General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
Image Processing and Data Reduction of Apollo Low Light Level Photographs

by

Gregory C. Alvord
Image Processing and Data Reduction
of Apollo Low Light Level Photographs

by

Gregory C. Alvord

Type III Report

29 July 1974 to December 1975

Contract # NAS5-20683

Agency: State University of New York at Albany
Computing Center
Albany, New York 12222
(518) 457-1893
Image Processing and Data Reduction of Apollo Low Light Level Photographs

by

Gregory C. Alvord

Type III Report

29 July 1974 to December 1975

Contract # NAS5-20683

Agency: State University of New York at Albany
Computing Center
Albany, New York 12222
(518) 457-1893
Preface

This Type III Report covers the contract period from 29 July 1974 to 31 December 1974 and fulfills the requirements as outlined in Article II item 4 and Article IV, for NASA contract NAS5-20683, "Image Processing and Data Reduction of Apollo Low Light Level Photographs". The contents of the report include the technical details pursuant to contract NAS9-14413 "Apollo Experiment S-211 Low Brightness, Astronomical Photography."
Abstract

The objective of this study was to remove the lens induced vignetting from a selected sample of the Apollo Low Light Level photographs. The methods used were developed under an earlier contract. A study of the effect of noise on vignetting removal and the comparability of the Apollo 35mm Nikon lens vignetting was also undertaken.

The vignetting removal was successful to about 10% photometry. Noise has a severe effect on the useful photometric output data. Separate vignetting functions must be used for different flights since the vignetting function varies from camera to camera in size and shape.
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Flow chart for vignetting removal</td>
<td>3-5</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Scaled Density vs. Scaled Log Intensity</td>
<td>3-7</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Step wedge and Histogram</td>
<td>3-8</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Step wedge profile</td>
<td>3-8</td>
</tr>
<tr>
<td>Figure 5</td>
<td>Contoured vignetting function</td>
<td>4-3</td>
</tr>
<tr>
<td>Figure 6a</td>
<td>Vignetting function</td>
<td>4-3</td>
</tr>
<tr>
<td>Figure 6b</td>
<td>Difference function for two vignetting functions 60 sec exposure</td>
<td>4-3</td>
</tr>
<tr>
<td>Figure 7a</td>
<td>Difference function for two vignetting functions 30 sec minus 60 sec</td>
<td>4-3</td>
</tr>
<tr>
<td>Figure 7b</td>
<td>Difference function for two vignetting functions 15 sec minus 60 sec</td>
<td>4-4</td>
</tr>
<tr>
<td>Figure 8</td>
<td>Difference function for two vignetting functions 120 sec blue minus 30 sec</td>
<td>4-4</td>
</tr>
<tr>
<td>Figure 9a</td>
<td>Difference functions for two vignetting functions 30 sec minus 30 sec</td>
<td>4-4</td>
</tr>
<tr>
<td>Figure 9b</td>
<td>Difference functions for two vignetting functions Apollo 17 minus Apollo 15</td>
<td>4-4</td>
</tr>
<tr>
<td>Figure 10a</td>
<td>Contoured Average Apollo 15 vignetting</td>
<td>4-5</td>
</tr>
<tr>
<td>Figure 10b</td>
<td>Contoured Average Apollo 16 vignetting</td>
<td>4-5</td>
</tr>
<tr>
<td>Figure 10c</td>
<td>Contoured average Apollo 17 vignetting</td>
<td>4-5</td>
</tr>
<tr>
<td>Figure 11a</td>
<td>L4 Point Density Image</td>
<td>5-3</td>
</tr>
<tr>
<td>Figure 11b</td>
<td>L4 Point Log Intensity</td>
<td>5-3</td>
</tr>
<tr>
<td>Figure 11c</td>
<td>L4 Point Log Intensity Contoured</td>
<td>5-3</td>
</tr>
<tr>
<td>Figure 11d</td>
<td>L4 Point Vignetting Removed</td>
<td>5-3</td>
</tr>
<tr>
<td>Figure 11e</td>
<td>L4 Point offset Log Intensity contoured vignetting removed</td>
<td>5-4</td>
</tr>
<tr>
<td>Figure 11f</td>
<td>L4 Point offset Log Intensity</td>
<td>5-4</td>
</tr>
<tr>
<td>Figure 11g</td>
<td>L4 Point Vignetting Removed contrast enhanced 2:1</td>
<td>5-4</td>
</tr>
<tr>
<td>Figure 11h</td>
<td>L4 point vignetting removed contrast enhanced 4:1</td>
<td>5-4</td>
</tr>
</tbody>
</table>
List of Figures and Tables (continued)

Figure 12a A15-100-13531-ZL-30sec Density 5-5
Figure 12b A15-100-13531-ZL-30 sec Log I offset 5-5
Figure 12c A15-100-13531-ZL-30 sec Log I contoured offset 5-5
Figure 12d A15-100-13531-ZL-30 sec vignetting removed 5-5
Figure 12e A15-100-13531-ZL-30 sec vignetting removed offset contoured 5-6
Figure 12f A15-100-13531-ZL-30 sec vignetting removed noisy 5-6
Figure 13a A15-100-13529-ZL-20 sec Density 5-6
Figure 13b A15-100-13529-ZL-20 sec Adjusted Log I 5-6
Figure 13c A15-100-13529-ZL-20 sec vignetting removed average 5-7
Figure 13d A15-100-13529-ZL-20 sec vignetting removed old 5-7
Figure 13e A15-100-13529-ZL-20 sec vignetting removed offset 5-7
Figure 13f A15-100-13529-ZL-20 sec vignetting removed offset contoured 5-7
Figure 14a A15-100-13528-ZL-60 sec Density 5-8
Figure 14b A15-100-13528-ZL-60 sec Log I 5-8
Figure 14c A15-100-13528-ZL-60 sec Log I offset 5-8
Figure 14d A15-100-13528-ZL-60 sec vignetting removed 5-8
Figure 15a A15-100-13513-ZL-120 sec Density 5-9
Figure 15b A15-100-13513-ZL-120 sec Adjusted Log Intensity 5-9
Figure 15c A15-100-13513-ZL-120 sec vignetting removed 5-9
Table of Contents

