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^•r SUMMARY

A numerical method is developed for calculating axisymmetric
transonic (M > 1) flow about a blunt body. The bow shock wave location
is of particular interest. A Rankine Hugoniot jump is applied at the shock
while relaxation on the isentropic equation of motion is used between shock
and body. The shock wave is adjusted by a Newton type iteration scheme.
Results are given for a sphere in the Mach number range 1.62 down to 1.02.

RESUME

Une methode numerique est developpee pour calculer 1'ecoulement
transonique axisymetrique (M > 1) autour d'un corps emousse. Le lieu et la
forme de 1'onde de tete revet un interet particulier. Les equations de Rankine
Hugoniot sont utilisees a la traversee de l'onde de tete et une methode de
relaxation est appliquee a 1'equation isentropique du mouvement dans la
couche de choc. La position du choc est reglee par la methode iterative de
Newton.. Les resultats pour une sphere sont presentes pour des nombres de
Mach allant de 1.62 a 1.02.

(iii)
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I
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P density
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W relaxation factor taken as 1.8
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N implies partial differentiation along the direction normal to the local streamline
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A NUMERICAL DETERMINATION OF THE BOW SHOCK WAVE

IN TRANSONIC AXISYMMETRIC FLOW ABOUT BLUNT BODIES

1.0 INTRODUCTION

For many years the problem of determining the bow shock wave location has been tackled
by various authors. Several successful methods have resulted including the method of integral relations
(Schemes I, II and III) of Belotserkovskiy (Ref. 4) and time dependent approaches such as Barnwell's

f	 (Ref. 3).

Belotserkovskiy used Schemes I and II, in which one of the independent variables is made
discrete while the other is kept continuous, to compute solutions for flow about spheres and other
shapes and was successful in computing flow characteristics for Mach numbers ranging from hypersonic
down to about 1.5. For Mach numbers lower than this convergence was difficult to obtain so he de-
vised Scheme III in which both independent variables were discretized and dependent variables were
represented by polynomials. In this way solutions could be obtained for Mach numbers down to 1.05.

Barnwell's method, which in general will treat bodies with discontinuous slope as well a'.
bodies at incidence, starts from an assumed shock wave and integrates the time dependent equations
of motion until a steady state is reached. Solutions can be obtained efficiently for Mach numbers as

}}	 low as about 1.3 but below this the method may produce kinky shocks or else is very time consuming.
I	 For example another time dependent method due to Aungier (Ref. 9) took 16 hours to compute the

flow about a hemisphere cylinder at M = 1.1 on an IBM 370/155 (quoted in Ref. 10).

Since Scheme III seemed the most applicable method to the transonic regime it was first
decided to use the collocation method of Jurak et al (Ref. 6) which is similar to Scheme III. By this
method results were obtained for M as low as 1.1 but even here convergence was slow and the results
for M < 1.5 did not compare too well with experimental data. Even the Scheme III results given by
Belotserkovskiy and shown on Figure 6 do not look sufficiently accurate.

4

In view of these shortcomings of other techniques it was decided to attempt a relaxation
solution of the full potential equation for inviscid steady transonic flow. In this equation the flow is
assumed to be irrotational and hence isentropic. However, the shock is treated as a discontinuity and
either Rankine Hugoniot jump relations or isentropic jump conditions (neglecting momentum conser-
vation) are used. Use of the Rankine Hugoniot conditions, applied to flow about spheres, gives shock
locations which compare reasonably well with experiment at Mach numbers 1.17, 1.30 and 1.62. Ey.:
periments at lower Mach numbers will be made at NAE in the near future.

3

As this paper was in preparation the work of Frank and Zeirep (Ref. 11) came to the authors'
j attention. In this work they give a semi empirical formula for stand-off distance which is obtained by

modifying a formula derived for slender bodies of revolution. Generally their prediction of stand-off
distance is significantly greater than our prediction.

The first section to follow briefly describes the preliminary attempts made to solve the prob-
elem. Thereafter the paper is concerned with the potential approach. We first develop, following

J arnegon (Ref. 1), the finite difference scheme and analyse its stability. Then the shock representation
and shock jumps are considered. Finally the two stage iteration procedure, one for the shock and one

f for relaxation of the interior equations is considered.

`	 2.0 PRELIMINARY ATTEMPTS
I

ii

	

	 Several numerical methods for the calculation of the bow shock were tried. They included
the time dependent approach (Ref. 3), a collocation method similar to Scheme III of the method of
integral relations (Ref. 4) and the method of liu ,̂ Ps as described in Reference 5.

-
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In the time dependent method a flow field and shock wave are assumed and these are adjusted
whilst marching forward in time until a steady state is reached. Good results can be obtained in this
way for higher Mach numbers but at M less than about 1.3 convergence is slow and the shock wave is
not smooth.

The collocation method, used in Reference 6 at M = 10, (this is similar to Scheme III of the
method of integral relations, Ref. 4) was next attempted. The stand-off distance was found to be rea-
sonably good for M > 1.5.

Finally a method of lines solution was attempted and this gave reasonable results for M > 1.3
although even at this Mach number convergence was slow (Ref. 7).

Some results of these computations are shown in Figure 6, where we show a logarithm of
stand-off distance against a logarithm of Mach number. Since these preliminary attempts gave such

..	 poor results at the lower Mach numbers it was decided to assume the flow irrotational and use the
potential equation.

3.0 EQUATION OF MOTION AND THE BOUNDARY CONDITIONS

3.1 The Region of Computation

Referring to Figure 1, O is the origin of the spherical polar co-ordinate system (r, 0) set back
a distance d from the leading edge of the body. ODC is the line of symmetry 0 = 0 and OAB is the
" cutoff" line 0 = 7r/2. AD is the axisymmetric body and BC is the stand-off shock wave. Then the
region of computation is ABCD..

r	 9

In Figure 1 we draw a general ellipsoid although we confine our attention to spheres in the
1	 results section. In this case we take unit radius and set d = 1.5, A = 0.5.

3.2 Transformations

Let r = G(0) and r = F(0) be the equations of body and shock respectively.

In order to fix the shock and body as co-ordinate lines let us introduce new variables Q, a)
such that

_	 r - G (0)_
B = aa3 + baF (0) - G 

(0) 

The region of computation is therefore 0 < ^ < 1, 0 < a < am, where am corresponds to 0 = ir/2
(the determination of a, b and am is shown in Appendix A).

The above system of co-ordinates could be used as it stands. However one should notice
that at Mach numbers approaching unity the shock wave is many body radii from the axis (especially
AB > AO in Fig. 1) and while flow quantities do not change greatly at distances greater than two or
three rad ii from the axis they do change considerably on approaching the body. Thus a transformation
which puts more co-ordinate lines near the body is desirable. Such a transformation is

= A'71 + B'rg3 + C'714	 or = a	 (2)

i

where A', B', C' are chosen as shown in Appendix B.

MONOW-1 K- _.	 t

(1)
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(3)

p^

1

l^

The transformation of the equation of motion which is to follow will be effected by the
formulas

a	 a	 a_	 aa
— — — —

r
ar	 r at ' ao	 au + o at

i1	 a2_ 2 a2	 a2	 _	 a	 a2	 a2

{	 are — r at e ' araB _ fro a + or aE 2 + vor al; av

a

	

	 _a
2	 2	 2	 2

= Leo a + oee 8 + t2 a + 
02 a 

+ 2QOo a
ae 2	aP,	 au	 o at2	 o aQ 2	 a aQ

where

r = F 1 G to = - tr (G' + t(F ' - G'))

ro = - ti ( F ' - G')

too = —Sro ( G ' + t(F ' - G')) - tr 
(G„ + t(F" _ 

G") + to (F' G'))

Qe = (3aa2 + b)-1

_	 3
Q0B	 —eaalea

and by

a	 a	 a2	 a	 2 a2

at
	

3,q	 at2	 377	 377

where
	

(5)

7g = 1/t,, and 77,, _ -tnn/tn

3.3 The Equation of Motion

In spherical co-ordinates (r, 6) shown in Figure I, the equation of motion is a2 div
V = V grad ('/2V 2 ) where V = (u, v) and a2 is given by

U2 + 
V2 + 2 a2 _ V2 + 2
	 a2	 (6)

y-1	 y-i

y

t

(4)
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We assume the flow is isentropic, thus irrotational so that curl V_ = 0 and hence we can
define a disturbance potential 0 by V = Y_ + V O where V_ is the free stream velocity vector.
Making the appropriate substitutions into (F) gives an equation for 0:

U2 	 V2

(1	 a2) 0rr	 a2 r Oro + (1 	a2 ) r 2

_ - (2 -
 a2 / r - \ a2 + Coto ) r2	 (7)

as long as 0 0 0. If 0 = 0, (7) becomes

/	 u2	 2000	 20r
	s l - a2^ Orr + r2	

= - r
	

(g)

In these equations a 2 is given by

a2 = a? + 
7-1 { 

V2 - u2 - v2	(9)

where

u = -V- cos 0 + Or

1	 (10)
v = V_ sin 0 + — Oo

r

Rather than make the substitution of transformation (3, 4, 5) directly into (7) we first con-
sider the equation written in a form suitable for application of Jameson's rotated difference scheme
(Ref. 1).

