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I.	 INTRODUCTION

Modern applications of vibrational energy transfer frequently deal

with processes that depend on the details of excitation for specific vi-

brational states. Infrared gas lasers are a primary example.' Of the

several mechanisms influencing the population of a particular vibrational

state, the collisional conversion of vibrational energy to translation

can be an important aspect. For example, the probability of vibration-

translation (V-T) energy transfer is well-known to increase as the quan-

tum number of the initial state increases. Thus, even in situations

where the V-T process may be insignificant to the kinetics of lower vi-

brational levels, it can dominate the flow of vibrational energy from

upper levels and, it, some cases, act as the primary path for vibrational

energy loss from the system. The quantum-number dependence of V-T rates

must therefore be considered in the analysis of most nonequilibrium pro-

cesses where excess vibrational excitation has been produced. Unfortun-

ately, very little quantitative information defining the V-T rate depen-

dence on quantum number for even the simplest diatomic molecules is

presently available from either experiment or theory. Experimental

ground-state excitation rates have been obtained from measurements behind

shock wavesz or in fluorescence experiments 3 for many years but the dif-

ficulty of obtaining experimental V-T rates for molecules in well-defined

excited vibrational states is indicated by the sparsity of attempts.

Numerous experimenters have recently measured the rates of vibration-

vibration (V-V) energy exchange between pairs of oscillators in excited

states4 ) 5 because the fast ,-V transfer can easily be made a dominant

mechanism; but to date, only one comprehensive sec of upper level V-T

2

Y



I

rate measurements has been reported. 4 Even then, while the experiment

was cleverly designed and carefully analyzed, the conditions were complex

and the measurements required substantial correction to compensate for

extraneous modes of energy transfer. Theoretical studies addressed to

the analysis of initially excited oscillators have been similarly sparse.

The usual theoretical interest has centered on harmonic oscillators ini-

tially in the ground state. 6 Simple analytic versions of these theories

have frequently been applied in kinetic models to oscillators in excited

states but their suitability in that application has not been validated.

The purpose of this study is to extend the present analytical situa-

tion by calculating the vibrational quantum-number dependence of V-T rate

coefficients using a sufficiently complete collision model, which is not

constrained to first-order approximations of the oscillator mution or its

interactions. However, the approach to be taken is still limited by

pragmatic considerations. Accurate V-T rate coefficient calculations by

any theoretical model are obviated by uncertainties in the shape and mag-

nitude of the interaction forces between colliding pairs for all but a

few simple cases. Thus, we can only examine the qualitative features

that are not masked by interaction potential uncertainties. Furthermore,

even an extended collision widel must retain some approximations, parti-

cularly regardin@, the collision ,geometry, if it is to remain computation-

ally practical in the prediction of thermally averaged rate coefficients.

Hence, a complete quantum-mechanical description of vibrationally inelas-

tic encounters is avoided, although such descriptions have been formulated

and solved with all degrees of completeness. 7-12 Instead, attention is

confined here to a semiclassical treatment that accurately reproduces all

3



of the main characteristics of vibrational energy transfer to ii

excited oscillators but may be further reduced to yield closed-:

analytic solutions. The analytic solutions are of primary interest here

because of their practical importance in the numerically cumbersome analy-

:p is of macroscopic nonequilibrium processes in which rate information for

several modes of energy transfer must be economically provided. l The

complete semiclassical model, requiring numerical solution, is applied

both to an examination of the qualitative nature of upper state transi-

tions and as a basis for evaluating the accuracy of the analytical solu-

tions.

In the sections to follow, the features of the collision model that

appear most important to the dynamics of a vibrationally excited oscil-

lator are first discussed; followed by a description of several approxi-

mations, each of which retains one or more of the features considered.

Approximate values of the interaction potential parameters and their range

of uncertainty are then estimated by comparing the predicted ground-state

rate coefficient with a comprehensive set of e-cperim rr-..., values. Colli-

sions of CO with He are chosen as the example because of the abundant

data available. The implied potential parameters are then used to com-

pare the numerical model with the experimental excited-state rate coeffi-

cients and with the analytic predictions. Finally, the effects of

multiple-quantum transitions from excited states on a vibrational relax-

ation process are considered both for molecules like CO where the effect

is secondary and for molecules like the halogens where the effect can be

'	 dominant.
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II. THE COLLISION MODEL

A. Features influencing the excited state collision dynamics

As the quantum number of the initial oscillator state is increased,

several aspects influencing the oscillator dynamics and its interactions

with the incident particle gain increasing importance. For example, the

wavefunctions describing vibrationally excited eigenstates become more

extended in the oscillator coordinate. Consequently, when the oscillator

is distorted by a collision, the wavefunction overlap is greater not only

with adjacent eigenstates but with more remote states as well. This

feature is reflected by the increased magnitude of the matrix elements

dynamically coupling the eigenstates which, in turn, accounts for the

greater probability of V-T energy transfer through both single- and

multiple-quantum transitions. Furthermore, the increased coupling of

nonadjacent states during the collision can affect the final occupation

of states adjacent to the initial state and thereby influence the rate

of single-quantum transitions. Thus, a calculation of the oscillator

dynamics from an excited initial state must include multiple-state

interactions at collision energies where they are normally unimportant

for oscillators in the ground state.

