced in the nighttime calculations
as during this period the condition of equilibrium for NO2 becomes invalid.

Strobel [1971b, 1972a] who studied the NO at D-region heights showed
that its concentration in this height range is semsitive to the eddy
diffusion coefficients used, and to the lower boundary conditions. Under
high eddy diffusion he found the profiles to have broad minima between 65
and 70 km with values over 107 cm"s, while the low eddy diffusion models
gave minimum values in the range (2-4) x 106 cm"3. More recently, Brasseur
and Nicolet [1973] showed that the NO profiles have minima between 70 and
80 km with the values extending from 105 up to 5 x 106 :::m"3 under dif-
ferent values of eddy diffusion coefficients and nitrogen atom production
rates, In the [NO] profile obtained by Hunt [1973], however, no such
minimum is observed in the mesosphere.

In the present study, the minima in the two noontime profiles of [NO]

7 and 4 x 107 cm's, both lying at 80 km., These pro-

have values 1.4 x 10
files, which show identical values below 65 km, have broad maxima between
45 and 50 km, with values 8 x 1010 cﬁ"s. However, in view of the uncertain
lower boundary conditions, these latter values cannot be relied upon as
representing the real situation.

Though these profiles differ slightly from the theoretical profiles
of the other workers, they are in good agreement with the available ex-
perimental profiles., Meira's [1971] profiles of [NO] show minima around

3

1.5 x 107 cm © at 84 km. The more recent measurement by Tisone [1973]

7 cm-S

shows a height distribution having a broad maximum of 5.5 x 10
between 80 and 100 km. In view of the inherent weaknesses of the tech-
niques employed in these measurements they are not, however, considered

to be reliable for determining D-region NO concentrations [Thomas, 1974].
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Figure 3.23 shows the diurnal variation of [NO] for the low diffusion
case. Above 70 km, the variation is negligible. This is expected because

of the effect of the transport processes in this height range. Between

the two x = 60° curves, the morning profile is nearly a factor of 10 below

r the noon profile at the stratopause, while the drop in the afternoon '? z
¢ profile is only very small. At pre-dawn, the [NO] profile vanishes below
i

{

40 km. | 3

These results show that the diurnal variation of the NO concentra-

: tion appears only below the region where the Ly-o ionization of NO is
important. Therefore, the variation of the [NOl does not contribute
much to the diurnal variation of the ion-pair production rates in the

D region.

A T T ST S T

The values of {Noz] obtained in the new set of profiles show marked

changes from the constant y profile above 80 km as well as below about H £

;
t

: 50 km. The changes taking place in the higher altitude range are due
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to the changes in the [O(SP)] and [03] values, whereas in the strato-

This is because at nighttime both loss processes of NO2 in the strato- 1
sphere, viz. reaction with 0(3P) and the photodissociation, are absent.
In the height range between 60 and 75 km, where NO2 plays an important
role in the D-region negative-ion chemistry, the diurnal cycle does not
introduce any significant changes in the noon profiles.

Unlike in the case of oxygen only or oxygen-hydrogen species, the % :;
calculation of nitrogen and oxygen-nitrogen species concentrations poses
some additional problems, The odd nitrogen spécies, N and NO are pro-

duced in the thermosphere, where the ionic chemistry plays a significant
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Figure 3.23 The height distributions of NO at noon, 60° zenith angles, and pre-
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coefficient profile.
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; role. In view of the many uncertainties present in the ionic chemistry,

f the rate of preduction of these species cannot be determined accurately.

; Secondly, the sinks for the odd nitrogen species in the stratosphere have

§ not been correctly estimated so far, Finally, the wide range in the time !

: constants involved in the loss rates of odd nitrogen species makes the :

% computer simulation of the diurnal behavior of this quantity a little :

.g more difficult task than in the case of the other constituents. :
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4. TION-PAIR PRODUCTION RATES

Several sources contribute to the ion-pair production in the D r:gion.
These sources include radiations of solar origin as well as others such
as galactic cosmic rays and precipitating electrons which come from the
outer radiation belts. The solar radiations that are capable of ionizing
any atmospheric gas and penetrating down to 100 km have wavelengths below
100 &, and also between 1000 and 1300 &, However, as mentioned in the
last chapter, wavelengths outside of these limits have also been included
in order to extend the region of ionization up to 120 km for use in the
calculation of neutral ntirogen species concentration.

The solar radiations get attenuated in the atmosphere mainly due to
absorption by oxygen. Molecular nitrogen also plays a significant role
in the attenuation of incoming radiation, particularly the X-rays below
100 R, in view of its high abundance in the atmosphere. The intensity of
these solar photon radiations at D-region altitudes drops with the
increase of solar zenith angle, as the thickness of the atmosphere
traversed by these radiations increases.

The calculation of the ion-pair production rates due to these solar
EUV and X-rays and their variations with the zenith angle are presented
in the next two sections.

Section 3 presents the ionization rates due to sources of
non-solar origin, viz. galactic cosmic rays and precipitating electroms.
Unlike in the case of solar radiaticn, these do not have a solar zenith
angle variation. In the last section, a discussion of the resulting ion-

pair production rates is given.
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4.1 Solar EUV Radiations

The ionization thresholds of most of the gases present in the earth's
atmosphere correspond to wavelengths below about 1330 R. Table 4.1 lists
these ionization potentials and their threshold wavelengths. Only 02,
02(1Ag), NOz, and NO have sufficiently low ionization potentials so as
to be ionizable by wavelengths greater than 1000 R. The most significant
contribution for the O2 jonization in this region comes from the solar
Ly-8 line at 1025.7 &. The several spectral windows appearing between
1050 and 1300 R in the oxygen absorption spectrum (Figure 2.4) makes the
remaining three constituents potential sources of D-region ionization. Of
these, NO, has a very low abundance at D-region heights and therefore does
not make a significant contribution as an ionization source. Of the
other remaining two constituents, NO has been long recognized as the
major source of D-region ionization, while Oz(lag) is considered impor-
tant as an 02+ source in the mid-D region. The contributions from these
as well as from O2 are discussed in the next section.

4.1.1 NO Zonization. Even though NO is only a minor constituent
at D-region heights having only an abundance of a few parts per million
or less, the combination of the high intensity of the solar Ly-a line at
1215.7 A and the low absorption of this line by atmospheric O, makes this
a major wource of ionization in the D region. As discussed in Section
2.2.1, the intensity of this line at the top of the atmosphere corre-

11

sponding to July 24, 1968 is 3.7 x 107~ photons em % sec! or 6.0 ergs

r:nf2 sec_l. According to rocket measurements [Goldberg and Aikin, 1971},
the unit cptical depth of this line lies mear 77 km for low zenith angles,

and its intensity is completely attenuated by the time it reaches 70 km.
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Table 4.1

Tonization potential and threshold wavelengths of

ionization for atmospheric gases.

. Ionization Threshold

Constituent potential wavelength
(eV) (R)

N2 15.6 790

H2 15.4 803

N 14.5 852

co 14.0 882

C02 13.8 895

0 13.6 910

H 13.6 910

OH 13.3 930

N20 12.9 960

O, 12.8 970

H20 12.6 980

0, 12.0 1030

0, (lag) 11.1 1118

N02 8.76 1270

NO 9.27 1330
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The ion-pair production rate due to this line is given by
q(12168) = [N0Jo, (NO) I (1216 R) exp(-7(x,2)) (4.1)

where

a,(NO) is the ionization cross section of NO at 1216 R, and

10(1216 A) is the unattenuated intensity of the solar Ly-o line.
Since this line is absorbed mainly by molecular oxygen in the atmosphere,

the optical depth factor is given by

o«

t(x,2) = 0,(0,) secy f [0,1(=) da (4.2)
‘ -4
where
aatoz) is the absorption cross section of 0, at 1216 a.

As discussed in Section 2.2.2,'Ua(02) is taken to be 1.0 x 10—20 cm2.

The value of ai(NO) at 1216 R adopted is 2.0 x 10718 cmz.

The required [02] and [NO] values are taken from the diurnal model
of the neutral atmosphere presented in the last chapter. Above about
70 km, transportléffeqts contro} the [NO] profile and therefore its varia-
tion with ¥ in this region is negligible. Hence, the variation of
g{1216 R) with x is mainly due to the variation of the value of sec
appearing in the optical depth factor.

The production rates obtained using the previously calculated [NOT
profiles are shown in Figure 4.1 for different x éngles. These curves

show that the zenith angle variation becomes significant for heights below

about 90 km only. Above this height the optical depth factor is very

}
2
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small and the variation of the sec x factor has no‘influence on the
intensity of the downcoming radiation. As the optical depth factor begins
to grow the variations become very prominent, and even exceed an order of
magnitude between x = 18° and y = 60° below 72 km.

4,1.2 Oz(lAg) tonization. The metastable Oz(lAg) was suggested
as anr important source of D-region ionization by Humten and McElroy
[1968]. Its importance is in the production of 02+ in the mid-D region
rather than in the total ion-pair production. The formation of water
cluster ions in the mesosphere requires the presence of an 02+ source,
according to the original theories put forward to account for the presence
of these cluster ions [Feheenfeld and Ferguson, 1969]. Even with the

current theories on the production of these cluster ioms, it is easier
£
3 2
production rate becomes enhanced as in the case of a PCA event [Nareist

to explain the presence of ions such as H30+ and H 0+'H20 if the O
et al., 1972b].

The original values of 02+ production rates due to 02(1Ag) ioniza-
tion were of the correct magnitude to account for the presence of tﬁe
cluster ions around 86 km. However, a re-evaluation of this production
rate by Huffman ¢t al. [1971], taking into account the C02 absorption of
solar radiation between 1027 and 1118 & responsible for OZ(IAQ) ioniza-

tion, showed that the O * production rates are reduced significantly

2

from the previously calculated values., This modified ionization rate is

calculated here using the formula given by Paulsen et al. [1972]

1 1 -9 -
q[Oz{ Ag)) = 02( Ag) {0.549 x 10 7 exp(-2.406 x 10 20 N(Oz))

+ 2,614 x 10°° exp(-8.508 x 10°%° N(Oz))} (4.3)
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where

N(Oz) is the colum density of O2 molecules along the solar ray path,

According to Paulsen et al, the combined uncertaintly due to any
uncertainty in the [02] and [COZ] profiles is at most 15%. Larger un-
certainties, however, occur in the solar flux values and in the 02
and CO2 absorption cross sections used to derive this formula. The rms
error due to all these data has been estimated to be less than 10% with
a maximum error less than 33%.

In the above formula, values obtained from the diurnal model calcu-
lations are used for Oz(lAg). These calculations have shown that Oz(lAg)
has a significant diurnal variation, with the values at 80 km increasing
by as much as an order of magnitude from post-sunrise (x = 85°) to noon
(x = 18°). As a source of 02+ in the mid-D region, OZCIAg) has to
compete with 1-8 & X-rays and precipitating electrons. Of these, the
X-ray ionization rates have a solar zenith angle variation caused by the
optical depth variation only, while Oz(lAg) ionization rates have a solar
zenith angle variation caused by both optical depth variation and
[Oz(lﬂg)} variation. On the other hand, ionization rates due to precipi-
tating electrons do 1ot have any solar variation at all. Hence, the con-
tributions mace by each of these sources vary at different rates during
the day. Figure 4.2 illustrates the calculated 02+ production rates due
to Oz(lﬂg) ionization at different solar zenith angles.

4.1.3 0, ionization. In the spectral region below 1030 R, the
threshold wavelength for 02 ionization, there are some wavelength bands,

particularly in the Lyman continuum, for which N, offers only a small

2
absorption cross-section. Consequently, these wavelengths penetrate to
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Figure 4.2 The ion-pair production rates due to EUV (1027-1118 R) ionization of O ( A ) at
zenith angles 18° (noon) and 60°.

SvI



146

JE O T

heights below 100 km and contribute to lower E region ion-pair produc-
tion. The biggest contribution comes from the Ly-8 line at 1025.7 &,
and to a lesser extent from the C III line at $77 R. The unattenuated
intensity of this Ly-8 line has been measured over a long period of time

and was found to vary by about a factor of 1.5 during a solar cycle [Hall

et al., 1968]. However, no measurements are available for this line on

July 24, 1968. The closest day on which a Ly-B measurement has been re-

% ported is for November 21, 1968, the flux on this day being 3.7 x 109

photons en? sec”! [Hall et al., 1969]. The Ly-a flux reported for this }
day by Timothy and Timothy [1970] is 3.5 x 10t photons en™? secl.
I Assuming the two lines, Ly-o and Ly-f undergo similar variations main-
taining the same flux ratios, one can deduce the Ly-8 flux if Ly-c
i flux is available for that day. Since the value adopted for the Ly-a

flux for July 24, 1968 is 3.7 x 10t! photons em™2 sec“l, it follows

that Ly-g flux is 3.9 x 109 photons cm'2 sec-l. This is within the

range of values given by Hall et al. [1969] for the Ly-g flux.
For che 977 R line and others in the Lyman continuum, fluxes reported
by Hinteregger [1970] have been adopted. The absorption cross sections
t and ionization yields employed here are those given by Ohshio et al.
[1966]. The optical depths are controlled by 02 absorption, and hence
its variations are due to changes of sec y only. The ion-pair production
rates are calculated using equations similar to equations (4.1) and (4.2)
8 for solar zenith angles 18° and 60°. These results, illustrated in

Figure 4.3, show that between 95 and 110 km, EUV ionization of 0. is the

2

main source of ion-pair production,
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4,2 Solar X-Rays

The penetration of solar X-rays into the atmosphere depends mainly on
the absorption cross sections offered by the major constituents 02 and N,
to X-rays. The absorptic- cross sections for these gases are obtained
from experimentally determined mass absorption coefficients, u/p. The
values of this quantity measured by several workers were assessed and the
weighted means were tabulated by Hemke and Elgin [1970]. The absorption
cross sections for 02 and N2 deduced from these tabulations are shown in
Figure 4.4. An imnortant feature of these plots is the existence of a
sharp discontinuity at 23.3 R in the case of 02, and at 30.9 R in the
case of Nz. This critical wavelength, AK is associated with the ejection
of a X electron from the atom, and sometimes referred to as the X absorp-
tion edge. These absorption cross sections are represented by the following

empirical formulas in each of the three given wavelength intervals.

A <5 &
9(0,) = 1.67 x 10722 23 (4.4a)
o(N,) = 9.69 x 10723 38 (4.4b)
58 <2 <?\K
6(C,) = 1.70 x 10722 33 _ 3.35 x 10724 * (4.5a)
o(N,) = 1.02 x 10722 2% - 172 x 10724 4 (4.5b)
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Ay < A < 100 R

2.65 x 10723 ,2.46 (4.6a)

n

0(02)

1.97 x 10723 32-40 (4.6b)

2)

where A is in Angstroms. The values for ¢(0) are taken as half of
0(02). These expressions are similar to those reported by Swider [1969].
The presence of the discontinuity in the absorption spectra of O2

and N, divides the spectrum below 100 & into two groups, one group lying

2

below AK and the other lying above KK‘ Referring to Figure 4.4 one

sees that the cross sections just above AK have the same low values as
the cross sections near 10 R. This similarity in the cross sections makes
it possible for both of these wavelength regions to penetrate to equal
depths. The wavelengths just above Ag and near 10 R reach altitudes
between 90 and 100 km, while the wavelengths below about 8 & whose cross
sections are much lower reach the D-region altitudes. The ionization
effects of these two wavelength bands are therefore considered separately.
4,2.1 X-rays below 10 . X-rays in this band of the solar spectrum
are produced in the solar corona which is a hot plasma with temperatures
over a million degrees Kelvin. Several ionic processes take place in this

region giving rise to different components of the spectrum., The free-free

transitions (bremsstrahlung-type emissions) and free-bound transitions

(radiative recombination emissions) cause the continuum while bound electron

transitions between different energy levels in the ions give rise to the
line spectrum. Both the theory [Elwert, 1961; Mandel'stam, 1965] and
observations [Rugge and Walker, 1968; Evans and Pounds, 1968] show that

the region below about 15 & is mainly a continuum spectrum, except for a




R S

SR —— e

151

few lines scattered towards the high end of the band. The relative impor-
tance between the line spectrum and the continuum spectrum depends on the
coronal temperature, the line spectrum becoming more prominent at high

temperatures such as those prevailing during solar flares. Under non-

solar flare conditions the line spectrum below 10 A can be easily neglected,

Photographs of the solar disc taken with rocket-borne pin-hole cameras
and X-ray sensitive plates show that these X-rays are emitted from highly
localized regions spread over a small fraction of the total disc area
[Friedman, 1963]. Observations with selective spectral sensitivities
have shown that the emitting regions EeCOme more localized with the
decrease in the wavelength. Theoretical interpretation of the observa-
tions requires a higher coronal temperéture to explain the emission of
shorter wavelengths while longer wavelengths can be accounted for in
terms ~f lower coronal temperatures.

The solar spectrum below 8 A has been regularly monitored over the
past two decades By satellite-borne detectors. These detectors respond
to two wavelength bands, 0.5-3 R and 1-8 R [Kreplin, 1961, 1965].

In order to convert the detector currents to flux values it has been
necessary to assume spectral distributions over the measured bands.

The prucedure adopted at the inception of this series of measurements is
to assume a black-body distribution given by Planck's radiation formulé
which expresses the energy per unit wavelength interval as

E(A) = K, AT (e -1 s (4.7)




ki is a constant,

2, is the second radiation constant, 1.439 cm K, and

T 1is the equivalent hlack-body temperature.

Fixed temperatures of 2 x 106 K and 10 x 106 K have been used in the
conversion of 1-8 & and 0.5-3 R data, respectively. This assumes that
the X-ray flux variations are due solely to variations of the nature of
the emitting regions of the corona, rather than due to any temperature
variations. However, it is believed that enhanced emissioqs are accom-
panied by hardening of the spectrum czused by an increase in the tempera-
ture [Culhane et al., 19A4].

This procedure of using a black-body model in the conversion of
satellite data into flux values is still continued even though more
realistic models for the energy distribution in the bands are presently
known [Elwert, 1061, Mandel'stam, 1965]. According to these models, the
emissions due to bremsstrahlung and radiative recombination could be
adequately represented by [Horan, 1970]

eZ/AT;

E(A) = Ke (4.8)

where Te is the electron temperature in the corona, and X is z function

6f the emission measure B which is given by

_ 2
B = J NS dv | (4.9)
v

where Ne is the electron concentration and the integration is performed

N
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over the respective emitting regions. The value of K also depends to
a smaller extent on A and Te“ Better agreement has been found with
spectra measured duriug enhancements with the above distribution than
with a black-body type spectrum.

In order to compute the ion-pair production rates due to these
X-rays, one has to cons.Tuct the spectral distributions from the measured
broad-band fluxes. The main difficulty here is the estimation of the
correct coronal remperature and the emission measures corresponding to
the relevant bands. Hora» [1970], however, has developed a method to
work out these quantities in terms of satellite-measured fluxes using
a mmerical technique which is somewhat tedious.

Using a more simple procedure, it is also possible to construct the
spectral distribution over the entire range 0-10 & in terms of the
measured fluxes in the 0,5-3 R and 1-8 R bands. Here, the energy dis-
tribution per unit wavelength interval is given by an empirical formula
[Rowe et al., 1970]

E(A) = A"

(4.10)
where 4 and n are constants. - # determines the shape of the spectrum
while 4 determines the absolute flux. 7 is obtained from the ratio of

the measured fluxes over the two bands using the formula

_ log(4(8 R)/¢(3 R))
n= Tog 2.667 -1 (4.11)

s orlng. - ;
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where ¢{8 R) and ¢(3 R) are the two measured fluxes over the bands
1-8 & and 0.5-3 &, respectively. The constant A is obtained using

the flux value over one band,

4 = (nr1) 6(8 R)

+1

4.12
o . (4.12)

The ratio ¢(8 R)/¢(3 &) is generally of the order of 100 under quiet
conditions, hut varies by as much as a factor of 5 under extreme condi-
tions. In two proportional counter spectra measured under conditions of
low and moderace solar activity [Pounds, 1970], the values corresponding
to this flux ratio were found to be 1780 and 43, respectively. The
(1-8 &) flux deduced from the solar active day spectrum, smoothed and

5 erg em™? sec”l. With this

shown in Figuve 4.5, has a value 1,14 x 10
flux value and the ¢(8 R)/4(3 &) ratio of 43, the spectrum was re-
constructed using equation (4.10). These results are also shown in

Figure 4.5. The excellent agreement between these values and the measured

spectrum shows thut equation (4.10) is a valid representation of the X-ray

spectrum below 10 &.

These X-rays ionize all constituents present in the atmosphere. 1In
calculating their ion-pair production rates, the ionizing effects on N2,
0., and 0 have been considered, with the production function given by

25

q(1-10 &) = ],

A
2 .
1 -1(x,2
[x1; J ng (Mo (AT, (Ne X3%) (4.13)
M
where 7 denotes the constituents N2’ 02, and O(SP) . ni(A) is the ioni-
zation yield of the ith constituent, and IO(A) is the energy distribu-

tion function given by equation (4.10) expressed in photons en™? sec™l.
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broken curve shows the spectrum measured by Pounds [1970].

155




:
;
i
;
i
i
!
5

156

Equations (4.4) and (4.5) give the values of Ua over the wavelengths
from 1 to 10 A.

The optical depth factor is governed by absorption due to all con-
stituents, and is given by

L]

t(x,8) = secx | az ) f [x1, () da . (4.14)
(A
z

The energies of the incident photons in the 1-10 & X-ray band
vary from 12.4 keV to 1.24 keV, which are far in excess of the energy
required to produce one ion-pair in air. Therefore, each photon is
capable of producing more than one ion-pair. The first ion-pair is
produced by the incident photon while the rest are produced by the
secondary electrons through impact ionization. Photons in the soft
X-ray bands were found to spend, on an average, about 35 eV in producing
one high energetic photon, or the ionization yield, can be expressed as

[Swider, 1969]

_ 12400 _ 354
T35 AR T AR) : (4.15)

This formula, however, does not take into account the efficiency of
different species in producing secondary electrons through impact ioniza-
tion, which depends on the impact ionization cross section of each species.