For this scheme we need to write the principal part of Equation (7) as

/	 q2

a /
\

f 1 - 2 f 
OSS

+ ON N

\ 

where S is the local streamline direction at the mesh point and N is normal to the streamline; the sub-
scripts refer to partial differentiation in the appropriate direction. Now we have by definition

a	 a	 v	 a
= u — + — —

q as	 ar	 r a0

I^

I

f

i
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where

U	 ut, +	 to	 and V
r	 r

(N.B. U and V are important physically as their sign indicates the direction of flow in the ( ,q, T) plane

as shown in Appendix C), and also

	

a	 8	 u
q — = -v—  + —

	

3N	 ar	 r ae

— a —a-V
	
+u -

aT

where

V	 Vtr	 to ) ?I t 	and U = —u
r	 r

(12)

Therefore

Va2	 a2	 a2
q2 

aS2 

= 

U2 a772 
+ 2UV 

a7?aT 
+ 

V2 a7-2

	

32a2	 -- a2	
- a2q2	

= 
V2 — - 2U V	 + U2

aN2 	 a q 2	 agarar2

Transforming (7, 8) to the Q, a) co-ordinates gives

0 =k- 0: Aott + Bot,, + COG, + Dot + EOu = 0

U2t oo	 t,
0 = 0:	 1 - — t2	 2	

+ 20t	 + —	 0
a2	 Ott	 — 

Oua
r2	 r2	 r

insformation to (77, -r ) gives

A7?¢nil + q t BO-0, 
+ Co, + (Ai7tt +,I t D) On + EO T = 0

U2 2 	 too	 ^r
— ) t2 ( ,qtt 0,7 + 77	 0C1	 2	 — 2 , +	

— 
+ —
	

0

a2	
r	 t 071 T) + r2 CFO	 r2	 r

- -------- -

(13)

(14)

(15a)

(15b)
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f	 _6_

where

A = (1 -
u2	 2uv

-	 tr to
^o

+ (1
v2

— a2 )
(16a)

a2	
r	 a2r r2

2v'- 2uv
B = — Go to	 1 - — > - a2 rr	

a 4 r (16b)

2
	 / r2C = QB (1 - 

v—
(16c)

\	 a-

v-'	 tr 2uv	 to v2 too	 2uv
D = (2 - —

a2 	r
+ Coto) r2 +

\ a2 	r2
\1[

/1
\	 a2 /

-- fro
r2 	a2r

(16d)

E =	 1 - a2 1 vo o /r2 + (2a2 + Coto 60 /r2 (16e)

Now (15a) can be written

2
e

C 
1 - a2 OSS + ONN + (AqU + Dry 	 0,n +EST = 0 (17)

as shown in Appendix D. Equation (15b), applied only at r = 0, is left in the given form since the
flow is obviously in the 71 direction.

3.4 Boundary Conditions J

(i)	 On the body the normal velocity is zero. Thus

G'
u_v—

G

5=
E!	 hence

l 1	 G,	 G,

r^	
r 

(toot +900" )  G + v- G	 u„

s
l
s	 and so

G'	 G'	 G'

- 
G2 

o 74 O» = 
Qo ^T G, + v,, G - u„	 (18)

!	 giving, on the body (77 = 0).
`.
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(ii) Line of Symmetry

In this case we introduce an image line (T = -AT) and make the potential symmetric.

(iii) Along AB

There is no boundary condition given at the cutoff line so we can only assume that ¢ is well
behaved in this region (no shocks). Then we can introduce a line T = TM AX + AT and extrapolate
quadratically to this line from the values of 0 at TMAX+ TMAX -AT and TMAX - 2AT.

(iv) Equations at the Shock Wave

At the shock (71 = t = 1) we apply the Rankine Hugoniot (R-H) conditions expressing
continuity of tangential velocity, energy, mass, and momentum. These are written as

F'	 F'
v+ - u=v_ + F u„	 (19a)

k	 ^

i

i

a

Y

P Vn = P- V„ -	(19b)

	

p + PVn = P^ + P^ Vn	 (19c)*

y P+ 1/,Vn	 y
P_

	—+ 1/zV,l	(19d)
'Y - 1 P	 'Y 1 P	

,

where

	

	 V
F

Vn
r2}	

1+FZ

These equations are solved for u, v, p and p. In particular u is needed to provide boundary conditions
for 0 as shown below.

Firstly we can show that 0 is constant along the shock. We know that V • t_ = V_ • t because
of continuity of tangential velocity. But V = V_ + VO and so VO-L 0 or ao /at = 0. Hence 0 is

h	 constant along the shock. If we define the constant (which is arbitrary) to be zero then we have

	

= 0atr? = 1	 (20)
;

We also know the R -H value of u at the shock (us say) by solving (19), and hence we have
i

us = u„ + Or

= u_ + trllton

or	
On = uSrr1 

u°°	 (21)
a	 ^

We could omit this equation and use p/p y	p_ /p„'r for the isentropic shock relation.
r

4
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4.0 NUMERICAL PROCEDURE

4.1 Relaxation

Consider the computational grid shown in Figure 2. Referring to Equations (17) and (15b)
we write the first derivatives as

Oi, j+ 1 - Oi

	' i 	2An

	

^T	
2AT

while second derivatives are written in central difference form if the flow is subsonic (q 2 < a2 ) or in
backward difference form for OSS if q2 > a 2 , as follows.

(i)	 Subsonic, q2 < a2

Following Jameson (Ref. 1) we use

O j+ 1 - 20 j + O j -1
^tttt	 One

^i - 1 , j- 1 - Oi- 1 , j+1 - Oi+1 , j -1 + Oi+1 , j+1
^tt T	 4^rl^T	

(22b)
F

+2 + 2(1 - 1)0i,j  + Oi+1, j
T T ,	 AT2

for all the second derivatives terms, where w is the over-relaxation factor and is taken as 1.8 in the
present calculations. The superscript + implies that new values are to be computed (for i subscript) or

4	 used (for i-1 subscript) in the iteration process, otherwise values of 0 from the previous step are used.

Thus in the subsonic region we have a tridiagonal system of equations for O i , j+1 ,	 j and

j-10+	 to be solved at each step of the line relaxation procedure.+

(ii)	 Supersonic q22 a2

Considering 	 2 a2 	+	 we use 22a and 22b for the 	 an	 contribu-g ( - q / ) ass	 ^NN	 (	 )	 (	 )	 ^ttn d ^tt7
tions to ON  while for 0TT in the ON  expression we use

g
i 	 +	 +

O i 1 ,)	 06 
_ 

Oi , 1 + O i+1 , j

AT2

r	
^ ,

a

(22a)
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For contributions to Oss we use all old values of 0 as follows

,/	
Oi, j - 20i, j + i + 0i, j-	

j

4

+ (Oi, j - Oi, j+l - Oi-1 , j + Oi-1 , j+1)

017TO17^T
f

Oi , j 	 20i-,,j + Oi-2, j
W rr	 Q .r2

where the upper sign is used if U > 0 and the lower sign if U < 0. These formulas give a finite dif-
ference representation consistent with the flow direction since U is proportional to the velocity in the
T = const direction and V is porportional to the velocity in the 77 = const direction (see Appendix C).

Now to investigate convergence in the same manner as Jameson (Ref. 1) we have to introduce
an artificial time into the difference equations so that for instance

a^ij
^1 j Oij + A  at

Then in ONN we have

(OLD VALUES) AtU 	 (OLD VALUES) At U
ONN	

+ AT U (Vont - UOTt - ONN	
- - q ONt	 (23)

while in Oss, since all old values are used, there is no Ost contribution. Therefore we must artificially
add some Ost to the finite difference equation so that we satisfy Jameson's necessary condition for
convergence (see Ref. 1 for full details) i.e.

