LASER APPLICATIONS TO ATMOSPHERIC SCIENCES - A BIBLIOGRAPHY

Franklin S. Harris, Jr.

Prepared by
OLD DOMINION UNIVERSITY
Norfolk, Va. 23508
for Langley Research Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION - WASHINGTON, D. C. - JUNE 1975
This report contains a bibliography of 1460 references on the applications of lasers to atmospheric sciences. The subjects covered include: aerosols; clouds; the distribution and motion of atmospheric natural and man-made constituents; winds; temperature; turbulence; scintillation; elastic, Raman and resonance scattering; fluorescence; absorption and transmission; the application of the Doppler effect and visibility. Instrumentation, in particular lidar, is included, also data handling, and interpretation of the data for meteorological processes. Communications, geodesy and rangingfinding are not included as distinct areas. The application to the atmosphere is covered, but not the ocean or its surface.
LASER APPLICATIONS TO ATMOSPHERIC SCIENCES - A BIBLIOGRAPHY

by
Franklin S. Harris, Jr.¹

This report contains a bibliography of 1460 references on the applications of lasers to atmospheric sciences.

Subjects Covered

The subjects covered include: aerosols; clouds; the distribution and motion of atmospheric natural and man-made constituents; winds; temperature; turbulence; scintillation; elastic, Raman and resonance scattering; fluorescence; absorption and transmission; the application of the Doppler effect and visibility. Instrumentation, in particular LIDAR, is included, also data handling, and interpretation of the data for meteorological processes. Communications (see IEEE, 1970), geodesy (see Berger, 1973) and rangefinding are not included as distinct areas. The application to the atmosphere is covered, but not the ocean or its surface.

References Included

Owing to the nature of the material, the references are of widely varying value. Books and/or monographs (example, Derr, 1972) are best, critical review articles (examples, Collis, 1969c; ¹ Research Professor of Physics and Geophysical Sciences, School of Sciences, Old Dominion University, Norfolk, VA 23508.
Hall, 1974) are very useful, followed by regularly refereed articles, letters, abstracts, titles only, and news articles. Inclusive pages give the length of the article.

Usefulness

For a person interested in a scientific field, there are several questions for which he would like answers:

1. Who are the people active in the field?
2. Where have they reported their work?
3. Where can I obtain some detail on an article to help determine where it would be useful or of interest?
4. How can I obtain a copy of the article?

This bibliography answers the first two questions in reasonable detail, though it is not complete for some of the more productive individuals, and certainly some persons and items have been missed. For the third question the abstract journal references will be helpful, though not all articles are so indicated, and some articles are found in more than one abstract journal. For the fourth question there is no simple universal answer.

Conferences

Conferences devoted to a single subject are excellent. However, the amount of printed material for a given conference varies enormously, from carefully edited articles in the published proceedings or special issues of journals, to preprints and long abstracts made available at the conference, to a program of titles only. In many cases, a conference report may be published later
in a regular journal but sometimes it is in the nature of a progress report and is only published much later after further research. In some cases the talk is never published, and the title or abstract (or the verbal memory of a listener) is all that is available. Some material is available in report form only or it may be the same as a later journal article, or it may be much longer than the published journal article giving additional details.

The six conferences on laser studies of the atmosphere serve as an example of assembling people interested in the application of laser techniques to atmospheric problems. The first conference was an informal discussion, but the sixth meeting in 1974 had become a major international conference. Reports have been published of the 1st (Goyer, 1968), 2nd (Brown, 1969), and the papers of the 3rd, 4th, 5th, and 6th are listed here under the authors' names. To save space, the Sixth Conference on Laser Atmospheric Studies (1973 Laser Radar Conference, 3-6 Sep 1973, Sendai, Japan) is abbreviated under each author, e.g., LAS6, Paper 7-7.

Abstract Journals

Four useful abstract journals are often referenced, giving where an abstract of the reference can be found, with more complete bibliographic information in most cases and information on how to obtain a copy. The abstract journals are particularly helpful for material not readily available in the major journals, or if the material is in a foreign language. Square brackets, [],
with letters and a number indicate a journal and the abstract number. The "N" numbers represent a listing of report literature in the National Aeronautics and Space Administration *Scientific and Technical Aerospace Reports (STAR)*, which is obtainable from the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402. The "A" numbers refer to books and journal articles listed in the *International Aerospace Abstracts*, published by the American Institute of Aeronautics and Astronautics (AIAA), 750 Third Ave., New York, NY 10017. IAA is coordinated with STAR. "MGA" refers to *Meteorological and Geostrophic Abstracts*, published by the American Meteorological Society, 45 Beacon St., Boston, MA 02108. The "APA" refers to *Air Pollution Abstracts*, published by the Environmental Protection Agency, and is also obtainable through the Superintendent of Documents. All four of these have been useful indeed, but an abstract system selects only those articles deemed by some editor or reviewer as within the special interest of the journal, and hence, no one, nor indeed all four, abstract journals cover completely the fields of this bibliography.

