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PREFACE

This report describes the theory and preliminary results

r of a research study carried out in the period from April to July,

1975, under Contract NAS 2-8844, titled "Study of RPV and MX Sys-

tem Characteristics."

Mr. Michael Tauber was the Technical Monitor for the study,

F which was done for the Advanced Concepts Branch of the Aeronautics
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Division, NASA-Ames Research Center.	 The author thanks Dr. J. V.

a Breakwell of Stanford University for providing helpful suggestions

used in Sections 4.2.5 and 4.2.6. 	 Mr. D. S. Hague of Aerophysics

y Research Corporation served as Project Leader for the study.
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APPLICATION OF DIFFERENTIAL GAME THEORY

TO ROLE-DETERMINATION IN AERIAL COMBAT

by A. W. Merz

Aerophysics Research Corporation

1.0 SUMMARY

This report describes the application of the theory of differ-

'ential,games to the one-on-one aerial combat problem. The purpose

of the study is the development of criteria which specify the roles

of pursuer and evader as functions of the relative geometry and of

the important parameters of the problem.

A reduced-order model of the relative motion is derived and

discussed. In this model, the two aircraft move in the same plane

at unequal but constant speeds, and with different maximum turn rates.

The equations of relative motion are of third order, the dependent

variables being the relativerange, hearing and heading of the two

aircraft. Termination of the pursuit-evasion game is defined by

either the heading-limited or the range-limited end condition.

These are geometric conditions for which the evading aircraft is

in front of the other, with the relative heading and relative range

r	 satisfying certain inequalities.

Retrograde solutions to the equations of relative motion are

used with the derived optimal terminal maneuvers to find where an

assumed set of end conditions could have begun. End conditions

correspond to a near miss or to a collision, these being types of

trajectories which define the "barrier". The barrier separate

relative geometric conditions leading to capture from nearby rela-

tive conditions leading to escape, and its determination is of

primary importance in the role-determination problem. It is shown

that optimal maneuvers of both pursuer and evader take place at eith-

er maximum turn rate or at zero turn rate, and that the solution

typically involves two-part and three-part 'maneuvers for both aircraft.
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. In general, the barriers divide the state space of relative

^
+tl,

initial conditions into three regions; namely:
i

1.	 Victory is guaranteed for aircraft A, regardless of

jmaneuvers by aircraft B.

2.	 Victory is guaranteed for aircraft B, regardless of

maneuvers by aircraft A.

3.	 Neither can win; i.e., a draw region exists in the.

space of initial conditions-._
^i

The contents of this report are limited to a description of thew`
theory and an illustration of representative results obtained

r for typical numerical sets of parameters.	 The general problem

ris highly nonlinear, and is expected to show a strong dependence

on the values assumed for the parameters. 	 Later studies will

explore this dependence, in an effort to quantify the relative

importance of the various features of .'the problem..
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2.0	 INTRODUCTIONf

A fundamental Question in the one--on-one aerial combat

' problem is the specification of roles. 	 That is, which aircraft

should pursue and which should evade? 	 The answer obviously

i depends not only upon the relative geometry but alsoupon the

i capabilities of the aircraft and their weapon systems..	 From the

point of view of differential game theory, these parameters alone

should imply the roles and the eventual outcome of an optimally-

'. played pursuit-evasion game. 	 However, actual and simulated com-

bat engagemezits frequently start in a configuration for which both

pilots initially take the role, of pursuer. 	 One, and sometimes both

of them may later switch to an evasive strategy, unless the en-

{
J

counter leads to a "stand-off" condition. 	 Such a'stand-off con-

dition could arise when two equal aircraft are diametrically

opposite each other, describing their minimum turn circles in the

E '
same direction.

On the other hand, the roles of pursuer and evader are

obvious in those geometric configurations not far removed from an

assumed end condition. 	 Subtle changes in the initial geometry,

however, can make the specification of roles less transparent, and

eventually a configuration is reached for which the roles are ob-

viously`the reverse of the initial set, as shown in Figure 2.1.

B pursues A	 ?

A pursues B

A

Figure 2.1	 Role Reversal in Aerial Combat

a : 3
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The more general• problem is one for which no straight-

forward intuitive solution exists, and which is important for

the following reasons:

1.	 Optimal maneuver tactics are of great significance

f	 (	 to combat aircraft pilots, whether they are pursuing

j	 or evading.	
a

2.	 Relative capabilities of combat aircraft can be found

in terms of speed, maneuverability and weapon systems.

3.	 It may be feasible to incorporate optimal combat tac-

tics into the requirements of RPV autopilots and
i

i
sensors.

4.	 The sensitivity of combat roles and maneuvers to

certain performance parameters may be very great, such

_	 that much greater effort should be expended on these

parameters; e.g., maximum turn-rate at the expense of

vehicle weight.

In this report, the one-on-one combat 	 is mathematp	 [ ]	 p	 i-

cally modelled as a differential game l	 in which the pursuit-
n	 evasion roles are not given a priori [23 .	 The important performance

parameters are constant for both aircraft and the relative position

and heading are assumed known by both pilots. 	 The parameters

'	 effectively define position in a set of "capture regions" for each

of the aircraft. 	 These capture regions are combinations of relative

position (range and cone-angle) and relative Beading (or angle off)

for which the roles are given, and for which the pursuer is guaran-.	
6

teed a win, no matter what maneuvers are used by the other aircraft..

`	 A'solution procedure for determining the capture region boundaries
e 

will be developed in subsequent sections of this report..

4^	
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3.0 MATHEMATICAL MODELLING

Mathematical analysis of an aerial combat encounter

between two aircraft is an extremely difficult problem, which

can be approached in two ways:

1.	 Complex and accurate aircraft simulations can be used

with actual or simulated pilot control inputs, to

generate experimental and statistical results as to

"effective !! combinations of aircraft, weapon systems
[3-10]

and pursuit-evasion maneuvers

2.	 Simplified models of aircraft dynamics can be coupled

with the theory of differential games to specify the

roles as functions of the relative geometry and the

optimal, maneuvers associated with these roles.

These two methods focus on different features of the problem,

and both have advantages and shortcomings.	 The research effort to

date has been concentrated on the first approach* and a large

amount of experimental data has been accumulated. 	 However, it is

difficult to draw general conclusions from the data, because of the

large number of independent input parameters.	 Further, the experi-

mental data may deal with a specialized feature of the problem (e.g.,

a gunsight or thrust-vector control system) without first showing how

important this aspect is to the problem solution. 	 However, in any

case, thehe experimental results may be biased by the use of non-

optimal control laws.	 This tends to make suspect any general con-

clusions based on experiment.

third method, which yields locally optimal solutions, applies
the optimization criteria to the full equations of motion, over a

given time-interval [""' ] .	 This method required that the range
rate always be negative, which meant that solutions could not be
found for all initial conditions.

S
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On the other.hand, practically all the published theoretical

differential game studies have utilized over-simplified or over-

specialized mathematical models[13-18] or have dealt with theoretical

aspects of differential games [19,20] which are irrelevant to

realistic pursuit-evasion problems.

For these reasons, it appears that detailed modelling and

subsequent analysis of a orp tion of the aerial combat system should

be done only after it has been shown to have a major impact on the

system outcome. This can be demonstrated only by using simplified

dynamic models which include what seem to be the fundamental

features of the system.