The degree with which multiple-quantum transitions influence the

oscillator dynamics during a collision depend, in part, on the form of

the interaction potential. A common practice, often used to simplify the

analysis of ground-state oscillators, is to consider the oscillator mo-

tion to be small compared to the range of interaction and linearize the

interaction potential in the oscillator coordinate. In a harmonic

5



oscillator, this treatment has the effect of equalizing all of the diag-

onal matrix elements and forbidding multiple-quantum transitions. The

occupation of nonadjacent oscillator slates is then possible only through

a sequence of single-quantum steps during the collision. Nonlinear inter-

action terms remove these restrictions and modify final state occupations

in two related ways. First, all of the nonadjacent states are directly

coupled, thereby increasing their accessibility. Second, the diagonal

matrix elements are no longer equal, leading to additional phase distor-

tions in the quantum-mechanical oscillator motion that modify the proba-

bility of transition. The additional phase shifts depend on the product

of the difference between diagonal matrix elements and the strength of

the interaction. They appear explicitly in a semiclassical impact param-

etet treatment described by Bates 13 and applied to anharmonic oscillators

by Mies. 14 The formulation is reviewed in a subsequent section of this

paper.

All of the foregoing effects are amplified when oscillator anharmon-

icity is included. Nonadjacent states become coupled even for linearized

interactions and the larger difference between the diagonal matrix ele-

ments creates phase distortions that can become a significant fraction

of the unperturbed oscillator period. Mies 14 has shown the influence on

transition probability predictions to be large even for oscillators ini-

tially in the ground state. A second, and in some cases greater, effect

of anharmonicity is its influence on the variation of eigenenergies with

quantum number. Since transition probabilities and the related rate coef-

ficients are well-known to depend on the amount of energy transferred, a

lowest-order effect of oscillator anharmonicity may be demonstrated by

6
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simply inserting enharmonic oscillator eigenenergies into a harmonic os-

cillator theory such as that given by Schwartz et al. 15 The results devi-

ate substantially from the simple Landau-Teller relation for the rate

coefficients given by

"in,
 m-1 (T) = mk 1,0 (T)
	

(1)

where km,m-1(T) denotes the rate coefficient for transitions from state

m 'o m-1 and is a function of the kinetic temperature T. However,

the simple ad hoc insertion of anharmonic eigenenergies into a harmonic

osci l lator model is not always a sufficient means of accounting for an-

harmonicity. The influence of anharmonicity on the interaction matrix

elements, which in turn effects both the magnitude and phase of the oscil-

lator motion, is often so great that an enharmonic oscillator model must

be used from the start. Fortunately, oscillator anharmonicity and non-

linear interaction potentials present only a slight increase in computa-

tional difficulty, particularly if a Morse oscillator and an exponential

form of the interaction are adopted. The necessary matrix elements are

then conveniently expressed in closed algebraic form 9 ) 14,16 just as they

are for harmonic oscillators.

Finally, an oscillator potential creating anharmonicity also admits

to the existence of continuum states. We shall neglect their contribution

to the energy transfer process, however, since they are energetically

inaccessible by a large margin for the combinations of collision energies

and initial states to be considered here. Although no evaluation has

been made of their effects, the occupation of continuum states is presumed

ry
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to be as small as the nearby bound states, and no bound states near the

continuum were found to ins'luence the dynamics of any states at the quan-

tum levels of interest.

B.	 The semiclassical numerical model

To obtain V-T rate coefficients, we calculate the associated transi-

tion probabilities including oscillator anharmonicity and nonlinear

interactions by treating the oscillator quantum-mechanically but calcu-

lating the collision trajectory classically. The trajectory is further

constrained to collinear encounters. The unperturbed molecular wave-

functions are those of a quantized Morse oscillator and the interaction

potential is composed of exponentially repulsive and, if desired, attrac-

tive terms. Formulation of the numerical model has been described in

detail previously16 but, in brief, an arbitrary multitude of coupled

Morse eigenstates are included in a time-dependent numerical solution of

the SchrUdinger equation. Converger,ce is ensured by including a suffi-

cient number of states above and below those of interest. The classical

trajectory is coupled to the oscillator motion in a rigorous manner (with-

in the semiclassical framework) guided by Ehrenfest's theorem. In effect,

the classical path is influenced by the oscillator compression and recoil

during the encounter. This feature successfully extends the semiclassi-

cal method to encounters where the average size of the oscillator is

severely perturbed during the collision (e.g., when a light oscillator

nucleus is struck by a heavy collision partner, as in H 2-He or CO-Ar

collisions). The predicted transition probabilities have been shown16

to reproduce the results from an equivalent collinear quantum-mechanical

8
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calculationq over a wide range of conditions. We find, however, that al-

though the semiclassical method is conceptually simpler and more easily

reduced to an analytic formula, numerical solutions of the complete semi-

classical model appear to be no more economical than exact quantum-

mechanical solutions obtained using modern algorithms optimized for the

roblem. 819 One of the penalties of using a semiclassical approximation

is that total energy is not conserved, but the effects of that omission

are easily and accurately compensated for by interpreting the relative

collision energy or velocity as an average of the known initial and final

values. A far mote severe limitation of the semiclassical theory is its

incomplete treatment of the interaction when the oscillator is very

heteronuclear 1e (e.g., the hydrogen halides). Such cases are avoided

here and have presented numerical difficulty in exact creatments.9

The implications introduced by a restriction to collinear encounters

are not as well understood but the restriction is necessa-y if the

quantum-number dependence of thermally averaged rate coefficients is ever

to be obtained in a reasonable computing time. Clearly, a more realistic

approach would include a three-dimensional collision geometry in which

simultaneous rotational transitions are coupled with the vibrational

motion. Considerable activity along these lines is currently evi-

dent7-12,17,18 but the large number of rotational states that become

accessible at collision energies sufficient to cause vibrational transi-

tions would make our objective impractical for all but a few special

molecules, like H2 . On the other hand, as long as the rotational eigen-

energies of the undisturbed molecule are well-described by a rigid-rotor

model ksuggesting that the rotational and vibrational motion are separ-

9
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able), the disparity between a collinear and a three-dimension , 4 theory