U2 > 
(32 (ML - 

1^	
(24)

where ML is the local Mach number and -a and a are the coefficients of Ost and ON t respectively; in
our case R = - U/q-At/OT (see (23)).

Now

_ U	 V
Ost	 q Ont + q Olt

4 w
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which can be written in finite difference form as

U ( Oi j - 01, j +1 - Oij + 0i, j+1
± q 1	 A^^t

f

	

V	 Oi j - Oi-1 , i - Oij + Oi-1 , j

	

q	 ATAt

with the upper signs used if U > 0, otherwise lower signs (since U indicates the flow direction). Thus

	

the appropriate amount of Ost to be added is	 ^.
F,

	IQ At
Q	 q AT Est

where

Q2 > ML - 1	 (25)

to meet condition (24). Since we are dealing with transonic flows, by experience we can expect Mmax
to be about three so that choosing IQI = 4 should be sufficient. As to the sign of Q it should be chosen
so that diagonal dominance of the tri-diagonal equations is enhanced as follows.

The coefficient of^, j _ 1 is

r	 -
V2	 QU 1 U 1

C	 _

q2 A77 	 q2 0TA?7

(U > 0)

the coefficient of	 j+] is

	

V2	 Q IQ U

q2 A?

	

	 q2 A FA?7

(U < 0)

and the coefficient of	 j is

	

-2V2 _ U2	 Q IQ IQ	 Q IQ V

	

(42 A77 2 	g2AT2 + g2 ArA77 + g2AT2
f

Clearly Q < 0 is required since then the magnitude of the diagonal term will be enlarged (unless
V ( a. v/r) is negative in which case the flow direction is clearly wrong). In practice a test is always
made to ensure that the system is diagonally dominant; if it is not an error message is printed and com-
putation ceases. This dominance is necessary to ensure a well behaved solution to the system of alge-
braic equations.

k
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Unfortunately this process does not give convergent results. As an example of the divergence
we took the converged solution for M = 1.3, P .= 12, N = 7 (i.e. 5 X 10 mesh) and inspected EAO
on successive iterations. On the first iteration EAO? i was 10.59, on the second 67.5 and then no diag-

onal dominance was present on the next iteration.

In order to gain some insight into the amount of Ost to be added to give convergence we next
looked at the amplification factor, G, given by

0
G=i^

Oi j

In Appendix E we show that IG; is less then unity in a simplified case where U = U, V = V and
U2 + V2 = q2 , provided

a^gT MLA

In practice, however, using a = q At/AT ML did not give convergence and we finally had to use

a - q
At
 MC

5
	(M-1

A7- 
L	 3	 d

to give convergence. Cases which were very slow to converge were those in which M was close to unity.
This is probably due to the `cutoff' line, AB in Figure 1, lying partially in the subsonic part of the flow
field. Table 1 illustrates the convergence when M = 1.02 by listing EAO i on successive iterations.
Compare this to the M = 1.3 case shown in Table 2. It can be seen that at M = 1.02 the convergence
is much slower. Since convergence is slow at the lower Mach numbers fine grids are not computed in
these cases.

4.2 Finite Difference Application of the Boundary Conditions

Referring to the boundary conditions in Section 3.4 we now write them in finite difference
farm.

,i
(i) To apply (18) at n = 0 we introduce a line of points at n = - Ark and write 01,

Oi, 3 - - Oi, i
2An

while 0, is calculated as
Oi+1 , 2 - Oi - 1, 2

2AT

Substitution into (18) tlben gives values for 0j,

(ii) From symmetry

01,a = 03,i
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(iii) By quadratic extrapolation

¢N+1,j = 3(ON, j - ON -1, j)  + ON-2,j

(iv) O; p = 0. We also need O i P-1 from the shock boundary conditions. Now we know
from (21) thus we could write

Oi. P - Oi. P-1

and accordingly find O; P-1 . However, the above formula is only first order accurate for the first
derivative whilst we really require second order accuracy for consistency with the finite difference
equations used in the elliptic region. We obtain second order accuracy by using the equation of motion
(15) to find 0,n ,n at the shock wave tOnn say).

Then we have

	

Ar^2	 S

	

Oi, P-1 - Oi P - A7]on + 2	 ATM	 (26}

giving, in effect, second order accuracy for the finite difference representation of 0,n at the shock.

Having seen how to apply the boundary conditions (once a shock shape has been estimated)
we can now iterate, by relaxation, the equation of motion written in finite difference form.

4.3 The Inner Loop Iteration

The preceding describes the finite difference representation of the equations of motion and
the boundary conditions. To drive the residuals in these equations smaller we solve for O, j starting

	

with line i = 2 (the line of symmetry) and proceeding to line i	 N. On each line we solve for O; j
(j = 2 ... P- 2 inclusive) by solving the appropriate tridiagonal system of equations. Values for

j are known except at the line i = 2 and here we are forced to use old values.

Thus we have a technique for driving residuals smaller at the points i = 2 ... N, j = 2 ... P- 2
once O i P-1 are fixed. The next section describes how an outer iteration is used to improve the shock
shape and hence O; P-1 (from (26)) so that the residuals at j = P-1 are made smaller.

4.4 Newton Iteration of the Shock Wave The Outer Loop

We have shown how O; P-1 is obtained (26) from the shock wave relations and also we have
shown how the values of 0 in the rest of the flow field, assuming O; P-1 is computed from (26), are
obtained. However we still have to iterate so that the shock wave r = F(6) is adjusted to the hopefully
correct position. To make the adjustment we must have some outstanding equations still to be satis-
fied. Clearly these equations are the finite difference form of the equation of motion written at each
point at the line next to the shock wave, i.e. j = P-1, i = 2 ... N. Unfortunately, these equations
cannot be written in backward difference form in the supersonic region since we only have values
available at one mesh line further upstream — thus a central difference _form has to be used even in the
supersonic region. This, however, will not affect convergence since a Newton method is to be used on
this line to drive the equation residuals, R i (i = 2 ... N), smaller by adjusting the parameters which
define the shock wave. These parameters A, U = 0, 1 ... NSH-1) are defined in the next subsection.
In the outer iteration the parameters Aj are changed by an amount X&Aj where SAj is given by

j
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o-

k

NSH-1 N aRk	 aRk N aRk
E E

I
— — 5Ai =

I
-	 E Rk —	 i = 0, 1 ... NSH-1

i=0 k=2 aAi 	3Ai k=2 3Ai

N
The above is the Newton step to minimize Sl = E R? with respect to Ai . A (0 < A < 1) is

i=2
chosen so that Si decreases (normally X = 1 but may have to be smaller to ensure a decrease in S, ).
The partial derivatives in the above equation are found by differences using a perturbation to A i of 10-4

4.4.1 Form of the Shock Wave

We could let the shock wave r = F(0) be defined by its values F(0 2 ), F(0 3 ) ... F(O N ).
However there are two reasons against this form. This first reason is for efficiency — if we can define
the shock by less than N parameters then the Newton iteration of the shock is computationally quicker.
More importantly, though, the finite differences approximations to determine F' (0) and F" (0) will be
poor in the region near 0 = 900 because, here, there are large gradients of F since F is going rapidly to
infinity at the lower Mach numbers. Thus it is important to have an analytic form for the shock that
can be differentiated analytically.

Such a form is given by

)	 1 - cose , 	NSH-]	 2n(

r= F 0 = cos0 - cose,	 0	 A„ B

where 0' is the complement of the Mach angle. This has the correct form since such a shock wave is
asymptotic to the Mach line and is also symmetrical as required by the problem. Note that F (0) gives
the stand-off distance except for a constant which depends on the location of the origin of the co-
ordinate system. In the cases computed, this origin is chosen such that A = 1/2DE (see Fig. 1) where
E is the centre of the sphere.

4.5 Iteration Procedure

In the iteration procedure described previously the inner loop drives S 2 = LAO?, smaller
by relaxation while the outer loop adjusts the shock shape so that residuals R i at the line next to the
shock are driven smaller. One problem in this scheme is knowing when to adjust the shock shape —
if we adjust it when S 2 is still large then the adjustment may be completely meaningless while on the
other hand if we wait until S 2 is too small the efficiency of the scheme suffers. Thus it was decided
that the shock would not be adjusted until S 2 was less than P • N • 10-4 . Also to avoid possibly meaning-
less changes to shock position a change in F (0) of greater than 0.05 on each step was not allowed.
Likewise for efficiency a change in F (0) of less than 0.001 was not made. A typical iteration is shown
in Table 3 at M = 1.3, mesh size 5 X 10, i.e. N = 7 and P	 12, and Oli set to zero initially.

