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ABSTRACT

This report summarizes the results of the Simulation Verification Techniques

Study performed for the Johnson Space Center of the National Aeronautics and Space

Administration.	 This study consisted of two tasks.	 The objective of Task 1.0 was

to develop techniques for simulator hardware checkout; 	 the objective of Task 2.0,

j
d tj

to develop techniques for simulation performance verification (validation)-.

E The Hardware Verification Task, Task 1_.0, involved de<Finiton of simulation_

hardware (hardware units and integrated simulator configurations), survey of cur-•

rent hardware self-test techniques, and definition of hardware and software tech-

k' niques for checkout of simulator subsystems.

The Performance Verification Task, Task 2.0, included definition of simula-
r ,

tion performance parameters (and "critical" performance parameters), definition of

methods for establishing standards of performance (i. e., sources of reference dataw.,

{ for validation), and definition of methods -"or validating performance.

Both major tasks included definition of verification software and assessment

of verification data base impact.

s
An annotated bibliography of all documents generated during this study is

i

i

provided in this report.

EI.Fi
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i SECTION 1
f

F

INTRODUCTION -..

:l

i	 s
I_i

SIMULATION VERIFICATION

TECHNIQUES STUDY

INAS(-13fi57)

—
a

i

The Simulation Verification Techniques Study was performed- for the NASA

Johnson Space Center by McDonnell Douglas Astronautics Company `	 East, Houston

Operations, under contract NAS9-13657..	 K.	 L. Jordan, of the Simulation

f Development Branch of FSD, was NASA's Technical Monitor for the study. `	 3

j T. H. Wenglinski and P. B. Schoonmaker served successively as Principal

Investigators for MDAC. j

1

This report reviews the purpose of the study and our approaches to the

technical tasks, and summarizes our results and conclusions.

(	 I

This report consists of the vu-graphs prepared for the final presentation of

' the results of this study, supplemented by text which expands on the content or

A

z

the conclusions derived from each vu-graph.

1
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cj	 PROBLENi ADDRESSED; OBJECTIVE

TO 'USE A SPACECRAFT Sf1viULATOR for crew training andlor crew procedure
verification, it is imperative that:'

i the simulation function correctly,--and
its performance accurately repre sent the flight vehicle

THE OBJECTIVE OF THIS STUDY-wac to edablich ta-k quideline^ and technique
for:

t checkout of s imulation hardware
`	 • validation of s imulation performance

j

i

^	
t

The basic rationale for initiating this study is shown above. There are

actually two complementary problem areas addressed, both of which relate to the

overall suitability of a spacecraft simulator for crew training and crew

procedures development.

y

First, the simulation hardware must function correctly. Hardware malfunc -

tions degrade simulator performance with respect to its training functions,

{	 which can produce "negative training 	 Second, fidelity of representation of the

"real world' -- the in-flight operational environment -- is essential to ensure

{
i	 validity of training and appropriateness of developed procedures.

a	 The objectives of the study, then, were to develop efficient means to check-

out simulation hardware, thus ensuring proper operation, and to validate simula -

tion performance, thus ensuring high fidelity. The net effect should . be a

substantial improvement in effectiveness of spacecraft simulators.

i
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MAJOR STUDY TASKIS

WBS 1.0: HARDWARE VERIFICATION
F

Develop hardware checkout technique, applicable to -tate-of-the-art
spacecraft cimulatorc.

WBS 2.0: PERFORMANCE VERIFICATION

Develop technique s to verify the performance (fidelity)	 of - individual module
and the total	 simulation

WBS 3 .0: FINAL DOCUMENTATION

Final	 summary report,	 final oral pre zentation,	 new technology l «Ρ^port^.

f

` The definition ofmajor study tasks parallels the preceding statement of

problem areas and objectives for the study.

WGS 1.0, Hardware Verification, was aimed at the development of hardware

checkout techniques applicable to the types of equipment  to be ex expect:-A on state-q	 Pp	 yPP

of-the-art spacecraft simulators. 	 "Applicable" As perhaps the key word in this

I charter; in our techniques survey effort (WBS 1.2), to be described presently

(see also TR-2a and TR-2 in the Bibliography), we found that very little research

and development work in self-test techniques has been undertaken specifically for
I

^ppl i cati on to flight simulators.-

WBS 2.0, Performance Verification, involved development of techniques to

verify the performance (i. e., the fidelity of representation of the real wor.'.d)

of individual simulation modules, as well as total	 integrated simulations.	 (Later

I 1 in the >discussion	 we shall provide a more or less formal definition of what we

mean by a "module"; for the present, any intuitive notion of what a module is will

suffi cep: )

{
The outputs of WBS 3.0 include this report, the final presentation on which

this report is based, and the usual n.w technology reports..

E
1-3r
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REPORT CALENDAR DATE

J973 M t974	 _- 197
J A S 0 N D J F M A M J J A S 0 N D J F M

WBS 1.0

0TRA:— Simulation Hardware DefinitionTR-2; 
;Self-Test Techniques Survey O 0

TR-3:	 Integrated System Self-Test 0
DRL-2; Self-Test Hardware Design

& Techniques Report

O

WBS 2.0

TR-4:	 Module Perf. Param. & Standards
TR-5:	 Subsystem Simulation Validation
TR-6:	 Sim. Integration& Validation* O
DRL-3: Simulation Performance Validation

Techniques Document

WBS 3.0

DRL-4:	 Final Report
DRL-5,6: New Technology Reports

* Incorporated into DR L-3
Denotes CE1 report.

O Denotes added task reports.

The schedule of documents delivered under this contract is shown above.

i
Individual documents are briefly des;ribed in the Bibliography, Section 5.

On this schedule, the triangles-represent contracted end items, which are

identified by their DRL (Data Requirements List) line item numbers and title. The_	
1

circles represent additional delivered Task Reports ('TR's), not required by the

contract, which weregenerated to provide NASA with complete and current infor'ma-

tion on the results of individual study subtasks.

Task Report n2, the techniques survey report, was generated in two versions,-

denoted TR-2a and TR=2' in the Bibliography. TR-2a described company- funded re-

search done before init.:-,tion of the contracted study, and was delivered at

contract go-ahead; TR-2 covered further survey efforts undertaken during the
F	

contract, and was restricted to techniques which appeared' directly applicable to

simulation veri firati on_ probl

1-4
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SECTION 2

HARDWARE VERIFICATION (TASK 1.0) ^?

C SIMULATION VERIFICATION TECHNIQUES STUDY

TASK 1.0 1	 ,

I HARDWARE VERIFICATION
I

a

In th.is section, we discuss our approach and the results of the hardware veri-

fication task, which was the first task performed` during the study.

E

PRECEDING PAGE BLANK NOT FILMMW
'
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HARDWARE VERIFICATION TASK 1.0

OBJECTIVES:

DEFINE

	 O
	 HARDWARE TECHNiOES FOR CHECKING THE OPERATIONAL...	 AND

D LL RNSF	 SIMULATOR 	 —
I

SCOPE:

IDENTiFY/DEFINE HARDWARE AND SOFTWARE REQUIRED FOR FOLLOWING:

O VERIFY PROPER OPERATION OF ALL DATA PATHS, END TO END -- "READINESS
TESTI NG"

O ISOLATE FAILURES TO LINE REPLACEABLE UNIT (LRU) -- "FAULT ISOLATION"

0—."CCUMULATE DATA FOR !DENTiFICATION OF INCIPIENT FAILURES -- "INCIPIENT

FAULT DETECTION"

0 PRIMARY EMPHASIS IS ON AUTOMATIC TEST TECHNIQUES

0 ACCEPTANCE TESTING IS NOT OF INTEREST 1

i

2.1	 OBJECTIVES AND SCOPE

The primary objective of the Hardware Verification Task was to derive hardware

and software techniques for implementing self test capabilities in an advanced

manned spacecraft training' simulator.. This task was not concerned, with the

F.	 initial	 acceptance testing that a piece of equipment is first subjected to when

delivered by the contractor, 	 Rather, the testing of concern was that required

on a daily basis for purposes of assuring the pro per operation of the simulator

hardware before beginning training activities.

The tests of interest on an operational_, periodic basis may be further divided

c	 into several categories, readiness tests, fault isolation tests, and incipient

fault detection tests. 	 First, the proper operation, or "readiness", of the

series arrangements of equipment terminating at the host computer can in many
i

instances be ;tested for operational adequacy on an end-to-end basis. 	 For example,

a meter deflection of a certain amount:can be commanded by software in the host

computer.	 The	 ro er deflection of the meter p	 proper   	 that all of the hardwarecom

in the data path from the computer to the meter are functioning satisfactorily.
a

Failure to function properly creates a need for an additional test, that 	 is, a

fault-isolation test, to determine where in the string of hardware the equipment

is defective.	 If there are so many meters in the simulator that meter failures'

become a regular-occurence, then it may become desireable to collect meter per-

formance data and to predict when an instrument is likely to fail 	 in- order that

it may be serviced during a regular maintainance period, rather than allowing `„	 k

a failure to interupt training operations.	 These last test techniques, we have

called incipient fault detection techniques.

2-2
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'HARDWARE VERIFICATION TASK 1,0

GROUND ,RULES:

;I

t

0 DESIGN NOT TO ENDANGER PERSONNEL OR EQU I PA1Erd'

'I

0 MALFUNCTION Or SELF-CHECK HARDWARE SHALL NOT HINDER

NORMAL_ OPERATION
i

. DESIGN SHALL MINIMIZE. HUMAN INTERVENTION

A MAXIMUM,USE OF AVAILABLE HARDWARE AND SOFTWARE

0 MINIMIZE REQUIREMENTS ON COMPUTER RESOUIRZCES

i 0 MINIMIZE CHECKOUT TIME 	 . I

,jr ,I

Certain specific ground rules were specified by the statement of work

which insured that the safety of personnel and equipment were not compromised ^	 t

for test purposes. Efficient utilization of existing equipment to implement

the self test techniques was also required.	 However, the need to minimize the

workload imposed on the simulator equipment by the test techniques was also

considered and test approaches are recommended that minimize the impact of test

operations.

a
it

I
2_3
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HARDWARE VERIFICATION TASK 1.0

SPECIFIED RESULTS:

0 SIMULATION SELF TEST HARDWARE DESIGNS AND TECHNIQUES REPORT

SPECIFIED CONTENT:

0 DEFINITION OF SIMULATiOl, HARDWARE

0 DESCRIPTION OF CURRENT HARDWARE SELF TEST SYSTEMS

0 DESCRIPTION OF HARDWARE AND SOFTWARE SELF TEST TECHNIQUES

• INCLUDING THE FOLLOWING'

00 DEFINITION OF A COMPLETE SET OF PARAMETERS WHICH CHARACTERIZE
ALL SYSTEMS, SUBSYSTEMS AND HARDWARE UNITS

00 DRAWINGS, SCHEMATICS AND WRITTEN DESCRIPTIONS OF TECHNIQUES

FOR ACQUIRING CHARACTER I STI C ' t A! AMETER DATA FROM THE
SIMULATION EQUIPMENT

0; DESCRIPTION OF THE SOFTWARE REQUIRED TO PROCESS AND
EVALUATE DATA

00 DESCRIPTION OF THE DATA BASE REQUIREMENTS

I

The documentation requirements for this Task, as spelled out in the statement

of tgork, were quite explicit The documentation, of the techniques recommended

for each of the simulator subsystems includes schematics, circuit diagrams, software

flow charts and accompanying. text. We also formulated an integrated test software
i	

configuration and assessed the impact on a data base of program software and data

requirements.

r
I

J

y

}

p_/I
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SIMULATOR
HARDWARE

(SUBTASK	 1.1)_

HARDWARE SELF TEST TECHNIQUES (SUBTASK 1.2)

READINESS TESTS FAULT ISOLATION INCIPIENT FAULT
DETECTION

COMPUTER S

DCE

CONTROLS N DISPLAYS SUBTASK 1.;3

DEFINITION OF HARDWARE
VISUAL SIMULATION AND SOFTWARE TECHNIQUES

0 IMAGE GENERATION

0 IMAGE TRANSMISSION

0 DISPLAY EQUIP.

MOTION BASE

MISCELLANEOUS

'.0 AURAL CUES

0 ETC.

I

i

I

i
i

I

The relationship of the results of the three subtasks is indicated above. The

hardware definition subtask (Subtask 1.1) identified the hardware devices expected

in future manned spacecraft training simulators. The self test techniques survey

task (Subtask 1.2) identified techniques and concepts applicable to testing of

u	 simulator hardware. The actual definition of hardware and software techniques,	 x
x

(Subtask 1.3) took the results of both of these subtasks and addressed, one by one,

the problems of implementing self test techniques for each of the major simulator

subsystems. This latter subtask constituted the bulk of the effort accomplished

K	 for this Task.

f

Y 

2-6
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i

RESULTS	 OF

I SUBTASK	 1. 1 - DEFINITION	 OF	 SIMULATION	 HARDWARE

"
• REFERENCE CONFIGURATION

F	 j • HARDWARE COMPONENT I DENTI FI CATI ONIDATA

,. s

2.2	 SUBTASK 1.1 - DEFINITION OF SIMULATION HARDWARE

The hardware definition activity accomplished several essential prel.iminlry

. V
_

objectives.	 First, it identified the simulator system and subsystem confic4uI a-
t

tions anticipated in future simulators and, therefore, the confi gurations with

which we were tobe concerned. 	 Secondly, it identified the particular types

of-hardware anticipated for future NASA training simulators and enabled us to

establish a base of information for future use.	 Examples of hardware types are

the hydraulic, synergistic motion bases; the RGB color TV-model visual simulations;

crew.station,equipment typical of the Shuttle orbiter.

h

v

4

f

-	 2-7
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SUBTASK 1.2 — SURVEY OF CURRENT HARDWARE SELF-TEST TECHNIQUES

o CURRENT SIMULATOR SELF—TEST SYSTEMS

o BASIC SELF-TEST TECHNIQUES

i

t

2.3	 S'UBTASK 1.2 - SURVEY OF CURRENT HARDWARE SELF TEST TECHNIQUES

There were essentially two phases to the survey of current self test techniques.,

The first of these consisted of surveying simulator, users around the country to

establish their status with respect to implementation of self test techniques

on simulators s pecifically.	 The second phase of the survey activity was concerned
.	 3

s

with identifying generic techniques, available from other sources but suitable 3
'S

for training simulator testing.

—i

f

2-9
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SUBTASK 1.2 SURVEY OF CURRENT HARDWARE SELF -TEST TECHN',IQUES
a,

CURRENT SIMULATOR SELF-TEST SYSTEMS

NAME USER EQUIPMENT --TEST TEST
TESTED FUNCTIONS MODE

PSALT JSCiFSD

'FLINT ME READINESS TEST AUTOMATIC
FAULT ISOLATION INTERACTIVE

;TAMS ANALOG COMPUTER READINESS TEST AUTOMATIC
SWORD STATUS WORD READINESS/FAULT AUTOMATIC

LINK ISOLATION

;CDT PROGRAMABLE READINESS AUTOMATIC
CLOCK AULT ISOLATION

1QPCK DISPLAY READINESS INTERACTIVE
HARDWARE THRU

DCE`

ADC AID AND DiA READINESS AUTOMATIC
CALIBRATION

SAFE ARC MOTION ,BASE READINESS SEMI-AUTOMATIC

NTEC VISUAL SIMULATION READINESS SEIVI1-AUTOMATIC
DYNAMIC RESPONSE

2.3.1 Current Simulator Self Test Systems

The largest amount of existing simulator self test techniques were found on

the procedures simulators at the Johnson Space Center. These tests addressed

the data conversion equipment, associated analog computers, the programmable

clock and the displays	 The tests for the displays are interactive rather than

fully automatic as considered ,for this study.

In addition, the Ames Research Center has developed andapplied a-program

'.	 called SAFE, Six Axis Frequency Evaluation, for the testing of their-electro-

mechancal motion' base equipment. Langley has obtained a copy of this program

and adopted it for use with hydraulic synergistic motion bases. Listings of the

t
software for both programs as well as additional documentation have been supplied

E	 to the Technical Monitor,

I	 The Naval Training Equipment Center at Orlando,- Florida has been doing development
I	

>.

work toward checkout of the vehicle,dynamic simulation as percieved from the visual

simulation. This_ effort considers the recording and evaluation of the apparent

horizon motion when a vehicle transient response i s induced by a step control	 z

input. This effort does not represent a hardware test technique of the type we	 -

i	
are concerned with for this study.	 ?.-lU

r.
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ARC'S SAFE PROGRAM'
WX AXIS FREQUENCY EVALUATION)

r DIGITAL
r CWPUTER MOTION: BASE

ACCELEROMETERS

INPUT
 NDS X

Y

STRIP

'CHARTZ

FR^QUENCY

REO!!DER

RESPONSE PITCH q
E

FAST

i
y

TRANSFORM ROLL POSITION
FEEDBACK

-^ YAW
POTS

r^

;.x

Ames Research Centers' SAFE rpogram essentially generates test commands for a

various types of frequency response tests in the host computer. The response

of the motion base is sensed either by accelerometers or by sampling the 'feedback

voltage from the position feedback pots.	 The performance of the motion base is

assessed by manual examination of the recordings. 	 In terms of this study 'objet-
i	 9

tines, this is a semi-automatic technique,

I

f

2_11
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31 HARCN 1975^.	 RESPONSE TESTING

I	
IINTEC1

V	
CENTER DISPLAY SCY°Etl

$ORIzal	 T	 PRaro-
•	 SENSois

j	 •^	 43.5•

VNI	 •^

}'^_ - 42.7!'	 i4-1.2.2"

59:50R B7

S1GlA 9	
Y.CTIOPI

A OUT	 PLAit03i'

'	 •	
ENSOR SE2lSC3

12

t	 PROTO DET

SIGNAL	 INPUT SIG
GENERATOR

CHI 2 3 L S 6

TISICORDER

r

The dynamic response test, as applied by the Naval Training Equipment Center, 	 j

introduces an array of sensors (photo-transistors) specifically for test purposes.

This enables automatic data acquisition, but the data is again recorded on strip

charts and evaluated manually which falls short of this study objective to loot,

at automatic techniques.

For the SVTS study, we specifically addressed techniques which not only generated

necessary test signals, but also acquired and analysed the test data in order to

give the operator the final answer automatically. Typical outputs to the operator
i

'	 might be as follows:

4	 "14ETER NUP4BER XXX IS OUT OF CALIBRATION"

OR

"t'OTION BASE HYDRAULIC LINE FILTER NO. XXX

y '	 IS CAUSHIG EXCESSIVE PRESSURE DR'OP,"

2-1?.
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2.3.2 Self Test Techni ques

Self test techniques have been identified for implementing tests to accomplish

j	 the objectives previously noted, readiness testing, fault isolation testing, and

c i	 incipient fault detection. In implementing tests which address these objectives,

it is also necessary to accomplish certain fundamental or generic testing functions

^. which include test signal generation, test data acquisition and test data

€

	

	 processing. In this particular study,,the data processing of interest is that processing

which is required to achieve the objectives of the tests, starting from measurements

of parameters that are available for sampling during the test.

The organization of the techniques information in the manner noted above has helped

to minimize the repetion of certain material or ideas that are common to more than

one-simulator subsystem.
f

x

i 

_ 2-13
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S

SUBTASK 1.2 - SURVEY OF' CURRENT HARDWARE SELF TEST TECHNIQUES

BASIC SELF TEST TECHNIQUES

DE(ECTION	 FAULT ISOLATION
i

FAULT

DIGITAL ELECTRONICS	 o ENi)-TO-END TESTING.	 o FUNCTIONAL UNIT TESTING

ANALOG	 o 'END-TO-END TESTING	 -o LRU- LEVEL, TESTING

o EVALUATION OF CHARACTERISTIC 	 o SWITCHING FOR SIGNAL
PARAMETERS	 INSERTION AND DATA

ACQUISITION

i

i
! For both digital and analog electronic equipment, the difference between readiness.`

testing and fault isolation-testing is basically the hardware unit level at which
the test is conducted.	 Obviously, for a readiness test we are primarily concerned
with verifying that all of-the equipment in a series or string is performing Y

f properly.	 If the series of equipment is deficient in performance, then we need

c to isolate  or determine which unit -in the series is deficient.	 IJi th electronic

equipment, this is commonly accomplished by providing the necessary switching
f

to make the appropriate selections.