is not expected to be very sensitive to the initial vibratioAl quantum

number. By normalizing the collinear predictions accordi-.g to the ratio

km,m-1/mk1 
0 and avoiding the prediction of absolute ,ate coefficients,

much of the absolute error associated with the co'.iinear restriction

will hopefully be nullified. Such a ratio al pi absorbs the lowest-order

quantum-number dependence suggested by Eq. (1).

C.	 Thermally averaged rate coefficients from a collinear semiclassical

model

With the possible exception of molecular beam analyses, the appli-

cations of an inelastic collision model usually require results in the

form of a thermally averaged rate coefficient. A general formulation of

the averaging intc.,;ral is well-known but here the restriction to collin-

ear trajectories and the use of a semiclassical approximation require

some special consideration. In general, the rate coefficient for a ki-

netic temperature T may be written in terms of the energy parameter

CM = Em/kT and an energy-dependent cross-secrion am,n (Em), where n

denotes the final quantum state and Em is the relative kinetic energy

before a collision with an undisturbed oscillator in a pure eigenstate

m. The rate coefficient is then19

(W
	 -c

kmn (T) C i omn (Em)cme mden
!D

where the average thermal speed is C = (8kT/nu)^ and u is the reduced

10

(2)



i
V

3

collision mass. A further requirement for the collision model is that

it conform to the detailed balance relations. Originating with t`o

reciprocity theorem, the requirements of detailed balance propagate

through three levels of microscopic detail, giving the general physical

relations for spinless nondegenerate collision partners as

Pmn (Em) - Pnm (En) ,	 (3a)

	

Emamn(Em) = Enanm (En) ,	
(3b)

-t"iw /kT	 -hw /kT
kmn(T)e m
	

- knm(T)e n 	 (3c)

where Pmn is the transition probability from state m to n and bwm

is the oscillator energy of state m.

The collinear collision geometry produces semiclassical transition

probabilities that behave according to Eq. (3a) but the restriction to a

zero impact parameter leaves the cross-section required by Eq. (2) unde-

fined. One common solution is to adopt an effective hard-sphere cross-

section co and compute the inelastic cross-section according to

amn(Em ) _ op
mn (Em)	 (4a)

and

a rim (E
n) = o ,P rim (En) •	

(4b)

Equation (3b) requires that

ao , = [1 ¢ b(wn - wm)/En Icy o ,

11
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thus suggesting that the "hard-sphere" size must depend on the collision

energy and transition in questions This contradictory result is a conse-

quenco of the collinear approximation but the error is negligible when

I-TI(w n - wm)I/En << I. In circumstances where the ratio approaches unity,

the transition probability is typically so small that the integral in

Eq. (2) is unaffected.

Equation (2) must be further modified to compensate for the lack of

energy conservation inherent in the semiclassical approximation. This

discrepancy is easily and accurately corrected by interpreting the semi-

classical relative collision energy 	 or speed u as an average of the

initial and final values. Reference 16 demonstrates that while the cor-

rection can be large, the marhod of averaging has no apparent effect on

the outcome for vibrationally inelastic collisions at all energies from

threshold up to the limits of practical interest. For convenience, we

use an arithmetic energy average. Denoting the total energy as ET , the

semiclassical approximation is brought into close agreement with an equiv-

alent quantum-mechanical calculation by the interpretation

E = ET - Tii(wm +wn)/2
	

(5)

The combination of Eqs. (2), (4), and (5) then gives the thermal averag-

ing prescription for a collinear semiclassical collision model as

fiw
kmn (T) = oo C e

fiwmn/W r P
mn (E) ( E + I i%n a

-E dc	 (6)

JO

where e = E/kT and wmn = w  - wn . To make the satisfaction of Eq.

(3c) by Eq. (6) more obvious, the lower integration limit in Eq. (6) has

t
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been set to zero even though the independent variable transformation

from cm to c via Eq. (5) produces a limit of ± Itw
mn

/2kTJ, depending

on the sign of wmn . The negative limit may clearly be reset to zero

but, even when the limit is positive, the probability threshold is near-

ly twice the limit, so that again setting it to zero has na effect on

the integral.

III. ANALYTIC APPROXIMATIONS

Of the many analytic approaches appearing in the literature (see

Ref. 6 for a rartial summary), three that stand out in their application

for estimating the V-T rate coefficient variations with quantum number

are (a) the semiempirical formulas for Morse oscillators of Keck and

Carrier, 21 (b) the perturbation treatment of Morse oscillators developed

by Mies, 14 and (c) the exact solution to a linearly forced harmonic

oscillator obtained by Kerner. 22 Each approach retains one or more of

the aspects of special interest to this application. They share the

common feature that all incorporate collinear collision geometry and

are all based on an exponentially repulsive interaction potential (later

referred to as potential I) of the form

VI (y) = Ae y/L e

	 (7)

where the coordinates are defined in Fig. 1 and transformed according to

y = 7- yr. The mass ratio y = me /(mb + mc) locates the mass center of

the molecule and L is an adjustable range parameter.