The abstract journals indicate libraries where the material is found (MGA), or how it can be obtained for each article. "A" and "N" numbers can be obtained from AIAA, New York. Almost all "N" numbers can be obtained from the National Technical Information Service, Springfield, VA 22151; this also applies to "PB" numbers (government document numbers). The "AD" refers to Defense Documentation Center, Cameron Station, Alexandria, VA 22314 and these
documents are available from DDC to qualified people and are usually also available from NTIS. Some publications are obtainable from the Superintendent of Documents, Government Printing Office, Washington, DC 20402. Ph.D. theses in the United States can generally be obtained from University Microfilms, 300 North Zeeb Rd., Ann Arbor, MI 48106, and the order number is given.

The advantage of the abstract journal notes is that they indicate how to obtain a copy. In some cases recourse must be made to a friendly librarian to obtain a copy by interlibrary loan or other means, and sometimes even the author has to be asked for a copy.

The same limitations on completeness applied to abstract journals also applies to various computer information retrieval systems. They give rapid access to large bodies of information but even if the article in the system has been key-worded, it is not necessarily for the special interest of the searcher.

Completeness and Duplication

Neither this bibliography nor any other can be "complete", but it should be "useful". Not all publications of all workers are included, but it is hoped that there are not many serious omissions through oversight. An examination of the references will disclose that some active leaders have presented somewhat similar material in several places within a year or two. Though this may result in considerable duplication of material, it reaches a wider audience and makes the material more easily available.
The inclusion of author's name and title only, in some cases, is justified because it indicates that personnel are involved with some of the problems and the area of activity, even if detailed results are not given.

Following up references from the articles listed and making personal contact with authors enables one to locate significant material not included here.

Languages

The titles generally are in English, although the original may not be. Many of the Russian journals are available in complete translation, and if so, the reference is usually to the translation journal. Some articles have been especially translated, and are so given with appropriate numbers. Names are found in the literature with varied spellings because of different transliteration systems in use, for example with Russian.
BIBLIOGRAPHY

Alishouse, J.C., 1969: The National Environmental Satellite Center-University of Maryland cloud penetration laser experiment, presentation at Infrared Information Symposium, Specialty Group on Infrared Backgrounds and Atmospheric Physics, Monterey, CA, 20 May

Altman, Laurence, 1971: Optoelectronics engineers pit laser against air pollution. Electronics, 44, 64-68 (6 Dec) [APA 23355]

Armstrong, R.L., 1974: Collisional narrowing effect on atmospheric transmittance. LAS6, Paper 4-4

Asai, K., and T. Igarashi, 1974: Detection of ozone by differential absorption using CO_{2} laser. LAS6, Paper 6-9

Babu, S.V., and V. Subba Rao, 1974: Resonance energy exchange effects in atmospheric transmission due to the presence of pollutants. LAS6, Paper 6-7

Bain, W.C., and M.C. Sandford, 1966a: Backscattering in the upper atmosphere (75-110 km) detected by optical radar. Nature, 210, 826

_____, 1968: Laser measurement of air pollution parameters. Terminal progress report, Northwestern University, Evanston, IL, Technical Institute Grant 5-RO1 AP 00401-02, 28 p. 10 Mar

Lidar measurement of backscatter and the attenuation of atmospheric aerosols. *Atmos. Envir.*, 3, 496

Bartusek, K., and D.H. Gambling, 1971a: Simultaneous measurements of stratospheric aerosols using lidar and the twilight technique. Dept. of Physics, University of Adelaide, ADP 100. Adelaide 5001, Australia

______, _____, and M.C. Johnson, 1972: On resonance fluorescence. Meeting Institute of Environmental Sciences, 18th, New York, NY, May 1972

Breier, Hans, Josef Gebhart, Klaus Robock, and Ulrich Teichert, 1973: Photoelectric measuring unit for determination of the fine dust concentration. Staub, Reinigung Luft, 33, 182-185 [APA 28781]

Brinkworth, B.J., 1971: Calculation of attenuation and back-scattering in cloud and fog. Atmos. Envir., 5, 605-611 [APA 15164]

Byer, Robert L., 1974: High energy tunable infrared source for remote air pollution measurement. LAS6, Paper 4-1

Carpenter, M.H., 1966: Optics and radar. L'Onde électrique, 46, 740-748

, and , 1974: Double-scattering calculations compared with laboratory dye-laser multiple-scattering measurements. LAS6, Paper 7-11

Collins, R.R., 1964: Lidar detection of CAT. *Astronautics and Aeronautics, 2,* 52-54

Collis, R.T.H., 1964: Lidar detection of CAT. *Astronautics and Aeronautics, 2,* 52-54 [A65-11494]

