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Summary

The present study is concerned with the application of vortex

lattice techniques to the problem of describing the aerodynamics

and performance of statically thrusting propellers. 	 A numerical
d

lifting	 urface theory_ory to predict the aerodynamic forces and power,

including corrections for viscous effects is performed. 	 The lifting

p
t surface is replaced by a twisted flat plate which reflects the

radial twist distribution of the propeller blades. 	 The chordwise

and spanwise loading is then modelled by bound vortices fixed to

the flat plate surface.

Since the major problem in predicting statically thrusting

propeller performance is the prediction of the wake induced inflow,'

{ particular attention is paid to the formation of the wake. 	 In

order to eliminate any apriori assumptions regarding the wake

shape as well as more accurately describe the physical processes

involved, it is assumed the propeller starts from rest. 	 The wake

is generated in time and allowed to deform under its own self-

induced velocity field as the motion of the propeller progresses.

Thus the time history of its shape as well as the inflow at the.

blades is. known. -A unique circulation distribution is then deter-

mined by applying the flow tangency boundary `condition _at certain

F: selected control points on the blades. 	 The positions of the

control points relative to the bound vortices are fixed by well

established rules.	 The results, with certain reservations,

generally point to the usefulness of such a model as a research tool.
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r
i	 The aerodynamics of other configurations, namely the infinite wing

and finite wing, are also considered since many of the numerical

problems involved are common with those of the propeller but the

f	 '	 configurations are much less complex.

The details of wake formation and roll-up are investigated,
ti

u`	 particularly the localized induction effect. It is tentatively concluded
t	

!	 ^

that proper wake roll-up and roll-up rates can be established by

considering the details of motion at the instant of start,.

Investigations into blade-wake interference effects and wake-wake
{

interactions lead to the conclusion that an effort is needed to develop

vortex core requirements so that the singularity in the Biot-Savart law

can be avoided while physically realistic flow geometries and performance

-,	 results are consistently obtained.
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Chapter I

Introduction
z	 ,
3

1.1	 General Introduction
e

' With the evaluation and acceptance of helicopters and other VTOL a

aircraft employing propellers as lifting elements, a greater need exists M

,. for the accurate prediction of performance at the early stages of design.

With payloads now on the order of 25 percent of the gross weight, a 5

percent error in thrust estimation could mean a 20 percent error in the l
payload estimate.	 Thus it is necessary to develop methods for

tl

,'

i

'

predicting the static (zero forward speed) performance of a propeller to

a . high `degree of accuracy.
t

The problem is further complicated because economic considerations k.

dictate that the propeller be designed_ for the mission cruise condition.

High 'speed cruise specifies highly twisted inboard blade sections to

maintain efficient loading over as much of the blade as possible, but

this then leads to a configuration with a large percentage of the

inboard radius stalled during static operation. 	 Thus the static

performance prediction problem is wagnif ied by the requirement of

extreme accuracy at a decided of design condition.

Comparisons between experimental results and theoretical

analysis show predicted thrust values generally to be on the order

+ of 10 percent optimistic.	 (Refs. 1 thru 13).	 General lack of

E? knowledge to methods of static performance prediction has been

reported by Adams (4) in citing some of the more extreme performance

z^
f

r
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claims of certain manufacturers. To make matters worse, Borst and

Ladden (5) show inconsistencies on the order of 5 percent in figure-of

-	 merit between test results obtained on different test rigs. 	 Jenny,

et al. (7) are able to show the sensitivity of hovering rotor performance

on the tip vortex axial position and have observed the sensitivity of

this location to random wind during open whirl tower tests. 	 With such

errors existing between theory and experiment, as well as apparent

inconsistent measured values in simply changing installations, the need r

for a sound analytic base to predict the static performance of a

propeller or rotor is apparent.

As in any aerodynamic problem the crux of predicting propeller

H

static performance is the determination of the inflow velocities at >

j the blades.	 Generally speaking, this inflow is determined by the
`j

flight speed and wake induced velocities of the propeller, but in

hover the flight speed is zero so the inflow is entirely determined
a

by the induced velocities of the system. 	 The sensitivity of

propeller static performance to the inflow can be appreciated when

it is realized that for a given error in inflow, the percent error

in thrust predicted in hover is approximately twice that in axial

flight.

In order to predict the inflow at the blades, it is necessary

to describe the blade surfaces and wake.	 Since the blades are simply

lifting surfaces of finite span they can be replaced by a chordwise

distribution of bound vorticity. 	 The wakes must consist of vorticity
h

R trailing streamwise which accosts for spanwise variation in loading

ti

ttai

E	 t
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and, if unsteady motion is present, vorticity must be deposited

,i parallel to the trailing edge to satisfy the Kutta condition. 	 These

trailing vortex filaments travel in a generally helical path due to
ry

the propeller rotation but do distort under their own self-induced

effects and the influence of other filaments.	 The resulting wake

is an extremely complex form consisting of an intense tip vortex

4
and -a diffuse inboard sheet. 	 By continuity the wake contracts

{ drawing the tip vortex in radially.so, that it passes under the next

following blade. 	 This blade vortex interference phenomenon can

result in strong radial flows along the blade span and large

variations in the radial distribution of angle of attack which, in. R

turn, can._promote tip stall.

If the propeller is in axial flight, the flight velocity is Y

t the primary factor in establishing the mass flow rate into the wake
l

so that contraction effects can generally be neglected.	 This

- velocity also carries the tip vortex away from the disc plane so

that it is relatively far removed from the next following blade at

the instant of :passage. 	 The presence of the axial flight velocity

tends to negate the serious interference effects.	 However, in

static operation, the tip vortex remains in the plane of the propeller,

E drifting only with the induced velocity field,until it is driven
a

axially, almost impulsively, by the next following blade. 	 With

wake contraction now important because of continuity considerations,

the tip vortex passes under the next following blade at the 80-95

percent blade radius, depending on loading and number of blades.

r,
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Hence, for the hovering propeller the blade-wake interference

problem is at its worst. Such•a wake has been observed physically

by several investigators (Reference 12, for example).

It is, in fact, the assumption of axial flight which leads to

the classical vortex theory models for the propeller in which the

wake is assumed to lie on constant pitch helical sheets. ThisI 

idealization is permitted by assuming a loading light enough Ao

that the induced velocity field is negligible regarding wake con-

traction, deformation and interference. Further, the solution to

these models 'depend on normality relations between the induced

velocity components in the ultimate wake. Considering the restrictions

j	 on''the propeller and wake model implied by the axial flight velocity,

it is not surprising that the representation becomes invalid in the 	 I

static operation.
3

The classical vortex models as well as most ensuing ones

- generally neglect the chordwise variation of loading by simply re-

placing each blade by a concentrated bound vortex, a Prandtl a.

lifting line model. Unfortunately, the strong radial flows noted

in the vicinity of the blade-vortex interference region and the

highly twisted inboard sections imply three-dimensional effects not

adequately treated by such a simplification. These considerations

can be quite far-reaching since they not only affect the lift

loading but also the viscous boundary layer and so can altet con- 	 }

siderably the drag characteristics. The boundary layer characteristics	 -
i

on propeller and rotor blades are quite complex and any attempt at

f
`r
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h

analyzing them requires a reasonable estimate of the pressure

distribution.

A lifting line model requires implicit satisfaction of the flow

tangency boundary condition at the blade surfaces. This means the

wake geometry must be completely described before the loading can

be determined, leading to either a semi -empirical method or an

r,
analytical method involving an iterative technique. The former

correlates experimentally determined wake shapes with propeller

design parameters and loading, and its accuracy is bounded by ex-

r:
perimental accuracy and the particular parameters investigated. The

latter assumes an initial wake shape, and then allows the wake to

convect under its own induced velocity field to a final shape with

the blade loading adjusting itself under the changing inflow to a

value consistent with the final deformed wake shape. A typical

procedure is to begin with an initial wake geometry and wake cir-

culation distribution based ona given bound circulation distribution. 	 a

The wake points are then allowed to convect under the induced

velocity field until a wake geometry consistent with this circulation

Ip distribution is attained. The deformed wake alters the inflow

^	 which changes the bound circulation distribution which fixes a new

geometry. The iterations are continued until a compatible wake

geometry-circulation distribution is attained. Unfortunately, some

evidence exists that the accuracy of the solution depends on the in

itial assumed values; certainly the rate of convergence of such a'

ponderous technique depends on how accurate are the initial assumptions.

ra
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The aerodynamics of the statically thrusting propeller depends

entirely on the inflow as determined by the induced velocity field and

this, in turn depends entirely on an accurate wake geometry. It has

been shown too that a strong interference problem between _a wake and

the blades exists even after a final steady flow geometry is attained.

This leads to considerations of the wake which until recently have

received very little attention, notably the roll-up characteristics

of the individual blade wakes. Historically, little interest has been

shown in this area, probably because the vortex wake roll-up has

negligible effect on the loading of the generating surface. What

interest has developed has been in the area of wing wake interference

with the tail-plane of an aircraft. Renewed interest has been

generated along the same lines with regard to highly loaded V/STOL

aircraft. However, the aerodynamic interference between propeller

blades and their wakes is essentially the same problem so that

accurately prescribed roll-up characteristics may be quite important

in predicting an accurate wake geometry.

Apparently, then, what is needed to form a solid base for the

prediction of propeller static performance is a completely analytical

model of the propeller and wake system which can generate consistent

wake (i.e., inflow) and 'loading conditions for arbitrary design 	 -?

parameters and which are flexible enough to consider three-dimensional

flow considerations at the blades.

g	 _	 ,..........
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1.2 Statement of the Problem

The purpose of this investigation is the development of an

,.	 analytical method for the prediction of propeller and rotor static

performance. The method is to be general enough to permit determination

of the blade pressure distribution. 	 This implies an ability to

consider blade aeruelastic and boundary layer characteristics, if

desired, since these are both dependent in some measure on the shape

. of this distribution while performance is more or less dependent on g
µ

the chordwise integrated value.	 This imparts no particular hardship q,'

since three-dimensional effects due to the strong radial flows in the 4

vicinity of the blade-vortex interference region and the highly
a

twisted inboard section must be treated. 	 Hence lifting surface theory
fl

will be applied instead of the usual lifting-line theory

'.; As observed previously, the problem in 'determining the static-

performance lies in determining the correct inflow distribution

which means knowing the correct wake shape. 	 In order to eliminate

j; any assumptions or empirical restrictions regarding wake shape it ti

can be noted that the inflow is known exactly at one instant of

time for any propeller; namely, at the instant of start of the

propeller motion.	 Since no wake exists at this instant, the inflow

is entirely determined by the blade motion. 	 As the motion progresses, r	 ^'

the wake is deposited and deforms continuously under its own 'self-

induced effects until a final shape such asobserved in Reference (12)

^,	 3
is established.	 This means the inflow and therefore the loading change-

w
^.s

s
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continuously in time until the final wake is established and a steady

state performance is reached. Essentially, the wake formation is

treated as an initial.condition problem in time. Such a formulation

implies an unsteady aerodynamic analysis for propellers similar to the

classical Wagner problem of fixed-wing aerodynamics.

Treating the wake as an initial condition problem gives rise to

a completely different wake model during the response of the flow to

the ,impulsive start.. It has been observed physically that an impulsive

f	 thrust change by an impulsive change in eitt.ffr propeller rotational

i
i	 speed (14) or blade angle (15) results in a doughnut shaped starting

j	 vortex forming in the propeller plane and moving axially as a unit
I

after the new thrust level is Leached, leaving a wake as described in

Reference (1'2) trailing from the blades.

The method 'of_this investigation treats the wake formation of the 	 a

r	 statically thrusting propeller as an initial condition problem in
y
I	 time. Since lifting-surface theory is to be used and the wake
r	 e	 ,

f

	

	 generated aerially in time with the inflow known at each instant, the

flow tangency boundary condition and,Kutta condition can be uniquely

satisfied at each instant of time giving the-bound vortex distribution	 E

explicitly. The loading is then determined by applying the unsteady

f	 Bernoulli equation. 	
K	 F

`

	

	 Since a major element of the analysis is the self-convection of

the wake, a nonlinear flow problem exists which precludes any hope
r

of closed form solution., Therefore, numerical techniques arei

used, particularly vortex lattice methods. Such models_ represent

E
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the simplest techniques, contain all the essential Aerodynamics of

the blades and wake and are most amenable to the nonlinear flow

problem.._

In summary, then, the problem to be investigated consists of

applying numerical unsteady lifting-surface theory based on vortex

lattice techniques to the problem of a propeller starting from rest. a

The wake is allowed to generate and deform under- its own self-induced G

effects. thus presenting a consistent time history of the wake

formation, blade inflow and blade loading as the motion progresses.

Wake self-induced effects are due to the classical far-field effects

as well as localized effects., Once the wake and inflow distributions

are formed according to a'potential flow model, final performance'
1

results are obtained by correcting for real fluid effects with

existing airfoil data

}

-	 3
q
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Chapter II

Previous Investigations

2A Propeller/Rotor Characteristics

A survey ,of_the literature concerning propeller/rotor operating

characteristics reveals the effects of the major design parameters on

the static; performance. Reference (5) contaims a,parametric study of

the effects of these design parameters on tale figure of merit. The

results show an increase in the power coefficient for peak figure of

merit as blade _activity factor increases. Above peak figure of merit

blade angle seems to have little effect on performance but peak figure

of merit is. reduced with increasing blade angle toward the tip; hence,

performance at the highest efficiency is very sensitive to blade loading

Finally, figure of merit increases with increasing Reynolds' number,

indicating difficulties in applying model results to full scale..	 Chopin

(8)	 P	 ahas performed 	 parametric study of a statically thrusting propeller

including the effects of tip shape, twist, blade activity factor, total

activity factor, blade camber and airfoil section. 	 The results, in

general, agree with those of Reference (5) in addition to which it is

shown that camber increases the thrust coefficient at a_given power

coefficient, becoming more evident at the higher power coefficients.

Round tips are seen to improve performance over square tips near the

best lift-drag ratio but the advantage decreases as the power

" coefficient increases. 	 While absolute performance values might be	 r

1 questioned due to the accuracy of the test facility (Reference (5)),

the changes due to varying the design parameters should be quite good.',.

a:
i
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Attempts have been made to measure the pressure distributions on the

blades of hovering rotors and statically thrusting propellers. Rabbott
a

(2) showed that chordwise loadings maintain essentially classical form

out to 95 percent radius with only minor differences in the vicinity of 	 ;K

the trailing edge near the tip. Such differences might be expected to

alter the aerodynamic moment but have llt tle effect on }performance.

However, the spacing of the pressure taps was not fine enough to observe

the flow details at the tip. Gilmore (9) has made extensive measurements

of propeller blade chordwise pressure distributions showing a strong

three-dimensional effect near the tip. Unfortunately, the reduced data

yields integrated results which are implausible at best and measured

forces show nonrepeatability as high as 50 percent, making the results in

general suspect. It should be mentioned, however, that inboard of 95

percent radius the chordwise pressure distributions are similar to the

classical forms.

The classical methods used to predict performance are mainly those

analyses originally derived for axial flight and suitably modified for
i

the static case. These methods, the Rankine-Froude momentum theory, the

combined momentum-blade element theory and the vortex theories of Prandtl
a

and Goldstein are well-known and,can be found in the literature (16, 17,

18, for example). The Rankine-Froude theory assumes the propeller to be

replaced by an actuator disc. The actuator disc is uniformly loaded and

so develops a uniform axial induced velocity." The theory deals with

ki

	

	 average performance values and does not`give detailed information on the

blade loading and induced velocity distribution. The combined momentum

blade element theory attempts to remove the uniform inflow assumption by

r.

A{
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balancing the blade thrust against wake momentum in radial annuli.

Prandtl's vortex theory shapes the radial inflow distribution by assuming

the flow in the ultimate wake to be very nearly like the flow exterior to

an infinite number of semi-infinite strips. The results are expressed in

terms of a tip-loss factor dependent on the number of blades, radial

position and the wake helix angle at the tip. The vortex theory of

Goldstein defines the inflow by assuming the ultimate vortex wake to lie

on rigid helicoidal surfaces of fixed pitch. The results are expressed

in a semi-infinite series of modified Besse! functions and cannot be

easily handled for the general case without the aid of high-speed

computation devices. It should be mentioned that with the advent of

such aids in recent years, Goldstein ' s analysis has become more or less

the standard classic analysis since it would appear to represent the
-a

most exact model. Prandtl ' s theory is easier to use since it is
4.
t

expressible in 'a single closed form and has been used successfully in 	 k

propeller design (17). In one instance (2), it was even more accurate

in predicting performance than Goldstein ' s analysis.
a

Reference ( 7) presents a correlation of conventional methods

of hovering rotor performance showing r tendency to underpredict the

power at given thrust _ by'as much as 50 percent depending on blade a

loading, number of blades, tip Mach Number and twist. Generally,

the predictions become more optimistic as these quantities increase.

It is also shown that eji ,pirical correction factors to correlate

experiments with theory developed for one conf guration cannot be

confidently generalized for another design.

1
1
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Attempts at predicting rotor inflows have followed two courses,

r	 semi-empirical and analytical.	 The complex flow field of the steady

"state propeller has been visually observed and reported in References

(4,7,10,12,19).	 This has led to experimental determination of wake

r 	 position as a function of the propeller design parameters. 	 Thisp	 P	 P	 g	P 

approach was initiated by Jenny, et al. (7) for a hovering rotor and

extensively investigated by Landgrebe (12).	 It is shown in Reference	 !ry

(12) that:	 (1) the tip vortex axial coordinate before interaction by

'	 the next following blade is primarily a function of the blade loading

and twist while following the intersection the primary dependence is on

1
momentum induced velocity, i.e.', proportional to / ; (2) the radial.

f

coordinate is primarily a function of thrust coefficient or disc

•	 loading; and (3) the inboard sheet coordinates are principally .functions

of the momentum induced velocity. 	 Based on this study, empiriczl

determination of the wake trajectory general enough to apply; to a wide

class of rotors is carried out.
r

Ladden (10) has applied Landgrebe's techni,,..e to 3- and 4- bladed
a

propellers.	 The results in general fortify those of Reference (12)

except that the axial coordinate after intersection by the next

following blade seems to exhibit a weak dependence on the number of 	 a

r-
blades as well as thrust coefficient. 	 Both Reference (10) and 	 r

Reference (12) show the sensitivity of performance to the tip vortex

{	 t ,
	 location:

.	 Analytical approaches to inflow prediction for the hovering
r:

t.

