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t	 ABSTRACT

A theory of electron-molecule scattering is developed which is a

synthesis of close coupling and adiabatic-nuclei theories. Specifically

the theory is close coupling with respect to vibrational degrees of free-

dom but adiabatic-nuclei with respect to rotation. In addition, this

theory can be applied to any number of partial waves required, the re--
`i

znaining ones can be calculated purely in one or the other approxima-

tion. A theoretical criterion based on fixed--nuclei calculations and

not on experiment can be given as to which partial waves and energy

domains require the various approximations. The theory allows all

cross sections (i.e., pure rotational, vibrational, simultaneous

vibration--rotation, differential and total) to be calculated. Explicit

formulae for all these cross sections are given.
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The theory is applied to low energy e-N, scattering. The fixed-

nuclei results are such that the criterion shows clearly that vibrational

close coupling is necessary, but only for the 11, partial waive. The con-

E

tribution of remaining partial waives can be obtained directly from the

adiabatic-nuclei auro-dmation. The close coupling calculation for the

ri wave is carried out, and we find that it does give rise to the sub-

structure as well as the gross structure of the 2.4 eV resonance. When

this amplitude is combined with the adiabatic amplitudes we can compute

absolute values of all cross sections of interest. In particular we find

that vibrational excitation cross sections are about twice as lame as

previously inferred. The momentum transfer cross section can also be

computed, and it too reveals substructure within the gross stricture

resonance,
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1. INTRODUCTION

Molecular nitrogen is a major constituent of the atmosphere to an al-

titude of about 500 lcm. Thus it can be expected that the scattering of elec-

trons from N 2 will be an important process in the aeronomy of the atmos-

phere particularly above the E region, where photoioniiation of many of the

upper atmospheric constituents by solar W produces an abundance of clec-

trans. For example the resonances in the a-N 2 vibrational excitation cross

sections in the vicinity of 2.4 eV have been used by Newton et al., I to cx-

plain an enhanced 0* + N 2 (v) — N0 + + N rate which in turn will lead to the ob-

served decrease in ambient electron density in the F 2 region during times of

enhanced air-glow giving rise to stable auroral rcd (SAR) arcs via the reaction

e+NO + -> N+O.

The 2.4 eV, a-N 2 resonance is known to be a very complex structure.

Fortunately there is a wealth of experimental details, 2 and more or less

phenomono logical theories to explain them. It is important however that this

complicated structure be understood from a fundamental—essentially ab initio

point of view, inorder that researchers be able to predict scattering from

other molecules which cannot be prepared in the laboratory, but which we
O

now Imow to exist in many astrophysical environments. 2 We believe that the

°	 present modification and synthesis of existing theories will complete the Fund-

amental approximations which must underlie the methodologies to be employed

in such calculations.
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In Section li we shall describe the e-N 2 , 2.4 (;V resonance and briefly revi.pw

the nrovious c:alculatiomil theories leading to the I)Wnt in Section M that -strictly on

the basin (1l' fixed-nuclei c:ulcula.tio),s (and not experiment) of the ll^ partial wave,
r.

one can infer that the adiabatic:-nuclei theory will not suffice to describe the sub-

Htruoturc of tho resonance. 4 Tbc fixed-nuclei calculations which are an extension

OF those of I3urke and Chandra' to a series of internuclear distances 11 arc: also

described in Section III. In Section IV we develop the vibrational-close coupling

theory and show that our calculations for the l7 9 partial wave do reveal the sub-

structures of this resonance as more states are added while at the same time

showing reasonable convergence when a sufficient number of states is mtained.

The main formulae of the adiabatic-nuclei approximation are reviewed in Sec-

Lion V; by simple inspection one may then see how to combine the vibrational

close coupling with adiabatic-nuclei theories: the process is one of substitution

of the appropriate scattering matrices of the one theory for the corresponding

ones of the other.

Results and comparisons with experiment are also given in Section 1'. An

important aspect of the calculatio is is that they yield absolute normalization for

individual vibrational excitation cross sections, whereas as far as we }move all
s

s measurements are relative or have been done at individual angles. Furthermore

the theory is complete: it gives formulae for total and differential cross sec-

tions of individual and averaged transitions for vibrational and or rotational
G,

F

Sr

p.

t.	
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excitation as ,yell as pure elastic scattering. Simultaneous  vibration, rotation

differential cross sections can also be calculated (although that is net -iono horn)

as well as the anomentum-transfer. The latter, which is c alcul;atod, is I artiou-

larly interesting because it reveals substructure similar to that of tho ola, tie

scattering.

Finally in Section VI we give :a brief d!scusStoll of Ilow this Inet.ho(i fit. ill

with other mothods and possible go-ner:alir.at:iolls.

H. PRELIMINARIES

I,'.xporimentally tho lore energy c-N Z resonance is a complicated boast. It

was first Inoasured in detail in vibrational excitation by Schulz 8 ati :I somos of

irrogular peaks (cf. Figs. 11, 12 & I3). The results have boon impol-I aifly

complemented by the measurement of the vibrat3onally r.laSt:ic so:attering I)y

Golden, 7 which :chows :a gross structure peak contered at about 2. .1 eV super-

tmposed on top of at least fivo ptoantaaent sub peaks between 1.8 and 3.2eV (rf.

Fig. 7). The observed hicl:astie structure of the led ill short order to its

 (crudely described) ,is :a compound :Mate of the vlectron .Ind target sysic'mi

i.e. , the N Z ion) 3 	with the substructure due to the interference betvc-on the

various vibrational ;agates of glee compound systean. This general playsic;al in-

tcrpretHation of the structure is cer-Willy correct; the difficulty with the calcula-

tions is that they are not ab initio, and thus they contain many adjttstable prar-im--

eters. it should be added, however, that the physical and mathematical refiaae-

monts of this general approach have been greatly developed since tlae original

9
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papers, most successfully by Birtwistle and Herzenberg. 10 That calculation which

is based on a boomerang model, gives remarkable agreement with the shapes of

the vibrational excitation curves as measured by Ehrhardt and Willmann 11 but it too

does not give absolute values.