3.1	 METHODS OF DEVELOPING TACTICS
F

The first approach given above has the advantage of per-

mitting practical results to be passed from experienced !wombat
K;

` pilots to other pilots and to aircraft designers. -Unfortunately, 	 -a

however, the mass of data accumulated in this experimental

approach discourages general quantitative conclusions, and it is

often impossible to know why a particular combat encounter (simu-
•	 <a

lated or otherwise) ended in favor of one pilot instead of the

other.	 Furthermore, the method is both inefficient and expensive,

partly because most of the effects being simulated are secondary

K to the question of determining which pilot should pursue and which

should evade.

The second approach, on the other hand, can be criticized

as being too highly idealized with insufficient fidelity in the

aircraft maneuver dynamics, and with too little attention given to

the transient behavior of the pilots. 	 Nevertheless,, the analysis

of reduced-order systems in the past has had the effect of isolating

the significant parameters, and of permitting a more organized
- development of improvements in a given _system. 	 For this reason,-it

6
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is felt that practical low-order versions of the aerial combat

problem can be analyzed and solved, in terms of parameters which

appear to be of fundamental importance.

In order to validate or to determine limits to this hypo

thesis, it will be necessary to use results obtained from the

simplified model in a realistic simulation of the aerial combat

f problem. For example, a simulated combat engagement between an

"optimally" guided RPV and a comparable aircraft flown by an ex-

perienced pilot or guided by approximate combat control laws can

demonstrate the value or limitations of the second approach.

3.2 ASSIDIPTIONS IN MATHEMATICAh MODEL

All engineering work is based on the analysis of more or

less idealized equations' describing a certain aspect of the system

of interest. If the mathematical details of the study are done

correctly, the success and validity of such analyses depend on how__

well the actual system corresponds to the idealized system. For

example, the low-speed small-disturbance stability characteristics of

aircraft can be quite accurately determined using linearized

equations written for a rigid aircraft. At higher dynamic pressures .,	 .

on the other hand, aeroelastic effects become significant, and the

order and complexity of the equations describing the system increase

considerably. But such mathematical refinements in the system

equations should be undertaken only after a rather complete study

of the simpler equations. In many cases, of course, the higher-

ordered equations are never; needed, because the aircraft is essentially

rigid for practical values of the dynamic pressures.

A,
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By analogy, the modelling of the one-on-one aerial combat

problem should start with the simplest realistic* dynamic equations

which can be used to describe the important features of the motion.

After the pursuit-evasion tactics have been found for the simplest

mathematical model, refinements can be added to the descriptive

equations, and small changes in the results can normally be expected.

If the changes in the results are not "small", in the engineering

sense of the word, certain important assumptions have been violated.

In this case, either the mathematical model must be Modified, or

the applicability of the results must be restricted to parameters

for which such changes are small. For this reason, it is always

good practice to emphasize the assumptions and conditions under

which a solution has been found. The reader can then judge for him=

self whether these conditions are reasonable.

The velocities and maximum turn rates of the two aircraft are

assumed to be constant during the encounter, to avoid the use.of

higher-ordered equations of relative motion. 	 This is partially ^justi-

fied by observing that maximum normal accelerations due to lift are A

usually much larger than axial accelerations due to thrust and drag,

except for very high angle of attack configurations. 	 A second justi-

fication arises in the analogous problem of developing maritime
[21'22]collision avoidance maneuvers. 	 It is found	 that ship velocities

in a hard turn can be reduced by 30% to 50% from their initial values.

Nevertheless, the optimal ship turn maneuvers are nearly insensitive

to this change in velocity, and excellent results have been obtained

by using maneuvers based on the initial velocities of the ships. 	 Of

course, any results are perfectly applicable to turn maneuvers which

maintain the velocity (or energy) of the aircraft. 	 But, if the direc-

tion of a turn maneuver can be shown to be nearly independent of the

instantaneous changes in speed or heading require infinite accel-
erations, and are examples of the use of unrealistic dynamic
equations [1,3-16] .

8
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subsequent speed loss, it is irrelevant that the speed ,is reduceda	 p
E

I

during the turn. In other words, the fundamental purpose of the pre-

sent study is the development of pursuit-evasion maneuvers, as functions

E	 of the relative positionand velocity, and not to simulate the transient

f ^'	 behavior of the aircraft during these maneuvers.
dr	 ,

In the development of pursuit-evasion maneuvers, it will be

found useful, if not necessary, to work in terms of retrograde ("back-

ward") time.	 This is the time-to-go until the end of the combat

k engagement, Which is defined geometrically, in terms of the relative

position and heading of the two aircraft. 	 When a suitably simplified

,_
.
4

r

model of the aerial combat problem is solved in this way ll ' 19) , it is

4
r

x
4

_	 j

usually. found that the -chase is brief and the trajectories rather

y simple.	 This provides-retroactive-justification for, certain of the

assumptions necessary to the solution.	 That is, for example, the
r

entire combat time may be so short that the speeds cannot be appreciably

altered, so that they can reasonably be considered as constants.

>G
The important kinematic characteristics of two aircraft in

combat are the vectors describing the relative position and the rela-

tive velocity.	 These two vectors define a.plane in which the relative

motion occurs, and it is intuitively clear that both aircraft should

apply their control accelerations in this plane. 	 This makes the

optimal use of the accelerations that each pilot has at his disposal,

and if the individual aircraft velocities are also in this plane, an

initially planar dynamics problem should remain planar. 	 In fact,

a experienced combat pilots do attempt to orient their lift vector in

the plane of the relative position and velocity vectors. 	 This tends

to lead to the development of an encounter lying within a twisting

Na plane in three-dimensional space.

}
4
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3.3	 EQUATIONS OF RELATIVE MOTION

;;Under the simplifying assumptions discussed above, the rela-

tive motion. is described by three equations, in which the s peeds and

maximum turn rates are constant parameters.	 The coordinate system is

chosen to be fixed to the faster aircraft 	 A , and in this axis

system the relative position (x,y) and the relative heading (H)

of the slower aircraft -B	 satisfy the equations

x = -	 WA Y + VB sin H	 _	 )

Y= _	 VA +	 WA x +`	 VB cos H	 (3.1)

F
H	 a)A + ,w B

where the turn rates are bounded, i.e., ^cv i l t co i 	i = A,B.
max

r s

R ,.... As shown in Figure 3.1, the relative motion can be expressed

in polar -coordinates as well, in terms of the cone-angle 	 the

angle-off (0) and the range (r). 	 The equations of relative motion

in these coordinates are:

r _	 VB cos 0	 - V
A

_ cos cA

k„

_ -wA + (VB sin 0 + VA sin	 ) /r	 (3.2)

B =	
WB - (V

B 
sin 0	 + VA sin ¢i) /r

The two sets of ' coordinates are related by

x = r sin' , y = r cos c^i	 H	 ¢i + g .	 (3.3)

10
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The differential equations of motion in Eq.(3.1) are seen to {

be linear, whenever 	 wA and o)	 are constant,, with solutions in

terms of trigonometric functions.	 This is because the aircraft are

then describing simple circular arc paths in fixed coordinates.

The equations are solved by first determining the heading as a

linear function of time, and by then solving the position

equations by standard methods.	 The more symmetrical polar

equations in (3.2), however, can be solved only in terms of arc 7

tangent functions.	 These equations show how the angles 	 di and 9

depend upon both the aircraft turn rates and the kinematics of

' the problem.	 When the range is large, 	 4) = - wA	
and	 8 = W B

but otherwise, highly nonlinear effects can predominate. 	 Thus,

at large ranges	 A	 can control the cone angle, but 	 B	 can con-

trol the angle-off!	 Since from symmetry the converse is true, air-

craft at an initially large distance from each other will often

t. null the steering errors and turn the initial encounter into a
a

' 1 `$ head-on pass with little lateral offset. 	 However, short-range

. maneuvers are far more complex.