1
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I	 _	 rotor were preceded by models developed for the rotor in forward

flight.	 In general these methods utilize lifting line theory and

some iterative techniques to determine a realistic wake. 	 Vortex

lattice techniques representing the wake by vortex segments are used

y

to treat the deforming wake. 	 The first of these methods was that of
s

Piziali and DuWaldt (20) for investigation of harmonic airloading on

the rotor in forward flight- 	 The vortex	 ig	 x wake	 .s broken up into

straight line segments with shed and trailing filaments lying on a

prescribed trajectory and strengths determined by the time rate of

change of bound vorticity and the blades replaced by lifting lines.

The wake is truncated after approximately threepp	 y	 e revolutions..	 Crimi (21)
E

attempted to include realistic wake effects by'replacing the blade wake

by a single tip vortex with a rotational core and a strength changing

with the bound circulation.	 The trajectory of this vortex is S	 ,y

prescribed, but as the blade moves, it is allowed to move (deform) under

the ensuing induced velocity field.	 The segments of the vortex are

taken to be straight line segments with curvature accounted for

locally.	 The blades again are lifting lines.	 Trenka (22) applied
r

the model of Reference (20) to a VTOL propeller, attempting to account
s

for wake contraction by determining an axial contraction envelope from
t

the trajectories of ring ,vortices shed below the propeller. 	 Scully

(23) represented the rotor by two trailing vortices with deformation

permitted and was able to show that accurate-inflow prediction'

required inclusion of both shed and trailing vorticty effects. 	 A

model by Landgrebe (24) treats each wake point as having a near

`
3

v
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sl
field in which deformation velocities depend on the local geometry and a

'
' far field in which the velocities are well represented by average values

determined from an initial undistorted wake model.
s

' Static operation of the 'propeller has been investigated directly by s,

Erickson-and Ordway (6).	 The blades are represented by single bound

vortices and the wake by continuous vortex sheets. 	 The model described
u

attempts to account for the continuous deformation of the vortex sheets.

The performance is determined by guessing at the inflow (thus the blade

M1

circulation) and the induced velocity field in the wake. 	 Application o

integral operators (The Biot-Savart Law) while allowing the wake to

deform under the force-free condition and applying iteration techniques

permit convergence to the final induced velocity field. 	 The performance

is then determined.	 The prominent result determined here is the

dependence of the final results on the initial'asfumed inflow distri-

bution.	 The method is extended by Erickson (25) in which heavily

loaded actuator disc theory is used to fix the wake contraction. 	 The

results in general fortify those of Reference (6) in that the final

results depend on the assumed initial ones. 	 One important addition,

however, is that the axial induced velocity over the chord varies

sufficiently that large induced camber exists which negates lifting-line

models and requires lifting-surface considerations. x

Clark and Leiper (26) utilize a wake model which does start

with an assumed shape and converges to a final., force-free and

t
realistic deformed shape while predicting accurate performance.

This model computes an induced velocity field at carefully selected
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! field points near the rotor and the wake is allowed to deform as it

passes through this velocity field. 	 The problem is a boundary value

problem with the accuracy dependent on the 'selected field points.

Rorke and Wells (27) having managed to combine the theory of Reference Y

(26) and the experimental investigation of Reference (7), are able to

formulate a wake which can be used to modify the combined momentum-blade

element theory so that accurate performance estimates can be made for a
p

wide range of rotors in the hover mode. 	 Landgrebe (28) has compiled an
x

extensive bibliography of propeller and rotor inflow prediction methods.
Y

A significant deviation from the analytical models previously

described isrovided by'Sadler (29).p, 	 Instead of assuming an initial

wake geometry and circulation distortion and iterating to a-consistent

wake geometry-circulation distribution model, he performs the simple

expedient of letting the rotor start from rest, impulsively, while s-

letting the wake generate and convect under its own induced velocity

field as time progresses.	 This is simply the classic Wagner problem of

fixed wing aerodynamics applied to the rotor. 	 The wake geometry and
i

circulation distribution are thus compatible at each instant of time. '?

Local induced effects are included as by Crimi (21). 	 The loading is

{i ^	 3
f modeled with lifting-line theory:	 The cases run are fairly coarse

models of the forward flight rotor, and downstream truncation and

` neglect of shed vorticity in the wake may influence the results, but in

t( principle this represents the most physically realistic approach to the

l

problem.

f
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2.2,	 Numerical Techniques

The accurate determination of inflow to a statically thrusting

propeller or rotor system depends on the solution of a nonlinear

flow problem.	 The problem will be treated in classical fashion by

replacing the propeller blades and wake by distributed vorticity and

treating the ensuing disturbance motions as a potential motion. 	 The

complexity precludes any hope of a closed form solution; hence,

numerical_.methods employing vortex lattice techniques are used. 	 A

fairly complete bibliography of numerical lifting surface theory to

1968 is given by Landahl and Staark (30) which certainly shows the

attention given these methods, particularly since the advent of high-

speed digital computation techniques.	 Vortex lattice techniques have

their foundation in the work of Falkner (31,32) in which finite wings

j in steady flight, with and without twist, were considered. 	 The problem
a

is solved by satisfying the flow tangency boundary condition at selected

control points on the surface. 	 In order to minimize computational

details special loading functions are used. 	 Kulakowski and Haskell

(33) investigated the twisted delta wing case utilizing high-speed

,digital computers.	 An extensive numerical analysis of the steady 	 a

motion of arbitrary planforms is performed by-Rubbert (34). 	 In

this method the bound vorticity is determined directly, eliminating

the need for special loading functions. 	 Hedman (35) applies the

r̀ same model to the quasi-steady problem while utilizing locally swept

F
spanwise vortices in his model.	 Belotserkovski (36) treats a

similar model but allows for vorticity to be shed all along the

1;

1

chord in response to unsteady motion.
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The results of numerical analysis will depend on the locations of

the vortices and the boundary control points. The proper chordwise

positioning is indicated by Falkner (31,32) utilizing-two-dimensional

considerations and verified numerically by Rubbert (34). Reference (34)

also evolves rules for handling spanwise spacing and the •tips; it is

noted that spanwise spacing is not too critical and that generally a

constant (regular) or cosine law can be used. The chordwise spacing is

verified in a more general sense by James (37) for two-dimensional

steady motion by requiring both loading and moment to be accurately

r	
d•

determined by the numerical results. This chordwise spacing consists of

[

	

	 the following; if the wing is broken up into a number of chordwise

segments, vortices placed on thee1/4-chord of the segments and the

tangency condition satisfied at the 3/4-chord points will yield the

proper chordwise loading and aerodynamic moment. DeYoung (38) shows the

loading developed for this spacing converges to the classic form for an

infinite number of chordwise panels.

t

2.3 Vortex Wake Roll -UP ,

The wake roll-up problem_Nas studied initially by Kaden (39),

both analytically and experimentally. The wake behind a wing is

assumed to be initially a flat vortex sheet. A Trefftz plane

p analysis which assumes geometrically similar flow in any transverse

plane behind the wing is performed. In treating the wake Kaden

d	 also assumed it is necessary to consider only one tip so that for

is
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analysis the semispan of the wake is stretched into a semi-infinite

length. The problem is then solved by treating the unsteady de-

formation of this semi-infinite strip of discontinuous potential

Lim time, the result being the equation of a spiral.

{ Westwater (40) performed a numerical analysis on the roll up
t

problem by replacing the continuous distrIJ";tion of wake vorticity

by 20 discrete vortices.	 The unsteady problem of determining the

velocities and displacement of the individual vortex filaments

over finite time intervals is performed with the wake assumed flat,

initially.	 The trailing vorticesare assumed to be doubly infinite

which implies a Trefftz plane analysis and two-dimensional flow.

Westwater does test this assumption and finds that at about two

spans downstream the flow is essentially two-dimensional.
a

Hackett and Evans (41) extend the Westwater model to wings with 	 a

sweep, geometric incidence, high lift coefficients, ground effect

{ and wind tunnel wall constraint. 	 The finite upstream length of the

trailing vortices and the wing bound vortex system are included.

They expect geometric incidence to lower the whole sheet by an

amount determined by the trailing edge position. 	 Variation inlift

i. coefficient has its major effect on streamwise length scales measured

from the trailing edge, I. e., halving the lift coefficient doubles,.	 q
the downstream distance to a given roll up pattern. 	 It is also

Implied that better roll up patterns are obtained by using equi-

s spaced, variable strength vortices rather than variable spaced,

U
^a

equal strength vortices.	 Numerical problems that can arise are

f j̀

1 1
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illustrated by a case in which the vortex sheet crosses itself, a

I	 ^

physical impossibility. 	

'

Butter and Hancock (42) utilize a similar model but numerically

somewhat cruder, i. e., fewer vortices and longer time steps.

They experienced no difficulty in the program more by "good fortune._

than numerical insight", but correlation with experiment is not

p _	 y good.ood.	 They do note that current wake roll up models

utilize Trefftz plane analyses.

Wilson (43) presents an analysis of wake roll up which departs

from the Trefftz plane analyses of most investigators. 	 The wing

is allowed to start from rest so that the wake is generated in time

y

and allowed to convect under its own self-induced veloci ty field.

The model is somewhat constrained since the loading is held constant 	 h

but_this does eliminate the existence of shed vorticity in the

wake.	 Also, no deformation of the starting vortex is permitted.	 3

fThe induced velocity field is computed in a more or less classical

manner with the trailing vorticity laid down; in straight line
u ^	 :

segments describes the wake motion..	 The induced velocity is calcu-	 f

i la ted at the end points by application of the Biot -Savart law but

z
no local effect,- i. e., the effect of the vortex filament in the

^ region near the point in question, is considered; this is usual in 	 ^

such a model since standard application of the Biot-Savant law

results in an infinite velocity when the point at which the velocity 	 t
a

is calculated lies on a vortex filament.	 Wilson's model yields
a

I	 u reasonable wake geometries with the outboard filaments rolling upI

Y

E
_
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Into an intense tip vortex which remains near the plane of the wing

while the inboard vortices remain in a diffuse Rheet and are con-

vected downward much faster. The results compare favorably at

least qualitatively with other analyses and experiments.

Jordan (44) questions the Westwater approach on.the argument

that roll up in his model is initiated by an artificial disturbance

in the downwash field which is created by the replacement of the

continuous sheet by a finite number of vortices. In the finite

vortex representation, a given vortex convects under the velocity

induced by all other vortices. According to Jordan ' s arguments

there is a definite deficiency in this velocity due to what amounts

to be the effect of that part of the continuous distribution that

is replaced by the discrete vortex in question. This downwash

deficiency is the artificial disc =^bance which initiates the roll up

of the flat sheet.

Jordan (44) further notes the failure of standard analyses to
3

_-a

predict the correct roll up rate; typically these rates are much too

slow. He places the blame on classical aerodynamic theory and the

elliptic loading. As a consequence he presents an analysis which

contains a logarithmic singularity just inside the tip at the trail

1 ug edge and claims this singularity will drive the roll up at a'

much faster rate. Unfortunately, he presents no hypothesis as to

what this singularity might correspond physically.

r	
In summary, it must be concluded that relatively little is

4

presently known regarding the mechanism of vortex wake roll up as

!	 well as the numerical modelling of the phenomenon. Yet it promises

a





)I
^-

is

a

u	 ,

X

Chapter III

i Theoretical Considerations

j

i
3.1

-

Assumptions

Consistent with classical lifting aeradynamic theory the dis-

turbance in the fluid created by the lifting; blades and wakes is

assumed to be a potential motion. 	 This permits a lifting blade and

i w	 replaced bwake to be repl ce	 y a continuous sheet of distributed vorticity. 1

! The disturbance velocity is then given by the Biot-Savart law and

the pressure field by the classic unsteady Bernoulli equation. 	 The

problem is solved at each instant in time for unknown bound vortex

strengths by satisfying the tangency boundary condition on the blades,

V	 n a 0 where V e _vim, (Blade Motion) + wi (Wake Induced) + V i (Blade

Induced) and n = Unit Normal on Blade Surface at each instant of

1
time.	 The problem is time dependent, since V can be time dependent

and the wake continuously deforms so that wi and vi .are, in the

general case, -also time dependent.	 Thickness effects are neglected

y so the load generating surface is approximated by a cambered twisted

plate; hence, the boundary condition satisfied by the bound vortices

is applied to this cambered, twisted plate. 	 With the blades so

approximated, the planar wing assumption is applied so that the

camber is taken to be small with respect to the chord. 	 This amounts

to placing the bound vortices on a twisted flat plate. 	 Finally, it

f is noted that vorticity comprising the wake consists of two types.

One is shed vorticity which is laid down initially parallel to the

{ trailing edge and the other is trailing vorticity which provides for

4.
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spanwse variations in loading and is initially parallel to the blade

chord.

The propeller is assumed to be operating in hover, i. e., a

statically thrusting propeller. 	 The "V" of the blade is just due i

to rotation; in general no flight speed exists.	 This simplifies the

problem somewhat in that azimuthal symmetry for a multi -blade can-
1

figuration exists which will allow the problem to be solved on one 1

reference blade with identical conditions existing on the other

blades.	 The following analysis considers only one blade and its t.^	 r

wake with the necessary symmetry conditions for the multi-blade con-

figuration discussed in Section (3.10).

The blade is taken as rigid so no blade flapping or aeroelastic

motions are considered.	 These could of course be included in the

"V" term, however.

3.2	 Description of the Numerical Model

The numerical model for the blade and its wake consists of ry

replacing the continuous distribution of vorticity by a mesh of

vortex segments of finite length and strength. 	 The geometry of the

wake vortices is fixed by the motion of an ever increasing number of 4	 '

points moving under the influence of the bound vorticity and its

own self-induced effect since it is assumed that these wake points

are connected by straight -line vortex segments identified as shed

and trailing vorticity.	 The description of the blade bound vortices

` is fixed by the blade geometry.

The vortices on the surface are arranged in a conventional

E=
y

r
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manner. The surface is broken up into a number of spanwise segments

and each spanwise segment is subdivided into a number of chordwise 	
3

segments. Each resulting panel contains a control point and is

spanned by a straight-line vortex segment. The lifting surface

olanform is variable and the panel corners occur in pairs along the

span located at the same percent local chord; hence, the spanwise-

vortex on a segment has sweep reflecting the variable chord. This

vorticity must be supplied and removed according to the Helmholz-

law so the vortex is extended along the local chords at spanwise

edges of the panel to the vortex lying along the trailing edge of

the surface (this vortex is shed into the wake at the end of a time

step to be replaced by another reflecting the time rate of change

of bound circulation). This describes a rectilinear horseshoe vortex

model like those of references (31, 32, 34, 35, 36) except that

instead of extending to infinity as in the steady and quasi-steady

cases they are truncated at the vortex to be shed. One major

difference exists, however. The blade twist is reflected in the

model, in part, as a skew to the horseshoe vortex since the chord-

wise elements are skewed with respect to each other. Hence, the
a

configuration is highly nonplanar since for a propeller the twist

a
distribution can be much greater than for a typical wing. For the

horseshoe repreeentation the twisted flat plate becomes a segmented

(spanwise) plate with each segment being flat but having a different

spatial orientation from its adjacent segments.	 t
s	 4

One requirement of this straight-line representation is that

{

t
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x the spanwise segments be small enough that the chord variation is

adequately represented by straight-line segments between y and T
y + Ay.	 Typical airplane propellers and rotors will fulfill this w

adequately exceptperhaps at the tips. 	 In :keeping with well-

documented methods of vortex lattice theory (31, 32, 34, 35,36)

p
_ biased on two-dimensional analysis and Weissinger's lifting surface

theory and recently verified for the two-dimensional case (37, 38), i

they proper load on a segment is obtained by determining the flow

deflection at a point one-half the segment chord length from the

t. ' vortex.	 Hence, the control points are located on the local chord

c(y + 2) with a chordwise spacing equal to one-half the segment
chord from the spanwise vortex. 	 In order to obtain the correct

aerodynamic-moment, the spanwise vortex must be located at one-

quarter segment chord from the segment leading edge.	 Thus the first
}

spanwise vortex filament lies at the 1/4-segment chord back from the

leading sedge.	 The final spanwise filament is 1/4-segment chord

' downstream from the blade trailing edge; this implies that the Kutta
j

condition is satisfied approximately, the accuracy of approximation 1

increasing as the number of chordwise segments increases. 	 The first j

control point lies at 3/4-segment, chord behind the blade leading

edge, the last one at 1/4-segment ahead of the blade trailing edge.

Figure (1) shows an example of this vortex system on an arbitrary

" spanwise panel.

tt

3.3	 Coordinate Systems

In dealing with propellers and 'rotors various coordinate systems
s;

exist and are convenient to consider for various calculations.
i 71



., (1)	 Blade Fixed:	 An' orthogonal system with the origin fixed at

t
the axis of rotation, y directed along the span, x along the

1
chord and z along the rotation vector. 	 Hence, x and y lie in

s

A
the disc plane and rotate with the blade.	 This system is

! convenient for blade force determination. s

(2)	 Propeller Disc-Plane Fixed:	 This is a typical wind-tunnel

} configuration and allows a wake visualization as might be

j;
seen in a wind tunnel or whirl tower.	 x and y are orthogonal

but fixed in direction so the blades rotate relative to them..

z is also perpendicular to the disc plane. 	 Wake deformation

{ will be considered in this system

(3)	 Fluid at Rest Fixed: 	 Allows visualization of the wake at

one position as a function of time as the rotating propeller

k
passes with some flight speed.	 This is a spatially fixed

Cartesian system.	 In general, concern is directed toward (1)

and (2) but note that (2) and (3) coincide for the statically

thrusting case.	 Figure (2) shows coordinate systems (1) and
1

a

J

3.4	 The Elementary Flow Field a

Since the disturbance created in the fluid is a potential flow,
1

s the application of vortex lattice techniques is permitted. 	 As previously

described, the blade surfaces are replaced by a mesh of rectilinear

^. vortices in order to approximate the continuous distribution

with numerical analysis.	 Further, since small but finite time

increments are considered, the wake contains a finite number

i

s	 s.
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of,, points whose motion describes the deformation. 	 These points are

taken to be connected by straight line vortex segments which repre-

sent the disturbance.	 Hence, at a point in space and time, the

elementary flow field is that due to a straight line vortex segment.