A flow diagram of the iteration scheme is shown in Figure 3.

5.0 SOME PROGRAM DETAILS

5.1 Initial Estimates

We first selected M = 1.3 as a starting Mach number, made a rough estimate of the coeffi-
cients that form the shock, set 0; l = 0 on a 5 X 10 mesh and let the process run. Having obtained
this solution we then usedthe results to give the estimates for the Mach numbers 1.17 and 1.10.
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Having obtained these solutions we then extrapolated quadratically the shock coefficients and the
initial 0, ° down to lower Mach numbers. In this way solutions were obtained for M = 1.08, 1.06, 1.05,
1.04, 1.163 and 1.02. At some of these Mach numbers finer grids (10 X 20 and 20 X 40) were computed.r
To get estimates for the finer grids we used the same shock values from the coarser grid and interpolated
Oij linearly to obtain values at the extra mesh points.

5.2 Computer Time

'	 The three meshes 5 X 10, 10 X 20 and 20 X 40 took approximately six minutes on an IBM
360/67 for the M	 1.3 solution. At M = 1.05, five minutes were required to compute the coarse
and medium grids.

R	
6.0 RESULTS FOR FLOW ABOUT A SPHERE

6.1 Program Checks

As a check on the program a mass balance was made to see how the mass flow across the

	

5	 circle of radius HK (Fig. 1) compared with that across AB. Table 4 shows the total mass inflow to-
gether with the mass outflow. Good agreement is noted.

As a further check comparisons were made with the results of South's axisymmetric program
RAXBOD (Ref. 2) which treats the whole flow field extending to infinity and does not allow for dis-
crete shocks jumps; `shocks' appear as discontinuities in the velocity components. Results of the com-
parisons are shown in Figures 4 and 5. These show Mach number distributions along the body and also

a'

	

	 along the axis of symmetry for free stream Mach numbers 1.3 and 1.02. The M = 1.02 results have not
converged to the preset accuracy requirement. However it can be seen that agreement is good when
fine meshes are used with the exception of Mach number behaviour in the supersonic zone along the
body. Here first order accuracy is used so that a larger discrepancy is expected and also the cutoff line

r	 (not used in RAXBOD) may have an effect on the SHOCKFIT results.

6.2 Residuals

At the end of each computation one extra pass is made to calculate residuals at each point
(with Ost factor a set to zero). The size of the residual does not mean too much unless we compare it
with a relevant quantity. Here we compare residuals with the right hand side (d) of the equation

aoi j-i + boi j + co j+l	 d

which is the finite difference form of the equation of motion. The residuals and right hand sides are
printed in Tables 5 and 6 for Mach numbers 1.3 and 1.02 (the latter at the fine mesh have not con-
verged). Note that the residuals at the line next to the shock are much smaller at M = 1.02 than at
M = 1.3. This is probably due to the entropy change across the shock being much bigger at the larger
Mach number and this change is inconsistent with the isentropic assumption for the rest of the flow
field.

6.3 Shock Wave Location

The main results of the paper are given in Table 7 which shows the distance F (9) of the
shock wave from the co-ordinate origin for polar angles 0 of 0, 18, 36, 54, 72 and 90°. It can be seen
that results depend quite strongly on mesh size. The main problem is to be sure of accuracy at 8 = 0°
since it is here that the correlation with experimental results will be made.

First let us see how much accuracy is needed in F (0) so that the free stream Mach number

	

X '	 can be determined to an accuracy OM. To do this we need to know an approximate relation between
F (0) and M. Such a relation is given in NACA 2000 (Ref. 8) i.e.
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x,	 3

C	 F (0) = 8 (M- 1) - 1/3 + 0.5

(see Fig. 6 to compare this form with the numerical computations). A change of less than AM in M
thus requires

1 !	 OF (0) < 9 (M - 1) -4/3 AM

Taking AM = 0.002 we can deduce limiting values for AF (0) as shown in Table 8. The last column
in the table shows the limiting value for Aln (F (0) - 0.5) and can be calculated as

'f.	 Aln (F (0) - 0.5) _ _ 1 
AM

The size of this latter quantity is marked by a symbol I on Figure 6 which shows In (F (0) - 0.5)
versus - In (M - 1).

Now observing Table 7 we see that the 5 X 10 and 10 X 20 results for stand-off distance
( F (0) - 1.5) differ by quite a large amount so that an extrapolated zero mesh size solution should
be used. This latter solution is obtained by extrapolating the 5 X 10 and 10 X 20 solutions by assum-
ing the error is of order mesh size squared the resulting values are given in Table 7 by the name
EXT1. It can be noted that at M = 1.3 the EXT1 result is practically identical to that obtained by
carrying out a similar extrapolation from the 10 X 20 and 20 X 40 grids (called EXT2 in Table 7).
At M = 1.06 the difference in F (0) between the EXT1 and EXT2 results is 0.01 — well within the
accuracy requirement given in Table 8. Thus we can have some confidence in the accuracy of extra-
polation from the 5 X 10 and 10 X 20 results and so we propose that the EXT1 results are our final
results with accuracy sufficient to be used to correlate stand-off distance to Mach number. We use
this procedure rather than compute further solutions on the 20 X 40 grid since computation is rather
expensive on the fine grid ($88 at M = 1.06).

Using the EXT1 results we note that, on the log scales of Figure 6, they lie almost on a
straight line given by

In (F (0) - 0.5) _ -0.505 In (M - 1) - 0.045

or	 F (0) = 0.5 + 0.956 (M- 1)- 0.505	 (27)

The values given by this formula are also tabulated in Table 7. Notice that the differences between
F (0) given by (27) and F (0) given by EXT1, for M < 1.08, are much less than the acceptable toler-
ances given in Table 8 — given some confidence in our straight line fit.

The RAXBOD results for stand-off distance, given in Figure 6, are found by interpolating
between Mach numbers calculated along the axis of symmetry to find at what distance from the body
the Rankine Hugoniot value of Mach number is realized. This procedure should give reasonable accu-
racy since Mach numbers calculated at some distance from the calculated shock discontinuity are con-
sidered accurate and the discontinuity, from experience, is always upstream of the real shock jump.
Plots of M(axis) from RAXBOD are shown in Figures 4b and 5b.

In the work of Frank and Zeirep (Ref. 11), who use a modification of a formula derived for
slender bodies, is given the formula

0.14(-+1)M2 1211

M2-1
	 I
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Values obtained by this formula are plotted on Figure 6. It can be seen that the slope of this curve is
significantly greater than the slope of our curve thus predicting much larger stand-off distances when
M < 1.10. Hopefully experiments at these low Mach numbers, to be performed shortly at NAE, will
settle the discrepancy.

!

	

	 The shock shapes are compared with experimental data from NACA 2000 (Ref. 8) in Figure 7.
It can be seen that satisfactory agreement is obtained.

7.0 CONCLUSIONS

We have used Jameson's rotated difference scheme combined with a Newton iteration of the
shock wave to obtain a prediction of the shock wave stand-off distance from a sphere. The same method
could also be applied to more general axisymmetric bodies.

As far as is known this is the only rigorous theoretical work which predicts the flow field
solution and shock wave location for Mach numbers less than 1.05. Frank and Zeirep in their predic-
tion use a semi-empirical formula based on a modification of slender body theory while Hsieh, using
the time dependent approach, takes more than 22 hours for a (nonconverged) solution at M = 1.05.
The present method needs about five minutes at this Mach number.

The accuracy of the present method can be seen to be fairly good at Mach numbers 1.62,
1.3 and 1.17 at which results have been compared with experiment. Experiments to be performed
shortly at NAE at the lower Mach numbers will be used for a further comparison.