For digital equipment, proper performance is verified by checking the bit state

of each bit in a register,, memory' cell, etc.	 For analog equipment, more complex

performance criteria are required and are referred to in our reports as "characteristic

Parameters. "	 These are factors such as signal to noise level, linearity, gain,
frequency response, etc.

j
I

t
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SUBTASK 1.2 - SURVEY OF CURRENT HARDWARE SELF TEST TECHNIQUES (CONTINUED)y

BASIC SELF TEST TECHNIQUES

FAULT DETECTION	 FAULT ISOLATION

ELECTRO-MECH.^NiCAL	 o	 STATIC RESPONSE	 o TRANSFER FUNCTION
DEFINITION

` c DYNAMIC RESPONSE	 o	 FREQUENCY RESPONSE
(IMPUL SE, STEP	 CORRELATION`
FREQUENCY)

3

For electro-mechanical equipment, the characteristic parameters are those

associated with basic control theory.	 These include static response-, amplitude

and phase response versus frequency, etc, However for these systems it is

often not feasible: to sample response at the unit level that we might wish for

fault isolation.	 Consequently, the more sophisticated processing techniques

are of more essential interest here; two of these have been noted above. 	 Faults

in electromechanical systems maybe isolated by performing a frequency response

test and then performing an analysis of this response to define the current
transfer function of the system.	 Changes in values of the frequencies at which

' there are inflection points in the linearized frequency response can be analyzed

to determine what system components may have changed value. 	 An alternate, more

direct approach is to simply generate by simulation the frequency response
characteristics associated with various types of failure and then correlate

the test results with these patterns.

,j.
I	

I _
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SUBTASK 1.2 - SURVEY OF CURRENT HARDWAWE SELF TEST TECHNIQUES

BASIC SELF TEST TECHNIQUES

INCIPIENT FAULT DETECTION TECHNIQUES

0 OVERSTRESS TESTING EXCESSIVE POWER, FREQUENCY, MAGNITUDE, ETC.

REVEAL FAULTS APPARENT OUTSIDE NOMINAL
•	 PERFORMANCE LIMITS

i	 0 MARGINAL PERFORMANCE TESTING- LOW POWER LEVELS OR SIGNAL LEVELS

REVEAL IRREGULARITIES SUCH AS
FRICTION OR NOISE

0 GRAY AREA PERFORMANCE - COMPARE PERFORMANCE WITH DEGRADATION
BOUNDARYr

0 DEGRADATION RATE ANALYSIS - SAVE PERFORMANCE' DATA FOR PERFORMANCE
PREDICTION

Incipient fault detection techniques require substantially different procedures

or analyses than the readiness and fault isolation tests. The first two of the

techniques noted above, overstress testing and marginal performance testing,

require unique tests for the incipient fault detection function. They also

incur the risk of inducing failures during their execution.. Consequently these

tests are better suited for maintainance activites where they can still serve

the purpose of incipient fault detection.

The last two techniques, "gray Area" performance and degradation rate analysis,

both provide an approach for detecting-incipient faults using the data from

either readiness or fault isolation tests. The gray area technique requires the

definition of a marginal performance level for the units being tested. This

`Imarginal performance level is represented by an additional tolerance level on a	 I
parameterarameter which must be stored in the data base.' When the unit^. 

performance, degrades to this level, a warning can be printed out by the computer
f

doing the processing that, within_a short period, the unit performance will

become unacceptable.

(-	 In contrast, the degradation rate analysis technique requires no additional data

input by the developer; rather it accumulates test results from day to day in 	
i

order to perform regression analyses and consequently make a prediction of when

unit perforrnance is likely to exceed tolerable levels.

MCOONfO/EK_L QO(lGLAS' L1'STRONA^.1^"/CS' CO/1TP/ANY . BAST
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SUBTASK 1.2 - SURVEY OF CURRENT HARDWARE SELF TEST TECHNIQUES

SUBSIDIARY TECHNIQUES

SIGNAL GENERATION:

o SIMPLE LOW FREQUENCIES	 SOFTWARE TECHNIQUES-

-	 PROGRAMABLE :SIG

` o COMPOUND LOW FREQUENCIES	 SOFTWARE TECHNIQUES

PROGRAMABLE SIG M

i
	 o SIMPLE HIGH FREQUENCIES	 PROGRAMABLE SIG

o COMPOUND HIGH FREQUENCIES- 	 PROGRANIABLE SIG-WITH NOISE

GENERATION CAPABILJTY

o COMPLEX TEST SIGNALS (TV) - 	 SPECIAL PURPOSE HARDWARE

s
Test signals must be generated for any tests to be performed for any of the h

simulator subsystems	 considered during this study.	 Binary test patterns for testing

digital equipment can readily be generated by the various computer elements to

be found in the simulator.	 However analog signals and some special test signals A

require other specific sources.

Low frequency analog signals for testing meters, the motion base, visual_ system

servo drives and other low frequency_ equipment can be generated without much

complication'` by the various digital 	 computer devices available.	 These signals'

can be composite signals which are either.sums of sinusoids or pseudorandom noise

signals having frequency components up to the basic bandwidth limitations of

the digital device or its output data channel.

Higher frequency analog signals with various grave forms such as sine, square or
E ram	 sh apes, as well as broad band noise si gnals can be readily generated bP	 p	 g	 g	 y programmabl e
' signal generators.	 These generators are available for a very modest cosh and their

output signals can be commanded by digital commands.

In addition, testing of high performance video circuits in the visual simulation i

equipment requires the use of special purpose TV signal generators whose operation

can be controlled remotely by provision of p ,,,oper switching faciliti.as.; this will be

discussed later (Section 2.4.4). 2-17
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-SUBTASK 1.2 - SURVEY OF CURRENT HARDWARE SELF TEST TECHNIQUES

SUBSIDIARY TECHNIQUES

DATA ACQUISITION:

o AVAILABLE SIGNAI S - POSITION FEEDBACK

o SENSORS PHOTO TRANSISTORS

o SWITCHING TECHNIQUES - SOLID STATE SWITCHES

C -

j

A primary motivation for implementing self test techniques on a simulator is 	 -

likely to be the need to ensure that the trainee is only exposed to proper

operation of the controls and displays. Therefore, the test equipment must

provide test sensors that can directly measure those effects that the trainee

is expected to observe. The strength of this requirement establishes, for a

self test system, the scope of the data acquisition problem.

The operation of-electronic devices can be verified by sampling the input and

output signals to these devices. -Servo systems can be checked by sampling the

position position feedback signals required for their operation. However, the

G
performance of devices which the trainee observes visually can only be tested

by provision, of suitable light sensing devices for data acq,uisition.' One device

4	 whose applications we explored at considerable Length was the photo transistor.

k
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TYPICAL DATA ON PHOTOTRANSISTORS

o MECHANICAL

i
LENGTH:	 . • I - .25 INCHES

t
- DIAMETER :	 .063 - .25 INCHES

- ANGULAR RESPONSE : 	 3 - 45 DEGREES r

o ELECTR I CAL

-	 LIGHT CURRENT: .5 - 8.0 MA

-	 DARK CURRENT: 25 - 100 ;nA

- _RISE TIME :	 4 - 80 MICRO Sec.

o THERMAL

r -OPERATING TEMPERATURE:	 -65 - +125 Deg.. C.

-STORAGE TEMPERATURE:	 -65 - + 125 Deg. C.

NOTE:	 ALSO AVAILABLE AS LIGHT SOURCEISENSOR ASSEMBLIES

i Typical properties of photo transistor devices are summarized above.	 These

devices may be used to sense the light generated by external sources such as

s
the cabin illumination or the light at the face of a CRT.	 They are, however,

r

also available with their own light emitters as single emitter detector units.

In the latter configuration, they may be used to sense the presence of a reflecting

mark or device such as the back of a meter needle or a reflective marl:: on a

servo driven device.

r

t.i
.r-

^tw
1

2-19 i

G . MCOONNELL OOL.rGL^S LflSTI?ONd1.d:1TfG:S' CONFP'lif41D^ . F_ :ns T



i

III

MC El 24&
31 MARCH 1975

I^

SUBTASK 1.2 - SURVEY OF CURRENT HARDWARE SELF TEST TECHNIQUES

k

SUBSIDIARY TECHNIQUES

yDATA PROCESSING (REDUCTION):
g

o FREQUENCY RESPONSE FROM SAMPLED DYNAMIC TEST DATA

-FAST FOURIER TRANSFORM TECHNIQUES

o FREQUENCY RESPONSE FROM LOGGED OPERATIONAL DATA

TRANSFORM TECHNIQUES

NOISE 'INJECTION TECHNIQUES H

- CORRELATION PROCESSING
x
x

The fault isolation techniques that were identified for electromechanical ^;> a

systems involved the definition of the; frequency response of the devices.

 p	
y 
	 drivingFrequencyres response can be measured b	 simplydrivin	 the device with one frequency

at a time and measuring the amplitude and phase, res ponse.	 However the overall

testtest time can be reduced by using composite test signals which incorporate signals

of the full spectrum of 'frequencies of interest.	 For a linear system, the

response will of course be the sum of the responses to the component frequencies'.

This response may be disassembled into the 	 components associated with each 	 ,

frequency by analysing the signal with fast Fourier Transform techniques. 	 These

techniques are in common use and copies of the required software; have been supplied

to 'the Technical Monitor.

In addition', i,t may be desirea'ble to determine the frequency response of some

devices, by logging operational performance data and processing this data off

line.	 -A number of techniques have been identified for this purpose and flow

charted.	 These techniques may be of particular interest for monitoring the

I performance of the motion bases stem during normal training op	 Y	 9	 gerations andP

reduce the need for exercising the hardware additionally for test purposes.
x	 j
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SUBTASK 1.3 DEFINITION OF HARDWARE AND SOFTWARE TECHNIQUES FOR SIMULATOR CHECKOUT

'. o COMPUTERS

;` p DCE

o CONTROLS AND DISPLAYS

- o VISUAL SIMULATION

Y op IMAGE GENERATION

00 IMAGE TRANSMISSION
x

oo DISPLAY EQUIPMENT

o MOTION BASE

o MISCELLANEOUS

oo AURAL'.CUES

;. oo POWER SUPPLIES

2.4	 SUBTASK 1.3 - DEFINITION OF HARDWAFRE AND SOFTWARE TECHNIQUES FOR

SIMULATOR CHECKOUT

The techniques discussed in the previous section were applied to development

of self test tech_ni ques for typical components and configurations of each of	 r
the maj or simulator subsystems noted 'above. 	 s

Self test techniques for computers primarily addressed the interface computers,

the flight; computers and other digital computer equipment expected in fugure

training simulators. 	 The large computer systems usually incorporated as host

computers were not addressed specifically, because of the amount of support;

available for these systems from their manufactures.
zj t

The overall results obtained for each of these typical simulator subsystems

are reviewed in the following sections.

2_2,1
r _s

i MCI^ONNELL QU[lGLAS ASTRONA[JTICS COMPANY. 1EAST	 `•



•

iIDC E1246
31 MARCH 1915

^x	 s

RESULTS OF HARDWARE VERIFICATION ANALYSES

! 	 DEFINITION OF SIMULATOR SUBSYSTEM CONFIGURATION j
a

0	 IDENTIFICATION OF LRU'S

0	 IDENTIFICATION OF CHARACTERISTIC PARAMETERS
s

0	 IDENTIFICATION OF FAILURE MODES

01 DESCRIPTION OF FAILURE SYMPTOMS

0	 EVALUATION OF ALTERNATIVE TEST CONCEPTS

0	 DEFINITION OF HARDWARE AND SOFTWARE FOR MOST REASONABLE

APPROACHES

The scope of the analyses completed for each of the simulator subsystems

is indicated above. The subsystem configurations were analyzed in terms of the

nature of the hardware and its structure and organization in order to identify

the Least ReplaceableUnits (LRU's). The LRU's represent the level to which we

addressed our fault isolation concepts. The characteristic ;parameters necessary

for evaluating the performance of the 'simulator subsystems were identified.

Failure modes and their associated symptoms were considered to assure the adequacy

of the characteristic parameters and the data acquisition techniques for fault

detection• Finally, the alternative approaches for implementing self test were

evaluated and hardware and software configurations were selected and documented

by means of hardware schematics and software flow charts.

!	 2-2?.
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. SELF TEST TECHNIQUES_- ANCILLARY COMPUTERS AND INTERFACE EQUIPMENT

{	 ' SCOPE:	 -'
0 FLIGHT HARDWARE INTERFACE DEVICE ► *

1 0 FLIGHT COMPUTER

0 OTHER m1 N I COiv PUTERS

.`
KEY PROBLFIA AREAS-

0 FUNCTIONAL TESTING OF ALL BASIC OPERATIONS

0 ,SOFTWARE REQUIRED

RECOMMENDATION-

0 MAXIMIZE USE OF VENDOR-SUPPLIED DIAGNOSTIC SOFTWARE
CINCLUDE DIAGNOSTIC REQUIREMENTS IN PROCUREMENT

SPECIFICATIONS)
t

rt

2.4.1	 Computers

Large scale-computers systems selected by the Johnson Space Center for host
xi

computers for manned spacecraft training simulators are well SLIpported by
}

their manufacturers with diagnostic software and diagnostic procedures as well 

as b;asic readiness tests.	 During this study we consequently concentrated on the

smaller computer elements and the unique digital hardware that might be anti- ..i
;

cipated for future simulators.	 This equipment includes the flight computers

f_
that are interfaced to the host, the special interface equipment that is required i

for this purpose, and other small computers that may be introduced to service

r specific simulator subsystems such as the visuals or the motion base.

^ .̀ The key problem with res pect to testing of this equipment is the identification

u%
. I

of the basic functional operations to be tested and the description of the soft-

ware required to implement the tests. 	 This information then enables, specification •a,s

of adequate 'test>'support software as part of the procurement of this equipment,

t
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FLIGHT HARDWARE INTERFACE DEVICE - EXTERNAL 'INTERFACES

§	 ,	 W155•	
FLIGHT

K
IOP, COMPUTER

MORY 

•	 i	 f

E	 DATA

j

31 PARALLEL 	—	
FLIGHTADDRESS	 FLIGHT	 CHANNELS	 IOP

 COMPUTEIt

HOST

CCMPUTER	 STATUS	 INTERFACE	 i

	

DEVICE	 FC MEMORY,-AtID
i	 • 	 kEQUESTER ^E

CONTROL	 i

t

i

r

	

DISPLAY'	 FLIGHT
ELECTRONICS	 IOP COMPUTER

UNIT

DISPLAY	
3

KEYBOARD
1

For purposes of this summary, we will describe only the nature of the tests

required and the associated software requirements for testing a flight hardware

interface device. The configuration Ghosen as representative is shown above.

(The number of flight computers shown is only typical and doesn't modify

the functional test requirements.) The flight computers shown are typical of

the Shuttle flight hardware, as is the mass memory and the display electronics.

The interface device is itself a computer since it must necessarily contain-

buffer memory and phiilcessor devices.

i.

s,

{ .	 i

r!	 2-2
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FHID TEST
SUPERVISOR

OVERALL

e

FHID TEST

FliID CBS SAlTTU
INTERFACE

rOMPOttENT
PROCESSOR TEST TEST TESTS LeVEL TESTS I
TEST 3

ALU TEST TIME L AU
TEST

III/P's
TEST PANEL
FUNCTIONS

MEI-MY #x

TEST ACCURACY P s/f.RS #;

'-TEST

REfiSTER
" TEST

•
Ft}IO/HOST

'	 I
P+s/OEUI

FHID/1111 a

P's/FCII
FNID/DEU —

P's/FCAI
FHID/FC

s
_HIMS

Y

x
z

The test and associated software required for testing the interface device

may be divided into test software that is executed by the host computer and the

test software that is executed by the interface device processors. 	 The structure

above represents the host-executed test software.

These tests are distributed between the following major functions:

o	 MID "Processor Tests

o	 Central Buffer Storage (CBS) Tests

o	 Simulated Avionics Master Timing Unit (SMITLJ) Tests

o	 Interface Tests

1 o	 Component Level Tests (Test Panel Controlled) for Fault Isolation

I^

x
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a

i

t

R	 FLIGHT HARDWARE 'INTERFACE DEVICE - INTERFACE EXECUTED TEST SOFTWARE

PROCESSOR
TEST

i CONTROLLER

HOST CONTP.OLLED	 CPROCESSOR

TESTS	 ONTROLLED'	 $	 I	
TESTS

I/O CHANNEL	 KEHORY
I	 TEST	 TEST

s

ALU TEST	 REGIST

ti

MEMORY LOAD
TEST	 ALU TEST	 j

REGISTER	 F{IID DEVICE
TEST	 INTERFACE

TEST a	 ;

i

The software executed by the interface device under host computer control.

verifies the proper operation of functions internal to that device. The initial

host controlled tests shown on the left verify proper operation of the I/O channel

from the host to the interface, as t-relrl as basic operation of the arithmetic
I

logic unit (ALU), registers, and the ability to load and read memory. This

ensures that the processor is capable of accepting and executing the more compre-

hensive test software Toad shown_ on the right. The ALU tests verify proper

and timely execution of the basic hardviare instructions.

2-2C
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SELF TEST TECHNIQUES - DATA CONVERSION EQU I PmENT

KEY PROPLE1vi AREAS:

0	 CONFIGURING SELF-TEST FOR MAXMUM USE OF EXISTING
HARDWARE (MINIMUM ADDITIONAL HARDWARE)

-0	 MIN'IMI"LE IMPACT OF SELF TEST HARDWARE FAILURE ON
;NOMINAL OPERATIONS

0	 FAULT ISOLATION TO THE LR !U !EVEL FOR BOTH DIGITAL
AND ANALOG ELEMENTS

0	 SWITCHING TECHNOLOGY EVALUATION

I

Y

2.4.2	 Data Conversion Equipme nt

Testingof data conversion equipment is the area in which there is the most

past experience at the Johnson Space Center on the procedures simulators.	 In

addressing the key problems noted above, we were most concerned with evaluating 3

the latest switching techniques available for implementing the DCE tests in a

fully automatic manner, and the magnitude of the DCE testing problem as we anti-
cipated it -For the Shuttle training simulators.

C

p

k

E

li

is$
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DCE CONCI_US ION SIRECOMMENDATIONS

0 DCE SELF-TEST ANALYSIS IS RELATIVELY STRAIGHT FORWARD

BECAUSE INCREASED USE OF MICRO-ELECTRONICS INCREASES
THELEVEL AT WHICH LRU S ARE DEFINED. 	 (I.E.	 FAULT ISOLATION1
{.^.^T REQUIRED TO A V.RY LOW LEVE..I

0	 SOLID STATE SWITCH TECHNOLOGY IS NOWCOST COMPETITIVE
AND OFFERS THE FOLLOWING ADVANTAGES:

rj -: VERY HIGH RELIABILITY
i

- SMALL PACKAGING REQUIREMENTS

- SMALL POWER

0 ' TEST SOFTWARE REQUIREMENTS FOR BOTH SIGNAL GENERATION

AND FAULT ISOLATION ARE VERY STRAIGHTFORWARD.

d

i

The increased use of micro electrbnics on DCE to be procured in the future
s

impacts self test requirements by vastly reducing the number of components in-
r

the system to which faults may need to be isolated. 	 The use of solid state	 7

stitching and past software experience should enable' implementation of self test

capability to an appropriate level for a spedific simulator.
Ea	 t

E

I	 t
it

tj

 Jj

r' 333

2-2H

^* ^ MCppNN^LL O^UCLAS LaST/7l?h/AUTLC.S C41( 3dP/iNY ^ I'saS7C'



SELF TEST TECHNIQUES - DISPLAYS

o'ANALOG
- METERS WITH GALVANOMETER MOVEMENTS `	

y

j . -	 DC SERVO DRIVEN METERS
r - SYNCHRO/RESOLVER METERS

o	 BILEVEL
LIGHTED INDICATORS'
ELECTROMECHANICAL FLAGS

'
o VIDEO

w

x. - CRT GRAPHICS DISPLAYS

2.4.3	 Controls and Displays

Testing of control devices requires primarily the design of a concealed c

actuation device since some electrical signal- is nominally modulated or inter-

rupted by the basic control operation and is therefore available for sampling.

The actuation capability must be concealed to maintain the fidelity of the crew

station hardware.	 We identified several techniques for actuating switches since
It

the capability of automatically setting switches- seemed to have synergistic add-

itional benefits for initializing,or resetting the simulator. 	 Continuous controls

require the design of a servo system and concealment is more peculiar to the

particular control.

A larger variety of test problems exists for the various display devices.'