_____ 1965: Lidar observations of cloud. *Science, 149,* 978-981

_____ 1968a: Lidar. *Science J., 4,* 72-77 (Feb)

1972a: Some results of lidar probing of the troposphere. *Atmos. Envir.*, 6, 289

________, and ________, 1970: Meteorological applications of lidar. SPIE J., 8, 38-45

____, 1973a: Corrigenda to: can lidar detect CAT. *Appl. Opt.*, 12, 426-427

____, 1974a: Daytime measurements of H$_2$O vapor profiles. LAS6, Paper 3-12

____, 1974b: Normalizing of Rayleigh returns with the Raman rotational backscatter. LAS6, Paper 3-11

____, and M. Pina, 1974: Measurements of atmospheric temperature profiles. LAS6, Paper 3-10

_____, and ______, 1973a: Lidar vs. photometer, a one month comparison. Atmospheric Turbulence and Diffusion Lab., Oak Ridge, TN, Contrib. No. 76 (Jan) [MGA 24.8-120]

_____, and ______, 1974: Average aerosol scale heights in the Ekman layer. LAS6, Paper 5-2

1974: Remote atmospheric sensing using Mandel'shtam-Brillouin scattering of CO₂ laser. LAS6, Paper 3-14

1971: Applications of an airborne ruby lidar during a BOMEX program of cirrus observations. J. Appl. Meteor., 10, 1314-1323

Deepak, A., 1974a: Computer modeling of laser Doppler velocimeter (LDV) systems and their performance in fogs and comparison with experimental results. LAS6, Paper 9-3

1974b: Computer modeling of laser Doppler velocimeter (LDV) systems and the performance of CO₂-LDV in fogs and comparison with experimental results. Proc., 2nd International Workshop on Laser Velocimetry, Purdue University, West Lafayette, IN

Delong, H.P., 1974: Pollution field studies with a Raman lidar. Opt. Eng., 13, 5-9 (Jan-Feb) [A74-23715]

Dovgyallo, Ye.N., V.A. Kovalev, and Ye. A. Polyakova, 1973: Use of the backward scatter method for measurements of the atmospheric transparency over inclined directions. *Meteorology and Hydrology, No. 6 (Jan) [MGA 25.3-31]*

______, and P.M. Livingston, 1974: Atmospheric extinction measurements for several DF laser lines near 3.8 μm. *LAS6, Paper 4-3*

Ebeling, D., and G. Kuper, 1974: Advanced technologies for pollutant detection systems. LAS6, Paper 3-1

Electron. Nouv., 1971: Laser pour mesurer la pollution. No. 4, pp. 16-17 (May) [APA 19638]

Elec. News Eng., 1971: Laser beam identifies pollution. 80, 32-33 (Sep)

1974: The use of lidar for boundary layer wind profile measurements. LAS6, Paper 9-2

Facilities for Atmospheric Research, 1972: Compact laser radar probes the upper atmosphere. National Center for Atmospheric Research, Boulder, CO. No. 22, pp. 2-7 (Sep) [MGA 24.11-24]

Farrow, John, 1969: Propagation studies at 10.6 μm wavelength over 8 km path. *Atmos. Envir.*, 3, 229-230

Fegley, R., 1974: Long term laser radar monitoring of stratospheric aerosols at Mauna Loa Observatory. LAS6, Paper 7-4

Ferguson, R., 1974: Feasibility of CW lidar technique for measurement of plume opacity. LAS6, Paper 2-5

E.F. Danielsen, and D.G. Deaven, 1974: Synoptic scale variability in the distribution of stratospheric aerosols as revealed by airborne lidar. LAS6, Paper 7-1

B.M. Herman, and J.A. Reagen, 1972: Determination of aerosol height distribution by lidar. J. Appl. Meteor., 11, 482-489

1967c: Possibility of continuous measurement by optical radar of the influences on Earth of extraterrestrial dust. NASA Spec. Pub. 150, pp. 115-117

Frush, C., 1974: A new lidar signal processor using digital techniques to provide real time display. LAS6, Paper 1-2

Gambling, D.J., and K. Bartusek, 1971: Lidar observations of tropospheric aerosols. *Dept. of Physics, University of Adelaide, Australia, ADP 105*

*Geophysics Corporation of America, n.d.: GCA advances in tuned laser technology. GCA Technology Division, Bedford, MA

—, and M.C.W. Sandford, 1970: Seasonal variation of the night-time sodium layer. *Conf. on Laser Radar Studies of the Atmosphere, 3rd, Ocho Rios, Jamaica, W.I., 9-11 Sep 1970*

Glooshko, V.N., G.Sh. Livshitz, and I.A. Fedulin, 1974: Background brightness and polarization of the sky in the spectral regions of some lasers operation. LASG, Paper 9-7

1974: Complex refractive index of airborne particulates. LAS6, Paper 7-10

E.M. Patterson, and C.M. Wyman, 1974: Airborne laser radar for mapping two-dimensional contours of aerosol concentration. LAS6, Paper 1-3