In addition to the types of calculations mentioned above, there have been

other, more ab initio types of investigations. One is a calculation by Krauss and

Mies 12 of N2 as a bound state structure. This calculation confirmed the assign-

ment by Gilmore 13 of this resonance as a IIg "state," and it showed that it is a

shape rather than a Feshbach resonance. The calculation is truly a 15 electron

self-consistent field calculation, but since the Il g symmetry overlaps the ordi-

nary e-N Z continuum, which can be of lower energy, some delicate restrictions on

the variation were necessary to assure that the resonant state was not contaminated

by this nonresonant scattering of the same symmetry. On that score we can all

state that the calculation was in good hands with the NBS investigators. 12

Finally two single-center fixed--nuclei calculations have been carried out by

the Belfast group: the first by Burke and Sinfailam 14 includes full exchange of

the incident and orbital electrons, but no induced polarization; the second by

Burke and Chandra5 includes polarization and simulates exchange by orthogonal-

izing the scattered to the bound orbitals. This 'pseudo-potential , approach pro-

vides the basis of all fixed-nuclei aspects of the present calculation, and we shall

discuss it as appropriate in succeeding sections.

6
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III. FIXED-NUCLEI THEORY AND CALCULATIONS

In contrast to its application in bound state problems, the fixed--nuclei ap-

proximation for electron-molecule scattering 15 ' 16 assumes not only that the

nuclei are fixed (at a distance R apart), but that the target molecular wave func-

tion 4) (x; R) has been precalculated at each, in principle arbitrary, internuclear

separation R. As a result the scattering associated with a total wave function

(r is the coordinate of the scattered and xi those of the orbital electrons)

%'(m)	 = ^Pm( r ; R) 43 (x i; R)	 (3.1)

exhibits no pa rticular stationa:nj properties with respect to variations of R about

the equilibrium separation of the target molecule R = Rp .	 This is a very force-

fully exhibited here, when we extend the calculations at the equilibrium separa-

tion. 	 (R = R o = 2. 068a.) to four additional values of R of the N2 wave function

given by Nesbet: l7 R = 1. 744393, 1.868, 2.268, 2.391607.

To review the fixed-nuclei calculation (cf. Ref, 5 but our notation is some-

3.
what different), the ground state 1 Eg of N2 is a closed shell described by a single

Slater determinant

4) = det (Oa I(x l) Oa t (x2) ... Oa 14 (x 14))	 (3.2)

a
where the ai can readily identified from the configuration 16 	 2Q	 3Qs	 1a^

2u 2 1rrU of the ground, 1 Eg , state of N 2 .	 The bound state function l7 which is
•

an LCAO function-meaning pairs of orbitals are centered about the separate

r
nuclei—is converted to a single center basis using a program of Faisal and

Tench.l8
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0a(r) = Y: r 02a (r) Y2?',,P) .	 (3.3)
Q > ha

(A double prune indicates every second term is to be taken. About eight terms in

this expansions are sufficient for convergence.) A similar expansion is now made

of the scattered orbital 16

rr U(m) (r)

tlf
m (r) -	

QIQ^	

Y
Q m (92) YQ m ( K20 ),	 (3.4)

	

Q	 r	 I	 i

where E20 are the sperical angles of the internuclear axis in the laboratory frame

and r W (r, 92), i.e., unprimed coordinates are the coordinates in the molecular

frame.

With the use of (3.3) the static potential seen by the scattered electron is

naturally expanded in single center coordinates (in rydberg units)

	

N	 ^,
cI^	

2Z	
+	

2Z	 -	 2 14)	 V),(r) PX (cos 0)	 (3.5)
Ir - R/21	 Ir + R/2I	 Ir - r• I

	

i = I	 ^

The equations satisfied are then derived from the variational principle:

6 j tlf((") * (H - E) tF	 dr = 0	 (3.6a)

which is equivalent to the projection

jY lm Y^ (H - I3 )1I,, Qm) dr" I = 0	 (3.6b)
1

b

wherr- ,1r _ I means integration overall coordinates but r (including integration

over 1Zo }. In practice this set of coupled equations, which may readily be

is

T

1

8
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derived from (3.1) - (3.5), is augmented to include an induced polarization

potential

a (R) a (R)
V(POI) (r; R) _ - ° 

	
+ 2 4	 P2 (cos8)[1 - e(r/ ro) 6 j	 (3.7)

(r4^	 r>

where r] is greater of r and 1/2R. The calculations also includes orthogonality

to all occupied orbitals of the same symrhetry via Lagrange multipliers. The
A

equations satisfied by uQlm(x} of Equation (3.4) are then

d2	 Qi(Q^ + 1) + k2 u(m)	 `^` (m)	 (m)	 {«)

drz -
	

r2	 QiQi(r) - L1 vP i ^^ (r) u2 i 2j ) _ !^ ^`a ^Ri (r)	 (3.8)
J	 «

where

2Q• - 1
v( Q) _	 (2) X o o/2i o)(Q) A m o/2 i m) v?,(r),	 (3.9)

1	 2Qi + 1

and

vN(r) = VX(r) + Vj P ;)W.	 (3.10)

V ^P") are the multiple components of VPoI from. (3.7), thus in particular V0 01) --

0 for A > 2. ( The remaining symbols in (3.9) are Clebsch-Gordan coefficients. l

The calculation for each R was done just as the calculations of Burke and

Chandra5 at R = Ro . One only needs the dependence of the polarizabilities on R.