H
e

"B
B

(X,,Y)

Y r

k

(.: VA

5
_

xu^

Figure 3.1	 Relative Motion Coordinates

h  11 .



The solutions to Eq(3.1) are given here in terms of the

final (terminal) conaitions (xf, yf , Hf). For constant values

of the two turn rates, both aircraft describe circular arcs in
K

	

	
real space, and B's position relative to A is given by the

following functions of the retrograde time, r

x = 01 (1 - cos T + y f sin-r) + V B /c^B {cos (H f + w A -r) - cos H]

y = yf cos r + (l - W xf) sin -r - VBko [sin(Iif + c^A r)	 sin H]

'	 H	 H  + 
	

A	
CO

B )?	 ( wi^ 	 i	 A, B	 (3.4)

max

ri	 Here, the velocity of the faster aircraft has been normal-

:.	 ized to VA 1, and the maximum turn rate of this aircraft is

normalized to o)

	

	 1. This means that the unit of distance
max

in the normalized equations is the turn radius of aircraft A.

For brevity, the maximum turn rate of the slower aircraft is
y

written as of

	

	 = co , which will be assumed greater than 1,
max

while B's velocity is V  < 1. The slower aircraft (B) is there-

fore assumed to be more maneuverable than the faster aircraft (A)

This will be the case, for example, if the turns are made at the

same load factor, so that the product of speed and maximum turn

rate is constant for both aircraft.

S
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4.0 PURSUIT-EVASION MANEUVER DETERMINATION

The equations of coplanar relative motion derived in the

previous section provide a dynamic model of the aerial combat

problem, in terms of a small number of parameters and dynamic

variables. From the points of view of the aircraft pilots, the

solution to the combat problem should give the roles and the

maneuvers of both pilots as functions of the relative geometry.

This is also the point of view taken here where, however, it is

necessary to investigate the more subtle dependence of the

optimal maneuvers on the aircraft velocities and maximum turn

rates.

b
Al

}

4.1	 TERMINAL CONDITIONS

Termination in an aerial combat encounter can be defined

in many different ways, all of which mean that the differential

game has ended.	 A conflict exists, however, between the complex

limitations of current air to air weapon systems andthe require-

ment of relative simplicity in the mathematical models of these

systems.	 The terminal conditions are actually functions of many

independent physical quantities, but for the purposes of this

report, they must be defined in much simpler terms, in order to a

be useful from the mathematical point of view.

Many earlier mathematical versions of the aerial combat

problem
[3,13-19] have used the range alone as a termination cri-

-terion.	 This is a natural mathematical choice, since the capture
circle (or sphere) is an extremely simple geometric shape free of
the "corners" or "edges" that introduce complications when other

criteria are used. 	 This ,cannot be used, of course, when both air-
craft can pursue, and it is necessary to specify a-set of terminal

conditions which are both realistic and yet simple enough to be
modelled.

13
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One physically appealing termination criterion can be

described as the tail-chase or heading-limited condition, in

which the evader is ahead of the pursuer, with a nearly parallel

heading. This is shown in Figure 4.1 for both A pursuing B

and B pursuing A. In both cases, A's velocity is aligned

with the y-axis, while B's velocity is oriented at the clockwise

(positive) angle, H 
f,

U



The angular parameters HA and H  are specified a priori,

and are expected to have values of approximately 10 0 -30 0 . These

would actually depend on the details of the gun-sight or missile

guidance system used by the aircraft. The range at termination

can also be an important factor in the realistic modelling of the

aerial combat problem, but in the heading-limited case, the final

range is considered as irrelevant. This is consistent with the

assumption that the forward-firing weapons' of both aircraft have

"long-range" guidance systems .which can follow any subsequent

evasive maneuvers of the target. 'A more detailed model of the

problem would also include the final "angle-off" or bearing as a

parameter; instead of requiring that the evader be exactly ahead

of the pursuer at the end of the chase. In this case, too, it is
'felt that sufficient complexity already exists in the problem

statement and that any generalization of this kind can be postponed

for the present.

k	 .

A second physically motivated termination criterion is
defined with either airplane in front of the other, with arbitrary
relative heading, but within a given range [21 . These terminal

conditions are illustrated in Figure 4.2. The range-limited case

is also briefly examined in this report, and the associated

maneuvers and capture regions are found for a particular numerical
set of parameters.

4.2 OPTIMIZATION CRITERIA AND NECESSARY CONDITIONS

The principal results being sought in this analysis are the

sets of initial conditions for which a win is guaranteed for the

ptirsuer, regardless of the maneuvers used by the evader. The pur-

suer, of course, can be either aircraft A or B, and it is ex-

pected that the "capture regions" of A and B will intersect on	
y

Is



'	 (H	 free)	 (Hf free)	 a

°^
B	

A	 x

^B
2

}
t

B

A

?' a x

a) A pursues, B evades 	 b) B pursues, A evades 	 3

x= 0, 0 <_ y< I	 x =y	 t an• H,	 r :5
f	 f	 A	 f	 f	 f	 f' B_

)
Figure 4.2	 Range-Limited Terminal Conditions 	

k

in A's Axis System

those surfaces which separate the two regions. 	 That is, the

state space, as described by the vector (x, y, H), will be com-

posed of 'at most three regions, corresponding to wins by 	 A	 or

} B, and to a "stand-off" or escape by the faster aircraft. 	 For

other values of the parameters (e.g., if the faster aircraft is

also more maneuverable) the third or "escape" region may be ab-

sent, and one or the other aircraft must win for all initial

conditions [2]

i The capture region of either aircraft is determined by a

consideration of the family of "b rrier" (1) trajectories.	 This

family of trajectories forms a "semi-permeable surface", which
f I

prevents the state from crossing the surface as long as both air'-
1

craft maneuver optimally in its neighborhood.	 Along the paths

on this surface, the pursuit-evasion roles are known, and the

trajectories end in a "near-miss" or simultaneous kill configuration.

16
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(For the weapon models used here, a simultaneous kill is actually

a collision with near-parallel headings.) The reasoning is that

a small displacement normal to the barrier means a-clear win or a
clear escape by the pursuer or evader, respectively. Therefore,,

the pursuer's semi-permeable surface locally divides the state

space into capture and escape regions, for the. assumed roles.

But, a different set of barrier trajectories exists for the

reversed-role assumption and when the two barriers intersect, one

or the other must be discontinued. An exception occurs on the

"collision" barrier, which is itself a role-reversal locus. These

notions are illustrated in Figure 4,3.

v
collision barrier

A pursues B
and wins	 /	 near-miss

barrier

Draw
B pursues A

and wins	 (A escapes B)
i

Figure 4.3	 Conceptual Division of State Space

The pursuit-evasion game can be given a positive value if

" B	 wins, and a negative value if 	 A	 wins, where "winning" is de-,

i fined for	 A	 and	 B	 by a terminal configuration in favor of

i either, as shown in Figures 4.1 and 4.2. 	 The value of the game

and thisfor trajectories following the barrier is therefore zero,

i

17
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	 value function has a total time derivative along the optimal

trajectories which is also zero. This is the "Main Equation"

j;	 of Isaacs [l] , which takes the following form,

i w y

min max [Axx+A Y Y.+AHH	 0

°/A wB

Y

F	 r;	 Substituting from Eq.(3.1) with VA = 1,
I
R	 -

E	
min max [ a X(- wA y - VB sin HA)

y	 fi)A ^B

+ Ay(-1 + (0 x + VB cos HA)	
(4.1)

+a H (- wA + a) B)^	 U	 x
R}

i

4.2.1 ADJOINT EQUATIONS AND OPTIMAL MANEUVERS

The adjoint vector, Vx ( 'k x x H) consists of partial
y

! )	 derivatives of the payoff function, for which a saddle-point solution

is sought. These variables obey a set of linear differential equa-

tions, which are found by differentiating Eq.(4.1:) with respect to

time.