Ionization yields have also been tabulated by Ohshio et al. [1966]
over the entire range of X-ray and EUV wavelengths, using values adopted
from the results of several workers. In the X-ray wavelengths these
values show the n(Nz)/n(Ozj ratio is about 1.13, indicating that N2 is

more efficient in producing secondary electrons than 02.
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More recently, Sehilegel [1971] has calculated the ionization yields
of Nz, 02, and O in the upper atmosphere using a Monte Carlo simulation
of a model ionesphere. According to his results n is a function of both
the altitude and the solar flux. The height averagad ionization yields
for the range 130-300 km, when compared with values reported by Ohshio
et al. [1966], show that the two sets of values are in good agreement in
the case of N2 and 0. However, a wide discrepancy exists with the 02
values, the Monte Carlo values being lower by a factor nearly 10 for a
photon of wavelength 10 A. Schlegel attributes this discrepancy as due
to the wide difference in the 02 and O densities in the height range con-
sidered. However, even at 120 km, where the 02 and O densities do not
differ very much, Monte Carlo values for 02 are about a factor of two less
than the corresponding values given by Ohshio et al, for the wavelength
interval 10-15 A. The implications of this study on the ionization
rates near 100 km have not been assessed so far. Since the contribution
by X-rays is only a fraction of the total ionization at altitudes of
interest it is expected that a reduction in the 02+ yield will not cause
any‘serious error in the present calculations. In view of this, and also
for ease in computations, ionization yields tabulated by Chshio et al.
[1966] have been adopted in this study.

In the present study, X-ray fluxes as measured on July 24, 1968
were used, so that the results could be compared with the electron density
profiles measured on that day. Figure 4.6 shows‘the fluxes in the bands
0.5-3 &, 1-8 &, and 8-20 K.as measured with instruments on board the
SOLRAD 9 satellite. T.e two rocket measurements at x = 18° and y = 60° were

taken at 1700 UT and 2136 UT, respectively. It is seen from the recordings
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Figure 4.6 X-ray fluxes in the bands 0.5+3 &, 1-8 R, and 8-20 & as measured
on July 24, 1968 with instruments on board SOLRAD 9 satellite
(courtesy NOAA Environmental Data Service).
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that these times are free of any solar flares or any other enhancements.
Further, the X-ray flux in the 1-8 A band appears to be identical at both
instances, being equal to 0.7 millierg t:m'2 sec“l. The flux in the

0.5-3 & band on this day, however, is below the threshold value for detec-
tion by the instruments, i.e., below 0.01 millierg cm—2 sec"l. Hence, the
calculations were done using two values for this quantity; an upper limit
of 1 x 107> erg em? sec™! and a lower limit of 0.5 x 107> erg em? sec?.
These two values correspond to flux ratios of 70 and 140, respectively.
The spectra corresponding to these flux ratios and 1-8 R flux of 0.7
millierg em2 sec™! are also shown in Figure 4.5.

It should also be noted here that the above satellite measured
fluxes could be in error to a considerable extent. One source of such
error is the assumption of a gray-body spectrum for the solar spectrum
in the data processing procedure. According to Kreplin [1970], the
published fluxes deduced on the basis of this assumption are unlikely to
differ by more than a factor of 10 from the absolute flux values for
wavelengths below 20 A. The other source of error is due to the uncer-
tainty in the effective passband of the detector windows. Recently,
Wende [1971] investigated the consistency between data from several
experiments measuring X-ray £luxes below 20 & and found that both the
passbands and the conversion factors of the relevant bands have to be
modified in order to bring agreement among different sets of results.
Unfortunately, these corrections have been carried out for the early
experiments only, and the extent of this error as applicable to SOLARD 9
data cammot be assessed.

The production rates q(1-10 &) calculated using the above mentioned

spectral distributions for solar zenith angles 18° and 60° are illustrated

in Fipure 4.7.
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4,2,2 30 - 10 & X~rays. This region of the spectrum, unlike the
shorter wavelength region, is composed mostly of emission lines as evi-
denced by both theory [Mandel'stam, 1965] and observations [Manson,

1967, 1972; Freeman and Jones, 1970]. These wavelengths come from

Tt T

regions of the corona having low temperatures and are not subject to as
high a variability as the shorter wavelengths. Most of the emission . :f
lines between 16 and 100 & are due to transitions occurring in heavy
elements such as oxygen, carbon, sulphur, and other heavy elements
including silicon, magnesium and iron. Of these lines, a major contri- i
bution comes from the C IV line at 33.7 & as it lies just above the
critical wavelength }K. Since the absorption cross section of this L
line is low, it is capable of penetrating down to heights close to 90 km.
In order to compute the ion-pair production rates due to these lines, it
is necessary to find out the distribution of energy among the different
lines.

Manson [1972], using a rocket-borne telemetering monochromator,
obtained a highly resolved spectrum between 33 and 128 R on August 8,

1967. The 10.7 cm flux on this day was 143 units. The 33.7 & line

Gt s e T e e e ey 0T RS
I T . I N .

intensity measured was not more than 2 x 1073 erg em? secl. Using

parachute-recovered photographic plates, Freeman and Jones [1970]
obtained well resolved spectra on two days. The measurement on March 20,
1968 (10.7 em flux = 131 units) which extended from 14 & to about 400 A
recorded an intensity of 9 millierg en? sec™! for the 33.7 & line. The
other measurement on November 20, 1969 (10.7 cm flux = 189 units) which

extended from 15 R to 76 R, recorded an intensity of 7 millierg em™2

sec™! for the 33.7 & line. On the other hand, the flux intensities of
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33.7 R measured by Argo et al. [1970] using a rocket-borne spectrometer
under a variety of solar conditions during the period 1964-1968 gave
values lying in the range 2 x 10'2 - 06 X 10'2 erg cm2 sec These
values are several factors larger than the values of Freeman and Jones,
and more than an order of magnitude larger compared to Manson's value.
Since Manson's spectrum begins only at 33 &, one could argue that any
end-errors could have affected his measurement at 33.7 R, though he claims
an accuracy of * 25% over the entire range of measurements. These measure-
ments also show that the variability of the other iines between these dif-
ferent days is much less than that of the 33.7 & line, and that this line
could be specially sensitive to changes in the solar activity [Manson,
1972].

Broad-band measurements in the range 44-60 R are alsc made regu-
larly by satellite-borne detectors. However, in view of the many assump-
tions made in the processing of data, these measurements can only be
taken as an index of solar activity rather than as absolute flux values
{Kreplin, 1970]. Further, it has been recently reported that the 44-

60 R detector is also sensitive to radiation in the 8-20 R band, and
that the published data could be in error by several factors [Kreplin
et al., 1973]1. Unfortunately, of the days for which rocket wmeasurements
are available, 44-60 R flux data are available only one day, viz.
August 8, 1967. Hence a proper comparison between the rocket-measured
and the satellite-measured flux cannot be made.

The 44-60 R flux measured on August 8, 1967 is 0.306 erg em™2 sec'l,
while that measured on July 24, 1968 is 0.28 erg c:m'2 sec'l. Considering

the uncertainties involved, these two measurements show identical condi-

tions as far as soft X-ray emissions are concerned. Hence, the resolved
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spectrum obtained on August 8, 1967 by Manson [1972] can be assumed to
be applicable on July 24, 1968 as well, Therefore, in this study Manson's
data are adopted for solar flux above 30 B except for the 33.7 & line.
For this line a flux of 7 millierg c'.m-z se'r:_1 has been adopted, consider-
ing the variability of the measured data.

X-rays beyond about 50 R are significant in the ionization of heights
above 100 km only and not really important in D-region studies. Neverthe-
less, as mentioned in Section 4.1.3, contributions from all wavelengths
have been included in order to calculate the ion-pair production rates
up to 120 km. The results of these calculations are shown in Figure 4.8
for the solar zenith angles 18° and 60°.

4.3 High-Energetic Particles

The sources included in this section are the precipitating electrons
originating from the outer radiation belts surrounding the earth, and the
galactic cosmic rays. Both of these sources are considered to have flux
incident on the atmosphere independent of the solar zenith angle, though
observations indicate the existence of a small day/night asymmetry.

4,3.1 Precipitating electrons. The effect of these electrons in
the earth's atmosphere is most prominent in the polar regions. The ioni-
zation produced by them in these regions has been investigated in detail
by several workers [Rees, 1963]. It was not until satellite detectors
began to monitor these particles over the earth's atmosphere that they
were recognized as a potential source of ionization in the D region.

The ion-pair production by precipitating electrons is naturally a function
of their initial energies and the energy deposition rate in the atmosphere.

From laboratory measurements of energy-range relationship, it is found
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that only the electrons with energies greater than about 40 keV could
penetrate to D-region altitudes, and energies over 200 keV are required
for penetration down to 70 km.

The energy deposition rates of these electrons have been worked out
by Rees [1963] for different distributions of the flux over the hemisphere.
Using these results, the calculation of the ion-pair production rate can
be easily determined. The ion-pair prrduction rate due to monoenergetic

electrons of unit flux is given by

E. [X1,; (2}
ceemy - Sin 2egrm L%l © (4.16)

o Z a; [X]‘L (®)

where
Eén is the initial energy of the incident electron,
3 is the energy required to produce one eleciron-ion
pair in air (35 eV),
R is the maximum penetration depth of the electron,
8 is the penetration depth at an altitude z,
r is the maximum range of the electrons,
A is the normalized energy deposition function, and

a; is the ionization efficiency of the ith constituent.
Rees [1963] calculated the normalized energy deposition function for an
isotropic distribution of the incident electrons over the pitch angles

from 0° to 80°, His results can be expressed by the empirical formulas.

\(S/R) = 1.1 (§/R)° - 3.3 (S/B) + 2.2, 1> 3/R > 0.1

)]

(4.17)

1.9 S/R < 0.1
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The penetration depth R of an electron with initial energy E is
given by the formula
R=4.57x 1007 (4.18)
in
where £, is in keV and £ is in g.cm—z. When the incident electrons
have a distribution of energy, the corresponding production rates are
obtained by integrating over the desired energy range.
Usually, the detectors measuring the precipitating electrons
respond to the total flux above a certain minimum threshold energy Eﬁin'
Therefore, the energy spectrum is expressed in terms of this total flux
No(Eﬁin)' Measurements carried out in the past [Potemra and Zmuda,
19707 have shown that the total flux of precipitating electrons can be
expressed hy a power exponential form
- Y
NGE) = NGBy ) (BE ) (4.19)
where
N(>E) 1is the flux of electrons with energies greater than F, and
¥ is a constant representing the hardness of the spectrum.
It is also sometimes possible to express N(>E) by a simple exponen-
tial form
E-Epin
= (o 2
N(>E) (>Emin) exp( Ea ) (4.20)

where EO is the e-folding energy, a parameter representing the hardness

of the spectrum.
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Because of the scarcity of the observations and the wide scatter of
+1e available data, it is difficult to determine unambiguously the correct
form of a general expression for the precipitating electron spectrum that
can be applied in instances such as ionospheric calculations. In general,
the exponential spectrum shows smaller fluxes of electrons with higher
energies. In the present calculations, a power exponential spectrum is
preferred as it would give higher ionization rates at lower altitudes
than a simple exponential spectrum with the same No. According to
0'Brier [1964], satellite measurements of the average flux of precipi-
tating electrons with energies greater than 40 keV were f.ound to vary

3 -1

from 102 to 10° electrons crn'2 sec ster'1 at midlati-~udes. On the

other hand, rocket measurements of midlatitude electron precipitation
show low fluxes in the range 4-7 particles en? sec™! ster™! for
electrons with energies greater than 40 keV under magnetic quiet condi-
tions [0'Brien et al., 1965; Gough and (Collin, 1973]. Potemra and
Zmuda [1970]1 who compared the D-region nighttime ionization rates due
to scattered Ly-o radiation and precipitating electron found that the
jonization rates due to precipitating electrons with No(>40 keV) equal
to 300 and v = 3 just exceed those due to scattered Ly-o radiation.

In the present study, it is necessary to look for an 02+ source
between 70 and 80 km that would parcly account for the cluster ion forma-
tion. In order to investigate the precipitating electrons as a potential
source of 02+ jons in this height range, ion-pair production rates have
been calculated using total fluxes of 300 electrons em? sec”! ster™!
and vy varying from 2 to 4. The results are shown in Figure 4.9.

4.3.2 Galactic cosmic raye. Cosmic rays penetrating down to D-

region altitudec are composed mostly of protons possessing energies
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greater than about 10 MeV, and the galactic proton flux spectrum in this
energy range peaks around 300 MeV. The proton spectrum for energies
above this value is generally expressed in a power exponential form,
similar to that given in the last section for precipitating electrons.

Velinov [1968] has worked out the ion-pair production rates due
to galactic cosmic rays using laboratory derived energy deposition func-
tions for relativistic particles, and using assumed energy distributions
for the incoming particles. He showed that this ion-pair production
rate has a geomagnetic latitude (Am) dependence of cos"GAm when the
Tigidity spectrum is of the power exponential form with the exponent
equal to 2.5, and the geomagnetic threshold of rigidity is given by
R, = 14.9 cos4hm. In order to calculate the ion-pair production rates
theoretically, one has to know correctly the energy distribution func-
tions, the composition of the incident particle flux, etc. In spite of
several years monitoring of the incident cosmic ray intensities, no
proper picture has emerged so far unich will represent these fluxes
correctly.

In view of these difficulties it has been custormary to obtain the

ion-pair production rate using the semi-empirical formula
q(GCR) = q, n(z)/no (4.21)

where
q, is the ion-pair production rate at a reference height 3,5 and
7, is the number density of air at height Z .
The values of q, are usually deduced from direct measurements.

Using balloon observations, Neker and Anderson [1962] found that the
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cosmic ray ionization rates at a low altitude increases by a factor of

10 between latitudes 0° and 60° during solar minimum, and by a factor

of five during solar maximum. Using these data Swider [1969] has tabu-
lated factors for determining q(GCR) for different latitudes and solar
epochs, from which a value of 1.0 x 10717 (secnl] is chosen as appro-
priate for the conditions under investigation. Thus, the ion-pair produ-

ction rates are given by

q(GCR) = 1.0 x 10717 n(z) (4.22)

The height distribution of this production function is illustrated
in Figure 4.9.
4.4 Discussion

The major sources responsible for the daytime ionization of the
region below 110 km are shown in Figire 4.10. According to these curves
the region between 110 and 104 km is ionized at noontime mainly by the
977 R solar line. Ly-f line ionizes the region immediately below,
between 96 and 104 km. X-rays between 30 and 40 A, consisting mainly
of the C IV line at 33.7 &, are responsible for ionizing the next layer,
between 89 and 96 km, The production function due to X-rays between 40
and 100 & is also shown here. Though it is never a dominant source at
these heights, it still makes a significant contribution between 100
and 110 km.

The ionization of nitric oxide by the solar Ly-e line becomes the
major source below 89 km, extending down to about 65 km. Below this

altitude, galactic cosmic rays become the major source, both at daytime
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and nignttime, Tonization due to precipitating electrons also become
important here, if one considers a hard spectrum for these particles.

The rest of the sources considered, viz. EUV ionization of OZ(IAg)
and the X-rays below 10 &, both remcin as minor sources at all heights
and zenith angles. For X-rays, two spectral distributions were assumed,
one with a 0-3 R flux of 1 x 107° erg en™? sec™! A"l, and the other
having half this value, Both of these spectral distributions give ioni-
zation rates below 90 km which vary in the range 3-4, corresponding
to a variation of x from 18° to 60°.

The solar zenith angle variation of the total ion-pair production L
rates in the U and lower F region are given in Figure 4.11. As men-
tioned above, the sources ionizing the region between 90 and 11C km
consist of several components. The solar zenith angle variation of

each of these sources becomes appreciable in the bottom part of the

individual production curves. This is because the optical depth factor
is near zero in the upper portion, and any change in x does not affect
the attenuation of the inclaent radiation significantly. Since each s¥
these production curves tail off at different heights, the sum total of

the variation between two x values due to all of these components remains

approximately the same, Between 18° and 60°, it is about a factor
of 1/3 in the height interval 90-100 km. At 90 km, however, the con-
tribution to this difference from the EUV ionization is only 1/10. The

remainder comes from the Ly-o ionization of NO.

The decrease of the Ly-a production function with increase in x
is very small at heights above 90 km. At 90 km it is about a factor of
1.2, 45 the optical depth factor increases below this height, the varia-

tion of the production function also increases. At 70 km, the Ly-a
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ionization rate drops by a factor of 1/15 between 18° and 60°. Since
there is no diurnal variation in [NO] between 70 ard 90 km as obtained
in the diurnal calculations, this variation is due volely to the attenua-
tion of the incident Ly-a intensity.

Below 70 km, however, the variation due to Ly-c ionization is masked
by those due to precipitating electrons and galactic cosmic rays. Since
both of these sources do not have a diurnal variation, their contribution
becomes dominant at large x angles when the Ly-o contribution drops
rapidly. Therefore, the diurnal variation exhibited by the total ion-
pair production curves at a given height in this range depends on the
relative contributions from each of these sources at that height.

In the case of the precipitating electrons, the relative contributions
they make at different heights depend on the spectral characteristics of
the incident particle flux. In this study, two spectral distributions
given by Yy = 2 and y = 3 have been used for the precipitating electron
flux. In the total ion-pair production curves shown in Figure 4.11,
the solid lines refer to the y = 2 spectral distribution while the
broken lines refer to the y = 3 spectral distribution Figure 4.9,

Since these production rates remain in the background as fixed values
without varying with yx, they control the ionization production at large
x angles and hence the reduced variation shown by the solid curves.

The ionization due to y = 3 precipitating electron, is much less
than the Ly-c ionization, even at large x angles, in the height interval
56-70 km. Hence, the broken lines show a much larger variation with
increasing x. At 70 km, this is nearly a factor of 7 corresponding to

a 18°-60° increase in x.
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Below 65 km, the galactic cosmic ray ionization becomes dominant.
Hence both sets of curves, corresponding to all values of x, converge
towards the q(GCR) values shown in Figure 4.9, Thus the total production
funétion does not exhibit a significant diurnal variation at these

altitudes.
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5. D-REGION ION CHEMISTRY

Over the past few years, many experiments have been carried out
using rocket-borne instruments to measure the D-region ion composition
as well as the electron densities. Several attempts have been made to
interpret these measurements through model calculations, but without
much success,

Some of the problems encountered in explaining the D region ion-
composition measurements have already been mentioned in Chapter 1. These
gccur mainly due to our poor understanding of the ion reaction schemes,
and also due to lack of accurate data on various factors such as reaction
rate constants and minor neutral constituent densities.

In this chapter, the D-region ion chemistry is discussed, with a
view to develop az unified model for the D-region ion distribution. In
Section 1, the previous measurements of the ion composition and electron-
density profiles are discussed. The relevant ionic reaction schemes and
the available data on reaction rate constants are described in the sub-
sequent sections.

5.1 Measurement of Charged Species Distributicwm

5.1.1 Positive-ion composition. The techniques available for
the in-situ measurement of the D region positive-ion composition are
summarized in Chapter 1. Using a quadrupole mass spectrometer d=scribed
there, Narcisi and Bailey [1965] carried out the first detailed measure-
ment of the positive-ion compesition in the D region. Contrary to the
previous theories that this portion of the ionosphere should comprise
02+ and NO [Vicolet and Aikin, 1960], these measurements revealed

for the first time that the dominant ions below about 82 km are hydrated
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clusters of the type H+-(H20)n where n = 1, 2, ... (Figure 1.4). The main
feature of these profiles is the sudden disappearance of these cluster ions
H30+ and H+-(H20)2 above soout 82 km, and the appearance of the molecular
ions 02+ and NO* above this height., Below about 75 km, ions with mass
numbers greater than 45 were also observed, while scme metal ions were also
observed in small quantities above 85 km.

The unexpected nature of these results naturally caused much specu-
lation regarding their validity. There was doubt that these measurements
represent the ambient ion distributions in the D region. The possibility
of rocket contaminants giving rise to hydrated cluster ions was always
there. Further, in the event these cluster ions are really present, the
possibility of their breaking up into small fragments during the process
of collection by the probes also cause much doubt about the validity of
these measurements. Nareisi [1966] however maintained that these clusters
H30+ and H+-(H20)2 were indeed true constituents of the D region rather
than the products of rocket contamination. According to Nareisi [1966],
the absoiute values of these measurements are correct to within a factor
of 4, while the relative values are correct to within a factor of 2. The
possibility of ion fragmentation however was mnot ruled out.

Subsequently a large number of positive-ion measurements have been
carried out as summarized by Nareisi [1970]. Many of these measurements
correspond to special events such as eclipses, PCA events at high lati-
tudes, sunrise and sunset, and not to the ambient daytime D region at mid-
latitudes. Nevertheless, almost all of these profiles exhibit the same
features mentioned above, In addition, some profiles reveal the presence
of N0+-(H20) in appreciat'e quantities in the D region. These measure-

ments are also subject to large errors, factors of two or more, particu-

larly in the cluster ion region below 80 km.
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Goldberg and Aikin [1971] measured the D region positive-ion

composition at solar zenith angles 28° and 53° near the geomagnetic
equator, They too observed similar ionic distributions with the hydrated

cluster H 0+, H+-(H20) and H+-(H20)2 dominating below about 82-83 km.

3
They estimated the errors to be within + 20% on major species, and 100%
on the minor species. However, it is their opinion that the results are s

mostly qualitative in nature. They noticed that the heavy cluster ions

tend to break up under shock effects created by the rocket trajectory,

leaving only the more stable H30+ and H+-(H20) behind.