13



A. The Keck-Carrier formula for anharmor?c oscillators

The formula obtained by Keck and Carrier2l comes from an adaptation

of the distorted-wave harmonic oscillator theo:; of Schwartz et al. 15 for

a Morse oscillator. It includes an empirical fit to the numerical solu-

tion of an integral equation for the "adiabaticity factor" and provides

a particularly simple formula for estimating single-quantum transition

rates from an arbitrary initial state. Keck and Carrier 2l made no claim

for the suitability of their formula in applications beyond a demonstra-

tion of the role of vibrational nonequilibrium in a dissociating gas;

but the formula was subsequently applied by Bray23 in a pioneering and

detailed calculation of a vibrational, relaxation process for enharmonic

oscillators, apparently because of its simplicity and for lack of a bet-

ter estimate. For similar reasons, the Keck-Carrier formula has since

gained widespread use in the detailed analysis of upper state kinetics

in lasers. l Its consideration here is motivated primarily by the number

of kinetic models that incorporate it. The Keck-Carrier formula can be

written in a form similar to Eq. (1) as23

i-x	 F

km,m_1(T) -m 1_mXe 
Fl k1,0 (T )	 ($)

where F is obtained fzom the empirical formula

F = 213 - 
e41rn/31 e4,rn/3	 (9)

in which

n 
= - mm,m-1L(N/2kT)11 .	 (10)

14
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The transition frequency wm m-1 a W  - wm-1 is computed for a Morse

oscillator from

% ° we l(m+ 1i) — Xe(m+11)2]
	

(11)

where we is the fundamental oscillator frequency and X  is the en-

harmonic correction.

B.	 The Mies perturbation solution for anharmonic oscillators

F	 The closest approximation to the numerical model used here is a

f	 semiclassical first-order perturbation treatment developed by Mies.
14b

It prope,:ly includes the effects of anharmonicity but, by the nature of

V

	

	 first-order methods, it neglects the influence of states other than the

designated initial and final states. Furthermore, to obtain an analyti-

cal solution the classical path must be computed independently from the

motion of the oscillator. The theory is therefore applicable only to

single-quantum transitions in which the transition probabilities are

small compared to unity. The independent classical path further restricts

its application to nearly homonuclear oscillators such as CO (and of

course, all homonuclear molecules) colliding with atomic particles of

lighter mass than either of the molecular nuclei. 16 The appearance of

a probability maximum signals the failure of the theory. 16 In spite of

these shortcomings, we shall see that Mies' solution still provides a

more useful approximation of the numerical predictions than the other

analytic formulas investigated. A convenient form of Mies' result for

the transition probability from state m to n, where n = m± 1, can be

written 14b,16

15
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_

mn(E)	 Vmm Ti sinh(ttg)

Vmn 2nguLu	 ^) 
2	

(12)

where E is the relative collision energy in a mass-centered reference

frame and u = (2E/O)	 is the corresponding speed. The other param-

eters are g - Lwmn/U and A = pLU(Vnn — Vmm)/,hVmm. The series function

and the matrix elements Vmn are defined in Appendix A. Note

that equal diagonal matrix elements Vmm = Vnn lead to P(-g,0) - 1,

reducing Eq. (7) to the equivalent formula for a harmonic oscillator

with a linearized interaction. 14b

As with the numerical model, Eq. ( 12) produces energy-dependent

transition probabilities while a temperature-dependent rate coefficient

is desired. No analytic solution of the integral Eq. (6) with Pmn(E)

given by Eq. ( 12) is apparent but a reasonably accurate technique

(labeled "The Method of Steepest Descent") for obtaining an analytic

approximation 6 is based on the well-defined maximum contained in the

integrand of Eq. (6). The value of c at which the maximum occurs is

determined primarily by the exponential arguments. 6 The remaining func-

tion is slowly varying over the range of the integrand and may be evalu-

ated at the single value- c
e 

locating the peak. The exponential argu-

ment is then expanded T:o second order about the peak and the term inte-

grated analytically. In this application, the notation is simplified

,
with the substitutions E

mn - i1wmn/
2kT and n = -wmnL (p/2kT)k . The

exponential nature of Eq. (12) is also simplified by noting that in the

energy range where the perturbation analysis is applicable, the transi-

tion period t p = 2n/wmn is typically less than the effective collision

period tc = 2L/u. Thus, trg = tc/tp > 1 and sinh(Trg) rz 2 er g . Equations

16
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(6) and (12) are then combined to give

2	 W

kmn (T) ajVVmn 4n E 22	 aEmn J (c + emn ^ ) p2 e-E+2nnE- 4 dE 	 (13)
mm	 mn	 p

The integrand peak is located at

c p = Cp (nWmnL ) 2 /2kTa 1/3 .	 (14)

Using the procedure described, the approximate solution to Eq. (13) be-

comee

	

V	 e 3 2
kmn (T) = 16(30) -ho T -Vm ^ ep (e p + I Emn I) ^2(-gp,lp)

lmm mn

	