G`. Referring to Figure (3), for a straight line vortex
r

segment

i, with end points at X and X . a velocity at X is induced according
t	 °: A

+- to the Blot-Savart Law

y r cos a + cosB n f
Ww-	

_^^ _ (l)

G where n is the unit normal perpendicular to the plane containing

XA(t) . ^(t), and XC (t) .

Now,

n.1xAC	 1xAC

_	
Il x ACI	 Ill	 I ACI sin a

and h— JACI sin a

So that expanding 1 x AC yields the X_, Y, Z components of vi from

v	 v	 +	 vi	 + _k vi

ix y	 Z

Vi QC, t)	 r(t) cos a + cos 8	 [(YB'- YA) (ZC - ZA) -

;- x
4w	 I l i	 IACI	 (1 -cos	 a)

+ (Y	
Y) (ZB	

Z
A 
)]

C -	 A

vi (
	

, t)	 r(t) cos a + cos8	 ^(ZB - ZA) (X
C
 - XA)

y	 4r	 I ll	 IACl 2 (1 - cos	 a)

- (XB - XA) (ZC = ZA)] C3)

v	 (, t)	 r t	 cos a + cos B	 ^ (X	 - XA)

iz
(YC - YA)

4r	 I1I, IACL	 (1 - cos	 a)	
B

(XC - XA) (YB - YA)]

xk 

r
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Superposition of the results of equations ( 3) for all the

E!:	 elements of the vortex mesh representing the blades and wakes give

I{	 the components of disturbance velocity at any point in the field.

The form of equations (3) is suitable for the vortices fixed to
{
I	 w	 the lifting surface since the geometry is fixed. For the wake
J	

'!

;t	 f

vortices which are free to deform while conserving total circulation

iaccord as to

1
r(t) I1(t)	 _ r(T)	 1 1_ (r)	 = const. t >T	 (4)

where r(T), 1(T) are the circulation and length at the time of

shedding, T, respectively.	 It is convenient to use

i r(t)	 r( T)	 1 T1 1 	 (5)
1 (t)

and rewrite the Biot-Savart Law in the form

v	 r( T) Il( T) I	 COS Q+ COS	 n

4n	
Iiwlh

which has components similar to equations (3).
j a

1

i
3.5	 Influence Coefficients for the Twisted, Cambered Plate'

The influence coefficients are simply the normal component of

velocity induced by the g th unit strength horseshoe vortex on the

lifting surface at the pth control point.	 The 9th horseshoe vortex

' is identified in a coordinate system rotating with the - blade.	 The

4 origin lies on the axis of rotation with y coinciding with the

stacking axis and x parallel to the chord.	 The pth coordinate system

is located the same way.	 Now if we imagine i, j to represent the i

chordwise coordinate and k, 1, the spanwise coordinate, the horseshoe

vortex is identified by the coordinate of the left hand corner

P	 a
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nearest the leading edge x,k . The point, xjk has the Cartesian,

coordinates xjk = i x,k + Wyk + k z^ k. The control points are

similarly identified by xCil . Figure (4) illustrates the convention

for defining the vortices and control points.

The normal component of velocity induced at xcil by the 3th

unit strength horseshoe vortex is

vn(XCil) ° E (coo a + cos B	 (l x AC) )m ' n (,il) (7)
4nj1j IAC1 2 (1 - cos2 a)

where n is the unit normal at Xcil and m identifies a particular

segment in the horseshoe filament. The coordinates associated with

t filt	 x	 starts at thone vor ex	 amen	 are xnk+ _jk	 x k+l	 x	 ,	 ng	 e' ^	 -numk+l

trailing edge ( shed vortex) and progressing clockwise around the

vortex so that the filament has a horseshoe shape (see Figure (4)).

"Num" identifies the trailing edge _vortex whereas	 identifies the

chordwise position of the spanning element.

Thus,

3
vn(X=1 (v	 nx + y	 y + v	 nZ) a influence coefficient,l)	

m
xm	 m

Pq	 (g)

where v	 v	 , v	 are given ' by equation (3). 	 The indices p and q
xm	 ym	zm

give the velocity induced at the pth control point by the gth recti-

linear filament where p and q are serially numbered starting at.the

- left-hand leads	 edgeleading	 g	 panel and progressing chordwise over the

surface ending at the right-hand tip trailing edge (see Figure (4)).

}i Note that Apq due to a' trailing	 g	 vortex segmentedge 	 Which is shed

i
ii
i,

into the wake is due to a straight-line segment, a degenerate form	 f
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k'
of the basic horseshoe configuration of the bound vortices.

The unit normal, utilizing strip theory for the moment, is

a, given by k

dz'	 dz'

n(Xcil) 	 i sin(	
+ k cos (-	 (9)

dx"il	 dx)il

where x' , ,z	 are coordinates parallel and- ,perpendicular to the blade

chord, respectively.	 If the chordis pitched through an angle S^
t; l

' with respect to the disc plane,
dz'	 dz'

Y( g = i sin [S C 	-(	 . ) il ] + k cos CO.	 -(	 , )il ]	 ('10a)l	 l

so that

i

_	 =#
•

dz'
nx = sin [BC	

^()-

l	 dx' i1
O

nZ	 Cos [sC

^ Including the effect of twist inng	 satisfying the boundary condition

it can be seen that within the limits of the model each cpanwise

^f

segment has an effective dihedral.	 Thus, the unit normal has

components
•dz

nX = sin [S C 	 _(	 )	 ] cos a
1	 c'rx it	 it

ny • sin ail	 (10b)
:.

nZ s cos ISC	 -(^ ) il ] Cos a il
f:

l
i}

I<
where X 	 this dihedral angle.

Figure (5) shows the geometry of the unit normal. 	 Referring to

Figure (5) the local dihedral of the panel segment is taken to be

f

the slope of the straight line joining the chordwise bound vortices
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at the location of the control point. 	 For the control point, i.e., the

panel segment is bounded by chordwise vortices at k and k+l. 	 The z-

displacement of kth vortex element at xcil is (-xcil tan Sk) and for the

k+l element, (-xcil tan Sk+l).	 The slope defining the dihedral then is

just

1X
	 _	 -tan

Qyil 
{`tan 

^k+l -tan $k]}	 (11)

l

from which sin Xil , cos kil can be determined.
k

a 3.6	 The Boundary Condition

The unknown vortex strengths are determined by satisfying the

boundary condition V	 n	 0 at all control points which, in matrix form,

s

is expressed as

E
A	 r	 - _	 (12)pgQ	 Vnp

where Vnp is the resultant normal component of all the externally

applied velocities as the pth control point. 	 For the propeller in hover

this is rotational motion of the blade and the wake induced velocity. }	 3

V _	 r x w + Wi (t)	 (13)

where r is from the axis of rotation to the control point in the disc

plane and w is parallel to the z-axis. 	 wi (t) is the induced velot::'' y of

the wake at the control point.	 Thus,

—	 -
f

(14)

n =	 [wyl + wx (t)] sin [¢C'	 _ (dz 
) il] u0s Xi1

dx'
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(-w 
xcil + y(t^) 

sin ail

+ wz .(Q cos (OC — ( , )il)
1

To utilize strip theory set a il • 0 in equation (11). The wake

induced velocities are determined by utilizing equation (2) and

m mning over the trailing and shed vortex segments. Recall the shed

vortices are laid down between spanwise segments to satisfy the Kutta

condition while the trailing segments are formed essentially by the

motion of the surface.

3.7 The Deformed Wake

The wake at any instant of time consists of those shed and

trailing vortex segments which have been laid down between time equal

0 and the instant under consideration. These segments are allowed

to move and deform under the influence of the velocity field at

their end points due to the bound and wake vortices. Equations (3)

and (6) yield these velocities with local induction effects of

equation (19) also included. Wake elements are tracked by tracking 	 ?

the end points. Each end point initially lies at the shed vortex

(trailing edge) at a particular spanvise station, yk , and hence has

a coordinate in the propeller disc plane at its instant of shedding

of

k	 k	 k	 — T .E.k	 (1S)
4

The motion of this point is traced by allowing it to convect under

the induced velocity field, 	 (k, t)

i

,r

LI



34

I

x^_ (t + et) Ox(t) +'^ (X	 t) At	 (16)
k	 k	 k

and it is replaced by another end point at yk.	 In this way the wake

grows and deforms continually. 	 It is entirely recalculated at each

time step.	 Each "end point" is really the end point of four vortices,

two trailing and two shed.

In the coordinate system fixed to the propeller disc plane

'
(t) = xnumk

 coo.0(t) - yn
xT.E.k	

sin 0(t)

! UT)

' yT.E.k (t)	 xn k sin 0(t) + ynumk cos A(t)

where 0 is the azimuth angle between the blade and disc plane y axis

and xn	and ynuml are the coordinates in the blade fixed system.

Then the coordinates of the deforming wake are computed by equatan

(16).	 When the blade moves to 0 + A0 = 0 + wilt the new end point is

xT.E.k ( t + At) = x 	 cos(0 + wdt) - ynumk sin (0 + wst)

(18)

yT.E.k (t + fit) = xn	sin (0 +wet) + Yn	 cos (0 +	 wAt)umk

Note z is unaffected by the coordinate transformation.
3

3.8 Self-Induced Velocity Field of the Vortex Wake:

The induced velocity, _wi (Xv , t) of equations ( 16) is the veloc-
x

ity induced at the wake coordinate, X 	 (t), at time, t, by all the

vorticity in the lifting surface -wake system at time, t. 	 This

velocity field consists of that induced by the bound vorticity and

that induced by the wake vorticity.	 The wake contribution consists

of the effect of the vortex filament containing 	 Xw (t.) on itself as
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well as the inductance of all the other filaments. These contributions

are all determined by application of the Biot-Savart Law. In

principle, no difficulties arise except when the contribution of the

filament containing X w(t) to the velocity at X&(t) (i.e., the velocity

induced by a vortex on itself) is considered; then a logarithmic

singularity arises at Xw(t) which requires special handling. Efforts

in treating this problem (46, 47, 48, 49) have led to considering the

velocity induced by a filament on itself as consisting of two parts':

(i) the far-field contribution due to all the filaments except that

point at which the velocity is calculated, and (ii) the contribution

of the region containing this point, the localized-induction

contribution. Investigation of the (ii) contribution shows that the

local contribution to the induced velocity is proportional to the

local curvature and directed along the bin.ormal to the filament.

The majority of analyses which try to account for the deformed

wake consider a?.l the contributions except (ii)', the localized

induction (exceptions are (21, 23, 28) which account for localized

induction by a circular arc model). The more or Less classical

numerical approach with straight-line segments modelling the wake

elements approximates the flow.field due to the entire wake except
3

those elements adjacent to the point, Xw(t), in question. This

classical contribution is determined by repeated application of

equation (1) or (3).

r

	

	 The localized-induction contribution to the induced velocity has

been determined (49) to be
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- 
r (ar/as) x (a2r/as2) 	 1

qi 4r	 ^n(E)	 (19)

(ar /a8^

where r is the position vector of a point on the vortex filament, s;

r is the circulation; and a is an effective core radius. For a con-

tinuous filament Was and a 2r/as
2
 can be	 determined immediately. 	

A

For the numerical problem with the vortex filament being .approximated

by a finite number of points it is possible to express the deriv-

atives at a field point in terms of the locations of the field point

and.the ones adjacent on either side. Let r be the position vector

of the vortex filament with 31 9 12 9 X3 the location of three numer-

ically determined adjacent position vectors of the filament in the

positive direction of the filament, s. Then, using second order

Taylor series expansions about x2 a forward , difference gives

a 2r(x2) A8.22

E3 - x2 + as 
A82

	

	 2 2as

while a backward difference gives

2

ar(x2)	 a2r(x-) As

zl -- x2 - a8 Asl + ----^— --^—
—	 as

With As,-I X2 - xl I and es2 -' x3- X2 ) two equations in two unknowns
2

yield the necessary derivatives at x ar(x 2) /as and a2r(x2)/as

a 21%)	 3E3 12+	 xl - 12

as
	 as 46s

46 s2	
A` s_ 68	

(20)

j{
AS2(	 2 ) Asl(	

2 )

}

a
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^I	

r

ar(x2) : asl	 - x2	 0s	 (x - x)2	 -i -2	 (21)	 a

2s	 es2 (As + Asl) eat (as2 + es l)

	'j	 Equations ( 20)-and (21) can be vritten in Cartesian component

form for computation as

	

t	
82r^.Q) s	 1	 x3 - x2 + x^ x2

as 	 (mil+ ^2 ) 1 AS	 ^2 1

+ 
y3 - y2 + Y^ " y2 + z3 Z2 + Z1 Zl (22)

	

e s 1	 a 2	 4s2
	 As

l

es1	 AS

as	 as2 + Asl 	 As2 (X3 "-X2) esl (xl x2)

(23)	 1
+ 601 2 	 ^1

AS

AS (Y3 y2
) -	 (Yl y2 ) + k ps: ( z3 - y2 ) _ 2 (Zl z2)

bs2	 1
The total velocity induced at the Wake point xv (t) at time, t,

is the sum of effects of the bound vortices, all filaments not

containing E. (t) and the filaments; one trailing and one shed,

containing xw (t) up to the adjacent points as determined by re-

peated application of equation ( 6); to this is added the effects

of the four segments having xv (t) as one end point and the four

	

1	 -	 adjacent points as the other by equation (19). This velocity

then determines the wake distortion by `ray of equation (16).

In principle, no difficulties arise in evaluating ar ras and

•
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a

1

a lt/es2 at any of the wake points except those on the edges of the wake

sheet. The problem here lies in trying to determine the curvature of a

filament at the point where it ends at the sheet ' s edge. Crimi (21)

assumes the circular arc representation. It is assumed here that the

curvature of the truncating filament is zero at the coordinate on which

it ends so that the filament has no localized effect here.

Another problem concerned with the numerical evaluation of equation

(19) is the determination of the proper r at .E2 . In the numerical

analysis the straight line segments ,connecting the field points have

constant circulations and change discontinuously across the field points,

i.e., a step change in r occurs at f2 . The local value atcan be

taken as the average value, (fl (t) + r 2 (t))/2, where rl (t_) is the

circulation on A.sl _ 2E2 xl and r 2(t) is the circulation on Os2

A3 - x2 . Finally, since rl(t),T2 (t) obey the conservation of circulation

as the wake deforms, it is convenient from the numerical standpoint to

apply
r`t) _

	

r(T)As(T) t > T
As (t)

so that
w

r (T)As (T)	 r (T)As (T)

r(—x2 	
1/2

lAs	 2L^s(t)	 +	 (t)
1	 2

(24)

where r(z), As(T) are the circulation and length at the time of

sh dding, T, respectively, and As(t) is the length at the current

time, t.
f

r:
pi

jj

Li

iE
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3.9 The Force on a Twisted Flat Plate Segment

Any given segment of the lifting surface is bound on three sides by

straight-line vortex segments. It is known for unsteady flow that the

pressure difference across a plate supporting a continuous distribution

of circulation is given by the unsteady Bernoulli equation

op = PVY + P 3A O 	 (25)at

where pVy is a quasi-static Kutta-Joukowski force and pDAO/Dt reflects

the unsteady character of the flow. AO is the potential jump across the

plate. V is the velocity tangent to the plate and Ap is normal to it.

If, in the numerical model, only the velocity tangent to the plate

is considered, a force directly equivalent to Op in the unsteady

Bernoulli equation is obtained. However, according to Betz (50) the net

force produced by a bound vortex is due to its effective velocity. This

effective velocity is that found at the midpoint of the vortex due to

all other disturbances. Now the force that is determined includes the

leading edge suction force associated with airfoil and wing theory.

This is a direct result of using the effective velocity at the bound

vortex midpoints and results in correct estimates of induced drag.

Finally, it is also noted that the vorticity on a segment is the net

chordwise vorticity along the segment chord, directed positive toward the

leading edge at y and y + Ay, and the spanning vortex at the segment

1/4-chord. Figure (6) shows this geometry. ^Utilizing the effects of

the bound vortices, the wake at any instant of time and free stream
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and propeller rotation, the effective velocity at any vortex midpoint is

'	 z known.	 Tl, rT3 on the segment are also known, T2 being determined

A directly since it is a spanning vortex while T3 and T l are combinations

of chordwise sums and spanwise differences at y and y + Ay.	 Referring

to Figure (6) the effective chordwise vorticity on a segment extends
r

from the spanning filament on its segment to the spanning filament on 3

the next chordwise segment. 3

ii Accordingly, the quasi-static force on a segment defined by the

control point x it is found from the Kutta-Joukowski Law. 	 On the panel

i defined by the control point xcil i

F	 3
gsil	 v	 xr1	 +v	 T1	 +v	 T1	 =	 z	 v	 xT1	 (26)

2	 -ex -33 3	
-Mm4 P	 -el	 -1 1	 -ex 2 2	 m=1 -m

or, in component form

F
k xqs

it 	 [v	 r	 _ v	 T] l+ [V	 T	 - V	 r	 ] 1	 P
1	 ez2_y2	 2P	 eyl zl
	 ezl yl	ey2 z2

i

+	
[vey3Tz3 	 vez3Ty3 ] 13

y

Lit

F

ygsil =	 [v	 r	 - v	 T] 1	 + [V	 r 2 - v	 rz2] 121	 ex A	 ezl xl	 ex 	 zl	 ez2 x
j

(27)

+	 [VeZ3Tx3 
- Vex3Tz3 ] 13
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FZ

gsil " (Vex	
T -Vey rxl) 11 +

[Vex	
rye - Vey	 x2^ 12

P	 1	 y1 1 2	 2

+[V
ex3 Y3 - Vey3 a3^ 13

vhere x, y, z here refer to blade fixed coordinates. tt

Nov:

x 
k xjk=1k

-x
Xjk+1	 1+1 k+1 rr	

_	 1 311xi x3	 3

p

f r so
Yl

r	 .0
Y3

5

i

zjk	 zj+lk z	 -z
jk+1	 J+lk+1

r
#

r	 =	
r

zl	 1	 1
r	 _	 1 3

and

X k+1 - x
r	 _	 J	 ^k r

Yk+l - Yk
::	 P2

:`. x2	 1	 .22 Y 212

'
z	 _ z
3k+1	 Arz2

1
r2

,.
. 2

t with the segments of the rectilinear vortex supplying the load to

k	 ;i the panel containing the "il" control point given by

[( x	 -; x	
)2

+ (z	 - z )2]1/21	 jk	 3k+1 3k	 ^k+1

i
I4

12	 [(s	 - x	 ) 2+ + (Y	
- 
y ) 2+ + (z	 +	 - z	 )2]1/2

I jk 1	 3k k 1	 k 3k 1	 jk

t

j
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2	 2 1/2

13': [(xjk+l - xJ+l k+l )	 + (Z,k+l 	 z,+1 k+l)

Hence, the force components are given by

F
x

Qe s [Vey	 (z	 z	 rlk	 +lkP	 1	 3	 3

1 i	
1

+(^ey2 ( z3k+l - z^
k) - Vez (yk+l	 _Yk)] T2

2

a

+[Vey	
(z^k r3	 t- t,k

+l	
+l k+l )]	

f

F
t

._ : (Vez , (^	
V	 (z	 z	 )	 rx

k	 +lk )
ii

1,	 3	 3	 ex 	 jk	 J+lk	 1

(2^)
+ (V	 (x

(X3k+l - x,k ) - VeX	 ( z^
k+l	 z kA r

2
2	 )	 k

3

(V	 (x	 i xJ+lk+l)	 Yex	 jk+l	
z^k+ 	 (z	 rez	
+l k+l )] 	33	 31 3

F
z

(y	 - y)
r•

A	 eY	 jk+lk
1	 . 1	 '	 ex 	 k+1	 k

+, -Vey	 (x	 _ x	 )] r	 + [ -v	 (x	 x_
2	 3k

+1	 3k	 2	
ey3	

jk+l+l k+l)] 

r

 3

` Note that F	 is essentially the induced drag and F the thrust on
x	 z

the panel.	 y is a spanwise force, due in part to the interaction
tt	 ,

of z-velocity with what is ultimately flow around the tip and in

:. part to , the tact that twist, presents spsnwise area to theflow.