We considered the classes of displays noted above.	 Although we identified in

considerable detail the functional requirements andscope of test software required`

for testing CRT graphics displays, these test facilities should be sDeci fi ed as {

part of the hardware procurement.	 For this summary we will review our recommended ±

test techniques fo^^ the instruments and indicators noted above.
j

g

_	
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SELF TEST TECHNIQUES • DISPLAYS

DEVICES	 DATA ACQUISITION	 TEST REQUIREMENTS

GALVANOMETERS	 PHOTOTRANSISTORS	 STATICIDYNAMIC RESPONSE

SERVO METERS	 POSITION HLEDBACK	 SiATIC/DYNAMIC RESPONSE

SYNCHROIRESOLVERS 	 POSITION FEEDBACK	 STATICiDYNAMIC RESPONSE

f	
LIGHTED INDICATORS - 	 CURRENT FLOW	 ONIOFF CURRENT LEVELS

f FLAGS	 ELECTRICAL CONTINUITY	 POSITION

The techniques we identified for testing the various display devices are

summarized above. For these displays, sensing of the devices response to an

input signal is the Ley test problem. For servo meters and_synchro/resolver
devices vie are able to sample the position feedback signals to obtain continuous

position data. For galvanometers-, the use of phototransistors to sense descrete

meter positions is recoirmiended. Dynamic response can be obtained from discrete

position information (two locations on the scale) if the nominal response time

from one position to the other has been established. The software required for

testing ,galvanometers with data from two meter position paints available is

shown on the following page.
I

We also defined techniques for checking either current flora or electrical

continuity for purposes of testing mechanical and lighted indicators reSDectively.

2-30
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VISUAL SIMULATION SUBSYSTEMS

`	 •	 SCENE GENERATION EQUIPMENT

•

	

	 • IMAGE TRANSMISSION SYSTEM

VISUAL DISPLAYS
j

t

o

2.4.4 Visual Simulation Equipment	

3

The visual simulation equipment for which self test techniques were derived

was divided into three basic categories. The scene generation equipment, as we

defined it, included primarily the models and associated servo drives including

servo drives for camera positioning.

The image transmission system was defined to include all of the color TV

'	 hardware with the exception of the CRT's for the displays. The CRT's and thei'r

associated opti cs were grouped with the visual di s,,)l ^ U equipment.

Although we defined hardware and software requirements for testing all three

categories of visual equipment,` we will prii=iarily address the color TV Subsystems

requirements for purposes of this summary report.

i

Y{

^y
	 s
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SELF TEST TECHNIQUES - VISUAL SIMULATION SUBSYSTEM

SIMULATOR TV SYSTEM SCHEMATIC
I

VISPLAy SWITCf1rajt111IP
TRAINIiG

^
1

z VIDEO PROCESSING CONTROL CPEV

SWITCHING CONTROL	 - STATION.

NL07	 f .	 w
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1
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(RGB) CANEPA SNITCHING
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,
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INTERFACE

1
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CAMERA CONTROL ^ TY
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I
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SIGNALS -

VIDEO
CLOUD
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The general configuration of the TV system which we addressed is based in

. part on the results of the Space Shuttle Visual Simulation System Design Study

recently conducted by 14cDonnell Douglas Electronics_ Company and is shown above.

The camera switching for scene selectipn, the video processing and the switching

of processed signals to appropriate displays are accomplished under computer

control.

;

I

r

i

i
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SELF TEST TECHNIQUES - VISUAL DISPLAY SUBSYSTEM

I

TYPICAL RGB SYSTEM SCHEMATIC

k

e

i

O""C'
s
	 Wei	

p	 7
nirrort -^	 lucat

6B 	
RED	 Atcola rrtun IuDp

f,*—" 
--^	 ►0.E•AIGp

Elea punt
GREEN	 -

R,G,O L,B 9v	 7RE•ldaT	 Ccu	 ^^--`^f• Ina t

i	 .
ttuE

iRE • AMP	 TiicoAx pnaspMr tnnn=

CAMERA

	

	 CAMERA	 DISPLAY

CONTROL 1

UNIT

We assumed that the color images would be transmitted by a conventional RGB (Red/ s

Green/Blue) color system. In this system, the three primary color images are separated

by dichroic filters before they reach the camera tubes. Each color TV channes is

effectively a separate black and white'TV chain. No coding is introduced since the three

channels do not have to be compressed into one channel for broadcast. The test

techniques applied to each channel are identical and are the same as might be used for

a black and white TV system since the video signals have no color qualities. The

signal from each color channel is directed to the appropriate gun in the CRT and the

images are recombined and color restored at the CRT phosphor screen.

i

M
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rI;

r	
I.

t	
i

^,f

1-

Chaz^acteristic (1) (2) (7) (4)' (5) (6) (7) (e) (9) (10)
Marameters Yoltanes	 (P/ p SSI9na1 Differ- i Low High Convergence

mpos']tr.EquIpmenC Reso- Hai se ential Frequency Frequency or
Tested _Video Yldeo Setup lution Gamnj Ratio Gain Streaking Ringing Linearity Registration

,. Optical IEnd to
a. r Electri ca l	 E nd I x x x I x X X X x x

Electrical	 End to
d Electrical	 End x! X ; x X x x x x

Car,^cra
(Tube Outcut) I x_ x x x x X x x

Camera
(Pre AMP Input) x x x x x X x x x

w-
CCU Camera Control
Unit X z x x x x x ;

x X

Y xeying x x x x x x x i	 x x

Display Monitor - Vxr:.. (at. grid) x x. x x x x. x x

Display rUnitor
.(optical)	 ': x x. ;	 x k X x.

^;	
p

In order to define self test techniques for testing the TV-system electronics

we first identified the characteristic parameters which could he evaluated for

the complete strings of TV electronics (readiness testing) and the characteristic

parameters which would require measurement for specific units in the chain (fault

isolation). The intent, in this case, is to acco))plish fault isolation by looking

at the performance of individual  un.i s . The correlation or applicability of

characteristic parameters for the various units is shown above.
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In order to implement the. tests required to measure these characteristic

parameters, it was necessary for us to identify the test signals from which each

of these parameters might be defined. -The signal shown above is the voltage,
i

time history for	 one horizontal Tine of the multi-burst TV tent signal. This

'	 is the image that would-be observed: on a high frequencyfrequency oscilloscope. This test

signal enables measurement of the 'first four characteristic parameters; in the

preceding table; the composite video signal pea{;-to-peak voltage, the picture video

signal .peak-to-peak voltage, the set-up voltage, and the resolution. The last

parameter, the resolution,, is determined by measuring the picture video signal

peak-to-peak voltage for each of the frequency bursts. A reduction or loss of 	 1

voltage amplitude at the higher frequencies corresponds to a loss of horizontal

resolution.	 ^•
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The image shown above is a somewhat crude representation of the image that

would appear on the TV screen while _a mUlti-burst test signal was being trans- 	 it

mitted. The narrower vertical lines correspond to the higher frequency burst,
on the previous page. We identified additional test signals or patterns for use

in determining all of the characteristic parameters.

•
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SELF TEST TECHNIQUES - VISUAL SIMULATION SUBSYSTEM

DIGITAL PROCESSING OSCILLOSCOPE

:i

tame a 250 MHz scope ... FDT 101^	
Displayp	

—1	
D7704 Display Unit

f'	 1	 1

	
L

111^TI1 tL^
f( ^ _1i1Tl

I
I1

I —	 ^—	 1f	 processing

'	 l	 ^	
add a processor	 = proce Processor and

PDPt I ­ minicomputer

Acqulslllon
A7704 Acquisition Unit

t	 ',

...and a minicomputer

And you have the new
TEKTRONIX DIGITAL
PROCESSING OSCILLOSCOPE

After we identified the characteristic parameters. and the test signals that

could be used for their measurement, we addressed the problem of finding a means

i

	

	 to accomplish the necessary tests in an automatic manner. That is, the manual

recording of voltages from an oscilloscope display was not an acceptable techniques;

Fortunately,, we found a new product on the market, the 'Tektronix Digital Processing

Oscilloscope (DPO) shown above. The digital processing oscilloscope makes it

possible, for the first time, digitize and store for further processing, any	 i

test signal that can be displayed on an oscilloscope. The figure above illus-

trates schematically how this is accomplished. The processor which is inserted

l
between the oscilloscope display and the standard data acquisition modules,`

,
provides a buffer storage for sampled data and also provides an interface with

a PDP minicomputer. Software in the minicomputer can control .all oscilloscope

operations as well as retrieve and process sampled data.

I

l
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^V'

CAMERA

CIRCUITRY
TV.CAMERA

CAMERA
KEYING ^2i

^-RM TUBE
CONTROL CAMERA

AND
DISPLAY DISPLAY

UNIT

(CCU)

SWITCHING
PROCESSING

SWITCHER CRT

COMPU TER
U

CONTROL
TEST

INTERFACE SIGNALS
SIGINAL PROCESSiNG

RETER
OSSCILLOSCOPE

TEST DATA

The manner in which this oscilloscope would be introduced into a self test

system is shown above for one chain of , TV components.	 A fait -ly standard TV t-^st

signal generator can be used for signal generation by providing Switching for

turn i ng on power and for selection of test signals.	 Additional switching can

establish signal^ insertion points and test signal sampling points for end to

end readiness testing or for single Qn.it fault isolation testing.	 A standard

Rhode and Schwart signal/noise meter can also bo stritched in and its output

digitized by the oscilloscope.	 All of the data can be brought back from the

oscilloscope to the computer interface for evaluation, storage, 
or 

processing.

We have also defined a software flow for implementing all of the -tf^st required

to define and assess the characteristic parameters that we p reviously noted,

2-39
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VISUAL SIMULATION SUBSYSTEMS - CONCLUSION AND RECOMMENDATIONS

o DIGITAL PROCESSING OSCILLOSCOPE - SAMPLE AND DIGITIZE TEST RESPONSE
q

o RHODE AND SC!iNARTZ SIGNALINOISE METER STANDARDIZE THIS PERFORMANCE
MEASUREMENT

The, key problem area with respect to TV system self `'test was automating

the measurement of the characteristic parameters which have been used for years	 `y

for'TV system testing. The recommended solution is the use of a digital processing

oscilloscope, such as that available from Tektronix, although others are expected

on the market shortly. The use of the Rhode and Schwartz Signal/Noise meter

provides a standardized means for signal to noise ratio measurement.

Automated testing of TV systems in this manner is a new idea and this is

Ei	 also a new application for the ,digital recording oscilloscope which has only

been available for a short period.

r	 i
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SELF TEST TECHNIQUES - MOTION BASE SYSTEM

o SYSTEM CONFIGURATION - SYNERGISTIC HYDRAULIC SYSTEM

'	 o LRU'S - COMPONENTS OF ACTUATOR SYSTEMS AM HYDRAULICS

o CHARACTERISTIC PARAMETERS - STATICIDYNAMIC RESPONSE

QUIESCENT CHARACTERISTICS

o RESULTS OF ANALYSIS

DEFINITION OF FAILURE MODES	 -	 µ

DESCRIPTION OF FAILURE SYMPTOMS	 :*

DEFINITION OF ALTERNATIVE TEST CONCEPTS

DEFINITION OF HARDWARE AND SOFTWARE REQUIRED FOR SELF TEST

} 2.4. 5 Motion Rase System	 1

The motion base systems analyses addressed the self test requirements for

synergistic, hydraulic motion base systems. The 'Least Replaceable Units for 	 3

these systems are the various components of the hydraulic actuator systems

including miscellaneous hardware such as filters, sensors, etc. The actuator

systems are basically closed-loop servo systems, and their dynamic characteristic	 "' I

parameters are those associated with any cohtrol system. These are parameters

such as characteristic time, frequency response, damping ratio, etc. 	
y

r•

The results obtained from our analyses included a definition of failure
I	 ,

i^---	
modes, a: description of failure symptoms, and the definition of various test	 '.

procedures including static power off and power on tests as well as dynamic

response tests. Description of available sensor hardware for motion base instru-

mentation and the software required for implementing the suggested tests were
G

included in the final report for this Task.

I
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iYDRAULiC SCHEMATIC jo

/2 ACTUATORS J 0117 
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^L./	 Grit

^. 	 MANirnLD	 Ft^

70 OTHER
MOTION SEP,VOS

MOriort srsrtr;
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BUBBLE NOTATION: , IIt01Ct,TES SYSTEM	 5	 7

to ^SYNEROis-rtC G DOr MOTION SASE CoMmwn 
	 SmsOAS ANU SYSTEM LOCATION

The details of the hydraulics typically associated with each pair of 'actuators

is shown schematically above. The dashed circles indicate parameters that are

of interest for monitoring and the point in the system where they may be sensed

or measured.

}
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MOTION BASE

MALFUNCTION MODE
SYMPTOMS

EX'FERNA.L INTERNAL

ELECT. OPEN CIRCUIT
UNABLE TO ACTIVATE PART OR ALL
OF THE COMPONENTS OF THE M.B.

NO CGNTIIIUITY.

ELECT. SHORT CIRCUIT AS ABOVE LOW RESISTANCE.

COMPUTER AND GR DATA INVALID COMMAND LOOPS AND/OR
CONVERSION EQUIPMENT ERRATIC SYSTEM PERFORMANCE RESPONSE.
(DCE)

HYDRAULIC OIL LOW HYDRAULIC PRESSURE, LOW RESERVOIR OIL LEVEL CAUSIIG
RESERVOIR LEVEL LOW PUMP NOISY -HYDRAULIC PUMP TO CAVITATE.

HYDRAULIC PUMP PRES- LOW HYDRAULIC PRESSURE PUMP INTERNAL LEAKAGE, PUMP
SURE OUTPUT LOW DAMAGE, OP, LOW RPM

ACTUATOR MOTION BASE MOVEMENT JERKY OR ACTUATOR PISTON ROD BENT OR
IIOTI03 LOCKS UP AND WILL NOT COMPLETE BEARING SEIZED.
ERRATIC COKXANDED MOVEMENT.

ELECTRO HYDRAULIC RESPONSE (OUTPUT) ,LAGS COMMAND MOVEMENT REESTRIGTIn:1 (II.B.

SERVO VALVE (INPUT) TABLE OR ACTUATORS). FLOW
RESTRICTIO.'J OR INSUFFICIENTIN AMPLITUDE

IN VELOCITY SUPPLY LINE ACCU;SULATOR
PRE-PRESS.

IN FREQUENCY MALFUNCTT IONING SERVO VALVE

GAS IN HYDRAULIC MUSHY SYSTEM RESPONSE LAG
SYSTEM

HIGH FILTER DIFFERENTIAL CONTAMINATED FILTER (DIRTY
FILTER BLOCKED PRESSURE HYDRAULIC OIL)

FILTER OPEN LOW FILTER DIFFERENTIAL FILTER UNIT FLOW THROUGH (NOT
PRESSURE FILTERING) •	 ,

ACTUATOR POSITION DELAY IN RESPONSE TO COMMdVID, EXCESSIVE ERROR (LAG)ACTUATOR
FEEDBACK. FOR ACTUATOR POSITION. POSITION TO'CON'A7D'.

SUPPLY LINE ACCUM
FAILURE OF ACTUATORS TO REACH
HLGH	 COtihJINDED

INSU F FICIENT SUPPLY LINE FLUID
LOWi PRE-CHARGE .	 •AMPLITUDE.

RETURN LINE ACCUM ERRATIC (NOT SMOOTH) M.B. RETURN LINE OIL SURGES NOT
LOW PRE-01ARGE MOVEMENT DAMPED

i

The basic motion base malfunction modes and their associated symptoms are

summarized above. The nature of its symptoms provides the basic indicatio ar of

the type of test that must be implemented to check for that particular ty pe of

failure.
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CHECKOUT TESTS

••
YiODE M1ILFUYCTION
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ELECTRICAL OPEN CIRCUIT 3 3

ELECTRICAL SHORT CIRCUIT 3 3

COMPUTER AND/OR DATA CONVERSION EQUIPMENT(DCE) 3 3

HYDRAULIC OIL RESERVOIR LEVEL LOW 3 3 3

HYDRAULIC PUMP PRESSURE OUPUT LOW

ACTUt1TORi'MOTION ERRATIC 	 + ,/ 3 3 3

ELECTRO HYDRAULIC SERVO VALVE 3 3 3

GAS IN HYDRAULIC SYSTEi 3 3 ' 3 3

FILTER, BLOCKED

FILTER OPEN

ACTUATOR POSITION FEEDBACK

SUPPLY LINE ACCUMULATOR LOW PPE-CHARGE 3 3

RETURN LINE ACCUMULATOR LOW PRE-CHARGE 3

The various test techniques that may be applied to detect the failures noted 	 j

on the previous page are summarized above. It is logical to assume that the

static tests would most assuredly be implemented whether automatically or in a

manual mode by the operator. The appropriate dynamic tests are then required to

check the remaining failure modes. It should be noted that use of a-frequency'

response test does- not necessarily require that the motion base be exercised

and subjected to sinusoidal motions of various frequencies. The techniques

previously mentioned for determing frequency response by logging both the commands

and response of dynamic systems may have their most profitable application to

motion base systems. These techniques notonly enable frequent

checks during the course of each days training sessions, but they also minimize

j	 the wear and tear on motion base mounted equipment.

,,	 E
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MuTION BASE SUBSYSTEM CONCLUSIONS AND RECOMMENDATIONS

o MAXIMUM USE OF INSTRUMENTATION FOR IMPLEMENTING STATIC CHECKS AND

MONITORING SYSTEM BEHAVIOUR

o APPLICATION OF OPERATIONAL DATA LOGGING AND ANALYSIS FOR DEFINITION OF

SYSTEM FREQUENCY RESPONSE

o AS _A CONSEQUENCE OF ABOVE, MINIMIZATION OF WEAR AND TEAR ON MOTION BASE

MOUNTED SYSTEMS BY REDUCTION OF MOTION BASE OPERATION TIME

0 +THE' SELF TEST HARDWARE AND SOFTWARE REQUIRED'FOR IMPLEMENTING THE ABOVE
RECOMMENDATIONS HAVE BEEN IDENTIFIED AND DOCUMENTED IN THE FINAL REPORT

The final report for the Hardware Verification Task, Task 10, presents in

substantially more detail the descriptions of the hardware and software required

for implementing the various tests mentioned. The conclusionsrecommended above

are based on a broader, more comprehensive analysis of notion base test require-

ments than we have seen from any other source.

2-4G
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SELF TEST TECHNIQUES — MISCELLANEOUS EQUIPIv ►ENT

SCOPE-

0 : AURAL CUES

I

}
POWER SUPPLY

0 EXTERNAL CLOCKS AND Thv^ING
f —

^ 

ti

ivi	 ,,-KEY PROBLE	 A ;,EA: 9

F

'. 0 w,EASUREiviENT AND EVALUATION OF AURAL CUE SIGNALS

^	 rI

a

RECOmmENDATIONS:	 —

a.
0 USE FAST FOURIER TRANSFORM TO DEFINE CUE SIGNATURE IN

i

TERtviS OF COMPONENT FREQUENCIES.

I	 ^. l
1	 .a

2.4.6	 Niscellaneous Simulator Equipment

- During the SVTS study we identified self test techniques for miscellaneous

simulator equipment, including the simulator power supplies, the external clocks

and timing functions, and the aural cues simulation.

Power supply checks are straight forward using simple switching techniques

to sample necessary voltages and route them to the computer through the available

data conversion equipment.

I

F
Testing of external clocks and timing equipment is performed regularly

F	 .. by the minicomputer manufacturers, for- example, and has also been addressed here
at the Johnson Space Center.

The Fourier transform techniques previously noted in the techniques survey

section provide a unique but easily implemented tool for verifying the proper
performance of the aural	 cues simulation.	 ThE basic sounds which are generated

can'be identified and evaluated for testing purposes in terms of their spectral
i

. signatures.	 These can be readily assessed by samplin g the 'signal and using the
Fast Fourier `transform to establish its Component frequencies and their phasep	 p

s. and amplitude characteristics. 	 This	 "signature" is readily compared with a

reference signature the storage of which requires only limited memory.

MCOONN^LL r70t/GLAS AS7`RON/^LlYiCS COI►7P^N^ f" _
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HARDWARE VERIFICATION TASK 1.0

SUMMARY OF RECOMMENDATIONS 	
a

o DIGITAL COMPUTERS/INTERFACES MAXIMUM USE OF VENDOR SOFTWARE

o DCE- SOLID STATE SWITCHING FOR LOOP CLOSURES
i

o CONTROLS AND DISPLAYS - PHOTO TRANSISTORS FOR POSITION SENSING

o VISUAL SIMULATION - DIGITAL RECORDING OSCILLOSCOPE FOR DATA
ACQUISITIONIPROCESS ING

o MOTION SYSTEM INSTRUMENTATION MONITORING AND USE OF LOGGED
OPERATIONAL DATA

o AURAL CUES - FAST FOURIER TRANSFORM FOR SIGNATURE DEFINITION

2.5 CONCLUSIONS AND RECOMMENDATIONS, TASK 1.0

In concluding the Hardware Verification Task review, i t i s- appropriate to

consider the summary of the recommendations which have been derived. Techniques

have been identified  and described in schematic diagrams, software flow charts,

and text that enable the automatic testing of all of the basic simulator sub-

systems anticipated in future spacecraft simulators. In the area of digital

computers and data conversion equipment, the techniques recommended are those`

established by the computer manufacturers or already used by simulator users here

at the Johnson Space Center. In the areas of controls, displays, visual simulations,

motion systems, and aural cues the self test techniques reconmiended represent

new ideas or approaches and involve the application of both hardware and soft-

ware techniques in a manner in which they have not previously been used for

simulator testing.	
l

i

►
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WBS 2.0, PERFORMANCE VERIFICATION TASK: PURPOSE AND SCOPE 	 {

e PURPOSE: To define guidelines and techniques for verification

	

Rimulation fidelity relative to the real world (recpon<e- and behavior	 i
indiscernible from tho-e the crew will experience during actual
flight).