Another feature noticed in these ion-composition profiles is the

presence of 02+ down to 65 km in appreciable quantities. On the upleg,

3

concentrations around 100 cm ° were detectea between 65 and 85 km while

on the downleg somewhat reduced values were detected. The computed @

profiles however showed steady decline of 02* concentrations with values

less than 1 ion cm > below 75 km. ;ﬁ
Positive-ion composition measurements at high latitudes were carried s
out by Johannessen and Krankowsky [1972] during daytime (x = 55°). They »

observed the cluster-molecular ion transiticn around 85 km. Unlike in

]
the previous measurements, H+-(H20)3 was found to dominate the cluster- %
ion regior in a narrow height range around 85 km. Above and below g

3

P this height range, NO* -H 0 and H+-[H 0}, were dominant among the cluster
272

2
ions, respectively. They also observed high abundance of H+-(H20)4 near

85 km. The appearance of these heavy clusters at this altitude range

was attributed to the very low temperatures prevailing there during the
time of measurements., These observations were made on both the upleg and
downleg trajectories, and in both cases the frugmentation of the heavy

clusters was considered to be small in this altitude range.
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A similar set of positive-ion composition profiles was also reported : 5
by Krankowsky et al. [1972] who carried out measurements at high latitudes . ff'
under nighttime conditions during different seasons of the year. They also : f

observed cluster ions H+-(H20)n where n = 1, 2, 3 dominating below 82-83

km, with the relative abundance of the heavier clusters increased on the
downleg trajectory. This is attributed to the reduced shock effects on
the downleg, resulting in less fragmentation of the heavier clusters on f
this trajectory. They also observed increased amounts of N0+-H20 and
H+-(H20)4 in a flight made on a summer night. This again is attributed
to the very low temperatues which prevail in the high latitude summer ' »
nights affecting the reaction rates so as to increase the yield of these
cluster ions.

More recently, Johannessen and Krankowsky [1974] measured the
daytime positive-ion composition at ¢ mid-latitude station during summer. §
Their results are also similar to those obtained by previous workers.

The molecular ion to cluster ion transition was observed at 85 km.

N0+-H20 ions were detected in appreciable quantities between 85 and

95 km, A distinct feature observed is the high abundance of metal ions : E
above 85 km.

In spite of the many positive-ion measurements that have been
carried out in the recent past, only » very few have been reported as
relating to ambient conditions prevailing in the mid-latitude, daytime,
summer D region. Fortunately, when the measurements are made under quiet
conditiuns, the positive-ion comnposition measurements made near the equator
and at high latitudes do not differ significantly, except that the relative
abundance of the heavier ciusters tends tc increase around the high-

latitude mesopause.
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5.1.2 Negative-ion measurements., The model calculations that have
been carried out in the past to determine the negative-ion distribution
in the daytime D region have shown that negative ions become important
only below about 75 km [Reid, 1970; Thomas et al., 1973]. However, the
high ambient pressures prevailing in this region and the low ionization
level, make it difficult to carry out in-situ measurements of the day-
time negative-ion composition. On the other hand, the negative ion
density above 75 km increases in the nighttime due to attachment of the
free electrons to the neutral particles, making it possible to carry out
rocket measurements in this altitude range.

Measurements made by Nareisi et al. [1971] at high latitudes
during nighttime under quiescent conditions indicated the presence of
molecular ions 02' and C1~, and two others which were identified as L93_
and NOS— between 78 and 80 km. Above 80 km, heavy clustcrs of the type
COS"-HZO and N03"-H20 were also observed. A second flight made under
similar conditions showed the presence of heavier ions above 80 km. No
records were obtained below 75 km in both flights.

Arrc .d et al. [1971] also measured the nighttime negative-ion
composition at a high latitude station, but under enhanced ionization
during a weak aurora., Their results showed the presence of CO, , Cl ,
HCOS- and N03- between 72 and 77 km. They did not detect any hydrated
clusters, though many of the other ions observed were of the same type
as observed by Narcisil et al. [1971].

The only daytime negative-ion composition results available are those
obtained during a PC\ event at high latitudes, and during totality of an

eclipse at mid-latitudes [Naveisi et al., 1972a, 1972b]. The PCA event
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measurements showed the presence of the molecular ions 02_, NOS- and
hydrated clusters of the type NO, «(H,0} with n = 0-5 dominated the
D region below 88 km.

Here again, the problem of comstructing a suitablé experimental D
region negative-ion distribution representing the daytime quiet conditions
at mid-latitudes is encountered. Most of the nighttime measurements give
ion densities above 75 km, and are therefore not very helpful in con-
structing a d=ytime model for the mid and lower D regions. The two
daytime measurements give values below 70 km, but these have been obtained
under abnormal conditions. It is evident from these measurements that
hydrated clusters NOS-'(HZO)n are present in the daytime D region.

It was noted that in many experiments the results are expressed in
terms of the count rate only, rather than in terms of the ion densities.
This is because the conversion of the count rate to absolute ion densi-
ties poses many problems. However, dvnold et al. [1971], expressed é
their results in terms of negative ion densities making use of the
simultaneous measurements of the total positive-ion density and electron
density.

5.1.3 Electron-density measurements. Some methods available for
the measurement of D region electron densities are described in Chapter 1.
These methods have been recently reviewed by Sechrist {1974}, who con- d
cludes that the electron-density profiles derived from the rocket measure-
ments of differential absorption, Faraday rotation and dc probe current
have the greatest accuracy and the best height resolution. In fact,
among various im-situ measurements of D-region parameters, accurate
measurements are possible only in the case of electron densities

[Meehtly, 1974].
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An extensive series of D region electron-density profiles have
been obtained using the above technique by Mechtly et al. [1972a] since
1967. Based on these measurements Mechtly et al. [1972a] have prepared
two reference profiles for the mid-latitude daytime (x = 60°) I-region
electron densities, corresponding to solar maximum and solar minimum
periods.

In order to study the diurnal variation of the electron densities
in the D region, a set of four profiles has been obtained on July 24,
1968, at solar-zenith angles 90°, 84°, 18° (noon) and 60° (Figure 1.3).
As mentioned before, the present study was undertaken with a view to
interpret the diurnal variation of the D-region ionization, as ex-
hibited by these electron-density profiles, in particular those cor-
responding to 18° and 60° solar zenith angles. Some of the main
features of these two profiles are summarized below.

(a) Between 90 and 100 km, the two profiles have approximately the
same gradient, with the values differing by a constant factor

of about 3.

(b) Betwgen 85 and 90 km, the profiles have sharp gradients, particu-
larly the noon profiic whose number density increases from about

4 3 .
, i.e. more than an order

1.8 x 10° em™> to about 2.1 x 107 em”
of magnitude. At 85 km, the difference is only a factor of 1.5.

(¢) The profiles have a slow rise between 75 and 85 km, with the
difference increasing to a factor nearly 3 at 75 km. The noon
profile values increase from 1.2 x 10° cﬁﬂs to about 1.8 x 10°
en® in this height interval.

(d) The difference between the two profiles decreases below 75 km,

and around 66 km, they cross over. Below this level, the ncon

o)
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profile has a very sharp gradient with the values dropping

from about 150 cm"s 5

at 66 km to nearly 15 cm ° at 65 km.

(ej Below 65 km, the drop in the afternoon profile is rather gradual,
while the noon profile exhibits a slow variation. This dif-
ference in the height variations makes them to cross again just
below 60 km.

The X-ray measurements taken by the SOLRAD 9 satellite on this day

did not show any signs of solar flares (Figure 4.6) while the 10.7 em flux

recorded on this day was 148 units. This indicates that the measure-

ments were taken on an undisturbed day during a high solar activity
period.

5.2 Ionice-Reaction Schemes
5.2.1 Positive-ion reactions. Prior to detection of the hydrated

cluster ions in the lower D region, the entire D region was thought to

comprise only 02+ and NO* ions [Nicolet and Aikin, 1960}. As de-
scribed in Chapter 4, the X-rays and EUV radiation below 1027 & ionize

02 while X-rays and EUV radiation below 911 & as well as energetic

particles ionize both 02 and N2. N2+ thus formed quickly undeirgoes a

+

charge transfer reaction to yield 02+. Therefore, the abundance of N2

in the D region during undisturbed periods becomes negligible. The
02+ formed in this manner yields NO* through direct the charge transfer

reaction

o; +No + Not o+ 0,

and also through the charge rearrangement reaction

02++N > No¥ + 0
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Of course, NO" is also produced directly through Ly-o ionization
of NO, In addition, NO' is produced from N2+ through the charge re-

arrangement reaction

' N2+ +0 =+ NO+ + N

and through the charge transfer reaction

+ +
N2 + NO -+ NO + N2

The fivst of these two reactioms is not so important as far as NO'
production is concerned but it plays a significant role in determining
the yield of atomic nitrogen, both the ground state N(4S) and the
metastable N(ZD) species.

Above 100 km the production of 0" is also important. This ion
yields NO' and 02+ through reactions with N2 and 02, respéctively.
Bnlike in the case of the molecular ions, 0" does not undergo recombina-
tion with electrons. . Its loss rate is determined solely by these ion-
neutral reactions.

This scheme of positive-ion reactions, however, does not take
into ac;oﬁnt the presence of the hydrated cluster ions in the mid and
lower portions of the D region. The present reaction schemes which

include the cluster ions are based on the scheme suggested by Fehsenfeld

and Ferguson [1969],

Accoriing to this scheme, the clustering reaction chain starts with

+ . . . s .
0., as the precursor ion with the 3-body association reaction

2

+ +
O2 + 02 + M = 04 + M .
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+

Though it appeared to be successful initially, it failed when the 0,

production rates due to 02(1Ag) ionization were reduced as shown by

Huffman et al. [1971]. It was later shown that the yielj of the hydrated

cluster ion 02+-H20 through the reaction

+ +
04 + H20 + 0, *H,0+ O

2 2 2

is further reduced due to the reaction

+ + E -
0,/ +0 » 0, +0, |, : |

. . 4+ . +
which reconverts 04 into 02 .

The rate constant for this reaction measured and reported by
Fehsenfeld and Ferguson [1972b] indicates that if the [0]/[H20] ratio is

sufficiently high, it can arrest the formation of the hydrated cluster

ions. The introduction of this intercepting or short-circuiting reaction
leads to the hypothesis that the sudden disappearance of the cluster ion

population above the 82-85 km level could be caused by the sharp increase

in the O(SP) concentration observed in this height range [Ferguson, 1971].

Following the work of Lineberger and Puckett [1969), Ferguson

[197i] suggested a new series of reactions where the water molecules

clustered to NO* through direct hydration

+ +
NO"*(H,0),, + H0 + M+ N« (H,0) M

o+
n+l

n=20,1, 2, .....

This direct hydration scheme, however, does not convert the NO¥ to its
hydrate fast enough. An alternate path, faster than this, was found

by Dunkin et al. [1971]. According to them, the association reaction
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NO Co, + M = N0+-C02 + M

is followed by the fast switching reaction

No”’-co2 + H.O + NO +H

2 0+ €0 .

T

Dunkin et al. [1971] demonstrated the possibility of a similar
association reaction involving NZ’ but he could measure only an upper
limic for the rate constant which was found to be very low. However,
Heimerl et al. [1972] later established that its rate constant is much Zg
higher, and that it could form a faster path fer the production of :ﬂ
NO+-COZ, according to

4+ +
NO + N2 +M -+ NO 'Nz + M

NOTeN. + CO

)
2 5 7 NO -CO2 + N

2

The NO+-C02 thus - formed can undergo hydration to form N0+-H20
shown above. |

The reactioﬁs forming the multiple clusters of N0+-H20 beginning
from this ion were given by ILineberger and Pucket [1969]. However,

according to Heimerl [Thomas, 1974] the association of N0+-H20

;
3
;
!
'4

with N2 and subsequent switching with H,0 could form a more efficient

mechanism to produce the multiple clusters of NO+-H20. The reaction

sequence here is

+ +
NO °H20 + N2 + M = NO -HZO'N2 + M

i
i
L ] i
.

NO +H.O + N

+
) , * H0 > NO+(H)0), + N
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Unfortunately, no reaction rate data are available for these
reactions, and hence are not included in this study.

According to Lineberger and Puckett [1969], the multiple clusters
N0+-(H20)n with »n > 3, can get converted to H+(H20)n through the binary

reactions
NO¥ + (1,0 H.0 -~ H «(H.,0) + HNO
0 +(Hy0) + H0 (H,0),, 2
n>3 .

This conversion reaction does not take place for n < 3 in view
. . + .
of reaction energetics. Therefore, the hydration of NO ultimately

leads to the products

+ + + + +
NG -+ NO -COZ + NO -HZO + NO -(HZO)2 + H '(HZO)S

and the higher hydronium clusters. The absence of both H30+ and
H+-(H20]2 in this sequence creates a problem, because these are the

two observed ions which dominate the middle portion of the D region where
the primary ionization source is NO.

To avoid this difficulty, Burke [1970] suggested the reactions

N0+-H20 +H > H+-H20 + NO

+ : +
NO -(H20)2 +H > H -(Hzt))?J + NO .

Laboratory measurements of the rate constant of the first of these

11

two reactions gave values less than 1 x 10 em® sec ! [Ferguson, 1971]

which is too slow to make this path acceptable. ;
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It was shown recently by Heimerl et al. [1972] that a fast path
for the conversion of NO*'HZO into the corresponding hydronium ions

could be achieved thorugh the reactions.

NO'-H.O + OH - H+-H20 + NO,

2
NO' *HO, + HO, - H *H,0 + NO
2 2 2 3 ¢ "
They showed that when established values of OH and HO2 are used, .:

the rate constants of these two reactions have to be about 5 x 1[)”9
cm3 sec:'1 in order to become effective in this conversion process.
In this study the value adopted for the rate constants of both reactions

1. Once H+-H20 is formed Heimerl et al. [1972]

is 1 x 1070 e sec”
suggested that its multiple hydrates are formed more rapidly through

association with N2 and subsequent switching with H20 rather than through

direct clustering, as mentioned earlier. With assumed data on reaction ;Q

rates, this reaction path has been included in our study.

The complete positive-ion reaction scheme adopted in this study,

along with the reaction rate constants used is given in Table 5.1. The
more important reaction paths are shown in Figure 5.1.

5.2.2 Negative-ion reactions. The three-body attachment of a

free electron to a neutral oxygen molecule produces a negative iom.

The 02_ ion so formed has a relatively low electron affinity. As a
result a series of charge transfer and charge rearrangement reactions
take place giving rise to a complex reaction scheme. The various nega-
tive ions thus formed include 03 5 04 R 003 R CO4 s NO2 R NO3 and a ; fﬁ%

large number of hydrated cluster ions. Associative detachment to
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Table 5.1

Positive ion reactions.

Re;ction Reaction Rate Constant
0. Ti -1*
cm sec
+ + 4
Ry01 0" # N, — NO* + N('S) 1.0(~12) (300/T)**
Ferguson et al. [1955]
Ry09 o' + 0, —> oz" + 0 2.2(-11) (300/T)
Ferguson et al. [1969]
R, o3 N,* + 0 X 0"+ N(%D) 1.4(-10)
(1-1) Fehsenfeld et al. [1970]
—5no* + N(Ys)
+ +
R104 N2 + 02 — O2 * N2 4.7(-11) (300/T)
Ferguson et al. [1969]
+ + .
RlOS N2 + 02 —_ 02 + N2 3.3(~49)
Fehsenfeld et al. [1970]
Ry06 02“" + N — NO" + 0O 1.8(-10)
Ferguson [1967]
R107 0," + No — No" + 0, 6.3(-10)
Fehsenfeld et al. [1970]
Rigg Oy *+ 0, + M—> 0,0, +M 2.4(-30) (300/T)°
Good et al. [1970b]
R 00 0," + H0 + M —> 0, H,0 + M 2.6(-28) (300/T) >
Fehsenfeld et al. [1971a]
+ +
R 0, 0, +HO0O—0, HO0+ 0 2.2(~-9)
110 2 2 2 2 2 2 Fehsenfeld et al. [1971a]
Ri1g 0,"+0, + 0 —= 0," + 0, 3.0(-10) .
Fehsenfeld and Férguson
[1972b]
+ +
RIIZ 02 °H20 + H20 — H30 «0OH + 02 1.9(-9)

Fehsenfeld et al. [1971a]}

* n = 3 for binary reactions, and 6 for 3-body reactions.
**Read a(-n) as a x 1071,
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(Table 5.1 continued)

! + :
1‘ R 0, *H.O0+ H,O — H,0 + OQH + O 0.3(-9) e ]
s "2 2 2 3 2 Fehsenfeld et al. [1971a] .
Rya H30+-0H + Hy0 —> Hzo*-Hzo + OH 3.2(-9)
Fehsenfeld et al. [1971a]
Rygs Hg0" + Hy0 + M —» H,0"H,0 + M 3.46(-27) (300/T) 2
Good et al. [1970a, 1970b]
Ry16 He0" + Ny + M —> HO" N, + M 1.4(-30) (300/T)>
= Heimerl et al. [1972]
+ +
R H,0 *N, + H,0 — H,0 °*H,J + N 1.0(-9)
117 3 2 2 5 2 2 Heimerl et al. [1972]
Ry1q HOMH,0 + H0 + M —> HOTE0), + M 2.24(-27) (300/T)
Good et al. [1970a, 1970b] |
Ryjg  Hg0F(H,0), + H,0 + M —+ HO0T(H,0), + M 2,32(-29) (300/T) 2
: Good et al. [1970a, 1970b]
H % 2
R H,0%(H,0), + HO + M — H,0°(H,0}, + M 0.9(-27) (300/T) .
120 3 2773 2 5 274 Good et al. [1970a] ~
+ E a
R H 0 (H,0), + M —> HOH 0 + H.O+ M 7.0(-26) ;
121 50 T2z 522 Good et al. [1970b] 5 %
t ‘ |
; + + ‘
R H,0%(H,0), + M — H, 0 (H,0), + H.O + M 7.0(-18)
122 73 TS 5 T2 2 Good et al. [1970b]
Ry,q NO™ + N, + M —— NO¥ N + i 3.5(-31) (300/T)°
‘ Heimerl et al. [1972] 3
| Ryy NO* + CO, + M~ NO*+CO, + M 2.4(-29) (200/T)% ;
i : Dunkin et al. [1971] _
z
; Ryps NO* + Hy0 + M —> NOT-H,0 + M 1.29(-28) (300/T) 2 3
‘ , Hovard et al. [1971] e
P * + ; '
! R NO* N, + CO, —> NO+CO., + N 1.0¢-9) :
) 126 2 2 2 2 Heimerl et al. [1972] :
2 + + ' .
; R NO™ N, + H,0 — NOT+H.0 + N 1.0(-9) it
% 127 i 2 2z 2 Heimerl et al. |1572]
E + + o
Ry,g NO*+C0, + H,0 —» NO*H,0 + CO, 1.0(-9) ]
i Dunkin et al. [1971] :?
i ‘ A
i R, 5 NO™*H,0 + H0 + M ~— NO*+(H,0), + M 1.12(-27) (300/T)° S
I Howard et al. [1971] §
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(Table 5.1 continued)

Ry20

Ry31

Ry32

Ri33

Ri34

Ry35

136

+
NO'[H20)2 + H

NO* (H,0)
NO"-“(HZO)3
No?(HZOJS
NO"+H,0 +
NO"+H,0 +

No*-uzo +

2

0+ M— NO*-'(HZO)S + M

+ M —> NO*H.O + H,0 + M

* M —>Nof(H20)2 + H

+ Hy0 —> H 0% (H,0), + HNO

2

H — H30+ + NO

OH — H30+ + NO

HO

2

———.).H

3

2

s
0 + NO3

2

2

0+ M

2

1.30(-27) (300/T) %
Howard ct al. [1971]

1,5(-14)
Dunkin et al. [1971]

1.3(~12)
Dunkin et al. [1971]

7.0(-11)
Howard et al. [1971]

5.0 (~12)
Estimate

1.0(-9)
Heimerl et al. [1972]

1.0(-9)
Heimerl et al. [1972]

191
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Figure 5.1 More important positive-ion reactinn paths in the D region.
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neutrals, mutual recombination with positive ions and photodetachment
during the daytime are the main loss processes of these negative ions.
The development of the D region negative-ion chemistry has been
based largely on the laboratory measurements of the reaction rate
constants and model calculations, and not so much on actual ion composi-
tion measurements.,
The reaction chain from 02_ takes place in two different paths.
In one, O,

3

04- is formed through a 3-body association reaction with 0,. In the

is formed through charge transfer to 03, and in the other,

first path, 03- vields C03_ through a charge rearrangement reaction
with CO,, which in turn yields Noz' through a similar reaction with NO.
In the other path, charge rearrangement reactions with the same con-
stituents yield 004' and NOS"'successively.

While the above sequences gives the main reaction paths, 2 large
number of reactions involving atomic oxygen and other minor constituents
also take place causing the negative-ion reaction scheme to be a complex
one. The present reaction scheme which includes these molecular negative
ions was developed by Reid [1970]. Among the more important secondary
reactions are those involving O(SP). These cause reformation of 02-
from O;  and CO, , conversion of 0, to 03" and 604" to CO; , respec-
fively. Hence, the negative-ion distribution denends te a large extent
on the relative abundance of O3 and O,

The complete reaction scheme used in this study is shown in
Tabie 5.2.

Among these molecular ions, the high electron affinity of NOS_

§
makes it a terminal ion. The possible mechanisms of its destruction

i

ST e e T _.._.‘.W N
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Table 5.2

Negative-ion reactions.