^	 j
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s	 ,

The unsteady contribution is determined, from the unstosdy

x pressure term	 Y

}

us _ n ( geg4ent Area) 	 (29)
P	 at	 _a

Cutting the lifting surface at a spanwise_station it can be shown,

{ for a continuous distribution of vorticity that

y

x
AO(x,t) _	 j	 y(C, t) dC	 x chordwise coordinates

L.E.	 (30)	
i

r

In numerical notation

J

e#(x,t)	 E	 T^	 (t)

L.E.

e' where ri's are the solution to the simultaneous equations.	 Since-
F F

the disturbance is potential, Af is independent of the path of 	 y

integration; hence, the integral of (30) should suffice to describe	 j
. 4

the unsteady pressure terms and	 fi
Er

a	 a	 x 

d{
art
	

F,.

L .E.

[r	 (t + At) - T	 (t)j'
At	 1

0 L.E.

r;i	 , in numerical form.
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Referring to Figure (6

}f

12x
1-3sa	 i z+,), y	 knzs,i

112xI

1 x 1	 1 x 1
3

n (Segment Ares)	 hAX s 	^^^ sin a AX

t 11-2 x 
131	

1-121 sin a 113

K	

It	
;' _

t	 ! Ax.a

I (Segment Area) 	 l z l
lc

vhere
i

+l - x	
)2 + (z	 - z	 )2]1/2^^	 " [(x

,.

k +1 k+l	 jk+1	 j+1 k+l
N

Expanding the x-product yields the components of the unsteady force

Fx
us

il 	 ads AX
s	 _c	 [ ( y 	- y	 ) (z

+l_ zjk )J
s

p	 3t	 113 1	 Jkj$	 jg+1
a

t

F
us	 nee Ax

[z	 - 'z.	 ) (x	 - x	 )	 (32}
w

P	 8t	 113 E	 jk+l	 3k	 3k+1	 +1 k+l

f _- 
(xjk+1 _ xjk ) (z

jk+1	 z +l	

+l))

Ft	 4X
x usil	 c	

))[-(Y-	 ) (x	 - x
3t	 Jk+l	

y 
jk	 jk+l	 +1-:

P	 1131	 Jk+l'
APO.

-
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ac. tb-t_the total force on the segment is

qsil 	 +	 us	 (33)

P	 P	 P

Summing the forces chordvise gives the spanwise distribution and

i
the total is obtained by summing spanwise

F (t)	 no. of span	 no. chord , Fil 
(t)

"	 panels	 panels	
(34)P	 E	 E	 P

1=1	 i=1

A more formal determination of the numerical approximation

(equations (28) and (32)) to the components of the unsteady Bernoulli

equation can be found in Appendix A. 	 An unsteady induced power is

also presented here.

The force of equation (34) is determined in a blade fixed

coordinate system. 	 Since the induced velocities are calculated in a

propeller fixed system they must be transformed to the blade system.

Considering the horseshoe vortex modelling the load on the panel

defined by the "il" control point, the effective velocity on that

segment lying along the-chord nearest the left-hand (m=1) tip has

components given by

sa
VeX	 = r,►yk + wix cos e + wi	sin Q

l	 Y

xjk + xJ+lkVey 
	 2	 ) + wiy cos 9 - v.	 sin a	 (358)

l 

gT
	 v

t 	
ezl = 	 r
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where w, 
is 

the induced velocity determined in the propeller disc
A.

plane at the midpoint of the segment(x
k
 + '"x J+lk 

)/2. a is the
^

i	 instantaneous angular orientation of the blade-fixed system with
,

E	 respect to the propeller disc axis system. Vex , V , VeZ , are
1 eyl 	 1

'	 tl_aus the effective velocity components in the blade fixed system.

Similarly, on that vortex segment lying on the chord bounding the

!	 panel on the right-hand side (m 3) the effective velocity

components are

Vex 
a 

Wyk+l + wix cos 8 + 
wiY sin 6

3

xjk+l + 
x
J+l k+lV	 )ey 	^(	

2	
+ wiy cos 6 - wix sin 6	 ( 35b)

3

VeZ3 
"wiz

Where w is determined at (x^
k+l + X k+

l)/2. On the spanning

vortex across the panel (m = 2), the effective velocity components

in the blade-fixed system are

k+l +
y)

V	
+ 

w, c_ (y 	 os 6 + , i sin 9	 (35c)
2	 2	 ix	 y

x
Y	 :(xjk+l + xJk ) + W. cos 6 + w sin 8
ey2	2	 iy	 ix

i
V
	 Wiziz

i

j
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where wi is determined at {xjk+l + xj k)/2 in the propeller disc

plane.

3.10	 Multi-Blade,Effects
_r

` So far only one blade and its wake have been considered whereas

s	
} P Ppropellers generally have B equi-spaced blades such that the

separation angle is 2r/B.	 For pure hover or static operation it can
f

be assumed that all blade . wakes and loading are identical, and the a

motions are identical.	 Hence, the effect of all blades and wakes onk
3

a reference blade can be calculated which then yields the propeller
C

performance.

i

FTOT(t)	 BF(t)_	 B	 =	 No. of Blades	 (36)
P	
p

Also, if x,y is a point in the propeller disc fixed system from the

reference blade, the corresponding point from the nth blade is given

by

2Tr n-1	 sin	 2n(n-1)X	 x cos
n	 B	 y	 B

(37)

2-,r
	 -1	 21(B-1yn	 x sin	 +	 y cosB

The same relation will put a point on the nth blade into the

coordinate system fixed to the reference blade.

i 3.11	 Computational Procedure

Y' The resulting computational procedure for calculating the

r
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loading on the lifting surface Wagner problem applied to the propeller
9

is presented in the following five steps.

(1) Input blade planform characteristics (chord, camber and twist

distribution), external velocity, number of blades, RPM.

(2) Determine influence coefficientsefficients for unknown bound vortices

(including vortex which is shed at the trailing edge at the
Y

i end of each time step) at a prescribed number of control points x

(equation 5).

(3) Satisfy the boundary condition, V 	 n = 0 at all control points

simultaneously,

x

Apg l'q (t) _ - Vn (t)	 P = 1,..,, no. of control points
` _:..:. p

q	 1,..., no. of vortices

(38)

Where Apq is the velocity component normal to the surface at

the pth control point due to the qth unit strength vortex, rq

is the strength of the qth'unknown vortex and Vnp	s'the total

normal velocity at the pth control point due to external a

sources.	 For a propeller or rotor this could include flight`

speed, rotational speed, blade flapping and aeroelastic

motions, and wake induced velocities.	 For the rigid 'statically '
f

thrusting propeller only rotational speed and wake induced

velocities are considered.

} In general the number of unknown vortices exceeds the
F;

number of control points by the number of spanwise panels into

_; which the surface is divided because the vortices to be shed at
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the end of a particular time step are considered unknown. 	 We

make up this deficit in the simultaneous equations by applying

the Kutta condition (51)

num	 num-1
r (t)	 E	 r (t-At)	 (39)

:
E
l	 J=

which corresponds to conservation of Circulation on any "1"

spanwise station.	 "num" represents the number of unknown

vortices on a spanwise segment; "num-1" are bound and "num" is

that which is shed at the end of a time step.	 The two

conditions can be considered one set of N x N simultaneous

equations of the form

Epqrq =	
G 
	 (40)

where

A	 p = 1,..., no. of control points	 (41)pq
q = 1,..., no. of unknown vortices

E	 - 1 1...1 0...0 0...0	 p = no. of control points,...,
j

pq no. of unknown vortices

0 0...0 1...1 0...0	 q = 1,...	 no. of unknown
vortices

0	 0..	 ........1...1

i.e., the coefficients in any row take on the value of 1 with

the vortices on the particular spanwise segment on which the

Kutta condition is applied; the remainder are 0.

w r

l

J
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f

- Vnp(t)	 p	 1, no. of control points

Gp(t) i	 num-1 	
(42)

E	 r (t-At)	 p = no. of control points,
j=1	 no. of vortices

r

The equations are solved numerically by standard matrix

} inversion and multiplication techniques for the unknown Tq's
4

t 1
Gp (t)	 (43)rqM = 

EPq

(4)	 With r	 s known the unsteady loading is determined.

(5)	 The wake deformation and motion is then obtained by determining

the velocities induced in the wake by itself and the bound

vorticity and advancing {Lhe lifting surface at the rate, Vim , fi,x

A new wake is then determined by evaluating new wake

coordinates.

X(t + 4t) = X(t) + V(t)At	 (44)

where V _ V^ + wi and Hi the total induced velocity at a wake

point.	 V^ _	 for hover.	 With the new wake coordinates, the

velocity induced at the control points on the surface is
num-1

determined and	 E	 r (t) obtained for each spanwise station
j=1

so that Gp(t + At) is known at t + At. 	 Hence, Pj(t + At) is

determined and the process is repeated for a desired number of

time steps.

3.12	 Real .Fluid Effects

Equation (33) yields a force distribution based on potential flow

theory.	 In order to estimate the true performance characteristics,

real fluid effects must be included as best as is possible.	 Realistic

lift curve slopes and drag coefficients must be estimated for
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the propeller sections, with Reynolds' number and Mach number effects

also included. While two-dimensional data below the stall has

been well tabulated (52), data, particularly drag data, at the

stall and beyond is sparse. Since the propeller at the higher

twists can have a large portion of the inboard sections stalled

this can lead to difficulties in accurately, predicting the power and

thrust. Further, recent measurements of the pressure distribution
3

on a propeller blade (9) indicate enough three-dimensionality, at

least in the tip region, to make the application of two-dimensional

data questionable. Unfortunately there is nothing better so this

must be considered.

To apply the real section characteristics to propeller per-

formance, the radial distribution of angle of attack must be deter-
_i

9

mined. With the steady state radial distribution of x-force and

z-force ( FXl and FZ1 ) determined by the equation (33) all the

force is Kutta-Joukowski force; hence 
Fx12

 + Fz12 is normal to

the effective velocity. Then, referring to Figure (7), the effec-

tive angle of attack at the 1 section is

F

aol s 81 - tend*

	

	 ( 45)
zl

where 81 is the pitch of the lth section. Assuming the section

characteristics are known,

t

c

.t
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aC11 . of aol

(46)
C	 Cd (Re I M, Cl)

dl	 1 1	 1

This yields the section thrust and power on s spanwise segment,

AY h

2
AT If pVe C

c 
(C 	 41 Ca sin 4 1) Ayl

	

1	 1 _1	 1
(47)

OF Is Pv C (C1 sin 	 + Cd cos m l ) Wy :AYc	 1
1	 1	 1	 1

4

For a B-bladed propeller, the total thrust and power are

i

S

B R 2
T	 p E V	 Cc 

(C1 
cos 4 1 - C , sin O1) aye

	

2 rh 1	 1	 1	 1	 1

(48)R 2
P 2 p = Ve Cc (Cl sin 0 1 + Cd ;, .cos 1) wyc Ayl 	 3

	

h 1
	 1	 1	 ,	 1	 k

a

Thus, with	 k
,,	 m

C	 T
T

p*R2VT2	 (49)

P

C
^$	 P 2

P*R VT

2
1.00 v 

CT ^ --4-of (C	
AY

l cos ^1 - Cd sin ¢1) l
E	 j;E	 h VT	 1	 1	 `^

(so)
t:a
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fluid, the induced velocity at the blade is also normal to Ve •
l

Then, aggin referring to Figure (7),

V • wy cos 41

i
i
7
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Note that no effects due to radial flow are considered here except

those which arise in the determination of F , Fxl from the
xl 
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Chapter IV -

RESULTS AND,DISCUSSION

4.1 Capabilities of the Analysis

The foregoing analysis leads to a digital program capable of

treating the following lifting systems and their wakes:

(i) an infinite or finite wing moving unsteadily, and

generating either a linearized (flat) wake or a

free, self-convecting (deformed) wake.

(11) a multi-bladed uroDeller in static thrust. It is

unsteady since the propeller usually starts from

rest and the wake is deformed.	 It is restricted to

the static thrust problem since wake symetry between

blades is assumed.

4.2	 Compatison of Two Computation Systems

It is well-known that numerical lifting surface analyses based

on vortex lattice techniques require large amounts of computer time

and storage.	 As a result, even though initial programming was done

on an IBM 360/67 computer at the Pennsylvania State University, it

became obvious this machine was inadequate for the complete propeller

solution.	 Maximum time available and core , storage are both in

sufficient and for these reasons, the CDC 6000 'series machines, with

larger usable core, at NASA-Langley Field, Virginia, were considered.

The analysis was re-programmed for this installation and, as will
4

be shown subsequently, time requirements were measurably reduced.
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f

As an added bonus much greater numerical accuracy was noted. Compile

times on the CDC units are also considerably faster than on the 360/67.

! A short study of the time requirements on the Penn State IBM 360/67

tf computer was made utilizing .a model of the rectangular wing with 19
a

panels spanwise (20 trailing vortices). 	 The wing was set at .1 rad.

1 angle of attack, ;started impulsively from rest and allowed to generate

its own wake.	 Rune times up to 2000 sec., the maximum allowable, were

' considered.	 It was found that {	 i

wing travel distance 	 2,59

Computation Time (sec) 	 .937(	 -	 x 10)chord

not including compile time. 	 While this case was not run on the CDC 6000
t

machines, the results for one wing geometry (three spanwise panels at .1

rad. angle of attack) were compared and shown in Figure (8)e 	 It can be

pr seen the rate of increase of computation time is greater on the 360/67 -,

i than on the 6000 series. 	 It was also found that the compile tames are

on the order of six times faster , on the CDC machines.

Accuracy of the CDC machines are greater with the single-precision
j,

` rnode roughly equivalent to the 360/67 double precision mode and double 7

precision arithmetic was necessary on the 360/67 to obtain acceptable

results.	 Single-precision arithmetic on the CDC machines was quite

adequate and this in turn. results in a computation time saving„

403	 Vortex Kinematics

r	 l= Some time was spent in observing the velocity field induced bP•	 g	 y	 Y a
^T

t^

{

L.j



straight line vortex segment in hopes that some a priori assumptions

regarding the wake and the number of elements needed to describe

it could be made. Figure (9) shows the variation of induced

velocity at a point located a fixed h/1 from the vortex segment, but

at different lateral locations; this effectively describes the

variation a point would see as it translates in a plane past the

filament. Figure (10) shows the variation this point would see as

it moves on a circular path, in the plane, about the filament. As

expected, regular variations occur from maximal when the point is

at mid-segment to minima (zero) when the point is aligned with the

segment. While these computations were done for a distance from

segment mid-point to segment length ratio of 2, the trends will

be the same for any other value, being higher or lower as the ratio

is smaller or greater, respectively, and passing through 0 at 6 or $

equal 0.

Figure (11) illustrates,an attempt to correlate the velocity

at a point in the plane due to an angularly oriented filament

with the projected length normal to the line from the point. it

can be seen that the greatest difference for any angular orientation

occurs at approximately h/l .2. This vanishes rapidly until, at

h/1 5, the effect of the orientation vanishes.

Figure (12) shows the variation of induced velocity as a

function of normal distance from the line segment. This 	 3
4	

^

figure is interesting because it shows the transition of the

9

x	 a

t
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!	
:R

induced velocity from an essentially two-dimensional flow near

i
the segment (v	 1/r for h/1 < .l) to a fully three-dimensional

field farther away (v ' 1/r 2 for h/1 > 1).

While the foregoing figures describe to some extent the

character of the elementary velocity field and the region of

influence of an elementary piece, no particular convenient 	 1

approximations applicable to the self-generating wake could be

discerned.	 First, the results apply to the magnitude of the

' f velocity field and so even if an approximationcould be found	 s

F
to this, one is still faced with calculating the orientation

relative to the specified coordinate system.	 This is the

difficult part of numerically integrating the Biot -Savart

Law.	 Hence the problem of streamlining the wake calculations

reduces to the question of whether or not the wake can be

numerically truncated.	 Since a major part of the static

" propellor problem concerns the interference of the vortex

wake from one blade with another blade, it seems that no

elements can be dropped, at least until the wake is well

formed.

r	 ^ ^

`	 3
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4.4 Results of the Unsteady Lifting Surface Theory

3

The following results have been accumulated as the program

developed from the case of a finite wing with a linearized (flat)

wake to that final one which treats the propeller starting impulsively

in static thrust. Since concern is directed toward the propeller

starting impulsively, most of the results utilize this mode of

initiating motion; this is the classical Wagner problem. However,

prior to investigating the propeller, considerable time was spenty

with the finite wing since this configuration contains essentially

the same numerical problems as the propeller but is less complex.