-3c +c ((	 , 1
xe p mn{l+erf^(3c /4)1)	 (15)

r	 l	 1111 	 p

'k

where gp = cp/n and ap 
= ep2(Vmm - Vnn)/ncmnVmm	

The error function

in Eq. (15) is close to unity for most cases. Equation (15) has log k

a T- '/3 as expected and satisfies Eq. (3c). The temperature at which a

given collision speed is coincident with the peak of the integrand in

Eq. (13) defines the most effective speed at that temperature; this tem-

perature will also be useful and can be identified from Eq. (14) as

Tp = u5 3 /2nklwmn IL .	 (16)

Comparisons of the approximate integration of Eq. (13) with exact numeri-

cal integrations show that the approximate method is most accurate at low

temperatures. The first-order perturbation formula, Eq. (12), is most

accurate at low energies, thus further contributing to the accuracy of

Eq. (15) at low temperatures.

t'
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C.	 The Kerner solution for linearly forced harmonic oscillators

The final analytic formula to be considered is an exact solution

obtained by Kerner 22 for a harmonic oscillator that undergoes a forcing

function linear in the oscillator coordinate. That condition may be

satisfied in situations where r/L « 1 in Eq. (7). The potential may

then be linearized according to

v 
(X 

r) = Ae x /L (1 - yr/L)
	

(17)

Kerner's solution was applied by Treanor 24 in a semiclassical collinear

approximation using Eq. (17). Within the framework of the collision

model, the resulting formula exactly calculates the probability of transi-

tions between arbitrary states with the interaction of all states included

Thus, it can be applied at high collision energies where the interactions

of more than two states influence the oscillator dynamics. In spite of

the approximate nature of the harmonic oscillator model, wherein direct

multiple-quantum transitions and the unbalanced coupling of higher and

lower states caused by anharmonicity are excluded, the Kerner solution

remains useful because it offers the only analytic means of estimating

transition probabilities at high energies. Examples will be shown where

multiple-quantum transitions and oscillator anharmonicity are not domin-

ant, allowing accurate prediction by the Kerner solution.

Kerner22 and Treanor24 write the probability for transitions between

two arbitrary states m and n as

lj j1o [(-EO)J(M-J)!	
_1l2

pmn (E)- m!n! a 
EOEmo+n

	 j ! (n-3)!^ }	 (18)

18
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where J is the lesser of the quantum numbers in and n. The parameter

E  is the energy absorbed by a classical harmonic oscillator divided by

one quantum of vibrational energy. For a collinear collision and the

interaction of Eq. (17), Rapp c5 obtains

ED = 2(2uwLyp) 2
 a 2nwL

/u/WPO .
	 (19)

In Eq. (19), No is the reduced mass of the oscillator and w is the

oscillator frequency. The accuracy of the model, when applied to highly

excited oscillators, is substantially improved if the effective oscilla-

tor frequency is corrected for anharmonicivy for each iititial state in

according to w = we (1- 2Xem). Without the correction, th_ excited-state

rate coefficients would simply behave according to the Landau-Teller

relation, Eq. (1), at low temperatures where the effective values of E 

are all less than unity and give m 'm-l /mk 1,0 
<1 for large Eo . An

inconvenience of the Kerner formula is its incompatibility with the ap-

proximate integration method of Eq. (6) for obtaining a rate coefficient.

A simplified version of Eq. (18), assuming E  <<l, permits an approxi-

mate analytical solution. However, the calculations are then restricted

to a thermal range where multiple-quantum effects are insignificant and

the theory loses its advantages over perturbation solutions. In the com-

parisons to follow, we have therefore resorted to a numerical integration

of Eq. (6) when the Kerner solution is applied.
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IV. COMPARISONS WITH CO-He EXPERIMENTS

In this section, the ability of the theoretical model to reproduce

experimental rate coefficients is tested. Unlike past comparisons of

vibrational rate coefficients with theory, we now have access to at

least one set of experimental values for excited initial states.'

To test the consistency of the theory and experiment for all vibra-

tional states, however, the effective interaction range L and the

hard-sphere cross-section a  are determined from the abundant collec-

tion of measurements dominated by transitions between the ground state

and first vibrational state. The interaction parameters required to

match the ground-state experiments are then applied in comparisons with

the excited-state rate measurements.

A.	 Effective interaction parameters

The computational convenience gained from the simplified interaction

potential I, Eq. (7), justifies its use, but as a consequence of its sim-

plified form, the predicted rate coefficients cannot be expected to repro-

duce the experiments at all kinetic temperatures. Transitions induced

in an oscillator depend to a large extent on the potential gradient near

V,,,e distance of closest app'xoach; while in a collinear collision, the

distance of closest approach is determined mainly by the coordinate where

the potential magnitude equals the initial kinetic energy of the colli-

sion. The magnitude of a purely repulsive potential, such as Eq. (7),

and that of a more realistic potential with an attractive well may be

the same at the closest approach distance but have a significantly dif-

20
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ferent gradient. Consequently, where collisions are averaged over a

range of energies, the predicted variation of rate coefficients with

kinetic temperature will be different for the two potentials. By match-

ing theory and experiment in several thermal ranges, and by using more

than one potential form, an indication of the degree of uncertainty in

rate coefficients attributable to potential errors can be obtained. For

that purpose, we consider a second potential given by

VII (y)= D e(yo y)/L _ 2D a(yp y)/2L
	

(20)

Potential II is a Morse-type interaction with an attractive well of depth

-D at coordinate yo . As with Eq. (7), the exponential form allows ma-

trix elements to be calculated analytically.