These were taken of the form,

ao (R) = 12.0 + 1.692(R - Ro )	 (3.11 a)

nr (R) = 4.2 + 2.031(R - RO )	 (3.11b)

9
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Equations (3.11) were chosen to give the correct polarizabilities at R = R o and
i	 ^

to reduce correctly to the united atom limit: ao (0) C W asilican ) - 8. 5a' and

U2 (0) = 0. The value 8.5ao was interpolated from Sternh:Gimer's19 calculation

of the polarizabilities of CQ- , K+ , and Ca++ . It is to be noted that Equations

(3.11) are somewhat different from Truluar20 who used Raman data to get an

accurate estimate of the derivatives in the neighborhood of R = Ro. Our own

interpolations, while somewhat cruder, should apply over a larger range in R,

and thus be more suitable to excitation of higher lying vibrational states. Finally

the value of ro was retained at 1.592 as independent of R. That value was

chosen, 5 so that the 119 resonance for R = Ro occured at exactly k2=2.394eV.

The scattering is determined from the asymptotic solution of (3.8):

lira	 zrQi	 7rQ3
r	

uQ Q, = 1c sin (kr - 2 SQ1Qi + ICQ Qj cos kr - 2
	

(39)

The K matrix as indicated in (3.9) is diagonal in m; it is also real, symmet-

ric, and for homonuclear targets connects only Q, and Ql of the same parity. In
i

matrix notation the scattering is naturally expressed in terms of a matrix pro-	 I
r

portional to the T matrix. In Reference 5 this matrix is taken to be T(m)	
I

which is related to K(m) by

TM	 2i(h -i K(m))-3 K(m)	 (3.10)	 3

In Reference 16, which gives the original derivation of the coupled fixed nuclei

cross sections (using a spherical analysis), the scattering is written in terms of

the a matrix which is related to the abode T matrix by21

10
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aQ Q m = i '	 T(m) k 	 (3.1 1)
1 1	 k	 Il

The fixed-nuclei results are most conveniently given in terms of the sum
a

eigenphase shifts. The eigenphases are the are tangents of the eigenvalues
as i

of the K matrix:
-r

det K(m ) _ X(m) 1I	 0(3.12a)

.	 A(m)_	 tan-1 A(m)
1	

,	 (3.12b)
L

where the slue in (3.12b) goes over all coupled states that are included (and is

found to converge with inclusion of approximately 8 coupled states as stated

above. 1 is the unit matrix. In Table I we}	 give a sekc4ion of our results for

Es , Z ug flu partial waves as a function of internucl.ear separation R. The

R(=R o) = 2.068 results are just those of Burke and Chandra. 5 A detailed de-
I

scription of that generic program has been published by one of us 22 and that

program is what was applied here.
a

We also note in addition to m = 0, 1, ... corresponding to E , II, .. , that

the parity of the index 2 (even or odd corresponding to g or u) is also a good

quantum number as well as the spin S. The latter is always S = yZ corresponding

to doublet multiplicity, since N 2 is a closed shell ( 1 1.) target. [ We therefore 	 {

suppress the doublet label, for example 2 11 , on our partial wave notation. }	 I

9

The sum of eigenphases for non--II I phase shifts are seen to change min-

imally as a function of R (although it is interesting that for E g the minute change is

s,
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an oscillatory one). The change is also slow and smooth as function of the im-

pacting energy k 2 . For those partial waves therefore the adiabatic-nuclei theory

for both rotational and vibrational excitation applies (see below).

On the other hand the change with both R and k 2 of the 119 wave, given in

Figure 1, is dramatic? As a function of k 2 the subient feature is the resonant

behaviour. if one confines attention to the equilibrium separation R , one  evalu-

ates the width r = 0.4 eV, which is sensibly larger than the vibrational spacing

AEA -- 0.29 eV. It was for this reason that we previously believed the adiabatic

nuclei theory would be at least semi-quantitatively applicable to that partial wave

as well. 23 However if one looks at the curves for R > R. then one sees that the

resonance has diminished to r = 0.14eV for R = 2.391607. And even at R=2.268,

r = 0.25 eV which is smaller than the vibrational spy Icing of N 2 ; in other words

the time (T a r-1 ) spent by the incoming electron in the vicinity of the molecule

is comparable to or longer than the vibrational period of the nuclei. This is a

definite violation of a basic criterion for the validity of the adiabatic-nuclei

theory, and it gives a purely theoretically determined basis for distrusting the

adiabatic-nuclei theory for this partial wave. 24 We therefore turn in the next
4

section to vibrational close coupling and its amalgamation into the adiabatic-

nuclei theory.

Before concluding this section, we give in Figure 2 a comparison of our

fixed-nuclei width and position curves vs. R as compared to the calculations of

I

i

1

x

3

12



Krauss and Mies 12 and BirLwisth and Herzenberg x0 Considering the different

natures of these calculations, we consider the agreement to be remarkable.

IV. VIBRATIONAL CLOSE COUPLING

	

•

	

	 It is clear from the foregoing that it is necessary to 	 include the dynamical

response of the nuclei to their vibrational motion. The most natural way of do-

ing that in quantum mechanics is to expand the wave P nction in terms of the

eigenfunction.s of the vibrational motion: this is what is meant by a vibrational

close coupling expansion:

	

•Ir(n) = (D(ri;R) Z F"m )(r) Xv (R)	 (4.1)
V

[ The contrast of this with (3.1) should be noted. ] Let us write the total

Hamiltonian (in rydbergs)

	

H = Ho(R) - V - M OR +Vee + VN e
	 (4.Z)

where HO (R) is the Hamiltonian the target molecule, with nuclei at a distance R

apart and M their reduced mass. Vee and VN e are the interaction potentials of

the scattered electron with the orbital electrons and nuclei. respectively:

F;

ra
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In deriving (4.5) one uses the conservation of energy

E -- Eo = k2 `E' co = k2 + ev 	(4.6)

where Eo is the electronic energy of the target state satis£S ing the target

Schrodinger equation.