• SCOPE: Must provide forvalidation of individual simulation module,,
partially-integrated simulations, and all -up integrated --imulatione.

F

k 3.1! PURPOSE AND SCOPE

The purpose and scope of this study task, as defined by the contract statement

z	 of work, are shown above. While task 1.0 was concerned with verifying the

t, -performance of the simulator hardware with respect to its specifications, task

r	 2.0 is concerned with verifying the performance of the total simulation (software
plus hardware), with respect to the real world, • This includes environment,'

trajectory dynamics, attitude dynamics, onboard subsystems, visual displays,
and motion cues. The goal is to verify that while "flying" the simulator, the
crews are presented with a task environment which is indiscernible from the
actual operational spacecraft.

The task guidelines and techniques developed in this study are to be applicable

to individual simulation modules, partially-integrated simulations (e. g., non-

realtime simulation programs), and all-up integrated, man-in-loop, realtime

simulators,

f

i
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PERFORMANCE VERIFICATION_.SUBTASKS

- WBS 2.1:	 DEFINE PERFORMANCE PARAMETERS

Define the parameter which bed de s cribe the performance of each
spacecraft	 c ub ry-,tem and	 s imulation math model.

US 2.2:	 DEFINE METHODS FOR ESTABLISHING STANDARDS OF PERFORMANCE

Define methods to provide reference data for evaluation 2 of simulation
' performance -- batch	 prcgleamc,	 12b tc-t data, 	 flight te nt data. 1

Determine data formate,	 a«e« data bate impact.

WBS'2.3; 	 DEFINE PERFORMANCE VALIDATION METHODS

Define methods for	 realtime acqui sition and formatting of simulation• performance data.

Define methods and criteria for compari son with reference data, 	 and
evaluation of s imulation _performance.

The purpose of task 2.0 is satisfied by performance of the three subtasks defined ss

above.
J

The performance parameters (and "critical" performance parameters), defined

for__.each spacecraft subsystem/simulation module in Subtask 2.1, are the keystone

of any validation effort.	 Performance parameters are the points of comparison a

between the simulation and the -real world,

-By	 standards of performance	 (Subtask 2.2), we mean sets of reference data

which represent the real world. 	 Comparison of simulation performance parameters

with reference data representing comparable flight conditions enables analysis i

of simulation validity-. 	 Since the quantity and variety of data required for -

validation of a large spacecraft simulator will be so extensive, such subsidiary

questions as data formats and data base requirements become important practical
i

matters.

•
i

Finally, in Subtask 2.3, we define methods for acquiring, handling and processing

I simulation and reference data to evaluate simulation validity.	 This includes

t. definition of check cases, support software, formatting methods for manual eval-

uation, and processing algorithms for automated evaluation.

r

t 3-3
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WBS 2.0, Performance Verification Subtackc

THE- PERFORMANCE VERIFICATION PROCESS:.USE OF• SUBTASK RESULTS

Inputs

(stimuli)	 SIMULATION	
Performance parameters

SOFTWARE
(response)	 DATA HANDLING,

COMPARISON	 simulation
validity.

AND DISPLAY

SOFTWARE
REFERENCE

DATA SOURCES	 reference data
(response)

.	 -	 2.•2	 •2.3

I

I

The interrelationships of these three subtasks, in the context of the total

performance verification process, are shown in the above figure; the circled'

numbers indicate areas where the outputs of each subtask are applied.
j

As in hardware checkout, the stimulus/response notion is useful in performance	 I

f	 verification. In S.ubtask 2.1, we identify the inputs to and outputs (checkpoints)

which should be supplied to each simulation module to properly exercise it. For

the same inputs, reference data sources (Subtask 2.2) provide the "correct"

performance parameter values for comparison (i.e., check cases). Finally, data-

handling, comparison and display techniques developed in Subtask 2.3 enable

assessment of simulation validity.

3-4
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PERFORMANCE VERIFICATION TASK REQUIREM

REQUIRED TASK OUTPUT:
Simulation Performance Validation Techniques Document (D

REQUIRED REPORT CONTENTS (per DRD):

• A de,cription of the s imulation performance parameter-.

e A de scription of batch program s to provide reference dat,
--imulation validation:

-- program con ctant e and variable
- interrelati ,)n r hip c of program module
-- program input and output variable
-- math model- and flow chart-

'	 e Format e for pre s entation of reference data.	 L'

`	 Realtime data acquisition method.,

• Reaitime system impact

j	 t Data comparison and evaluation method , and a«ociated roftware.

• Compari son criteria.

I

3.2 DOCUMENTATION REQUIREMENTS

The results of Task 2.0 were documented in the Simulation Performance Validation

Techniques Document (DRL-3). The contents of DRL-3, as specified by its associated

data requirements description (DRD), are listed above.

The-module-oriented' material in DR!_-3 consists of the sections accented by the	 z 3
h vertical line.

3-5
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PERFORMANCE VERIFICATION REPORTIPRESENTATION OUTLINE

3. SIMULATION SOFTWARE HIERARCHY

A. PERFORMANCE PARAMETERS, STANDARDS of PERFORMANCE, AND MODULE
VALIDATION

4.1-Performance s` ParameterwGuideiine-
4,2 Alternate Reference Data Source
d.1. Environment Module-
4.4 Crew Station Module

i	 4,5 Vehicle Confiquration Modules	 module-oriented studies
i	 4.6 Vehicle Dynamic, Module

4.7 Vehicle Sub ,ctem- Module
4.8 Module Integration	 -
4.? Special Te ,-t Requirement	

iA.10 Reference Data Format
4.11 Data Ba se Impact

S. METHODS FOR VALIDATING PERFORMANCE

5.1 Validation Sofhvare Structure
5.2 Simulator Integration/Validation
5.3 Check_Ca c e Formulation
5.4 Realtime Data Acquisition and Formatting
5.5 Compari son Nlethod c and Criteria

A. CONCLUSIONS AND RECOMMENDATIONS

In final form, DRL-3 ran 760 pages, bound in two volumes, and represents a data

base for use in future validation efforts. In this report we present only a very

brief summary of the results of Task2.0. It is our hope that after reviewing

this final summary report, readers will be stimulated to go to DRL -3 to obtain
more detailed information on topics of particular interest to them. For convenience,

this section of the final report follows the outline of DRL-3 directly.
,i
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3.3 SIMULATION SOFTWARE HIERARCHY

The breadth of the module-oriented efforts is suggested by the uper figure on

the following page, which identifies the major categories of s-.mulation modules:

Environment, Crew Station, Vehicle Subsystems, Vehicle Configuration, and Vehicle

Dynamics

The depth of the module hierarchy cannot easily be shown on= a single tree-type

figure. In the lower figure, we take the avionics class of vehicle subsystems

(which had the "deepest" hierarchy), and complete the expansion down to the

individual module level. Every category of simulation software is similarly

expanded in DRL-3, and every module thus identified is treated at an appropriate

1

	 level of detail.

i

i

i
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3. SIMULATION SOFTWARE HIERARCHY

r
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d, PERFORMANCE PARAMETERS, STANDARDS OF PERFORMANCE

AND MODULE VALIDATION

Necessary Preliminarie s:

	

	 4.1 Performance Parameter Guideline
4.2 Alternate Reference Data Source

Module-Oriented Efforte:	 4,3 Environment Module-
4.4 Crew Station Module s	a
4.5 Vehicle Configuration Module, -

i4,6 Vehicle. Dynamic s Module
a.7 Vehicle Sub-yctem- Module

Unifying Effort:	 4.8 Module Integration
4.9 Special Te rt Requirement-
4.10 Reference Data Format-
A. 11 Data Base Impact

r

3

3.4 PERFORMANCE PARAMETERS, STANDARDS OF PERFORMANCE,

AND MODULE VALIDATION

Because of the specialized information needed to deal with each individual sub- 	 g

system/module,_we decided to treat the module-related aspects of all three sub- 	 +.

i	 tasks -- performance parameters, standards of performance and-validation methods

} as unified study activities and document the results in module-oriented sections.

Thus, the bulk of the documentation is organized, on the basis of moudles rather

than isubtasks.	 1

}

The module-oriented efforts were preceded by certain preliminary definition

tasks, which were required to effectively perform the module-oriented studies,

and followed by unified study of certain topics which apply to all modules, as

well as to validation at various levels of integration.

3-9
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4. 1 PERFORMANCE PARAMETER GUIDELINES

BASIS _F.OR "PER FORIVIARCE _PAR AMETER S"_.

A ret of parameter which completely e^cribe each qubrydem/module.
Thu c, complote module validation is achieved by veFifying agreement
of all performance parameter with their reference value, under
appropriate condition.

s RATIONALE FOR "CRITICAL' PERFORMANCE PARAMETERS

Concentrate effort on a -mailer body of data: the parameter° which are
most -ignificant indicator of simulation performance,	 I
Particularly important for re-validation following --imulation modification, 	 a

3.4.1 Performance Parameter Guidelines

Our goal, as defined by the SOW, was to identify a set of parameters which.	 a

would completely describe the performance of each subsystem/module (thus allowing 	 j

complete initial validation of each module). In addition to this goal, we defined

for ourselves the additional goal of selecting a subset of "critical" performance	 rr
d=

parameters.

,Our rationale was that concentrating upon a smaller body of data would improve

the efficiencyof the validation process for all modules and at all levels of

integration. The use of critical performance parameters will be particularly

important for the inevitable revalidation exercises which will occur from time

to time during the life of the simulation, following modifications and updates.

In contrast to the complete initial validation,, we contend that in most cases of

revalidation, it will only be necessary to closely compare the critical performance parameters

to their reference values. If a good match is secured for the critical performance

parameters, comparison of other performance parameters can safely be omitted, or

at most spot-checked.

I

	

	 On the next page, we list the guidelines for selection of performance parameters

and critical performance parameters. These guidelines were uniformly applied by

the study staff in analyzing the basic information describing vehicle subsystems,

simulator requirements, etc

3-10
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PERFORMANCE-PARAMETER IDENTIFICATION GUIDELINES	 -

•	 MUST BE REAL-WORLD VARIABLES (EITHER CONTINUOUS OR DISCRETE).

i

•	 MUST BE TIME-VARIABLE QUANTITIES, NOT CONSTANTS.

0	 ALL SYSTEM STATE VARIABLES ARE PERFORMANCE PARAMETERS.

- Re nll	 1 PERFORMANCE	 GQ - - SOME ^^.OD UI LE OUTPUTS ARE NOT 	 PARAMETERS—

(e.g., "INCIDENTAL OUTPUTS" -- POWER IN, HEAT OUT).

0	 SOME PERFORMANCE PARAMETER'S ARE NOT MODULE OUTPUTS

(ESSENTIAL,	 REAL-WORLD INTERNAL VARIABLES).

f

{	 I

0	 EVERY VARIABLE AVAILABLE TO FLIGHT_ COMPUTER. OR 'TELEMETRY MUST
BE A PERFORMANCE PARAMETER OF SOME MODULE.

•	 A. MODULE'S' INPUTS ARE NEVER PERFORMANCE PARAMETERS FOR THAT.

MODULE (PREVENTS DOUBLE-COUNTING).

z,

PERFORMANCE PARAMETERS: 	 -

"CRITICAL" PERFORMANCE PARAMETER GUIDELINES

x,

•....PARTICULARLY SIGN IFI.CANT_.INDICATOR OF. MODULE -FIDELITY.

6	 HAS LONG-TERM-OR CUMULATIVE IMPACT UPON SIMULATION VALIDITY.
yea

-4)	 IS READILY AVAILABLE TO CREW; PLAYS A KEY ROLE IN OPERATIONAL

PROCEDURES.

0 	 IS SUPPLIED TO FLIGHT COMPUTERS; PLAYS A KEY ROLE IN COMPUTER

G CONTROL OF VEHICLE SYSTEMS

MCO[}liAfBLL OOUfxLAS .at'STRONA[1TfC . ClomFl twv. EAST
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d.2 ALTERNATE REFERENCE DATA SOURCES

• SOURCES OF DIRECTLY USABLE REFERENCE DATA (check cace•)

- Cloyed-Form Solution
Independent Math Models

-- Exi.cting Anaty ci /Simulation= Programs
-- Tect Data

• SOURCES. OF BASE INFORMATION*or development of math rodel- or.
check ca se ,-)	 ^_

-- Requirement document
-- Specification s, drawing s & rchematicc
-- De sign daza books, operational data book
-- Contra-tor ,-' analyee c, ^tudie c and-simulation

Tech

• POTENTIAL ROLE OF PICRS/SIS

3.4,2 Alternate Reference Data Sources

For a given subsystem/module, there are a essentially two levels of data and

Information which will be desired by simulation development and validation

personnel:	 directly-usable reference data (i. e., check cases for validation),

and basic descriptive informlation, which can serve as a starti-ng point for the

development of math models and/or check cases. Naturally, our emphasis in the

study of data sources was upon sources of directly-usable reference data.

4

Four basic 'classes-of reference data were identified and compared in this part

o'f-the study. The comparison of alternative sources in general terms was documented

in Section 4.2 of DRL-3 comparison of alternative data sources identified for a

particular module appeared in the appropriate module--oriented section.

i

We anticipate that PICRS (Program Information Coordination and Review Service)

I	
,

and SIS (Shuttle Information Service) will _play, major roles in snaking both

reference data and base information available to simulation development and vali-

dation personnel. A brief description of PICRS/SIS scope, operations, and retrieval

ands is given in DRL-3.'
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DATA SOURCE ADVANTAGES DISADVANTAGES-

Closed–Form Solutions Simplicity Feasibility
Accuracy Scope

Independent Math Models Scope Workload
Compatibility
Control

Existing Analysis/Simulation scope Availability
Programs Documentation

ncompatibility

Test Data Fidelity Timeliness
Availability

-	 - --	 — Scope
ncompatibility

Documentation

ALTERNATE DATA SOURCES: PROS & CONS

j•

The above table summarizes our comparison of the.four basic classes of reference-

data source, listed in ascending order of realism.

`	 Closed-form solutions (. e., straight-through computations without iteration,

}	 numerical integration or table-lookup functions) are attractive from the view-

points of simplicity and computational accuracyp 	 , p	 p	 y (not necessarily real-world

fidelity). However, for many modules of interest we find that is is not feasible

to formulate a single 'closed-form solution, or that we can formulate a closed-form_

solution only by sharply limiting the scope of the simulation.

'

	

	 At the other extreme, test data, we have the maximum fidelity, but enccunter a

variety of practical problems in obtaining and making use of the data for validation.

3-13
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4.3 -4.7: SUB SYSTEM/MODULE-0R I ENTED STUDY RESULTS

• DEFINITION: A r imula'tion "module" i s a cet of oftware element which
is invoked a-z a unit, and performs a defined simulation function.

• COVERAGE:. For each cubry ctem/module, we developed the following information:

System De-cription (the real-world y-tem)
Module De scription and Parameter (accounting for - 'the 1.elity'
requirement of variou< zimulatorr)

- Reference Data Source e and Data Format
-- Module Validation Methods and Check Ca ret-

Module Validation Data Ba ce Impact

(MuchI work	 information earch and compilation 	'" eg	 ",	 i^	 p' 'on activity wa y involved in
thin phase of the °tudy.)

3.4.3 to 3.4.7: Subs^rstem/Module-Oriented Study Results 	
`fy

With the necessary preliminaries accomplished, we were able to effectively

tackle the subsystem/module-oriented part of the validation study. For the purposes

of this study, a "module" is defined as a set of software elements which is invoked

as a unit and performs a single simulation function. Modules may be large or

small, simple or complex, and may even be further divided into submodules.

The module-oriented documentation follows the simulation software hierarchy

previously shown. For each and every module identified, all of the abG a listed 	 a

iinformation was i,°ovided in the documentation, to an appropriate level of detail.

Generation of this -documentation required a great deal of "legwork" (i. e.,

acquisition and compilation of existing information), as well as considerable

analysis and generation of additional original material (e.g., new math models).

In the following pages, we present a few examples from each category of

j	 information provided by these sections of DRL-3.

j
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Subcyctem l Module Recultc	 s

` SYSTEM DESCRIPTIONS

j Understand the real-world --yctem.

' Pictorial	 and verbal	 exposition.

"Raw" data and analysis.

Brief exposition of:

r System purpose

a Function
Operational mode

' a Hardware interfaced

• Flight crew interface

MI —Ion_:..	 •	 phacec

Uied previou s ly-identified bate information;

{ 6	 Sa c ically	 Shuttle-oriented

' • "De sign =-in c en citive"	 formulation

{ System Descriptions

An understanding of the real-world system is prerequisite to either simulation 	 -;

development or simulation validation for that system. 	 Therefore, our report

F f provides pictorial and verbal exposition of the purpose, functions, operational

{ r
modes, interfaces, and other facets of 	 ach real-world system.

Some of the information presented in the system descriptions is taken directly

I from the base information in raw form. In other cases, considerable analysi's of. ,
the base information is required to understand the system simulation requirements,

identify performance parameters, and otherwise make effective use of the information.

The system treatments are basically Shuttle-oriented, since the Shuttle is the

spacecraft of greatest current interest. 	 However, at attempt was made	 o formulate

S
the system descriptions in a design-insensitive manner, so that they would remain

valid and useful even if the Shuttle system designs were to change in detail aspects.

Our experience,with onboard systems and simulationsy	 ^	 ^^	 tiors from other aerospace programs` r

(Gemini, Apollo, Skylab, DC-10, etc.) was useful 	 in this effort.
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Examples of descriptive information provided for the star tracker are shown on

the following page. The top illustration shows the orientation geometry for the

three: star trackers, - two of which are seen to produce overlapping coverage. This

figure was taken directly from an existing report.

The bottom illustration shows our analysis of scan-pattern relationships, which!	 E	 i

was necessary to determine how certain star tracker performance parameters --

{

	

	 acquisition time, target brightness, and target coordinates -= might be generated

in a high-fidelity star tracker simulation.

1
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System Dercriptione

EXAMPLE: STAR TRACKER GEOMETRY

..
CL2

C1.1
FRL

Vehicle azimuth 	 3 	 ^^	
V3 J

determination cube

	

` V	 /	 H2

H1Pitch	 t^	 'd	 _	 H	 I
	Yo	 r	 +X	

FYl3 ... 3 .. ._. 	 q	 i	 _ . ...

	

X

0
o!!	 !3	 -Yo	 15•	

Vi! n j

	

Yaw	 - ,,,.^•^ . ^.Zo
 CL3

I	
tXo	 Yo	 `^\V	 Z kZ \ 3 e

0

Star tracker 3  

	

it	 11•	 Xo/1 /Z o = orbiter axis
CL = tracker 1

'YoFOV centerline1 S.	 1•	 '' '
	

_Xa	 -Xo	 Oil =tracker 1
! 	 horizontal deflection

	

V 	 Star tracker 2	 ^_.-X	 axis	 T

	

Star tracker 1	 Axes In relation	
V1 = tracker 1

vertical deflection
Azimuth determination	 to orbiter axes	 axis
cube (GSE)

System De%riptionc

EXAMPLE: STAR TRACKER SCAN PATTERN RELATIONSHI PS

PERFORirrANCE PARAiv,ETERS: Acquisition time, target coordinates, tar get brightne5c.
projection of scan range
---on calestial'sphere -

stars satisfying
magnitude criterion

	

K	 X'	 x

7

r 
	 -	 • - ,	

^ cad	 .1
%	

4C C^.
I	 X

ending point
{	 of raster scan	 i
I	

X

l	 x	 ',	 startina point
of raster scan

	

X	
K	

K

L	
or`a^

ro<^1

	

	 selected star (first star
satisfying n ,nitade criterion.