Our results (referring to stand-off distance) of best accuracy, given by extrapolating to zero
mesh size from a 5 X 10 and a 10 X 20 grid, lie practically on a straight line when plotted on the
log scales of Figure 6. The resulting formula for F (0) is given by (27).
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TABLE 1

E^

VALUES OF S 2 AND Ao DURING THE ITERATION PROCESS M = 1.02

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

5 X 10 Mesh

S2 Ao

1.6,-7 6.553

3.6,-6

4.6,-7

1.2,-6

8.8,-7

4.9,-7

2.5,-7

1.3,-5 6.532

3.3,-6

1.1,-6

5.9,-7

2.6,-7

1.3,-7 6.582

3.3,-6

2.8,-7

2.0,-6 6.632

9.2,-7

1.6,-6 6.661

2.4,-7

6.2,-8
O O	 O

6.666

10 X 20 Mesh

S2 Ao

3.6,-3 6.666

2.0,-2

1.1,-3

3.4,-4

1.0,-4

4.5,-5

2.4,-5

1,3,-5 6.722

3.4,-5

3.7,-6 6.747

9.1,-6

1.1,-5 6.791

1.5--5

1.6,-5 6.841

1.8,-5

1.6,-5 6.891

1.7,-5

1.6,-55 6.941

1.7,-5

Iteration terminated

20 X 40 Mesh

S2 Ap

1.3,-3 6.941

1.8,-3

2.1,-4

7.3,-5 6.995

7.7,-5

8.6,-6 7.017

2.9,-5

1.0,-5

1.0,-5 7.029

1.1,-5

Iteration terminated

* Shock wat-- coefficisents were changed during the five iterations previous to the listed value.

PRrr'rnTN,
(" 
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Mr;n
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TABLE 2

r^

VALUES OF E00? j AND A0 DURING THE ITERATION PROCESS M = 1.3

ITN #
5 X 10 Mesh 10 X 20 Mesh 20 X 40 Mesh

S2	 A0 * S2	 A0 S2	 A0

0 2.3,-1 2.5 1.9,-3 2.397 4.4,-4 2.414

5 1.7,-1 9.4,-5 7.6,-5 2.416

10 3.4,-2 9.3,-5 2.408 1.1,-5 2.419

15 5.5,-4 8.6,-6 2.411 6.2,-6

20 2.6,-5 5.8,-6 2.413 2.1,-6

25 6.3,-4 2.450 2.2,-6 1.3,-6

30 3.5,-6 2.411 2.0,-6 2.414 6.3,-7

35 8.3,-6 1.8,-7 3.6,-7

40 1.5,-5 2.402

45 2.1,-6 2.398

50 2.2,-7 2.397

55 2.5,-8

* Shock wave coefficients were changed during the five iterations previous to the listed value.

TABLE 3

PROGRESS OF ITERATIONS M = 1.3, 5 X 10 MESH, O i j = 0 INITIALLY	 x

Shock Change

Made on ITN #

Shock Coefficients

S2 Si A0 A; A2 A3 A4 A5

0 2.3,-1 2.5 -0.1 0 0 0 0

24 4.6,-6 1.0,-2 2.450 -0.1184 0.0514 -0,0270 0.0082 -0.0010

30 3.5,-6 1.3,-3 2.411 -0.1251 0.0773 -0.0370 0.0122 -0.0018

37 2.8,-6 2.0,-4 2.402 -0.1235 0.0785 -0.0377 0.0138 -0.0021

42 1.8,-6 9.9,-5 2.398 -0.1242 0.0810 -0.0394 0.0145 -0.0021

46 9.2,-7 7.9,-5 2.397 -0.1242 0.0811 -0.0391 0.0142 -0.0020

55 2.5,-8 No Further Change
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TABLE 4

CHECK ON MASS CONSERVATION

M Mesh

Mass Flow

Across HK Across AB

1.62 5 X 10 7.90 8.04

1.3 5 X 10 23.10 23.09
10 X 20 23.24 23.26
20 X 40 23.28 23.31

1.7 5 X 10 56.74 56.71
10 X 20 57.93 57.93

1.10 5 X 10 136.3 136.2
10 X 20 144.7 144.7

1.06 5 X 10 335.1 334.9
10 X 20 345.3 345.2

1.04 5X10 710.9 710.7
10 X 20 597.1 696.9

1.02 5 X 10 2774 2773
10 X 20 2659 2659
20 X 40 2660 2659	 (not converged)

I/

t^^	

s

-t
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TABLE 5a

RESIDUALS AND RIGHT HAND SIDE OF FINITE DIFFERENCE EQUATIONS

AFTER ITERATIONS COMPLETED M = 1.3, 5 X 10 MESH

Line # (Body)

J = 2 3 4 5 6 7 8 9 10

(Line Next
to Shock)

11

2 RES -2.1,-6* -2.1,-6 -2,3,-6 -2.5,-6 -2.4,-6 -2.3,-6 -2.2,-6 -2.5,-6 -2.9,-6 -2.5,-3
RH S 7.9,	 1 1.0,	 1 9.4 6.7 4.4 2.8 1.6 7.8,-1 2.0 -2.7,-! 

3 -2.4,-6 -2.3,-7 -3.9,-7 -5.2,-7 -5.3,-7 -4.9,-7 -5.2,-7 -7.7,-7 -1.3,-6 1.7,-3
6.2,	 1 6.2 5.8 4.0 2.4 1.4 7.3,-1 2.7,-1 1.5 -3.1,-1

4 -1.2,-6 -1.3,-6 -1.1,-6 -1.3,-6 -1.6,-6 -1.7,-6 -1.7,-6 -1.9,-6 -1.8,-6 8.9,-4
3.2,	 1 3.4 3.5 2.6 1.7 1.1 5.8,-1 2.4,-1 9.7,-1 -1.8,-1

5 4.2,-5 1.3,-5 1.6,-5 1.2,-5 6.8,-6 -4.8,-8 -5.6,-8 -2.4,-6 -7.3,-6 3.1,-5
8.4 2.4 1.8 1.1 6.4,-1 3.9,-1 2.4,-1 1.0,-1 5.0,-1 -9.7,-2

6 1.4,-4 4.5,-5 7.4,-5 1.0,-4 1.1,-4 1.0,-4 9.1,-5 9.2,-5 9.3,-5 -2.8,-3
-3.7 2.0 1.1 5.8,-1 2.9,-1 1.2,-1 4.1,-2 -2.3,-3 2.3,-1 -5.1,-2

7 6.3,-5 -9.7,-5 -2.5,-4 -2.7,-4 -2.9,-4 -3.6,-4 -5.0,-4 -6.7,-4 -5.7,-4 -9.4,-3
-6:3 1.7 5.2,-1 2.5,-1 1.2,-1 5.0,-2 1.3,-2 -6.6,-3 12,-1 -1.5,-2

* -2.1, -6 is equivalent to -2.1 X 10-6



Line # (Body)
J = 2 6 10 14 18 22 26 30 34 38

(Line Next
to Shock)

41

2 RES -3.9, -4 -3.7,-4 -3.5,-4 -3.2,-4 -2.9,-4 -2.5,-4 -2.1,-4 -1.8,-4 -1.5,-4 -1.1,-4 -1.5,-2
RHS 4.0,	 2 1.0,	 2 9.1,	 1 7.4,	 1 5.7,	 1 4.1,	 1 2.8,	 1 1.7,	 1 8.7 3.1 8.6,-2

6 -4.1,-4 -6.1,-5 -5.8,-5 -5.3,-5 -4.7,-5 -4.1,-5 -3.5,-5 -3.2,-5 -3.6,-5 -4.9,-5 -1.2,-2
2.8,	 2 4.6,	 1 4.2,	 1 3.4,	 1 2.6,	 1 1.9,	 1 1.3,	 1 7.6 3.9 1.2 -2.1,-1

10 -1.1,-3 -9.1,-5 -8.9,-5 -8.4,-5 -7.8,-5 -7.3,-5 -6.9,-5 -6.7,-5 -6.9,-5 -7.3,-5 -1.2,-2
1.3, .	 2 1.7,	 1 2.1,	 1 2.0,	 1 1.8,	 1 1.4,	 1 9.3 5.6 2.8 8.7,-1 -1.2,-1

14 -2.4,-3 -3.5,-4 -2.4,-4 -1.6,-4 -1.1,-4 -9.3,-5 -8.7,-5 -9.2,-5 -1.1,-4 -1.5,-4 -6.4,-3
3.6,	 1 1.0,	 1 7.1 4.9 3.5 4.2 3.6 2.5 1.1 3.2,-1 -9.5,-2 

18 -5.9,-3 -1.5,-3 -1.1,-3 -8.9,-4 -7.3,-4 -5.6,-4 -3.5,-4 -2.0,-4 -2.1,-4 -2.9,-4 -1.6,-2
-1.6,	 1 9.2 3.9 1.7 7.7,-1 4.0,-1 2.3,-1 1.2,-1 3.8,-2 -3.3,-2 -8.7,-2