_____, 1973: Real time measurement of the size distribution of particulate matter by a light scattering method. *J. Air Pollution Control Assoc.*, 23, 1035-1038

Green, A.E.S., T. Sawada, and R. McPeters, 1974: On phase functions and size distributions. LAS6, Paper 5-8

, 1974: Aerosol sounding by lidar in the lower atmosphere compared to simultaneous sodar sounding. *LAS6, Paper 5-3*

Hamilton, P.M., 1966a: Lidar tracks chimney plumes. New Scientist, 30, 716-717

———, 1969a: Lidar measurement of backscatter and attenuation of atmospheric aerosol. Atmos. Environ., 3, 221-223

51

, 1969a: Particle characteristics and light scattering. *Tellus*, 21, 223-229

, and M.P. McCormick, 1972; Mie scattering by three polydispersions. *J. Colloid Interface Sci.*, 39, 536-545

_____ and R.T. Ku, 1974: Long-path ambient-air monitoring with tunable diode lasers. LAS6, Paper 6-6
and A.H. Pike, 1973: Ambient air and source monitoring
with tunable semi-conductor lasers. *Air Pollution Control

J.O. Sample, T.E. Stack, A. Wilson, J.H. Boghos, S. Duda,
1971: Development and application of tunable diode lasers
to the detection and quantitative evaluation of pollutant
TR EPE-R2-72-090. 63 p. 30 Sep [APA 27714, N73-25140]

Hirono, M., 1964: On the observation of the upper atmospheric
constituents by laser beams. *J. Radio Res. Lab.* (Japan)
11, 251-271 [A65-14683]

, 1974: On the dynamical behaviour of the dust and its
vapourized elements in the upper atmosphere, inferred from
the observation by laser radar. LAS6, Paper 10-1

of aerosol layers in the upper atmosphere by laser radar.
*Report of Ionosphere and Space Research in Japan, 26,
237-244* [MGA 24.10-165]

, M. Ichinose, T. Igarashi, T. Ishida, Y. Masuda, K. Murankga,
T. Ishida, K. Nishikori, K. Uchikura, 1965: On observations
of the upper atmosphere by ruby laser. *Radio Res. Lab. J.,
12, 213-222* [A66-13376]

J. Opt. Soc. Am., 60, 1550

, and S. Klainer, 1969a: Air pollution detection by remote
Raman spectroscopy. *Symposium on Advances in Instrumentation
for Air Pollution Control,* Air Pollution Control Association,

, and , 1969b: Remote Raman measurement of contaminants
in air. In: *J. Gauger and F.F. Hall, Jr. (eds.) Laser Applica-
tions in the Geosciences,* Western Periodicals Co., North
Hollywood, CA, pp. 69-78

, and , 1970: Remote Raman spectroscopy as a pollution
radar. *Optical Spectra,* vol. 4, no. 7 (Jul/Aug) pp. 63-66

, , and R. Burton, 1969: New fields for laser Raman
spectroscopy. *Proc. Electrooptical Systems Design Symposium,
New York,* Sep 1969, pp. 418-427

Hochenbleicher, J.G., W. Klöckner, and H.W. Schrötter, 1974: Raman scattering cross sections in gases measured with UV argon laser excitation. LAS6, Paper 3-4

——, D. Melvin, and W.A. Munn, 1974: More on scattering by polydisperse systems of non-spherical particles. LAS6, Paper 5-9

——, and R.W.L. Thomas, 1974: The correlation between maximum sky polarization and the vertical transmission of light through the atmosphere: a supplement to laser atmospheric studies. LAS6, Paper 5-10

Huffman, D.R. and A.J. Hunt, 1974: Measured scattering matrix elements for spherical and non-spherical aerosols. LAS6, Paper 5-6

IEEE, 1970: Special issue on optical communication. Proc. IEEE, 58, no. 10 (Oct)

----, 1971b: Improvement of laser electronic technology for the measurement of environmental pollution. Ohm, 58, 1-12 [APA 265241]

----, 1974: Research and development of laser radars in Japan. LAS6, Paper

----, and ----, 1974: Infrared heterodyne laser radar for remote sensing of air pollutants by differential absorption via scattered energy. LAS6, Paper 6-13

Fundamental study of operational performance of a laser radar system employing A-scope representation. *Electronics and Communications in Japan*, vol. 51-B, No. 9, pp. 36-44

Holographic TV system measures tiny droplets. Laser Applications Suppl., May, p. 16

Land based system for fog detection, *Laser-sphere*, vol. 1, no. 1, Feb. 8, 1971, p. 4

A comparison of stability of simultaneous and alternate oscillation in the differential absorption method. LAS6, Paper 2-3

The way ENEL approaches the pollution problem, 18, (9), 14-15 (Nov) [APA 18839]

On the measurement of aerosol and growing droplets by two-color lidar. LAS6, Paper 7-9