AXi_ 
_(JA 

AY

i	 -	 AY	 A X x 	 (4.2)

A 
	 VB (A

Y 
sin H - x cos_ H)

18
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The retrograde solutions to these equations are expressed in terms

of the final values of the adjoints and the time-to-go, T:

Ax =	 >,x 	cos T +	 Ay 	 sin wAT
f3 f

^	
= - A	 sinwAT+ A	 cos T

Y	
y	 ^ 

4. 3)
f	

f

A H =	 11 Hf + VB/ W B [ A x	 H f - sin (H f- 0) T) )f(sin

6

r.
+ a(cos H f - cos (Hf-WBT))y 

f

It will be shown that the terminal values of the adjoints are

derivable from the geometric conditions at the final time, when
ft

T	 = Q,

Theo optimization procedure impliedp	 p	 p	 in Eq. (4.1) gives the

turn-rate controls of both pilots as functions of the current

r ' 	 values of the state and adj oint variables

'A = "A	
s gn SA

max,

SA 	kx Y	 h Y x + aH

F;

i, and	 CO _ 0)	 sgn SB	 = w sgn SB
max	 (4.4)

SB =	
H

where the switch functions of	 A	 and	 B are denoted SA and SB

` respectively.A

4i	 y

E
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f The optimal maneuvers for 'both aircraft are therefore hard

turns to left or right unless the switch function is identically

zero. In this case, it can be shown that the corresponding

E	 optimal maneuver is a "dash" or straight path, for which the turn

rate is zero. Thus, regardless of the relative geometry or per-

formance characteristics of the aircraft, only nine maneuver pairs

(3 maneuvers for each of 2 aircraft) are candidates for optimal con-

trols in this model of the aerial combat problem.

4.2.2 END CONDITIONS

The optimal maneuvers can be computed only when the switch

functions are known, which requires that the adjoints be known.

Boundary conditions on the adjoints, however, are known only at

the time of termination, when the geometry corresponds to the

"near-miss" or "collision" end condition. Further analysis
therefore requires consideration of the relative motion which

precedes the barrier end conditions, examples of which are shown

in Figures 4.1 and 4.2.

The barrier trajectories which precede these end conditions

are of two general types:

1._ "Near miss" trajectories for which the evader contacts

 g	 _ pursuer's capture region,tangentiallythe ed e of the ur

2. "Collision" trajectories, for which "wins" occur

simultaneously for both aircraft.

These trajectories are representative solutions to the dame of

.	 knd Ej^, which separate "capture" from "escape", and which will be

illustrated for the tail-chase end condition in the following

paragraphs.

20
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Parameters HA and HB were defined in Figure 4.1, and

I^
are shown in a perspective drawing of the two capture regions

in Figure 4.4.	 These relative heading angles in ;the tail-

yl chase end condition bound a two-dimensional region in the .

relatiye space on which capture must occur, and it is seen

'	 that the near-miss trajectories contact the capture regions

either along the edges or tangentially along the surfaces.
I

I^ 'The collision trajectories occur at x = y = 0, along a line

segment which is common to both capture regions.

Trajectories'in this 3-space (x, y, H) are continuous

curvedaths obeying the equations of relative motion.	 Thatp	 Y	 g	 Q

is, the relative "velocity" has components x, y, and H, and

the trajectories are smooth except where	 A	 or	 B switch

a	
,

turn rates.

i
•

A captures B (Xf = 0 , Yf
 > 0)

i

A nearly ^^ T1
wins

H - HB

H = HA A	 x

HB

C
..^

•
collision (x

f = y 	 _ 0)

l

H B captures A
t'1 B nearly	 (x f = y f tan H f, yf< 0)

h wins

Figure 4.4	 Terminal Trajectories onthe Barrier
for the Tail Chase End Condition

I	 ` 21
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The adjoint vector (xX, A 	 His normal toy , this

relative velocity, according to the main equation. Conse-

quently, a graphical interpretation can be given to this
IS 	 y, vector at the time of a near-miss or collision. 	 The simplest

such illustration is related to the trajectory "T 1 " of

Figure 4.4.	 At termination of this barrier trajectory,

#f x = x = 0, and the adjoint vector is* r

^A= ( A X , A	 A H)t	 =	 ( 1 1 0 1 0),
i

y	 f

because first order changes in both	 y	 and	 H	 have no

` effect on the outcome of the local game.	 This implies that

A's switch functior,t is 	
SA	

A X	 y f = y f > 0, and there-
f

_
6

f

fore	 cc 	 = +1 (A turns right, toward B).	 To determine B's

terminal control, it is noted that although S= 	 x	 = 0,	 1
B 	 H 

its retrograde derivative (d/dT ) is given by Eq. (4.2) as
o

SB = - A H = V B	 A x	 cos H 	 > 0, and hence	 wB = +0 (B alsof
ri turns right, or toward the outward normal of the terminal

surface).	 Both of these maneuvers are intuitively reasonable,

and can be sketched as circular _arcs in realistic space, as
i

in Figure 4.5.

L

;.
Y
`t

* The magnitude of the adjoint vector in a game of kind can be
set equal to unity.

a

-.	
22
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B1	
A2	 r'

pl

Figure 4.5 Near Miss Trajectories

tl{{

The state-space locus on which these trajectories end is

then found through the tangential motion condition using cvA 1,

Xf = yf + VB sin Hf = 0 ,_or yf	 VB sin Hf , where

0 < H  _< HA - When the near miss occurs at the limit heading,

Hf HA a more complex analysis is required to define the

adjoint vector. As shown in Figure 4. 6 , the vector must be normal

to the line H = HA , x = 0 , and it therefore has no y- component.

The vector is then written as

^a = (cos	 0 sin ^)

where the angle 	 is obtained from the main equation; i.e.,

,

23
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ai

nA

H

r	 .'	 Figure 4,6 Near Miss Trajectory, H	 Hf = A

7

a	 aXx+ ^ y y+ H H= 0
6	

r',

ori	 wA y f + W B sin HA

tan f3 _	 (4.5)
cdA - 

w B

Because Hf = HA	 B will be turning hard right in an
p

effort to increase H
f	

This means that sin P > 0 , and of 	 CO.

The turn direction of A at this time is either right or left,

4 according to the following special subcases, which can be easily

7	 derived, using Eq. (4.5) .