Reaction Reaction Rate Constant ; 1
No. _ n -1%
cm sec i 7
Rycy e+ 0,+ 0y — 0,7 +0, 1.4(-29) (300/T)e” 1*2/RT #x
Prelps [1969]
R e+ 0,+N, —0, +N 1,0(~31)
152 2 2 2 2 Phelps [1969] .
R 0" +0-—0, + e 2.5(-10) .
153 2 5 Phelps [1969]
- 1 : =
R 0, +0,(CA) — 20, +e 2.0(-10) j o
154 2 2" g 2 Phelps [1969] , -
i R 0, +0,—+0_ +0 3.0(-10)
; 155 2 5 3 z Fehsenfeld et al. [1967]
| R 0,” + NO, — NO.,” + O 8.0(-10)
156 2 2 2 2 Fehsenfeld and Ferguson 5
[1968] §
R 0, +0—0, +0 1.0(~10)
157 5 2 2 Lelevier and Branscomb
[1968]
¢ - -
Ry - 0, + €0, —+CO, +0 4.0(-10)
[ 138 5 2 5 2 Fehsenfeld et al. [1967] g
5 - . ]
R, 0, + N0 — NO.” + 0 1.0(-11) 3
F Fehsenfeld et al. [1967]
i R co, +0—=0, +CO 8.0(-11) :
b 160 3 2 2 Fehsenfeld et al. [1967] ; _&‘
3 R Co,” + NO — NO,,” + CO 9.0(-12) T
: 161 5 2 2 Fehsenfeld et al. [167]
R €0, + NO, — NO,” + CO 8.0(~11)
162 3 2 5 2 . Ferguson [1969]
- - 1.8(-11)
Rig3 NO, 05 — NOg *+ 0, Fehsenfeld and Ferguson
[1968] .
“n=3 for binary reactions. E
“*Read a(-n") as a x 1077, i




I DA S T s e T T ST

TR T e N

b i e e A e

e s o s A4 A o e Ao 21

(Table 5.2 continued)

NO.,” + H— OH + NO

2

R

164

165
166 4- 2
167 4‘ 2

168 4_

169

170 4 3 2

3.0(-10)

195

Fehsenfeld and Ferguson

[1972a]

1.0(-28)
Estimate

4,0(-10)
Fehsenfeld et al.

4.3(-10)
Fehsenfeld et al.

2.5(-10)
Fehsenfeld et al.

1,5(-10)
Fehsenfeld et al.

4.8(-11)
Fehsenfeld et al.

[1969]
[1969]
[1969]
[1969]

[1969]
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are the mutual neutralization through reactions with positive ions, and
photodetachment during daytime. This latter process yields free electrons.
Therefore, the relative abundance of the D region electrons and negative
ions during the daytime is governed to a large extent by the photodetach-

ment of the terminal ions [Thomas et al., 1973].

Recent laboratory work and daytime negative-ion composition measure-
ments have indicated that the D region negative molecular ions can undergo

hydration reactions forming water cluster ions such as 02'-H20, 03—-H20,

-H20, NO2 -H20 and NO3 -H2

Fortunately, the rate constants for the non-terminal ions indicate

co 0, and their multiple hydrates.

3

that the hydration processes are slower than the charge transfer and
charge rearrangement reactions mentioned above. Even for the terminal

ion NOS", the losses due to hydration become important only if the

photodetachment rate is less than about 10"3 sec:_1 [Thomas et al.,
1973].

In the event the photodetachment rate of N03" is indeed less than

| 10_3 sec"l, the negative terminal ion will be either N03-°H20 ¥

or one of its multiple clusters. The abundance of this terminal ion

| will then be determined by its recombination rate with the positive

ions and its photodetachment rate. None of these quantities is presently

known. TIf one is to include these ions in the reaction scheme, appro- i
priate values for these quantities have to be assumed. Since this is
true for NOS' also, it makes little difference whether the terminal
ion used is ND3 or NO3 -(Hzo)n with n > 1,

I T et £ AT e e e

There is, however, a difference between the two types of ioms,

which could affect the electron-density distribution. That is the ; ;i

3
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mutual neutralization coefficient with the positive ions. Considering
the fact that the positive cluster ions have recombination coefficients
of the positive molecular ioms ané ‘that one could expect the mutual
neutralization rates of positive cluster ions with either the negative
molecular ions or the negative cluster ions, the hydrated cluster ions
are totally excluded from the present negative~ion reaction scheme.

The more important reaction paths in the adopted reaction scheme
are shown in Figure 5.2,
5.3 Reaction Rate Comstants

The accuracy of model calculations depends largely on the availa-
bility of correct reaction rate constants. Unfortunately, the measure-
ments of rate constants in laboratories are subject to various sources
of erfor, and the best measurements are accurate only to within * 30%.
This is true for the mzin products, and for secondaries the errors are
much larger, sometimes as much as a factor of 2.

The rate constants of the molecular ion reactions shown in
Table 5.1 are those measured by Ferguson et al. [1969] gnd Fehsenfeld
et al. [1970]. The accuracy of most of these values have been estimated
to be + 3 . The only uncertainty is the ratio of the N(ZD)/N(4S)
yield in the reaction between N2+ and 0, The values used in this study
are 0.75.

The rate constants for the reactions leading to H+(H201n from 02+
are taken from the results of Fehsenfeld et al. [1971a] and Good et al.
[1970a, b]. These values are in good agreement with the original values

measured by Fehsenfeld and Ferguson [1969].
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The reactions leading to the production of N0+'(H20)n withn =1, 2,
3, and the subsequent conversion to H+(H20)3 were investigated by

Fehsenfeld et al., [1971b] and Howard et al. [1971]. The measurement

of the relevant rate constants was carried out by both groups at 295 K. i
For the third body, both groupé used He, Ar, and Hz, but the latter ? j§

: T
group used 02 in addition. Considering the possible errors involved, % fﬁ
the agreement between the corresponding values obtained by both groups é %
is very good. The values used in this study are those of Howard et al. !

[1971]. é S

The rate constants of the 3-body reactions generally vary with the
type of the third body. A close examination of the results éf the above
workers shows that N2 is more efficient than 02 as a third bLody, the
ratio of the corresponding rate constants being 3:2 [Fehsenfeld et al.,
1971a; Howard et al., 1971]. 1t is also noted that the efficiency of He
as a third body is rather poor, while Ar gives rate constants which are
close to corresponding values obtained with 02. Measurements with NO

show that its efficiency is similar to that of N2 in the 3-body reactions

[Howard et al., 1971]. In view of the wide difference in the efficien- E %;

cies of N2 and 02 as the third body, a weighted average was taken for : 5

tabulating the values in Table 5.1, wherever values with either N2 or

02 are available. In other instances, the available values were adopted
without any correction for the third-body efficiency.
The rate constants of the 3-body reactions are also known to depend

on the temperature, with the values increasing with decrease of the

Bl Ry Fee i IR R A R P

temperature. Ferguson [1971] estimated the rate constant of the 02+

to 02+-02 clustering reaction to increase from 2.8 x 10'30 cm3 _'=,er:-1

1
(o
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to 1 x 107 sz sec"1 between 300 K and D region temperatures.

Dunkin et al. [1971] found thatv the rate constant of the NO' to

NO*-CO clustering reaction to increase by a factor of 2.5 between

2
the temperatures 300 K and 200 K. On the basis of these observations
the temperature variation of the 3-body reaction: may be expressed as
(T/BOO)_n where »n > 2. However, taking a more conservative figure,

? this expression is taken as [T/SOO)_Z for the rates of 3-body clustering
reactions.

One of the most important parameters that determine the electron

densities of the ionosphere is the recombination coefficient, o, of the

positive ions. In the region where the negative-ion concentrations are

small, the electron losses take place solely due to recombination reac-
tions with the positive iomns.

! Laboratory measurements as well as ionospheric observations have

indicated the wide difference that exirts between recombination coef-

ficients of the molecular ions and those of the cluster ions. Among

! the molecular ions N2+ has a recombination coefficient of 2.6 x 1077

1

cm3 sec = which is temperature independent. The other two molecular

AR, S

ions, on the other hand, have temperature dependent recombination coef-
ficients. Measurements made by Kasner and Biondi [1968] have shown a

1/T temperature dependence for a(Oz), with the values given by

P T L A P T T L

a(0,") = 2.2 x 1077 (300/T) cm® sec”t

The recombination coefficient of N0+, «(NO*), has a 1/’1‘-1'5 temperature

dependence, and the coefficients are given by [Weller and Biondi, 1968]

,
v Lo oo
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a0ty = 4.1 x 1077 (300/T) 15 cn® sec”!

The accuracies of these laboratory mer-urements are quite good,
being of the order of * 10%. They are also in good agreement with the
results of theoretical calculations which for 02 yields a value of

7 en® sec™! at 300 X [Chan, 1968].

2.8 x 10”7

Laboratory measurements of the recombination coefficients of the
hydrated cluster ions have been obtained only recently. The values by
Leu et al., [1973] indicated that « increased from about 1 x 10'6 to
about 10 x 10'6 em® sec'l, corresponding to an increase of the cluster
ion mass number from 19 to 109, They also concluded that it was un-
likely that o could have a value greater than 1 x 10'5 cm3 sec™! even
for heavier clusters. In normalizing the data which were obtained at
different temperatures to a standard temperature of 300 K, they have
assumed a temperature dependence of 71/2,

For many other cluster ions, no direct measurements of o generally
increased with the size of ion. Assuming this relation to hold true for
other ions as well, values of o were estimated on the basis of the
number of clustered molecules. These, together with the values obtained
for other ions, are shown in Table 5.3 with the appropriate temperature

dependence.

The value for the mutual neutralization coefficient used is an

~ average value based on the measurements done on different combinations

of positive and negative ions. Hirsh and Eisner [1972] obtained

7 3 1

1.7 x 1077 and 0.34 x 10"/ cm

sec

for this quantity in the reactions

I O T I
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; Table 5.3

Recombination coefficients.

Reaction Recombination coefficient
em® sec™t
N2+ + g — N+ N 2.6(-7) *
Mehr and Biondi [1969]
02+ +e—>0+0 2.2(-7) (300/T)

NO' +e —»N+0
0" +e—0,+0
4 T € 2" V2
0, sH.0 + e —> 0, + H,0
2 Y T e 2 " g
H30+~0H + g — Neutrals
H30+ + ¢ —+ Neutrals
H30+-H20 + g ~—+ Neutrals
+
HSO -(H20)2 + ¢ — Neutrals
ES
HSO -(1-120)3 + — Neutrals
H30+-N2 + g —> Neutrals
+
NO -N2 + e — Neutrals

N0+-CO2 + ¢ — Neutrals

N0+-H20 + g — Neutrals

* -n
Read a(-») as a x 10 ",

Kasner and Biondi [1968]

4.1(-7) (300/T) 1>
Weller and Biondi [1968]
3.0(-8) (300/7)°"°
Estimate

3.0(-6) (300/T)°">
Estimate

3.0(-6) (300/1)9"°
Estimate

1.2(-6) (300/T)°*°
Leu et al. [1973]

5.0(-6) (300/T)%*>
Leu et al. [1973]

5.1(-6) (300/7)°*°
Leu et al. [1973]

6.1(-6) (300/T)°+3
Leu et al. [1973]

3.0(-6) (300/T)°*°
Estimate

3.0(-6) (300/T)°*°
Estimate

3.0(-6) (300/1)°"°
Estimate

3.0(-6) (300/1)°-°
Estimate

e Rt gt R i e e R S e e : e CREA T T
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} (Table 5.3 continued) f e
* ' 0.5 ‘
% NO ¢ (H,0), + e — Neutrals 5.0(-6) (300/T) !
, Estimate i
]
NO*+ (H,0) , + e — Neutrals o 6.0(-6) (300/7)°"5 |
Estimate

. . : |
X + Y —— Neutrals 2.0(~-7) i -
Estimate .

o
.
AT—!
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between NO+ and NOZ“, and N0+ and NOS-’ respectively. However, in the
region where the effect of the negative ions beccomes important, the
dominant positive ions arc the hydrated clusters of H30+. Judging by Q;
their recombination coefficients, one could assume that the mutual
neutralization coefficients of these ions are higter than those cor-
responding to the molecular ions. Hence, a conservative value of
2 x 1077 cm® sec”! is adopted for this coefficient.

The rate constants given in Table 5.2 for the negative-ion reactions ' s
are those reported by Fehsenfeld et al. [1967], Fehsenfeld and Ferguson .
[1968], Fheips [i865] and Fehsenfeld et al. [1563]. Most of these are | %
fast binary reactions which are independent of the temperature. Excep-
tions are the three-body attachment reaction between 02 and free
electrons, and the three-body association reaction between 02- and

02, vhich yields 02 -02. The former has a temperature dependence

-1.2/RT

given by (1/T)e [Phelps, 1969], and its reaction rate is also

known. On the other hand, the rate constant of the latter is not so

31 1

well known. Pack and Phelps [1970] obtained 4 x 10~ en® sec”

at 300 K for this quantity. According to Fehaenfeld et al. [1969],

——— e L L "

however, the rate constant for this reaction is likely to exceed 10'50

3

cm6 sec = at D-region temperatures. Thomas et al. [1973], in their : 5

29

model calculations, used a value of 2 x 10~ cm6 sec_1 for this rate

¢ constant.

Rate constants for many of the clustering reactions of negative ions ; i

with water vapor have been reported in the literature during the past few

years., Since these hydrated ions are not included in the negative ion

reaction scheme adopted, values of these are not shown in Table 5.2.
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The photodetachment rates used in the present computations are
given in Table 5.4, The values corresponding to 02' and 03' are those
measured experimentally and reported in the DASA Reaction Rate Handbook.
The values used for COB”, Noz' and NOS" are those used by Thomas et al.
[1973]. In view of the many uncertainties in both the negative-ion
chemistry and the experimental data on the daytime negative-ion composi-
tion, no effort was made to determine the effect of the photodetachment

rates on the negative-ion composition and the electron demsity in the

lover D region.
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Table 5.4
Photodetachment rates.
Reaction Photodetachment rate
sec! 1
02“ t+hy — 0, +e 0.33
,03"+hu—-+03+e 0.66
cos' *hv —> CO, + e 0.04
NOZ“ * hv — NO, + e 0.04 )
NO, + hv ~— NOg + e 0.04 o
Reference: Thomas et al. [1973]
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6. ION COMPOSITION AND ELECIRON-DENSITY PROFILES . |

Several photochemical calculations have been carried out in the
recent past in order to interpret the behavior and the structure of
the D region as revealed in ground-based and rocket measurements.
Among those who investigated the daytime D-region positive ion and
election densities are Goldberg ana Aikin [1971], Hunt [1971a, 1973],
Keneshea and Swidzr [19721 and Rowe et al. [1974]. Goldberg and Atkin
[1971} made use of neutral constituent concentrations, adopted from
values obtained by others, to determine the distribution of individual

v Y . . . . &,
positive~ion species. The model calculations carried out by Keneshea

and Swider [1972] and Hunt [1973], on the other hand, are more compre-
hensive. They calculate the relevant neutral constituent concentrations,
positive-ion densities, and the negative-ion densities in the same
computer code. PRowe et al. [1974] developed a simplified model of the

D region ion composition, subject to several constraints, to study the
behaviur of this region under different conditioms.

In this chapter, a numerical model for the D region ion composi-

TV

tion is developed concurrently with the minor neutral constituent model
5 described in Chapter 3. In the next section, details of the numerical
method for calculating the height distribution of several ionic species
are presented. This is followed by a discussion of the computed ion
composition and electron-density profiles.
; 6.1 Ion-Composition Model

The ion-composition model developed in our study incorporates 17

positive ions and 7 negative ions. The difference between the densities

L of positive ions and negative ions gives the electron density.
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? The positive ions included are:
? molecular ions: N2+, 02+ and N0+, and !
; \ . + + + o+ +
cluster ioms: 0, +0,, 0, -H;0, H,0-0H, H-H,0, H:(H)0), , :
+ + -+ +
ﬁ: H* (H,0) 5, H+(H,)0),, HgON,, NO*N, ,
+ + + +
NO-COZ, NO-HZO, NO-(H20)2 and NO-(HZO)3
E The metallic ions present between 80 and 90 km are not included
E in view of their negligible abundance under normal conditions.
f The negative ions included in the study are the following:
i molecular ions: 0, , 0, , CO; , NO, , NO, and
% cluster ions: 02-'02 and COZ"-O2
? For reasons mentioned before, the negative hydrated cluster ions |
; are not incorporated into the model.
: 6.1.1 Continuity equations. The set of continuity equations
; for the charged species can be written in the form

dfx

—é;l = @ - P[X] (6.1)

where

@ is the production term for a given ionic species, X, and

P 1is the loss coéfficient.

The chenical time constants of the reactions involved are generally
very small. As such the transport terms are not included in the con-

tinuity equations for the ionic species.
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. - . +
In general, the production term for a positive ion Xh can be

written in the form

e, Y =q + [ kA X (6.2)

m#n

where
- is the primary ionization rate, and
Z k A [X*]n is the total contribution due to charge transfer or
rearrangement reactions producing Xﬁ+ from other
positive ions.

In equation (6.2}, g appears only for the molecular ions O+,
q m 2PP

2*, 02+, and NO*.

The loss coefficient for a positive ion generally appears as

N

P(Xm+) =) kB=+ um[e] - ui[Nr] (6.3)
where

} kB is the total contribution due to reactions converting
Xﬁ+ into other positive ions,

um[e] is the term due to dissociative recombination with
electrons and,

o, is the mutual neturalization coefficient, and

(v is the total negative-ion density.

In the case of a negative ion Xh- the production is generally

due to charge transfer or rearrangement processes, except for 02 and

04' where they are formed by 3-body attachment processes. Therefore
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Q(0,7) = 8le] (6.42)
Q@,) =8"0, , 6.4b)
Q. ) =L kA[X], m#n (6.4c)
where
B is the aitachment rate,

Tk A[X—]n is the total contribution due to charge transfer or
rearrangement reactions producing Xﬁ-.

The loss coefficient for Xﬁ“ is in general,
- f-
P(Xx) =] kB+oulN]+$ (6.5)

where
) kB is the total contribution due to reactions converting
Xﬁﬂ into other negative ions,
[N+] is the total positive-ion density, and
8 is the electron detachment rate.
The continuity equation for electrons is

dle] - g - ] o 121, le] - 8e] 6.6)

where

Qe is the total ion-pair production rate and

fe] is the electron density.
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b .

}Q It is possible to write a continuity equation for the total posi- R

}i i

Lﬁ tive-ion density, in the form

dIN"] et *

—g_b—‘-': Qe - C&{Q] [N ] - Dli[N ][N ] (6'73

f where

; o is the average electron recombination coefficient for

? positive ions in the D region. i
f The charge neutrality condition yields the relation

IN'] = [N7] + [e] (6.8) 3
i which can be written in the form

IN'] = (1+A)[e] (6.9}
1;.E ;
X where : 3 ﬁ@
i |
; A= [NT1/[e] . (6.10) o
v Eliminating [N ] and [N ] in equation (6.7}, H
dIN'1 _ 2
= 4, - (athay) (1+A) [e] (6.11)
- An effective recombination coefficient for the electrons, which takes E

into account t*e presence of the negative ions, is defined by
Sopp = (1FA) (a¥day) . (6.12)
- " iia ¥ e = 4 T e bt TR T ¥ AR H ]
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Equation (6.12) becomes

= 0, - ogpglel” (6.13)

BTy T T P T T P

Under steady-state conditions,

2
Qe = aeff[e] (6.14)

The effective recombination coefficient is a convenient parameter

that can be used in calculating the electron density using known values

of the ion-pair production rates. Alternatively, it can be deduced
from the simultaneous measurement of the electron density and the pro-
; duction functions.
The condition of steady-state conditions is generally valid around
1 noon up to zenith angles of 60° at least. The time derivative factor
d[N+]/dt is appreciable only at large zenith angles. However, for the
sake of completeness, this factor is retained in our calculations.

6.1.2 Methods of eomputation. The set of differential equations

written for each of the ionic species is converted to a set of difference

equations in the form given in equation (3.25). The neutral constituent

concentrations required for substitution in the production terms and loss

coefficlents are taken from concurrent solutions of the netural constituent

model descisibed in Chapter 3. The calculations involving the ionic con-

centrations were incorporated into a separate subroutine which is intro-

A e i e 4

duced at sunrise on the final day of the netural chemistry model run.

Initially, prior to suarise, the values of [Xi] and [e] are all

i
b

set to zero. The ionic concentrations were obtained at the same time

T T T T T ¢ Tt
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intervals as used in the neutral chemistry program. At each of these

time steps, the optical depth factor was calculated separately and the

corresponding flux levels were determined.

In Chapter 3, results of the neutral chemistry calculations were
presented for two different models of the eddy diffusion coefficient.
The high De model yielded NO profiles having mesospheric values larger
than those given by the low De model, Preliminary calculations indi-

cated that the high De model generally gave electron densities that are

too high compared to the observed values. Therefore, the detailed cal-
culations were carried out using the neutral chemistry results obtained f ?j

with the low Dé model only.

At each time step, the solution was obtained by iterating the concen-

f trations until the charge neutrality condition was achieved. Generally,

b this is achieved in a few iterations at altitudes above about 75 km,

where the electron density is used as the controlling parameter. Below f g

this height, however, where the abundance of the negative ions begins

to grow, a large number of iterations was required before the charge

L . -

neutrality condition was reached. At 65 km and below, computations

were terminated before this condition was achieved in view of the
excessive computer time taken.