Range-dependence compensated laser radar echo and quantitative interpretation in RHI display. LAS6, Paper 1-13

The measurements of plume rise and dispersion by YAG lidar. LAS6, Paper 8-8

Johnson, M.M., and _____, 1972: Absorption measurements near the 6943.8 Å absorption line. Antennas and Propagation Lab., University of Texas, Austin (20 Apr) [PB 211891, N73-14680]

Johnson, W.B., Jr., 1969a: Lidar observations of the diffusion and rise of power plant stack plumes. J. Appl. Meteor., 8, 443-449

Johnson, W.B., Jr., 1969b: Lidar application in air pollution research and control. J. Air Pollution Control Assn., 19, 176-180
1969c: Turbulence-induced "supersaturation" of laser
scintillation observed over a 3.5 kilometer horizontal range.

1971: Lidar measurements of plume diffusion and aerosol
structure. Conf. on Air Pollution Meteorology, Raleigh, NC,
5-9 Apr 1971. Preprints, American Meteorological Society,
Boston, pp. 55-61 [APA 22554]

1973: Atmospheric aerosol and thermal structure in the
boundary layer over the Los Angeles basin. Conf. on Laser
Radar Studies of the Atmosphere, 5th, Williamsburg, VA,
4-6 Jun 1973. Conf. Absts., NASA Langley Research Center,
Hampton, VA, p. 80

and E.E. Uthe, 1969a: Lidar observation of the lower
troposphere during BOMEX. Stanford Research Institute, Aero-
physics Laboratory, Menlo Park, CA, TID-25532, 49 p. (Dec)
[N71-14900]

and , 1969b: Lidar study of stack plumes. Final
Rep., Stanford Research Institute, Menlo Park, CA. Contract
PH 22-68-33, Proj. 7289, 116 p (Jun)

and , 1970: Lidar observations of the lower tropo-
sphere during BOMEX. Symposium on Tropical Meteorology,
University of Hawaii, Honolulu, 2-11 Jun 1970. Proc., Ameri-
can Meteorological Society, Boston, 7 p. [MGA 22.3-11R]

and , 1971: Lidar study of the keystone stack plume.
Atmos. Envir., 5, 703-724

in photomultipliers as applicable in laser radar techniques.
Conf. on Laser Radar Studies of the Atmosphere, 5th,
Research Center, Hampton, VA, p. 11

Jorna, S., 1971: Atmospheric depolarization and stimulated Brillouin

Journal of the Air Pollution Control Association, 1973: EPA/MIT to
investigate laser monitoring, 23, 157

Judge, M.E., 1969a: Atmospheric scattering at wavelengths of 0.69
and 1.06 micron. Proceedings of the Joint Conference on Lasers
and Opto-Electronics, 25-28 Mar 1969, University of South-
ampton, United Kingdom. IERE 8-9 Bedford Sq., London, W.C.1,
pp. 86-100 [A69-25040]

, 1969b: Some measurements of atmospheric polar scattering
at 0.69 and 1.06 μm. Atmos. Envir., 3, 226
and J.E.A. Selby, 1968: aerosol backscatter measurements at a wavelength of 0.85 micron. EMI Electronics Ltd., Military Projects Research Division, Hayes, Middlesex, England. DMP 3000 (Jan)

Kaldor, Andrew, W.B. Olson, and A.G. Maki, 1972: Pollution monitor for nitric oxides, a laser device based on the Zeeman modulation of absorption. Science, 176, 508-510

___, S. Okano, and N. Maruyama, 1974: Raman scattering by gaseous molecules and its application to upper atmosphere researches. LAS6, Paper 3-5

65
T. Ohnuma, T. Aruga, M. Jyumonji, A. Yamagishi, T. Kobayasi and H. Inaba, 1974: Characteristics of the sodium layer observed at Mt. Zao. LAS6, Paper 10-3

Kano, Muneyasu, 1968: On the determination of backscattering and extinction coefficient of the atmosphere by using a laser radar. Papers in Meteor. Geophys., Tokyo, 19, 121-129

_____ , 1971: Lidar measurements in the stratosphere up to an altitude of 50 km. Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt. Institut für Flugfunk und Mikrowellen, Oberpfaffenhofen. DLR-FB-71-02 (20 Dec) [N72-26422]

Kato, Yoshio, Yosuke Mori, and Humio Inaba, 1964: On the possibility of the upper atmospheric sounding by optical radar. Report Ionospheric and Space Research in Japan, 18, 103-108

Kerenyi, I., and M.L. Lowry, 1971: Pulsed lidar design chart system for remote detection of aerosol particle concentrations in the atmosphere. Air Pollution Control Assn., Atlantic City, 27 Jun-1 Jul 1971, Paper 71.4