24	 r
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^a

:i

a) ooA = +1 if y f <_ (VB/w	
-yf + V  sin HA

) sin HA tan (3 =
-ca+1

y
f
 - V  sin HA

b) (OA+1 if y
f

 _> V B sin HA 	tan
w- 1

y
f
 + VB sin HA

C) ' WA = -1 if y f>(VB/c) ) sin HA 	 tan
- w - 1

The collision end condition is analyzed in the same way,

by assuming turn directions for n and B and then determining

the terminal conditions, if any, for which such maneuvers are

-optimal. For example, if both are turning right at collision,

the main equation is expressed with x = y = X 	 0 or

	

f	 f	 Hf

^x x +	
y 

y +	 1I H = sin a (VB sin fl f) + COS .8 (-1 + VB cos II f)	 0

The terminal value of the angular adjoint is zero, since a

first-order change in terminal heading is not to the advantage

of either aircraft. Hence, the terminal adjoint vector is

koriented by the angle with the tangent

1 - VB cos Hf 	l
tan /3	 (4.6)

VB sin Hf

a

The retrograde derivatives of both switch functions must be	 I

positive, since both A and B are turning right by assumption;

i.e.,
o

SA = X 	 0
f

o.
SB VB (Xx f cos Hf	 y£ sin H f) ? 0

Here again the superscript circle is used to abbreviate d( )/d'T

25
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A`

These inequalities imply that sin > 0 and that

C

^X . cos Hf -	
sin Hf = cos Hf - VB >_ 0

f	 yf

It is also clear on physical grounds that, since A is mini

mizing, X
y
 = cos 8 S 0 which means that Hf < 0	 It is
f

therefore concluded that A and B turn right before collision 	 i

only for terminal headings in the range -cos -1V8 5 Hf < 0 (assuming

cos -1VB:!^ H8) . The paths in real space are sketched in Figure 4.7,

H 1

B

A	 l

Figure 4.7 Collision Following Maneuvers AR BR

p

and it is seen that if either aircraft discontinues turning, it

will pass ahead of the other with a relative heading less than HB.

Ibis would mean an uncontested win for the aircraft which maintains

its hard turn and, according to the problem specification, the

26
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collision therefore represents the better of two "bad" outcomes

for both aircraft	 A	 and	 B.

Depending on the relative orientation and turn maneuvers
y

of the aircraft, 16 different terminal configurations are possible

in this model of the	 ioblem, of which three have j ust been discussed.p	 ^
+.

a

The other cases are listed in Table I, where it is seen that more

stringent inequalities can occur in the applicable range of the

independent variable.	 These inequalities can be derived by the

requirement that neither switch function changes sign while the

heading changes (retrogressively) from 	 Hf_ to	 H.	 Further dis-

cussion of these maneuvers is postponed to Section 5.0.

aj 4.2.3	 SWITCH CONDITIONS

The retrograde integration of the state and adjoint equations

allows the switch functions of both	 A	 and	 B	 to be written in

terms of the terminal values of state and adjoint vectors, and

the associated turn rates	
wA and	 ceB .	 In these expressions, the

independent variable is the "time-to-go" until the near miss or

collision occurs.	 It is denoted by the symbol	 z = tf - t

where t 	 is the time at which the near miss or collision occurs.

By combining the results presented in Eqs.	 (3.4) and (4.3),

the switch functions for aircraft	 A	 and	 B	 can be expressed in

retrograde time as

' SA = XX (y f + sin T) -	 [xf - wA (1 - cos 
7- 	

+
'\Hf	 yf	 f

V	 (4.7)
Sg =	 H	 +	 [ A x (sin H	 -sin (H f-' w B T)) + Ay (cosH f-cos (H f- w B T) )

f	 B	 f	 f

where w 	 = sgn SA = tl	 and w 	 = w sgn SB

27
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Case Turns
Terminal State Terminal Adjoint
(Xf, Yf, Hf) (Ax	 A	 AH )yff	 f

1 A R 
B R (0,	 0,	 Hf) (sing,	 cos g	 0)

-cos-1V -̂ H: 0
Bf

1-VBCos H f
tan g	 —V sin HB	

f

2 A 
R 

B L

(0'.	
0,	 H f) (sin 0,	 cos	 0)

-H	 cos-1
B: 

H 
f^	 B

1-VB	 fcos H
tang =

VBsin H 

3 ARBR (0, VBsin Hf ,	 Hf) (1,	 0,	 0)

0<_Hf<_HA

4 A 
R 

B R (0,	 Y f,	 HA) (cosg ,	 0,	 sing)
VBsin'HA-yf0 < y f<y 1 * tan 13 =

1 - tw

VBsin H A < 
y tan	

-VBsin HA+yf
-1 + co

5 ALBR (0,	 y f,	 HA) (cos 13,	 0,	 sing)

yf +VBsin HA
Y2	 f** ^ Y

tang =
-1 - c

6 A 
L 

B L
(0,	 0,	 H f) (sin g.,	 cos g ,	 0)

- L + L^Bcos H f

0'<H
f

< Cos -1 VB tan (3	
-VBsin H 

7 ALBR (0,	 0,	 H f) (sing ,	 cos a ,	 0)

_ 1 -1 + V cos H 
cos	 VB<_ Hf`-HA tang =

-V Bsin H f

TABLE I

}	 OPTIMAL PURSUIT-EVASION TERMINAL MANEUVERS

(Heading-Limited End Condition)
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Table I

(continued)

Case Turns
Terminal State

(X 	Y	 Hf ,	f.,	f)
Terminal Adjoint
(AX , xy , aH

£	 f	 f

8 A L B L (0,	 VBsin Hf, Hf) (-1,	 0,	 0)

-HASHf<"0

9 ALB  (0,	 y f, -HA) (cos 's ,	 0,	 sin g)

yf <y1 *
VBsin HA - yf

tanJa =
-1 +w

-VBsin HA+yfyf >v sin HBA tan a =
1 -w

10 A 
R 
B L (0,	 yf ,	 -HA) (cos ,8 ,	 0,	 sing )

-yf-V Bsin HAy f > (VB/w )sin HA tan	 _
1 +w

11 BLAL (-sin2Hf/cv,-sin HfCos Hf/&),Hf) (-cos Hf ,sin Hf ,-sin HfAd)

0<_Hf :!^ H 

12 $LAL (y ftan 11B, yf, HB) (cosacosHB, -Cos asinHB , s nja

-sin HB -yf/cos H -sin HBCos HB/w <y f <_ 0 tan )Q =
-ce+ 1

sin -Ii 	 + y f/cos H 
yf < -sin HBCos H tan g

w- 1

13 B R A L (y ftan HB , y f , HB) (cosecosHB) -cosOsin13B , sin,8 )'
-sin HB-yf/cos H 

yf< -sin HB Cos H tang = 
(a+ 1

14 BRAR, (sin 2Hf1w	 -sinHfcosHf/w ,Hf) . (cos Hf, -sin H£, -sin lyw)

-H B :5 Hf< 0

t
,A

4

P

i
}

t`

e ^



Case Turns
Terminal State Terminal Adjoint
(xf, Yf, Hf) (xX , xy , XH )

f	 f	 f

is BRAR (-yf tan HB, y f , -H 
B) (cosj3 cosHB, cos,3 sinHB,-sinf3)

-sinHB - yf/cosHB
-sin HBcos HB/w <y f : o tan j3

w	 1-_
sinHB + yf/cosHB

y; f < -sin HBcos HB tar/3 =
_W+ 1

16 - BLAR (-yf tan HB , yf, -H 
B) (cos(3 COSH BI cos8 sinHB,-sina)

-sinHB - yf/cosHB
yf

 <-sin HBCos H tan/3 =

*	 H -H
yl	 W[VB sin HA - (to 	 w-1 )I

**	
1	 HA H

Y2 =	
W[VB sin HA - (co +1) sin(

For specific terminal ranges, singular arcs for both A and

B can precede the maneuvers given in cases 12 and 15.



tr

Singular arcs cannot occur just prior to termination, because

this would imply

0

S
A

= Xx y	y x+ X H = SA,= hX = 0

or	
(4.8)

0

S  = A H = Ss = V  ( AX cos H - a y sin H) = 0

Since neither of these conditions can hold at t  „ it follows

that both A and B must be turning just prior to termination

of the near miss or collision maneuvers.