The exact values of several parameters that go into the calcula-

tions are not known. Therefore, it was necessary to carry out several

T ey S
[ G S R B NS TN

runs using different values for such parameters, keeping the rest of

the conditions unaltered. These pérameters include the branching E
3 and the recombination reaction of N0+, é
and the 0," produc- ,

ratios of the reactions RlO

3 the rate constants for the reactions R135 and R136’

tion rates.
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In Chapter 4, ion-pair production rates were calculated corre-
sponding to different input conditions. For X-rays below 3 R, the
exact flux intensity ¢(3 A) was not known., Therefore, two values of
${(3 &) were used to calculate the productions functions. These are

1x107° erg em™? sec™! and 0.5 x 107°

erg em™2 sec-l, respectively
(Figure 4.7). Also for the precipitating electrons, the exact nature
of the spectral distribution was not known. Therefore, contributions
due to two hardness indices, viz. vy = 2 and v = 3 were used in the
calculations (Figure 4.9). Of these, y = 2 gives the higher pro-
duction rate, and this was used in conjunction with the high X-ray flux
(1x 1070 erg en™2 sec“ll in the program. The results obtained with
this combination are described under 'high 02+ production'. The other

5 -2 -1
erg cm = sec =~ were

two parameters, y = 3 and ¢(3 &) = 0.5 x 10°
used together and the corresponding results are described under 'low
02+ production’.
6.2 Positive-Ion Composition

The computed positive-ion profiles are shown in Figures 6.1 -
6.3, corresponding to x = 18° (noon}, x = 60° (morning) and x = 60°
(evening), respectively. Each figure has two sets of curves; one for

the high O * production case (solid lines) and the other for the low

2
02+ production case (broken lines}.

6.2.1 Mplecular-ion conecentrations. Among the molecular ions,
only 02+ and NO* are shown in the figures. The concentrations of N2+
and 0+ are too low to show here. In all of these three cases, NO+
and 02+ profiles cross over; the noon profiles at 93 km, and the other
two at 97 km. NO'~ dominates below these height levels, and 02+ above.
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Figure 6.1 The height distributions of positive-ion species. These results correspond
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The relative densities of these two ions appear to depend on the zenith
angle.

The behavior of NO* and 02+ is generally described in terms of the
ratio of their number densities, i.e. [NO+]/[02+}. This parameter can
be easily measured because it does not require absolute calibration of
the equipment. Furthef, this ratio can be used to calculate the
average electron recombination rate in the height range where NO© and
02+ dominate.

In all three sets of profiles, NO+ and 0O * dominate above about

2
85 km. Below this height, the hydrated cluster ions dominate. 1In the
noon profiles, the ratio [NO+]/[02+] has a maximum value of 4.4 at 87 km,
which drops down to unity at 93 km. Above this height the ratio drops
through unity to 0.3 at 100 km. At x = 60° this ratio is a factor
about 8 at 88 km, reduces to unity at 97 km, and above this height
reduces to about 0.2 at 100 km, These results indicate that the point
of unity ratio gets lifted as the zenith angle increases. Under the
same conditions, the difference between the NO' and 02+ profiles widen
near the mesopause.

Similar results have been obtained in model calculations done by
Keneshea and reported by Nareisi [1970]. According to these calcula-
tions, the [N0+]/[02] ratio has values around 10 at 60° zenith angle
and at heights between 85 and 90 km. It approaches unity at heightis
near 100 km. For smaller zenith angles, the ratio approaches umity
at lower heights. These results are similar to the observations made
by Nareisi [1970].

The 0., concentration at these altitudes is due to direct ioniza-

2

tion of O, by X-rays and EUV radiation, as well as due to conversion of

2

fg
g
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f + . 3 N +
0 and N2 into 02 through reactions RIOZ and R104. Part of the 02 thus

produced is converted into NO" through reaction R1G7' The contribution

T . . L3 +
made by reactions R101’ R103’ RIOS’ and R106 in converting O and N2
directly into NO" is not significant below 100 km. Above about 90 km,

the ionization caused by X-rays and EUV radiation results in the O

i

5}

+ : ‘)
2 %
%

production, and the No* production due to Ly-c ionization of NO is
rather negligible, The formation of NO" in this altitude range is mainly | ‘?
due to conversion of this 02+ through reaction R107. Hencé, the ratio ; ;5
[N0+]/[02+] represents the relative amounts of NO available in this 1 :
regian. _
At altitudes below about 85 km, both N0 and 02+ drop rapidly

causing the hydrated cluster ions to dominate. The effect of high and
low Ozf production due to variation in the X-ray flux below 3 & and the
precipitating electron flux appears in this region. Under noon condi-
tions, this variation is only a factor of 1.5 - 3.5, the values increasing
as the height decreases. The decrease of both 02+ and NO© in the P
region is really an exponential variation, being approximately linear 2 VT
on the semi-logarithmic scale. The 02+ profile follows closely the 02+
production curve. However, in the case of the NO© profile, the values
drop faster than the decrease in the NO” production rate, particularly
above 70 km. This is caused by the conversion of NO' into its hydrated
cluster ions. -

. The NO© and 02+ profiles obtained are generally in agreement with
the profiles measured by Nareisi [1970] and Johannessen and Krankowsky
[1972].

In certain observations [Goldberg and Aikin, 1971], it was noted that

+ . . s
the 02 profile remained more or less constant at a fixed value below
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about 75 km, instead of decreasing rapidly. One reason for assuming a
high 02+ production rate, effective in this height range, is to verify
whether this increase in the 02+ concentration is caused by an increase

in the 02* production rate. The computations show that in spite of an

increase in the O, production rate, 02+ continues to drop. This indi-
cates that one has to look for a decrease in the loss coefficient of

3+
9,

to be noted that 02+ is only a minor ion at these altitudes, and there-

fore, its measurement cannot be considered as very reliable.

. X + .
in order to explain such a constant value of 02 . However, it has

6.2.2 Cluster-ion concentrations. The noon profile as well as

the two y = 60° profiles of the positive-ion composition shows that

220

the hydrated cluster ions dominate the region below about 86 km. However,

contrary to the observations, the major cluster ion according to these
profiles is NO'+H,0 rather than H'+ (1,0, or H'+(H,0),. The height
range from about 88-89 km to about 72-74 km is dominated by this NO©
hydrated cluster ion with a peak value of 860 cm_5 near 83 km.

According to the given reactiocn scheme the formation of N0+-H20

from NO* ions takes place with a time constant of about 13 secs at 80 km.

This is achieved through the formation of the intermediate cluster
N0+-N2 and subsequent switching to N0+-H20. Its fastest loss path
is due to electron recombination, which has a time constant of about

300 secs at 80 km. The other loss reactions have time constants much

greater than this value. However, ome possibility for achieving a faster

loss rate is through the formatiomn of the cluster N0+-H20-N2 or
N0+-H20-02 and subsequent switching with H20 to yield NO+-(H20)2.

This ion in turn can produce N0+-(H20)3 in a similar association -
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switching process [drnold and Krankowsky, 1974]. However, these reactions

e g g T e BT < e T T

are not included in nur calculations because of the lack of evidence as to

their existence and rate constants of the reactions invoived.

T

The two paths suggested by Heimerl et al. [1972] which involve OH
and H02 have time constants about 3000-6000 sec. These high values are
due to low concentrations of OH and HOZ obtained in the low D, model
calculations. If the concentrations of these two constituents were suf-
ficiently high, they would have resulted in the formation of H30+ through
reactions Rl35 and R136’ which could subsequently yield H+-(H20)2.

The reaction Involving H atoms also has a time constant greater than 1000

' =
4

sec, corresponding to a rate constant of 5 x 1071¢ et sect (Reaction ' !
Rllz)'

The multiple hydrated cluster of N0+, i.e. NO+-(H20}2 and N0+-(H20)3 ;1
have negligible concentrations according to the computations. This is
mainly because of the low production rates for these ions. The faster : @
path of producing H+P(H20)2 is given by reactions R108’ Rllo’ R112’ and
R114, which proceeds according to

.!_

i 'i.-l +- rem—— +I ———= +.
i 02 - 02 02 - 02 H20 H3O OH H (HZO)Z

5 The alternate path of producing H+-(H20)2 from 02+-H20 is L é
it through the formziion of H50+. However, the conversion of H30+ into ;
H+-(H20)2 through the conventional 3-body reaction is found to have

a time constant of about 600 sec. On the other hand, the association/

1

i

i switching reactions involving the major neutral particles can convert
P

f

}

H30+ into H+-(l-l20}2 within about 5 secs.
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The third path of producing this cluster ion is through the forma-

tion of NO+°H20:

OH, H02 HZO’ M

NO" H0 ——— H+-(H20) —~< H+-(H20)2
Thi: path is again limited by the conversion rate of N0+'H20 into
H+-(H20), which is over 1000 sec., as mentioned before.

The existing reaction schemes, therefore, give time constants which
are too long for converting NO' into H+-(H20)2. As 2z result, the
concentration of H+-(H20)2 reaches only a low value. It reaches
5 at 81 km. It remains as the second major
cluster ion between about 74 and 85 km in the noon profile. This height
range is little affected by the zenith angle variation.

Above 88 km, H*~(H20) concentration drops rapidly, becoming

less important than N0+-CO2 anu H,0', One reason fo: this rapid

3
drop is the increase in O(SP) concentration which occurs towards the
high altitudes.

Towards the lower heights, particularly below 72.5 km, its abundance
becomes less than that of H+-(H20)3 and H+-(H20)4. The effect of
02+ production rates become more prominent in the x = 60° profiles than
in the noon profile.

The higher clusters H+-(H20)3 and H+-(H20)4 dominate below
about 71 km in the noon profiles. The conversion of H*-(HZOJ2 into
H+-(H20)3 and H+-(H20)4 becomes more efficient with decrease in

the altitude due to corresponding increase in the [H20] and neutral

particle density. Since the electron density decreases rapidly below

R |
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about 75 km, the loss of these heavy ions due to electron recombina- : ii
£ tion also gets reduced. At the same time, the negative-ion concentra- ‘
]

tions increase below about 70 km. These ions undergo mutual neutrali-

zation with the positive ions. Therefore, the negative ions become } 'ﬂ
increasingly important in controlling the positive ions at these 1
altitudes. ; f}

|

The next higher hydronium cluster H+-(H20)3 appears below 82 km, { B
; _

reaches a peak value of about 200 cm ~ at 69 km, and then drops to é N
b about 35 at 60 km. It also has two profiles corresponding to high and

low 02+ production rates, between about 63 and 81 km. Its abundance

Y DO

becomes equal to that of H%°(H20)2 near 72.5 km in the noon profile and

1 near 72.5 km in the x = 60° profiles.

% The cluster ion H+-(H20)5 appears to be the dominant D region ion i :i

g below 72 km. Its variation with 02* production varies in the height

range from 72 to 74 km only. Its peak value is 7.2 cm'3 which occurs

at 65 km. This is the teeminal positive ion in the hydronium cluster ;  1
series. The idn density in this region is determined by the ion-pair | “1
production rate wnich is due to cosmic rays and hence the profiles do }
not show muck variation towards the lower heights. |

Another cluster ion that is present in significant amounts is E ﬂ
i N0+-C02. It has a peak value of 260 <:m_3 around 88 km, which reduces é ‘*
E to 230 cm_3 at x = 60°. This ion is an intermediate one in the forma- E EW
i; “ion of NO+-H20 from N0+. At higher altitudes, HZO concentration

drops, and hence the conversion of this ion into ND+-H20 becomes less

. : . . . +
efficient which results in increasing the concentration of NO -C02.

The distribution of the heavy cluster iomns H+a(H20)3 and

H+-(HZOJ4 agree well with the measured profiles discussed in
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Section 5.1.1. These are the ions dominating the lower D regiomn.
However, as mentioned earlier, a major discrepancy occurs regarding
the dominant ion in the mid-D region, The observations indicate the
presence of H+-(H2032 and H+-(H20)3 in large quantities in this

height interval, while N0+-H 0 has been found o be only a minor ion.

2
The computed distributions, however, show the opposite. NO+-H20 is
the dominant ion while H+-(H20)n with n = 1, 2, 3 are only minor ions
in the height range 72-85 km. This demonstrates a serious weakness in
the existing theories concerning the D region positive-ion chemistry.
Some clues as to a possible circumvention of this situation have been
suggested by Arnold et al. [1974]. According to them the rapid forma-
tion of heavy hydrated clusters could be made possible through (N2+02)
and CO2 association/switching reactions. The inclusion of such a
reaction scheme into the current computer codes is not however feasible
due to the absence of data on the rate constants of these reactions.
6.3 Negative-Ion Composition

The ion composition model yields the density profiles of the nega-
tive ions 02-, 03", 3', 2', 3', 04" and 004_. All of these ions
except 03_ reach density levels greater than 0.1 ions cm-s during the

co NO NO
daytime, Figures 6.4 - 6.6 show the density profiles of these ions
corresponding to x = 18° (noon), x = 60° (morning) and y = 60°

(evening), respectively. The difference in the values obtained for

the two cases, high Q(02+) and low q(02+}, is insignificant for the
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negative-ion densities. Therefore, only the results corresponding to the

high 02+ production case are given here. Also shown in these figures

are the corresponding electron-density profiles.
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As mentioned before, the negative-ion model adopted in our study
is a very approximate one. In reality, it is believed that these ions
exist clustered to water molecules or possibly other neutral molecules
as well. However, for the purpose of computing the electron-density
profiles below 75 km, the present model seems to be adequate.

In the noon profile (Figure 6.4), the total negative-ion demnsity
and the electron density become equal at 70 ka, i.e. A = 1. Above
70 km, the negative-ion density drops rapidly so that at 75 km, it
reduces to 1/27, and at 80 km, it is even below 1/600. The negative-
ion density is an order of magnitude less than the electron density at
74 km. Therefore, the negative ions could be completely neglected in

D region studies above this height.
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Below 70 km, however, the negative ions dominate over the electrons.

Between 65 and 66 km, the negative-ion density reaches values 10 times
the electron density. At 63 km, A is nearly 100, and at 60 km, it is
about 100.

In the other two negative-ion profiles (Figures 6.5 and 6.6) A
behaves somewhat similarly. In the morning profile, A = 1 just below
70 km, while in the evening profile this is close to 72 km. X becomes

1/10 and 10 near 74 km and 66 km, respectively,in the morning profile.

In

the evening profile this happenz ncar 75 and 66 km, respectively. There-

fore, the overall behavior of the negative ions relative to the electron

densities is almost identical in the three profiles.
The absolute values of the negative-ion density, on the other hand

appears to vary with the zenith angle. In the noon profile, \ = 1 when

3

the negative~ion density is about 360 ions cm-s, while in the morning and

evening, profiles this occurs when the ion demsity is 170 and 320 ions
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cm's, respectively. Further, the peak demsity of negative ioms is 700
ions cm-3 at y = 18°, 360 ions (:111-3 at x = 60° {morning) and 540 ions
c:m-3 at x = 60° (evening), respectively.

One should, however, remember that these values are subject to several
uncertainties. Among these are: firstly, the production function;
secondly, the photodetachment rates, and finally the mutual recombination
coefficient of the major negative ions.

The ion-composition profiles show that NOS', C03', and C04' are the
major negative iorns below 75 km. 1In the noon profile, NOS- dominates

below 66 km, while CO, dominates above this height. C04' is a secondary

3
ion with values about a factor Z - 3 below the major ion species. The

next set of ions includes 02- and NOZ". These have concentrations which

are ghout a factor 20 - 30 below the major ion concentrations. Between
these two ioms NOz" dominates below about 67 km, while above this height,
02" dominates.

In the negative-ion chemistry, the primary ion produced is 02", and
the rest are all produced subsequently through charge exchange or rearrange-
ment reactions. The species that have low loss rates can attain high
concentration levels. In the case of NOS-, the loss mechanisms are only
photodetachment and mutual neutralization with the positive ions. Hence
it is considered a terminal ion, though in reaiity, further reactions to
form hydrated cluster ioms may be possible. Thus NOS_ could attain a
high concentration,

In.the case of COS- and C04-, however, large concentrations are
possible because of the relatively high abundance of CO2 present in this
region. As discussed in Section 5.2.2, the negative-ion reactions proceed

in two paths, ome via 0, and the other via 0, . Both of these react with
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CO2 to yield COS- and CO4', respectively. The time constants of these
reactions are much shorter than those of the other reactions. This results

in these ilons attaining a high abundance in the lower D region.

The x = 60° profiles also show a similar distribution of the negative
ions. However, the relative abundance of the different ions appears to
have changed. In the morning profiles, the absolute concentrations of the

three major ions have gone down by a factor of about 1.5 - 2 below 70 km,

T ey

while maintaining the relative distribution somewhat identical. Such a

reduction in the overall negative-ion density can be understood because

I T

of a similar reduction in the total ion-pair production between noon and
' x = 60°, 8
In addition to the photodetachment, collisional detachment processes

also cont:ol the relative abundance of the negative ions and electrons. ;]

O0f such processes, the reaction Ris3 where 0(3P) reacts with 02_ plays

2
morning and noon, [O(SP)] in the height range from 60 to 70 km does not

an important role in controlling the O, level. Between y = 60° in the

change very much (Figure 3.12), However, between noon and x = 60° in the

| afternoon {0(3P)] drops through a factor about 1.5 in the same height

=
-]
|
”ﬁ
i

E interval. Such a drop in [O(SP)] can result in enhanced negative-ion
concentrations. This is what is shown in the evening set of profiles. ij
In addition to changes in [0(3P)],changes in [NO] and {N02] also contri-
] bute towards the disimilarity in the negative-ion concentrations in the
morning and afternoon profiles.

As discussed in Section 5.1.2, no proper measurements of the absolute
negative-ion densities carried out under quiet daytime conditions are

available for comparison purposes. Nevertheless, the available

B
¥
i
£
i




e T e e ks TR

¢ g e e

T T R R T T

231

measurements indicate the presencé of 003", N03- and their hydrated clusters
as the major megative ions, in agreement with the computed results.
6.4 Electron Dewsity

The computed electron-density profiles are shown separately in
Figure 6.7. These correspond to 18° and 60° zenith angles, the solid lines
corresponding to the high 02+ production and the broken lines corresponding
to the low 02+ production. The electron-density profiles measured at these
zenith angles at Wallops Island on July 24, 1968 are also shown here for
comparison.

6.4.1 Comparison with measured profiles. In discussing the
positive-ion composition in Section 6.2, it was noted that there is a
discrepancy between the type of hydrated cluster ion that is dowinant in
the D region as computed and as observed. Fortunately, the dissociative
recombination coefficient of both these ions has the same value, and
thersfore the electron densities obtained is independent of the actual
type of the positive ion. As such, the comparison of the computed
profiles with those measured will still be valid here.

The general agreement between the two sets of profiles is good.
However, certain discrepancies do occur. In the nocn profile, the com-
puted values are significantly less than the measured values above 88 km.
This difference is about a factor of 2.5 above 90 km. The two profiles
have equal values at 88 km. In this region of the ionosphere, the
dominant positive ions are 02+ and NO°. The metallic ion abundances are
also negligible. Hence, the effective electron recombination rate can
easily be determined once a(02+) and a(N0+) are known  Therefore, the

missing factor has to be in the production function.
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Figure 6.7 The computed electron-density profiles corresponding to 18° and 60° solar
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Above 90 km, it is mainly the 02 molecules that contribute to the
jon-pair production, which is ionized by X-rays in the 30-40 & band (mainly
by the 33.7 & line) and Ly-g (1016 R) radiation. Though 0, undergoes small
changes in its density, it is unlikely that the change is large enough to
cause the observed discrepancy. Therefore, the only other factor left for
consideration is the incident flux of the 33.7 & and 1215 & radiation
lines. The values used in this study are those reported by Hinterreger
[1970]. The Ly-B line intensity has been measured many times and its flux
variation is fairly well known. On the other hand, the 33.7 R line
intensity is not so well known. The flux intensity used here is that
measured by Monson [1972]. This is nearly an order of magnitude less than
the measurements of Argo et al. [18970]. However, measurements of Argo
et al, cover only a few lines. Manson's data covers the entire spectrum
between 30 and 100 R. Naturally, one would prefer to use Manson's data.
However, being on the extreme edge of the spectrum measured, the 33.7 &
line may have been subject to a greater error than the rest of the spectrum
in his measurements, which could have resulted in getting a too low value.
An increase in the 33.7 A intensity can easily increase the electron
densities between 90 and 95 km considerably. Such an increase can also
make the x = 60° profile agree better with the measured profile above
90 km. However, this has to wait until more accurate measurements of this
line is made available.

In the height range between 80 and 88 km, the agreement between the
noon profile and the measured profile is very good. The electron-density
profile has values between 1300 and 2000 cm_3 in this region. The domi-
nant positive ions are the hydrated clusters. Though the computations

show N0+-H20 to be the dominant ion here, the actual one could be
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H+-(H20]n, with » > 4. The recombinatiop coefficient of such ions

are nearly 1 x 10'5 cm3 sec-1 [Leu et al., 1973]). This is particularly
so 1in view of the valley in the temperature profile which is present in
this height interval.

The x = 60° profile, howevef, shows 2 significant deviation from
the measured profile. Between 80 and 88 km, the computed electron densi-
ties are about 1.3 - 1.4 times greater than the observed values. This
implies that either tne loss coefficient has increased or the production
function has decreased over the interval of time corresponding to x = 18°
and 60°.

The loss coefficient depends on the actual domination present at these
heights, and the effective recombination coefficient. The formation of
the dominant ion is controlled by the concentrations of several minor
neutral constituents such as HZO and O(SP). These have long time constants
around 80 - 85 km, and it is very unlikely that their concentrations would
vary significantly over this interval of time.

The effective recombination coefficient depends to a large extent on
the recombination coefficient of the dominant cluster ions in this region.
To bring about an increase of a factor of 1.4 in the electron density, the
effective recombination coefficient (aeff) has to increase by a factor of
2. The value of Gopp C2N change for two reasons. Firstly, it can change
due to a change in the composition of the positive ions, when the dominant
jon changes from one having a low recombination coefficient to one having
a large recombination coefficient. Alternatively, the dominant ion could
remain unchanged, but its « may change due to a change in the ambient

temperature.
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According to Leu et al. [1973], in a simulated environment, the
dominant hydrated cluster ion could be made to vary from one having a low
mass to one having a high mass, by changing the ambient temperatur:. They
found that between 300 K and 200 K, the dominant ions changed from

+ +* o+ + .
H -(HZO)3 and H '(H20)4 to H -(HZO)S and H -(H20)6, respectively.

