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HYBRID THEORY AND CALCULATION OF

e-N, SCATTERING

- N. Chandra* and A, Temkin
Theoretical Studies Group, Goddard Space Flight Center,
National Aeronauties and Space Adminigtration,
s Greenbhelt, Maryland 20771

ABSTRACT
A theory of electron~molecule scattering is developed which is a
synthesis of close coupling and adiabatic-nuclei theories. Specifically
the theory is close coupling with respect to vibrational degrees of free-

dom but adiabatic-nuclei with respect to rotation. In addition, this

theory can be applied to any number of partial waves required, the re-
maining ones can be calculated purely in one or the other approxima-
tion. A theoretical criterion based on fixed-nuclei calculations and

not on experiment can he given as to which partial waves and energy

domains require the various approximations. The theory allows all
cross sections (i.e., pure rotational, vibrational, simultaneous
vibration-rotation, differential and total) to be calculated. Explicit

formulae for all these cross sections are given,

HNRC-NASA Resident Research Associate,




The theory is applied to low energy e-N, scattering. The fixed-
nuclei results are guch that the criterion shows clearly that vibrational
close coupling is necessary, but only for the llg partial wave, The con-
tribution of remaining partial waves can be obtained directly from the
adiabatic-nuclei approximation., The close coupling caleulation for the
ﬂg wave is carried out, and we find that it does give rise to the sub-
structure as well as the gross structure of the 2.4 eV resonance. When
this amplitude is combined with the adiabatic amplitudes we can compute
ahsolute values of all eross sections of interest, In pariicular we find
that vibrational excitation cross sections are about twice as large as
previously inferred. The momentum transfer cross section can aiso be
computed, and it too reveals substructure within the gross structure

resonance,
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I, INTRODUCTION

Molecular nitrogen is a major constifuent of the atmosphere to an al-
titude of about 500 km. Thus it can he expected that the scattering of elec-
trons from N, will be an important process in the aeronomy of the atmos-
phere particularly above the E region, where photoionization of many of the
upper étmospheric constituents by solar UV produces an ahundance of clee-
trons. For example the resonances in the e-N, vibrational cxeitation cross
sections in the vicinity of 2.4 eV have heen uged by Newton et al. ,1 to ex-
plain 2n enhanced O* + N, (v) = NO* + N rate which in turn will lead to the ob-
served decrease in ambient electron density in the F, region during times of
enhanced air-glow giving rise to stable auroral rcd (SAR) arcs via the reaction

e+ NO+* - N+ O.

The 2.4 eV, e-N, resonance is known to he a very complex structure.
Fortunately there is a wealth of experimental chctails,2 and more or less
phenomonological theories to explain them. It is important howcver that this
complicated structure he understood from a fundamental—essentially ab initio
point of view, inorder that researchers he able to predict secattering from
other molecules which cannot be prepared‘in the laboratory, hut which we
now know to exist in many astrophysical environments.3 We helicve that the
present modification and synthesis of existing theories will complete the fund-
amental approximations which must underlie the methodologies to be employed

in such caleulations.




In Section !I we shall describe the e-N,, 2.4 ¢V resonance and hriefly review
the previous caleulational theories leading to the point in Section 1) that strictly on
the hasis of lixed-nuelei caleulations (:nd not experiment) of the I!g partial wave,
one can infer that the adiabatic-nucelel theory will not suffice to describe the sub-
structure of the rcmnance.4 The fixed-nuclei calculations which are un extension
of those of Burke and Chand m"3 to a series of internuclear distances R are also
described in Scction III, In Section IV we develop the vibrational-close coupling
theory and show that our caleulations for the ﬂg partial wave do reveal the sub-
structures of this resonance as more states are added while at the same time
showing reasonahle convergence when a sufficient number of states is retained.
The main formulae of the adiabatic-nuclei approximation are reviewed in See-
tion V; by simple inspection one may then see how to combine the vihrational
close coupling with adiabatic-nuclei theories: the process is one of substitution
of the appropriate scattering matrices of the one theory for the corresponding

ones of the other.

Results and comparisons with experiment are also given in Section V', An
important aspect of the calculatio is is that they yield absolute normatization for
Individual vibrational excitation cross sections, whereas as far as we know all
measurements are relative or have been done at individual angles, Furthermore
the theory is complete: it gives formulae for total and differential cross sec-

tions of individual and averaged transitions for vibrational and or rotational




excitation as well as pure clastic seattering., Simultaneous vibration, rotation
differential cross seetions can also be ealculated (although that is not “done hered
as well as the momentum-transfer. The latter, which is ealeulated, is particu-
Inrly interesting because it revenls substructure similar to that of the elastie

scattoring.

Tinally in Scefion VI we give a brief discussion of how this methed fits in

with other mothods and possible generalizations.

1. PRELIMINARIES

Exporimentally thoe low onergy o-N, resonance is a complicated beast. I
was [irst moensured in detail in vibrational exeitation by Schulzﬁ 18 1 sovies of
irregular peaks (cf. Wigs, 11, 12 & 13), The resulls have been imporfantly
complemented by the measuremont of the vibrationally elastie seattering by
Goldcn,7 which shows a gross structure peak centered at about 2,4 eV super-
imposed on top of at least five prominent sub peaks hetween 1,8 and 3.2¢V (ef.
Fig. 7). 'The obscrved inclastic strueture of the led in short ovder to its infer-
pretation (erudely deseribod) as a compound state of the cleetronand larget system
i.e,, the Nj ion)a’ 9 with the substructure due to the interferonce between ihe
various vibrational states of the compound system. This general physical in-
terpretation of the structure is ceriainly correct; the difficulty with the ealeula-
tions is that they ave not ab initio, and {hus thoy contain many adjustable param-
cters. 1t should be added, howover, that the physical and mathematieal refine-

ments of this general approach have been greatly developed since the orviginal
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papers, most successfully by Birtwistle and Herzenberg. 0 That calculation which
is based on a boomerang model, gives remarkable agreement with the shapes of
the vibrational execitation curves as measured by Ehrhardi and Willmannn but it too

does not give absoluie values.