Because the backwards trajectories are most easily parame-

trized at specified (constant) values of heading, H, the solution

to the heading equation (using the appropriate controls) is found

as

H = H  + ( (i A _ 'B 
T	

(4.9)

This expression gives the time-to-go, 7-,  when H and H  are
known, and therefore both switch functions can be calculated to
assure that-neither has changed sign during the retrograde trajec

E	 Fi tort' of interest.

More generally, when both state and adjoints are known at tf._
E	

the times (if any) at which SA and S  equal zero can be derived in
terms of trigonometric arc-functions. For example, the representa

tive case 12 from Table I can be chosen (because the less maneuverable

aircraft never switches while pursuing) , and for yf <- sin H  cos HB,

with both A and B turning left, the switch functions are

31
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SA = w (sin HB + y f / cos HB) - (w- 1) sin (HB - T)

(4.10)
W-1

 ) sin wTSB 	 sin HB + y f / cos HB + VB (

When equated to zero, these canbe solved for the retrograde-switch

times,

-1 r - w (sin HB + y f/cos HB)

TA = HB + sin	 + -
(.	 w	 1

(4.11)

w	 B	 )
T	 1	

-1	 -	 (sin H	 + y f/cos HB

1=	 sin
B	 w	 -VB (w	 1)

Since the independent variable here is y
f , 

it follows that

no switch occurs if the argument of the aresin function exceeds 1 in

magnitude; i.e., neither switches if the terminal range is large enough.

4.2.4	 SINGULAR ARC CONDITIONS

It is possible for a singular arc to occur . in the optimal

path of either	 A	 or	 B.	 The necessary conditions for
i

a singular

arc in the retrograde path are that the switch function and its

derivative be simultaneously zero; i.e.,
::3

o
SA (T) = SA (T)	 0

or (4.12)
p

SB. (T) = SB (T) = O

As an example, we continue the study of the terminal condi-

tions associated with case 12 of Table I, for which xf = y
f
 tan H$,

and y
f
 < - sin HB cos HB.
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The switch functions for this terminal condition have-been

a$	 derived in Eq.(4.10), and the derivatives are zero at the retrograde

times TA
 = HB + V/2, TB = 1r12 w . When these times are equated

to the expressions in Eq.(4.11), it is seen that a singular arc

i	

11'
	 can occur for A when

t	
yf yfA	 B	 B_ -cos H (sin H + (w - 1) /w)

or,for B when

yf - yf	 -cos HB (sin HB + VB (t,^- 1)/w)	 (4.13)
B_

Both of these arcs can be preceded by either left or right turns,

as shown in Figure 4.8. It is emphasized that these paths are only

candidates for singular arcs, and that the complete solution may

not include either of them.

E	 B
1B

	

A3	
A3

Al	
`	 B	

yt l	 _ B3
3

A2	 ^•- —	 A2

Al

a) Singular Arc	 b) Singular Are

for A	 for B

Figure 4.8 Scale Drawings of Singular Arcs

for VB =- .9P  w B	 1 . 5 , HB = 400
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Case 13, for which the maneuvers are BR AL, can also give

rise to singular arcs. The corresponding retrograde times are

TA .= H  + 7r/2

.	 and
TB = 37l/2 w

`	 while the terminal values of the independent position variable

are

y f _ - cos H  (sin H  + _ (w +l) / (► ) ,

B	
A

and	 (4.14)

f	 y f -	 cos HB (sin HB + VB ( w +1) / w)
B

4.2.5 SWITCH CONJUGATE TEST CONDITIONS 	 -

'	 When a switch occurs in a retrograde trajectory, it is

necessary that the corresponding switch surface divide the state

space into 2 locally separate regions. This is illustrated for a

two-dimensional state in Figure 4.... The arenthet	 ''	 gu	 ^	 p	 -	 is labels in

the Figure correspond to "before" (-) and "after" (+) the switch

line is encountered. In case (a), the switch conjugate condition

is satisfied. In case (b), the test fails since the state space

is not divided into regions corresponding to pre- and post-switching.

- When the switch conjugate test is failed, it is implied that

the retrograde paths "cannot extend back to the switch surface, and

must be interrupted by some other phenomenon or condition. This is

^.	 suggested by the dashed line in, Figure 4.9, which might, represent a

"switch envelopes, 	 -	 [1,2]
p	 a dispersal line	 or other condition,
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A

switch

switch	 line	 (_)

line

4

Other conditions
invalidate paths

[	 -1

above this .line

'-Y.,

r,

	

(a) Test Passed	 (b) Test Failed

i
Figure 4.9 Switch Conjugate Test (2-dimensional)

{

^	
v

derivable from other considerations. Otherwise, as noted in

l'	 (b) of Figure 4.9, contradictions arise as to the controls that

are optimal prior to the switch line.

For the third-order system equations describing the aerial

combat problem, the switch conjugate test is more difficult to
apply. The vector state is r ! _ [x, y, H], and the switch func-

tions have been derived as

Y	 +X

	

Sp	 x	 y	 H

and

SB - k 
H
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E	 ,i
A two-dimensional surface (e.g., SA = 0 or'SB 0) is

described in terms of a vector normal to the surface, n. This
(	 normal is found by calculating partial derivatives along the retro-

grade trajectory evaluated at the switch time.

_x

The retrograde state is expressed for the near-miss end

i
condition in terms of the three parameters (y f, Hf, T), since

xf = 0 (A pursues) or xf = t yf tan Hf (B . pursues). The switch
`M	 time T = Ts is eliminated by solving the switch functions for:

the time TS ; i.e.,

9

3

5	 i

1

SA (yf, Hf, Ts ) = 0	 or SB (yf, Hf , z S) = 0.

This implies a parametric expression for the two-dimensional

switch surface,
f T^

r = r (yf , Hf)

1	

Now, the vector-normal to the switch surface is given by



The switch conjugate test then consists of an evaluation

of the dot product

n	 n 
X	

+ n y
	

+ n 
H 
H

which must be positive if the vector An is in the direction of

The test is carried out by first computing numerical values

of the partial derivatives in ^n , at the time Ts . These vector

components are then multiplied by the relative velocity components

before (-) and after (+) the switch surface is encountered. Since

7 s implies r	 r' , the velocities are different only because

'wA 
or (i 

B 
has switched across the surface SA 

= 1 

0 or SB = 0,

respectively.

4.2.6 AN ADDITIONAL NECESSARY CONDITION

	

For near-miss maneuvers that end at H
f
	HA or 11... an

additional necessary condition can be formulated. This condition

should be examined because it can sometimes reject a terminal

maneuver combination that might appear plausible by other considera-

tions.