Ho(R) 4'(r ,, R) = EQ(R) cD(rj, R)	 (4.7)

One also uses the a1?1?ro2imation that the rotational lunetic energy is negligible

compared to its vibrational energy, so that

D2 -> 
1 d2 R-

R R dR2

'	 and the fact

2}	 - 1 1 d R + ((D(ri ., R) IHo (R) I (D(r j; R))i - Ev X.v(R) = 0	 (4.9)
M R dR2F	

In (4.5) and (4.9) the subscripts on () indicate the coordinates over which one
f
6
t

integrates. Note in particular that 01)v' IV I `I^v)R r includes the parametric

dependence of 4) on R and is therefore not simply 5	 (^Ir I Vee I "')r, . On the
_	 3

y

r	 other hand it is true that
i
{

(4'v` IVN e I `I'v)It, r= (v' 'VN e 1 v)R
^	 1

t

since 4D is normalized for each R and VN a is independent: of r i . The net results

r., is that the set of equations, (4.5) is seen to be a set of equations purely in r.

To eliminate the angular dependence we make the usual type spherical

harmonic expansion. As opposed to (3.4), however, we here suppress the de--
f'

pendence on no , since this does not alter the dynamical equations. Let

3

14

I.

(4.8)

(4-.10)

a

9
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3

t,j



Fv(m ) (r̂  
= 1 L i )(r)YQm(n)r

((I) IVee + V N e I (I))r =	 V(') (r, R) P ?, (cos 0)

(4.11)

(4.12)

The latter implies that

(cliv' {Vee +VNe"I)y)R,r) _ E V X) (r) PX (cos 0)
A

V( Xf (r)=	 W IV(?) (r, R)I v)R

(4.13)

(4.14)

Using all these plus the well known formula for the integral of three spherical

harmonics25

f YQ'mPA YQn,da	 I)fn [(2Q' + 1,)(22' 1)IIh Q AQ A Q
	

(4.15)
Mo-nn 000

one can reduce (4.5) to the coupled equations:

fv Q?(r) -	 (22 + 1)(Te + 1) (-1)m
V,^'^

(4-16)

	

1	 f	

'F	

-0

	Q 	 Q A Q P 
(X)

(r)
 f wQ) (r)mo

A

-M 000

f	 Equation (4.16) shows that the r=rice we have to pay to get rid of the angles in
e

(4.5) is the Q coupling. In addition to that we have the summation over A which

+ k V'
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calculation we include an additional pseudo-potential to describe and simulate

the effects of polarization and exchange. [Note, like (3.1), (4.1) is also not

anti-symmetrized between r and rl (i = 1, 2, .. , N) I. However the way to do

is now clear: to V v vv (r) we add a polarization potential gotten from appropriate

matrix elements of V (Po1) (r, R) of (3.7). i.e., in (4.5) we augment the potential

by (4)v' IV Po1 1 (l)v); this induces a change in the potential V (^' of (4.14) to Tv`,v(r)

in Equation (4.16), where

v 
(7,v = V( ^ )(r) + (v' 

IV(pal) I v)a	 (4.17)

and V (Pol) is the Ath multiple component of V (Pol) [see below Equation (3.10)) .

Equations (4.16) are solved in analogous fashion to (3.8) specifically here

one demands the asymptotic form

1	 rrQ'	 nR 1
rlirn fV Q;(r) = k sin(kvrr - Z Svv r S QQ r + Kv m' r

 vQ cos (kvr - 2 J1
(4.18)

From the K(m) matrix one can, in analogy with (3.10) and (3.11), develop a T(m)

and ar 
v 
Q; 

vQ 
matrix

T(
M)
Q' vQ = 2i Z 

(1 - i Kv 
Q) v

rr Q rr)
- ^

 K(m)) vQ	
(4.19)

V rr ' err

cm)	 _ 

1 
Q' - 2 - I 	 n(2Q+ 1)	 (m)

vQ —
T(M) 

vQ	 (4.20)

^; 1G

l';S

i
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The actual calculation, as we have indicated, need only be done for then 9

partial	 no orthogonality requirement, ona -tial wave. For this partial wave there is

the other hand the multiplicity of coupling (v, Q, and X) makes it impossible,

even on our machine (IBM 360-91), to include a sufficient number of terms to

get -full convergence in all coupling indices. We have therefore chosen to de-

limit the 2 coupling to three terms (2 2, 4, 6). The N expansion is thereby

automatically restricted to seven terms (X 	 0, 2,	 12). Within

this approximation we seek convergence in v . The role of the polar-

ization potential V(P OO specifically the cut-off r0 here will serve, in addition

to exchange, to simulate the unincluded Q and X components. It was chosen so

that with the inclusion of only one vibrational state, the resonance in the

v 0 v 0 cross section occured at k 2 	 2.4 eV (of. Fig. 4).0

We shall not dwell 
on the numerical aspects of this calculation: suffice it to

say that the generic program of Reference 22 was applicable with only minor

additions to (4. 16). The static potentials V ( V̂) (r) were generated numel-ical lyV 

from Nnsbet's wave fimctions;
17

 a selection of these potentials as a function of

r is shown in Figure 3. There diagonal potentials are compared with t'he fixed

nuclei (static) potentials V(?) (r, RO) wherein we see that both potentials get

increasingly snore sharply peaked and concentrated around r R O 2, but that

for corresponding N the close coupling potentials are softer and without cusps.