In addition to the types of calculations mentioned above, there have heen

other, more ab initio types of investigations. One is a calculation by Krauss and
I\JIies12 of N3 as a bound state structure. This caleulation confirmed the assign-
ment by Gilmcnre13 of this resonance as a I'Ig "state,' and it showed that it is a
shape rather than a Feshbachresonance, The calculation is truly a 15 electron
self~consistent field calculation, but since the l'Ig symmetry overlaps the ordi-
nary e-N, continuum, whichcanbe of lower energy, some delicate restrictions on
the variation were necessary to assure that the resonant state was not contaminated

by this nonresonant scattering of the same symmetry. On that score we can all

12
state that the caleulation was in good hands with the NBS investigators.

Finally two single-center fixed-nuclei calculations have been carried out hy
the Belfast group: the first by Burke and E;‘i:ﬂf&il&t.tl:l14 includes full exchange of
the incident and orhital electrons, hut no induced polarization; the second by
Burke and Chant:h:a5 includes polarization and simulates exchange by orthogonal-
izing the scattered to the bound orbitals. This 'pseudo-potential' approach pro-
vides the basis of all fixed-nuclei aspects of the present calculation, and we shall

discuss it as appropriate in succeeding sections.




III, FIXED-NUCLEI THEORY AND CALCULATIONS
In contrast to ils application in bound state problems, the fixed-nuclel ap-

15,18 assumes not only that the

proximation for electron-molecule seattering
nuclei are fixed (at a distance R apart), but that the target molecular wave func-
tion & (x; R) has been precalculated at each, in principle arbitrary, internuclear
separation R, As a result the scaitering associated with a total wave function
(r is the coordinate of the scattered and x; those of the orbital electrons)

wi™ = (5 R) (x3; R) 3.1
exhibits no particular stationary properties with respect to variations of R about
the equilibrium separation of the target molecule R = R,. This is a very force-
fully exhibited here, when we exiend the calculations at the equilibrium separa-

1:10»11.3 R =R, = 2,068a,) to four additional values of R of the N, wave function

given by Neshet:L' R = 1.744393, 1.868, 2.268, 2.391607.

To review the fixed-nuclei calculation (cf. Ref. 5 but our notation is some-
what different), the ground state IZE of N, ig a closed shell deseribed by a single
Slater determinant

® = det (poy (X1) Py (X2) - -+ Bayg (X14)) (3.2}
where the o; can readily identified from the configuration 1o; 20; 302 1o
202 17} of the ground, 12; , state of N,. The bound state function® which is
an LCAQ function~meaning pairs of orbifals are centered ahout the separate
nuclei—is converted to a single center basis using a program of Faisal and

Tench.18
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1
bl = 2, — PO Y (D). (3.3)

2> A,

(A double prime indicates every second term is to be taken. About eight terms in
this expansion are sufficient for convergence.) A similar expansion is now made
of the scattered orbitallﬁ

v Ugg (1)

v @) = ? I Yo (DY (), (3.4)

where Q, are the sperical angles of the internuclear axis in the laboratory frame
and r =(r, ), i.e,, unprimed coordinates are the coordinates in the molecular

frame,

With the use of (3.3) the static potential seen by the scaitered electron is

naturally expanded in single center coordinates (in rydberg units)

27 2Z 52 "
<I’ R TR 2 ien q> ) ; O Pleos) - (39)

i=1
The equations satisfied are then derived from the variational principle;

5 f ™ (H-B)¥{™ dr = 0 (3.62)
which is equivalent to the projection

JY¢m Yﬁjm H-B¥y™ ™t = 0 (3.60)
wherr «r~! means integration overall coordinates but r (including integration

over £, ). In practice this set of coupled equations, which may readily be




derived from (3.1) - (8.5), is augmented to include an induced polarization

potential

%R) 2y (R)

4

V(POI) (l, R) L~
ré =4

P,(cos 0) | [1-eGro)®], (3.7)

where I, is greater of r and 2R. The caleula’cionﬁ also includes orthogonality
to all occupied orbitals of the same symﬂletzy via Lagrange multipliers. The

equations satisfied by Uy Qjm(r) of Equation (3.4) are then
i

2 Q1)
— - k| uW@ - ) D = ) A o), (3.8)
ar? 2 0.0,(0) ; XA XX g o %,
where
m =5 /2571 0\ oo/t o) A m ot m) vy (3.9)
g 2041 A0 1 PR '
i
and
v = Vy@ + VP, (3.10)

Vﬁpol) are the multiple components of VP°! from (3.7), thus in particular Vg\pol) =

0 forA>2. [The remaining symbols in (3.9) are Clebsch-Gordan coefficients, ]

The calculation for each R was done just as the caleulations of Burke and
Cha.ndras at R = R,. One only needs the dependence of the polarizabilities on R.
These were taken of the form

o (R} = 12.0+1.692(R -R,) (3.11a)

o, (R) = 42+2.031(R-R,) (3.11b)
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Equations (3,11) were chosen to give the correct polarizabilities at R = R and

to reduce correctly to the united atom limit: & (0} [= ag.0n] = 8.5a2 and

@, (0) = 0, The value 8.5a) was interpolated from Sternheimer's > calculation
of the polarizabilities of C2, K*, and Ca®*, It is to be noted that Equations
(3.11) are somewhat different from Tmhlar20 who used Raman data o get an
accurate estimate of the derivatives in the neighborhood of R =R,. Our own
interpolations, whiie somewhat cruder, should apply over a2 larger range in R,
and thus be more suitable to excitation of higher lying vibrational states, Finally
the value of r, was retained at 1.592 as independent of R, That value was

chosen,5 so that the Hg resonance for R = R, occured at exactly k2=2,394eV.