The wakes considered here are the classical types, either flat or

deforming, without the localized induction results of Section (3.8).

The infinite wing case is treated by simply considering a sufficiently

high aspect ratio wing.

i
E
	

4.5 Infinite Wing

The infinite wing was modelled by considering a single spanwise

panel, AR = 1000, at an angle of attack of 0.1 rad. The non-

dimensional time step is V4t/C = 0.1. Giving the wing an impulsive

start describes a good approximation to the classical two-dimensional	
<1

Wagner problem. These are compared in Figure (13) which shows the

3

	

	
lift building up from rest to steady state with the distance the

wing travels per unit chord. The comparison is good except in the

initial instants where large deviations occur. The Wagner solution

contains only the effect of the wake whereas the numerical solution

F

i

4
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contains an "infinite" added mass lift solution with the impulsive

start, or infinite frequency with the sUip change in angle of attack,

which dies out rapidly.

To get some feel for aspect ratio effects, the results for AR = 0.1

are also shown. The lift drops rapidly from the high added mass

condition to a-steady state value somewhat less than the two-dimensional

value. Here the trailing vortices are very effective in satisfying the

boundary condition so that the bound circulation does not need to

contribute as much as in the two-dimensional case.
'j

Figure (14) shows the rapid change in the shape of the chordwise .t

a
loading in going from predominantly added :mass lift to the final

predominantly steady state distribution for the AR = 1000 wing. The

shape of the final distribution is evident after only .2 sec. time of

motion or .2c distance of travel by the wing. It should be noted that

in these calculations that the wake is a flat, classical wake. The

chordwise pressure distribution was approximated by eight bound

_vortices; however, as will be seen subsequently, C l is quite insensitive

to the number selected.

A two-dimensional model was started from rest in a simple harmonic r

motion (Theodorsen) at a reduced frequency of 0.2. The fluctuating

'

	

	 lift exhibited the "infinite" added mass characteristic at the instant

of start but subsided into the classic form well within the first cycle

9

	

	 of motion. It can be noted that convergence to the classic results of 	
M

both the Wagner and Theodorsen problems was slightly better than the

results of Reference (53).

tir
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4.6 Finite Wing

The finite wing investigated consists of an AR - 3 untwisted_

rectangular wing at a * 0.1 rad. starting impulsively. This aspect

ratio was selected as one sufficiently in the middle range so that

neither lifting haae near slender wing approximations would enter

the calculations " The numerical results for CL , the wing lift

coefficient, are cr; .xpared, to an approximation to DeYoung's (16)

results for steady motion.

2wARa

CL 	 AR + 4
AR + 

2(AR + 2)	
(47)

The AR is small enough that the loading is nearly elliptic so that

the induced drag is given by

CL
2

C	 (48)Di MR

for steadys ad motion.

The effect of the number of spanwise panels on the wing lift

coefficient is shown in Figures (15) (AR = 3) and ( 16) (AR = 1.5),'

-	 In both cases convergence to the DeYoung value requires a relatively

large number of panels. Intermediate calculations indicate a

no loss of accuracy in C L as less than 10 panels are con-

sdered. The CL's are shown as functions of the length of the

trailing vortices with a linearized wake. For AR . 3, a wake

approximately -5 chords long is sufficient to guarantee convergence

to the proper CL. For AR 1.5 the wake length required is less,



about 3 chords. This is due to the trailing vortices being more -

effective socner in satisfying the boundary condition as the AR

decreases as previously implied in Figure (13). It can be noted;,

however, that convergence is relatively insensitive to the number

ofspanwise panels modelling the wing. Five cbnrd lengths for the

AR- 3 wing suffices for 3 panels or 19 panels. Further, these

wake lengths represent maxima in that no shed votticity is present.

These comparisons are based on steady state models and, if an un-

steady Wagner motion and the shed mortices were present, convergence

would occur faster.

Finally it must be noted that AR's are based on the spanwise

distance between the tip vortices with no regard for Rubbert's

rules (34) for handling the tips. If Rubbert's criteria are

followed slightly better correlation between numerical CL I s, and

those given by equation (47) for the coarser spanwise spacing will

be observed since the AR is measurably larger. Convergence to the

proper CL could then be expected to be more rapid. The present

results are perhaps more properly interpreted as indicating the

minimum spanwise spacing necessary so that Rubbert's rules for

handling the tips can be neglected.lbr a given AR, then, these

results should be more than sufficient to guarantee convergence to

the proper CL.

The effect of the chordwise dLstribution of bound vorticity

onthe wing lift and induced drag is shown in Figure'(17). The 	 w
}	

Wagner problem is considered here with the wing given an impulsive

start and laying down ,a linearized wake. Shed vorticity is present

[	
r	 j

U
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and convergence to the steady state values occur in about 1.5 chords

of travel. Twenty spanwise panels model the loading distribution.

The initial "infinite" added mass force associated with the impul-

siwe start is seen to quickly subside as the wing approaches the

steady state condition. The cases considered compare chordwise

loading approximated by 1 and 4 bound vortices and it is easily

seen that both CL and CDi are insensitive to the number selected
h	 after the steady state is reached. Jbr both quantities the tendency

is to drop under the steady state value,then approach asymptotically

from the low -side. Figure lg shows the effect of number of spanwise

panels on induced drag, For the configurations shown the 3 panel

vortex lattice over-predicts the 20 panel model by approximately

9%.

An attempt to show the effects of removing the linearizing

effects on both the boundary condition and the wake (allowing it

to deform) is given in Figure (19). Linearizing the boundary

condition implies an inflow to a wing control point to be given by

Va wzil instead of V sin a - wzil cos a+ xil sin a. For a - 0.1

rad. the differences are negligible onthe plot but consistent results

could be seen in the computer output. Linearizing the boundary►

condition while allowing the wake to deform insults in higher CL's';

then if the wake is linearized, the CL 's increase more. The

-	 greatest differences appear to be in whether or not the boundary

condition is linearized and becomes more apparent at greater time..

Apparently, at the instant of start whin wake eleents are strongest

Ei

3
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and their effects would be greatest, they are very near the plane

of the wing and so approximate the linearized wake; also strong

added mass effects near the start will tend to overshadow the wake

effects. Then as time progresses the strong shed vortices are

carried away (their influence going like 1/r2) and the trailing

vortices which now have nearly constant strength tend to be most

effective. Taking the wing to be most sensitive to this near wake

and noting the displacement of this portion from the 'plane of the

wing to be small, the differences between the linearized and deformed

wakes are small. Greater differences exist when considering the

linearized vs, non-linearized boundary condition for this alters

the impact velocity on the wing. In general this will decrease as

V sin m instead of Va; hence, less circulation is needed to satisfy

the boundary condition so a smaller CL results.

Examples of the deformed wake for crude models (2 chordwise

panels, +4 trailing vortices) are shown in Figures (20) (a = 0.1

rad.) and (21)(a . 1.0 rad.). It is seen that the wake is convected

downward behind the wing except for the first shed vortex which

remains in the plane of the wing. The inboard filaments are con-

vected downward more than the outboard, a fact in qualitative

agreement with physical observation and numerical results (43).

As time progresses more shed vorticity is collected in the vicinity

of the one shed initially to form the fluid starting vortex. This

vortex remains more or less in the plane of the wing, but slightly t

underneath it. There is little, tendency for the vortices to roll

up into the tip vortices. This is due probably in part to the
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crudeness of the model in spanwise spacing, but also in part to the

neglect of the localized -induction effects of (3.8). The case of

a = 0.1 rad. produces smooth, cont inuous results using just the

z' integration technique of equation (44). 	 The a - 1.0 rad. case,

t
however, exhibits an apparent oscillation in the tip filament.

This oscillation is really a spiral motion of this filament due to

t' the error involved in applying equation (44) directly.	 The tra-

Jectory needs to be determined by a more sophisticated integration

yy

scheme such as predictor -corrector (modified Fuser).

The growth in CL and CD	with time for a - 1..0 rad. angle of
i

attack is shown in Figure ( 22).	 Small amplitude oscillations, a

direct result	 of the spiral trajectory of the sarong tip vortices,

is noted.	 The asymptotic CL appears to be 3.0, something less

than 10 times the a - 0.1 rad. case (Figure 18).	 In fact, it is

only slightly less than the value obtained if CL varies as sin a:

rather than a , a direct effect of a nonlinearized boundary condi-

tion.	 One should tale care in interpreting the results entirely

in this light, however, since wake deflection and the ensuing tilt-

: back of the Kutta -Joukowski force vector (16) will also result in

a decreased Cis.

Finally, even at the high CL 9 little interaction between

trailing vortices was observedso that no strong tendency for the

F
Wake to roll-up could be seen. 	 A model at a = 0.1 rad., but with

20 spanwise panels to model the loading, was run and still no

strong roll-up tendency could be seen. 	 Although not so long a wake

t could be generated with this larger number of spanwise panels due
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to computer limits, qualitative agreement among the three cases

exists. However, roll-up rates as determined by these classical

approaches appear to be much too slow. This leads to the belief

that a further mechanism, notably the localized- induction effects

of (3.8) must be considered.

4.7 Localized Induction Effects on the Vortex Wake Roll-up

Previous [attempts (39, 40, 41) to model vortex wake roll up

have generally considered a Trefftz plane analysis and treated the

wake distortion as an unsteady motion proceeding from an initially

flat wake geometry. While the final geometries are generally

realistic all show roll-up rates which are much too slow. Jordan

(44) takes exception to the numerical procedures and develops a

lifting surface theory which contains a logarithmic singularity in

the downwash at the trailing edge slightly inboard of the tips. He

claims this singularity will drive the-wake roll-up at a much faster

rate but unfortunately he can provide no physical insight into the

existence of this singularity. 	 q

In an attempt to better model the vortex roll up rate con-

sideration was given to the localized-induction concept presented

in (46, 47, 48, 49). This approach was taken based on the physical

observation of flow field development at the start of the. motion,

what is necessary to generate wake roll up, and the manner in which

the localized induction concept can describe this requirement.

At the initial instant of start a shear layer leaves the

trailing edge and rolls, up into a well defined starting vortex with
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circulation equal and opposite to that around the wing. In the

case of a two dimensional flow this vortex is simply swept away by

the free stream (for example, Ref. 54, Fig. 22). Similarly, at the

T	

instant of start of a finite wing the motion is nearly two-dimensi-

onal with the starting vortex forming essentially parallel to the

trailing edge. The shear layer feeding this vortex from the trailing

edge is highly curved, streamwise, as it is drawn into the starting

vortex.

In order to promote wake roll-up the two dimensionality of the

flow must be disturbed; a strong spanwise flow tending to convect

the wake laterally provides.this. The shear layer which feeds the

starting vortex contains the shed and trailing vortex filament

which model the wake. Hence, soon after the motion starts, the
i

curved shear layer is reflected: in the streamwise curvature of the 	 r

C'

trailing vortex filaments. According to the localized induction

concept described in (49)_a curved vortex filament induces at a

point on itself a velocity proportional to the local curvature and

directed along the local binorma . This means that the curvature

of the trailing vorticity can induce a spanwise flow which will

tend to destroy the initial two dimensional character of the motion.

Under this influence the vortex segment endpoints describing the
1	 >•

wake will travel spiral paths which should promote interference

between filaments and increase the roll up rate.

In order to assess the relative importance of considering

#	 the localized induction concept wake roll-up a short numerical

study was performed. An aspect ratio 3 wing at C.- radian angle of

attack was started impulsively from rest. The chordwise loading
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was modeled by two bound vortices and the spanwise loading by four

vortices. It traveled 0.1 chord lengths in each time step. Figures

(23) and (24) show the Z-component (downwash) and y-component (spanwise)

of induced velocity, respectively after 1.2 chord lengths of wing travel

for the case of no localized induction. The downwash varies spanwise

but is fairly uniform streamwise until the _end of the wake is reached.

This induced velocity- is on the order of 0.03 ft./sec. to 0.08 ft. /sec.

The spanwise velocity, while appeariaig more erratic than the downwash,

is genecally smaller than the downwash by a factor of 10. The exception

is in the vicinity of the end of the wake where it increases or exceeds

the order of the downwash; this is due to the vortices shed initially

beginning to distort. However, over the majority of this wake the fact 	 a

that the downwash is greater than the spanwise velocity by an order of

magnitude indicates the flow in transverse planes of the wake will be

essentially two-dimensional.

The wing was rerun for the same conditions but with the wake

allowed to convect under the localized induction process. 	 Figures (25)

and (26) show the induced velocity field in the wake after 1.2 chord

lengths of travel.aver.	 It can be seen that the downwash and spanwise

components are both of the same order of rr-.gnitude, approximately 01

ft,/sec., with the y-component peaking at over 0.8 ft./sec.	 The shapes -'-

of the curves indicate the trailing vortices are performing a spiral

motion, and while the model is too coarse to permit interaction between

the trailing vortices, the flow field is highly three-dimensional.

z

z_

;,7



69

Another indication of the potential that the streamwise curvature

has for inducing a spanwise flow can be estimated from Figure (22),

Reference (53). The two-dimensional starting vortex shown in Reference

(53), Figure (22), can be reasonably approx :iiiated by two turns of an
Y

	

	
hyperbolic spiral with an asymptotic displacement to chord ratio of

approximately 113.-,Jlhe velocity induced by this spiral filament on

itself: by equation (19) is shown in Figure (27). The self induced,

velocity is normal to the plane of the spiral and increases as the

center is approached. Utilizing circulation values from the AR = 3 wing

at 0.1 radian with 2 chordwise vortices and 4 trailing vortices, a

velocity on the order of 10 ft. / sec. could be obtained. This means

that, at the instant of formation shown in Reference (52) if the two-

dimensional constraint could be removed .1 velocity parallel to the

trailing edge on the order of 10 ft. / sec'. Would exist. Such a velocity

should be of sufficient magnitude to destroy the two-dimensional

character of the flow typified by the 0.05 ft. /sec. spanwise veloci ties

of Figure (24)y

As a final. comparison an AR 3 winp = gat 0„1 radian angle of attack

with 2 chordwise vortices and 21 spanwise vortices to model the loading

was run with and without the localized induction effect of equation (19)

r	 Figures ( 28) and (29) represent the classic wake with no localized
t

induction while Figures (30) and (31) include the effect. Compa ring

`	 the wake structure with and without this effect it can be seen that

a.
nearly 6 times the distance of wake is included to promote wake roll-up

LA

f,

^i
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without the _effect of equation (19) as with it. The classic wake shows

little interaction until it is about 3 chord lengths long and the

distortions are quite gradual. At this point only two trailers are

measurably affected. On the other hand, with localized induction, the

tip vortex. . has broken down into a spiral motion after only about 0.5

chords of travel, is interacting strongly with the second and is	 u
a

beginning to affect the third. A further important observation is that 	 {`

once the vortices enter the spiral motion they apparently never recover

and the wake roll-up iso^rerned entirely by the localized induction 	 }

process.

While the preceding results are quite limited they do give some
i

indication into the requirements of wake roll-up modeling. Basically

it'can be concluded that in order to predict the proper _wake roll-up,

both as to shape and rate, the motion at the instant of start must be

considered. The high curvatures of the trailing vorticity are required

to induce the spanwise flow and destroy the initial two-dimensional

character of the motion. Apparently it is precisely this two-dimensional

nature of Trefftz plane motion that precludes the usual analyses from

predicting the proper roll-up rate, also, apparently classical aero-

dynamic theory is quite capable of predicting proper wake roll-up

characteristics provided the problem is properly posed, and recourse to 	 a

new theory as has been suggested (44) is not required.
r

I

4.8 Effect of Core Radius
t	

^
9

The Biot-5avart Law (equation (1)) contains a singularity if
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the point at which the induced velocity is determined lies on the

filament.	 In order to circumvent this difficulty it has been

standard practica to define a core radius inside of which the

potential flow field induced velocity does not exist. 	 Either no

velocity or a simple solid body rotation is assumed.	 A variety of

methods for defining this radius (see Appendix R) exist with no

particularly strong argument for any.

Comparison of Figures (28) and (29) show the effect of varying

the core radius on the formation of the classic wake while Figures	 a

(30) and (31) show the same comparison for the wake with localized

induction.	 Figures (28) and (30) illustrate a core radius which

is proportional to the length of the filament while Figures (29)

and (31) show the results for a fixed core radius of 10
-6
 ft.	 The

proportional core varies slightly but generally has a radius of

the order of 10 
4 

f t .	 In any case, no discernible effect on the

wake formation due to changing the core radius can be observed.

Figure (32) shows the wake behind the wing with a core radius

of 10-10 ft., including the localized induction effect. 	 Comparing-

-
with the 10-6 ft. core, the disturbances at 1.5 chords of travel

are noticably stronger for the former. 	 At 1.0 chord of travel,

interaction between the two outboard filaments is much more

prominent with the third also being affected. 	 At around 2 chord

- lengths of wing travel the f1rst three outboard filaments are inter-

acting with the fourth beginning to distort spanwise for the
f;

>y 10-1 	ft	 core.	 By the time the wing has moved through 2.9 chords,

-10
..' relatively strong interaction for the 10 	 ft. core is observed,
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among the far outboard filaments. Obviously, then the core radius

can be an important consideration if it is allowed to be small

-

	

	 enough. It is important to notice these results are due primarily

to the effect of core radius in the localized induction contribution

(equation (19)) and not in the mutual interaction between filaments

that has a maximum velocity defined by a minimum cut-off distance

g	 _.	 in equation (1).

Figure (33) compares the CL and CDi distributions for the

classic wake and the localized -induction wake for the proportional

core while Figure ( 34) makes the same comparison for the fixed

core 10 6 ft. In both cases the classic wake CL 's and CD's	
3

do not vary significantly_ from the ideal flat (linearized) wake

case. Small but measurable increases in the force coefficients for

the localized induction wake over the classic wake exist due to

small streamwise velocities induced by the spiral motion of the

filaments.