The off diagonal potentials have no real counterpart in the adiabatic-nuclei theory,

and they are mathematically the source of the substructure of the H 9 resonance.

17
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To see how this substructure appears we show in Figure 4 the II 9 contribu-

tion to the v = 0 v' = 0 cross section. The cross section is plotted  for differ-

ent numbers of vibrational states retained in the expansion. In addition we have

shown two sets of curves, one includes two coupled 2 (2 = 2, 4) components in

(4.16) and one set includes three R's (2, 4, 6). For each case we include all X

allowed by vector coupling.

One can see that one v term result does indeed exhibit a resonance at

k 2 = 2.4eV. It was essential to get this resonance that the polarization potential

be included along with the static potential in V 01) . To get the resonance at the

desired position we had to chose ro = 1.496, 1.554 for two—and three Q-coupled

calculations respectively. These values are gratifyingly close to the value needed

in the fixed--nuclei calculation 1.597. 5 Thereafter one sees as the fundamental

result of this paper that the substructure begins to appear, and that by the time

we have coupled in 10 and 9 vibrational states respectively, reasonable (but not

precision) convergence is seen to occur. (The program correctly includes

whether various vibrational channels are energetically closed or open.)

The comparison of the two vs. three coupled Q solutions shows that detailed ef-

fects do depend on the number of Q's retained. Thus to obtain the second rather

than the first bump as dominant in aoo as is revealed by experiment (cf. Fig. 13),

the retention three Q's is necessary. It is also clear that the inclusion of even

more Q's would be necessary to obtain the totality of peaks in the substructure.

i



(We shall see other manifestations of the truncated substructure in ether cross

sectioned data as well.)

In Figures 5 and 6 we give similar results for the (11 contribution) to

v = 0 1 and v = 0 2 cross sections. The same type of convergence and Q-

coupling effects are apparent, except that the necessity of more Q-coupling (and

consequently more v coupling) becomes progressively greater, as one goes to

higher V.

We also state for the record that the substructure does not appear if we re-

twin only one Q. Nor does it occur in the adiabatic-nuclei approximation 22 (see

below) .

V. ADIABATIC-NUCLEI APPROXMA.TION, HYBRID THEORY, RESULTS

The adiabatic-nuclei approxi.mation26 gives the transition amplitude between

vibrational, rotational states r -+ r' as

fr'r (t, &27 ) = Q'' lfm sr) I r), +e	 (5.1)

where f (t, R') is the fixed-nuclei amplitude with nuclear coordinates frozen

at t. Although the error term E on the RHS of (5.1) has never been completely

elucidated, the present calculation will show that the delay time of scattering

must be small compared to the period r_h i/4Er'p associated with the largest

energy quantum number of r which changes in the transition (we assume r' * r),

in order for e to be neglibible. The fixed--nuclei amplitude for scattering from

a diatomic molecule6 is such the angular integrations in (4.1) can be done an-

alytically, 27 whereas the integrations over R are necessarily numerical.
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The resulting formula for the simultaneous rotation-vibration differential

cross section (when the target: is a X$ state) can be written 28

d6j'
'

v.Jy	
kJ,v,	 1

= E AL (j v'; jV) PL (COS@')	 (5.2a)
da'	 kiv 4n L

where

AL U'V'; jV) _ (2L+ 1)(2j'+ 1)	 (-I)Qj + Aj + m + u	 Ni + 1)(2Ai + 1) aQiQJm (V'v)	 .

2 ' ^ L ^ ?^ L	 Q• Q. J A• ^• J
a ^ .P (v'v)	 '	 1: (--1) f	 1 J	 ' '	 (5.2b)	 -

1 J 	 0 0 0 0 0 0 J	 M-mo	 o

j , JJ 2 
Qi ?4 L

0 0 o	 Aj Qj J

and for joint vibration--rotational excitation 29

ayQ•m (V I , V) = f
o

xv,(R) aQ•Q,m R  xv (R) R2 dR	 (5.3)
1 J 	t3

if one averages over initial rotational states j and stuns over final states j', one

arrives at

dv,	 kv, 1

vr' v
	 ^ — Z AL 	 v) P (cos 8)	 (5.4a)

d92,'	 kv 47r	
L	 L

where the rotationally averaged coefficients are:

AL (v', V) _ (2L+ I)J[(22 i + 1)(2X i + I)] 'h aQEQjm(v''v) 
a*i

X
j,,(vr '

v)	
(5.4b)

Ri N i L) ( J J	 1 1	 L	 J J	

) P
L (Cos D')

0 0 0 0 o a m P -(In 11 m P -(m+fie

The total cross are quite obviously just 47r tunes the L = 0 terms of the respec-

tive expressions

/ ,

aj,v,, iv = _ —v Aa 0 ,V ; jv )	 (5.5)

kj v

6v' v - kv,

	
1	 IaQ-,m(v'v)12	 (5.6)

kv	 (2A + 1)
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[The formulas involving the sum-averaging over j states are the ones which

are presently useful in comparison with experiment in a-N Z scattering, because

the rotational spacing has not as yet been resolved. ]

We now come to the fundamental statement- of the hybrid-theory: replace

the abiabatic-nuclei matrix elements, Equation (5.3), by the corresponding close

coupling values, Equation (4.20), for whatever partial waves are necessary:

agXrn (v', v) `}ar( Q) vA	
(5.7)

(An equivalent replacement can be made for T and $ matrices also.) The justi-

fication for this replacement we hope is clear.	 The point, we wish to reemphasize

is that the time delay criterion can be theoretically (and need not be experimentally)

assessed.	 (It should be added, however, that any such criterion is always ap-

proximate in the sense that constant of proportionality is necessarily somewhat

ambiguous.	 In addition, hi the present case the R O W 2.068 curve lies slightly

removed from the main portion of the wave fim ctiQU, x V=0 () , of the zero vibra-

tionai function of the N 2 molecule. Thus the theoretical nature of the time delay

criterion Must be understood within the confines of such mundane considerations.)