The scattering is determined from the asymptotic solution of (3. 8):

lim e g2
(m) = 1% )5 o 4 gtm) -3 3.9
N {S’m(kr z) SR S .

The K matrix as indicated in (3.9) is diagonal in m; it is also real, symmet-
ric, and for homonuclear targets comnects only & and Qj of the same parity., In
matrix notation the scatiering is naturally expressed in ferms of a matrix pro-
portional to the T matrix. In Reference 5 this matrix is taken to be T{™!
which is related to KI™) by

TOW = 2i(1 -i K™y KM (3.10)
In Reference 16, which gives the original derivation of the coupled fixed nueclei
cross sections (using a spherical analysis), the scattering is written in terms of

the & matrix which is related to the above T matrix by21

10




a =g -1 VICE* D m, (3.11)
%iym ko 4Y '
The fized-nuclei results are most conveniently given in terms of the sum

eigenphase shifts. The eigenphases are the arc tangents of the eigenvalues

of the K matrix:

det (KM _pm) 44 = p (3.12a)

A = %" gant! A(m), (3.120)
i

where the swm in (3.12b) goes over all coupled statez that are included (and is
found to converge with inclusion of approximately 8 coupled states as stated
above.} | is the unit matrix. In Table I we give a seleetion of our results for
Zg s Zy, II, partial waves as a function of internuclear separation R. The
R(=R ) = 2.068 results are just those of Burke and Chantih.f'a.5 A detailed de-
scription of that generic program has been published by one of u522 and that

program is what was applied here.

We also note in addition tom = 0, 1, ... corresponding to Z, II, ... that
the parity of the index £ (even or odd corresponding o g or u) is also a good
quantum number as well as the spin S, The latter is always S = ¥ corresponding
to doublet multiplicity, since N, is a closed shell (1 Zp) target. [We therefore

suppress the doublet label, for example 2Hg, on our partial wave notation,]

The sum of eigenphases for ]1011~Hg phase shifts are seen to change min-

imally as a fupection of R (although it is interesting that for Zg the minute change is

i1



an oscillatory one). The change is also slow and smooth as function of the im-
pacting energy k2. For those partial waves therefore the adiabatic-nuclei theory

for both rotational and vibrational excitation applies (see below),

On the other hand the change with both R and k? of the I, wave, given in
Figure 1, is dramatic! As a function of k? the subient feature is the resonant
behaviour. If one confines attention to the equilibrium separation R , oms:5 evalu-
ates the width I' & 0,4 eV, which is sensibly larger than the vibrational spacing
AE, = 0.29eV. It was for this reason that we previously believed the adiabatic
nuclei theory would be at least semi-quantitatively applicable to that partial wave
as well., 23 However if one looks at the curves for R > R, then one sees that the
resonance has diminished to I' = 0.14eV for R =2,.391607. And even at R=2,268,
[' ¥ 0.25eV which is smaller than the vibrational spicing of N,; in other words
the time (¢ « I'"!) spent by the incoming electron in the vieinity of the molecule
is comparable to or longer than the vibrational period of the nuclei, This is a
definite violation of a basic criterion for the validity of the adiabatic-nuclei
theory, and it gives a purely theoretically determined basis for distrusting the
adiabatic-nuclei theory for this partial wave.zd We therefore turn in the next
section to vibrational close coupling and its amalgamation into the adiabatic-

nmuelei theory,

Before concluding this section, we give in Figure 2 a comparison of our

fixed-nueclei width and position curves vs. R as compared to the calculations of

12




Krauss and Mies12 and Birtwisth and Hemzenberg.10 Considering the different

natures of these calculations, we consider the agreement to be remarkable.

IV. VIBRATIONAL CLOSE COUPLING
It is clear from the foregoing that it is necessary to include the dynamical
response of the nueclei to their vibrational motion., The most natural way of do-
ing that in quantum mechanics is to expand the wave fimetion in ferms of the
eigenfunctions of the vibrational motion: this is what is meant by a vibrational
close coupling expansion:
T = B3R) D F™ ) %, (R) (4.1)
[ The contrast of this with (3.1) should bevnoted.] Let us write the total
Hamiltonian (in rydbergs)
H = Hy(R)-V? - é V2 + Vo + Vye (4.2)
where Hy(R) is the Hamiltonian the target molecule, with nuclei at a distance R
apart and M their reduced mass. Vg, and Vy, are the interaction potentials of

the scattered electron with the orbital electrons and nuclei respectively:

2
Voo = Z e (4.3)
1= 1 1 l
v - 1 !
Ve = ‘2Z(11--R/2| ' lr+R/21> @5

We derive coupled equations for the functions F (+) in the usual way; obtaining:

[-92 K2 o) # 2 @V Vg + Vol V0 ; Fy6) = 0 (4.5)
v

13




In deriving (4.5) one uses the conservation of energy

E-EB, = k® +¢, = k2 +¢ (4.6)
where E; is the electronic energy of the target state satisfying the target
Schrodinger equation,

