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The gamma-ray line at 0.51 MeV originates from the annihi-

lation of positrons. When a fraction of the positrons

annihilate from bound states of positronium, the 0.51-MeV

line is accompanied by a continuum of 3-gamma annihilation

radiation at energies up to 0.51 MeV. We present accurate

calculations of the rates or' free- annihilation and positro-

nium formation in a solar flare plasma, and we also dis-

cuss positronium formation by charge exchange, The observ-

ability of the 3-gamma annihilation is increased by the

inherent delay in the production and slowing down time of

the positrons. We conclude that such radiation could be

detected at times late in solar gamma-ray events when the

continuum and prompt line emissions have essentially dis-

appeared.
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POSITRON ANNIHILATION IN SOLAR FLARES

1. Introduction. Gamma-ray line emission at an energy of approximately

0.51 MeV was observed by Chupp et al. (1973) from the 1972 August 4 and

August 7 solar flares. This line is believed to be due to the annihilation

of positrons which result mainly from the decay of rr + mesons and radio-

active nuclei produced in nuclear reactions of flare accelerated particles

with constituents of the solar atmosphere (Lingenfelter and Ramaty 1967;

Ramaty, Kozlovsky, and Lingenfelter 1975). In addition to positron anni-

hilation radiation, line emissions were also observed at 4.4 MeV and

— 6.2 MeV from the August 4 flare, and at 2.2 MeV from both the August 4

and 7 flares (Chupp et al. 1975).

In the present paper we discuss the various processes that affect

the annihilation of positrons. In particular, since a large fraction of

the positrons may annihilate from bound states of positronium, we investi-

gate the question of whether positronium annihilation radiation is ob-

servable from solar flares.

2. The Fate of Positrons in Solar Flares. Positrons in solar flares

result from the decay of 
n+ mesons and various radioactive nuclei produced

by nuclear reactions of accelerated charged particles with the ambient

solar atmosphere. The half lives of these positron emitters range from

values less than 1 second to about 20 minutes, and they produce positrons

of energies from several hundred keV to about 100 MeV.

There is a finite probability (̂  10%, e.g. Wang and Ramaty 1975)

for relativistic positrons to annihilate in flight. However, because of

the Doppler effect, these annihilations do not contribute to observable

0.51-MeV line emission. The positrons which do not annihilate in flight

li
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either escape from the Sun or decelerate to thermal energies due to inter-

actions with ambient matter and magnetic fields.
4

Thermal positrons either annihilate freely and produce two 0.51-MeV

gamma rays per positron, or form positronium; 25% of the positronium is

formed in the singlet spin state and 75% in the triplet state. Positronium

in the singlet state has a mean life of 1.2 x 10 -10 seconds and decays

into two 0.51-MeV gamma rays. Positronium in the triplet state has a mean

life of 1.4 x 10 -7 seconds, and if left undisturbed for a period much

longer than its mean life, it decays into 3 gamma rays of energies less

than 0.51 MeV. Collisions with the ambient medium dissociate triplet

positronium if the density of the ambient medium is larger than a few times

1014 cm-3. These collisions can also cause spin-flip transitions from the

triplet to the singlet state. The fate of positrons in solar flares is

graphically illustratr.d in Figure 1.

Depending on the state of ionization of the ambient medium, posi-

tronium formation proceeds eitPLer by radiative recombination with free

electrons or by charge exchange with atoms and ions. At temperatures

greater than a few times 10 5 K radiative recombination dominates. In

Figure 2 we show the rate coefficient (Gov>) for positronium formation by

radiative recombination in a hydrogen plasma as a function of its temper-

ature. The results of a calculation by Nieminen (1967), which does not

include folding the rate coefficient into the expected Maxwell-Boltzman

distribution, are shown for comparison. The difference arises solely

from the lack of such appropriate averaging. Also shown in this figure

is the rate coefficient for free annihilation corrected for Coulomb in- 	 r

teractions. The details of these calculations will be published elsewhere.

{
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Figure 1. Fate of Positrons in a Solar Flare
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As can be seen from this figure, if the temperature is greater than about

106 K, more than half of the positrons annihilate without forming posi-

tronium.

We do not know the temperature in the annihilation region. Analy-

sea of the time dependence of the 0.51-MeV line, showed that the positrons

annihilate in a region where the density is larger than about 10 12 cm-3

(Chupp at al. 1975, Wdng and Ramaty 1975). It is unlikely that such dense

regions can be heated to temperatures much higher than a few times 10 4 K.

We note, however that the temperature of the annihilation region could be

obtained best by measuring the width of the 0.51-MeV line. The full width

at half maximum of this line due to thermal broadening is given by

My = 1.1 keV T4 , where T4 is the temperature in units of 10 4 K.

Below about 105 K positronium formation proceeds mainly by charge

exchange with neutral hydrogen, Leventhal (1973) suggested that in a very

cold and low-density hydrogen gas, such as an H I region in the inter-

stellar medium, positrons annihilate exclusively from bound states of

positronium and that no free annihilation takes place.

Positronium formation by charge exchange in a hot, moderately

dense, and partially ionized medium such as a solar flare, has not yet

been fully investigated, mainly because of the lack of reliable cross

sections. It is, nevertheless, clear that if the ambient density in the

annihilation region is larger than a few times 10 14 cm-3 not all positrons

will annihilate from bound states of positronium. As mentioned above,

from considerations of the time dependence of the 0.51-MeV line intensity,

it is known that the density in the annihilation region is greater than

aliout 10 12 cm 3.
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We define the parameter f as the fraction of positrons which anni-

hilate from the triplet state of positronium, and the quantities 
N2Y 

and

N3Y as the number of photons resulting from 2-gamma and 3-gamma annihi-

lations of thermal positrons normalized to one such positron.