Coming back to the hybrid theory, note that the purely rotational aspects of

- even this Ili wave are described by vector coupling coefficients which derive from

- the adiabatic-nuclei theory. 	 It is this fact which has motivated us to call this a

hybrid theory. One could in principle also include rotational close coupling at

the same time as vi close coupling cf. Discussion). 	 Indeed flen	 30 hasp ng (	 )	 iY

u>
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attempted that in the case of a-H 2 scattering with only limited success. The

point is that the adiabatic-nuclei theory is quite sufficient, 28, 31, 33, 34 when

polarization is included, to explain the experimental data whereas vibrational-

rotational close coupling even in the simpler e--H 2 case poses convergence prob-

lems of a most serious nature, and it still does not include the main effects of

polarization, which—in a close coupling sense—would require higher lying elec-

tronic states as well.

The adiabatic-nuclei amplitudes were calculated from the fixed-nuclei

amplitudes (the eigenphases of which are those exemplified in Table 1) using

N 2 vibrational functions given by Herman and Wallis. 35 The ag ,Qjm (R) were

interpolated, and a fifteen point gaussian quadrature was used to evaluate

integral (5.3). (The j dependence of the vibrational functions in Ref. 35 was

surpressed by setting j = 0.) All of these non-II9 amplitudes were combined

with the amplitudes ar v Q) vA for the 11 wave (m =1 even parity) from the

close coupling part of the calculation according the hybrid theory prescription

above for the particular v and v' given in the results below. 36

In Figure 7 we give the integrated vibrationally elastic (v = 0 -* v' = 0)

7cross section; the experimental result of Golden is shown in the inset. Of

particular note aside from the substructure itself is the agreement of the magni-

tude of the cross section at the pears as well as the correct relative size of the

first two peaks. The remaining pears are not fully developed and as we have

I



limitations of machine size. Although the higher peaks are also small in this

experiment, they do show up more prominently in other experimental results be-

low. The theoretical curve does not give any structure below the first pear at

1.9eV. Ehrhardt and Willmann11 have found smooth behaviour here also, so that

the older experimental struc'-^rr below 1.8eV would appear to be spurious. The

major discrepancy with the experiment which is not likely to be altered by further

coupling is the depth of the calculated cross section between the first two peaks.

Whether this could be an artifact of the measurement due to lack of sufficient

energy resolution we cannot say.

We next turn to differential cross sections involving vibrationally elastic

scattering. This is the first case we encounter cross term effects inthe hybrid-

theory between resonant (calculated with close coupling) and non resonant (calcu-

lated by adiabatic-nuclei theory) partial waves. Thatboth cross term and quadratic

effects are important can be seen by comparing figure 8with Figure 9. figure 8

gives the completely calculated differential cross sections including non--resonant

waves forthree ofthe energies measured by Ehrhardt and Willm inn 11 (which results

are given inthe inset) . In Figure 9 similar results including only the It s partial wave

are given. Not only are the latter spuriously symmetric about 90 0 , but the rise

around 90° is completely absent both from the  experiment and the full calculation.

In Figure 10 the full calculation is given for the remaining three measured energies.
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(given in the inset). Note again that the calculation gives absolute values, but

only the relative values are measured. 11 The shapes appear in satisfactory

accord with experiment. 11

The last comparison we shall give for vibrationally elastic scattering is the

differential cross section as a function of the energy at various angles (rig. 11).

We consider the comparison very satisfactory but the absence of the higher wig-

gles particularly in the forward directions (due to the lack of sufficient coupling

in the calculation as explained above) is somewhat more apparent than in the

integral cross section (rig. 7).

We turn next to the inelastic cross sections. In Figures 12 and 13 we give

the differential values at 0' = 20°, 72° vs. k 2 respectively, these being the

measurements in Reference 11 and Reference 6 respectively. In particular

Schulz' inferred that his measurements would reflect the integrated cross sec-

tions as well. That this is so is shown in figure 14 where the integrated cross

sections are, given and are seen virtually indishinguishable from the 720 curve

in shape. On the other hand the absolute values which were originally inferred

by Schulz6 on the basis of summed total cross sections measured by Haas 37 are
S

about a factor two smaller than we calculate. Thus the need for direct absolute

measurements is clear, not only to test the theory but for many atmospheric

applications, of which Reference 1 is one, as well. Although the shape for the

inelastic v = 0	 v' = 1 cross section is satisfactory, the def,.a.iled agreement
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rapidly degenerates for higher v', and again this can be attributed to inadequate

v and k coupling as noted in going from Figure 4 to Figure G. We believe how-

ever that the average magnitudes of the particular cross sections are meaningful

for practical applications.

It should be noted that because of the virtual independenee of the nonresonant

amplitudes on R, essentially all of the inelastic cross sections comes from the

resonant f19 wave. This can be clearly seen in the inelastic-differential cross

sections, given in Figure 15, wlich are quite symmetric about 90°. Although the

measurements of Ehrhardt and Willmann i1 are not done over sufficiently wide

angular range to prove the symmetry, the agreement with calculation in terms

of ratios of forward to minimum. to 90° values at the different energies is very

good.

Finally we give the momentum transfer cross section. The formula for this

cross section
do

am - 
f 

U21 (1 - cos 8') d92' 	 (5.$a)

is readily integrated from (5.4) to give

^r	 1
UM - z E [A, (o, v') - — A, (0, v')	 (5.8h)

R d	 3

•	 where the A (o, v') are given in (5.4b) with the R amplitudes replaced again by

the close-coupling amplitudes according the prescription (5.7) of the hybrid theory.