3

This means that Uore changed from about 4 x 10_5 cm sec-l to about

8 x 10°° cn® sec'l, corresponding to this 100° C drop in temperature.
On the other hand, the change in o with temperature for a given ion was
found to be rather small, given by T_O'S only. For a temperature change
from 300 to 200 K, this gives a difference of only 25%, wiich is much
smalier than the required factor of 2.
During the summer days, the mesopause temperatures are considered to
reach very low values. THe measurements of the mesosphere temperatures
by Smith et al. [1970] during the summer of 1968 have shown that the
mesopause temperature could vary generally between 160 and 200 K. They
also have observed that on a given summer day, the mesopause temperature
had changed through 20° C within a time interval of about 10 hours. Further,
near the mesopause, the gradient in the temperature was observed to be
quite high. Temperature variations of about 20° C within a distance of
2 km are not uncommon in the mesosphere. Generally, much larger varia-
tions are observed in the winter months than in the summer months.
Therefore, it is conceivable that the low temperatures prevailing at
the mesopause could have given rise to heavier clusters over a narrow
height range. As discussed earliér, the formation of the heavier clusters
take place through 3-body association reactions. These reacticns have

rate constants which are strongly temperature dependent. In our study,
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a T'2 temperature dependence is assumed for these rate constanfs. In
reality it is quite possible that the temperature dependence is even
stronger than this. Thus, it is apparent that the sharp valley in the
temperature profile around 85 km could give rise to firstly, an enhance-
ment in the heavier clusters having large values for o, and secondly, an
increase in @ of each cluster ion around the mesopause. The possibility
of such a scheme was demonstrated in the D region p.sitive-ion measure-
ments made recently by Erawkowsky et al. {1972] who observed high con-
centrations of heavy clusters such és H+-(H20)4 around 85 km on a summer
night.

Next, one could consider the possibility of reducing the production
function within the short period of time concerned. Below 88 km, it is
the NO ionization due to Ly-o radiation that is most important. Therefore,
either the [NO] or the intensity of Ly-a has to decrease by a factor of
nearly 2. However, NO at this altitude has a life time against chemical
and diffusion losses over a day. Thus, the expected change to occur in a
few hours appears unlikely. In the case of the Ly-o line, Timothy and
Timothy [1970] observed only a maximum of 10-12% variation in the inten-
sity of this line over short term periods, i.e., periods less than a day.
Hence the necessary 100% variation again seems unlikely. The other means
by which the production rate could change is through a variation of the
optical depth. Such a variation could be brought about by changing the
O2 density. Below 88 km, however, this again appears to be difficult to
realize.

The missing factor of 1.4 in the electron-density profile corresponding

to x = 60° and 80-88 km range could therefore be attributed most probably
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te the change in S caused by a sharp temperature variation at the
mesopause.

The most striking feature in the 70-80 km range of the computed pro-
files is the relatively low dependence of their values on the solar zenith
angle. Throughout the height interval of 70-75 km, the measured profiles
maintain a nuvher density ratio of 3, while the corresponding ratio in the
computed profiles is about 1.5 - 1.7.

It is also noted that all four computed profiles, including the profiles
corresponding to high and low 02+ production rates, lie enveloped by the
two measured profiles; i.e.,at x = 18° the méasured values are greater
than the computed values whereas at x = 60° the measured values are
smaller than the computed values. Therefore, any adjustment that is to be
made to the computed profiles to bring thum into agreement with the measure-
ments has to be selective regarding the solar zenith angle.

Based on the same arguments presented earlier, any possibility of the
minor neutral constituents such as NO and H20 varying through the required
extent may be ruled out. Being away from the mesopause any abrupt change
in the temperature profile‘also may be considered unlikely.

Towards the lower end of this height interval, of course, the presence
of the negative ions become important. A relative increase in the negative

ion density makes Cogf increase causing a reduction in the electron density.

Such an increase in N is indeed possible through the collisional

detachment of 02' in its reaction with O(SP). The present computations
show that 0(3P) below 75 km drops markedly from the noon values. This drop
could get further enhanced if lower values for the eddy diffusion coef-
ficient are used. However, above 70 km this mechanism is only marginal

in reducing the electron densities.

T T



o i

H
]
i
i

p—

238

Referring to Figure 6.7, it is also noted that the difference
between tae computed and the measured yrrofiles is not so great when the
low q[02+) results are employed. However, with these results, the values
in the computed noon profile fall short of the measured electron densities
which is worse with the low q(02+) case than with the high q(02+) case.
An explanation for this behavior could be sought in terms of the produc-
tion mechanisms.

Below 75 km, Ly-c is still the dominant ionization source. However,
the X-rays in the band 2 - 10 R and precipitating electrons also make
significant contributions, particularly towards the lowei region. The
precipitating electron flux has no diurnal variation. The agreement be-
tween the measured and computed profiles is obtained when low flux (y = 3)
for this source is used. In fact making it zero would make the agreement
at x = 60° still better.

The X-ray wavelengths less than 3 R cause ionization below 75 km.

An enhancement in the 0-3 & band flux at noon, with its contribution
exceeding that of Ly-a, can cause a corresponding increase in the noon
electron density below 75 km. In Chapter 4 when the appropriate fluxes
were selected from the available data, 0-(3 &) was taken as 1 x 10_5 erg
cm"2 set:"1 for the high 02+ production case. However, Figure 4.6 shows
that shortly before 1200 hours on the day the measurements were made, a
sudden enhancement in the 0-3 R flux had indeed taken place. Such an
increase in the X-ray fiux in the 0-3 R band occurring near noon and absent
at y = 60° could account for the differences appearing below 75 km in the
computed and measured profiles. In order to obtain quantitative values

for this increase, however, more detailed recordings of the 0-3 R band flux

- g
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are required. As discussed in Section 4.2.1, many uncertainties exist in

g both the measurements and interpretation of the solar X-ray fluxes below
3 R. Nevertheless, this mechanism provides a satisfactory explanation

because of the selective manner in which this enhancement affects the

electron-density profiles, i.e., affecting only the noon values lying f ?

below 75 km.

The region below 70 km is controlled mostly by the negative ions. f Qi

The overall agreement between the computed electron densities and the
measured values could be considered satisfactory in view of the many un-

certainties present in the negative-ion chemistry. However, the computed

profiles fail to reproduce a characteristic feature revealed in the é ﬁ
measured profiles. That is the cross-over of the noon and the x = 60°

profiles near 65 km. The production function does not show such a cross-

over at these heights. Hence, this could be safely attributed to changes

taking place in the negative-ion chemistry. As mentioned in the last

§ section, many of the parameters such as the photodetachment rates and the
mutual neutralization coefficients are not properly known. Hence, at
this stage, attempts to interpret the detailed behavior of the electron-

density profiles below 70 km would seem futile.
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6.4.2 Solar zenith angle variation. The computed electron density

profiles do not exhibit a marked solar zenith angle variation, as revealed
in Figure 6.8. Hére, the computed electron densities are plotted against
the solar zenith angle, for heights of 75, 80 and 85 km. The solar zenith

angle variations as observed in partial reflection, and cross-modulation

experiments are also shown in this figure [Thrane, 1969]. These show :

larger variations, particularly for 85 km. One could also compare the

diurnal variation of absorption measurements. However, these are mostly
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Figure 6.8 The solar zenith angle variation of the computed

electron densities, shown for heights 75, 80 and
85 knm.
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sensitive to heights above 85 km, and hence not related to the computed
variations.

Figure 6.9 shows the effective recombination coefficient deduced
from the computed electron density values and the production functions.
As shown in this figure, there is no significant variation in the g
values deduced for y = 18° and y = 60°.

The effective recombination coefficient shown here also exhibits the
regions where different loss mechanisms occur. Above 88 km, Corg is

6 -1

less than 1 x 10~ cm3 sec ~. The molecular ions, NO* and 02+ dominqte

this region. Between 70 and 85 km, Sy has values lying in the range

> em® sec™). This region is associated with the hydrated

3x100 .1 x 10
cluster ions. In the intermediate region, i.e. 85-88 km, electron loss
mechanism changes from cluster-ion recombination to molecular-ion
recombination.

Below 70 km, O fp increases rapidly. In the 10 km range from 70 km
to 60 km, o rf increases by a factor of nearly 1000. This factor would
undergo a solar zenith angle variation only if the dominant ion in a par-
ticular height range varied systematically from one having a low ., to
another having a high &, or vice versa. In these computations, however,
it is found that no such variation occurs.

In the 75-85 km region, the minor constituents, particularly NO and
HZO’ have long time constants and, therefore, their chemistry does not
reveal a detectable solar zenith angle variation. Hence, in the production
function, the solar zenith angle dependence appears through the variation
in the incident flux. This takes place due to changes in the sec x factor

in the optical depth, At higher altitudes, of course, the 0, density could
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densities computed at 18° and 60°.

(44



243

have a diurnal variation which could change the optical depth and hence ; .
the attenuation of the downcoming radiation. However, the results of the |
neutral chemistry model show that this is not important below 100 km.

Therefore, it appears that above 70 km, the only systematic solar
zenith angle variation of the electron demsities occurs through changes

in the sec x term in the optical depth factor. The concentrations of the

major ionizable constituents such as NO and O2 remain unchanged. Further,

there is no systematic change in the effective recombination coefficient.

For heights below 70 km, systematic changes in the negative-ion chemistry : P

which take place during the daytime could cause corresponding variations

in the electron densities. However, in the absence of proper data on the

negative-ion chemistry, the behavior of the electron densities in %his
¥ region is only a matter of conjecture.
it has now become apparent that the systematic variations of the

computed electron densities fail to account completely for the behavior

of the measured profiles. Hence it was found necessary to invoke addi-
tional sources that would cause short term variations in the D-region

electron density. These include the temperature variations around the

i A A g e T T T Y A T

mesopause and enhancements in the solar X-ray flux in the 0-3 A band.
Variations of such quantities cannot be predicted in advance, and could
only be detected through continuous monitoring related parameters. There-
fore, any predicafion of the solar zenith angle variation of the D region

jonization will generally fall short of the actual measured variationms.
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7. SUMMARY AND CONCLUSIONS

An attempt has been made in this study to investigate the solar zenith
angle variation of the D-region ionization. In particular, the variation
occurring between 60° zenith angles corresponding to a summel, quiet-sun day
during the high solar epoch has been the main interest. One objective in
this study is to interpret the measured electron-density profiles available
at two zenith angles 18° and 60°, on July 24, 1968, These two profiles are
among a series of electron-density profiles measured using <n situ rocket
experiments which are capable of yielding accurate electron densities in
the D region.

The ionization parameters studied include the positive-ion density,
negative-ion density and the electron density. Prior to constructing a
model for the D region ion chemistry, it was found necessary to construct
a model for the neutral constituent chemistry encompassing the D-region
altitudes. In order to minimize the effects of boundary conditions, the
neutral chemistry model was extended from 30 km to 120 km.

Model calculations were carried out to study the diurnal behavior of
14 minor constituents which include oxygen only, oxygen-hydrogen, and
oxygen-nitrogen species. Initially, the carbon compounds were also included,
but these were later removed from the model as they were found to contribute
only a little to the ion chemistry of the D region. As far as the behavior
of this region is concerned, the most important minor neutral constituents

are O(SP), 0 H20, NO, N02 and perhaps OH and HOZ'

33
The neutral chemistry model includes both the photochemistry of the
neutral species and the transport terms to account for the eddy diffusion

of long-lived constituents. In both of these areas many of the parameters
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used are quite uncertain. The solar-radiation intensity over certain bands,
the absorption cross section of 02 in the S-R band and the rate constants
of several reactions are some of the lesser known photochemical parameters
used in the model. In addition to these, the parameters such as the eddy
diffusion coefficient a: the boundary conditions of the constituents

under diffusion afe also subject to much uncertainty.

Based on the observations of several workers, as well as on the pre-
vious work of a similar nature, two models for the eddy diffusion coeffi-
cient were adopted, which are designated high and low D, models. Using
the photochemical production and loss terms, continuity equations were
written which turned out to be simple first-order differential equations
for the short-lived constituents, and second-order partial-differential
equations for the long-lived constituents. These include O(SP), H, HZ’
HZO’ NO, and HZO'

This set of coupled differential equations was solved numerically by
computer simulation. The computer solution was carried out in three parts.
First, the initial values were obtained by solving the steady-state equa-
tions. Next, the time-dependent equations were solved keeping the solar
angle fixed at noon. Finally, the diurnal variation was simulated by
running the program with the solar zenith angle varying through day and
night. It was found necessary to carry out the diurnal simulation through
a minimum of ten days to achieve convergence.

The results of the diurnal study show that most of the neutral con-
stituents undergo diurnal variation at some height interval. The O(SP)
concentrations have a diurnal variation throughout the 30-120 km height

range with the concentrations vanishing below 80 km at night. 1Im Oz(lAg),

[RR— e - g T B e




246

|
:
i
1
E the variations during the daytime appear below 75 km. Corresponding to ;i
i these variations, 03 a2lso undergoes significant changes below about 80 km.
] Among the O-H species, both HéO and I-I2 do not show any diurnal varia- ‘
tion. On the other hand, H, OH and HO2 exhibit large diurnal variations. i
The concentration of H vanishes below 77 km in the night, and during the
daytime, shows a strong diurnal asymmetry, mostly between 50 and 85 km.

Both CH and HO2 show somewhat similar variations during the daytime. How-

ever, at night the deplerion of HO2 is much greater than that of OH.

In the O0-N species, NO2 has a strong diurnal variation while NO has
a diurnal variation only below 70 km. N20 on the other hand has no 'q
diurnal variation.

The ion-pair production rates were calculated using the neutral con-

stituent concentrations obtained in Chapter 3. The results of these cal-

culations indicate that the ion-pair production due to Oz(lﬁg) is small

- + o,
compared to other sources although it is a significant source of 0, ions.

2
The major contributions were found to be due to Ly-o in the mid-D region
In the upper D region, Ly-B and 33.7 & radiation lines were found to be

important, while in the lower region, galactic cosmic rays were found to

be the major source of ionization.

The diurnal variation in these major production functions was solely

! due to the sec x term in the optical depth fastor. The concentrations of
the ionizable constituents NO and 02 remain unaltered. The small varia-
tion of NO below 70 km does not contribute much because of the fapid
attentuation of Ly-o radiation below 70 km.

To investigate the variation of the D-region ionization with the

solar zenith angle, a model for the charged species comprising positive
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jons, negative ions and the electrons was developed. This model was run
concurrently with the neutral chemistry model on the last day of its diurnal
simulation,

The positive-ion composition results of these computations agreed
generally with the observed distributions, except for the discrepancy
observed in the major ion in the mid-D region. The computations show

- .
NO -H20 to be the major ion whereas direct measurements inuicate hydrated

clusters of the type H+-(H20)n with n = 3. The negative-ion composition
results are generally in agreement with the results of the previous workers.
Comparisons with the observaticns also show some similarity in the results,
though such a direct comparison with the observations is not really valid
because of the several approximations made in the negative ion reaction
scheme.

A comparison of the electron cnsities show gond agreement with the
observations. However, there are regions where small discrepancies appear.
Further, the systematic variation of the electron density with the solar
zenith angle as cemputed is ¢atly a fraction of the observed variation.

This is because the only term that can be included in any model calcula-
tion which contributes to the solar zenith angle variation is the sec x
term in the optical depth factor. However, in reality short term varia-
tions such as temperature changes near the mesopause, X-ray flux changes
in the 0-3 & band could cause variation in the electron densities within
the same day. Such variations, unfortunately, do not follow a given
pattern to be included even empirically in a computer code.

Therefore, in conclusion, it might be mentioned that the observed

solar zenith angle variation in the D-region electron densities may be
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considered as due to two components. Firstly, a regular variation caused
by the sec yx term in the optical depth factor, and secondly, an irregular
variation caused by such effects as temperature variations and X-ray flux
variations.

A large number of input parameters go into the numerical modeling of
the D region, as demon:? .ated in this work. Unfortunately, many of these
remain uncertain, In the neutral chemistry model, more reliable data on

such quantities as the solar fluxes above 1000 R, absorption cross sections

of the constituent gases, rate constants of fast neutral reactions, eddy
diffusion coefficient and its height distribution are urgently required. l
Further, actual measurements of the distribution, of minor neutral species

such as NO, 0(°P) and H.0 are required to verify the validity of the model

2
calculation results.

The ion chemistry model also requires data with better reliability
for satisfactory interpretation of the measured ion composition and electron-
density profiles. Among these are X-ray fluxes, energetic particle fluxes,
ionization yield of 02 and N2 due to these high energy sources, and rate
constants, particularly the electron recombination coefficients.

Also, one need not emphasize the importance of conducting coordinated ;
experiments tu measure the ion composition and electron-density profiles

of the D region. Such measurements are necessary on quiet days in addi-

tion to those on special occasions so that a clear picture of the normal

D-region ionization could be obtained. It is hoped that in the near future

these data will become available to D-region investigators.

JER |



PP e ==

i
i
H
-
:
E
4

§ g s e e

B i

249
APPENDIX I. NUMERICAL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS

The finite difference scheme adopted in the conversion of the set
of partial differential equations (equation (3.16)) into the corre-
sponding difference equations (equation (3.21)), and the method of
solution of the resultant equations are given in this appendix.

Using the spatial and time divisions given in equations (3.19) and

(3.20), the spatial derivatives can pe expressed in the form

m m m
3 -
Yn - Yﬁ+1 Yn-l ‘
3z 202 ? (A.1)
32 y M yM oy My
1 . Bl 7 n-1
2 2 T (A.2)
3z (Az)

where Yﬁm is the constituent concentration at altitude zn and time tm'
(3

The time derivative is written in the semi-implicit form

3 Yﬁm ) Yﬁm _ ynm-l ‘
3t At o {(A.3)

When equatio.s (A.1) - (A.3) are substituted in equation (3.16)}, it

becomes

7 -y . (g = 20+ X ) (o1 = ¥,

« b nt+l

)
5 L i+ d (A.4)
A% (Az) 205 i

In this equation, the coefficients a and b are functions of z only,
while the coefficients ¢ and d are functions of both z and £. The coef-

ficient ¢ includes the loss coefficient and therefore its value at time
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: tm is evaluated using the concentrations {Yﬁm'l}. Similarly, d, which
5 is the production term is also evaluated using concentrations obtained
; at time tm-l'

Rearranging, equation (A.4} becomes
a b 2a
——g.-a-_’l Atf;+1+«‘[(azl-—%)zﬁt-l.?:
: Az®  2Mz ( Az
|
| a, b, -1 -1
+ {—2--—1, At f;_l = - {Ym +dm At} (A.5)
} Az 20z ) 6 "
|
| This simplifies to
| m-1 - gl A6 |
§ % yg+1 * By yg T 32-1 - 6n ! (4.6

i which is the same as equation (3.21)}.

; At the beginning of the computations, the coefficients B and § are
evaluated using the initial values of {Yn}.

For the N height intervals, and corresponding to a given instant,

(N-2) equation of the above typ< can be written. The resulting system
of equations could therefore bhe solved using the two boundary conditions.

In general, a boundary condition can be written in the form

u—dz-% VY = w s (A.7)
da

where u, v and w are evaluated at the two boundaries.
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When written in the difference form and rearranged, this becomes
u u
o 0 -
KEIJ;+(”o'E v, = v, : (8.8)
N
Wy * D Iy~ F =9 - (A.9)

for the lower and upper houndaries, respectively.
Following the method given by Richimyer [1957], a recurrence formula
is written for the variable Yﬁm in terms of two view variables, r and s,

so that
Vosr Y ts . (A.10)

Eliminating terms including YE+1 and Y:_l from the equation (A.6)

using the above formula, one gets

o o -
G+ & ) Y+ (ys, ; - BT =0 (A.11)

(In writing this equation, the suffix in the coefficients are left out
for simplicity.)

. . o M .
This expression is true for all values of In s S0 that one may write

.1:_ + B + 62’}‘1— = R (A.lZ)

(A.13
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This yeilds

o
P = e — s (A.14)
i B+ r'ra-l

and

8§ -~y a8
S?’l = -B—'+——'—1£}-—1' . [A. 15)
Y -

The starting values of r, and 8, are determined using the lower

boundary conditicns,

%o = u - v Ba , | (A.16)

[
8 = - - 3 (A.17)
o u, vo Az .

Thus, starting from r, and 8, all the values of r, and g, could
be readily evaluated.

Next, using the upper boundarv condition (equation (A.9)), one

gets

_ wN Az + SN—] uN
Ty = v, Az + (l- Y u (A.18)
N =" V-1 N

Therefore, once YN is known, the other values of Yh could be obtained ;

using the zbove equation, in the descending order of =.




i
b
¥
%
f
¢
i
i
r

B
I
i
£

i e g

REFERENCES

253

Ackerman, M., F. Biaume and M. Nicolet (1969), Absorption in the spectral

range of the Schumann-Runge bands, Can. J. Chem. 47, 1834-1840.
Anderson, J. G. (1971a), Rocket-borne ultraviolet zpectromzter measure-

ments of OH resonance fluorescence with a diffusive transport model

for mesospheric photochemistry, J. Geophys. Res. 76, 4634-4652.
Anderson, J. G. (1971b), Rocket measurements of OH in the mesosphere,

J. Geophys. Res. 76, 7820-7824,

Appleton, E, and W. R. Piggott (1954), Ionospheric absorption measurements

during a sunspot cycle, J. Atmos. Terr. Phys. 5, 141-172.

Argo, H. V., J. A. Bergey and W. D, Evans (1970), Measurement of the
solar X-ray flux in selected emission lines, Astrophys. J. 160,
283-292,

Armistead, G. W., J. V. Evans and W. A. Reid (1972), Measurements of
D- and E-region'electron densities by the incoherent scatter
technique at Millstone Hill, Radio Sei. 7, 153-162.