Kitamura, S., Y. Izawa, Y. Murakami, Y. Suzuki, C. Yamanaka, and M. Nishimura, 1974: Laser radar system, on-line data processing, and its application to air pollution and meteorological studies. *LAS6, Paper 1-3*

S. Konishi, and T. Sueta, 1974: Generation of ultra-short pulses from high-gain narrow-linewidth gaseous lasers. LAS6, Paper 2-1

H. Shimizu, and H. Inaba, 1974: Laser radar techniques for remote measurement of atmospheric temperature. LAS6, Paper 3-8

Komatsu, Susumu, and Misao Hirayama, 1971: The measurement of an effective height of a chimney with laser radar. J. Pollution Control, 7 (3), 241-248 (Mar) [APA 10778]

KUPER, Gerhard, 1972: Laser-Lidar, was kann es wirklich? *Umwelt*, 2 (1), 40-43 [APA 18883]

KUPER, and D. Ebeling, 1974: Raman-Lidar Measurements in simulated polluted atmosphere. LAS6, Paper 3-2

_____, and __________, 1968b: Laser light detecting and ranging systems GB-60A and GB-60b. Sandia Laboratories, Albuquerque, NM, 130 p. (Sep) [APA-21379]

_____, 1967b: Swedish company develops laser ceilometer for British military unit. Sep, pp. 20-21

_____, 1968: Meteorological laser for Israel. Jul, pp. 18-19

_____, 1970: Drive in pollution expected to widen applications of lasers in spectroscopy. Mar, pp. 19-22

1974: Raman and fluorescence lidar measurements of aircraft engine emissions. LAS6, Paper 3-6

Leser, R.J., and J.A. Salzman, 1972: Light detection electronics for a Raman lidar. *NASA Lewis Research Center, Cleveland, OH. NASA TN D-6879*

Lidholt, L.R., 1970: Laser Raman radar detection based on a sampling technique. *Opto-Electronics, 4*, (2), 133-139 [APA 28362]

Lidar a CAT hunter? *Shell Aviation News*, No. 328, pp. 2-8 [A66-15297]

Lindberg, J.D., 1974: The composition and optical absorption coefficient of atmospheric particulate matter. LAS6, Paper 5-1

, 1972a: Light scattering by ice clouds in the visible and near infrared. *J. Atmos. Phys.*, 29, 524-536

____, 1971: Comparison of sea level transmittance at 0.56, 0.694, 0.956, 1.06, 1.337, 1.536, 1.544 microns. *Electro-Science Lab., Dept. Elec. Eng., Ohio State University*, Columbus. Rep. 2819-2 (Apr)

———, 1973a: Lidar measurement of temperature, a new approach. Army Electronics Command, Ft. Monmouth, NJ. DA Proj. 1TO-61102-B-53A. ECOM-5506 (Sep) [AD-767526, N74-13418, MGA 25.5-29]

———, and ———, 1972: Laser beam behavior on a long high path. White Sands Missile Range, Atmospheric Sciences Lab., NM. DA Proj. 1TO-61102 (Apr) [AD 743849, N72-33519]

______, and ______, 1973a: Lidar techniques for pollution studies. AIAA J., 11, 244-246

, and J.D. Lawrence, Jr., 1969: Tables of Mie scattering functions for particles with refractive index 1.5 National Aeronautics and Space Administration, NASA TN D-5110, 54 p. (Mar)

86

, D. Bundy, J. Eckert, J. Guagliardo, and J.L. McElroy, 1974: Boundary layer investigations using a down-looking airborne lidar system. *LAS6, Paper 6-1*

———, and ______, 1974b: Air pollution: remote detection of several pollutant gases with a laser heterodyne radiometer. Science, 184, 570-571

Miller, M.N., 1972: Remote measurement of the ice and water content of clouds from Raman scattering. Image Techn., 14, pp. 17, 23 (Feb-Mar) [A72-27547]

Ministry of International Trade and Industry (Japan), Research Coordination Bureau, 1972: Report of special research concerning development of laser radar for measurement of air pollutants. (Jun), 70 p. [APA 30182]

Moroz, E.Y., 1974: Experimental evaluation of the lidar technique for determining slant visual range. LAS6, Paper 1-11

Müller, Joachim, J.O. Bonow, and Georg Witt, 1971: Active optical sonde for the measurement of the relative air density profile and the exploration of non-molecular particle layers of the upper atmosphere. *Institute of Meteorology, University of Stockholm, Rep. AP-3, 46 p. (Jan) [MGA 23.5-33]*

Naito, Keikechi, K. Takahashi, I. Tabata, Y. Yokata, and T. Ikeno, 1974: Lidar observation of the convection in the lower atmosphere. *LAS6, Paper 8-6*

Nakahara, Shojiro, 1972: Air pollution monitoring by laser. *Gijutsu to Kezai, 6 (11), 27-35 (Nov) [APA 26495]*

Summary of first lidar conference on probing of the atmosphere.