One inconsistency in the wake analysis with localized in-

duction has been permitted. The term, e, in equation (19) is a	 k

core radius non-dimensionalized on the length of vortex segment
j

which is used to determine the localized induction effect whereas

in equation ( 1) the core radius is a minimum value of h, say hc,

used to cut off the velocity at a maximum and is a dimension,_

`J	 quantity. I.n the analysis both these core radii have beet given

I	 the same value which is not necessarily correct since., conceptually,
^	 r	

there is no reason they should be the same. In view of the fact

that the logarithmic function in equation (19) is very slowly

i
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varying the error involved in the velocity field of the wake is

small.	 This is apparently borne out by the fact that discernible

differences in the wakes were observed oily when_the core radii
k

differed by several orders of magnitude. f

4	 - The preceeding observations would imply the generated wakes

are relatively insensitive to the selection of core radius, at
1

t least insofar as physically reasonable geometries are concerned.

However it must be recognized that two core radii to be determined

4 by different criteria can exist.	 The core radius, c, of equation

(19) should be selected to give reasonable locally induced velocities,

while the core radius, hc 	 of equation ( 1) will govern the velocities

encountered in vortex interaction problems and will be determined

f' by limits on the velocities and/or displacements due to this

phenomenon.	 As will be seen subsequently, this core radius associ-

ated with interaction can be critical since it can ultimately affect

the stability of the wake generation.

4.9	 The Statically Thrusting Propeller

With the analysis established and verified for the finite wing

$. under an impulsive start, the case of a statically thrusting pro-

peller was run.	 The lack of a suitable test facility precluded r
t:

' any test procedure for experimental verification so recourse was

made to the literature.	 The propeller selected is fully described

^i in Reference (9), but briefly can be said to be a 4-bladed con-

figuration with a radius of 3 ft., 0 at 035 radius of 7.30 and run

at a tip speed of 600 ft./sec. 	 This propeller was selected on the



basis of having blade load and power radial distributions as well

as average thrust and power values available.

The computed performance is summarized in Figures ( 35) through

(42).	 The numerical configuration consisted of 16 spanwise panels

s to model the radial load distribution and 2 chordwise panels to

model the chordwise distribution. 	 A vortex core radius of 10
-6
 ft.

was chosen initially and this configuration was run for 20000 sec,

on a digital computer for each of three azimuth increments (time

steps), De	 15°, Ae = 70 and Ae = 3°.	 The propeller moved through

615°, 287°, and 122
0
 respectively.	 In order to assess the effect of

'. selected core radii on the wake the Ae = 15
0 case was re-run with a

core radius of 10
-10 ft.

ff

The performance is determined by two methods. 	 One is the

direct numerical integration of the segment forces and powers as {

given by equations (33) or (A 13) and (A 14), respectively. 	 In order	 3

to convert these to coefficient form, the integrated results are

non-dimensionalized by PVT 2TTR2 on the thrust and PV T 3 PR2 on the

power.	 The second method takes the z- and x-components of the

%panwise load distribution as determined by integrating equation (33)

? Fx,1/Fz1or (A 13) chordwise to determine an inflow angle tan

The section angle of attack is known from .equation (45)= 	 This,

in turn, permits the use of real airfoil data and equations (48)

or (50) can be used to determine thrust and power including real

fluid effects.	 The results are strictly valid, however, only in

the limit as the steady flow state is reached. 	 Finally, it should

^' be noted that to draw a direct comparison with the results of



Reference (9), the CT and CP values must be multiplied by ^r3/4

and *4/4 , respectively, since Reference (9) uses standard propeller

convention ( CT = T/ p (m/2A ) 2 (2R) 4 and CP = P/P (w/2W ) 3 (2R)5).

The thrust performance for the three configurations with

varyf.ng A 9 is given in Figure (35) through (37) . 	 In all cases
{	

t

{

the propeller responds much like a small aspect ratio finite wing ,3

up until blade-wake interference with the starting vortex from the

preceeding blade occurs.	 The interference effects are generally
i

most severe with the first intersection as can be seen by the thrust

response and occur approx imately every 90° of azimuth travel.	 For
y

the A 8 = 15
0 case interference extends from 75 0 to 90

0
 from the

direct numerical integration , but the change in CT is only 0.025.

At ,1800 of blade travel no significant interference effects are

noticeable.	 For A 9 = 7°, Figure ( 36), the first interference

region extends from approximately 77 0 to 980 with the maximum

change in CT of 0.084.	 A second but weaker region appears at 1750

to 1820 •	 It should be observed that the interference effect for

the: smaller azimuth steps are more pronounced following the inter-

section due to the larger number of disoriented vortex segments

in the wake.	 This is borne'out by the results for A e = 30 shown

in Figure (37).	 Following the intersection with the starting vortex

the.interfererce effects appear to decrease in magnitude but do

not really die out.	 For this small step size the region of inter-'
}

fexence extends from about 48 0 to 930 , a region covering 45
0
 of

blade travel as compared to 21° for the e e = 7° and 3.50 for
k

z A 0	 15°.	 This increase in the size of the region is due to the

i

._uu.a	 ^.in —AY	 e6eF^-me. 	`	 _	 a..	 ' 7.	 _	 -	 awim, ^fi1 .n,.vt^
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f

P more gradual progression of the blade into the starting vortex for

the smaller step size..	 The intensity of the interference is much

greater for the A0 = 30 with a maximum change in C T	0.27 observed.
7

The steady state CT given by equation (52) is also shown on

Figures (35) through (37). 	 This includes real fluid effects by

utilizing two-dimensional static airfoil data and the section angle

of attack determined by equation (45). 	 The average values of CT

determined. compare favorably with the numerical integration.but

the details of the interference are markedly different. 	 This is due

to`the blade angle of attack being dependent on the induced drag as	 +	
9

well as thrust and the two can be entirely different in behavior.

For A0 = 150 interference effects at 0 = 900  look much the

same as for the numerical integration scheme. 	 The magnitude of

the CT change are approximately equal, but the region itself is	
x

shifted by 15 0 , extending from 6 = 90
0
 to 115

0
^	 At 0 = 180

0
 a

strong interaction region is observed which reflects the interference

on ..CDi .	 For A9 = 70 the area of interference extends from about

700 of azimuth and extends to 97 0 so that ;Lt is somewhat broader

than the numerical integration result.	 The maximum CT change is

0.093, slightly larger than the numerical result. 	 The region with

i Ae	 30 extends from e = 72
0 to 96°, nor nearly as wide as the

result by lifting surface theory, 	 Further, the maximum change in

CT is only 0.135, much less than the direct integration.

Comparison of the CT with the measured steady :state values

(Figure (35) through (37)) are not particularly encouraging since

the analysis seems to ov;trpredict by a factor of two.	 Because of
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this'poor correlation a classical propeller analysis utilizing the

Piandtl tip loss factor was applied to the cited propeller config-

uration and compares quite favorably with the lifting surface 	
i

analysis. On this basis it is felt that the experimental data is 	 s
i

seriously hacking. The fact that a non-standard airfoil section
i

was used make estimations of the airfoil characteristics difficult

at best; however data was synthesized for the section following

guidelines, of Reference (9). In the numerical analysis thickness	 3

effects were accounted for in both the lift curve slope and minumum

drag coefficient. However stall effects were not included, either

in terms of a limiting Clmax or a drag rise. It shall be shown

subsequently that the inboard sections fo this propeller could be

stalled so a definite effect would be felt if these were included

but probably not a 50% thrust decrease. Because of the non-standard

section, camber could not be estimated and so was assumed to be

zero.

Figures (38) through (40) show the power characteristics of

the propeller configuration. The induced power by numerical

integration and the total power by equation (52) are compared with

the momentum value of induced power, the total power of Reference

(9) and total power predicted by classical theory. It can be seen

immediately that good correlation exists between the measured result

of Reference (9) and equation (52). Unfortunately, the measured

Value does not correspond to reasonable estimates. For example,

the measured Cp ° 0.032 corresponds to the momentum C pi based on the

measured CT s 0.117 with nothing left over for profile losses.

^i



i

78

This coupled with the large discrepancy between the measured value

and the results of classical analysis further reduce the confidence

in the experimental data.

The induced powers determined by the vortex lattice technique
d

compare favorably with the total power result of classical analysis.

It is readily seen that the Cp i is over-predicted when compared to

the momentum theory value although increasing this value by 15% to

account for the vortex wake (16) gives Cpi	 0.0835 and better

correlation.

C
Figure (38) shows the results for 46 = 15°. 	 Both Cp i and Cp

a ' by equation (52) show relatively weak interference effects at 900
I
it muco	 er effects at 180°d	 h strongerg	 (change in Cpi = 0.046).	 Again,
ti

the interference regions are about the same size but the effects
E

b are different.	 The results for A6 = 7 0 are shown in Figure (39) .

Here the strong interference region exists in Cpi at the first

!}interaction (700	6 <980) and is preceeded by a decrease associated

{

f
with a slower progression into the starting vortex of the preceding

S blade.	 The maximum change in Cpi = 0.096.	 At 1800 the interference

is'not discernible.	 Finally, in Figure (40) for 06 = 3° the results a

S; are essentially the same as the 7° case except the blade entrance

E: into the starting vortex is much more pronounced: 	 The change in Cpi

is 0.21, larger than either of the other cases.
a:

' The effect of azimuth step size on the bound circulation

distribution is given in Figure (41).	 The azimuth station is 6 = 90

}'}hj

i

in a'stron	 interference region. 	 Two chordwise vortices are con-S	 8

sidered.	 The first bound vortex has a very regular shape with a

i
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0
maximum at y/R - 0.5 for all three azimuth steps (A 0 - 3°, 7

i
15o). Small distortions appear inboard due to the inboard dis-

tortions of the vortex wake. The second bound vortex shows rel-

0
a

I 
tively violent oscillations radially, at least for A 0 - 7°9 3

Thesehese oscillations can occur from two possible primary causes.

0 ne is the possibility of a Vortex element coming too close to a

control point and having its influence weighted too strongly.

Another is the relative closeness of the last chordwise control

point to both the last (in this case, second) bound vortex and the

shed vortex nearest the trailing edge which reflects the time rate

of change ofibound circulation. Analysis of the numerical results

indicates that indeed the fluctuations in this bound vortex are of

the same order as the spanwise variations in shed vorticity. Hence

the time dependent change in total chordwise loading is felt pre-

dominantly in the loading nearest the trailing edge. The strength

of shed vorticity in turn, is determined by the inflow at the

control points and can be measurably affected by the relative posi-

tion of wake element and control points. A 0 	 3
0
 shows the most

radial oscillations ultimately indicating more wake segments in the

vicinity of the blade.

The effect of azimuth step size on the radial distribution

otblade angle of attack is shown in Figure (42). At 6 30
0

blade section angle of attack is relatively insensitive to the
is

time step size. However, the angle for maximum lift coefficient
r.

for &.NACA0012 airfoil is superimposed in order to show the possible

stall region, out to approximately 40% span. At 8 9() 0 , the

blade-wake element interferente is dominant and no real comparison
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can be made. The same trend as in the 0 - 30 0 case can be observed,-

but the fluctuations around this mean are dependent ultimately on

the nearness of one or more wake segments to a local point.

Figure (43) shows the thrust and power distribution through

the interference region at 0 - 90 0 . The violent fluctuations in-

dieaa^ extremely strong interactions between wake segments and load

points. The thrust and power distribution of Reference (9) are

shown for comparison and, interestingly, the thrust distributions

for A 0 = 150 compares qualtitatively favorably with a peak at

about 70% radius.

the runs examined has been difficult to assess. The wake patterns

for e 0 = 150 and A 0 - 70 become unstable after 0 = 1650 with wake

elements taking large excursions from the region of influence.

Once they move away, the lengths involved become so large that they

cannot return either by interactions with other vortices or by

localized induction effects. The excursions become great enough

that the one-step Euler integration scheme for the wake displace-

ments is invalid as is the second order Taylor series for the

locally induced velocity. As a result the assessment of the method

has been based on the performance predicted within the first 1800

of azimuth travel. Some conclusions as to average performance have

been based on the more or less steady case generated before the

first interference. In fact careful evaluation of the shed, voYticity

in this region between the start of the motion and the first blade'-

starting vortex interaction leads to a tentative favorable con-

k
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clusion regarding the induced power. Since the propeller blades

are reacting to an unsteady flow field shed vorticity is being

r

	

	 produced and thus contributes to the induced drag and pow_r. Be-

fore the interference takes place the shed vorticity decreases as

`	 the blade motion progresses from start and the induced drag tends

to decrease as well. This result is best seen in the A 0 = 3° case

but is also observed in simpler configurations yet to be discussed.

After the interference takes place the effects of the more or less

disordered vortex segments are predominant and conclusions regarding

average performance are nearly impossible to obtain.

The wake configu -rations corresponding to A 9= 15°, 70, 3o for

_6
an interaction core radius he = 10 ft. are shown in Figures (44)

through (46), respectively. Blade rotation is counterclockwise.

For A 0 = 150 , large excursions in the tip vortex filament are

observed at the end of the second time step (e = 30°) The dis-

tortions in the tip filament worsen as the motion progresses al-

though the motion is a spiral type. Beyond 8 90
0 the distortions

increase until complete breakdown at 0 = 180
0 occurs. Beyond 	 1

6 = 900 inboard wake distortion"ncrease due to wake-wake inter-

ference between the blade wake being observed and the starting

vortex from the preceeding blade, and blade -wake interference be-

tween the observed wake and the next following blade. As noted

previously, once a point is driven out of the flow field by an

interaction it never returns. It is too far away to be measurably

affected by interactions and the ensuing element lengths; are too

great for the second order Taylor series expansion to the local
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geometry to be valid. Because of applying conservation of total

vorticity the circulations decrease further decreasing the locally

induced velocity of the filament on itself, but it also decreases

the velocity induced by the filament on the majority of the blade

i
	 and'wake elements. The performance of the propeller is then most

dependent on those vortex segments of length approximately Rd@ which

remain in the vicinity of the propeller.

The wake generated by A 8 = 70 azimuth steps is presented in

Fig-ure (45). The motion over the first 90° of travel is much the

same as the A 8 - 15
0 case but the spiral distortion in the tip

vortex are not as evident. On the other hand the formation of the

starting vortex is much more pronounced. At A= 90
0
 effects of

wake-wake and blade-wake interference can be observed. The tip

filament begins relatively large excursions and finally reaches an

unstable situation at 8 = 175°. At this a there are indications

of a strong wake-wake interference just behind the blade trailing

edge.

What appeared to be the most reasonable wake was generated

by the smallest time increment 49 30 and shown in Figure (46).

This starting vortex appears to start to form better than Ae = 150

and the tip vortex begins as spiral motion. Like the other cases,

the wake remains relatively undisturbed through nearly the first

900 of travel. Distortions in the starting vortex are noticeable

t ,	 at 9 = 500 and become more pronounced at 75° to 78° due to blade-

wake interference. At 8= 82 the tip filament starts a definite

spiral motion and 9 840 sees the inboard filaments beginning the
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j same motion.	 The distortions in this region tend to intensify as

G; time progresses but not necessarily toward divergence so it may be

3 that beyond 0	 1200 the wake would remain stable although a chance

encounter between two filaments is all that is necessary to promote

instability.

An observation of all three of the wakes is that the spiral

motion of the tip filament (and any others) describes the basic flow

pattern at sudden start as observed by Taylor.

From the preceding results the breakdown of the analysis is

' obviously tied to the interaction between vortex elements and this is,

in turn, governed by the core radius and the azimuth increment (time

step) employed.	 To assess the effect of core radius on the wake,

is
computations were performed, Figure (47), for a core radius of 10-10 ft.

and a proportional core, he - length of the element, Figure (48).	 For
j

=

hc,= 10 lU ft., the pattern is much the same as for 10 6 ft., but when
t

the instability is observed at 0 	 1800 it is much more violent.	 The F

proportional core, however, while yielding relatively large excursions

showed no tendency to promote instability in 315
0
 of travel.	 It may

F be the proportional core, in which the radius is proportional to the

s filament length, that wairants'fur.ther consideration.

Azimuth increments smaller than AO = 3
0
 were not considered.

The vast amount of computation time required to obtain this much

3 information, 20000 sec. per run, seriously restricts the usefulness

t of the present formulation even for research work.	 In order to

reduce computation time, it became necessary to consider simpler
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configurations and return to a e = 15 0 increments.

The first case considered was a one-bladed configuration,

core radius = 10-6 ft., with the spanwise loading modelled by 5

trailing vortices and the chordwise loading modelled by a single

bound vortex, the Weissinger model. Rubbert's rules for the tips

(34) have been observed. A blade travel of 3750 could be obtained

in 100 sec. of computation time.	 Three runs were made to assess

the effect of even spaced and cosine law spaced elements, spanwise;

and the effect of including blade twist ;inlsatisfying the boundary

condition.	 The latter is accounted for by determining ail according

to equation (8), and this in turn, accounts for the spanwise de-

_flection of the flow due to twist. 	 The results are summarized in

Figure (49)•	 Using the case of even spacing and no twist as a

base, inclusion of twist effects in the boundary condition in-

creases the predicted thrust very slightly, approximately 2%.

Cosine spacing over-predicts from 7% to 8%. 	 The predictions are

quite 'close up to the point of interaction in which case even

spacing and cosine spacing are quite dissimilar due to the different

length vortex segments involved. 1

Inclusion of blade twist also increases Cpi by approximately
_

i
4.5%, slightly larger than a 3% increase that can be estimated

from simple momentum theory for a 2% increase in CT .i	 However

this implies a slightly larger power at a given thrust and, even

if only a few percent change is involved, since accuracy within

the last 10% of performance is desired this could be an important

consideraion:
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An observation of this single bladed configuration is its

behavior as a low aspect ratio wing. Even though the blade'is

AR = 5, the propeller thrust response to the impulsive start is

more similar to the previously reported? results for the AR = 3 wing-.

That is, following the impulsive start the propeller drops quickly

to the steadystate CT much the same as the AR = 3 wing . CL responds.