22 -1.6,-2 -5:5,-3 -3.8,-3 -2.8,-3 -2.2,-3 -2.0,-3 -1.9,-3 -1.8,-3 -1.7,-3 -1.5,-3 -3.7,-2
-2.9,	 1 3.9 6.6,-1 3.3,-1 2.5,-1 1.5,-1 6.4,-2 1.7,-2 -1.1,-2 -3.7,-2 -3.8,-2

N
co

TABLE 5b

RESIDUALS AND RIGHT HAND SIDES OF FINITE DIFFERENCE EQUATIONS

AFTER ITERATIONS COMPLETED M = 1.3, 20 X 40 MESH



TABLE 6a

RESIDUALS AND RIGHT HAND SIDES OF FINITE DIFFERENCE EQUATIONS

AFTER ITERATIONS COMPLETED M = 1.02, 5 X 10 MESH

Line # (Body)
J = 2 3 4 5 6

I

7 8 9 10

(Line Next
to Shock)

11

2 RES -1.4,-4 -5.8,-4 -2.2,-4 -9.6,-5 -4.4,-5 -1.9,-6 3.2,-5 3.1,-5 8.2,-6 1.2,-6
RHS 1.4,	 2 2.6,	 1 8.3 4.1 2.0 9.4,-1 4.1,-1 1.7,-1 6.7,-2 1.8,-2

3 5.8,-5 -2.7,-4 -3.0,-5 1.3,-5 1.6,-6 -6.3,-6 6.1,-6 1.7,-5 5.4,-6 1.1,-6
1.1,	 2 2.0,	 1 4.8 2.0 9.4,-1 4.2,-1 1.8,-1 7.1,-2 2.9,-2 6.9,-3

4 1.1,-4 -1.5,-4 -1.8,-5 7.6,-6 2.4,-6 -2.1,-7 8.0,-6 1.8,-5 4.3,-6 1.0,-6
6.3,	 1 1.2,	 1 3.5 1.6 7.3,-1 3.0,-1 1.21-1 4.3,-2 1.8,-2 3.5,-3

5 1.2,-4 -4.6,-5 7.1,-6 6.9,-6 7.9,-7 4.2,-6 1.3,-5 2.2,-5 1.1,-6 1.6,-6
1.2,	 1 4.3 1.2 8.2,-1 3.6,-1 1.3,-1 4.5,-2 1.5,-2 6.8,-3 6.3,-4

6 2.3,-4 4.2,-5 -1.9,-5 -1.9,-5 -6.0,-6 9.9,-6 2.6,-5 3.2,-5 -6.6,-6 -1.9,-6
-1.1,	 1 8.5,-1 4.0,-1 7.7,-2 5.9,-2 1.9,-2 5.0,-3 1.2,-3 1.4,-3 -3.1,-4

7 -3.3,-4 3.4,-4 5.2,-5 9.4,-6 1.6,-5 3.4,-5 3.2,-5 2.1,-5 3.8,-6 -7.5,-7
-6.6 3.7,-1 1.8,-2	 1 2.7,-4 -9.5,-4 -4.9,-4 -2.2,-4 -1.2,-4 1.4,-4 -7.3,-5

F.

f

I..

I'
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3
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TABLE 6b

RESIDUALS AND RIGHT HAND SIDES OF FINITE DIFFERENCE EQUATIONS

AFTER ITERATIONS COMPLETED M = 1.02, 20 X 40 MESH (NOT CONVERGED)

Line ## (Body)
J = 2

6 10 14 18 22 26 30 34 38

(Line Next
to Shock)

41

2 RES -3.1,-2 -3.0,-2 -2.6,-2 -2.0,-2 -1.1,-2 -3.7,-3 -2.4,-3 -9.6,-4 5.0,-4 1.4,-4 -2.2,-5
RHS 6.6,	 2 1.8,	 2 1.2,	 2 7.6,	 1 3.9,	 1 1.7,	 1 7.1 2.8 1.0 3.0,-1 5.1,-2

6 -2.3,-2 -6.7,-4 -6.4,-4 -4.9,-4 -5.3,-4 -2.9,-4 -2.7,-4 -5.8,-4 9.3,-5 9.7,-5 2.0,-6
4.9,	 2 8.4,	 1 5.7,	 1 3.6,	 1 1.8,	 1 7.8 3.2 1.2 4.4,-1 1.3,-1 2.1,-2

10 -3.6,-2 -1.9,-4 -4.0,-4 -4.1,-4 -3.7,-4 -1.9,-4 -2.4,-4 -5.2,-4 6.5,-5 6.1,-5 -2.1,-5
2.4,	 2 3.8,	 1 3.6,	 1 2.6,	 1 1.3,	 1 5.5 2.1 7.5,-1 2.6,-1 7.3,-2 1.1,-2

14 -4.0,-2 2.5,-4 1.0,-4 -2.4,-4 -3.2,-4 -1.3,-4 -2.3,-4 -3.9,-4 5.2,-5 -1.1,-5 2.1,-6
3.8,	 1 1.5,	 1 8.0 1.1,	 1 6.4 2.4 8.1,-1 2.7,-1 8.7,-2 2.3,-2 3.0,-3

18 -3.3,-2 -4.8,-5 -7.7,-5 -8.5,-5 -2.0,-5 -2.6,-4 -4.4,-4 -1.7,-4 -7.6,-6 -3.4,-5 -2.3,-5
-5.7,	 1 1.2,	 1 2.5 7.2,-1 1.2 3.9,-1 1.1,-1 3.2,-2 9.3,-3 2.0,-3 -3.9,-5

22 -1.4,-2 -1.2,-3 -1.1,-3 -2.7,-4 1.7,-4 -2.7,-4 -1.0,-4 -7.3,-5 -5.5,-5 -2.7,-6 -7.5,-5
-2.4,	 1 7.9,-1 8.0,-2 1.3,-3 2.2,-2 3.9,-3 5.5,-4 -2.2,-6 -7,7,-5 -8.7,-5 -7.0,-5

L



M NSH Mesh 0 = 0 18 36 54 72 90
F(0) by

Formula (27)

1.62 6 5 X 10 2.002 2.032 2.145 2.391 2.866 3.823

1.3 6 5 X 10 2.397 2.459 2.670 3.115 4.007 5.998
6 10 X 20 2.414 2.476 2.686 3.131 4.028 6.016
6 20 X 40 2.419 2.481 2.692 3.137 4.037 6.020
6 EXT1 2.420 2.482 2.691 3.134 4.035 6.022
6 EXT2 2.421 2.483 2.693 3.139 4.040 6.021

1.17 6 5 X 10 2.865 2.962 3.287 3.980 5.452 9.203
10 X 20 2.911 3.008 3.338 4.040 5.530 9.300
EXT1 2.926 3.023 3.355 4.060 5.556 9.332

1.10 6 5 X 10 3.455 3.592 4.057 5.075 7.369 14.165 3.558
10 X 20 3.554 3.694 4.172 5.218 7.577 14.594
EXTl 3.587 3.728 4.210 5.266 7.646 14.737

1.08 6 5 X 10 3.756 3.913 4.447 5.632 8.381
f

'17.156 3.923
10 X 20 3.888 4.049 4.601 5.826 8.671 17.774
EXT1 3.932 4.094 4.652 5.891 8.768 17.980

1.06 6 5 X 10 4.202 4.386 5.020 6.452 9.902 22.154 4.458
10 X 20 4.388 4.580 5.241 6.735 10.337 23.116
20 X 40 4.427 4.620 5.286 6.791 10.416 .23.2.40
EXTl 4.450 4.645 5.315 6.829 10.482 23.437
EXT2 4.440 4.633 5.301 6.810 10.442 23.281

1.05 6 5 X 10 4.525 4.729 5.435 7.045 11.023 26.199 4.840
10 X 20 4.750 4.963 5.702 7.388 11.556 27.403
EXT1 4.825 5.041 5.791 7.502 11.734 27.804

1.04 6 5 X 10 4.954 5.184 5.982 7.828 12.529 32.243 5.358
10 X 20 5.249 5.491 6.334 8.284 13.248 33.843
EXT1 5.346 5.592 6.450 8.434 13.483 34.368

1.03 6 5 X 10 5.568 5.833 6.761 8.942 14.716 42.248 6.117
10 X 20 5.983 6.267 7.260 9.594 15.757 44.463
EXT1 6.121 6.412 7.426 9.811 16.104 45.201

1.02 6 5 X 10 6.666 6.992 8.145 10.907 18.629 63.661 7.393
10 X 20 7.227 7.579 8.821 11.794 20.029 65.381
EXTl 7.414 7.775 9.046 12.090 20.496 65.954