(Note the Al (o, v') 0 for v'> 0 for n.). The result of the calculation is compared
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with the experiment in Figure 16. The experiment as is well 1mown does ncit meas-

ure aM directly, but rather infers it by optimizing assumed momentum transfer

cross sections to fit swarm data as function of applied electric field. As such

the absence of substructure on the "experiment-al l, result: should not be interpreted

as its absence in fact. (It is virtually certain that the s0structure must be

present.) The experimental curve is seen to envelope the calculated curve in

the resonance region as would be expected. About 25% of the calculated curve

comes from the V > 0 terms in (5.8b). However the contribution of the resonances

does not extend beyond about 4eV, thus the 20% difference in this energy range

would appear at this point to remain unexplained.

Finally it is clear from (5.2) and (5.7) that the hybrid theory can be used to

calculate simultaneous rotation--vibration excitation,. We shall not do that here

as the programming of the formulae is somewhat more ardnous, and there are

presently no experiments with which to compare. (We do intend to perform that

calculation at a later time.)

VI. DISCUSSION

This then completes our hybridization of vibrational close coupling :mud

adiabatic-nuclei rotational approximations. In order to complete the a-priori

theoretical framework for calculation of very narrow (probably Feshbach)

resonanances, one will have to include rotational coupling as well. In that case

the hybridization will tape place as the second level only: i. e.: the rotational
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and vibrational close-coupling amplitudes for the resonant partial will be merged

with the adiabatic-nuclei amplitudes for the non--resonantpartial wave. We ex-

pect to elucidate the formal aspects of this generalization shortly.

Calculations involving this generalized hybrid theory will certainly be

•

	

	 arduous. It may well be that for practical purposes other techniques (H-matrix,

Fredholm determinant, etc.) may be more useful. But to be reliably accurate

they will have to include the equivalent physics of the hybrid theory.

s-:

	

	 The frame-transformation theory39,0 represents a different mix of the

above theories. There one ties interior fixed-nuclei calculations to exterior

close--coupling calculations at a boundary point r a utilizing appropriate simpli-

fications for each region. The approach has undoubted utility in molecular photo-

ionization and electron-molecular ion scattering where the lunown asymptotic

Coulomb solutions can be combined with multi-channel quantum defect theory 41

to render the resonant structure to be described in terms of a few experimental

parameters. 
39 

It should be noted, however, that even here the fixed- and

adiabatic--nuclei theories can describe the non-resonant structure very wellI5,16,42

In the case of scattering from hetero-nuclear molecules (i.e., those with a

dipole moment) frame-transformation can be expected to be useful 43 if for no

other reason than rendering certain cross section finite which would diverge in

the fixed- and adiabatic-nuclei approximations. 4-4 However in the case of homo--

nuclear diatomic molecules the utility of frame transformation is more uncertain,

because the farces are probably not long-range enough to allow cross section to

emerge which are suitably insensitive to the matching radius ro.
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Table I

Nonresonant Eigenphase Sums as a Function of R (mod 7r)

Energy Partial Internuciear Separation R (in units of ao)

(ev) Wave*
1.744393 1.868 2.068 2.268 2.391607

0.20 A -0.1921 -0.1906 -0.1985 -0.1902 -0.1926
B -0.0253 -0.0645 -0.0037 0.0011 0.0038
C ''.0351 0.0295 0.0288 0.0278 0.0271

0.40 A -0.2960 --0.2938 -0.3048 -0.2940 -0.2972
B -0.0366 -0.0113 -0.0090 -0.0020 0.0012
C 0.0503 0.0423 0.0406 0.0390 0.0379

0.60 A -0.3772 -0.3747 -0.3878 -0.3750 -0.3787
B -0.0505 0.0211 --0.0202 -0.0115 -0.0083
C 0.0572 0.0474 0.0448 0.0427 0.0411

0.80 A -0.4450 -0.4421 -0.4570 -0.4426 -0.4467
B -0.0673 -0.0346 -0.0353 -0.0253 --0.0223
C 0.0591 0.0479 0.0442 0.0414 0.0394

1.00 A -0.5037 --0.5006 -0.5170 --0.5012 -0.5056
B -0.0845 --0.0503 -0.0530 --0.0419 -0.0393
C 0.0573 0.0449 0.0401 0.0368 0.0343

1.20 A -0.5555 -,0.5524 -0.5702 -0.5530 --0.5577
B -0.1033 -0.0677 -0.0723 -0.0603 -0.0581
C 0.0528 0.0394 0.0337 0.0298 0.0270

1.40 A -0.6022 --0.5989 -0.6180 --0.5997 -0.6047
B -0.1229 -0.0862 -0.0927 --0.0799 -0.0782
C 0.0466 0.0323 0.0256 0.0212 0.0181

1.60 A --0.6446 -0.6412 --0.6616 -0.6423 -0.6475
B -0.1428 -0.1054 0.1137 -0.1003 -0.0990

0.0389 0.0239 0.0163 0.0114 0.0081
1.80 A -0.6835 -0.6801 -0.7018 -0.6814 --0.6869

B -0.1630 -0.1250 -0.1352 -0.1211 -0.1203
C 0.0303 0.0146 0.0062 0.0009 -0.0027

2.00 A -0.7193 -0.7158 -0.7388 -0.7176 -0.7234
B -0.1833 -0.1448 -0.1568 --0.1421 -0.1417
C 0.0210 0.0046 -0.0045 -0.0102 -0.0139

2.20 A -0.7524 -0.7480 -0.7733 -0.7514 -0.7575
a B -0.2035 -0.1647 -0.1784 -0.1632 -0.1632

C 0.0113 _0.0058 --0.0155 -0.0216 -0.0255
r; 2.40 A -0.7833 -0.7799 -0.8056 -0.7830 -0.7896
.: B -0.2235 -0.1845 --0.1999 -0.1843 -0.1846