N3Y/N2Y = (3/ 2 ) f/(1-f)	 (1)

The maximum value of f is 0.75, in which case N3Y/N2Y = 4.5. However, if

only half the maximum number of annihilations proceed fr,m triplet state

of positronium, f = 0.375, and N3 Y/N2Y = 0.9.

3.	 Detection of Positronium Annihilation Radiation. The formation of

positronium atoms in solar flares could possible be observed by measuring

the gamma-ray spectrum at energies just below 0.511 MeV with detectors

having good energy resolution. Such measurements, however, are severely

complicated by the existence of strong continuum emission due to brems-

strahlung of energetic electrons in the flare region, and by line emissions

at 0.431 MeV and 0.478 MeV from the reactions a + a 7Be* + n and

a + a 7Li* + p (Kozlovsky and Ramaty 1974).

The intensity of gamma rays from triplet positronium annihilation

can be written as

Ot(EY) = (N3Y/N2Y) 00.51 PT (EY)/0.511 photons cm -2 s -1 t1eV -1	(2)

where 00.51 is the total observed 0.51-MeV line intensity, and PT(E Y) is

the probability per unit energy of finding a triplet gamma vly with a

particular energy from 0 to 0.511 MeV. This function has been given by

Leventhal (1973). It is normalized such that	
0.511

dEY PT(EY)/0.511 = 1.	 r
0
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In the calculations below we use the observed value for the 1972 August 4

flare, 0
0.51 = 0,06 photons cm -2 s -1 (Chupp at al. 1975), and the maximum

value N3Y/N2Y = 4.5.

The intensity of continuum emission from the flare of 1972 August 4,

at energies near 0.51 MeV, was measured (Chupp et al. 1975) and is given

by

Or ti 0.4 uY"3.42 photons cm -2 s- 1 MeV -1	(3)

Wo estimate the intensity of the 7U and 7Be lines as follows.

According to Ramaty et al. (1975), the total intensity in these lines is

comparable to the intensity of the 4.4-MeV line, which was observed to be

approximately 0.03 photons cm -2 s -1 for the 1972 August 4 flare (Chupp

et al. 1975). Thus

00.431 (BY ) + 0
0.478 (BY) _ 0.03 Via)

-1
 { exp [-BY - 0.431] 2 /2x2 +

exp[-(BY - 0.478) 2 /2a2 ]} , (4)

where a ti 0.04 MeV (Kozlovsky and Ramaty 1974). In equation (4) we have

approximated the shapes of the acs lines by gaussians. Such forms are

valid only when the line shapes are due to thermal broadening. Since the

shapes of the ov lines are determined by nuclear kinematics, they should

be calculated by a method similar to that used by Ramaty and Crannell

(1975) for evaluating the shape of the 6.1-MeV line of 16 0. However, be-

cause the differential cross sections for the a'a reactions are not known,

we postpone such a calculation for future research, and use equation (4)

as a rough estimate for the present paper.
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We have evaluated equations (2), (3) and (4) for the parameters

given above and the resuics are shown in Figure 3. As mentioned above,

thermal motions broaden the 0.51-MeV line (AE Y _ 1.1 keV T4^). Thermal

broadening also blurs the edge of the positronium annihilation spectrum,

but if the temperature is lass than about 10 5 K this effect is quite

negligible.

In order to assess the observability of positronium annihilation

radiation, we have evaluated the number of counts due to triplet positronium

annihilation, solar flare continuum, instrumental background, and as re-

actions observed by the detector of Chupp et al. (1975) in a 50 keV bin

just below 0.511 MeV. Using the fact that for the 1972 August 4 flare

there were 108 counts in the 0.51-MeV line, we find 404 counts for the

continuum, 184 counts for the background, 38 counts for the as reactions,

and 90 counts for triplet positronium annihilation provided that N31Y/N2^

has its maximum value of 4.5. However, if only half the maximum number

of annihilations proceed via triplet positronium, there are only 18 counts

due to triplet positronium in the 0.461-MeV to 0.511-MeV energy bin.

We conclude that it will probably be quite difficult to observe

positronium annihilation radiation, in the presence of a very strong solar

flare continuum. The 7Li and 7Be lines do not present a serious problem

if all annihilations proceed via positronium formation. However, if only

half the positrons annihilate in this manner, positronium annihilation

radiation may be indistinquishable from the 71,1 and 7Be lines.

A more favorable condition for observing positronium annihilation

radiation may arise at the late stages of solar gamma-ray events when the

ratio of the 0.51-MeV line to the continuum could be much larger than that
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observed for the 1972 August 4 flare. At such rimes, the intensity of

the as lines is also greatly reduced. This follows from the delayed

nature of positron annihilation radiation caused by the long half Jives

of some of the positron emitters ( 11C and 13N), and possibly also by the

long slowing-down times of relativistic positrons from n + decay (Wang and

Ramaty 1975). Thus, when the number of accelerated particles in the flare

region is already diminished and hence no nuclear reactions and brems-

strahlung are produced, positronium annihilation radiation could be more

easily observed.
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