X	 within the scan region, vnich
is encounteriM by scan (S.lturn)
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Syeter"	 e^criptionc

EUMPLE: HPS SCHEMATIC,	 showing performance parameter location,

T

^•	 ACCUMULATOR.
I

' —•_` — —
r p L-

A►V/H'ID
HZO

..

BOIEXCHANGER

"Y"01 HEATERAT
ECL.:I

^ECLS51 ,. FREON^	 1

1
LrJ

COOLER _.

O	 I	 ...L ( ̂ ^)
w'--	 Y

S TNE0.M ACT T
BYPASS VALVE

PRESS.	 ACT	 -	 ..
-	 BYPASS VALVE

T 7
RESERVOIR

T
i	 7:

'
APU

CASx° DRAIN UTILITY - 11TFllG	 LOIITD,bI
I	 `GEAR I SERVICES SC P.'JICCS 1

50A f.7Ai!.1
Put-lc PRESSURE

EDV
...	 E	 P PRESS	 FILTER.	 T	 E -

E PRESS XCDR	 MODULE ASSY
®RELIEF VALVEKDC4 -	 P	 P -

' Q CHECK VALVC
^ ... E	 ..-

IM ^ r	'.
.CIRCULATIOM VAWECa'J'	 •

CIRCULATION
ELECTRIc hIOTOR

..

O EVENTS
^...

+PUMP	 BACKUP...
`	 -	 MILCULNTION

M	 t
:. `O FUNCTIO4AL PATH. -

7]1PUNIP

'.
E) P0.tSSVAE

d

.,	
.... TD TEMPERATURE .

t OO QUANTITY

The above schematic of
7

the Shuttle hydraulic power system, although based upon

existing information (e, g., specifications), was redrawn for greater clarity,

f	 and labelled with flags indicating points on the actual system at which values

corresponding to the simulation module performance parameters, could be monitored.
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Subcy ctem 1 Module Recuitc

MODULE DESCRIPTIONS AND PARAMETERS

Subsy stem repre sentation and fidelity may differ for different simulator" ISMS, SPS, OAS):

o Fidelity: high, medium, Tow, talkback, omitted.

Use of flight hardware 9t roftware v5, functional emulation.

e Representation of redundancie s,	 +

Simulation m d.e and function; mission phase.

Module de scription always include,:

• Module interface diagram.

• Parameter list.

Module Descriptions and Parameters

In addition to an understanding of the real-world system, an understanding of

its simulation requirements is required to formulate the validation requirements

for the associated simulation module. Of the three simulators of greatest interest

to this study (SMS, SPS and OAS), the SMS generally requires the most detailed

simulation. The variation in level of simulation detail among these simulator

was taken into account in our analyses of simulation modules and their performance

parameters. A good example of this variation in level of detail will be seen

preisently in our treatment of the main propulsion system.

two things which were always included in our treatment of module descriptions

were a module interface diagram and a parameter list; examples are shown on the

following pages.

340

,	 MCOONNELL 00[JGLAS ASTM6NAUT/CS COMPANY .EAST



I

The module interface diagram and parameter list for the air data system module

i
are shown on the following page.

The module interface diagram provides a convenient representation of the inter-

actions of the module of interest with other parts of the simulation. It shows

the inputs and outputs of the module of interest, where its inputs come from, and

where its outputs go to. This is important when analyzing requirements for

 module "drivers", and formulating sets of check case data. Our analysis of

f'	 module interactions also proved useful later on, in formulating the overall rn

J`	 simulation integration/validation sequence,
z	 ,

.i	 Several different _types of parameters are shown and defined on the module

Iparameter list: inputs, incidental outputs, internal data base parameters, per-

formance parameters, and critical performance parameters. Some modules, of course,

may not have parameters of every possible type.

^	 1

I

3

^t

	

	
aA

r
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SYMBOL DEFINITION TYPEa

Command for self-test mode or operation code I

To , Pa Ambient air temperature and - pressure T

M Mach number I

of ,	 13,, Va Angle-of-attack'angle-of-sideslip and airspeed` I

--	 y AOTA self test values for Psi' Pti' Ttt'eP1	 and De
mode/status

Temperature sensor recovery factor Da

71 Specific heat ratio for air	 — • D8-'

Pso , PW Tto
ideal probe values of static pressure, total P

pressure and total temperature

pP Ideal probe differential pressure (function of P
,vehicle aerodynamics)

CP	 .9Pto , Changes in ideal probe values due 6 vehicle Pso'
Tto dynanics

c PSI . tpti , AOTA hardware errors l
tTti . cap I

PSI
Indicated static pressure '(divided into most CP

significant and least significant words)

Ptl Indicated total pressure CP

Ttl
Indicated total' temperature CP

$Pi indicated pressure differential CP
ADTA Operational diode and Status flag 0

Power-on discrete from AOTA' 0

Probe heater statics discrete 0
Probe deploy/retract status discrete 0

G
Co

EMYIROfOtEtii
A
1

MODULE

-

_ _
P

temperature, pressures,
mach nuMer. angles of d
attack and sideslip "+

Clu

Co

a CD

alectrlal
m
x

ADS per us

IgDULE M011t f .0
i m

CD

deploy/retract, self-test data
Pressure.
temperature pad

self-test, and and status
-

differential toperate commends dtscretes
p res sure data >r

D
C

(A
NON	

_

GNb[

CWUTENS
V

n
Q'

r

0

b

D W1
J

2
C'.

0

Ib	 _
r ,,

rn

eO n N
C, -

CA

^^ vg
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t

A portion of the complete parameter list for a high-fidelity (i. e., SMS)	 '=

simulation of the Ilain Propulsion System (MPS) is shown on the next page. The
x

complete parameter list ran several pages, because of the complex plumbing and

valving associated with this system. The table was shortened somewhat by showing

paired command/response_discretes on a single line, as " .. CMD/RESP.,. I/CP".

In a functional simulation of the MPS, as might be used in the SPS, many of these

parameters would not exist.
t

The module interface diagram for the NIPS module (incorporating the main engine

controller and engine interface unit) is also shown.

c

y	 ,
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Module Description 9 Parameter, s

EXAMPLE: MAIN PROPULSION SYSTEM

	

RATA PAnf.F	 TroFa

ffERG SHI11"M411 WHIM Ct+D/ RESPb 	Ott	 EVENT	 I/CPb

AC POIIER NO 1 ON C!!D /RESP	 Ott	 EVENT	 1/CP

HEATER P01Ir•.R ON CI'O /RESP	 Ott'	 EVENT	 I/P

CDHTROLLEP Tf!P	 !	 -20 +4o0 DEG F	 P

Lill PREVALVE OPEN CfR /RESP 	 Otl	 EVEIIT	 I/CP

LIM PPEVALVE CLOSE Ct'O /RESP 	 ON	 EVENT	 I/CP

LO? PFEVALVE 'OPEII Ct'D /RESP	 Ott 	 ! I/CP

L02 PREVALVE CLOSE CI'D /RESP	 Ott	 EVENT	 ! 1/CP

HELIU11 BOTTLE TELP	 65 +500 DEG F	 CP	 i

HE 1SLN %'LV 1 OPEN C11D/RESP 	 ON	 EVENT	 I/P

HE ISLII VLV 2 nPEll CHO /RESP	 Ott	 EVENT	 I/P

MS-1112 INRR FILL VALVE OPEN CP.D /RESP 	 Ott	 EVENT	 I/CP	
F

t'PS-Lt12 IjIDD :FILL VALVE CLOSE CMO/RESP	 011	 EVEIIT	 I/CP

t? S-1.112 OvInn FILL VALVE OPEN CYD/RESP 	 ON	 E'!EIIT	 I/CP

ItAS-LH2 OItTCD FILL VALK CLOSE CI!D/RESP 	 OH	 EVENT	 1/CP

MS-042 PECIPC DISC VLV'OPE!l CMD/RESP 	 ON OFF	 EVEIIT	 I/CP

► 'PS-LH? oECIRC DISC VLV WSED C11D/RESP 	 ON OFF	 EVEIIT	 I/CP

t'PS-LH? PECICC DISC VLV OPE!1 C1'01RESP	 Oft 	 I/CP

'PS-1.112 PECIPC , DISC VLV CLOSE C' 1 11 /RESP	 Ott 	 I/CP

_ • ° r VLV OPEII Ct'D/P,ESP 	 a
r r K+

1

Main . Propul sion Sy-tem. continued

GENERAL PURPOSE

COMPUTERS	 •CONTROLS
	(flight hardware)	 AVID DISPLAYS

hODULE

NOH

gimbal	 mofiitering	 throttle	 control	 display

commnds	 data	 commands	 commands	 signals

1	
!	 ,

PIPS ET MODULE

SSME GIMBAL	 -
110DULE	

thrust	 control	 SPACE SHUTTLE

	

MFC/EIU	
logic	

MAIN ENGINES
(SSME)

`	
forces,	 cuss	 Power 1

moments	 `	 remaibing	 required ,available

EQUATiOttS	 MASS PROPERTIES	 HYDRAULIC P01;ER

€	
OF rioi%t1	 NODULE	 ISUBSYSTEN MODULE
MODULE

^I
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C

i

The visual system drive module is intimately related to the simulator . hardware 4

and the flight crew displays and controls..	 Therefore, both hardware and software

interactions are indicated on the following module interface diagram and parameter

table.	 The motion-base drive module (not shown) was treated similarly. 'p

i.

•	 Module De scription & Parameter`,`
i

j	 EXAMPLE; , . VISUAL-SYSTEM DRIVES x

..	 ..	
.Sky - Clo•^d
Ttrmfnator

Si`tULET104 t Hardware

r f1(ECUTIYE

1

-risslon-phase and operattanal-,.ode
^[arth

olstretes	
Scene

Driver comlano

Earth
efabc '

manipulator-arm positions
l

4EIIICL E
------- —' lcrraln- cm:nands	 Terrain

I

DY:!,^,I CS
rt,drl
driver Yodel

rw_^	 © 
w VISUAL-SYSTEM

submodule
Comeands

S r Sy COATROL
'•	 - •

a.p So, 'sy . ltt,'1on9, alts

MODULE la"et
"4,1 `

eonrnands Tar ct
rnd9iENVlR04HEyT

sunlmoon/star
ephemeris

I

I
iGl
Driver

C CGI Hard
ware and
Software

perceived
Scene	 pictorial

#POJECTORS Information

Crew
1	 OPTICS

3

ORIGIN" PAGE TS

f`.

OF POOR QUA=
r

f
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S'YP.EDI DESCRIPTION	 - TYPE"-

r. v Vehicle position i„velocity vectors I

p.o.^ Vehicle Euler-angles	 - I

fr. iv_ Multiple-body relative position i velocity vectors i
tP a9, c4, Multiple-body relative Euler angles _ 1

-- Vehicle latitude, longitude, altitude I

-- Sun/moon/star ephemerides

Mission-phase and operational4ade discretes I

-, Subeoodule activation comands

-- Visual hardaai*e scaling, lags, limey. etc. =	 I

CIG imagery data base	 = I

Earth globe and canere position cornands CP.

Terrain model'. carriage & optical probe commands ` CP

j Target r.odel 6 camera track and gimbal cormands _ CP

-	 - Visual-subsystem hardware discretes"and position I
feedback

Payload c.g. position relative to arbiter CP
eyepoint(s)	 -

1'rPDRSI
PDRS.Joint positions I

la=
,PDRSf

PDRS Joint positions relative to orbiter CP
eyepoint(s)	 -	 =	 -

^^
PDRS joint angles I

PDRS
PDRS camera eyepoint	 - CP ­ '

Camera and light activation discretes

c

Orbiter/payload/arm contact discrete I —
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Sub.y.tem 1 Module Recultg 	
31 f;V►Rt;H 1975

MODULE REFERENCE DATA SOURCES ANN DATA FORMATS

Search for and study of exiting source„; y
f, Big program cyctem c SVDS, SSFS, G189A (complete or,, individual subroutine,)

6 Math Model coordination catalog and other ourcee

s'1`0 data

'	 Development effort tow?rd new reference-data generation program:

• Ciused-fora ► 	 rolutionc

e independent math model (various level of detail) 	 f

”	
Study of data format:

a 110 formate for exi sti ng programs

• Ha.rd-cony formats

Module Reference Data Sources and Data Formats

Two basically different types of activity were carried on in our study of

reference data sources:'	 study of existing data sources, and development of new

data sources.

We _studied many existing computer programs, such as the Space Vehicle Dynamics

Simulation (SVDS), the Space Shuttle Functional Simulation (SSFS), and the

Generalized Environmental/Thermal Control and Life Support Systems program

(G189A), to determine their potential utility for module validation. s

For certain modules, we were able to determine the types of test data which

would become available	 and to assess the advantages and potential problems of

using such test data.

Where existing data sources seemed inadequate, we undertook to specify and

perform the initial design of nevi software to serve as reference data generation

program.	 -

Our study of data formats included input/output formats for SVDS and other

programs, standard trajectory tape and GEIIASS formats, and hard-copy formats for

test data and other reference data which would not normally be available in

machine-readable form.
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i

-Reference Data & Formats

EXAMPLE; IMU CLOSED-FORM, SOLUTION

•

i

z

	

a •m	 ^

(5....•	 v ^..^ V v~	 LI	 K W

~'	 ^•LV •k •Y. Q	 N N	
v	

C + U	 2/t	 IV.LL Y. .Y. k • LL	 O Q	 Wp	 T

	

0 •d. m .0 •li •9 	 a o

'	 a a. a	 O

The math flow-for a closed-form solution of inertial measurement unit kinematics

is shown above. As previously stated in general for closed-form solutions, this

solution is valid only under certain restrictions. First, the input gimbal angles

must be differentiable functions of time. Second the gimbal rates must be within

the,dynamical capability of the IMU hardware.

With thesE? restrictions, the above algorithm "inverts" the IMU simulation

function; i. e., given desired IMU outputsp _ (gimbal angle and rate time histories);

it Computes required IMU inputs (body rate time histories).° The mannar in which

i	 this reference module is used for validation will be shown shortly.

i

j
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{

Reference Data	 Forman

EXAMPLE:.' EXISTING LDS•'SiMIJUTOW

YEFINITION OF MATRIX TRANSFOPMATIONS—°SMIr.1,' _Lill !A''T MV )J TO HOOP A)^	 pEiFit, IMJ OC

C- 
 10 C x Nl C --. Il1^. ^CO5 d CO M	 CO5101 SIN til	 •S,M It, f	 s.

	

t	
'1I

,S) C Inl	 SI1 ) SAN a COSM CoSt< fnll<1 	 SIN a) ;IN	 iNnl CCS(a1tO4M SOJ(i) COSUI I
Cul U1 C '. 3.) Cu. (41	 Ctllro; Slk,NWSed15 .Y,ui AHM COSIP:9N1? ! Slh IePSN +11CA5M CoSW CO,.W1 . 	[aePM(AfCNJ':OJI SW4A4CW

	

{	 '..	
; J	 {	

}	 'r.	

q 
OFF PAGE CCN FC OR ;	 a

	

^CH (1) Cu NI IS, 11.1 - ^CO54	 1	 0.	 •SiNW	 ,l	 .	 '1	 I	 S SIGN [)F VnfEl!)(1c 	 1,
Caa , 21. Ln<l5J tw^hl	 SpJ'KSIIJ^)	 COS'P, COStd S,Albl
Qa01 Cat VW xlwm	 11111, COSw •S,NII COSWICO5,it , i

	

...	
,	

1

	

00 

I .T.R ! •C41+ FT„PN kIIt	

Ew•'1	
'	 a	 l

•	 ),	 /	 ;

	

4(1R (iFS V.'4f Cfi	 Gl lRj.T1e5 NJ J!D ,/,1U4 i Ai(	 '	 1	 1 	 iTll TI{	 -

	

^y	
;

C4..C4 • 	-	 MlP= CG•-% o U)	 Y.fo U 1•	 I lto U1	 )	 1	 I 1	 ^^	 J • S	 LEFT Y)^ TIPp
Cot	 -	 --,---.--, p'J<G CCFF aI Tip

,rs Ul • Lrs< - To Ul	 T.q IIJ < C."	 r• V)	 • -^-- -.

t2!'.i?SS	 201J1 • CGS - L (1)	 i.e. Ul •	 '1 14 1J),

(	 !	 c['	 1j _p	 sir( taou_ty_TO uyJ^J^ lolu q(^ `r i I'Y G(4R I T4?^Fj(^!N( LMUM AY —OM 	 L91T ^$ )N RJ 11YAf CCb4OtNA_

N••. :R U (•1/573 R.•	 0,1171<N••t • WOO)	 Ot(JI_ R<(n• ON U) COS (W.U.OeW5IWV. •R.u.. S ITS COSfl1 ta- x.1/SJ.^	 i	 1
li.	

._SYr,	 0a Ul. EArt ♦ 1'•to IJl	 RI-- R.111 . 0. to 1,11S.) • OA 1.11 cos tell 	 :I

	

Ii	
f

A portion of the math flow for a rather detailed engineering simulation,of the

landing/deceleration system is shown above; the complete math flow runs several

pages. This program has the capability to generate detailed check case data for

validation of the LDS simulation module.

a
i
3

x

i
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.	 ,	
a

Reference Data k torrti*	
C

UAMPLL 'INDEPENDENT NIPS'' hifAfiN'WEL

s•

k

1
'i	 1	

Y	
^	 W	 t	 lL

G

	

Q t .j	 11 p	 a	 d	 a

	 U.1	

f

	

1	 r	 ui	 I	 i.
I-	 O	 n ;	 0-a ► t'	 J	 0	 LL

i	
W	

F'	 ,,	 1 1	 LL	 ~{t	 C	 a

I	 2 Y	 ` Z Y	 ^ ^ Ir u	 ^,  rJ

	

•	 '^	 EJ

	

u	 ^

{

A portion of the math flow for an independently-developed functional simulation

of the main propulsion system is shown, above. This program, whose complete math 	
I

flow runs several pages, has the capability to generf.te check case data including

forces and moments, specific impulse, mass flow rates, and engine gimbal angles.

Thus, it would be suitable for validation of the ascent-phase simulation fora	 I

simulator such as the SPS, or for initial validation of the corresponding portion

of the SMS.	
-

A highly detailed engineering simulation of the MPS is also described in our,

report. That program includes the dynamics of plumbing, valving, turbopumps,

etc., capabilities which would be necessary for complete validation of the MPS

simulation expected on the SMS.

t;
s.
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Reference Data V Forman

EXAMPLE! PUMP` TEST ! DATA '(HAR D "COPY)

EMIG= MU0N'AME: Cy THE SUIT COOLI'N'G 5=94
VCR , K" VOLiAC.1: OF 2a VOLTB D.0

4	

A

 40 t	 ;,	 t

t	 ti t i RELTU VALVIt	 1	 RAN

u	 i 20-AT 30 VULTS D.C.	 \	 t +^

	

Or' :111 II C	 RANGE 10F'AIUMELx

	

ql	 _	 FJLG1+	 ^'^'i	 +.	 TP IMP MU 4TA 

1

25 ViXTS D.C.	 i

!'uU(LMJM S7L9T12! Ri MME DROP	
st•' z	 C10' 

00 lJIU.111 CFE) 	 AVG' P° MT
'(12 rm II+ C!L')vy \	 ^^	 r iE1tFG1.IICF--

+^	 ?:

	

t;IN-11m 515T?l	 —
^r	 Ri.Si W. WUP	 -^

0.
0	 50	 100	 150	 200	 250	 300	 350

t	 FL(74 RATE WIVIM)
r

r

An example of test data in hard-copy form is shown above. These data represent

the performance of a pump in the Skylab suit cooling system. The graph was

generated by gompiling test results from a number of different individual units,

-^	 after considerable "Legwork to recover the original data. Multiple-unit data of

this kind would be highly, desirable, since it shows the "scatter" to be expected

in the real-world system performance data. This in turn serves as a guide to

t,<
the development of simulation fidelity requirements and the formulation of

accuracy criteria for validation.
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Sub5yttem L Module Recult;

MODULE VALIDATION METHODS AND CHECK CASES

"Driver" ,routi nee
a

Static 4 dynamic check ca s e , to exerci se module:

e Mi«ion phase s, operational mode

• Di screte input s - ingiy aid in combinations

e Continuous input e - range s and combinationoc

Accuracy conciderationc

Manuallauto technique

4

Module Validation Methods and Check Cases

At the module level, the treatment of validation methods consists primarily

of a description of driver routines necessary to perform modul e interfacing and
i I/,0, and a specification of static and dynamic check cases necessary to thoroughly

exercise the module. Accuracy considerations are-also discussed in-cases where

[	 sufficient information presently exists to assess typical reference data accuracy.
I

Some discussion of manual and automatic techniques for validation is provided

at the module level; however, the discussion of techniques is better handled in

general than in the context of a particular module (see Sect. 3.5).
I
I

j
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Module Validation Method a

EXAMPLE: GROUND NAV AIDS CHECKPOINT DRIVER

w y a

Ji

AU
i

',	 x

<p 	M	 ^ W	 ^ivuf	 ^ ` 	 ^ Y ^ .Mw	 ,tea?