Y'.
i.

f

C 0.0011 -0.0165 -0.0269 --0.0332 -0.0373
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Energy Partial
(eV)	 Wave*

Internuclear Separation R in Units of do)

1.744393

2.60 A -0.8122
B -0.2434
C -0.0092

2.80 A -0.8393
B --0.2631
C -0.0197

3.00 A -0.8649
B -0.2825
C -0.0302

3.20 A -0.8890
B --0.3016
C -0.0408

3.40 A -0.9119
B -0.3204
C -0.0513

3.60 A --0.9337
B -0.3389
C -0.0617

3.80 A -0.9544
B -0.3570
C -0.0720

4.00 A -0.9743
B -0.3749
C -0.0821

4.50 A -1.0203
B -0.4179
C -0.1067

5.00 A -1.0620
B -0.4589
C -0.1302

1.868 2.068 2.268 2.391607

-0.8089 -0.8359 -0.8129 -0.8198
-0.2043 --0.2213 -0.2051 -0.2058
-0.0274 -0.0383 -0.0450 -0.0491
-0.8361 -0.8646 -0.8409 -0.8484
-0.2239 --0.2424 -0.2258 -0.2268
-0.0383 -0.0498 -0.0567 -0.0609
-0.8617 -0.8917 -0.8677 -0.8756
-0.2432 -0.2633 -0.2462 -0.2474
-0.0493 -0.0613 -0.0684 -0.0726
-0.8860 -0.9175 -0.8929 -0.9015
-0.2623 -0.2838 -0.2664 -0.2678
-0.0603 -0.0727 -0.0800 -0.0841
-0.9090 -0.9418 -0.9174 -0.9265
--0.2812 --0.3041 -0.2862 -0.2878
-0.0712 -0.0839 -0.0914 -0.0955
-0.9307 -0.9654 -0.9408 -0.9505
-0.2997 -0.3239 -0.3056 -0.3074
-0.0819 -0.0950 -0.1026 -0.1067
-0.9516 --0.9880 -0.9633 --0.9737
-0.3180 -0.3434 -0.3247 -0.3266
-0.0925 -0.1059 --0.1136 -0.1177
--0.9716 -1.0096 -0.9850 -0.9961
-0.3359 -0.3625 --0.3434 -0.3454
-0.1030 --0.1167 -0.1244 -0.1284
-1.0181 -1.0605 -1.0363 -1.0491
-0.3792 -0.4087 -0.3884 -0.3907
-0.1283 -0.1425 -0.1502 -0.1541
-1.0605 -1.1073 -1.0838 -1.0984
-0.4204 -0.4525 -0.4311 -0.4332
-0.1522 --0.1669 -0.1745 -0.1779
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Table I (Continued)

{	 'Rows A, B, C refer to Z^, E u , 11U eigenphase sums respectively.



Figure Captions

Figure 1. Fixed nuclei erg eigenphase sum (mod w) for different internuclear

separations. Note that k2 is relative to the ground state energy

of N 2 which is itself a function R; cf. bottom curve, Fig. 2.

Figure 2. Width and position of 11 9 resonance vs R. The other results are

from Birtwistle and Kerzenberg (Ref. 10) and Krauss and Mies

(Ref. 12). The lowest curve is EN2 (R) - EN (Ro).
2

Figure 3, Some diagonal and non -diagonal potentials of the vibrational

close coupling equations vs r. The corresponding fixed-nuclei

potential is indicated by open circles.

Figure 4, The R9 contribution to the vibrationally elastic cross section

coo including two and three-partial waves for increasing number

of vibrational states included in the close coupling expansion.

Figure 5. Same as Fig. 4 but for c0}1(^Q10}.

Figure 6. Same as Fig. 4 but for a0-2(=020).

Figure 7. The vibrationally elastic scattering in the full hybrid theory.

In the inset is the experimental results of Golden (Ref. 7).

In Ref. 11 the experimental structure below 1.8 eV is not found

and is considered to be spurious.

Figure B. Full hybrid theory calculation of vibrationally elastic differential

cross sections at three energies. In the inset are experimental

results of Ehrhardt and Willmann (Ref. 11).

Figure 9. H9 contribution to da oo/dQ. Note the symmetry and enhancement

oaround 90 are not present in the full calculation or the

I

f



Figure 10. Full hybrid theory calculation of do 00/dig at remaining three

energies measured in Ref. 11 which are given in inset.

Figure 11. dodo/dQ vs k2 for various angles. Experimental result of

Ref. 11 given in inset.

Figure 12. dao-)'v/dR at 0 = 200 for various excited states. Experimental

results of Ref. 11 given in inset.

Figure 13. Same as Fig. 12 for 0 = 72°. In this case the experimental

result (inset) is that of Schulz, second paper of Ref. 6.

The ordinate of the inset show the original inferred normal-

ization; cf. caption of Fig. 14.

Figure 14. Total vibrational excitation curves. Note similarity of

shape to 0 = 72o curves Fig. 13 as assumed by Schulz (Ref. 6,

1964), from which the experimental result is taken. The

experimental normalization however is a factor two higher

than given in Ref. 6 and constitutes a new inferred normal-

ization (Schulz, 1975 to be published). In the latter, Schulz

states that the new normalization may itself be low by a factor

two, which is in accord with our results.

Figure 15. Vibrationally inelastic differential cross sections compared

to experiment (Ref. 11) in inset. Note that the vertical

symmetry of the inelastic cross sections around 90 due to

minuteness of non-]fig contribution in these cases.

Figure 16. Momentum transfer cross section compared to the one inferred

from swarm experiment by Englehardt, Phelps, and Risk (Ref. 38).
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