Predictions by the numerical anharmonic oscillator model with the

oscillator initially in the first eigenstate m = 1 are compared with

experiment in Fig. 2. When potential I, Eq. (7), is used, the rate

coefficients are independent of the magnitude A, so that only the range

L requires specification. Similarly, the predictions using potential

II are independent of y o but require both L and D to be specified.

The value D/k = 100°K is representative of well depths inferred from

viscosity measurements. 26 The two potential gradients are different by

about 20% at closest approach for the typical conditions considered.

Figure 2 demonstrates the expected results. No unique set of potential

parameters reproduces the experiments over the complete thermal range

'nut the more realistic potential II comes the closest. The required

values of L fall between 0.02 nm and 0.03 am, depending on the thermal

range considered.
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As an interesting aside, note that the low temperature d^iparture of

the experimental rate from a variation proportional to T - 1/3 in also

followed by the theory using simple repulsive potentials. As Shin27

points out, these low temperature departures do not necessarily depend

on weak attractive forces normally omitted from the interaction poten-

tial; they even occur with a repulsive potential when the thermal aver-

aging Integration is done accurately for low collision energies. We

know, however, that real interaction potentials usually contain an

attractive component and it will augment this low temperature behavior.

B.	 Comparisons with excited-state rate measurements

Normalized rate coefficients, predicted for initially excited CO at

T = 300°K, are compared in Fig. 3 with the room temperature measurements

of Hancock and Smith. N The parameter km,m-1/mkt 0 is much less sensi-
,

tive to interaction uncertainties than the absolute rate coefficients

and varies in a simple, nearly linear manner with initial-state quantum

number m. The nearly linear quantum-number dependence, increasing with

m at room temperature, is predicted for all of the interaction poten-

tials examined and is believed to be an accurate description of the real

behavior. As rig. 3 shows, the experimental excited-state values com-

pare favorably in magnitude with the predictions, but their trend is

inconsistent with a linear extrapolation to m = 1. A highly nonlinear

extrapolation is contrary to any prediction of the collision model at

any temperature. Although the collision model contains many simplifi-

cations awaiting refinement, the behavior implied by the experimental

22
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rates appears also to require further verification and extension. In

the interim, the theoretical predictions of excited state rates seem to

be qualitatively reasonable and self-consistent in spite of their quan-

titative uncertainty. Unfortunately, their verification by experiment

remains inconclusive.

V. AN EVALUATION OF THE ANALYTIC APPROXIMATIONS

The computational expense of the numerical model makes it impracti-

cal as a general means of estimating excited-state rate coefficients.

Instead, it is used in this section as a basis for evaluating the more

convenient but less complete analytic formulas. The predicted rate coef-

ficient variations with quantum number for several models are illustrated

in Fig. 4 for two extreme temperatures. Tne differences in the various

models depend strongly on the kinetic temperature but they all predict

a simple monotonic change with quantum number. The analytic approxima-

tions are therefore more clearly evaluated by choosing the highest ini-

tial quantum number of practical interest and then comparing the predic-

tions for a range of temperatures. In the case of CO, Lordi at al. 1(e)

have shown that energy transfer from vibrational levels as high as the

twentieth can influence the net energy balance in an electrically excited

CO laser system. Choosing m = 20, the single-quantum rate coefficients

predicted by all of the collision models are compared in rig. 5. The

independent parameter (-ir e/kT)` was chosen so that predictions by the

Keck formula, Eq, (8), appear as a nearly straight line. A comparison

of the rates from the numerical model using potentials I and II shows

r	 the moderate sensitivity of 
km,m-1/mk1 O 

to the form of the potential
e

is
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for one potential range L at all temperatures. Not shown is the great

sensitivity of the magnitude of km m-1/mkt 0 to other potential ranges
r	 ,

at any temperature. Note, however, that the qualitative nature of the

predictions are undisturbed by the form of the potential and therefore

considered realistic. As expected, the Mies solution, Eq. (15), accu-

rately reproduces the numerical results at low temperatures but fails at

higher temperatures where multiple-state interactions begin to affect

the single-quantum transitions. The departure is signaled ww n transi-

tion probabilities approaching unity influence the thermal averaging

integral, Eq. (6). Since CO is not very anharmonir., the Kerner harmonic

oscillator model, Eq. (18), frequency-corrected for anharmonicity at

m - 20, works well over the entire thermal range. Nate that the anhar-

monic correction must be included, however, as all predictions are sig-

nificantly above the result stated by Eq. (1) for a single-frequency

harmonic oscillator. Finally, Fig. 5 shows that the Keck formula,

Eq. (8), is too crude an approximation for large initial quantum numbers.

The degree of oscillator distortion caused by the collision of a

light helium atom with a CO molecule has an insignificant effect on the

classical trajectory. This fact is made evident by the small difference

at low temperatures between the numerical model where the effect is in-

cluded and the Mies solution where it is neglected. An example in

which the coupling is larger is illustrated in Fig. 6 for CO(m = 20)-Ar

collisions. In this situation, none of the analytic models do well at

low temperatures because the effects of oscillator distortion on the

classical path modifies the transition probabilities even near threshold.