______, 1969a: System described in *Laser und angewandte Strahlentechnik*, Aarau, Switzerland, Nr. 1, 1969, p. 64

New Scientist, 1967: Lidar watches aerial spray, 34, 6 Apr, p. 22

Nojima, H., B. Yamamoto, Y. Shoji, and A. Nagayama, 1974: Laser radar visibility measurement. LAS6, Paper 1-8

Oburger, W., 1965: Recent measurement of the height of clouds with optical radar. *Oesterreichische Ingenieur Zeitschrift*, 8, 164-167 [A66-32884]

Oeseburg, F., 1970: A literature study about the possible use of a laser as a light source in a particle counter. *Rijksverdedigingsorganisatil TNO Rijkswijk* (Netherlands), Chemisch Lab. 8 p. [N70-16141]
Ohkita, T., 1974: Current situation of air pollution in Japan and desirable future air monitoring. LAS6, Paper 6-5

Ohtsuka, Y. and I. Sasaki, 1974: Light-beat measurements of atmospheric fluctuations. LAS6, Paper 8-11

Okamoto, Masayoshi, Tetsuya Katayama, and Hironi Yoshida, 1973: The analysis of the quantitative change of particulate matter in air by laser scattering measurement. J. Japan Soc. Air Pollution, 8, 441 [APA 36063]

___, 1974: Resonance Raman scattering from ozone. LAS6, Paper 3-3

Politch, J., 1974: Probing the environmental pollution with GaAs laser. LAS6, Paper 6-3

Poultney, S.K., 1966: Evidence other than optical radar for the existence of an accumulation of dust between 70 and 140 km at low altitudes. Nature, 212, 1558-1559

____, 1972a: Laser radar studies of upper atmospheric dust layers and the relation of temporary increases in dust to cometary micrometeroid streams. In: A. Strickland (ed.) Space Research, XII, Akademie Verlag, Berlin, pp. 404-421

____, 1974b: Photon counting vs analog detection systems in laser radar studies of the atmosphere. LAS6, Paper 2-6

____, 1974c: The coverage and sampling limitations of lidar remote sensing experiments from the space shuttle. LAS6, Paper 10-4

____, 1974d: Active optical techniques for correction of the water vapor contribution to the index of refraction of air in geophysical measurements. LAS6, Paper 3-13

_____, and Zdenek Sekera, 1967: A research program aimed at high altitude balloon-borne measurements of energy emerging from the earth's atmosphere. Appl. Opt., 6, 221-225

100

____, _____, and R.L. Peck, 1974: New observations of tropospheric aerosols made with the U. of A. bistatic lidar. LAS6, Paper 8-9

_____ and R.K. Long, 1970: Comparative studies of extinction and backscattering by aerosols, fog and rain at 10.6 μ and 0.63 μ. *Appl. Opt.*, 9, 1563-1575

Rössler, Johannes, 1972: Considerations and experiments with qualitative and quantitative lidar measurements of smoke plume. *Staub*, 32, (10), 1-7 (Oct) [Eng. trans.: TT 72-50021/10, APA 28369]

Applications of tunable dye lasers to air pollution detection measurements of NO₂ concentrations by differential absorption. *Appl. Phys., 3*, 115-119 [A74-21573]

Measurements of atmospheric pollutions by the differential absorption technique. LAS6, Paper 6-8

The laser anemometer. *Optics and Laser Techn.*, 3, 200-207

Experimental study of the radiative and thermal effects of aerosol layers. LAS6, Paper 5-5

Results from the SRI-CIAP stratospheric lidar observation program. LAS6, Paper 7-7

Credibility and significance of lidar observations of the stratospheric aerosol. LAS6, Paper 7-8

Sandroni, Santino, 1972: Remote sensing of atmospheric pollution. Eurospectra, 11 (2), 56-64 (Jun) [APA 24285]

Sassen, K., 1974: Hydrometeor linear depolarization ratios. LAS6, Paper 9-6

———, 1969: A gas laser aerosol detection and sizing instrument. J. Air Pollution Control Assn., 19, 40-42

———, and K.O. White, 1973: Solid state laser multiwavelength identification and display system. Atmospheric Sciences Lab., White Sands Missile Range, NM. DA Proj. 1TO-61102-B-5-53A, ECOM-5473 (Jan) [AD 755161, N73-22598]

_____ , 1974b: An analysis of the measurement of the wind vector by means of a modulated Doppler lidar technique. LAS6, Paper 9-1

107

____, 1974: The use of two angle elastic and Raman scattering to obtain molecular density profiles. LAS6, Paper 3-7

, 1972: Raman scattering from pollutant gases and air-water interfaces. AIAA J., 11, 87-90

Selby, J.E.A., 1969: Aerosol backscatter at a wavelength of 0.86 μm. Atmos. Environ., 3, 227-228

110

Siemens AG, Munich, Laser überwacht Luftverschmutzung. Umwelt, 1, 50 [APA 18120]