When aircraft B is puTsuing,a local differential game can

be defined at the time when Hf :t H., and when x 	
Yff	

tan H
B' In

this near miss configuration, the relative angular heading is the

payoff which B wants to minimize and A to maximize. Therefore, in

this local differential game an incremental payoff is
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ft = ax8X f + AYgy f + aHSH f	 (4.15)

where

Ax =_ cosp cos HB , X y = -cosp sin HB , X  = sin#

Since 8y  0 and Sx f y f SH f 
sec 2HB , the adj oint orientation

angle 8 must satisfy

SA sin,(; + y f cos j6 / cos H  < 0 . 	 (4.16)
SHf

On the other hand, the main equation yields the min-max con-

dition on this angle,

sin HB - wA y
f
 / cos 

HB
tan a _	 (4.17)

wA - 'B

where
-	 6)	 = sgn ( sin /3	 + yf cos ,8// cos HB)	 i

t (0= w sgn ( sin 8

It can be seen that that the necessary condition in Eq. (4.16)

means that 
&)A 

= --1, and it is necessary to consider only the

two maneuver pairs,	 wB _ ± co .	 That is, if the requirement of

fi Eq.	 (4.16) is not imposed on the maneuvers, the terminal controls

s; wB = - ca ,	 oA = 1 (B left and A right, or BL AR	 in abbreviated

-	 form) are apparently optimal for 	 yf <- sin H 	 cos 
HB/w .	 The

1_ air	 B	 A	 is found to be o timal onl 	 in the ran e	 ,p•	 :2	 L	 p	 Y	 g	 y f < -sin HB cos HB
t

f while BL 
AL	 is optimal in the two negative intervals,

l

- sin HB cos HB/tv < y :50, 	 and	 y	 < - sin HB cos HB .f	 f

gg

Y

' ` '...^:..
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5.0 NUMERICAL EXMIPLES OF ROLE-DETERMINATION

Preliminary results have been obtained for representative

sets of aircraft parameters. In the examples treated, the faster

aircraft, A, has a smaller maximum turn rate than aircraft B, and

it is known that sig^iificant qualitative changes in the capture re-

gions will occur if A is both faster and more maneuverable than B.

It is to be emphasized that the results shown here are subject to

check by results obtained at other values of the relative heading.

That is, until the barrier solution has been found at all values

of the relative heading (thus filling the state-space), one cannot

be certain of results found at any value of the relative heading,

since they may be over-ridden by conclusions found to be needed

elsewhere.

Capture boundary results will now be shown graphically for each

of two different definitions of capture. These definitions are:

1. The evader is directly ahead of the pursuer with the

velocities nearly parallel. That is, the relative head-

ing is within a given interval of Zero and the relative

range is arbitrary, at termination. This is the "heading

limited" criterion analyzed in the body of this report

2. The evader is directly ahead of the pursuer, but within'

a given range, while the relative heading is arbitrary at	 '?
r

termination. This criterion is an extension of the game

studied in Ref. 2, for other values of the parameters.

The first of these is the "tail-chase" configuration illustrated

in Figure 4.1, and the second end condition is illustrated for repre -

sentative parameters in Figure 4.2.
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a 5.1	 HEADING-LIMITED END CONDITION

yaJ

l
The aircraft parameters chosen for the computations are

{
a	 } V	 = .9,wB	= 1.5, while the speed and turn rate of the fasterB

aircraft are both unity.	 The cone angles illustrated in Figure

4.1 are given the values HA = 30 0 and H 	 = 40 0 .

i

Preliminary results have been found for two values of the

relative heading, and these have required the use of several two-

part maneuver combinations.	 The capture boundaries for both

aircraft are shown 	 the relative headings of 0° and 15° in

Figures 5.1(a) and 5.1(b), where the subscript notation of Section

3.2 has been used.	 These barrier contours are associated with all

of the end conditions discussed in Section 4.2.2. 	 It is noted

that the more maneuverable aircraft B has a much larger capture

region than A, because of the end condition imposed.	 That is, the

heading variable can be controlled by B, because 	 w B >wA , acid conse-

quently	 if the initial heading is outside the interval	 -1IA to	 H

B can prevent its subsequent reduction to this interval., regardless

of the maneuvers chosen by A. 	 The results shown here indicate that

a large I 'draw" region exists for these parameters, for which A can

prevent capture by B, regardless of the maneuvers chosen by B.
a

Three representative real-space trajectories are shown in

Figure 5.2.	 The initial -relative geometries are indicated in Figure

5.1 as the points P l , P	 and P 3 .	 These preliminary results indicate

that relatively simple approximate maneuvering rules may be devised

for both pursuer and evader, but that relative heading is an import-

ant state variable in the development of these rules. 	 More precise

conclusions must await the completion of the maneuver charts for

other values of the relative heading.
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5.2	 RANGE-LIMITED-END CONDITIONf

If the terminal range is bounded for both aircraft, while
_

the  terminal heading is arbitrary, with capture again occurring

at zero steering error, a very different set of capture regions can

l be expected.	 In this differential game, which employs the dynamic

equations	 of Section 3.3, the faster aircraft can always escape

from the slower aircraft. 	 This occurs., for example, if the initial

it range is large enough. 	 Furthermore, in this game, the maximum turn
4

[ rate is not so critical a parameter as in the heading-limited case.

Previous solutions to this game^2I have considered different

i; parameters, for which one aircraft had an infinite range weapon.

} The resulting barriers divided the state space into two regions,
H corresponding to A wins and B wins.	 In the present report, both

aircraft will be constrained to finite range weapons. 	 It will be	 a

F
p shown that for this case three solution regions exist, corresponding

p to A wins, B wins, and draw.	 3

To illustrate the capture regions in the range-limited end
w a

condition, the following parameters are chosen:

'	 . VA = 1.0	 ^A	 = 1.0	 'A =',5
. max

V 
	 •9	 B	 = 2.0	 -1B = .6

max

where ^A and ,^B are the weapon ranges for aircraft A and B.

The computations have been developed only for the parallel-heading

initial condition (H = 0°) and the capture regions are as _shown in

Figure 5.3.	 Two marked differences are apparent between these re-
r; d

sults and those given' in Figure 5.1(a) ' for the heading-limited end
condition.	 These are:

1. The maneuverability of B is relatively unimportant

when the terminal heading is free.	 In this case, the

size of B's capture region depends principally on
the weapon range, 

^B'
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2. In the range-limited end condition, singular arcs

(dashes) can occur for both aircraft. This is because,

on the barrier, the maneuvers of each can be'strongly

influenced by the finite weapon range of the other.-

Real-space trajectories of both aircraft are illustrated in

Figure 5.4, corresponding to the three relative initial positions

labelled P l , P2 and P3 in Figure 5.3. The forward portion of A's
capture region corresponds to the simultaneous kill condition,'

For example, from initial position Pl., simultaneous kill requires
A to perform a three-part maneuver in response to B's simple
right turn. Vehicle A's three-part maneuver.(left, straight,

right) precedes a head-on shot for both vehicles, which occurs
at a range of ,e A < ,Q B . That is, A has eluded B until B is also
within range.