The small corrections are then greatly amplified by the thermal averaging

integral at low temperatures.
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The small anbarmonicity of CO(ge o 0.0062) has influenced the pre-

ceding examples mainly by altering the energy spacing between excited

eigenstates. Anharmonicity also modifies the absolute magnitude of the

rate coefficients but that effect is not apparent in the ratio

km m-l/mkl 0' An example in which the anharmonicity is large is illus-

trated in Fig. 7 for II 2 (m = 10)-IIe(x e = 0.0268). in this case, the

frequency-corrected harmonic oscillator model is inaccurate at all tem-

peratures. The large spacing between eigenenergies in 112 suppresses the

onset of multistate interactions at high temperatures, making the Mies

solution an accurate reproduction of the numerical results over the

entire thermal rang;, The difference in mass between the lie and H nuclei

produces only moderate coupling between the compressed oscillator and

the classical path.16

As the preceding comparisons indicate, one cannot generally choose

a single analytic model for estimating excited-state rate coefficients

that is applicable to all collision pairs. The situations where a model

should not be used are easier to identify. Clearly, the Keck formula,

Eq. (8), is too approximate in all of the examples. The Kerner harmonic

oscillator solution, Eq. (18), with anharmonicity-corrected frequencies

is reasonably accurate unless the anharmonicity is large. The Mies en-

harmonic oscillator solution, Eq. (15), is a poor approximation when

multiple-state interactions become important. Finally, no analytic model

based on Che semiclassical approximation will be realistic when the oscil-

lator dynamics have a significant influence on the classical path of the

incident particle. This restriction limits all of the m(,'el, considered

to collision pairs in which the mass of the incident particle is not

{
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significantly greater than the mass of the impacted nucleus and to oscil-

lators that re not extremely heteronuclear.

VI. MULTIPLE-QUANTUM TRANSITIONS

In the preceding section, only transitions to an adjacent state have

been examined. Here, we investigate the relative importance of multiple-

quantum transitions, particularly for oscillators in highly excited

states. The probabilities of multiple-quantum transitions are compared

in Fig. 8 both for CO(m)-He collisions in which the oscillator is ini-

tially in an excited state and in states near the ground state. The

collision speeds contributing most to the thermally averaged rate coeffi-

cient at a selected temperature are indicated by the effective temperature

Tp . In the thermal range considered, multiple-quantum transitions to the

ground-state are always improbable compared to single-quantum transitions

from the first vibrational level, but the situation is clearly different

when the oscillator is initially in the twentieth quantum state. However,

thermally averaging the transition probabilities in Fig. 8 reduces the

apparent importance of multiple-quantum transitions in a relaxation pro-

cess. Figure 9 illustrates the resulting rate coefficients for two poten-

tial ranges, using potential I and values of a  obtained from the experi-

mental match in Fig. 2 at T = 1000°K. The amplified uncertainty caused

by tke interaction potential and its influence on the implied value of a 

is most obvious but the qualitative features are again consistent for both

potential ranges. For oscillators like CO, multiple-quantum transitions

provide a significant path for energy transfer only at very high tempera-

tures, according to these predictions.
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A temperature marking the onset of competiti,

transitions is the characteristic vibrational temperature of the oscil-

lator, here defined as Bv = .19me/k (for CO, Ov = 3122°K). An oscillator

.,,. in which multiple-quantum transitions will dominate the relaxation pro-

cess can then be identified if 9 	 is small. One extreme example is
v

Br2 for which Ov = 465°K. Since the anharmonicity is also small in

#	 Br2(Xe =0.0033), the Kerner harmonic oscillator model has been used to

obtain the Br2-He rate coefficients displayed in Fig. 10. Two- and

three-quantum transitions from the tenth vibrational level are shown to

$i
be significant even at room temperature and the temperature dependence

of the single-quantum rate (m +n =10 + 9) is inverted by multiple-state

interactions. The high probability of multiple-quantum transitions in

this case contributes to the extremely fast and thermally insensitive

relaxation rates measured in the halogens and destroys the concept of a

single "relaxation time i19 that is independent of the nonequilibrium

state of the process for molecules of this type.

VII. CONCLUDING REMARKS

We have relied on a collinear semiclassical model for vibrationally

inelastic collisions entirely for pragmatic reasons. The collinear geom-

etry affords an economically reasonable means of estimating V-T rate

coefficients for excited molecules and the semiclassical approximation

is easily reduced to practical analytic solutions. While these simpli-

fications clearly obviate the quantitative accuracy of the calculations,

n, serious omission is apparent that would modify their qualitative

nature, even in the presence of uncertain '.nteraction potentials.

27
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Unfortunately, an attempt to confirm the predicted features through ex-

perimental comparison was inconclusive. However, the experimental con-

ditions that would test the model. most severely can at least be identi-

fied. For example, the choice of collision partner has a large influ-

once on the rate coefficient sensitivity to initial quantum number.

Note the large deviations of km,m-1/mk1 0 
from unity in Fig. 6 for

CO-Ar compared to those for CO-He in Fig. 5. Turt.hermore, the increased

oscillator distortion caused by heavy atom impact requires a more complete

description of the interaction than needed for light atoms. From another

viewpoint, the lesser sensitivity of some features of the prediction to

uncertainties can guide the choice of experimental variables to be empha-

sized. In particular., an apparently universal feature of the V-T

excited-state rate predictions is their monotonic low-order variation

with quantum number. Once this feature is confirmed, the experimental

emphasis can be shifted to the less predictable variations with kinetic

temperature. Finally, a comparison of the estimates using various poten-

tial parameters suggest that a self-consistent set of experimental rates

for both high and low initial quantum numbers contains much more informa-

tion defining the interaction potential than ground-state rates alone.