112

_____, B.M. Morley, and T.E. Hoffer, 1974: GaAs lidar measurements of low-level clouds. LASG, Paper 1-6

__, ____, and ____, 1974: Lidar measurements of the vertical distribution of optical depth and aerosol backscatter in the troposphere. LAS6, Paper 8-10

Stanford Research Institute Journal, 1969: Smoke plumes from tall stacks. No. 27 (Dec), pp. 13-14

__, and H.D. Thompson, 1972: The use of the laser Doppler velocimeter for flow measurements. Proc. Workshop Held at Purdue University, 9-16 Mar 1972, Project Squid Headquarters, Jet Propulsion Center, Purdue University, West Lafayette, IN

Takimoto, H., and Y. Fujii, 1974: An optical heterodyne radar system for position and velocity detection. LAS6, Paper 2-7

______, 1974a: The application of steady state remote sensing for supplementing lidar results. LAS6, Paper 5-13
1974b: Comparisons of aerosol studies performed from below and above the atmosphere. LAS6, Paper 5-12

1974c: On the inversion of bistatic lidar results. LAS6, Paper 5-11

Tonna, G., 1973: Data processing method for determining the fog droplet size distributions by laser light scattering. *Atmos. Envir.*, 7, 1093-1102 [MGA 25.3-419]

Tsuji, T., Y. Higuchi, and H. Kimura, 1974: Measurement of NO₂ concentration in the atmosphere using absorption type two-wavelength dye laser radar. LAS6, Paper 6-10

Turner, R.E., 1974: Propagation of finite width light beams through Earth's atmosphere. LAS6, Paper 8-12

Uchino, O., and M. Hironi, 1974: On stratospheric aerosol size distributions from recent optical radar observations. LAS6, Paper 7-3

and R.J. Allen, 1974: A digital real-time lidar data recording, processing, and display system. LAS6, Paper 1-1

and W.B. Johnson, 1971: Lidar observations of the lower troposphere aerosol structure during BOMEX. *SRI Project 7929 (Jan)*

and , 1974c: Lidar/radiometric study of the urban aerosol. LAS6, Paper 5-4

VDI, Z., 1971: Optical radar method for determination of air pollution, 113, 375 [APA 11505]

______, 1974: Dispersion of artificial clouds in the stratosphere. *LAS6, Paper 7-6*

J. AppZ. Meteor., 9, 916-920

, , and N.C. Ahlquist, 1970: Experimental measurement of total scatter to backscatter ratio at $\lambda = 694$ nm. Conf. on Laser Radar Studies of the Atmosphere, 3rd, Ocho Rios, Jamaica, W.I., 9-11 Sep 1970

Weinberg, J.M., J. Kauffman, J. Engel, and T. Quinn, 1974: Sky emission spectra in the infrared. *LAS6, Paper 4-5*

________, 1974: Recent progress in laser atmospheric studies. *LAS6, Paper*

1972b: Lidar measurements of atmospheric aerosol as a function of relative humidity. Opto-Electronics, 4, 125-132 [APA 28415]

1974b: Determination of multiple scattering by means of laser radar techniques. LAS6, Paper 7-12

Winstanley, J.V., 1974: The point visibility meter - a forward scatter instrument for the measurement of aerosol extinction coefficient. LAS6, Paper 1-10

_____, and G.J. Burrell, 1974: Evaluation of a GaAs lidar for the measurement of visibility. LAS6, Paper 1-7

Yelfimova, Ye.V., et al., 1972: Study of the joint resorptive action of atmospheric pollution (gaseous and dust). *Gigiyena i Sanitariya*, 37, 11-16 (Aug) [MGA 24.5-152]

Yoshikawa, M., M. Hoshiyama, and A. Nishitsuji, 1974a: Quantitative measurement of air pollution by laser. *LAS6, Paper 6-4*

Yoshikawa, M., M. Hoshiyama, and A. Nishitsuji, 1974b: Scattering parameters for the laser radar equation. *LAS6, Paper 5-7*

Yura, H.T., 1974: Physical model for strong optical scintillation in the atmosphere. LAS6, Paper 8-13

____, et al., 1972b: Investigation of underlying earth surface and clouds with the use of an airborne lidar. Space Research, XII, Berlin, pp. 499-502 [MGA 25.3-48]

J., G.G. Matvienko, I.V. Samokhvalov, and V.S. Shamanaev, 1974: Joint sounding of the atmosphere with the airborne and ground lidars. LAS6, Paper 8-1

J., and V.S. Shamanaev, 1974: Results of aerosol laser sounding as compared with air humidity. LAS6, Paper 8-4

J., and A.I. Popov, 1970: Change of the light pulse shape reflected from the clouds with different optical properties. Conf. on Laser Radar Studies of the Atmosphere, 3rd, Ocho Rios, Jamaica, W.I., 9-11 Sep 1970

133.