Arnold, F. and D. Krankowsky (1974), New aspects of D-region positive
cluster ion composition inferred from an improved mass spectro-
meter measurement, submitted to J. Geophys. Res.

Arnold, F., J. Kissel, D. Krankowsky, H. Wieder and J. Zahringer (1571),
Negative ions in the lower ionosphere: a mass-spectrometer measure-
ment, J. dtmos. Terr. Phys. 33, 1169-1175.

Arnold, F., K. H. Marien and D. Krankowsky (1974}, New aspects in lower
jonosphere positive cluster ion composition: Results from an im-
proved mass spectrometer probe experiment, in Proceedings of the
COSPAR Symposiwm on, 'Direct measurements in the lower ionosphere',

Konstanz, F.R.G.




I I T A AR LA

i
{
i
i
H
t
i
i
{
i
'
P

DT P T =i ey

254

Badger, R. A., A, C. Wright and R. F. Whitlock (1965), Absolute inten-
sities of the discrete and continuous absorption bands of oxygen gas
at 1.26 and 1.065 p and the radiative lifetime of the lAg state
of oxygen, J. Chem. Phys. 43, 4345-4350,

Bainbridge, A. E. and L. F. Heidt (1966), Measurement of methane in the
troposphere and lower stratosphere, Tellus 18, 221-225.

Bates, D. R. and M. Nicolet (1950), The photochemistry of atmospheric
water vapor, J. Geophys. Res. &6, 301-327.

Bates, D. R. and P. B. Hays (1967), Atmospheric nitrous oxide, Planet.
Space Sei. 15, 189-197,

Belrose, J. (1963), The oblique weflection of low-frequency radio waves
at frequencies below 300 Ke/s, edited by W. T. Blackband, Pergamon
Presy, Oxford, 149-165.

Beynon, W. J. G. and K. Davies (1955), A study of vertical incidence
ionospheric absorption at 2 Mc/s, The physies of the tonosphere,
Physical Society, London, 40-52.

Blamont, J. E. and C. de Jager (1961), Upper atmospheric turbulence near
the 100 km level, Ann., Geophys. 17, 134-144,

Bonnet, R. M. (1968), Stigmatic spectra of the sun between 1800 R and
2800 R, Space Res. VIII, edited by A, P. Mitra, L. G. Jacchia and
W. S. Newman, North Holland, Amsterdam, 458-472.

Bowles, K. L. {1958), Observations of vertical incidence scatter from the
ionosphere at 41 Mc/Sec, Phys. Rev. Letter 1, 454-455,

Bracewell, R. N., K, G, Budden, J. A. Ratcliffe, T. W. Straker and
K. Weekes (1951), The ionospheric propagation of low and very-low-
frequency radio waves over distances less than 1000 km, Proe. Inst.

Elect. Engrs. 98 III, 221-236,

5‘.‘\_,,;;%{ ;u-;_=,l. . B I :_:.:_ et




s o= T P S LN

255

Brasseur, G. and M. Nicolet (1973), Chemospheric processes of nitric oxide
in the mesosphere and stratosphere, Plaret. Space Sei. 21, 939-961.

Burke, R. R. (1970), Hydrogen atom participation in D region ion chemistry,
J. Geophys. Res. 75, 1345-1347,

Campbell, I. M. and B. A. Thrush (1967), The assc¢iation of oxygen atoms
and their combination with nitrogen atoms, Proe. Roy. Soc. London
A296, 222-232,

Chan, F. T. (1968), Electron-ion and ion-ion dissociative recombination

; of oxygen. 1. Electron-ion recombination, J. Chem. Phys. 49, 2533-

2540,

Chapman, S. and T. Cowling (1952), The mathematical theory of non-unt form

§ gases, Cambridge University Press, New York.

? Christie, M. (1958), Elementary reactions in the photochemical oxidation

? of methyl iodide, Proc. Roy. Soc. A 844, 411-423,

é Clark, I. D. and R. P. Wayne (1969), The reaction of Oz(lAg) with atomic
nitrogen and with atomic oxygen, Chem. Phys. Letters 3, 405-407.

Colegrove, F. D., W. B, Hanson and F. §. Johnson (1965), Eddy diffusion
and oxygen transport in the lower thermosphere, J. Geophys. Hes. 70,
4931-4941.

Coltharp, R. N., S. D. Worley and A. E. Potter (1971), Reaction rate of
vibrationally excited hydroxyl with ozone, dpplied Opties 10, 1786-
1789.

/ Coyne, T. N. R. and J. S. Belrose (1972), The diurnal and seasonal varia-

tion of electron densities in the midlatitude D region under quiet

conditions, Radio Sei. 7, 163-174.

B T e S S LS Py B

I




e ety Ty

256

Coyne, T. N, R, and J. S. Belrose (1973), An investigation into the effects

of limited height resolution in the differential absorption partial
reflection experiment, J. Geophye. Res. 78, 8276-8288.

Crutzen, P. J. (1971), Ozone production rates in an oxygen-hydrogen-
nitrogen oxide atmosphere, J. Geophys. Res. 76, 7311-7326.

Culhane, J. L., A. P. Willmore, K. A. Pounds and P. W. Sanford (1964),
Variability of the solar X-ray spectrum below 15 &, Space Res. IV,
edited by P. Muller, North Holland, Amsterdam, 741-758.

Davis, D. D., J. T. Herron and R. E. Huie {1973), Absolute rate constants

for the reaction O(SP} + NO, = NO + 02 over the temperature range

2
230-339 °K, J. Chem. Phys. 58, 530-535.

de More, W. B. (1967), Reaction of O(lD) with H2 and the reactions of H
and OH with ozone, J. Chem. Phys. 47, 2777-2783.

de More, W. B. and 0. F. Raper (1967), Reaction of O('D) with methane,
J. Chem. Phys. 46, 2500-2505.

Detwiler, C. R., D. L. Garrett, J. D. Purcell and R. Tousey (1961), The
intensity distribution in the ultraviolet solar spectrum, Ann.
Geophys. 17, 263-272,

Donahue, T. M. (1972), Positive ion chemistry of the D and F regions,
Radio Sei. 7, 73-80.

Dunkin, D. B., F. C. Fehsenfeld, A. L. Schmeltekopf and E. E. Ferguson

J. Chem.

(1971), Three-body reactions of NO" with O N2 and CO

2° 2?

Phys. 54, 3817-3822,

Elwert, G¢. (1961), Theory of X-ray emission of the sun, J. Geophys. Res.
66, 391-401.

Evans, K. and X. A. Pounds (1968}, The X-ray emission spectrum of a solar

active region, Astrophys. J. 162, 310-335.

NPT

PR T S R




257

Evans, W, F. J. and E. J. Llewellyn (1970}, Molecular oxygen emissions
in the airglow, Amn. Geophys. 26, 167-177
;. Evans, W. F. J. and E. J. Llewyllen (1973}, Atomic hydrogen concentrations
i in the mesosphere and the hydroxyl emissions, J. Geophys. Res. 78,
323-326.
Fehsenfeld, F. C., and E. E. Ferguson {1968), Further laboratory measure-
ments of negative reactions of atomspheric intevest, Planet. Space
Set., 18, 701-702.
Fehsenfeld, F. C. and £, E. Ferguson (1969}, Origin of water cluster ions
% in the D-region, J. Geophys. Res. 74, 2217-2225, |
| Fehsenfeld, F. C. and E. E. Ferguson (1972a), The reaction NOE + H — OH
+ NO, Planet. Space Sei. 20, 295-296.
Fehsenfeld, F. C. and E. E. Ferguson (1972b), Recent laboratory measure-

ments of D- and F-region ion-neutral reactions, Radio Sei. 7, : »3

113-115.
Fehsenfeld, F. C., A. L. Schmelitekopf, H. I. Schiff and E. E. Ferguson
(1967), Laboratory measurements of negative ion reactions of atmo-

spheric interest, Planet. Space Sei. 15, 373-379.

Fehsenfeld, F. C., E. E. Ferguson and D. K. Bohme (1969), Additional
flowing afterglow measurements of negative ion reactions of D-region
interest, Planet. Space Set. 17, 1759-1762.

Fehsenfeld, F. C., D. B. Dunkin and E. E. Ferguson (1970), Rate constants

for the reaction of C05+ with 0, 0, and NO; Nz+ with O and NO; and

2

0," with NO, Planet. Space Soi. 18, 1267-1269.

Fehsenfeld, F. C., M, Mosesman and E. E. Ferguson (1971a), lon-molecule

reaction in an 0, - H,0 system, J. Chem. Phys. 55, 2115-2120.




|

|

f
\\{

1

H

.

i

!

H

258

Fehsenfeld, F. C., M. Mosesman and E. E. Ferguson (1971b), Ion-molecule

reactions in NO' - H,0 system, J. Chem. Phye. 55, 2120-2125.

2

Fejer, J. A. (1955), The interaction of pulses radio waves in the iono-
sphere, J. Atmos. Terr. Phys. 7, 322-323.

Ferguson, E. E. (1967), Ionospheric ion-molecule reaction rates, Rev.
Geophys. 5, 305-327,

Ferguson, E. E. (1969), Negative ion-molecule reactions, Can. J. Chem.
47, 1805-1820.

Ferguson, E. E. (1971), Laboratory measurements of D-region ion-molecule
reactions, Mesospheric models and related experiments, Reidel Pub-
lishing Co., Dordrecht-Holland, 188-197.

Ferguson, E. E., D. K. Bohme, F. C. Fehsenfeld and D. B. Dunkin (1969},
Temperature dependence of slow lon-atom interchange reactioms, J.
Chem. Phys. 50, 5039-5040.

Findlay, F. D. and D. R. Snelling (1971), Collisional deactivation of
oz(lag), J. Chem. Phys. 55, 545-551.

Foner, S. N. and R. L. Hudson (1962), Mass spectrometry of the HO, free

2
radical, J. Chem. Phys. 36, 2681-2690.

Fontijin, A., C. B. Meyer and H. I. Schiff (1964), Absolute guantum
yield measurements of the N0O-0 reactions and its use as a standard
for chemiluminiscent reactions, J. Chem. Phys. 40, 64-70,

Freeman, F. F. and B. B, Jones (1970), Grazing incidence spectra of the
sun, Solar Phys. 15, 288-308,

Friedman, H. (1963), Solar X-ray emission, The Solar Corona, edited by
J. W. Evans, Academic Press, New York, 45-58.

Gardner, F. F. and J. L. Pawsey (1953), Study of the ionosphgric D-region

using partial reflections, J. Atmos. Terr. Phys. 3, 321.344,




259

Geisler, J. E. and R. E. Dickinson (1968), Vertical motions and nitric
oxide in the upper mesosphere, J. Atmos. Terr. Phys. 30, 1505-1521.

Gnanalingan, S. (1974), Equatorial ionospheric absorption during half a
solar cycle (1964-1970}, J. Atmos. Terr. Phys. 36, 1334-1354.

Goldberg R. A. and A. C. Aikin (1971), Studies of positive-ion composi-
tion in the equatorial D region ionosphere, J. Ceophys. Res. 76,
8352-8364.

Golomb, D. and M. A. MacLeod (1966), Diffusion coefficients in the upper
atmosphere from chemiluminous trails, J. Geophys. Res. 71, 2299-2306.

Good, A., D. A. Durden and P, Kebarle (1970a), Mechanism and rate constants
of ion-molecule reactions leading to the formation of H+-(H20)n in
moist oxygen and air, J. Chem. Phys. 52, 222-229.

Good, A., D. A. Durden and P, Kebarle (1970b), Ion-molecule reactions in
pure nitrogen and nitrogen containing traces of water at total pres-
sures 0.5-4 torr. Xinetics of clustering reactions forming H+-(H20)
J. Chem. Phys. 52, 212-221.

Good, R. E. and D. Golomb (1973), Atomic oxygen profiles in the lower
thermosphere, Space Res. XIII, edited by M. J. Rycroft and S. K.
Runcorn, Akademie-Verlag, Berlin, 249-253.

Gough, M. P. and H. L. Collin (1973), Energetic electron precipitation as
a source of jonization in the nighttime D-region over the mid-
latitude rocket range, South Uist, J. Aftmos. Terr. Phys. 35, 835-850.

Gudiksen, P. H., A. W. Fairhall and R. J. Reed (1968), Roles of mean
meridional circulation and eddy diffusion in the transport of trace
substances in the lower stratosphere, J. Geophys. Res. 73, 4461-4473.

Gutnick, M. (1961), How dry is the sky?, J. Geophys. Res. 66, 2867-2871.

N et e s R . . S e e ceem
B ey § FERTN : i B
s A n At SRS 58 - st archdie s -

ey et Cor et



260

Hall, T. C. and R. E. Blacet (1952), Separation of the absorption spectra of
NO2 and N204 in range of 2400-5000 A, J. Chem. Phys. 20, 1745-1749.

Hall, L. A., J. E. Higgins, C. W. Chaynon and H. E. Hinteregger (1969),
Solar cycle variation of extreme ultraviolet radiation, J. Geophys.
Res. 74, 4181-4183,

Harries, J. E. (1973), Measurement of some hydrogen-oxygen-nitrogen
compounds in the stratosphere from Concorde 002, Nature 241, 515-518.

Haug, A. and B. Landmark (1970), A two-ion model of electron-ion recombina-
tion in the D region, J. Atmos. Terr. Phys. 38, 405-407.

Haug, A. and E. V. Thrane (1970), The diurnal variation in the mid-latitude
D-region, J. Atmos. Terr. Phys. 32, 1641-1647,

Hays, P, B. and J. J. Olivero (1970), Carbon dioxide and monoxide above the
troposphere, Planet. Space Soi. 18, 1729-1733.

Heimerl, J. M., J. A, Vanderhoff, L. J. Puckett and F. E. Niles (1972),
Fast path between N0+ and H30+-H20 in the D region, Report No. 7570,
Ballistic Research Laboratories, Aberdeen Proving Ground, Maryland.

Henderson, W. R. (1971), D-region atomic oxygen measurement, J. Geophys.
Res, 76, 3166-3167,

Henke, B. L. and R. L. Elgin (1970), X-ray absorption tables for the
2-2000 & region, Advances in X-ray analysis, edited by B. L. Henke,

J. B. Newkick and G. R. Mallet, Plenum Press, New York, 639-665.

Herron, J. T. (196%), An evaluation of rate data for the reactions at
atomic oxygen O(SP) with methane and theane, Int. J. Chem. Kineties 1,
527-539,

Herron, J. T. and R. Penzhorn (1969), Mass spectrometric study of the
reactions of atomic oxygen with ethylene and formaldehyde, J. Phys.

Chem. 73, 191-196,

e . o -

X




R . _ g

261

Hesstvedt, E. (1968}, On the effect of vertical eddy transport on atmo-
spheric composition in the mesosphere and lower thermosphere, Geophys.
Norvegica 27, 1-35.

Hilsenrath, E. (1971), Ozone measurements in themesosphere and strato-
sphere during two significant geophysical events, J. Atmos. Sei. 28,
295-297.

Hines, C. 0. (1963), The upper atmosphere in motion, Quart. J. R. Met.

Soa. 89, 1-42,

Hinteregger, H. E. (1870), The extreme ultraviolet solar spectrum and its
variation during a solar cycle, Ann. Geophys. 26, 547-554.

Hirsh, M. N. and P. N, Eisner (1972), Laboratory measurements of ion
chemistry in-a simulated disturbed ionosphere, Radio Sei. 7, 125-131.

Hoare, D. E. and A. D. Walsh (1957), The reaction of methyl radicals with
oxygen and comparison with other third-order reactions, Trans. Faraday
Soe. 53, 1102-1110.

Hoare, D. E. and G. S. Pearson (1964), Gaseous photooxidation reaction,
Adv. Photochem. 3, 83-156.

Hochanadel, C, J., J. A. Ghormley and P. T. Ogren (1972), Absorption spectra
and reaction kinetics of the HO2 radical in the gas phase, J. Chem.
Phys. 56, 4426-4432.

Hodges, Jr., R. R. (1969), Eddy diffusion coefficients due to instabilities
in internal gravity waves, J. Geophys. Res. 74, 4087-4090.

Horan, D. M. (1970), Coronal electron temperature associated with solar
flares, Ph.D. Dissertation, The Catholic University of America,
Washington, D. C.

Howard, C. J., H. W, Rundle and F. Kaufman (1971), Water cluster formation
rates of NO+ in He, Ar, N, and O, at 296° K, J. Chem. Phys. 55, 4472~

2 2
4776,

T T



262

Hudson, R. D. and V. L. Carter (1969), Atmospheric implications of pre-
dissociation in N,, J. Geophys. Res. 74, 393-395.

Hudson, R. D., V. L. Carter and E. L. Breig (1969}, Predissociation in
the Schumann-Runge band system of 02: Laboratory measurements and
atmospheric effects, J. Geophys. Res. 74, 4079-4086.

Huffman, R. E., D. E. Paulsen, J. C. Larrabee and R. B. Cairns (1971),
Decrease in D-region 02(159) photo-ionization rates resulting from
CO2 absorption, J. Geophys. Res. 76, 1028-1038.

Huie, R. E., J. T. Herron and D. D, Davi; (1972}, Absolute rate constants
for the reaction O + 02 + M- 03 + M over the temperature range 200-
346 K, J. Chem. Phys. 76, 2653-2658. |

Hunt, B. G, (1966), Ozone photochemistry in a moist atmosphere, J. Geophys.
Ree. 71, 1385-1398,

Hunt, B. G. (1971a), Cluster ions and nitric oxide in the D region, J.
Atmos. Terr. Phys. 33, 929-942,

Hunt, B. G. (1971b), A diffusive-photochemical study of the mesosphere
and lower thermosphere and the associated conservation mechanisms,
J. Atmos. Terr. Phys. 33, 1869-1892.

Hunt, B. G. (1973), A generalized aeronomic model of themesosphere and
lower thermosphere including ionospheric processes, J. Aimos. Terr.
Phys. 35, 1755-1798.

Hunten, D. M. and M. B. McElroy (1968), Metastable Oz(lAg) as a major
source of ioms in the D region, J. Geophys. Res. 73, 2421-2431,

Inn, E. C. Y. and Y. Tanaka (1959), Ozone absorption coefficients in the
visible and ultraviolet regions, Adv. Chem. Ser. 21, 263-268.

Jacchia, L. G. (1971), Revised static models of the thermosphere and exo-
sphere with empirical temperature profiles, Special Report 332,

Smithsonian Astrophysical Observatory, Cambridge, Mass.

T S T




263

Johannessen, A. and D. Krankowsky (1972), Positive-icn composition measure-
ment in the upper mesosphere and lower thermosphere at a high latitude
during summer, J. Geophys. Res. 77, 2888-2901.

Johannessen, A. and D. Krankowsky (1974), Daytime positive-ion composition
measurements in the altitude range 73-137 km above Sardinia, J. Afmos.
Terr. Phys. 36, 1233-1247.

Johnson, F. 5. and B. Gottlieb (1971), Eddy mixing and circulation at
ionospheric levels, Planet. Space Sei. 18, 1707-1718,

Johnston, H. and R. Graham (1973), Gas-phase ultraviolet absorption
spectrum of nitric acid vapor, J. Phys. Chem. 77, 62-63.

Justus, C. G, (1969), Dissipation and diffusion by turbulence and irregular
winds near 100 km, J. Atmos. Sei. 26, 1137-1141.

Kane, J. A. {1972}, Evidence for the existence of negative ions in the
D- and lower E-regions at twilight, Preprint X-625-72-18, Goddard
Space Flight Center, Greenbelt, Maryland.

Karol, TI. L. (1966), Quantitative investigation of stratospheric mixing
processes by means of long lived radon decay products, Tellus 28,
337-344,

Kasner, W. H. and M. A. Biondi (1968), Temperature dependence of the
electron-02+ ion recombination coefficient, Phys. Rev. 174, 139-174.

Kaufman, F. (1964), Aeronomic reactions involving hydrogen, a review of
recent laboratory studies, Awn. Geophys. 20, 106-114.

Kaufman, F. (1969), Neutral reactions involving hydrogen and other minor
constituents, Can. J. Chem. 47, 1917-1924.

Keneshea, T. J. and S. P. Zimmerman (1970), The effect of mixing upon
atomic and molecular oxygen in the 70-170 km region of the atmo-

sphere, J. Atmos. Sei. 27, 831-840.

P S T Py e Py P

P



264 !

Keneshea, T. J. and W. Swider (1972), Formulation of diurnal D-region
mo lels using a photochemical computer code and current reactiom rates,
J. Atmos. Sei. 27, 831-840.

Kijewski, H. and J. Troe (1971), Study of the photolysis of H202 in the
presence of H2 and CO by means of UV absorption of HOZ’ Int. J.
them. Kinetics 3, 223-235.

Krankowéky, D., F. frnold, H. Wieder, J. Kissel and J. Zahringer (1972),
Positive-ion chemistry in the lower ionosphere, Radio Sei. 7, 93-98.

Kranzenski, 2, C., R. Simonalitis and J. Heicklen (1971), The reac:ion of
O(SP) with ozone and carbonyl sulphide, Int. J. Chem. Kine.ics 3, ;
467-482. .

Kreplin, R. W. (1965), NRL solar radiation monitoring satellite descrip-
tion of instrumentation and preliminary results, Spuce Res. V,

edited by D. G. King-Hele, P, Muller and G. Righini, North-Holland

Publishing Co., Amsterdam, 951-965,

Kreplin, R. W. (1970), The solar cycle variation of soft X-ray emissioen,
Ann. Geophys. 26, 567-574,

Kreplin, R. W. (1971), Solar X-rays, Ann. Geophys 17, 151-161.

Kreplin, R. W., D. M, daran and K. P. Dere (1973), Reduction of solar
X-rey flux measurements for use in ionosph.ric research, Space Res.