Comparisons of the analytic and numerical rate coefficients graph-

ically delineate the suitable range of application for each analytic

model. However, the utility of an analytic approximation can also depend

on the physical properties of the application. For example, the Kerner-

Treanor harmonic oscillator model, with anharmonically corrected frequen-

cies, predicts the ratio m m-1 mkl 
0 

with surprising arcuracy for

many molecules; but before the model can be economically applied, an
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analytical solution to the thermal averaging integral, including Kerner's

transition probability formula, awaits development. Even with that solu-

tion in hand, one must be concerned with the effect of anharmonicity for

each molecule treated by the model. On the other hand, Mies' solution

for enharmonic oscillators, Eq. (15), fails at high temperature. At

those conditions, however, many nonequilibrium processes are insensitive

to the V-T rates of excited states, either because the vibrational state

population distribution is nearly Boltzmann or because the process is

controlled by some separate energy transfer mechanism. At lower temper-

atures, the model accurately deals with a broader range of oscillators

because anharmonicity is rigorously included. Collision partners for

which the theory fails are poorly treated by all the analytic solutions

based on a semiclassical approximation. Similarly, the frequently employed

formula developed by Kecke is useful because of its simplicity but the

additional computation required by the Mies solution is not prohibitive.

The series function 4h(-g,a) converges rapidly and the matrix elements

may be computed in advance.

The calculations of multiple-quantum transition rates from excited

states validate the assumption most often made in kinetic models of non-

equilibrium processes: they can usually be neglected. As before, at very

high temperatures where multiple-quantum transitions become competitive,

a nonequilibrium process is usually not controlled by excited-state V-T

rates while ground-state transitions are still dominated by single-quantum

steps. Molecules with closely spaced vibrational energy levels, such as

the halogens, are notable exceptions requiring a more careful analysis.
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APPENDIX A

The series function N(-g,a) and the matrix element Vmn for an

enharmonic oscillator are given here in algebraic terms for use in Eqs.

(12) and (15). A more complete description of their origin is given in

Ref. 16. The series function is computed according to

(P(-g , x) _ X ARaQ-1
2=1

	 (Al)

where A l = 1, A2 = -g. The remaining coefficients are obtained by the

recurrence formula

R( Q - 1)AR = -2gAR-1 - AR-2	
(A2)

The matrix elements, defined by Vmn = (nleyr/L
lm) , are most easily com-

e.
puted in terms of the parameters a = y/aL, B = Xe l , and a = 21Tw (2NoXe)^

where all variables are defined in the main text. The result is9,14,16

V = Ba N m N n P(B-n) c (_ 1 ) R+n-m r (l+a+n-£) t(B-a-1-n) (A3)
mn	 a	 ml	 k=01t!(n-R)! P(1+n+n-m-1)P(R-2n +S)

In Eq. (A3), P(z) is the gamma function with argument z and the normal-

ization constants are

N  = (a(0-1-2J)/P(B-3))^1

	
(A4)
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FIGURE CAPTIONS

FIG. 1.	 Collinear collision geometry.

FIG. 2.	 A comparison of experimental rate coefficients for CO(m = 1)-He

transitions to the ground vibrational state with predictions

from the numerical model" for enharmonic oscillators. The

solid and long-short dash lines were computed using the repul-

sive interaction potential 1, Eq. (7). The short dash line

was computed using the Morse interaction potential II, Eq. (20).

Hard-sphere collision cross-sections were chosen for each po-

tential to match the experiment at T = 1.000°K. Experimental

values are from: 0 Ref. 2, • Ref. 3a, A Ref. 3b, + Ref-. 3c.

FIG. 3.	 A comparison of experimental rate coefficients at T = 300°K

for CO (m)-He transitions from vibrational states m to m - 1

with predictions from the numerical model using repulsive

potential 1, Eq. (7). The excited-state data are from Ref. 4

and have been normalized using the experimental kl 0 value

of Milliken2,3 (Fig. 2).

FIG. 4.	 The CO(m)-He rate coefficient dependence on quantum number

predicted by several collision models. The solid lines repre-

sent the anharmonic numerical model, 16 the long-short dash

lines represent the Kerner harmonic oscillator solution,22

Eq. (18), and the dashed lines are from the formula of Keck,21

Eq. (8). The potential range L = 0.02 run, was used in all

cases.
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FIG. 5.	 A comparison of excited-state rate coefficients for CO(m = 20)-He

predicted by several collision models. The potential range was

L = 0,02 nm i- all cases.

FIG. 6.	 A comparison of excited-state rate coefficients for CO(m = 20)-Ar.

Potential I, Eq. (7), was used with L = 0.02 nm in all cases.

FIG. 7.	 A comparison of excited-state rate coefficients for 112(m^ 10)-tic

-Potential I, Eq. (7), was used with L = 0.02 nm in all cases.

FIG. 8.	 Multiple-quantum transition probabilities for CO(m)-He colli-

sions using the anharmonic numerical model with potential I

and L = 0.02 nm. The effective+ temperature T 	 locates the

most effective collision speed contributing to the thermally

averaged rate coefficient at the temperature designated.

FIG. 9.	 Multiple-quantum rate coefficients for CO(m)-He. Potential I

was used in the anharmonic numerical model. The hard-sphere

cross-section values a 	 for each potential range are those

required to match the experimental rates in Fig. 2 at

T = 1000°K.

FIG. 10.

	

	 Multiple-quantum rate coefficients for Br 2 (m)-He predicted

using the Kerner harmonic oscillator solution, Eq. (18), with

L = 0.02 nm.

r
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