There is very little recovery to a higher value as in the case of

high AR wings (see Figure (13) for the infinite aspect ratio

wing).

Figures (50) and (51) show the effect of spanwise-vortex

spacing on the spanwise thrust distribution and section angle of

attack distribution respectively.	 Both distributions are quite
i

} regular at A	 0° and A = 180
0 with major differences occuring at

A = 360°, within the first interference region.	 An area of large

negative thrust occurs near midspan for cosine spacing; a region

of small negative thrust is inboard for regular spacing.	 Large

negative angles occur inboard for regular spacing; cosine spacing

yields all positive angles.

-	 At 9	 0°, the CT distribution is symmetrical about the

mid-span while the cosine ;spacing has a maximum value at approx-

imately 62.5% radius.	 At A	 180°, maximum is at 62.5% span for
k

z	 ?.:

_
even spacing while, for cosine spacing, the maximum has moved to

85% radius.

In a further attempt to assess the value of considering

simplified geometry in the interest of savings in computation
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time, a. one blade and two blade configuration were run for 1000 seconds.

The performance results are summarized in Figure (52) and (53).	 Both

propellers used 5 spanwise even spaced vortices and a single bound

vortex to model the loading. 	 Azimuth steps of 06 	 15
0 were used.	 The

analysis of Appendix B yielded a core radius of 10 3 ft. and ail 	
Oo.

The single bladed propeller turned through 960
0 of travel while the two

bladed configuration rotated 870°.	 In both cases these simpler

configurations reinforce the observations made for the four bladed case.

A small aspect ratio wing type response in CT and Cp i are observed up

to the first intersection (6 _ 360
0 for the single bladed and 0	 180°

for the two bladed). 	 The single bladed propeller also shows a gradual a

decline in Cpi toward the momentum theory value prior to the first
;t

intersection.	 The average values obtained are nominally 25% and 50%

the four bladed, excepting interference effects, indicating that

relatively simple configurations can be used to assess average

performance.

The major interference areas are quite well defined. 	 The single

bladed propeller has definite spikes at 6 = 360°, 7200 in thrust and
3

induced power.	 The maximum change in CT is 0.035 at 6 = 360° and

0.0128 at 6 _ 720°. 	 The change in Cpi is 0.048 at 0 	 360°' and 0.0246
9

at 6,= 720°.	 Within the first two revolutions the average performance

' is relatively smooth, but beyond 6 = 720
0 it appears the presence of

discrete vortex segments provides severe interference conditions.,;

The two bladed propeller, Figure (53), shows essentially the

^l

i

T,fG

3
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same characteristics. 	 Major interference regions occur twice as

frequently, A = 180°,' 360°, 540°_and 720°. 	The maximum change in

CT and Cpi are more intense (ACT = 0.110, OCpi = 0.087 @ 6 = 360°).

Also, the fluctuations between interference regions do not die out as
i

rapidly.

The wake of the two bladed configuration is shown in Figure (54).

It consists of five trailing vortices, a time step corresponding to
1

G6	 15
0 in azimuth and he = 10_

3
 ft.	 The motion persists through

525	 of azimuth before an instability occurs.	 Excursions in the
3

f
spiral motion are quite large, probably too large for realistic flow

a

i
geometries.	 It can be noted also that very little distortion of the

trailing vorticity until acted upon by a blade or wake interference

is observed (at 6 = 150° to 180°, for example).	 This is due directly

I to the relatively large increment in time prescribed by 06 = 15 0 .

r
By way of comparison, the wake distortions for the finite wing were

carried out for VAt/c = 0.1. 	 For the propeller, VAt/c	 (VTd6/wc)

1.2, over 10 times the value for the wing.	 As a result, the time of

the motion is much too great to allow a proper starting motion to

Gi form and the vortex segments established are too long for the Taylor

series expansionon the local induced velocity to be valid. 	 To
; a

i

reduce VAt/c to 0.1 for the propeller in order to promote reasonable

T locally induced effects requires a L6 of approximately 1.5°, or
f

approximately one half of the smallest value considered.	 This has

the undesirable effect of increasing computation time.

F-

^r+ 7
•

L
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The large excursions and eventual instability are due primarily

j

	

	 to cumulative. Pffects. The results of Appendix B generally restrict

'one motion properly, but cannot account for summation effects

when one point comes under the strong influence of several vortex

segments. To counteract this effect, some limit has to be put on

{	 the displacement due to cumulative velocities'or the limit on

E
	 displacement due to one velocity increment must be strongly re-

duced, perhaps to a size on the order- of boundary layer thickness,

[	 A positive note can be observed in this crude wake, however,, and

that is the apparent tendency to generate the Taylor "doughnut"
a	

(13) during the impulsive start.'

The results of the analysis indicate crude geometries can be

utilized to predict average performance, but the corresponding

wakes are generally unstable and unrealistic. To verify this

completely requires a solution to be run for several revolutions

to give the motion time to reach a steady state. In order to

obtain good wake geometries requires very small azimuth steps

(time steps) as well as a relatively large number of'spanwise

segments in order to keep the vortex segments relatively small

and allow the wake flowtime to develop. This leads to unreal-

istically large computation times for the present method. However,

!	 the present formulation is quite inefficient from a computation

standpoint. On each panel the wake induced velocities must be
is

computed four times, once at the control point to determine the

bound circulation, and then at three load points on the horseshoe

vortex bounding the panel.

- -7 -
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The existing computations perform the four integrations over the

wake utilizing the Biot-Savart Law. A method has been recently

conceived to reduce the time required for the wake integrations by

only computing the Biot-Savart Law once for a given panel and wake

geometry. Because . the relative panel geometry is fixed; i.e., the

distances between a control point and the three load points at the

vortex midpoints is fixed. The velocity increments at one point, say

the control point, can be computed for a wake segment and modified by

factors containing the relative panel geometry. The method was
}

conceived after the acquisition of the previous data and as yet is

unproven. If feasible, however, it could reduce computation time by

as much as 50% to 75%. A two-dimensional discussion of the method is	 'S
_	 a

given in Appendix C. The `three-dimensional counterpart will be more

complex but no more difficult to apply.
J



Chapter V

Summary and Conclusions

The foregoing analysis applies vortex lattice techniques to the

problem of a lifting surface starting impulsively from rest.	 The

lifting surface can be an infinite wing, a finite aspect ratio wing or a

propeller in static operation. 	 The wake generated can be flat and

constrained to the plane of the lifting surface motion or free to deform

under its own induced velocity field.	 The impulsive start condition

allows the wake to be known at every instant of time and eliminates the

need for an assumed initial shape. 	 The wake deforms under the influence

r
of mutual interaction between filaments and the velocity each filament j

induces on itself. 	 Application of lifting surface techniques permits an
r

exact solution for the chordwise and spanwise loading to be determined. r

Even though difficulties in correlating the analysis for the statically j

'thrusting propeller with limited experimental results for the propeller-

exist, it is believed the present analysis is basically sound since it
w

:F does compare well with classical methods for the propeller as well as

for the finite wing.

Prior to investigating the lifting surface technique, some time was

spent in observing the velocity field of the elementary straight line

t

` vortex segment in hopes that some a priori assumptions regarding the
-

wake and the, number of elements needed to describe it could be made.
E

{ These were generally unsuccessful because the orientation of the free

wake elements had to be coawputed and this is the most time consuming

aspect of the problem.	 However, one interesting result was obtained

i
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regarding the magnitude of the induced velocity. The velocity on the

bisector of a straight line vortex segment is essentially two-dimensional

for h/Z < 0.1 and varies as l/r. For h/t > 1.0, the magnitude varies as

1/r2. Thus, with a vortex filament of prescribed geometry which is to be

numerically broken up into finite length segments, the magnitude of the

induced velocity calculated from the Biot-Savart Law can be simplified

so that a saving In computation time is obtained.

To evaluate the present analysis, the simplified geometries

corresponding to a flat, rectangular wing starting impulsively from rest

were considered first. 	 These wings were allowed to generate flat,

linearized wakes and deforming, self-convecting wakes, with and without

the localized self-induction velocity.	 In general it was found that the

wing CL and CDi could be predicted quite well provided the velocities at

the bound vortex midpoints were used.	 Further, the wing CL and CD i are

relatively unaffected by wake roll-up.

The problem of determining the wake roll-up characteristics,

notably rate as well as final geometry, was also considered._ It is well

known that final geometry can be satisfactorily obtained by the usual-

analyses employing Trefftz plane aerodynamics, but the roll-up rates by

\	 this approach are much too slow.	 The results of the numerical analysis

indicate that the accurate prediction of the wake roll-up geometry and

'	 K	 rate can be obtained provided that the details of the motion at the

instant of start and vortex filament self-induced velocities are

considered.	 With the inclusion of self-induced velocities proportional

to the Local curvature, calculations show that the wake roll-up behind a
r

lifting wing is initiated after only 0.5 chords of travel.	 This is

G
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primarily due to spanwise induced velocities which are of the same order

of magnitude as the downwash so that the filaments lie on a spiral

trajectory. Without these self-induced velocities, the downwash is an

order of magnitude greater than the spanwise flow so that a two-

Y

dimensional character of the motion is maintained and 'there is about

three chord lengths of wing travel before any roll-up is noticed. This

is more in line with Trefftz plane results.

After the basic validity of the analysis, including the wake roll

up model, was establishedfor the finite wing, a four-bladed propeller

configuration was run for compariaun with experimental results. It was

found that the theoretical results for the propeller configuration did

not correlate well with the experimental results. In an effort to

obtain further comparisons, a classical Prandtl analysis was performed

and calculations based on momentum theory were made. In general, 	 x

reasonable comparisons in thrust prediction can be obtained between the

present analysis and the Prandtl analysis while the actual measurements :a

of 'Reference (9) were considerably lower. Then, using an average CT of

the value predicted by either the present analysis or the Prandtl

analysis, a momentum Cp i was calculated. It was found that the present

analysis compares favorably with this Cp i value as well as with the	 f

total Cp of the Prandtl analysis. However, all of these calculated

values are much higher than the measured Cp of Reference (9), indicating

that possibly the measured Cp is too low. The error observed in these

1	 results was much greater than anticipated, particularly since the

finite wing results were so encouraging.

;
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Further error in the analysis could be due to poor synthesis of the

airfoil section data.	 Although care was taken and the guidelines of

Reference (9) were followed, the airfoil section was non-standard and

4
jdifficult to describe.	 Poor estimates of the drag characteristics

_ could explain, in_part, - discrepancies in the power calculations among

i.
analyses with reasonable thrust comparisons.

1
Error might also be due to the relatively short wakes generated.

Even though extremely long computational run times (20,000 sec.) were

performed, only about two revolutions of wake could be generated at

best, -and it is quite conceivable that this is not enough to predict

the steady state performance. 	 Lt was noted that the average CT and Cpi

respond-to the impulsive start much like a low aspect ratio wing. 	 That

is, following the impulsive start the performance drops very quickly to

r what appears tobe the steadystate value. 	 It is possible that steady

state has not been attained and more revolutions are necessary. 	 This

would lead to an increased inflow which, by decreasing blade angle of
x

attack, could: lead to decreased thrust prediction.	 Regions of inboard r

stall would be determined by this inflow, and performance would be

measurably affected by the extent of these regions.

Finally, , there is, an error due to the vortex wakes deposited by

the propeller blades. 	 The time steps considered were much too large to
a

6

predict_ accurate wakes (except perhaps for the A6 = 3° case)	 As a

result, all the wakes of the four-,bladed configuration except A6 = 3°

became unstable; this instability was enhanced by interaction core radii

that were too small.	 The resulting wake geometries then contained

$,=
extremely long straight 'line vortex segments which, once formed by a
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strong interaction induced velocity acting over a relatively large time
N

step, could produce completely erroneous velocities at the blades.	 To

make matters worse these segments might never return to a reasonable
fi

geometry as time progresses since they might never pass through enough j1

interactions to counteract the effect of one strong one.	 It should be

noted that wake instabilities noted in the analysis are believed to be

only numerical with no physical counterpart. 	 -

Even though the comparison of theoretical and experimental results

leaves much to be desired, some parametric results were successfully

obtained.	 Small time steps (1.50
 to 30 in azimuth) are required for

accurate wake prediction. 	 This is necessary to determine an accurate

vortex filament radius of curvature for calculating the locally induced

effects.	 This is also a requirement to obtain reasonable vortex induced
f

curved paths for the wake points from the one-step Euler integration

scheme which can only provide straight line translation of a point.

The sensitivity to time step of blade airloads due to passage
3

through a vortex is significant 	 The smallesttime step, A6 = 3 0 , shows

a much greater fluctuation in both CT and Cp i , - as well as a much larger

azimuthal extent of interference, than does the A6 = 15 0 case.	 The

accuracy of blade-wake interactions not only depends on small time

steps, but also on interaction core radii large enough to limit the

.	 movement of`a wake point to a reasonable value.

Inclusion of blade twist in satisfying the boundary condition

increased the computed average CT by approximately two percent. 	 This

is-a relatively, small effect, but since interest in static performance

prediction is generally within the last 10 percent, this is significant.

T ^.
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Variations in spanwise spacing were examined by compas ;th the

i'

	

	 results of an evenly spaced configuration with a cosine spacing. Cosine

spacing tends to predict average C T 's approximately seven percent to

eight, percent higher than even spacing. Corresponding wake interference

e
regions exhibit completely dissimilar characteristics. This indicates

that the freedom of choice in spacing one has in modeling the spanwise

loading for a finite wing with a flat wake does not carry over to the

propeller or into regions of aerodynamic interference.

In order to reduce computation time, propeller geometries utilizing

coarser spanwisespacings were considered. The results indicate that
^;	 a

for computing average performance as few as four or five spanwise panels

could be considered.

Time dependent changes in chordwise loadings are felt predominantly

r
in loadings nearest the trailing edge. 	 This is significant in the

higher harmonics of aeroelastic torsional modes and noise.

The conclusion of this work must admit that the accuracy of the

present analysis when applied to the statically thrusting propeller 	 y

has not been satisfactorily demonstrated since correlation with the

selected_ experimental results was poor.	 Even though the basic
i

formulation is believed sound from comparison with other analyses and

finite wing results, final correlation will have to await better
E

` experimental results, more accurate airfoil section characteristics,

t relief from the numerical inaccuracies associated with the aerodynamic

interference region and larger computational runs to numerically

establish the wake.	 This procedure, like other vortex lattice

techniques, uses an ' inordinate amount of computer time due to the

e
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K
repeated calculations of the Biot-Savart Law in the wake.	 Unfortunately,

no wake simplification or approximations are apparent because of the

Importance of the nonlinear flow of the induced velocity field. 	 This is

further aggravated by the small time 'step requirement to compute inter- x

IR Terence aerodynamics of the problem accurately.	 This seriously restricts

u the usefulness of the analysis, at present even as a research tool.

However, vortex lattice techniques are those which most readily apply to

nonlinear aerodynamic problems so that further attempts at reducing the
ii

computation time of this analysis, as well as accepting long time'.

i;
r.

computer runs, are perhaps justified, at least in research problems.

In spite of the inconclusiveness of the primary results of this 1

analysis, several pasitive resul s have been obtained. 	 Perhaps the

most significant of these is the modeling of the wake roll.-up with the

localized induction concept while considering the three-dimensional

= i flow about a lifting surface starting from rest. 	 Inclusion of blade

twist in satisfying the flow tangency boundary condition has been shown

to give a small but significant increase in thrust. 	 It has been shown

that relative freedom of choice in selecting the spanwise spacing for
p

the vortex lattice does not apply to propellers or any problem in which

aerodynamic interference is important. 	 It has been shown that average''

it
E	 {.

performance can be obtained, if necessary, by considering coarse spanwise

spacings.	 A cursory investigation into the chordwise loadings shows that

r,

r.,

time dependent changes are felt nearest the trailing edge.

f;

a
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Chapter VI

Recommended Further Research

In spite of the generally favorable trends established from

i

applying vortex lattice techniques to the statically thrusting

propeller, the primary objective of obtaining the high degree of

accuracy necessary to correlate theory and experiment has not been

accomplished.	 However, the major problem areas in the aerodynamic

modeling have been identified and the foregoing analysis represents
J

a tool to investigate these ,areas. 	 Thus to extend the present

analysis further into the modeling of propeller performance continuing

investigations are strongly urged.

Efforts to reduce computation time must continue. 	 Attempts to

more accurately predict the potential inflow lead to small time

increments corresponding to an azimuth step size, oe < 1.50 , fully x

one-half the smallest value considered and at least one tenth a

value at present practical.	 This limit has been established by

estimates necessary to promote good wake roll-up characteristics.

Attempts in the present analysis to reduce computer central processor

time (and core storage) with special data handling techniques havef ,
1

^

been generally unfruitful.	 As a start in this direction, the method
a

s

a of Appendix C can be extended to three-dimensions and applied. k

Reductions in computation time would also permit more accurate

. representations of the wake. 	 The numerical integration scheme

considered in the present analysis is a simple one-step Euler scheme,

R c.
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n shown to be less accurate (54) than either a Runge-Kutta method or

a one-step predictor-corrector technique. 	 The inherent inaccurazy

of the method lies in the fact that points can only translate under

the influence of a vortex induced velocity whereas the true path is

circular.	 Unfortunately	 his method is the most economic from theY ^.	 7

point of view of computation time and core storage, although to get

a sufficiently close approximation to the circular path requires

very small time increments.

Another, perhaps more subtle, error associated with the wake

modeling and which points toward smaller time steps as a solution

is the representation of the vortex elements in the wake by straight s
P

line segments.	 Figure ( 55) shows the effect of curvature on the

velocity induced along the bisector of the vortex filament. The

' two models consist of joining two points by l) a straight line

segment of length, 1, and 2) a circular arc, radius of curvature, R.