1.01 10.283

a5k 
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TABLE 7

DISTANCE OF SHOCK FROM ORIGIN FOR DIFFERENT 0 VALUES,
i.e. F(0). EXT1, EXT2 = VALUES EXTRAPOLATED
FROM 5 X 10, 10 X 20 AND 10 X 20, 20 X 40 GRIDS

z '^
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TABLE 8

i	 _ z	 REQUIRED ACCURACY IN SHOCK LOCATION

TO GIVE MACH NUMBER ACCURATE TO AM = 0.002

n

M
Accuracy Required

in F(0)
Accuracy Required
in In (F(0) - 0.5)

1.3 0.004 0.002
1.10 0.019 0.007
1.08 0.026 0.008
1.06 0.038 0.011
1.05 0.048 0.013
1.04 0.065 0.016
1.03 0.095 0.022
1.02 0.163 0.033

1.01 0.412 0.066
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1

r

SELECT N, P TO FIX GRID SIZE, E.G. N=7, P= 12 IMPLIES A 5x10 MESH
SET ITMAX = MAX. NO. OF ITERATIONS

ESTIMATE SHOCK COEFFICIENTS A o , A ... A NSH - I
SET S = P. N. 10- 4 , SFINAL = P. N. 10-7

ITN = 0

-AXATION STEP AND CALCULATE S 2 =	
Q^2

ITN + I

SFINAL OR ITN > ITMAX?

NO	 YES

^ 2 < S?

END PROGRAMME

YES

= S2

;K PARAMETERS BY AN
T X8Ai

{ %
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p 5X10
IOX 9-0 ^ SHOCKFIT

1.0

0

2.0

1
i

,a

^. I

b ►

ML

3.0

eo

4a. MACH NUMBER VERSUS DISTANCE ALONG SP ► °ERE

0 8

	

	 MACH NUMBER
BEHIND SHOCK

ML

0.6

0.4

0.2

0	 0.2	 0.4	 0.6	 0•8	 1.0	 DISTANCE
BODY	 RADIUS

4b. MACH NUMBER VERSUS DISTANCE ALONG AXIS OF SYMMETRY

FIG. 4: RAXBOD COMPARED WITH PRESENT RESULTS, M= I°3
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3 0%

M1

2.

O

1.0

ML

0.8

v G -r

5a. MACH NUMBER VERSUS DISTANCE ALONG SPHERE

MACH NUMBER
BEHIND SHOCK

0 5X10
a lox 20 NOT CONVERGED SHOCKFIT0 20 X 40

RAXBOD 36 X 36 GRID

0 0	 1	 2	 3	 4	 5	 6 DISTANCE
RADIUS

5b. MACH NUMBER VERSUS DISTANCE ALONG AXIS OF SYMMETRY

FIG. 5: RAXBOD COMPARED WITH PRESENT RESULTS, M =1.02



F(0) = ai3(M -1) V3t 
V2

(NACA 2000 FORMULA)

r

F j

i
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2.2	 EXPERIMENT

• BELOTSERKOVSKIY

• NACA 2000
t 2.0

In (F(0)-^/2

16	 ACCURACYREQUIRED TO
GIVE A M<O.002

I.6
(1.04)

1.4	 (1.06) z L.

THEORY

	I2	 p 5X10
v 10 X 20 SHOCKFIT
0 20 X 40
0 EXTRAPOLATED FROM 5 X 10

	

1.0	 AND 10 X 20 MESH

O	 r7 RAXBOD 36 X 36

	

0.8	

O	 O BELOTSERKOVSKIY - SCHEME III

0	 x FRANK AND ZEIREP

	

0 .6	 p

r
u

a,

^V

i ^r0.40	 I	 2 1	 3	 14	 5	 - in ( M - 1)

1 . 62	 1.3	 1 . 17	 1 . 10 1 . 06 1 .04 1 . 02	 1 . 01	 M

FIG.6 : SHOCK WAVE STAND — OFF DISTANCE VERSUS MACH NUMBER
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APPENDIX A

The 0 - * a Transformation

Consider part of the transformation (1) i.e.

0 = av 3 + ba .

Let

o=amat0 =-
2

hence	
ir

= aam + bam	 (Al)
2

Now we may require to bunch up 0 = const co-ordinate lines near the axis of symmetry 0 = 0 (this
is done in the case of ellipsoid calculations). To do this let

le a l a M — a\^a/o

where a is a constant fixed by the user to bunch lines closer together, thus

3aam + b = ab	 (A2)

We fix b = 0.1 and solve (Al) and (A2) for a and am giving

37r/2
6M = (2 

+ a) 
b	 (A3)

and	 (a - 1) b
a =	 (A4)

3am
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APPENDIX B

The t -> 77 Transformation (2)

We require

=1 at	 =1

and also, to bunch the co-ordinate lines near the body,
r

(di7) =o -
gl

\dn/=12

Cd??	
e2 \ 

di?	 2

where g1 and g2 determine the density of the co-ordinate lines near the body and shock relative to the
density in the middle. Since the shock departs rapidly from the body as M approaches unity it was
felt that g1 should. accordingly grow smaller with Mach number decreasing while 92 is fixed at 0.8 so
that t co-ordinate lines are not too sparse near the shock wave. Thus we choose

91 =M - 1

and
	

92 = 0.8

Now	 ^n = A' + 3B'-q2 + 4073

and so the equations for A', B', C' are

A' + B' + C' = 1

A' = 91 ( A' + 3B"al /2 + 4C'rgi /2)

_	 A'
A' + 3B' + 4C' = 92 A'+ 3B'nj /2 + 4C',7i /2) - 92

91

where 171/2 is the value of n at = 1/2 hence

1/2 = A''11/2 + B''ni + C ^/2	 'ai /2
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APPENDIX C

Velocity Components in the (77, z) Plane

As defined previously (u, v) are the velocity components in the (r, 6) directions. Now let u'
be the velocity along r = const and v' be the velocity along 77 = const. Thus u', v' are the velocity
components along the mesh lines in the (77, ,r) plane and as such indicate which backward finite differ-
ence expressions to use in the supersonic region.

i	 To find u', v' we let µ be the angle between the line r7 = const and the line B = const. Then

u =u'+v' cosµ

-	 and	 v = v' sin µ

Now the line 77 = const is given by

ti

	

	 0=6r7= 77g 6^ =q(,Sr+ 8050

and is therefore given by

Sr _o

SBr

so that
rS0	 -r^r

tan µ
Sr	 ^0

V ^+ ^2 /r
v'

^r

	

^e	 1	 v
U' = u - v' cosµ = u - v cotµ = u + v — _ — (u r + v ^0

r

referring to (11) it can be seen that u', V are related to U, V and in fact have the same sign since 77,
(by definition) and ^r (= 1/(F - G)) are positive. Thus U and V are used to determine the direction of
flow in the supersonic region.

Thus

and

PRECEDING PAGE BLANK NOT FILMED

y	 i
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APPENDIX D

Transformation of the Principal Part to Streamline Co-ordinates (S, N)

Consider

± (1 - a2 ) OSS +
U2 0,1 ,n + 2UV^,^ T +V2 0TT)ONN = (q2

a2>

i_

+ 
q2 CV2 inn - 2UV0,nT +U2 TT)

H

_	 U2 + V2	 U2	 UV - UV	 UV
I - (	 q2	 a2	 ) 	 + 2

	
q2	 a2	 017'r

4

4

^

>f
u

+ jJ2	 V2+ ( V2 _

\	 q2	
a2) 017

r Now
^

Pf
_

U2 + V2
V	 2	 2(Ut, + 

v	
to	 77g + 

(Vt,

	

u_= to)
	

^2
r

r

_	
U2 

+ 
V2

- rl^
2
 ( (U2 + V2 ) t	 +	 t 2r

2	
o /r 2

2

n t2= ^7 q2 
(t2 +	 l

r	 /

i

and

U2= (U2t2 + - tB + 2uvt,	 1 71re

4	

s
^

Hence
_

U2 + V2 - U2 _	 2	 2 + e - u2	 2	 V2	 Y 2
-	

2uv	 to \!1,
C r	 r	 Sg

I 2q	 a2 r2	 a2	 a2r2	 a2r	 r

772 [t	
U2	 2uv	 to	 to 	 V2

_	 r C1 -	 -	 tr	 +	 (1 - a2 )1a2)	 a2	 r	 r2 J
= Aq2	 (see (16a))

NOT FILMED
y,

PAGE BLANK

( YRSING

iy

v r	 a.
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The 20,wz coefficient is

/UV - UV-
UV) Qe
	 v \1	 V	 u	 u

q2 	a2	 - q2 [(Utr + ro/ 	 r -
 (Vtr - r B )	 r

- (ut, + 
r 	 a2 r ae

Qo v2	u2 uv 	v2 

q2 Ia2 to N 
+ T2 

a ^? - 77 6e 1 a2r r + a2r2 e^

?	 = Qo B
	

- ao t 
uv

77	 +r	
v2

F	 r2	 (a2r	 a2 r2 t
o
 >

l
6

z

to	 V2	 uv
= Qo 77 

r2 C 1 _ 

a2 1 _	 a2rr Qo1\	 /1

r

Y	 = 71t B	 (see (16b))	 J
L

Finally

V2 + U2	V2	 v2 u2	 y2 2
q2	 - a2 =
	

r2 + r2 /
q 2 - 

a2 
r2 Q6 Y

;i
A

QB	
V2	 3

= r2	
1 - a2
	

= C	 (see (16c))

and so

y5	 (1 - a2 l OSS + ONN - A77t 
0
^n + B77t 0,7, + CO,

\	 a

and formula (17) is recovered.