XTIT, edited by M, .J. Rycroft and <. K. Runcorn, Akademie-Verlag,

Berlin, 469-470.
Kyle, T. G., D. fi. Murcray, F. H. Murcriy and W. O. Williams (1969), % N
Abundance of methane in the atmosphere above 20 kilometers, J. Geophys. A

Res. 74, 3421-3425,




e e T

265

Lee, H. S. and A. J. Ferraro (1969), Winter D-region electron concentration
and collision frequency features obtained with high-power interaction
measurements, J. Geor’ 3. Res. 74, 1184-1194,

LelLevier, R. E. and L. M. Branscomb (1968), Ion chemistry governing meso-
spheric electron concentrations, J. Geophys. Res. 73, 27-41.

Lettau, H. (1951), Diffusion in the upper atmosphere, Compendium of
Meteorology, edited by T. F. Malone, American Meteorological Society,
New York, 320-333.

Leu, M. T., M. A. Biondi and R. Johnson (1973), Measurements of the recom-
bination of electrons with H30+-(H30)n series ions, Phys. Rev. A7,
292-298,

Lin, C. L, and F, Kaufman (1971}, Reactions of metastable nitrogen atoms,
J. Chem. Phys. 65, 3760-3769.

Lineberger, W. (., and L. J. Puckett (1969), Hydrated positive ions in
nitric oxide-water afterglows, Phys. Rev. 187, 286-291.

Mandel'stam, S. L. (1965), X-ray emission of the sun, Space Sei. Rev. 4,
587-665.

Manson, J. E. (1967), The spectrum of the quiet sun between 30 and 128 -
for November, 1965, Ast-ophys. J. 147, 703-710,

Manson, J. E. (1972), Measurement of the solar spectrum between 30 and
128 R, Solar Phys. 27, 107-131.

Masterbrook, H. J., (1968), Water vapor distributions in the stratosphere
and high troposphere, J. Atoms. Sei. 28, 1495-1501,

Masterbrook, H. J. (1971), The varisbility of water vapor in the strato-
sphere, J. Aftmog. Sei. 28, 1495-1501.

McConnell, J. C., &. B. McEiroy and S. C. Wofsy (1871), Natural sources

of atmospheric CO, Nature 233, 187-188,

SR

- TP SN
i e e e e

S e
LA e B




266

McCrumb, J. L. and F. Kaufman (1972), Kinetics of O + 0, reaction, J. Chem.

Phys. §7, 1270-1276.

McKinnon, D. and H. W. Marewood (1970), Water vapor distribution in the
lower stratosphere over North and South America, J. Atmos. Sei. 27,
483-493,

Mechtly, E. A. (1974), Accuracy of rocket measurements of lower ionosphere
electron concentrations, Radio Sei. 9, 373-378.

Mechtly, E. A. ard L. G. Smith (1970), Changes of lower ionosphere
electron densities with solasr zenith angle, Radio Sei. 6§, 1407-1412.

Mechtly, E. A., S. A. Bowhill, L. G. Smith and H. W. Knoebel (1967), Lower
ionosphere electron concentration and collision frequency from rocket
measurements of Faraday rotatiocn, differential absorption, and probe
current, J. Geophys. 72, 5239-5245.

Meci "1y, E. A., S. A. Bowhill and L. G. Smith (1972a), Changes of lower
ionospheric electron concentrations with solar activity, J. Atmos.
Terr. Phys. 34, 1899-1907.

Mechtly, E. A., C. F. Sechrist, Jr. and L. G. Smith (1972b), Electron
loss coefficients for the D-region of the ionosphere from rocket
measurements during the eclipse of March 1970 and November 1966, J.
Atmos. Terr. Phys. 34, 641-646.

Mehr, F. J. and M. A, Biondi (1969), Electron temperature dependence of
recombination of 02+ and N2+ ions with electrons, Phys. Rev. 181,
264-271.

Meier, R. R. and P. Mange (1970}, Geccoronal hydrogen: An analysis of the
Lyman-alpha airglow observed from 0GO-4, Planet. Space Set. 18,

803-821.




s e T i -

267

Meier, R. R. and D. K. Prinz (1970}, Absorption of the solar Lyman-alpha
line by geoccoronal atomic hydrogen, J. Geophys. Res. 75, 6969-6979.

Meira, L. G., Jr. (1971), Rocket measurements of upper atmospheric nitric
oxide and their consequences to the lower ionosphere, J. Geophys.
Res, 76, 202-212.

Morris, Jr., E. D, and H. Niki {1971), Mass spectrometric study of the
reactions of nitric acid with O atoms and H atoms, J. Chem. FPhys. 75,
3193-3194.

Murcray, D. G., T. G. Kyle, F. H. Murcray and W. J. Williams (1969),
Presence of HNO3 in the upper atmosphere, J. Opt. Soc. American 59,
1131-1134,

Nakata, R. S., K. Watanabe and F. M. Matsunge {1965), Absorption and

photoionization coefficients of CO, in the region 580-1670 R, Sei.

2
Light 14, 54-71.

Nakayame, T., M. Y. Kitamura and K. Watanabe {19597, Iconization potential
and absorption coefficients of nitrogen dioxide, J. Chem. Phys. 20,
1180-118e6.

Narcisi, R. S. (1966), Ion composition measurements and related iono-
spheric processes in the D and lower E regions, Amn. Geophys. 22,
224-234,

Narcisi, R. 8. (1970), Composition studies of the lower ionosphere, based
on four lectures presented at the International School of Atmospheric
Physics, Erice, Sicily,.

Narcisi, R. S. and A. D. Bailey (1965}, Mass spectrometric measurements of

positive ions at altitudes from 64 to 112 kilometers, J. Geophys.

Res. 70, 3687-3700.




268

Narcisi, R. S., A. D. Bailey, L. Della Lucca, C. Sherman and D. M. Thomas
(1971), Mass spectrometric measurements of negative ions in the D-
and lower E-regions, J. Atmos. Terr. Phys. 33, 1147-1159.

Narcisi, R. S., A. D. Bailey, L. E. Wlodyka and C. R, Philbrick (1972a),
Ion composition measurements in the lower ionosphere during the
November 1966 and March 1970 solar eclipse, J. Atmos. Terrs. Phys. 34,
647-658.

Narcisi, k. S., C. R. Philbrick, D. M. Thomas, A. D. Bailey, L. Wlodyka,

D. Baker, G. Federico, R. Wiodyka and M., E. Gardner (1972b}, Positive

ion composition of the D- and E-regions during a PCA, Proceedings

of COSPAR Symposium on ''‘Solar particle ~vent of November 1969", d

AFCQL-72-0474, Specital Report No. 144, Boston, Mass., 421-431.
Neher, H. V. and H. R. Anderson (1962}, Cosmic rays at balloon altitudes

and the solar cycle, J. Geophys. Res. 67, 1309-1316.

g e

Nicolet, M. (1965), Nitrogen oxide in the chemosphere, J. Geophys. Res.
70, 679-689.

g

Nicolet, M. (1970), Aeronomic reactions of hydrogen and ozone, Aeronomica

Aeta A, 79, Brussels, 1-7 0.

Nicolet, M. and A. C. Aikin (1960), The formation of the D region of the

ionosphere, J. Geophys. Res. 65, 1469-1483,

Nicolet, M. and P. Mange (1954), The dissociation of oxygen in the high
atmosphere, J. ueophys. Res. §9, 15-45.

Nicolet, M. and W. Peetermans (1972), The production of nitric oxide in ; it
the stratosphere by oxidation of nitrous oxide, Ann. Geophys. 28,
751-761.

Niki, H., E. E. Daby and B. Weinstock (1968), Reaction of atomic oxygen

with methyl radicals, J. Chem. Phys. 48, 5729-5730.




269

Norton, R. B. and C. A. Barth (1970), Theory of nitric oxide in the
earth's upper atmosphere, J. Geophys. Res, 75, 3903-3909.

No:s:ion, R, B. and G. C. Reid (1972}, Energetic metastable molecular oxygen
as a source of ionization in the D region, J. Geophys. Res. 77,
6287-6290.

O'Brien, B. J. (1964), High-latitude geophysical studies with satellite
Injun 3:3, Precipitating of electrons into the atmosphere, J. Geophys.
Res, 6§, 13-43,

0'Brien, B. J., F. R. Allum and H. C. Goldwire (1965), Rocket measuremwnts
of midlatitude airglow and particle precipitation, J. Geophys. Res.
70, 161-175,

Ogawa, M. (1968}, Absorption coefficients of 02 at the Lyman-alpha line
and its vicinity, J. Geophys. Res. 73, 6759-6763.

Ogawa, M. (1971), Absorption cross-section of 02 and CO2 continued in the
Schumann and favor regions, J. Chem. Phys. 64, 2550-2556.

Ohshio, M., R. Maeda and H. Sakagami (1966), Height distribution of local
Photoionization efficiency, J. Radio Res. Labs. 13, 245-264,

Okabe, H. and D. A. Becker (1963), Vacuum ultraviolet photochemistry
VII-Photoanalysis of butane, J. Chem. Phys. 39, 2549-2555,

Olivero, Jr., J. J. (1970}, A study of the thermal structure of the
mesosphere and lower thermosphere, deron. Program Rep. 5, College

of Engrg., Tﬁe University of Michigan, Ann Arbor, Michigan.

O3

Pack, J. L. and A. V. Phelps (1970), Rates of hydration of 0O, 02“,
and 04— ions in H20-02 mixtures, paper presented at the Symposium
on Physics and Chemistry of the Upper Atmosphere, Philadelphia,

Penn.




i g N

270

Parkinson, W. H. and E. M. Reeves (1969}, Measurements in the solar
spectrum between 1400 and 1875 R with a rocket-borne spectrometer,
Solar Phys. 10, 342-347.

Paukert, T. T. and H., S. Johnston (1972), Spectra and kinetics of the
Hydroperoxyl free radical in the gas phase, J. Chem. Phys. 56,
2824-2838,

Paulsen, D. E., R. E. Huffman and J. C. Larrabee (1972}, Improved photo-

ionization rates of Oztlag) in the D region, Radio Sei. 7, 51-55.

Phelps, A. V. (1969), Laboratory studies of electron attachment and detach-

ment processes of aeronomic interest, Can. J. Chem. 47, 1783-1793.

Phillips, L. F. and H. I, Schiff (1962), Mass spectrometric studies of
atom reactions. I. Reactions in the atomic nitrogen-ozone system,
J. Chem. Phys. 36, 1509-1517.

Potemra, T. A. and A. J. Zmuda (1970), Precipitating energetic electrons
as an ionization source in the mid-latitude nighttime D region,
J. Zcophys. Res., 75, 7161-7167.

vounds, K. A. (1970}, X-radiation below 25 &, Ann. Geophya. 26, 555-565.

Preston, K. F. and R. I'. Rerr (1971), Primary processes in the photolysis
of nitrous oxide, J. Chem. Phys. 54, 3347-3348.

Ratnasiri, P. A, J. and C. F. Sechrist, Jr. (1971), Effect of CO and CH4
on the distribution of O-M products in the upper atmosphere, FOS,
Trans. Am. Geopays. Union 52, 870.

Reed, R. J. and K. E. German (1965}, A contribution to the problem of
stratospheric diffusion by large-scale mixing, Monthly Weather
Review 893, 314-321.

Rees, M. H. (1963), Auroral ionization and excitation by incident energe-

tic electrons, Planet. Space Sei. 11, 1209-1218.

.

P e P




Reid, G, C. (1970), Auroral ionization and excitation by incident ener-
getic electrons, Planet. Space Sei., 11, 1209-1218,

Reid, G. C. (1971) The role of water vapor and nitric oxide in deter-
mining electron densities in the D-region, Mescspheric models
and related experiments, Reidel Publishing Co., Dordrecht-Holland,
198-206.

Richtmyer, R. D. (1957), Difference methods for initial-value problems,
Interscience, New York.

Rowe, J. N., A, J, Ferraro, H. S. Lee, R. W. Kreplin and A. P. Mitra
(1970), Observations of electron density during a solar flare, J.
Atmos. Terr. Phys. 32, 1609-1614,

Rowe, J., N., A, P. Mitra, A. J. Ferraro and H. S. Lee (1974), An experi-
mental and theoretical study of the D-region-II. A semi-empirical
model for mid-latitude PD-region, J. Atmos. Terr. Phys. 86, 755-785.

Rugge, H. R, and A. B. C. Walker, Jr. (1968), Solar X-ray spectrum below
25 R, Space Res. VIII, edited by A. P. Mitra, L. G. Jacchia and

W. 5. Newman, North-Holland Publishing Co., Amsterdam, 439-449,

Sagalyn, R. C. and M, Smiddy (1964), Rocket iuvestigations of the electri-

cal structure of the lower ionosphere, Space Res. IV, edited by
P, Muller, North Holland, Amsterdam, 371-387.

Sayers, J. (1970), In-situ probes for ionospheric investigatioms, J.
Atmos. Terr. Phys. 32, 663-691,

Schiff, H. I. (1969), Neutral reactions involving oxygen and nitrogen,
Can. J. Chem. 47, 1903-1916.

Schiff, H. I. {1972), Laboratory measurements of reactions related to

ozone photochemistry, Ann. Geophys. 28, 67-77.

T | AN



272

Schilegel, K. (1971), Photoionization yields of O, 02, and N2 for high and
low solar activity, J. Atmos. Terr. Phys. 33, 1923-1931.

Schofield, K. (1967), An evaluation of kinetic rate data for reactions
of neturals of atmospheric interest, Planet. Space Sct. 15, 643-655.

Scholz, T. G. and D, Offerman (1974), Measurement of neutral atmospheric
composition at 85-115 km by mass spectrometer with Cryoion source,
J. Geophys. Res. 79, 307-310,

Scholz, T. G., D. H. Elihalt, L. E. Heidt and E. A. Martell (1970), Water
vapor, molecular hydrogen, methane, and tritium concentrations near
stratopause, J. Geophys. Res. 75, 3049-3054.

Schutz, K., C. E. Junge, R. Beck and B. Albrecht (1970), Studies of atmo-

spheric N0, J. Geophys. Res. 75, 2230-2246.

2

Schwentek, H, (1966), The determination of absorption in the ionosphere
by recording the field strength of a distant transmitter, Ann.
Geophys. 22, 276-289.

Scott, P. M., K. F. Preston, R. J. Anderson and L. M. Quick (1971), The
reaction of the electronically excited oxygen atom 0(1D2) with nitrous
oxide, Can. J. Chem. 48, 1808.

Sechrist, Jr., C. F. (1970), Interpretation of D-regior electron densities,
Radio Set. 5, 663-671.

Sechrist, Jr., C. F. (1972), Theoretical models of the D region, J.

Atmos. Terr., Phys. 34, 1656-1589.

Sechrist, Jr., C. F, (1974}, Comparisons of techniques for measurement

of D-region electron densities, Radio Set. 9, 137-149.

Seiler, W. and C. E. Junge (1970}, Carbon monoxide in the atmosphere,

J. Gecphys. Res. 75, 2217-2226.

-




273

Sheppard, P. A, (1959), Dynamics of the upper atmosphere, J. Geophys.
64, 2116-2121.

Shimazaki, T. (1967), Dynamic effects on atomic and molecular oxygen
density distributions in the upper atmosphere: A numerical solution
to equations of motion and continuity, J. Atmos. Terr. Phys. 289,
723-747,

Shimazaki, T. (1971), Effective eddy-diffusion coefficient and atmospheric
composition in the lower thermosphere, J. Atmos. Terr. Phys. 33,
1383-1401,

Shimazaki, T. and A, R, Laird (1970), A model calculation of the diurnal
variation in minor neutral constituents in the mesosphere and lower
thermosphere including transport effects, J. Geophys. Res. 78,
3221-3235,

Shimazaki, T. and A. R, Laird (1972), Correction to 'A model calculation
of the diurnal variation in minor neutral constituents in the meso-
sphere and lower thermosphere including transport effects', J.
Geopnys. Res. 77, 276-277.

Slanger, T. G. and G, Black (1970), Reaction rat: measurements of C(SP)
atoms by resonance and fluorescence, I, O(SP) * O2 + M= 03 + M and
0(>P) + NO + M, J. Chem. Phye. 53, 3717-3721.

Slanger, T. G., B. G. Wood and G. Black (1972), Kinetics of O(P) + CO + M
recombination, J. Chem. Phys. 57, 233-238.

Smith, L. G. (1964), Langmuir probes for measurements in the ionosphere,
COSPAR Imformation Bulletin 17, edited by K. Mzeda, 37-81.

Smith, W. S., J. S. Theon, J, F. Casey and J. J. Horvath (1970), Tempera-

ture, pressure, density and wind measurements in the stratosphere




274

and mesosphere, 1968, NASA Technical Peport NASA TR R-340,
Washington, D. C.

Strobel, D. F, (1971a), The diuruaal variation of nitric oxide in the upper
atmosphere, J. Geophys. Res. 76, 2441-2452,

Strobel, D. F, (1971b), Odd nitrogen in the mesosphere, J. Geophys. Res.
76, 8384-8393,

Strobel, D. F. (1972a), Minor neutral constituents in the mesosphere and
lower thermosphere, Radio Sei. 7, 1-21.

Strobel, D. F. (1972b), Nitric oxide in the D region, J. Geophys. Res.
77, 1337-1339,

Strobel, D, F., D. M, Hunten and M. B, McElroy (1970), Production and dif-
fusion of nitric oxide, J. Geophys. Res. 75, 4307-4321.

Swider, Jr., W. (1969), Ionization rates due to the attenuation of 1-100 &
nonflare solar X-rays in the terrestrial atmosphere, Rev. Geophys. 7,

573-394,

Tanaka, Y., E. C. Y. Inn and K. Watanabe (-19¢53)}, Absorption coefficients of

éases in the vacuum ultraviolet; 4. Ozone, J. Chem. Phys. 21, 1651-
1653

Thomas, L..f1§74), Recent developments and outstanding problems in the
theory of‘the D region, Radio Sei. 9, 121-135.

Thomas, L. and M, R. Bowman (1972), The diurnal variations of hydrogen and
oxygen constituents in the mesosphere and lower thermosphere, J.
Atmos. Terr. Phys. 34, 1843-1858.

Thomas, L., P. M. Godhalekar and M. R. Bowman (1973), The negative-ion
composition of the daytime D-region,J. Atmos. Terr. Phys. 35,

397-404.

e b A A A e

o




275

Thompson, B. A,, P, Harteck and R. R. Reeves, Jr. (1963), Ultraviolet

NO, SO, and

absorption coefficients of CO )

2 Ca, 02, HZO’ N2 3

CH, between 1850 and 4000 R, J. Geophys. Res. 68, 6431-6436.

Thrane, E. V. (1969), Diurnal variation of electron production rates in

0, NH

the D region, J. Geophys. Res. 74, 1311-1316.

Thraqe, E. V., A. Haug, B, Bjelland, M. Anastassiades and E Tsagalis
(1968) , Measurements of D-region electron densities during the
International Quiet Sun Yeavrs, J. Atmos. Terr. Fhys. 30, 135-150.

Timothy, A. F. and J. G. Timothy (1970), Long-term intensity variations
in the solar helium 2 Lyman-alpha line, J. Geophys. Res. 75, 6950-6958,

Tisone, G. C. (1973), Measurements of NO densities during sunrise at
Kuaui, J. Geophys. Res. 78, 746-750,

Tousey, R. (1963), The extreme ultraviolet spectrum of the sun, Space

Sei. Rev. 2, 3-69.

Vallance Jones, A. and R. L. Gattinger (1963), Tic seasonal variation

and excitation mechanism 1.58 u 1A - Szg - twilight airglow band,

g
Planet. Space Sci, 11, 961-874,
Velinov, P. (1968), On ionization in the ionospheric D-region by galactic
and solar cosmic rays, J. Atmos. Terr. Phys. 30, 1891-1905.
Vidal-Madjar, A., J. E. Blamont and B. Phissamay (1973), Solar Lyman
alpha changes and related hydrogen density distribution at the
earth's exobase (1969-1970), J. Geophys. Res. 78, 1115-1144,
Watanabe, K. and M., Zelikoff (1953}, Absorption coefficients of water
vapor in the vacuum UV, J. Opt. Soe America 43, 753-755.
Watanabe, K., E. C. Y. Inn and M. Zelikoff (1953), Absorption coefficients

of oxygen in the vacuum ultraviolet, J. Chem. Phys. 21, 1026-1030.

et e et et ot = < m e 4w g e e



276

Weeks, L. H, (1967), Lyman-alpha emission from the sun near solar minimum,
Astrophys. J. (letters) 147, 1203-1205.

Weill, G. M. (1969), NO(*s-?D) radiation in the night airglow and low
latitude aurora, Atmospheric Emissions, edited by B. M. McCorrac
and A. Omholt, Van Nostrand Reinhold, New York, 449,

Weller, C, S. and M. A. Biondi (1968), Recombination, attachment, and
ambipolar diffusion of electrons in photo-ionized NO afterglows,
P%és. Rev. 172, 198-206,

Wende, C. D. (1971}, The normalization of solar X-ray data from many
experiments, NASA Report No. X-601-71-166, NASA Goddard Space
Flight Center, Greenbelt, Maryland.

Westenberg, A. A. and N. De Hass (1972), Rate measurements on OH + NO
+ M and OH + NO2 + M, J. Chem., Phys. 57, 5375-5378.

Wofsy, S. G., J. C. McConn¢il and M. B. McElroy (1972), Atmospheric CH4,
€0 and CO,, J. Geophys. Res. 77, 4477-4493,

Zelikoff, M., K. Watanabe and E. C. Y. Inn (1953), Absorption coefficients
of gases in the vacuum ultraviolet, Part IT, Nitrous oxide, J. "hem.
Phys. 21, 1643-1647.

Zimmerman, S. P. and K. S. W. Champion (1963), Transport process in the
upper atmosphere, J. Geophys. Res. 68, 3049-3056.

Zipf, E. C. {1969), Collisional deactivation of metastable atoms and

molecules in the upper atmosphere, Cun. J. Chem. 47, 1863-1870.