H,(R) &(r, R) = E_(R) &(x, R) @7

One also uses the approximation that the rotational kinetic energy is negligible

compared to its vibrational energy, so that

- 1 d2R 48)
- —— .
R R gr? (
and the fact
1 1 d°R
"N R e +{(B(r;. R) [H (R)| $(ry, R - e, [X4(R) = 0 (4.9)

In (4.5) and (4. 9) the subscripts on () indicate the coordinates over which one

integrates. Note in particular that (@v' |V | ®v); , includes the parametric
[ |

dependence of @ on R and is therefore not simply &, @ |V,,| fIJ)ri . On the
other hand it is true that

@v' [V el dvdy, [ = o Vel g (4.10)
since ® is normalized for each R and Vi, is independent of r;. The net results

is that the set of equations, (4.5) is seen fo be a set of equations purely in .

To eliminate the angular dependence we make the usual type spherical
harmonic expansion., As opposed to (3.4), however, we here suppress the de-

pendence on £, since this does not aiter the dynamical equations, Let

14




i .—-l,_._.__...._.__.__.__.J s _--J o s l_ it i e —j G e L o

1
R = = ; @)Y, (Q) @.11)
@ [V, + Vil B, = 2 V), R) Py(cos 6) (4.12)
H
)

. The latter implies that

(@Y Vg + Vol BVdp . = Z}\: V) (1) Py (cos 0) (4.13)
where

vN@ = & IV, RY vy (4.14)

Using all these plus the well known formula for the integral of three spherical

hfa_rmoni'::s25
“ . , , WERRAVE RN
SY§ Py Ygnd@ = (-DM (20" + 122 + 1)] , (4.15)
mo-m/\ooo

one can reduce (4.5) to the coupled equations:

a2 2w+

-2 ') = '
= - | R = > VR D@D (1T
V¥, Q, A ¥
(4.16)
DAY S 4 5
y My fmdr
(m o-m)(o 0 0) R

Equation (4.16) shows that the price we have to pay to get rid of the angles in
(4.5) is the 2 coupling, In addition to that we have the summation over A which
comes from the single-center spherical expansions of V., and Ve,

Equations (4.3), (4.4). Finally however in the spirit of our fixed-nuclei

15
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calculation we include an additional pseudo-potential to describe and simulate
the effects of polarization and exchange. [Note, like (3.1), (4.1) is also not
anti-symmetrized between ¢ and 1; (i=1, 2,.., N)]. However the way to do
is now clear: to V( )(r) we add a polarization potential gotien from appropriate
matrix elements of V(P%D (r, R) of (3.7). i.e., in (4.5) we augment the potential
by {bv' [VPOl| dv); this induces a change in the potential V(M of (4.14) to TE}\? (r)
in Equation (4. 16), where

v O = v + o viPoD vy, (4.17)

and VP g the Ath multiple component of V(P°) [see below Equation (3.10)1.
A

Equations (4,16) are solved in analogous fashion to (3. 8) specifically here
one demands the asymptotic form
lim m) ! 3 (m) i34
:_ f( (r) = — 4sin kv.r— — 'va' 652!2’ +Kvar vg €08 k\,r- —
T vk, 2 ’ 2
(4.18}
From the K{M) matrix one can, in analogy with (3.10)and (3.11), develop a 7(m)

and ar %? v Matrix

T(né) VQ Z (1 —lﬂ a ugn) K wﬂ)u v (419)
001 /(2R + 1)
o Ty = TS = TR, (4.20)
16
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The actual calculation, as we have indicated, need only be done for the Hg
partial wave., Tor this partial wave there is no orthogonality requirement, on
the other hand the multiplicity of coupling (v, ¢, and A\) makes it impossible,
even on our machine (IBM 360-91), to include a sufficient number of ferms to
get full convergence in all coupling indices. We have therefore chosen to de-
limit the ? coupling tc three terms (£ =2, 4, 6), The A expansion is thereby
automatically resiricted to seven terms (A = 0, 2, . . ., 12). Within
this approximation we seek convergence inv. The role of the polar-
ization potential V(PO | specifically the cut-off r, here will serve, in addition
to exchange, to simulate the mincluded ¢ and A components. It was chosen so
that with the inclusion of only one vibrational state, the resonance in the

v =0~ v =0 cross section occured at k2 =2.4eV (cf. Fig. 4).

We shall not dwell on the numerical aspects of this caleulation: suffice it to
say that the generic program of Reference 22 was applicable with only minor
additions fo (4.16). The static poteniials V\(}\‘? (r) were generated nwmerically
from Nesbet's wave i‘ur-.c:ﬁons;17 a selection of these potentials as a function of
r is ghovm in Figure 3. There diagonalpotentials are compared with the fixed
nuelei (static) potentials V(M(r, R,) wherein we see that both potentials get
inereasingly more sharply peaked and concentrated around r = R, /2, but that
for corresponding A the close coupling poientials are softer and without cusps.
The off dingonal potentials have no real counterpart in the adiabatic-nuclei theory,

and they are mathematically the source of the substructure of the l'lg resonance,

17




To see how this substructure appears we show in Figure 4 the IIg contribu~
tion to the v =0 = v’ =0 cross section, The cross section is p,ictted foz differ-
ent numbers of vibrational states refained in the expansion, In addition we have
shown two sets of curves, one includes two coupled £(% =2, 4) components in
(4.16) and one set includes three s (2, 4, 6), For each case we include all A

allowed by vector coupling.