I	 ,^

1	 ,

y

r
i
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APPENDIX E

Evaluating the Amplification Factor

I
The equation of motion with the Ost term added is ^

a	
^ 2

1 - q
	

Oss + ONN - o0st = L.O.T.
(E1)j a

z

(lower order terms)

k where

T'
q2 ass = U2 ^n^, + 2UVOI?7' + V2 0" (E2)

r

_
g2 ¢NN = V2V2 0,7 ,7 - 2UVO,^ T i U2U2 0"

( 
E3)

For the difference equations in ON 	 we use

20" 	 Oj+j + 1	 —	 2^ j	 + ^i j — 7 (E4)

4Ar?A7^,^T j — 1	 —	 ^i — ], j + 1	 —	 Oi+ 1 , j — 1	 +i+ I , j + 1 (E5)

r

A 	 0rr	 —	
Oi-1,j	 —	 ;j	 —	 0ij	 + Oi+I,j

( E6)
s

a

while in Os s we use
A^20,1^	 — i, j	 —	 2lai j _ 1	 + ^i j — 2 (E7)

iI

nt 	 Oij — 1	 Oi — 1,j	 +
3

Al

i

Ar2 0"	 —	 Oi , j —	20i — 1, j	 + Oi - 2, j (E9)

s

assuming, for the analysis, that U > 0 and V > 0. Ost is represented as

_ U	 V

Ost	
q 

ant + q Olt

U	 ^i j 	—	 Oi j — I	 —	 Oi j 	 + Oi j — I
= q	

A7?At

V	 Oij	 0+— 1, j	
—	 Oi j	 + Oi - I +

q	 A TAt t

r

x

S^
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% In order to analyse the convergence of the iteration scheme the above equations have to be
simplified. This is done by assuming that U = U, V = V and U2 + V2 = q2 . An insight into this
simpler case may lead to convergence in the more general case.

Let	 Oi J = Gk eim
n

einr	 (E10)

}	 where G is the amplification factor given by

Oi j = Goi i
A convergent scheme requires IGI < 1. Now let

	 r 
A.

(Ell)

	

µ = MArl	 and v = nAT

and substitute the forms (E10), (Ell) into (E4) - (E9) and substitute those into (E1) to give
i

	

1	 21 - ML I I(,.- 2e-'µ + e-2iµ1	 Q2 + (1- e iµ - e iv + e- "' e i '

 ) A ^T

	

l/	 r?	 \	 3 	 17

1- 2e- iv + e-2iv	
V2

+ (	 1
I AT2

\+ ( e'µ - 2 + e-'µ ) 
GV2
A772

^Ge i(µ +v) - Ge '( v -µ) _ ei(v -µ) + ei(µ+v)

	

	 2UV

4AgAT

+ (G	
1

e 10- G- 1+e'v^ 
U2

AT2

a^{ ^G-Ge'A-1+e'µ	 U
^:	 1	 ^ OnAT

t
+ (G - Ge 1D - 1 + e ' v ) V ! = q2 L.O.T.	 (E12)

AT2

where
_	 aAT

j;	 «, - q2 `qAt

What is the form to be used for aAT/qAt? Condition (25) indicates that we use

aA ,r 	 QIUI

qAt	 q2

i

,.
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i

where Q2 > ML - 1; therefore Q = M L is taken for the analysis and so

«AT _ ML IUI + 0.1

qAt	 q2

is sufficient.

(E13)

Ignoring the L.O.T., since they vanish as Arl, AT -* 0 using 071 /AT = 1, and taking various
values for M L , U, V, p and v, IGI is then calculated from (E12). The computer program to calculate
IGI is shown at the end of this appendix. Using the form (E13) it was found that IGI was less than unity
when ML = 1.001 but at M L = 1.834 and higher Mach numbers many of the IGI values were greater
than unity. Thus an additional Ost which is proportional to ML is indicated and so we next used

«AT _ M 2
qAt	 L

and found IGI < 1 iri all cases,

(E14)

On using the form (E14) in the relaxation program it was found that all cases did not con-
verge — presumably due to boundary conditions or to the simplified model used in the above analysis.
In fact in the relaxation program it was found necessary to use

«AT 
= M2 5 + 5 (M- 

1^JqAt	 L 1	 0.3

to ensure convergence in the majority of cases. However, for values of M close to 1 and with a fine
grid, convergence was sometimes not achieved to sufficient accuracy. For example Table 1 shows the
convergence history for M = 1.02. The lack of convergence in the latter cases is probably due to the
`cutoff' line AB (Fig. 1) lying partially in the subsonic part of the flow field.

It may be of interest to note that

«AT	 ML IUI + 0.1

qAt	 q2

gives IGI < 1 always but this form has not been tried in the relaxation program.
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C	 PFCGRAM TO CALCULATE THE AMPLIFICATION FACTOR GIVEN BY
C	 FORMULA (EI2) USING ALPHA GIVEN BY (E14).
C
C

CCNPLEX ZI,ENU,FMU,EMNU,EMM.U,T1,GNUN,GDEN
RFAL *4 MU,NU
IKN=O
DMAX=O.
R=1.
R2=R*R
N=5
t\I=N+1
CMACH=S./N1
AL=1.01
PI=3.1 4 c 265
ZI= (00 910:)

6	 XM=1.001
XM2_=XM*XM

D02=n2/N
IKN=O
KKN=O
CMAX=O.
C=SCRT(C2)
U2=-002
CNFM=1.-XM2

V2=02-U2
U=SORT(AES(U2))
V=SQRT(AES(V2) )
UV=U*V
DNU=PI/N
DMU=PI /N
NU=1.E-4
DO 2 J=1,N1
NU=1.E-4
DO 1 I=(,NL
KKN=KKN+1
AL1=Q2*XM2
ENU=CEXF(7_I*NU)
EMNU'=1./FNU
FMU= CEXP(ZI*MU)
EMMU=I ./EMU
T1=V2*(EMNU*EMNU-2**EMNU +19) +2.*UV*R*(1.-EiMNU-EMMl)+EMNU*EMMU)
X +U2*R2*(I.+F_NMU*EM,MU-2,#EMMU)
T1=T1 *CNE"+U2* (FNU-1 .)-0.5*UV*R*ENU*( EMU-EMMU )

U = - .L	 U	 *	 J- . +	 - a
T1=U2* ( EMNU- 1.)+V2.*R2* ( EMU-?..+EMNU)-0.5*UV*R*EMNU*( EMMU-EMU )
EDEN=-T1+ALI*(U *R*(I.-EMMU)+V *(1.-EMNU))
01'=CABS(GNUM)
D2=CABS(EDEN )
D=D1/D2-l.
IF(D.GT.O.) IKN=IKN+1
IF(D.GT.DMAX) CMAX=D

100	 FnrM AT 1 1 _ 1 2.4
1	 NU=NU+CNU
2	 MU=MU+DNU

IF(U2.GT.C)2-1.E-3) GG TO 7

7	 PRINT 103.XM,IKN,KKN,DNAX
103	 FORMAT (/' MACH NO' ,F6.3.' NO OF G GREATER THAN 1'9112*

X '	 TOTAL COMPUTATICNS OF G',112,
X	 ' MAX -1 ,E1 .
XM=XM+CMACH
IF(XM.LT.10.01) Gn TC 5
GTOP
ENC