	

G': 	 K 5	 ^ cy ^	 . w	
q

	

hiw4	
F^	 .mow ..7 w -Od

qq 
ww

4

The above math flow represents an example of a "checkpoint driver" routine;

i. e., a routine which provides the data and logic to automatically generate a

set, of check .cases to exercise a particular module (in this case, the ground .navalds

module of the artificial environemnt).

As discussed in greater detail in Sect. 3.5.2, the driver used for validation

of an isolated module must provide all the inputs which, in normal operation,.

will come from all the modules which interface witli that module. For the

ground navaids module, the primary interfacing modules are the E011 and onboard

communications and tracking modules.
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Module Validation Methods t

EXAN PLE: QMS GIMBAL ,Rf SPQNSt, CHECK CAW ..

d	 3.00636640l	 1162 ^	 I

	

y	
3.0009/OS96	

3.5251	
-

C2	 Engine 3 ! commanded
i	 1 to . -3? about its

2.1'3/2306•	 ;-'xis At 4.0 see.	 2.13202116
N	 ^.	 4

9.52034716.

Ee'ine 3 commanded to

C; ~Engine 3 commanded	 •3^
:/

 obout ,its :,ails
ac.0 sec. before

to • 3. about its	 th4 command deflection
-chi	 s-axis at 1.0 see.	 -3.00047031	 val reached.

n

	

2.737/0370	 •
0.14645063

	

t	 nCine 3 coumanded to

•e0`	
the null position at	 j`	 a

	

3.47S101	 7.0 sec.

^LC^10	 21COM	 l.M.70	 MOO	 S.C=	 C.=	 MWO	 E.C43U	 9A=	 10.0000	 3
291071	 512	 TINS

A typical rigorous check case for dynamical checkout of a mechanical-system

simulation module (in this case the OMS gimbal actuator simulation) is shown

above.

These command /response time-history data were generated by ,a detailed engineering

simulation. Later in the Shuttle program, actual test data of simular ' form will

r become available.
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Validation Mothodcmodule

- EXAMPLE:	 IMU VALIDATION USING CLOSED-FORM SOLUTIONS -,

I
f

eference

Gimbal

Angles

IMtI ,Reference

(^( Girbal
Reference

Module
!

i

( r'	
Comarison

Body

• Rates_

l
I

I ;

Mu
Simulation

Simulated

Gimbal

f
Module•	 An ieS

I
The above figure shows the software organization appropriate to the closed-form

ICJU.reference module previously described.	 The reference gimbal angle and rate

time-histories are input to the reference module, which "inverts" the IMU, resul-

ting in body rate time-histories.	 These body rate'time-history data are fed into

the -IMU simulation module.	 The gimbal angle time-histories output by the IMU

simulation module should then very closely match the reference gimbal angles.
„

A ` closed-form solution is very desirable for this application, because it

provides a simple means of computing reference data with high accuracy. I
3
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fs 	
s

Subsystem i Module Res'utt , 	-

MODULE VALIDATION DATA BASE IMPACT

	

-	 i

	

`	 Enumerate data-base entries . required to -vervice validation of thh individual module;

Reference module (c)	
1

j	 • Driver (^)

e Checkpoint data file's

• Service routine

A«e« impact qualitatively (minorlmoderatelmajor);
include commonality of program-ridata.

c	 Module Validation Data Base Impact
I
j

	

	 ,Our overall analysis of validation data base impact is provided in -Section 3.4.11..

'At the individual module level, the treatment of data base impact consisted
C

simply of an enumeration of the programs and data files which would be required

in the data base to service validation of the module of interest, and a qualitative

assessment of the magnitude of the database impact for validation of that module.

I	 f,

THfS CONCLUDES THE SUB SYSTEMIMODULE-ORIENTED TREATMENT.

i
We will now consider a spect- of validation which apply to, all module- and at

variou s level e of integration.

i

{

 

3-36

'	 MCDONNELL 001MMAS ASTltAN,I UTfCS COMPANY . EAST	 i



1

i

I'M E1246
31 t1ARCN 1975

r

_ 4.8	 MODULE INTEGRATION

•	 Simulation integration Is a "clustering" process.

Our Module	 Interface Diagrams (Sections 4.3-4.7) can be used to define i
the most natural clustering sequence.

•	 For maximum overall efficiency, 	 use the natural integration; sequence to
schedule module development and validation,

•	 Hardware schedule constraints must also be considered.

3.4.8	 Module Integration

Considering the size and complexity of the simulators of interest in this study,

we see simulator integration as a clustering_p.rocess,_rather than a pure "top-

down" or "bottom up" sequence. 	 That is, we expect that the simulation will be

built up by integrating . small clusters of naturally-interacting modules, then

integrating these clusters with additional modules and with each other, until

} the complete simulation is assembled.

having rather thoroughly studied module interactions in the course of our module-

oriented efforts, we were able to ,derive a "natural" clustering sequence on the

basis of the our module interface diagrams (samples of which were previously

shown).	 The resulting integration/validation sequence is shorn on the following

page.

The top figure follows the software main line (the path emphasized by the heavy it

line), culminating in a non-realtimer software .cluster, % ghich would be a complete

' batch-program spacecraft simulation.	 (If the Flight Computer/Flight Hardware
x

Interface Device were integrated early, this software could actually be operated

in a real`-time mode.)	 The bottom figure follows the hardware main line, leading

to a complete all-up simulator.

Definition of the natural integration/validation sequence should be of consider-

able aid in defining and controlling the simulator development/validation schedule

for maximum efficiency.
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4.4 SPECIAL TEST REQUIREMENTS

Survey test operations as normally conducted

e	 Component-level, subsystem/system -level, vehicle tligf t tests=

• Consider purpose, time frame, type of data taken, typical documentation,
potential problem areas

3

I

Identify test enhancements for validation purposes:

•	 Test operations

Date-taking	 i

•	 Data-handling and documentation

Consider management and iiaison aspects of implementing desired enhancements.

{	 BUT REMEMBER - the goal of testing is to prove out the system, 	 not to support
simulator development and validation.

3.4.9	 Special Test Requirements

Earlier (Sect. 3.4.2y, we indicated our assessment that test datawas potentially

avaluable source of standards of performance, despite certain practical problems
1

to be expected in obtaining and handling the data. 	 'Later in the study we analyzed

"	 test operations and test data in greater depth, in order to identify methods to

make more effective use of test data. 	 We began with a survey of test operations r

as normally conducted a•rtd presently planned, based uponour experience in past

aerospace programs and currently available test-related documents for the Shuttle

program.	 We then defined general test program changes which would make test data

'
"	 more useful for simulation development and validation.	 Finally, we briefly

discussed management-oriented approaches to the implementation of the desired
^	 a

changes.

i

.p:

Of course, test organizations have their own goals and problems; it is therefore

unlikely that major test program changes will be made solely for the benefit of

simulation development objectives. 	 On the other hand, substantial simulation

benefits. may be realized with comparatively minor ismnact upon operations, and

E'	 with the` expenditure of mi nimal effort by simulation personnel..	 Clearly, test

E^	 organizations cannot respond to the needs of simulation organs ations ` unless those

needs are made known. 	 In summary, then, it appears than simulatfion projects

have much to gain, and very 'little to lose, by making the effort to coordinate

'	 with test organizations.
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t	
SuryNormal Test OperationseY	 p

COMPONENT-LEVEL TESTS

I
Expected to be most fruitful source of validation data:

a Best time-..frame match	 f

• Performance-oriented data	
L

F,Potential problems In obtaining test data ldocu men tation. Includes the following
categories:

• Development and bench tests	 prototype hardware.

Qualification tests - gotno-go tests at spec limits.
I

• Acceptance tests	 estimate "scatter from data for multiple units.
C

3

3.4.9.1 Survey Normal Test Operations

•	 In our survey of normal test operations, we again placed the.most emphasis

upon component-level tests. 	 Data from these tests becomes available earlier,_

and tends to be more performance-oriented, than data from higher-level tests. As

with all types of tests, :availability of test documentation has historically been
a problem

A particular .advantage of acceptance tests isthe.ability to obtain comparable

data from a number of individual hardware units. 'This will provide an estimate

of the inherent "scatter" in hardware performance, which serves as a guideline

in the establishment of simulation fidelity criteria. An example of multiple-

:;	 unit data (Skylab suit-cooling loop pumps) was previously shown.

r	
_
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Survey Normal Jest Operations

SUB SYSTEMISYSTEM-LEVEL TESTS

Late relative to initial simulation requirements; potentially useful for updates.

Complex setup, may be hard to duplicate on simulation.

Includes the following categories: 	
f	

!

• Systems development tests - parametric data: systems', may be incomplete.

Integrated Systems Test - golno-go data.

I	 s	 Prelaunch checkout - golno-go data: little access.

t
One problem with the use of subsystem-level and system-level test data is that

it does not become available in time for initial simulation development and vali-

dation. Any performance-oriented parametric data available from such tests can

ofdcourse be used for simulation updates. However, since many such tests only

provide go/no-go (i. e., in-spec/out-of-spec) data, rather than actual performance

parameter values, little use can be made of the results,' no matter when they

become available.	
z

Vehicle flight test data is, of course, highly desirable, representing as it

does the ultimate in realism. Since it becomes available so late in the program,

it is usable for updates only.

One potential problem in making use of flight test data is the heavy data load,

with hundreds or thousands of parameters recorded at high density over time spans

ofthe order of minutes or hours. The flight-test organization will have to

provide a high-capability data-handling system, to provide simulation organizations-

(and other users) with convenient access to the data of interest. Another problem

	

a	 14 flight test data is the amount of uncontrolled and unknowable variation in

the environment, hardware characteristics_ etc:, generally preventing simulation

data' from matching flight data precisely.

_r The following table lists a number of Shuttle-related test documents which are

currently available; many of these documents will be updated, augmented, or super- t

	

^1 	 seded as the program progresses. 	 E
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Survey Normal Test Operations
I

VEHICLE FLIGHT TESTS

j	 "Ultimate" In realism.

Time frame: updates only.

CompleN setup; may be difficult to duplicate on simulation.

Heavy data-load; good data-handling system required.

^I

Survey Normal Test Operations

CURRENT SHUTI'LE-RELATED TEST DOCUMENTS

MJ072-0004-3	 Shuttle Master Verification Plan,

Volume 3: Orbiter Verification Plan

M1_0101-OGOI	 Test Requirements: In-Process and P.cceptance-Orbiter

SD12-SH-0009	 Orbiter Quality Assurance Plan

SD72-SH-0112-6-11	 RDD-Major ,round Test-Thermal Vacuum Test Program:

CMS-RC r POD

SD72-SH-0112-12	 RDD-Subsystem Ground Test-Docking Mechanism Dynamic Simulation

SD-72-SH-0112-13	 ROD-Ground Subsystem Test-Orbiter/External Tank Separation

Subsystem Test

SD72-SH-0112-18	 RDD-Subsystem Ground Test-AFU Integration Test

5012-SH-0112-19	 ROOD-Subsystem Ground Test-ECLSS Test Article

S072-SH-0112-21	 ROD-Subsystem Ground Test-Escape System Test Article

SD73-SH-0062	 Checkout Plan: Orbiter and Combined Elerents Ground

Operations

S073-SH-0094	 Manual, Technical and flan-Destructive lesting, Space Shuttle
Specification for Preparation of

SD73-SH-0298	 Avionics Development Laboratory General Test Plan

5074-SH-0011

through

5014-SH-0049	 Subsystem Certification Plans
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Survey Normal Test Operations

VEHICLE FLIGHT TESTS 	 I

"Ultimate" in realism.

Time frame: 'updates only.

Complex,. setup; may be difficult to duplicate on simulation.

Heavy data-load; good data-handling system -required.

I

Survey Normal Test Operations

CURRENT SHUTTLE-RELATED TEST DOCUMENTS

M3072-0004-3	 Shuttle Master Verification Plan,
Volume 3: Orbiter Verification Plan

MLO101-0001	 Test Requirements: In-Process and Acceptance-Orbiter

SD72-Sit-0009	 Orbiter Quality Assurance Plan

SD72-SH-0112-6-1I	 RDD-Major Ground Test-Thermal Vacuum Test. Prugram:

CMS-RC I POD

S072-SH-0112-12	 RDD-Subsystem Ground Test-Docking Mechanism DynaMic Simulation

SO-72-SH-0112-13	 RDD-Ground Subsystem Test-Orbiter/External Tank Separation

Subsystem Test

SD72-SH-0112-18	 RDD-Subsystem Ground Test-APU Integration' Test

SD72-SH-0112-19	 RDD-Subsystem Ground Test-ECLSS Test Article

5072-SH-0112-21	 RDD-Subsystem Ground Test-Escape System Test Article

SD73-SH-0062	 Checkout Plan: Orbiter and Combined Elenents Ground
Operations

SD73-SH-0094	 Manual, Technical and Tlon-Destructive Testing, Space Shuttle
Specification for Preparation of

SD73-Sti -0298 	Avionics, Development Laboratory General Test Plan
SD74-SH-0011

through

• SD74-SH-0049	 Subsystem Certification Plans

i
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IDENTIFY TEST ENHANCEMENTS

Emphasis upon component-level tests. 	 r

•	 Inherently better source of validation data.

• Least complex and expensive.

Three-step approach to defining enhancements:	 !

•

	

	 Identify desired -data - basically inputs and critical performance
parameters.

•

	

	 Develop an idealized, test plan - optimal check cases; based upon prior
experiencelanalysislimulation.

•	 Define data recording and documentation desired , - fregUency, formats,
accuracy.

3.4.9.2 Identify-Test Enhancements

With an understanding of normal test operations, we can identify the types of

changes which would be desirable to enhance the usefulness of test data for

simulation development and validation. As before, our emphasis is upon conponent-

level tests.	 -

We suggest a three-step approach to defining an "idealized" test plan for any

hardware component/subsystem of interest:,

1. Identify desired data: In most cases, the data most desired for simulation=-

inputs and critical performance parameters -- is also the data most desired

for hardware-evaluation purposes; thus there is a good chance of obtaining

the basic data desired.

2. Develop an idealized test plan: This test plan will consist , of a set of

test conditions and operations which will generate check case data of the

types desired to thoroughly exercise the simulation module or submodule

corresponding to the hardware subsystem or component.

3. Define desired data recording and documentation: This will include speci-

fication of desired accuracy, data-recording frequency, presentation

formats, and other factors involved in validation data-handling.
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IMPLEMENTATION OF TEST ENHANCEMENTS

Early and continuing liaison with hardware development' and test groups:

• Communicate needs for performance data.

•	 Identify desired data formats and documentation.

•	 Ensure receipt of available test data and documentation.

• Anticipate system changes resulting from outcome of tests.

Type of personnel desired - both simulation and test experience.

3.4.9.3 Implementation of Test Enhancements
Although simulation personnel will have no control over test organizations, and

hence no assurance that desired changes will be implemented, they can vastly
improve their chances for implementation by early and continuing liaison with
hardware development and test organizations. At the very least, such liason will
ensure that simulation groups will be kept up to date on test schedules, will
know what test data are available at any given time, and will have access to test

data which has been generated.

Ideally, the personnel involved in this liaison function should have both
simulation and test experience. Since few engineers with this ideal background
will be available, some cross-training will be required.
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4.10 REFERENCE DATA FORMATS

Non-machine-readable reference data:

Y v DO NOT convert into machine-readable form.

•

	

	 DO map the simulation data into a directly-coin parablehard-copy
format.

Machine-readable reference data - universal data format

•	 Build into all new validation programs

•	 Conversion processors for existing programs and data files.

3.4.10 Reference Data Formats

Our study effort in the area of reference data formats included consideration

of the data-handling aspects of both machine-readable data, such as card, tape,

and disk files, and non-machine-readable hard-copy data, such as computer printouts,

tables,-graphs, and pictorial information.

We drew the following conclusions from our study of data-formatting problems:

1. In:handling non-machine-readable data, one should not attempt complete

conversion of the data into machine-readable form, in an attempt to automate

the validation processing.

2. In generating and handling machine-readable data, maximum use should be

made of standard or "universal" data formats.
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3.4.10.1 Handling Non-Machine-Readable Reference Data

The following two figures schematically illustrate the recommended and non-

recommended procedures for handling of non-machine readable reference data. In

these figures, manual operations are denoted by trapezoids (ANSI standard flow-

chart notation).

The upper figure shows manual conversion of the complete body of reference-data

hard copy -- both inputs and outputs -- into machine-readable form; e. g., punched

cards. Although this approach does allow automation of the data comparison and

evaluation processes, we feel that the workload and error potential of the data entry

process will more than offset any savings achieved by increased automation.

In the lower figure, the amount of manual data entry has been sharply reduced,

since only the required input data is converted'to machine-readable form. The

simulation data is then output in tabular or graphical format corresponding exactly

to the format of the original reference-data hard copy, thus allowing convenient

manual comparison and evaluation with a minimum of error.
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Non-Machine-Readable Reference Data
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Machine-Readable Reference Data	 4

UNIVERSAL DATA FORMAT (S)

Build into all new validation software:
reference modules, print/plot routines, compa risen /evaluation routines,
DBMS, etc.

Use reprocessors for existing programs and data files.

Universal format design consideratic ­ ,
f

s Data handled in "pages" or "frames".

e	 Basic frame rate for a data file.

s Data rates for individual data items - multiples of basic frame rate.

s	 Header frame provides file identification, and all information required
to reconstruct individual time-histories.

3,4.10.2 Handling Machhine-Readable Reference Data

Where reference data is to be generated in machine-readable form (or is already

available in machine-readable form), automation of the validation processes is

an appropriate goal. Therefore, the intent is to make such automation as efficient

as possible. It is our conclusion that the most efficient approach to the data-

handling part of the process is to develop a universal data format, to be .built

into all validation software and data files.
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',he basic characteristics of this universal data format are illustrated

on the following page.

The upper figure is a first-cut definition of the information which should be

written on the header frame of each data file. This header frame completely

identifies the data file, thus assisting in data-management operations.. It also

provides the data-handling routines with all information needed to strip out

the desired time-histories from the file.

The lower figure shows how, using a "software commutator," variable data rates are

achieved for individual parameters, while data frames are written out at a fixed

rate. The frame time, of course, is the first parameter in every frame. Then,

if a variable (e. g., x) appears in its assigned slot in every frame, its data

rate is equal to the basic frame rate. If a variable appears in every second

frame (e, g., y and z), or every third frame (e. g., p, q, and r), or every

fourth frame (e. g., a, b, G, and d), or ..., then its data-rate will be one-half,

one-third, one-fourth,... of the basic frame rate.
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Universal Data Format ISl

HEADER FRAME INFORMATION

UP f DESCRIPTION

1 Data file identification	 (fixed-len(Ith alphanumeric	 title)

2 Date	 file was generated.

3 Type of data:	 reference, simulation, both

4-5 Identification of reference and simulation modules csed

to generate data

5 Data word length

G Wlurber of words per data frame

7 Nominal frame rate (frames per second)

8 H=Total number of frames (if kno%tn)

9 N n Total number of parameters in this file

10 Identification name or code for first parameter

11 Location of pararrter Fl	 in each frame in which it

appears

12 Word'length for parameter tl (several sort parameters

nay be "packed"	 into a single word)

13 Frame frequency for parameter 0

14 (Sarre 	 Infonration for parameters 2 through N)

1y + 9 `'

Universal Data Format(s)

FRAMING WITH VARIABLE DATA RATES
t

Word	 kl k1lord 02	 Word #3 Word #4	 No rd 6	 ,..

Frame 191 t
i--

xltI)	 y(tI) --- -PItI' ^D^l--

Frame i2I t2	 W2)^z(t?I	 q(t21 ^b(t2)

Frame 13	 13	 x(t3) 
I 

Y(t 3 )	 r(131	 c(t31

Frame 14	 t4	 x(Y	 zltn)	 pitA)—Td(tdl

3—^i(1
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4.11	 DATA BASE IMPACT

DATA BASE SCOPE AND STRUCTURE

Machine-readable information and hard copy.

0	 Active and inactive materials.

0	 Accessed by mission, subsystem, date, time, etc.-

DATA BASE MANAGEMENI SYSTEM (DBMS) REQUIREMENTS

s	 Capabilities for filing, retrieval, update, purge, physical-unit

management, etc.

#	 Linkagc with applications programs.

*	 Efficiency, reliability, stability, security.