Other barrier segments are found for the near-miss end

condition, and these can occur as either one-part or two-part

maneuvers. The two cases illustrated terminate at maximum

y

range (.t or l ) , but near-misses can also end at shorter
i ranges, as. shown in Figure 4.4.

g

kt
The method used for displaying the solution to this problem

:

	

	 develops loci at .constant values of the relative heading. These.

loci are merely candidates for barrier trajectories, and they need

not be continuous or part of a closed contour. That is, the various

finite line segments on which the barrier paths end (Table I)

 given relative head-correspond to other finite line segments at aP	 g	 g
I

	

	 ing, and only the relevant portions of these line segments are

shown in Figures 5.1 and 5.3. That is, for example, the point PZ

of 'Figure 5.1(b) marks the intersection of two segments which 	 _
t,	 actually extend beyond this corner. Likewise, the barrier B^ AL

i	 of Figure 5.3 is discontinued where it intersects AP BPIS.
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6.0 APPLICATION AND GENERALIZATION OF RESULTS

+I
#I The dynamic model used here for the aerial combat problem

includes as parameters the speeds, maximum turn rates and the

required end conditions for both aircraft which can include in-

equality constraints on range and/or relative heading.

Even for this simplified dynamic model, extensive para-

,^ metric studies are possible.	 Such studies would determine the

capture conditions and associated maneuvers for practical ranges

of speeds, turn rates, etc., with applications as described in the

following subsections.

6.1	 NEW TACTICAL MANEUVER RULES
r

When the parameters are numerically fixed, the solution to

the fundamental problem of mole-determination consists of the

boundaries in state space corresponding to the near-miss and

$-' collision end conditions. 	 This portion of the problem does not

. specify the maneuvers to be used b 	 the aircraft when the relative y

j! "barriers".state is not on these 	 But, capture and' escape are
E` guaranteed for initial conditions just "inside" or just 'outside"

j of the barriers, if the pursuer and evader, respectively, maneuver

optimally in the neighborhood of these barriers. 	 This is to

emphasize that:

t . 1.	 Tactical maneuvers exist which guarantee a win for either

1 aircraft, in some region (range, bearing and heading)
of state space.	 The location of the region depends on

the parameters and the definition of "win".

2.	 Both capture regions grow larger if the evader maneuvers

non-optimally,-and both decrease in size if the pursuer
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so maneuvers. Nothing useful can immediately be said

when both aircraft maneuver non-optimally.

3. The tactical maneuvers have been shown to be hard

turns or straight dashes at all times during the

combat engagement.

When the terminal geometry configuration is 'specified, it

is conjectured that relatively simple approximate maneuver rules

may be deduced from the resulting optimal solutions and trajec-

tories. Since sharp turns represent the vast majority of the

maneuvers, it is only necessary for pursuer or evader to know

the direction-of the turns as functions of the relative geometry.

New tactical maneuver rules are a reasonable hope for any r
practical model of the aerial combat problem, and certain results

in this direction have already been found. For example, the turn

maneuvers "right, straight, left" can occur for both aircrai_, but
only when the slower, more maneuverable aircraft is pursuing in the

tail chase version of the problem. It is hoped that other interesting

and important results of this type will be determined as the solution

progresses.

6.2 PRELIMINARY DESIGN OF COMBAT AIRCRAFT
1.

k!	 Combat aircraft can be designed competitively, if a particular

enemy aircraft and weapon system are known to be of interest. For

certain combat termination criteria, it is then possible to com-

pute the capture regions of both aircraft as the performance
R,	

parameters of the aircraft are varied through selected limits.

L	
This type of analysis may show, for example, that a largef

M	 increase in top speed has a very small influence on the capture

volume, assuming the other aircraft parameters are constant. The

cost's associated with improving the propulsion or aerodynamics can

then be directed to other aspects of the aircraft performance. 	 a
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This type of trade-off study is impossible to performfi
without an understanding of the interlocking portions of the

problem.	 While it is generally agreed that the aircraft and
P

its guidance system (or pilot) function as a single system, the
4

optimization of this system requires that the performance cri-

teria be accurately defined.	 Although practical constraints

limit the range of applicability of results which can be ob-

tained in this _way, the benefits to be obtained from such

studies appear to be considerable.

s

6.3	 VERIFICATION OF RESULTS BY COMPUTER SIMULATION

The results obtained by the methods described here can be

f

verified and/or modified by using computer simulation methods.

Such methods would replace the planar, constant speed, variable

turn rate equations of motion with more complex, three-dimensional,q	 P

nonlinear equations in which the maneuver transients are accurately

modelled.	 Powerplant limitations, aerodynamic nonlinearities and

control'system parameters would all have some influence on these x

"exact equations".
:r

The process of verification would proceed on a point-by-

point basis, according to which an "approximate" point on the

barrier (x, y, H) is located "exactly" by applying the approximate

	

y	 turn maneuvers to the exact equations of motion. As long as the

ratios of speed and turn rates do not differ significantly from

the values assumed in the approximate equations, the barrier con-

! ;^ tours should change only slightly from the approximate values.

Such verification methods have proven highly successful in the

development of collision avoidance maneuvers for ships [21]
f	 _	 w
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6.4 OTHER END CONDITIONS AND DYNAMIC MODELS

The strong dependence of the capture regions on the imposed

end conditions has shown that useful results require careful defi-

nitions of "capture." The end conditions are typically expressed

in terms of equalities or inequalities among the position and

heading state variables in the problem.

A modification to the "tail chase" end conditions would in-

volve the specification of a "cone-angle," or terminal bearing of

the evading aircraft. This cone-angle is taken as zero in the

results shown in Sec. 5.1, but a positive value for this parameter

would add both to the realism and to the complexity of the compu-

tations. Bounding the terminal range for both aircraft is another

obvious and important refinement in the development of the tail-

chase end condition. This addition to the problem definition would

have the effect of-ensuring the existence of a third, "no-contest"

region in the state-space, because the faster aircraft could then

always escape the sl . wer, if the initial range is large enough.

I r

The terminal range could be given a lower limit as well, and

this would have a strong influence on the shape of the capture 	 a

regions. The collision trajectories, of course, would no longer

occur, and the capture region for aircraft A would begin some dis-

tance ahead of A, while that of B would begin at some distance 	 s

behind A. when both are shown in axes fixed to A.

Another terminal condition of practical interest involves

the time interval during which the pursuer can keep the evader in

the pursuer's cone-angle. 'The pursuer's terminal maneuvers in this

case would frequently involve intermediate turn rates which have

been shown to be unnecessary for the terminal conditions discussed

here.
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It should be emphasized again that the optimal maneuvers

which have been derived and discussed thus far are associated

only with the "barrier" trajectories. 	 That is, no maneuvers

are specified at arbitrary (intermediate) relative positions_y

and headings between or outside the barriers. 	 It is expected

that maneuvers at intermediate positions could be determined

by assuming a switch line at a point midway between the com-

puted right and left barrier traces, but this is merely a.rule

of thumb with no theoretical justification. 	 More formally, op-

timal solutions between the barriers must involve a different

value function than those for the games of kind studied in this

r report.	 For example, if the capture region for aircraft A is

known, the maneuvers at an interior point may be found on the

4 basis of optimizing (in the min-max sense) the capture time.
°w

This requires.the solution of the game of 
degree[1,18].

The effects of changing the dynamic model will be most
ii

easily studied by first varying the constant parameters through

a wide range of practical interest.	 If, as expected, the capture

regions show a small dependence on certain of the parameters,

then it is reasonable to conclude that these parameters can be

approximated by constants in any practical use of the results. 

It may be found, for example, that while the aircraft velocities

change considerably during sharp turn maneuvers l4J , these changes

do not appreciably affect the location of the barrier or the

associated maneuvers.	 Speed variations, of course, will change

the tine required to perform a maneuver, as was found to occur

during collision-avoidance turns for ships [22] , but the maneuvers-

themselves may be nearly insensitive to these refinements in the

dynamic model.

.
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