"e" is a point on the bisector and "Z" is the maximum distance

from the straight line segment to the circular arc (the "camber"

of the arc).	 For the case shown the circular arc is a semi -circle

and Z = R.	 It can be seenthat the velocity induced by the two

conf iguratioes are similar .only beyond approximately one segment

length on the concave side and one half segment length on the convex
4

side.	 As the filaments are approached from either side the induced
ik

velocities quickly become dissimilar and betwg4en the two filaments

the velocities have opposite sign°	 Hence any point falling within

this region will be convected totally incorrectly.	 As the "camber"
^I

of the arc decreases (radius of curvature increases) this region of

^i

a
,

; M1;
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inaccuracy decreases.	 Assuming the two endpoints to be formed by j

the consecutive motion in time of a lifting element, the inaccuracy

can be made to vanish only in the limit as the time stepy	 p 

Numerically, this points to extremely small time steps.

r Core radius criteria for consistent reasonable predictions

of blade-wake and wake-wake interference conditions should be

established.	 The present analysis has shown that to correctly

model the vortex wake and eliminate the singularity in the Biot- a

s

Savart Law two vortex core radii can exist.	 One governs the local

induction effect and the other determines the interference or

Interaction effects.	 Criteria for firmly establishingint	 Y	 8 the former
3

can probably be determined from the original references (46, 47,

48, 49).	 The latter will probably require more effort; the various

methods considered have been mentioned in Appendix B of this

report.	 Johnson and Scully (55) indicate core radii ranging from

one tenth chord to 20% radius are necessary. 	 A reasonable and

consistent method for estimating these core radii should be

available.

An alternate method to equation (52) for viscous correction

} is needed.	 The present approach.,. while corresponding to classical

propeller theory, is numerically inefficient since it is valid

only for steady state.	 A method such as that of Reference (29)

is simpler to apply, numerically more efficient and is probably

easier to extend into the unsteady regime.
t

Valid experimental results _for:comparison are needed.

This includes blade load data as well as average preformance.

E

_
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Appendix As

{

Determination of the Numerical Expressions for Force and Induced

•. Power on a Lifting Surface Element
i

Classical subsonic aerodynamic theory assumes the disturbance

! motion produced in a fluid by the passage of a lifting surface to be #

an irrotational motion.	 The fluid is assumed to be incompressible and

inviscid.	 At a point, x, on the lifting surface the pressure

difference across the surface at the instant of time, t, is determined g

k: to be

Ap (x, t)
Wil t) Y(Al t) + at IAO(X ' t)]	 Al

P

_ i
t

from the unsteady Bernoulli equation. 	 Ap is the pressure difference

across the lifting surface, Y is the net distributed vorticity on the

lifting surface and aA¢/8t is the time rate of change of the potential

r difference across the lifting surface, all at the point, x, of the

lifting surface at the instant of time, t. 	 The force exerted on an

element of the lifting surface area, dS' is thus

^ dF,(x, t)
AR-	 (x, t) n(x)dS

P	 —
A2

h.. -

V(x,t) x y(x,t) dS + at [^^(x,t)] n(x) dS'



•	 liC

The power, dPi required to sustain this force is dust

dPi 	 A3= x
	 = va(x+t► ) 

•

P

= v (x,t)	 [v_(x,t)x y (x,t) dS] + v	 {a [eo(x,t) n(x) dS]-R	 -^t	 at

where _ R is the resultant velocity of the point on the lifting
i
i	 surface relative to the fluid. On a finite segment of the lifting

surface, Ail , the force and power are given by

4
{

i (
t ) _ tt {v_(x_,t) x Y x,t) dS + a [ee(x,t) n tx) dS]

Ail

pi- ` f (x t) [v(x,t) x Y(x,t) + a [e0(x,t)]
P

Ail

t	 n(x) dS']	 A4

Nov, jdS' _ 'tdl by Stokes theoremso that the quasi-static terms {

become

tt v_(xyt) x Y(L t)dS =	 v_(x,t) x r(x,t)dl 	 A5
E

Ail lil

1,t vR(z,t)	 [v_(x,t) x Y(x,t )dS I ] _ I VR(x,t)

A	 1
^	 it	 it

=aE	 x, r(x,t)dl]	 A6

E



lli	 A

U

fi

r

where lil is the length of the vortex elements on A il -	 If Sil

contains a rectangular horseshoe vortex configuration with three

arcs

r v(Lt) z T(x,t)dl = E	 [Y	 x	 Tl)aJ 
it	

A7
's

l	 m=1

-_a

3

1 4(x,t)	 (v—(x,t) x	 r(l,t )d l= E	 v	 [_V x	 rl)II^
it

k	 1	 m=1
it	 A8

-S

where V 	 are determined at the midpoints of the finite length

segments(Z m
)
 it Which lie on Sid

The unsteady contributions can be approximated by assuming

Sil to be small.	 Then

n(ai	
a 
of (xgt )dS	

n aao S
LI — — 	 — ^L it	 A9

Ail
3

II v ( ,t)	 n Cx) 366. (x,t)ds^ = v	 n a^ Sil— atat

Ail
aa# SYRn	
at	 it	 A10

a'

where n aas at, VR	 aa^ at are average values over Sil °	 Since
n

f as@'/at is constant over the area bounded by the horseshoe vortex

segment and the area Sil is taken to be flat plate segment of

t	 the lifting surface so that its spatial orientation Is-defined

s



112

R

by the unit normal at the control point, m il , located on the seg-

gent

r

n A = n(XCil ) a' (xcil , t)	 All

is
,,	

and	 ao^

f	 VRn at 
S 
VRn (Ecil' t) at (xcil• t)	 Al2

-	 a

where a (x.cil ) is the unit normal at the control point, xcil•
i

where the boundary condition is satisfied numerically on S il and

Viin (xcil , t) is the normal component of the resultant velocity

of Ail relative to the fluid, i• e•, the component of the resultant

velocity in the direction of the unsteady forced

Utilizing equations (A7), (A8), (Ag) and (A10) the unsteady
a

force and power associated with the segment of lifting surface,

Ail , can be determined from
w

F (t)	
3

p	 m=1 -
m 	 m il, 4	 at (-Cl' t) Sil

A13
x

3
p (t)

P	 m=1	 m' it	 Rn mil' t) at (xcl, t) Sil

A14

^'	 n(x ) is the unit normal at z 	 on S	 ,—cil	 it and the average. unsteady

pressure add/at on Sil is obtained from equation (31). Vgn (3tl, t)
is; determined from

.	 i
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Appendix B

Determination of Vortex Core Size for Numerical Modelling of

Interaction Phenomena

Because the Biot-Savart law yields infinite velocities as a
r

vortex filament is approached, the numerical application of this

law can lead to unrealistically large velocities and displacements
9

if the point at which the velocity is to be computed approaches y

too close to the inducing segment.	 Typical procedures in main-
i

y

taining a realistic velocity field have been to assign a core
3

radius to the filament segment at which the velocity is a maximum
5

and within this core either no velocity exists or a simple solid

body rotation is assumed. 	 The proper selection of this core radius

is an important consideration and in the past has been selected,

variously, on continuity considerations, a physically plausible

maximum induced velocity, and experience in terms of what works for

the job at hand.

Selecting the radius based on a maximum allowable induced

delocity is largely a question of experience.	 Sadler (29) has

used this approach and has found this can lead to erroneous

averages.	 A further drawback would seem to be in certain aero-
3

a

elastic and acoustic applications in which the high harmonics

might be important and would be noticably affected by such a velo-

;r
city cutoff.

Another method of estimating the core radius which has not yet

been tried is to limit the displacement allowed any point under

.e
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the induced field of a single segment. 	 Such a limit could be any

reasonable physical dimension of the system, say a wing span, propeller

radius, chord, etc.	 Suppose the maximum interaction displacement is

rmax.	 Then

rmax	 vimax At	 Bl

where Vimax = max. allowable induced velocity

At _ Time step of the motion.

Close to the filament Vimax = r/2 nh c and, for propellers,

At = AV/w where w is the propeller rotational speed and A* the azimuth

travel in the time step, At.	 Therefore,

r	 A^,= _	 B2he 2n	 V	 wmax

` if rmax ti R, the propeller radius,
o

rAy
he ^' VT 360	 B3

where, for an estimate, r could be taken as the maximum r on the

propeller blade. 	 Going a step further

V	 VT	 VT	
6CT

r=	 2 ccl ti t	 cCL =	
2	

c	 Q	 ,

in hover.	 Thus the core radius can be estimated from

1 C	 o	
{

h
4	 -

,^ c (a) o	 B4
c

2
As an example, suppose a propeller generates a r = 50 ft. /sec. at a

VT = 600 ft./sec.	 Then, for A* = 150 , he = 0.00347 ft. and A*	 30

C

gives he	 0.00069 ft., both on the order of .001 ft.

t

k	 j`

r'

Y
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Appendix C

A Method to Determine Wake Induced Velocities at a Bound Vortex

M Load Point Knowing the Velocitiesat'the'Control Point on the

Same Panel.

3

The major criticism of the vortex lattice model developed in
3

f

is
k

the main body of this text is the inordinate amount of computer

time required to perform the numerical integration over the wake

to'generate the wake induced velocities first at the control	 fi

points in order to satisfy the boundary condition and then at the

load points (bound vortex midpoints) to obtain the load distri-

bution.	 A method has been recently conceived to eliminate one of

these integrations by utilizing the fact that the relative geometry
3

between load points and control points on a panel is fixed. 	 This
i

means that each contribution to thevelocity field at one set of

points due to a given vortex element need only be modified by a

cor'. rectim factor to yield the velocities at another set of points;

the correction. factor is a function only of the relative geometry
t. r	 l

between the sets of points.	 The idea can be clearly illustrated

in the two dimensional case.

r7	 j
Assume a flat plate airfoil has started impulsively from rest,

,-
_	 -` The flat plate 3s assumed to be modelled by a single bound vortex 

at.c/4 and a point of flow tangency at 3c/4. 	 A deforming wake of

shed vorticity exists behind the airfoil at any instant oftime

with the elements of shed vorticity having strength determined by

^t

^f

the airfoil-wake configuration at the instant of shedding.	 The
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P

strength of wake vorticity is thus expressable as a function of the

wake coordinate, s.	 Referring to Sketch % the x- and z- induced

velocity components at the control point and the bound vortex due

to the wake can beeasily determined.
Y (s)ds

^vi

	 c
Sketch 1	 r2 h

T
bound

s
- x

2
el

c/2 x

It follows that -

Vcx6 _ j Y
sZs sin01„ _ j 1f ^s)ds h s)	 - E h	 i	 T s2^rrl (s)	 _ Ss__.2^0	 0	 2	 0	 Cl

21rrl ( s)	 27rrl (si)

l Y(s)ds sin'02	 1	 ^,	 1
V	 - o
	

nr2(s)	
- f Y(s 2s h(s)	 - o h s.2 T s^	 C2

0 2 nr2 (s)	 2nr2 (si)

where-	 is the numerical approximation to	 and Ws Pro )/As
o

It follows that

2	 l	 2
1s ! T s	 rl (s i)	 rl 

(si >	 C3eV
V • _ I' ---z--	 cx ---

0 27ir1 (si)	
r2 (si)	 0	 r2 (si)

where AVcX is the x- velocity increment at the control point due

to the concentrated wake vortex r(s) located at x(s i ), h(ei).

Similarly the z- component can be obtained as

44

C 1 Y Wds cos . 0---- l	 11.	 aV	 - t -- -	 1	 s ds x	 E xi r( i
cz	 o	 2nrl(s)	

0 2nr12(s)	 c 2rx12(s^	
C4

i

k



c	 t
Y(s)ds (x4^)

	

y(s)ds cos 0	 1 (^+xi) r(s	 C5
V	 2

0	 2	 0	 227rr	 02(s) 2wr 2 (8 L	 2wr 2

Then

2	 2
1 Xi ra,	 r (si)cV	 E	 (1+=- ) M E AV

2	 2	 291	 cziz	 ( i + c—T 	 2xi0 27rr, (6	 r	 0
2 (s	 r (s

2
C6

where AV is the z- velocity increment at the control point.
cz

2

	

1 + (c/2r	 2(c/2r cos(W - 0 the	 4Since r2 2 
(si) /r,2 (si)

induced velocity at the load point due to a wake vortex can be

expressed in terms of the velocity induced at the control point by

that vortex and the relative geometry (c/2) between the control

point and the load point. It is easy to see the same type correc-

tions apply if the flat plate is a segment of a two-dimensional

airfoil except that c/2 is now a fraction of the segment chord.

Further such procedures should be applicable to the three-dimen-

sional case and finite.length vortex filaments. From a computa-

tional standpoint, the major time consumption is involved with the

calculation of the AVcx , AVCZ by the Biot-Savart Law. In the

vortex geometry of the present method there are three load points

associated with each coutrol point so that each wake is integrated

across four times to obtain a compatible set of circulations and

loads for a given geometry. The application of this c.-.)rrection

factor procedure requires that this integration be done only

once.and should result in a considerable time saving.
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Figure 1. Bound Vortex and Control Point Geometry on One Spanwise
Panel Divided into "Num-1" Chordwise Panels and "Num"
Unknown Vortices.
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Figure 2. Proneller and Wine Coordinate Svstems.
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Figure 4.	 Index Convention for Blade Bound Vortices and Control Points

Rectilinear Vortex Configuration to Determine Apq
j=1 Influence Coefficients of Bound Vortices
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Figure 8. Comparison of Two Computation Systems
for Vortex Lattice Computations.

Flat Plate Wing	 AR	 3	 a = 0.1 rad.
28

num = 3	 NOPAN = 3

Deformed Wake
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Figure 9. Effect of Orientation on Velocity Induced by a

i^
Straight Line Vortex Segment - h/,t Constant.
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Figure 10. 	 Effect of Orientation on Velocity Induced
-by 'a Straight Line Vortex Segment.
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Figure 13. Cf Growth Versus Wake Length Following an--Impulsive Start.
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Figure 17.	 Effect of the Chordwise Distribution of
Vorticity on,.Lift and Induced Drag.

Linearized Wake 	 AR = 3	 a = 0.1 Rad.
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Figure 20.	 Downstream Profile of--the Trailing Vortices-for a Semi-Span.

Vt/c	 -	 Wake Length from Trailing Edge, Chords

Y

Trailing
.. ....._._

1.0	 2.0	 3.0	 4.0	 5.0Edge
0

Outboard Trailer

m
b

,

w
R'	 o

_

.e
'• 

1

inboard. Trailer,
o
'.+

ar
w

a - .2 AR = 3

v̀° NOPAN _ 3

2 Chordwise Panels	 a

E	 > a	 0.1 Rad.
f

-.3 -

v
a

N

- 4
c	

^

l



t

t

-

Figure 21.	 Downstream Profile of the Trailing Vortices for a Semi-Span.
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Figure 23.	 Comparison of Wake Convection Velocities - Z Component.
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Figure 27.	 Self Induced Velocity by an Hyperbolic Spiral Vortex Filament.

40
Localized Induction Method, Reference (49)

r9 = a	 a/c	 1/3, Approximated From Figure(22),Ref.(53)
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Figure 28A. Formation of Vortex Wake Behind Rectangular Wing, Classic
Wake, Proportional Core.

AR = 3	 NOPAN = 20



Figure 28B. Formation of Vortex Wake Behind a Rectangular Wing,
Classic Wake, Proportional Core.
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Figure 29A. Formation of Vortex Wake Behind a Rectangular Wing,
Classic Wake, Fixed Core, he - 10-6 ft.

AR - 3 NOPAN - 20

a - 0.1 rad. NUM - 3
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Figure 30A. Formation of Vortex Wake Behind a Rectangular Wing,
Localized Induction Effect, Proportional Core.

AR = 3	 NOPAN = 20

a = 0.1 rad.	 NUM = 3
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Figure 30B. Formation of Vortex Wake Behind a Rectangular Wing,
Localized Induction Effect, Proportional Core.`

AR - 3	 NOPAN = 20

a = 0.1 rad.	 NUM = 3
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Figure 31A. Formation of Vortex Wake Behind a Rectangular Wing,
Localized Induction Effect, Fixed Core, he = 10-6 ft.

AR = 3
	

NOPAN = 20

a = 0.1 rad.
	 NUM = 3
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Figure 31B. Formation of Vortex Wake Behind a Rectangular Wing,
Localized Induction Effect, Fixed Core, h c = 10-6 ft.
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Figure 33. Effect of Wake Rollup on Finite Wing Performance.

Linearized Wake
Classic Wake,Proportioinal Core (h ,_ 10-4 )o 
Wake With Localized Induction Effects,Ref.(49) Proportional Core (ho 10-4)

4	 a=0.1 Rad.	 VAt/C=0.1	 AR-3
NOPAN=20	 2 Bound Vortices
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Figure 36.	 Comparison Between Direct Numerical Integration_
and Equation 52 for Thrust Determination.
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f

Core Radius=10-6ft.	 AO=7°	 kie=0°

NUM=3	 NOPAN-16

3-

Numerical Integration

Classical Analys is._Prandtl Tip Loss Factor 	
13

.2

/Equation 52	
1 _^''i

V
t

i

3RD
d

0

0	 100	
0 '^ Deg.	

200 300	 f,

f

__.	 ..



r
o^N

Figure 37. Comparison Between Direct Numerical Integration
and Equation 52 for Thrust Determination.
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Figure 38. Comparison Between Direct Numerical Integration
and Equation 52 for Power Determination.
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Figure .39. Comparison Between Direct Numerical Integration
and Equation 52 for Power Determination.
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Figure 40. Comparison Between Numerical Integration w
and Equation 52 for Power Determination.
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Figure 41.

{

Effect of Azimuth Step Size on Bound Circulation. 	 z

1. Canadair Propeller
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Figure 43. Comparison of Azimuth Step Size on Thrust
and Induced Power Distributions.
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Figure 47. Propeller Vortex Wake Generation, d8 - 150 , hc =_10-10 ft.
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Figure 48,g	 (cont.). 	 ..Propeller Vortex Wake Generation, 08 15°,
Proportional Core.
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Figure 49.	 Effect of___Spanw__i-se Spacing _and_ Blade Twis-t on_Thrus.t .Coefficient.._- .__
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?! Figure 50.	 Effect of Spanwise Vortex Spacing
(! on Spanwise Thrust Distribution.
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Figure 51. Effect of Spanwise Vortex Spacing on.
f Effective Angle of Attack Distribution.
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Figure 52.	 Time History of Performance of a Single Slade_	 Propeller Starting ImpulsivOLy from-R 5t.
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Figure 54. (cont.) Propeller Vortex Wake Generation, A6 = 150,
he s 10-3 ft.

Canadair Propeller, Reference (9)
B = 2, 4 Panels, One Blade Wake Shown
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