DATA BASE IMPLEMENTATION CONSIDERATIONS

I	 Make or buy" decision.

a	 Nrdware, software, and personnel requirements.

o CODASYL standards.

3.4.11 Data Base Impact

An extensive data base will be accumulated during the development and valida-

tion of any large simulation. (Indeed, the work performed in this study has

already esthblished an initial ,.^ata base.) Although the data base impact assess-

ment effort under WBS 2.0 was limited to validation-related data, it is well to

remember that the simulation data base will also have to accomodate hardware-

related data (see Section 2).

Our st udy of validation data base impact covered the basic scope and structure

of the validation data base, requirements and design goals for the Data Base

Manaciement Svstem (DBMS) and DBMS im p lementation considerations -- Darticularlv3

th.e "make and/or buy" decision, whichmay have significant cost and schedule

impact upon data base implementation.

3-51

AS-r"t >/W.4tj WfC^ S	 FPq All I	 -,r



SIVULAT104

14D1K.E
CHECK CASES

DATA	 FLOT	 TFL
ACQUISIT1011
(READ/WRITE).

11DC 01240

31 '11ARCH 1075

4.11 Data Base Impact

DATA BASE SCOPE AND STRUCTURE
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3.4.11.1 Validation Data Base Scope and Structure

The high-level structure of the validation data base is shown above in tree

form. Here we define data base in the general sense, including both (a) machine-

readable information which can be made directly accessible to the computer system

and applications program, and (b) hard copy which is accessed by simulation

personnel, using "pointers" generated by the DBMS in response to search queries.

Within the machine-readable category, the distinction is made between active

and inactive files, which would be stored on media having different access tilne

and cost parameters.

The core of the hard copy portion of the validation data base will be the

Validation Data Book, which will be structured in terms of the vehicle subsystem/

simulation module hierarchy shown in Section 3.3. Our Simulation Performance

Validation Techniques Document (DRL-3) constitutes an initial version of this

Validation Data Book, which will be updated and augmented as newer and more

extensive data becomes available. 	 3-52
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At	

3.4.11.2 DBMS Design Requirements and Goals

The basic functions of a DBMS are to (a) store data and programs for later use,

and (b) retrieve proper data and programs at the time they are to be used. Sub-

sidiary functions, such as physical unit control and housekeeping capabilities, as

well as operational considerations such as efficiency, reliability, stability and

security, must also be considered before undertaking DBMS development and/or

procurement.

To effectively perform its basic storage and retrieval functions, the DBMS

must provide capabilities for the user to identify a data file by a variety of

different parameters -- mission, subsystem, date, flight conditions, etc. -- at

the time it is stored. It mus.t then enable a user to search the data base in

terms of any of these parameters, or combinations of these parameters, at the time

he wants to retrieve the data. Once retrieved, the data should be made directly

accessible to applications programs with minimal manual intervention.

Subsidiary functions include capabilities to update or purge obsolete files,

move files between active and inactive storage, rearrange active files on physical

media for greater efficiency, update the data dictionary, check file activity,

generate notices to users, etc.

Operational efficiency, in terms of storage requirements and query processing

time, will not be design requirements of overriding importance, since the DBMS

itself will consume only a small fraction of the simulation project's computing

resources. 'Reliability (freedom from errors) and stability (freedom from

"crashes") will be more important, since the DBMS will in time become the user's

major means of interfacing with the host computer for all types of simulation

and validation activity.

Security, in the sense of prevention of unauthorized access to programs and

data, may be important for simulators used to support DOD missions. Security in

the sense of prevention of unauthorized destruction or modification of programs

and data (essentially configuration control) can he provided by a fairly simple

password system, and further ensured by maintenance of backup copies of essential

files.
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4.11 Data Base Impact

DATA BASE IMPLEMENTATION

"MAKE AND/OR BUY" DECISION,

•	 DBMS development is a big task in itself.

•

	

	 DBMS capability will be needed early in the developmentiverif!cation

phase - to support both hardware and software.

• DBMS development is much different from simulation development -

concepts, machine requirements, .language requirements, personnel

requirements.

•	 Many proprietary packages are available - $5000 to $200 000+.,

(Check ICP, Data Pro, Auerbach, etc.)

CODASYL STANDARDS

0	 CODASYL has been studying the DBMS problem since 1970 or so.

e	 Applicable to either make or buy software.

e	 Enhances portability, speeds development and verification of DBMS.

3.4.11.3 Data Base Implementation

Probably the most important step in DBMS implementation is the first step: the

"make and/or buy" decision. (The "make and buy" approach would be to procure a

basic system for interim use, while proceeding with in-house development of a

system of expanded capability.) There is a potential danger in jumping into in-

house development of DBMS, without considering procurement of an existing package:

i.e., the implementation may prove more difficult than anticipated, especially if

the 'development staff has prior experience only in simulation development projects.

Since a working DBMS will be needed throughout the simulator development and

verification phases, to support both hardware and software, slippage in its

implementation can impair the efficiency of the entire project.

Many proprietary packages (e.g., Mark IV, ADABAS, System 2000) are available,

providing a broad range of capailities, at prices from $5 000 to upwards of

$200 000. Many of these packages are listed in the ICP Quarterly, and rated by

non-vendors such as DataPro and Auerbach, as well as in trade publications such

as Datamation and Computer Decisions.
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Whether the DBMS is procured and/or developed, it will be advantageous to

conform to the data base standards defined by the Committee on Data Systems

Languages (CODASYL). The table below provides CODASYL-standardized definitions for

a few key data base concepts.

SOME BASIC CODASYL DATA BASE DEFINITIONS



The validation process consists of.

• Exercising a timulation with properly-chosen inputs,

•	 Collecting its output response data,

• Comparing the simulation data with reference data to evaluate
simulation fidelity.

Section 5 is concerned with guidelines, techniques, and, support softarare
for the validation process.

3.5 METHODS FOR VALIDATING PERFORMANCE

Performance validation methods have been touched upon in the preceding sections --

either in the context of a particular simulation module, or fro,,; t"e viewpoint of

their influence upon data-handling methods. It'is now appropriate to provide an

in-depth treatment of validation techniques per se.

The total process of performance validation, as previously described in Sect.

3.1, consists of exercising a simulation (an individual module, a module cluster,

or an integrated simulation) with appropriate inputs, collecting the outputs which

it generates in response to those inputs, and performing comparison and evaluation

operations to assess the simulation fidelity. This part of the study was concerned

with definition of guidelines, techniques, and support software for the validation

process.
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5. Methods	 for Validating Performance	 .,

5.1	 VALIDATION SOFTWARE STRUCTURE -
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3.5.1	 Validation Software Structure

3.5.1.1	 Validation Executive Overall Flow

The skeleton of an overall validation executive routine is indicated above.

The emphasized. blocks are the sources of simulation data: either the on-line 1

exercise of a simulation, or access to a previously-generated file of simulation

f data.	 The other blocks indicate sources of reference data (again, either on-line

or file access), as well as validation service routines required to efficiently i

z, perform validation processing. I

a
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Validation Software Structure

VALIDATION SERVICE ROUTINES

Checkpoint generation routines (cf. Section 5.3):

a Generate sets of input data (discretelcontinuous).
• Systematic or random variation.
• Keep number of check cases reasonable.

Simulation software module drivers:

Perform 110 and module linkage ("patchboard" analogy).
• Use COMGEN or equivalent support software to automate the

module-linkage process.

External data-file handling routines:

Reference andlor simulation data may be prerecorded on tapeldisk.
e	 Strip desired parameter time-histories for driving and comparison.
s	 Use previously-discussed universal format.

3.5.1.2 Validation Service Routines

Functions and properties of three classes of validation service routines (check-

point generators, drivers, and file-handlers) are briefly discussed above. Functions

and properties of the DBMS were discussed in Sect. 3.4.11.

An important design requirement for all classes of service routine is generality.

There will be so many simulation modules and data files involved in the development

of a large-scale spacecraft simulation that the workload imposed by generation of

"customized” service routines for each module and data file would be prohibitive.

This, of course, was the primary rationale behind our recommendation to develop

a universal format for all reference-data and simulation-data files.

Multiple functions may be combined in a single service routine, which will

sometimes be desirable. The figure on the following page shows a generic math

flow for a combined checkpoint generation/module driver routine. Such a composite

routine would provide capabilities for input of discrete (manually-selected)

checkpoints, generation of parameter-sweeping sets of checkpoints (see Sect. 3:5.2),

module interfacing, and data-file formatting.
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5.2 SIMULATOR INTEGRATIONNALIDATION CONFIGURATIONS

Validation can be performed ;at the following levels of simulation integration:

s	 Isolated module plus driver - driver must provide all inputs to setup
and execute.

Module "cluster" plus driver.

• Modified all-up simulator:	 AREA

-- "Probes" or test points for 110 of internal variables (e. g., 	 OF

"canned man")	 EMPHASIS

--"Blocks" to simplify module interaction and error propagation.

• Normal all-up simulator:

--Specially-constructed check cases

--Realistic check cases

3.5.2 Simulator Integration/Validation Configurations

From the first, it has been evident that validation must be performed at all

stages of simulator integration, from the isolated operation of the smallest

simulation module up to the final validation of the complete all-up simulator.

To intelligently plan the total validation program, it is necessary to further

examine the various alternatives, and determine the area of greatest emphasis:

i.e., the stages of integration at which validation effort should be con-

centrated to maximize the efficiency of the total process. 	 .

The four basic validation configurations -- isolated module, module cluster,

modified all-up simulator, and normal all-up simulator -- are defined above.

Pros and cons of performing validation in each of these configurations are tabulated

on the following	 pages. In examining the pros and cons, we have given the

most weight to the following three points

r	
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o How thoroughly can we exercise the simulation?

o How readily can we verify module interactions?

o How much auxil-'Jry software (drivers, etc.) is required to support validation?

As a result, we have concluded that the major area of emphasis should be the
r

intermediate stages of integration: module clusters and modified all-up simulators.

A particular modification of high potential value is the use of a "canned man" i.e.,

insertion of pre-recorded inputs downstream of the manual controls, providing more

l

	

	 controlled and repeatable exercise of the simulation than would be possible by

actually operating it in a man-in-loop mode.

Validation Configurations: Pros and Cons

ISOLATED MODULE

PRIMARY OBJECTIVE:

To validate detailed simulation capabilities of each Module.

ADVANTAGES:

• Easiest to devise check cases for which correct answers are known exactly.
•	 Easiest to fault-isolate following check-case failure. 	 j
• Easiest to ensure thorough exercise of module. 	 -
•	 Can be executed offline (batch runs).f

DISADVANTAGES: t.

•	 Generation of each driver represents extra coding and debugging effort. 	 9
(Development of "general-purpose drivers will reduce the cumulative
effort, but some tailoring of the driver to' each module under test will
still be necessary.)

•	 For "trivially" simple modules, the validation benefits may not be com-
mensurate with the effort of building the driver and setting up and
executing the check cases.

•	 Does not explicitly verify module-to-module interfaces.

7 i
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Validation Configurations: Pros and Cons

MODULE "CLUSTER"	 }
l	 _

PRIMARY OBJECTIVE

To verify interfaces among highly-interactive modules.

ADVANTAGES:

• Driver can be simplified because some required data is +: supplied by
modules in the cluster.

• Less cumulative coding and debugging effort devoted to generation of
drivers; a single driver serves validation of multiple modules.

•	 All exercises are "non-trivial".
• Verifies some module-to-module linkage.
•	 Can be executed offline (batch runs).

DISADVANTAGES:

• May be difficult to thoroughly exercise and validate all modules in
the cluster.

• . May sometimes be difficult to devise test cases for which correct
answers are known exactly.

•	 May sometimes be difficult to fault-isolate following check-case
failure.

MODIFIED ALL-UP SIMULATOR

PRIMARY OBJECTIVE-

To simplify signallerror propagation for system-level validation.

ADVANTAGES:

• No coding and deb4gging of drivers.
e . Allows extensive verification of module-to-module linkage.

DISADVANTAGES: i
• May be a complex, i laborious process to modify and restore simulation,

and to set up for check-case execution.
•	 Potential for later difficulties if all modifications are riot restored to 	

l

normal configuration.
•	 Requires rea!time operation of dedicated system,
•	 Difficultto know correct answers for all variables which will be exercised

by each check case.

•	 Difficult to fault-isolate following check-case failure.
•	 Few individual simulation modules will be thoroughly exercised.

y	 e	 Difficult to obtain repeatable results from man-i ln-loop operation.

f_
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.Validation Configurations: Pros and Cons

NORMAL ALL-UP SIMULATOR

PRIMARY OBJECTIVE:

To validate dynamic adequacy of total simulator system.

ADVANTAGES:

• No coding and debugging of drivers.
•	 Allows complete verification of hardware and software interfaces.
•	 Succesful operation builds confidence incomplete simulator system.
•	 Contributes to simulator acceptance.

DISADVANTAGES:

• May be a complex, laborious process to set up simulator for check-case
execution.

•	 Requires realtime operation of dedicated system.
e	 Difficult to know correct answers for all variables exercised by each

check case.
e	 Very difficult to fault-isolate following check-case failure.
•	 Fehr individual simulation modules will be thoroi,ighly exercised.
e	 Difficult to obtain repeatable results from man-in-loop operation.

a

j

i



MDC El 246
31 11ARCH 1975

5.3 CHECK CASE FORMULATION 	
1

.PRIME CONSIDERATIONS:

• THOROUGHNESS

-- Individual and combined variation of discrete and
continuous variables.

--Exercise all operational modes.

--Sweep out entire-range of operation: normal/abnormal/ 	 (end-state
failures	 considerations)

1

• EFFICIENCY

-- Minimize resources expended for a given level: of
confidence	 .

o ORDER OF EXECUTION

-- Minimize resources to reach most likely outcome	 (as a function
at decision points	 of time)

f

3.5.3 Check Case Formulation

Whether checkpoints are manually selected or automatically generated, the prime

considerations involved are thoroughness of exercise of the simulation and

efficiency. Normally, these are thought of as "end-state" considerations. That

is, when the validation process has been completed, how much confidence do you

have in the validity of the simulation, and what resources (manpower and computer

time) have you expended to attain that level of confidence?

Another aspect of efficiency comes into play when we attempt to define the

best order in which check cases should be run. Recognizing that each check case

represents a decision point (i.e., the results of the check case will either be
i

acceptable or unacceptable), we can consider, as a function of time, the resources

we will have expended to reach the most likely outcome at each decision point.

We shall see that this viewpoint leads to directly opposite check-case ordering

strategies for initial validation and revalidation.

3-fib
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Check Case Formulation

BASIC CHECKPOINT-GENERATION METHODS
(Two-dimensional illustrations)

S	 s

(a) Complete Factorial

S	 ,

t

1
(b) Incomplete factorial

s

a ^ .

(c) Orthogonal lines
	

(d) P,ando^

3.5,3.1 Basic Checkpoint Generation Methods

Four basic parameter-sweeping checkpoint-generation methods, for either

manual or automatic application, are schematically depicted above for a two-

dimensional "parameter space" -- i.e., for a hypothetical simulation module having a

only two inputs.

What these simple two-dimensional figures cannot adequately show, however, is
i

the explosive increase in the number of checkpoints required for the conventional

(complete factorial) approach, as the number of input parameters increases. For

example, consider a simulation module having six continuous inputs and eight

discretes (not at all unrealistic). Suppose we wanted to input a high, medium
j

and low value for each continuous input, and an on and off (or zero and one) value 	 j

for each discrete. It would hen take 186,624 distinct checkpoints to run all

combinations of inputs. This phenomenon, often called the "curse of dimensionality",

k makes it essential to use more efficient checkpoint-generation methods.
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•	 C

3.5.3.2 Order of Execution of Check Cases

The following two figures define general confidence relationships, and our

resulting recommendations for check case ordering, for initial validation and

revalidation of a module or integrated simulation.

Check case ordering for initial validation of a new simulation (upper figure)

should be based upon the pessimistic assumption that the module will fail to

perform acceptably for some or all conditions, thus temporarily halting the

validation process while corrections are made. Therefore, check cases should be

ordered on the basis of gradual expansion  of the operational envelope, starting

with verification of minimal operational capability and leading up to more

rigorous exercise. This will achieve our stated objective of minimizing the

resources expended up to the time of failure.

For revalidation of an existing, previously-validated simulation which has

undergone some type of modification (lower figure), check case ordering should be

based upon the optimistic assumption (based upon its prior "track record") that it

will pass all its check cases. Therefore, the most rigorous check case(s) should

be presented first. Validation will thus be completed in the shortest possible

time if, as expected, the most rigorous check case(s) execute successfully. If

this is not the case, a process of contraction of the envelope is followed, until

the operational limit of the simulation is discovered, and the cause of unaccept-

able performance is determined and corrected.

MCOONNELL DOUGLAS As^TRONAUTICS C®MPANY . EAST
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Check Case Formulation
r
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EXAMPLE RIGOROUS CHECK CASE FOR REVALIDATION
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q

AIRCRAFT STOP	 CONDITIONS

-.	 •iINAL CONDITIONS	 ^	 .ALTITUDE
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j` ^J	 o	 +	 w4

---^-.:^
	 /	 t	 . rt	 ,• ,	 GLIDE	 _....

tPRE•FLARE	 ^.:.	 -	 SLOPE	
-

+ 1 (ROLLOUT, STEERI9 
	

.:

/	 t BRAKING

URE-, +	 LANOING GEAR AND
/	 SPEED BRAKES DEPLOYED

TOUCHDOWN	
\(ROLL, PITCH, YAW SEQUENCE)

An example of a rigorous check case -- a Shuttle mission segment consisting

of energy-management glide, approach and landing -- is shown above. Operations

to be performed, and critical variables to be monitored, are indicated on the

figure. The high-rate roll-pitch-yaw sequence shown late in the approach is

designed to verify the synchronization of visual and motion systems with the

vehicle dynamics and crew-station displays.

r
I
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5.4 REALTIME DATA ACQUISITION AND FORMATTING

Special software required to support validation of all-up simulator -acquire
performance data for validation post-processor. 	 T

Must be integrated with the realtime executive, simulation' common storage,
computation cycle, and host-computer 1/0 system capabilities.

Must not interfere with simulator operation (basically a matter of priority).

(A similar system has been integrated with the SPS as part of our CPDT
study.)

3.5.4 Realtime Data Acquisition and Formatting

In validating an individual module or a cluster of modules, the driver routine

exercises control over'the module or cluster, and-performs data input and output.

For validation of integrated simulations, the situation is reversed: the simulation

is under control of its own executive and the computer operating system; the data-

acquisition routines are in turn under control of the simulation executive, and

data-acquisition operations are subordinate to simulation operations.

The data acquisition routines must be integrated with the simulation's realtime

executive and common storage, and their operation must be constrained by the

computation cycles of the realtime simulation and by the host-computer I/O

capabilities.

The overriding design requirement is that data acquisition for validation

purposes must not interfere with realtime simulation, neither causing the

simulator to lose synch with realtime or preventing simulation modules or essential

service modules from executing at their assigned rates. This is basically a

matter of priority assignments. That is, the execution priority assigned to the

validation data-acquisition module must be low enough that, if the simulator has

difficulty keeping up with real tithe, the data acquisition operation will be the

first thing sacrificed. (Provisions should be made to flag any resulting "drop-

outs" on the validation data file, indicating that the'validity of the data may

have been compromised.)
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REALTIME DATA ACQUISITION SYSTEM

SIt;ULAT1011	 data FLATIMIC01l1101I 	 LESSTORl1GE

control
f

performance
parameter	 time	 S

data 
transfer
enable.

	

•	 I

i	 REALTIIIE SIMULATOR INTERFACE
data	 i

frarre	
frame	 identification	 I

i	 data	 time	
rate

DR	
CONTROL

UFFE MODULE

corip a e
data frame

output 'frame	
fon ats	 i

PASSi stream
DATA iIN11PULATION

	

STORAGE	 NID FORitATTI.NG
FILE

"quick look" displays•

	

	 initialization
instructions

IiISTRUCTOR/OPERATOR
STATION

The basic elements and interfaces of the real,time data acquisition system

are shown above. Under control oi= the simulation executive, simulation data

(times and performance parameter values) are passed to the data-acquisition

system, and stored in a buffer area. When all data required for complete "frame"

(see Section 3.4.10) are available in the buffer, the data frame is assembled

and formatted as directed by the control module, based upon instructions previously

input by the operator through the instructor/operator station. The formatted

data frames may be transferred to the instructor/operator station for quick-

look displays, and/or put out on a mass storage device for later post-processing.