One can see that one v term result does indeed exhibit a resonance at
k?=2,4eV, It was essential to get this resonance that the polarization potential
be included along with the static potential in vM) | To get the resonance at the
desired position we had fo chose r, = 1,496, 1.554 for two—and three 2-coupled
calculations respeciively. These values are gratifyingly close to the value needed
in the fixed-nuclei caleulation 1.59'7.5 Thereafter one sees as the fundamental
result of this paper that the substructure begins fo appear, and that by the time
we have coupled in 10 and 9 vibrational states respectively, reasonable (but not
precision) convergence is seen fo occur. (The program correcily includes

whether various vibrational channels are energetically closed or open.)

The comparison of the two vs. three coupled ¢ solutions shows that detailed ef-
feets do depend on the number of %'s retained. Thus to obfain the second rather
than the first bump as dominant in ¢, as is revealed by experiment (cf. Fig. 13),
the retention three ¢'s is necessary. It is also clear that the inclusion of even

more ?'s would be necessary to obtain the totality of peaks in the substructure.

i8
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(We shall see other manifestations of the truncated substructure in other cross

sectioned data as well,)

In Figures 5 and 6 we give similar results for the (Hg contribution) to
v=0-"1andv =0~ 2 cross sections. The same type of convergence and f-
coupling effects are apparent, except that the necessity of more 2-coupling (and
consequenily more v coupling) becomes progressively greater, as one goes to

higher v',

We also state for the record that the substructure does not appear if we re-
tain only one 2. Nor does it occur in the adiabatic-nueclei approximationz3 (see

below).

V. ADIABATIC-NUCLEI APPROXIMATION, HYBRID THEORY, RESULTS

The adiabatic-nuclei appro:@::inztaﬂlrlonz6 gives the transition amplitude between
vibrational, rotational states I" = I as

frp6,27)= I If(g, QNI Dl +e (5.1)

where (£, Q') is the fixed-nuclei amplitude with nuclear coordinates frozen
at £, Although the error term e on the RHS of (5.1) has never heen completely
elucidated, the present calculation will show that the delay time of scaitering
must be small compared fo the period r=n/AEp' associated with the largest
energy quantum number of I' which changes in the transition (we assume I # T'),
morder for € to be neglibible. The fixed-nuclei amplitude for scattering from
a diatomic rr,tolecvule6 is such the angular integrations in (4.1) can be done an-

alytieally, 21 whereas the integrations over R are necessarily numerical,

19




The resulting formula for the simultaneous rotation-vibration differential
crass section (when the target is a E; state) can he written

do:t..: ket i
iniv _ Y 5 A, GV i) Py (cos 69 (5.2a)

aQ’ kjv 4 L

where
ALV = QLA D+ D) > AN R Jog s D +1)a,”m(vv)

P VN . A L L Q Nx N
“?('.a.u(\"v)( i )(% k )Z (-1 ’( X ) (5.2b)
1] 0 o0 o/\o oo m-mo/\ -4 o

(j'j J)Z{Qi N L}
00O hj !Zj J
and for joint vibration-rotational a‘-zxc:i’cai:ion‘?'9
agigjm(v” V) = f Xy'(R) agigjm(R) xy(R) R? dR (5.3)
0

If one averages over initial rotational states j and sums over final states j', one

arrives at

dg s ro
V.Y _ ki — ZA (Y, V)P (cos O) (5.4a)
ds! k 47

where the rotationally averaged coefficients are:

ALV, V) = QL+ 1) {(28 + D2\ + D)% Y IVADL SV R

(Qi AL Qj hj L) g N L SZj ?\j L P (cos 0')
0 0 0/\0 ¢ o/\m u -(mtu)/ \m p -(mty) L

The total cross are quite obviously just 47 times the L. = 0 terms of the respec-

tive expressions

Oy iy = 5l A, (i'Viiv) (5.5)
jv
kv'
g, = — !agy\m(v V)i2 (5.6)




[ The formulas involving the sum-averaging over j states are the ones which
are presently useful in comparison with experiment in e-N, scattering, because

the rofational spacing has not as yet been resolved. ]

We now come fo the fundamental statement of the hybrid-theory: replace

the abiabatic-nuclei mairix elements, Equation (5.3), by the corresponding close

coupling values, Equation (4.20), for whaiever partial waves are necessary:

Gonm (Vs V) —*aﬂi%), W (5.7
(An equivalent replacement can be made for T and K matrices also.) The justi-
fication for this replacement we hope is clear., The point, we wish to reemphasize
is that the time delay criterion can be theoretically (and need not be experimentally)
assessed. (I should be added, however, that any such criterion is always ap-
proximate in the sense that constant of proportionality is necessarily somewhat
ambigunous. In addition, in the present case the Ry = 2.068 curve lies slightly
removed from the main portion of the wave fimetion, X ., (R), of the zero vibra-

tional function of the N, molecule. Thus the theoretical nature of the time delay

criterion must be understood within the confines of such mundane considerations,)

Coming back to the hybrid theory, note that the purely rotational aspects of
even this Hg wave are described by vector coupling coefficients which derive from
the adiabatic-nuclei theory. It is this fact which has motivated us to call this a
hybrid theory. Onpe could in principle also include rotational close coupling at

the same time as vibrational close coupling (cf, Discussion). Indeed Henry30 has
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attempted that in the case of e-H, scaitering with only limited success, The