Further discussion of data-acquisition system requirements and design

characteristics is provided in DRL-3. That discussion is based in part upon

information received from our Crew Procedures Development Techniques study staff,

who designed and built a similar system for the SPS.
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5. Methods for Validating Performance

5.5 COMPARISON METHODS AND CRITERIA

(Manual and automated methods)

DEVELOPMENT GOALS:

9	 For manual validation - develop display formats io minimize
workload of manual validation, maximize reliability and
consistency.

•	 For automated validation - find or devise comparison criteria
which will give the same evaluation results as experienced
simulation engineers or flight crews (i, e.., the "right" answer).

(Our approach: conduct a simple experiment to obtain empirical
data on this problem.)

w.5.5 Comparison Methods and Criteria

As discussed previously (e.g., Section 3.4.10), the comparison and evaluation

operations involved in simulation validation may be implemented by either manual

or automated methods. Since the ultimate test of a simulation's validity is

acceptance by its end users (spacecraft engineers and/or flight crews), it is

essential that any automated validation technique give results which are consis-

tent with the subjective evaluation of the end users. As part of this study,

we conducted a simple human-factors experiment to investigate the agreement

between manual and automated evaluation results for a simple simulation-validation

problem.
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MANUALIAUTO EVALUATION EXPERIMENT

W eing a Set of ten ca^e c of dynamical data.)

Rel- vs- Sim
plots

i	 subjective

comparison,&	 ranks

evaluation	 Recommended"Relerente"
parameters & IC	 Ref- vs- SIM	 comparison

DYNWICS	 RANK	 algorithms

'	 CORRM1 10N•
MODULE

"Simulation"
parameters & IC	 COMPARISON &

EVALUATION	 'objective ranks

Nl— N1

1

3.5.5.1 Experiment Description

The experimental process is depicted schematically in the above figure. A

single "reference" time-history and ten "simulation" time-histories were generated

by varying the parametric input to a simple dynamics module. The simulation

validity (agreement between "reference" and "simulation" data) was then evaluated

in two ways:

o A set of time-history plots was generated and evaluated manually (trapezoid)

by a panel of experimental subjects.

o The same data was evaluated automatically (rectangle), using a variety of

candidate comparison algorithms.

Finally, the agreement between manual and automatic comparison results was determined

for each candidate algorithm, using a "rank correlation" process (for which the

formula is shown above). The comparison algorithms which gave the highest positive

correlation with our engineers' subjective evaluations thus became the recommended

algorithms for automated validation.
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The dynamics module used to generate the experiment data (upper figure) con-

sisted of a simple linear system: a decaying sinusoid added to a low-pass filter

output. When forced with a step function, this system gave the "reference" out-

put shown in the lower figure, for the choice of parameters and initial conditions

shown on the figure.

Ten sets of "simulation" data were generated by adding random perturbations to

the parameters and/or initial conditions used to generate the "reference" data.

Only three examples are shown here: the sample which was judged the best match

by our panel of experimental subjects is shown below: a sample from the middle

of the range, and the sample judged the worst match by the panel are shown on

the next page.

EXPERIMENT "REFERENCE" VS "SIMULATION" DATA
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MANUAL COMPARISON: SUBJECTIVE RANKS

s

PA14KING BY m6iVIDUAL SUBJECTS RANK SPREAD

CASE "High" Experience "Low" Experience , High',	 Mean Low

1 2 3	 4	 5 6 7	 8 9 10-

1 9 9 10	 9	 9 10 9	 9 10 10 9'	 9.4 10

2 2 2 2,	 2	 2 2. 2	 2 1 2' 1	 1.9 2

3 5 7 B	 6	 6 5 6	 7 • 5 8 5	 6.3 8

4 8 5 5	 8	 7 8 4	 4 2 5 - 2	 5.6 8

5 7 6 7	 7	 8 7 8	 8 6 7 6	 7.1 8

6 4 3 3	 3	 3 4 3	 3 4 3 3	 3.9 4

7 1 1 1	 1	 1 1 1	 1 3 1 1	 1.2 3

8 6 4 4	 4	 5 6 7	 5 7 4 4	 5.2 7

9 10 10 9	 10	 10 9 10	 '10 ' 9 9 9	 9.6 10

10 3 8 6'	 5	 4 3 5	 6 8 6 3	 5.4 8

3.5.5.2 Subjective (Ilanual) Evaluation of Experiment Data

The ten experimental subjects, all engineers at our Houston facility, were

classified in two groups, based upon their prior experience in simulation: the

"high" experience group had from one to fourteen years' experience in simulation,

the "low" experience group had zero to one year experience.

Each subject received the complete set of ten simulation performance plots, in

a random order. Working entirely independently, and with no direction as to the

criteria they should use, the subjects ranked the ten performanceplots	 rank 1
Zor the best match, 2 for the next-best, and so on down to 10 for the worst match.

The results are shown in the above table. As is typical of subjective experiments,

there is considerable scatter in the data, the greatest unanymity being evident for

the best and worst performance. A few systematic differences between the high and

low experience groups were noted, and are discussed in DRL-3. The mean subjective

rank (14SR), as well as the means of the two experience groups, were computed and

used in the subsequent correlation computations.
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AUTOMATED COMPAR I SOR SIMPLE CRITERIA

Maximum error:	 Emax	 max	 { I r(t) - s(t) I : o4 te,.T }

T

Integral of . error:	 IE - f ^r(t) - s(t),	 dt
0

Integral of absolute error: 	 IAE - 
fI T

	

 r(t) - s(01	 dt.
o	 T

Time-weighted integral of absolute error: 	 IAET _ f, r(t) - ^ s(t) ( t dt

Integral of squared error:	 ISE -fr(t) - s(t) 
2	

dt

	

o	 T
2

Time-weighted integral of squared error: ISET =fir( 0 - SW	 t dt
•	 o

3.5.5.3 Objective (Automated) Evaluation of Experiment Data

A variety of simple evaluation algorithms were tested in this experiment. These

algorithms, for which the formulas are shown above, all do some elementary mathematical

processing of the reference and simulation time-history data, resulting in a single

number whose magnitude is an indicator of the degree of mismatch between the two

time-histories (zero for a perfect match).

Of these algorithms, the two involving squares of errors (ISE and ISET) give

higher weight to large local errors: the two involving time-weighting (IAET and

ISET) give higher weight to persistent errors than transient errors.
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OBJECTIVE RANKING: SIMPLE CRITERIA

<	 i

ASE MSR
MISMATCH VALUE/RANK RANK SPREAD

Emax
AIE	 - IAE IAET ISE ISEI High	 Mean Lo

1 9.4 0.879 0.422 2.948 11.203 1.411 4.286
9 4 9 9 9 9 4 8.17 9,

2 1.9 .153 .618 .618 1.789 .065 .147
2 6 2 3 2 2 2 2.83 6

3 6.3 .753 1.781 1.792 5.931 .620 1.161
8 9 8 7 8 7 7 7.83 9

4 5.6 .510 .406 .883 1.903 .233 .293
6 3 5 4 5 4 3 4.50 6

5 7.1 .472 1.623 1.628 6.282 .432 1.328
5 7 6 8 6 8 5 6.67 8

6 3.3 .231 .206 .657 1.782 .094 .178
4 1 3 2 3 3 1 2.67 4

7 1.2 .138 .270 .287 .610 .023 .029
1 2 1 1 1 1 1 1.17 2

8 5.2 .187 .579' .851 4.116 .099 .478
3 5 A 5 4 5 3 4.33 5

9 9 6 1.089 3.732 3.732 12.289 2.162 5.104
10 10 10 10 16 10 10 10.00 10

10 5.4 .730 1.748 1.748 4.622 .571 .823
7 8 7 6 7 6 6 6.83 8

The above table shows the numerical values and resulting ranks determined by

application of these simple algorithms to the experiment data. The MSR is also

shown on the table for comparison.

Since they emphasize different properties of the response, the automated

comparison results show nearly as much scatter as the manual results.
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AUTOMATED COMPARISON; FEATURE EXTRACTION
a

• Would like a processor which would "simulate" the engineer's judgement.

e	 Processor would use filtering, peak detection, etc., to extract r spouse
attributes - oscillation frequency, damping, phase, steady-state value,
etc. - from the raw time-history data.

•	 Errors in the individual response attributes would then be summed, with
appropriate weights, , to generate a single criterion value:

F	 a^ ^^ co I + C 2 	 + cL 3 `ACp^ t- 0.+l dX cs^ -t ...

e	 Our experience to date indicates that considerable further development
will be required to effectively. apply the feature-extraction concept.

We also did some work with "feature extraction" techniques in the course of this

study. Our goal was to develop an automated comparison algorithm which would

"simulate" human judgement by explicitly identifying the degree of mismatch in

each of a number of response attributes -- e.g., frequency, damping, steady-state

value.

A single number for the overall mismatch could then be computed by forming a

weighted average of the mismatches in the individual response attributes. The

weighting could be varied, depending upon the application of the module being

validated. For example, initial response characteristics might be more important

for validation of visual and motion system response, while presistent errors would

be more important for variables lying upstream of integrators (e.g., engine thrust,

aerodynamic drag).

Our initial results indicate that considerable further development effort will be

required to effectively apply this concept.
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5.5 Comparison Methods and Criteria

SUBJECTIVEIOB.aEGTIVE RANK CO RFFLATIpN: 5IMPA CRI,ARO

SUBJECT
GROUP

RANK CORRELATION VS. CRITERION

Emax	 AIE	 IAE	 IAET	 ISE	 iSET' tiM

High experience 0.919 0.536	 0.940 0.931 0.940 0.945 0.931

All subjects .905 .558	 .946 .954 .946 .971 ,	 ,.943

Low experience .872 .562	 .933 .959 .933 • .979 .935

RECOMMENDATIONS:

Don't use IE, AIE.
•	 Use ISE when initial response is important (e.g', visuallmotion

system response).
Use ISET when steady-state value is important (e.g., variables
upstream of integrators).

3.5.5.4 Comparability of Manual and Automated Evaluation Results

Subjective/objective rank correlation results are shown in the above table for

the.various experience groups, for each individual algorithm as well as the mean

objective rank (MOR). Based upon these results and additional study of the

i
characteristics of the various criteria, we recommend using either ISE or ISET,

depending upon the response characteristics of greatest importance in each

validation application.

I
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SUBJECT IVEIOBJECTIVE RAND CORRELATION: FEATURE EXTRACTION

RANK CORRELATION VS. ATTRIBUTE,
SUBJECT
13ROUP Initial Initial Final First First-peak

Value Slope Value Frequency Damping Peak Time

High experience 0.451 0.594 0.422 0.749 0.5e5 0.596 0.400

All	 subjects .528 .547 .524 .750 .617 .644 .377

Low experience .586 .482 .608 .732 .630 '	 .673 .336

RECOMMENDATIONS:

I	 Pursue development of feature-extraction -algorithms.
o	 Use only in weighted-average form.
o	 Conduct additional subjective-evaluation experiments to optimize

weights for different applications.

The rank correlations shown above for the individual response attributes are

all too low to be of any practical value in validation. This implies that feature-

extraction methcds can only be useful i f ml+ltiple attributes are combined via a

weighted- average formulation. In any event, additional development effort will

be required to implement and apply feature-extraction techniques.
i
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3.6 CONCLUSIONS AND RECOMMENDATIONS, TASK 2.0

This concludes our discussion of the performance verification task. The more

significant conclusions and recommendations resulting from the study effort of

this task are listed above.

WBS 2.0 Performance Verification Task

6. CONCLUSIONS AND RECOMMENDATIONS

e Perform	 simulation validation	 at the	 individual	 module	 level,	 at intermediate
stages of	 integration,	 and	 in	 the	 final	 all-up	 configuration.

e Concentrate	 upon "critical"	 performance parameters.

o Use module interaction• as the basis of the 	 module developmentlintegration
sequence.

e Establish working interfaces with 	 hardware test groups	 early , in	 the
development cycle.

e Define a	 universal	 data	 format for all	 validation	 service	 routines.

e Do not attempt to convert	 non-machine-read p ble	 reference data	 into
machine-readable form.	 I

e Perform a "make or buy" analysis for the DBMS to' support simulator
development and validation.

o For	 initial	 validation,	 execute	 check cases	 in an	 envelope-expansion
sequence;	 for	 revalidation,	 use an	 envelope-contraction	 sequence.

e In	 automating	 data	 comparison	 and fidelity	 evaluation,	 use criteria
which correlate well with	 engineers'	 subjective	 judgements	 -	 ISE and

SET.

o Continue development of automated feature-extraction techniques for
data	 comparison	 and fidelity	 evaluation.
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SECTION 4	 -

Cr1NCLUDING REMARKS

SIMULATION VERIFICATION TECHNIQUES STUDY -- "PAYOFF"

o	 TECHNIQUES:	 Powerful, efficient techniques identified for both hardware
checkout and performance verification.

o	 BASIC DATA: Hardware and software characteristics and parameters identified,
required data Identified and/or compiled - for every hardware subsystemiunit
and every simulation module.

o	 SUPPORT SOFTWARE. Support software requirements identified; high-level
software design accomplished.

o	 DATA BASE: Hardwarelsoftware data base content and structure identified;
initial data base assembled; high-level DBMS requirements identified; DBMS
implementation recommendations made.

o	 BASIS FOR FUTURE WORK: identified potential pitfalls to. avoid, promising
approaches for further development.

IN SUMMARY - The ground viork has been laid for substantial improvements in
the effectiveness of the next generation of spacecraft simulators.

Having completed our review of the objectives and the results of this study,

it is approori ate to consider what has been achieved -- i . e. , what contributions

these study results will make to the efficient and economical develo pment arid

operation of the next generation of spacecraft simulators.

The above chart lists the major accomplishments of this study as we see

them. Many of the study outpurs trill be immediatelyuseful, such as the check-

out and validation algorithms and the initial hardviare/software data base. In

addition, the study has built a solid base for future develo pment of checkout

and validation techniques
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WHAT NEEDS TO BE DONE NOW

t,_...YPrIfkAtion,!vaUdation requirements.. factored into upcoming simulator procurement

specifications andlor proposal evaluation criteria:

-	 Hardware instrumentation

-	 Diagnostic softv,nre requirements

-	 Contractor's verification plans and support software

-

	

	 Contractor's management structure and visibility of verification and

validation functions

e	 Establishment of liaison interfaces with spacecraft system development and

test groups.

o	 Expansion of verification data base, using structure defined by this study.

e	 DBMS requirements definition, • make and/or buy decision, and initiation of

developmentiprocurement.

The work begun with this study must be carried forward, if the exoected

benefits are to be realized in u p coming simulator p rojects. One near-term

activity which should be pursued is the incorporation of verification and

validation requirements into simulator procurement specifications, proposal

evaluation criteria, and development plans.

The other items listed above 	 spacecraft hardware liaison, data base

expansion, and DBMS development/procurement -- are long-term activities which

should be begun early in the simulator development cycle.

4-2
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SECTION 5

ANNOTATED BIBLIOGRAPHY

Documents are listed here in the same order in which they appear on the Schedule

of Study Deliverables in Section 1. Contracted end items are identified by their

Data Requirements List (DRL) line item numbers, Task Reports by their TR numbers.

5.1 RESULTS OF TASK 1.0, HARD14ARE VERIFICATIU";

(1) TR-1: R. W. Foster, C. E. Jones, G. Montoya, and T. H. Wengliriski, Simulation

Hardware Definition Report, MDC E1006, 25 January 1974.

This report documents the results of Subtask 1.1, Definition of Simulation Hard-

ware. The next generation of spacecraft simulators at JSC are described: the

Shuttle Procedures Simulator (SPS), the Orbiter Aeroflight Simulator (OAS) (known at

that time as the Horizontal Flight Simulator (I-IFS)), and the Shuttle Mission Simulator

(SMS).

^ r
	 Based upon a composite view of these three simulators, as well as a review of

state-of-the-art equipment for flight simulators, we defined a "reference simulator

configuration to serve as the basic vehicle for hardware checkout stuJies. The

description of the reference simulator includes overall system configuration, major

subsystem configurations, and individual hardware components. Component-count esti-

mates are included to indicate the potential magnitude of the checkout and data-

management problems.

A glossary of checkout and test terminology is also included.

(2) TR-2a: P. B. Schoonmaker, Simulator Verification Study: Final Report, MDC

E0861, 30 July 1973.

This report describes company-funded research into verification technology, per-

formed before initiation of the contracted study.

1

The two basic problem areas treated in this report are operational verification

and design verification. A variety of guidelines and techniques, identified

r_1
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primarily from a survey of the literature, are described in each problem area. An

appendix treats the application of directed graph theory to fault isolation.

A comprehensively indexed bibliography is also included.

(3) TR-2: G. Montoya, P. B. Schoonmaker, and T. H. Wenglinski, Hardware Self-Test

Techniques Survey Report, MDC E1033, 1 November 1974.

This report documents the results of Subtask 1.2, Survey of Current Hardware

Self-Test Techniques	 In this subtask, we built upon the data base established by

the company-funded research described in TR-2a, while concentrating upon techniques

of high potential applicability to simulator hardware checkout.

The information in this report was based upon a survey of NASA, McDonnell

Douglas, military, and commercial airline simulation facilities, as well as a con-

tinuing search of the verification literature.

Techniques for fault detection, fault isolation, and incipient fault detection

are described in some detail. Test design approaches, test hardware design con-

siderations, and test data processing algorithms are also covered.

The report also includes an extensive glossary, an annotated bibliography of

documents considered of major interest, and a larger, comprehensively-indexed

bibliography.

(4) TR-3: G. Montoya and T. H. Wenglinski, Integrated Simulator Self-Test System

Concepts, MDC E1149, 20 September 1974.

This report documents the "system-oriented" results of Subtask 1.3, Definition

of Hardware and Software Techniques for Simulator Checkout. Tests for checkout of

individual simulator subsystems -- DCE, motion base, visuals, etc. -- are briefly

described, to provide a framework for discussion of overall test execution and

sequencing. Test executive software and subsystem test software are described, as

well as test hardware for sensing, signal generation, and signal processing/display..

System design-change impacts and cost impacts are also discussed.

5-?
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(5) DRL-3: Simulation Self-Test Hardware Design and Techniques Report, MDC E1150,

1 November 1974.

This report constitutes the final and complete documentation of Task 1.0, in-

cluding results previously documented in Task Reports 1, 2 and 3, as well as results

not previously published in the Task Reports.

The reference simulator configuration description and the self-test techniques

survey description correspond closely to material published in TR-1 and TR-2,

respectively. The treatment of hardware and software techniques for simulator sub-

system checkout is much more comprehensive than the treatment in TR-3. Detailed

descriptions of individual subsystem checkout techniques include high-level test

software designs and data base requirements. The discussions of integrated test

system design, test system cost impacts, and simulator design change impacts follow

TR- 3 .

The glossary and indexed bibliography are also included in this report.

5.2 RESULTS OF TASK 2.0, PERFORMANCE VERIFICATION

(1) TR-4: Simulation Module Performance Parameters and Performance Standards,

MDC E1127, l August 1974.

This report presents module-oriented results -for simulation modules in the

Environment, Crew Station, Vehicle Configuration, and Vehicle Dynamics categories.

To establish the context for the module-oriented developments, brief discus-

sions of introductory topics are provided: guidelines for definition of performance

parameters and "critical" performance parameters, identification and chat^acteristics

of alternate reference data sources, and basic validation techniques and required

support software.

This work was later revised and expanded for publication in DRL-3.

(2) TR-5: L. M. Duncan, J. P. Reddell and P. B. Schoonmaker, Subsystem Simulation

Validation Techniques, MDC E1201, 30 December 1974.

5-3
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Subsystem/module-oriented results in the Vehicle Subsystems category (the bulk

of the module-oriented results) are presented in this report. To establish the

context for these results, material previously presented in TR-4 is briefly sum-

marized. In these summaries, the emphasis is on implications for subsystem simula-

tion modules; e. g., interfaces between environment modules and subsystem modules.

This material was later incorporated into DRL-3.

(3) DP,L-3: L. M. Duncan, J. P. Reddell, and P. B. Schoonmaker, Simulation

Performance Validation Techniques Document, MDC E1136, 27 January 1975.

This report covers all work done under W BS 2.0. It includes all subsystem/

module-oriented results published in TR-4 and TR-5, and unified treatments of

validation techniques, data-handling considerations, and other topics not previously

published in the TR's. (TR-6 was not published separately; instead, the material

intended for publication in TR-6 was incorporated into DRL-3.)

5.3 RESULTS OF TASK 3.0, FINAL DOCUMENTATION

The results of the Final Documentation task include the present report (DRL-4),

t.hc N'ew Technology (Technical Detail) report (DRL-5), and the Summary Report of New

Technology Review Activities (DRL-6).
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