28,81,33,34 when

point is that the adiabatic-nuclei theory is quite sufficient,
polarization is included, to explain the experimental data whereas vibrational-
rotational close coupling even in the simpler e-H, case poses convergence prob-
lems of a mogt serious nature, and it still does not include the main effects of

polarization, which—in a close coupling sense—would require higher lying elec-

fronic states as well,

The adiabatic-nuelei amplitudes were calculated from the fixed-nuclei
amplitudes (the eigenphases of which are those exemplified in Table 1) using
N, vibrational functions given by Herman and Wallis.35 The aQinm(R) were
interpolated, and a fifteen point gaussian quadrature was used to evaluate
integral (5.3). (The j dependence of the vibrational functions in Ref. 35 was
surpressed by setting j=0.) All of these 1:1011—1'1g amplitudes were combined

m

with the amplitudes o~ (7)) . for the Il, wave (m=1 even parity) from the

v

close coupling part of the calculation according the hybrid theory prescription

above for the particular v and v’ given in the results below.36

In Figure 7 we give the integrated vibrationally elastic (v =0 = v' =0)
cross section; the experimental result of Goldr-,'u7 is shown in the inset. Of
particular note aside from the substructure itself is the agreement of the magni-
tude of the cross section at the peaks as well as the correct relative size of the
first two peaks, The remaining peaks are not fully developed and as we have

indicated this is caused primarily by lack of sufficient 2 and v coupling due to
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limitations of machine size. Although the higher peaks are also small in this
experiment, they do show up more prominently in other experimental results be-
low, The theoretical curve does not give any structure helow the first peak at
1.9eV. Ehrhardt and Vi.i'illmamn11 have found smooth behaviour here also, so that
the older experimental strueturr below 1.8eV would appear to be spurious. The
major digerepancy with the experiment which is not likely to be altered by further
coupling is the depth of the calculated cross section between the first two peaks.
Whether this could be an artifact of the measurement due to lack of sufficient

energy resolution we cannot say.

We next turn to differential cross sections involving vibrationally elastic
scattering. Thisisthe first case we encounter crossterm effects inthe hybrid-
theory between resonant (calculated with close coupling) and non resonant (calcu-
lated by adiabatic-nuclei theory) partial waves. Thatboth erossterm and quadratic
effects are important can be seen by comparing Figure 8 with Figure 9, Figure8
givesthe completely calculated differential cross sections ineluding non~-resonant
waves for three ofthe energies measured by Ehrhardt and Willmarml1 (which resulis
are given inthe inset). In Figure 9 similar results including only the IIg partial wave
are given, Not only are the latter spuriously symmetric about 90°, but the rise
around 90°is completely absentboth fromthe experiment andthe full calculation.

In Figure 10the full caleulation is given for the remaining three measured energies.
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{(given in the inset). Note again that the calculation gives absolute values, but
only the relative values are mear:*,u:rre.d.l1 The shapes appear in satisfactory

accord with experiment.ll

The last comparison we shall give for vibrationally elastic scattering is the
differential eross section as a function of the energy at various angles (Fig. 11),
We consider the comparison very satisfactory but the absence of the higher wig-
gles particularly in the forward directions (due to the lack of sufficient coupling
in the ealeulation as explained above) is somewhat more apparent than in the

integral cross section (Fig. 7).

We turn next to the inelastic cross sections. In Figures 12 and 13 we give
the differential values at @' =20°, 72° vs. k* respectively, these being the
measurements in Reference 11 and Reference 6 respectively. In particular
Schulz6 inferred that his measurements would reflect the integrated cross sec-
tions as well. That this is so is shown in Figure 14 where the integrated cross
sections are given and are seen virtually indishinguishable from the 72° curve
in shape. On the other hand the absoluie values which were originally inferred
by Schulz6 on the basis of summed total cross sections measured by Haas37 are
about a factor two smaller than we caleulate, Thus the need for direct ahsolute
measurements is clear, not only to test the theory but for many atmospheric
applications, of which Reference 1 is one, as well, Although the shape for the

inelastic v =0 = v' =1 cross section is satisfactory, the detailed agreement
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rapidly degenerates for higher v', and again this can be attributed to inadequate
v and £ coupling as noted in going from Figure 4 to Figure 6. We believe how-
ever that the average magnitudes of the particular eross sections are meaningful

for practical applications.

It should be noted that because of the virtual independence of fhe nonresonant
amplitudes on R, essentially all of the inelastic cross sections comes from th‘e
resonant l'[g wave. This can be clearly seen in the inelastic-differential cross
seclions, given in Figure 15, which are quite symmetric about 90°, Alihough the
measurements of Ehrhardt and Willmannll are not done over sufficiently wide
anpular range to prove the symmetry, the agreement with calculation in terms

of ratios of forward to minimum to 90° values at the different energies is very

good,

Finally we give the momentum transfer cross section, The formula for this

cross section
dg
dQy’

is readily integrated from (5.4) to give

oy = [ (1 -cos 8") dQ¥’ (5.8a)

T 1
oy = Ez' ‘ I:Ao(o, v') - ; A (o, v')J (5.8b)
v

where the A(o, v') are given in (5.4b) with the I, amplitudes replaced again by
the close-coupling amplitudes according the prescription (5.7) of the hybrid theory.

(Note the A, (o, v') = 0 for v'> 0 for I'Ig ). The result of the calculation is compared

26




with the experiment in Figure 16, The experiment as is well known does ngt ineas-
ure oy directly, bul rather infers it by optimizing assumed momentum transfer
cross sections to fit swarm data as function of applied electric field, As such

the abhsence of substructure on the "experimental™ resull should not be interpreted
ag its absence in fact. (I is virtually certain that the suhstrucfure must be
present.) The experimental curve is seen to envelope the calculated curve in

the resonance region as would be expected. About 25% of the calculated curve
comes from the v’ > 0 terms in (5.8b). However the contribution of the resonances
does not extend beyond about 4eV, thus vhe 20% difference in this energy range

would appear at this point to remain unexplained.

Finally it is clear from (5.2) and (5.7) that the hybrid theory can be used fo
caleulate simuitaneous rotation-vibration excitation., We shall not do that here
as the programming of the formulae is somewhat more ardnous, and there are
presently no experiments with which fo compare. (We do intend to perform that

calculation at a later time.)

Vi. DISCUSSION

This then completes our hybridization of vibrational c¢lose coupling aund
adiabatic~nuclei rotational approximations. In order to complete the a-priori
theoretical framework for calculation of very narrow (probably Feshbach)
resonanances, one will have to include rotational coupling as well, In that case

the hybridization will take place as the second level only: i.e., the roiational
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and vibrational close-coupling amplitudes for the resonant partial will he merged
with the adiabatic-nuclei amplitudes for the non-resonantpartial wave., We ex-

pect to elucidate the formal aspects of this generalization shortly.

Caleulations involving this generalized hybrid theory will certainly be
arduous, It may well be that for practical purposes other techniques (R-matrix,
Fredholm determinant, ete.) may be more useful. But to be reliably accurate

they will have to include the equivalent physics of the hybrid theory.

The frame-transformation theorysg’ 40

represents a different mix of the
ahove theories, There one ties interior fixed-nuclei ealeulations to exterior
close~coupling caleulations at a boundary point r, utilizing appropriate simpli-
fications for each region, The approach has undoubted ufility in molecular photo-
ionization and electron-molecular ion scattering where the known asymptotic
Coulomb solutions can be combined with multi-channel quantum defect theory41
to render the resonant structure to he described in terms of a few experimental
parameters.39 It should be noted, however, that even here the fized- and

adiabatic-nuclei theories can desecribe the non-resonant structure very weu}5’16’42

In the case of scatiering from hetero-nuclear molecules (i.e., those with a
dipole moment) frame-transformation ean he expected o be useful43 if for no
other reason than rendering certain cross section finite which wouid diverge in
the fixed- and adiabatic-nuclei al:tproximat:ions.4:4 However in the case of homo-
nuclear diatomic molecules the utility of frame transformation is more uncertain,
bhecause the forces are probably not long-range enough to allow cross section to
emerge which are suitably insensitive to the matching radius r,.
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Table I

Nonresonant Eigenphase Sums as a Funetion of R (mod 7)

Energy Partial Internuclear Separation R (in units of ag)

eV) Wave*

1.744393 1.868 2,068 2,268 2,391607
0.20 A -0.1921 -0.1906 -0.1985 -0.1902 -0.1926 .
B -0.0253 -0.0645 -0.0037 0.0011 0.0038
C ", 0851 0.0295 0.0288 0.0278 0.0271
0.40 A -0.2960 ~0.2938 -0.3048 ~0.2940 -0.2972
B ~0,0366 -0.01183 -0.0080 -0,0020 0.0012
c 0.0503 0.0423 0. 0406 0.0390 0.0379
0.60 A -0.3772 -0.3747 -0,3878 -0.3750 -0.3787
B ~-0. 0505 0.0211 -0,0202 -0.0115 -0,0083
C 0.0572 0.0474  0.0448 0. 0427 0.0411
0. 80 A ~-0,4450 -0.4421 -0.4570 -0.4426  -0,4467
B -0.0673 ~-0.0346 =-0,0353 -0.,0253 -0,0223
C 0.0581 0. 0479 0. 0442 0.0414 0.0394
1.00 A ~0.5037 -0.5006 -0.5170 -0.5012 -0.5056
B -0.0845 ~0.0503 -0.0530 -0.0419 -0,0393
C 0,0573 0.0449  0,0401 0.0368 0.0343
1,20 A -0.5555 -0.5524 -0.5702 -0.5530 ~0.55%77
B -0.1033 -0.0677 -0.0723 -0.0603 -0,0581
C 0.0528 0.0394 0.0337 0.0298 0.0270
1.40 A -0.6022 -0.5989 -0.6180 -0.5997 -0.6047
B -0.1229 -0,0862 -0.0927 -0.0793 -0.0782
C 0.0466 0.0323 0.0256 0.0212 0,0181
1.60 A -0, 6446 -0.6412 -0.6616 -0.6423 -0.6475
B -0,1428 -0.1054 -~0.1137 -0.1003 -0.099%0
< 0,0389 0.023%  0.0163 0.0114 0.0081
1.80 A -0.6835 -0.6801 =-0.7018 -~0.6814 -0,6869
B -0.1630 ~-0.1250 -0,1352 -0.1211 -0.1203
C 0.0303 0.0146 0.0062 0.0009  -0.0027
2.00 A -0, 7193 -0.7158 -0.7388 -0.7176 -0,7234
B -0.1833 ~-0,1448 -0,1568 -0.1421  -0,1417
C 0.0210 0.0046 ~-0,0045 -0.,0102 -0,0139
2,20 A -0.7524 -0.7480 -0,7733 -0.7514 -0.7575
B -0, 2035 -0.1647 -0.1784 ~-0.1632 -0,1632
c 0.0113 -0.0068 -0,0155 -0.0216 -0,0255
2.40 A -0.7833 -0,7799 -0.8056 -0.7830 -0,7896
B -0,2235 ~0.1845 -0.1999 -0.1843 -0.1846
C 0.0011 -0.0165 -0.0269 -0.0332 -0.0373
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Table I (Continued)

Energy Partial Internuclear Separation R in Units of a)

{eV) Wave*

1,744393 1,868 2.068 2,268 2.391607
2.60 A -0,8122 -0,8089 -0.8359 -0,8129 -0.8188
B ~-0,2434 -0.2043 -0,2213 -0.2051 -0.2058
C -0.0092 -0,0274 -0.0383 ~-0.0450 -0.0491
2,80 A -0.8393 -0,8361 -0.8646 -0.8409 -0.8484
B ~-0.2631 -0,2239 -0.2424 -0.2258 -0.2268
c -0.0197 -0.0383 -0.0498 -0,0587 -0.0609
3.00 A -0.8649 -0.8617 -0.8917 -0.8677 -0,8756
B -0.2825 -0.2432 -0,2633 -0.2462 -0,2474
c ~0,0302 -0.0483 -0.0613 -0.0684 -0,0726
3.20 A -0.8890 -0.8860 -0.9175 -0,8929 ~0,8015
B ~0.3016 -0.2623 -0,2838 -0.2664 -0.2678
c -0.0408 -0.0603 -0.0727 -0.0800 -0.0841
3.40 A -0.9119 -0.9090 -0.9418 -0.9174 -0.9265
B -0.3204 ~-0,2812 -0.3041 -0.2862 -0.2878
c -0.05613 -0.0712 -0,0839 -0.0914 -0.0955
3.60 A ~0,9337 -0.9307 -0.9654¢ -0,9408 -0.9505
B -0.3389 -0.2997 -0.3239 -0.3056 -0.3074
C -0.0617 -0.0819 -0.0950 ~0.1026 -0.1067
3.80 A ~-0.9544 -0.9516 -0,9880 -0.9633 -0,9737
B -0.3570 -0,3180 ~-0.3434 -0.3247 -0.3266
C -0.0720 -0.0925 -0.1059 -0,1136 -0.1177
4.00 A -0.9743 -0.9716 -1.0096 -0.9850 -0.9961
B -0.3748 -0.3359 -0.3625 -0,3434 -0.3454
C -0,0821 -0,1030 -0.1167 -0.1244 -0.1284
4.50 A ~1.0203 -1,0181 -1.0605 -1.0363 -1.0491
B -0.4179 -0,3792 -0,4087 -0.3884 -0.3907
c ~0,1067 -0,1283 ~0.1425 -0,1502 -0.1541
5.00 A -1,0620 -1,0605 -1.1073 -1.0838 ~-1.0984
B -0.4589 -0.4204 -~0.4525 -0.4311 -0,4332
c -0.1302 -0,1522 -0,1669 -0.1745 -0.1779

*Rows A, B, C refer to Eg, Z,, I, eigenphase sums respectively.
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Figure

Figure
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Figure

Figure

Figure Captions

Fixed nuclei Hq eigenphase sum (mod 7) for different internuclear
separations. Note that k2 is relative to the ground state energy
of N, which is itself a function R} cf. bottom curve, Fig. 2.

Width and position of Hg resonance vs R. The other results are

from Birtwistle and Herzenberg (Ref. 10) and Krauss and Mies

(Ref. 12). The lowest curve is ENZ(R) - EN (Ry) -
2

Some diagonal and non-diagonal potentials of the vibrational
close coupling equations vs r. The corresponding fixed-nuclei

potential is indicated hy open circles.

The Hg contribution to the vibrationally elastic cross section

8, including two and three-partial waves for increasing number

of vibrational states included in the close coupling expansion.

Same as Fig. 4 but for UO+1(5010).

Same as Fig. 4 but for 00+2(5020).

The vibrationally elastic scattering in the full hybrid theory.

In the inset is the experimental results of Golden (Ref. 7).

In Ref., 11 the experimental structure below 1.8 eV is not found

and is considered to be spurious.

Full hybrid theory calculation of vibrationally elastic differential
cross sections at three energies. In the inset are experimental .
results of Ehrhardt and Willmann (Ref. 11).

Hg contribution to dcoo/dﬂ. Note the symmetry and enhancement

around 900 are not present in the full calculation or the

experiment; cf. Fig. 8.
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Figure 10. Full hybrid theory calculation of dooo/dﬂ at remaining three
energies measured in Ref. 11 which are given in inset.
Figure 11. dcoo/dﬂ vE k2 for various angles. Experimental result of
Ref. 11 given in inset.
Figure 12. doo*v/dﬂ at @ = 20° for various excited states. Experimental
results of Ref. 11 given in inset.
Figure 13. Same as Fig. 12 for 0 = 72°. In this case the experimental
result (inset) is that of Schulz, second paper of Ref. 6.
'the ordinate of the inset show the original inferred normal-
ization; cf. caption of Fig. 14.
Figure 14. Total vibrational excitation curves. Note similarity of
shape to 0 = 720 curves Fig. 13 as assumed by Schulz (Ref. 6,
1964), from which the experimental result is taken. The
experimental normalization however is a factor two higher
than given in Ref. 6 and constitutes a new inferred normal-
ization (Schulz, 1975 to be published). In the latter, Schulz
states that the new normalization may itself be low by a factor
two, which is in accord with our results.
Figure 15. Vibrationally inelastic differential cross sections compared
. to experiment (Ref. 11) in inset. ©Note that the vertical
symmetry of the inelastic cross sections around 900 due to
minuteness of non-—ﬂg contribution in these cases.
Figure 16. Momentum transfer cross section compared to the one inferred

from swarm experiment by Englehardt, Phelps, and Risk (Ref. 38}).
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