Preface ii
Abstract iii
List of Figures and Tables iv
1 Statement of Problem 1-1
2 Algorithm for Solution 2-1
3 Implementation of Algorithm 3-1
4 Comparison of Vignetting 4-1
5 Examples of Results 5-1
List of Figures and tables (continued)

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 16a</td>
<td>A15-13515-ZL-120 sec Density</td>
<td>5-10</td>
</tr>
<tr>
<td>Figure 16b</td>
<td>A15-13515-ZL-120 sec Log I</td>
<td>5-10</td>
</tr>
<tr>
<td>Figure 16c</td>
<td>A15-13515-ZL-120 sec Log I adjusted</td>
<td>5-10</td>
</tr>
<tr>
<td>Figure 16d</td>
<td>A15-13515-ZL-120 sec vignetting removed, adjusted, contoured</td>
<td>5-10</td>
</tr>
<tr>
<td>Figure 17a</td>
<td>A15-13517-ZL-90 sec. Density</td>
<td>5-11</td>
</tr>
<tr>
<td>Figure 17b</td>
<td>A15-13517-ZL-90 sec Log I adjusted</td>
<td>5-11</td>
</tr>
<tr>
<td>Figure 17c</td>
<td>A15-13517-ZL-90 sec vignetting removed contoured</td>
<td>5-11</td>
</tr>
</tbody>
</table>
Statement of the Problem

In the collection of certain scientific data, it is convenient to use readily available film, lenses and cameras. When the phenomena is of such a light level as to require that the lens be wide open, an effect known as vignetting is observed. The effect changes the relative photometry at different points on the film. This effect is unacceptable for photometric studies.

If after taking all the appropriate precautions to avoid getting vignetting (i.e., faster film, faster optics, longer exposure times), one still must use a lens wide open, then there is no recourse but to try to remove the effect. This is exactly the problem with the low light level astronomical photographs taken during Apollos 15, 16 and 17 under S211 and S158.

Pictures were taken while in lunar orbit, and during trans-lunar flight with a 35mm Nikon camera with a f1.2 lens. The camera was mounted on a clamp in front of the window and exposed for from 15 to 240 sec., depending upon the phenomena. The camera was loaded with Kodak 2485 film with an estimated equivalent ASA rating of 8000.

A Nikon f1.2 lens is about as fast a lens as can be found. 2485 film is also a very fast film. Due to film reciprocity failure and space craft movement, extending the exposure time beyond 240 was not manageable. The phenomena which was to be recorded was estimated to be of a brightness between 6.5×10^{-11} and 1.02×10^{-9} solar units. These facts indicated the need to try to remove the photometric effects of vignetting after the film was brought home.

Added to these photographic reasons for the need to remove vignetting was the fact that these images contained data about phenomena which we will not have an opportunity to view again for the foreseeable future. Contained on these frames were images of the Zodical light at long and short elongation, and attempts to photograph both the genenshine and L4 points.

Our attempt to solve this problem was by way of an image process system called VICAR (Video Image Communication and
Retrieval). This system of programs was originally designed at Jet Propulsion Laboratory (JPL). The version we used was implemented on the Science and Application Computing Center IBM 360/75 and 360/91 at Goddard Space Flight Center.

We sought, then, an algorithm for removing vignetting which could be brought to fruition on the VICAR system. It is the intent of this report to present that algorithm. We also shall present the properties of vignetting in general, and the properties which specifically relate to our test data.
The Algorithm for Solution

Prior to our presentation of the digital images to the computer, a digitization process is undergone. The process takes a smoothly varying analog image and converts it to a matrix of values, each element of which is an approximation of the density of the film at some X,Y. Equation 1) shows how this approximation is obtained from:

\[S_{ij} = h(x-id_x,y-jd_y)s(x,y) \] \hspace{1cm} (1)

where \(dx, dy \) are the scanning step size for \(x \) and \(y \) respectively.

\(h(x,y) \) is the scanner aperture envelop assumed to be zero outside some finite area.

Vignetting behaves as if it were a neutral density filter with a positional dependence upon its density. We write \(V_{ij} \) as the matrix which represents this process.

\[V_{ij} = \begin{cases} 1.0 & \text{near the center} \\ 0.0 & \text{near the edge at the image} \end{cases} \]

\(V_{ij} \) is normalized to show percent of transmittivity when multiplied by 100. The density of the filter \(F_{ij} \) which would simulate the effect is given by

\[F_{ij} = \log \frac{1}{V_{ij}} \] \hspace{1cm} (2)

The image \(I_{ij} \) of the scene \(S_{ij} \) is attenuated by passing through this filter \(V_{ij} \). Equation 3 represents this process

\[I_{ij} = V_{ij} \cdot S_{ij} \] \hspace{1cm} (3)

where this multiplication is element by element.

As a first approximation at an algorithm for removing vignetting, we could merely divide the image by an approximation of the vignetting to reconstruct the scene (Equation 4)
When the image is captured on film, it is done so as a density representation D_{ij}. Photographic film reacts in a non-linear manner to light intensity. The shape of this non-linear process is represented by the function H_I:

$$I_{ij} = H_I(D_{ij})$$

Our reconstruction algorithm is then:

$$S_{ij} = \frac{I_{ij}}{V_{ij}}$$

If we have the lens which created the images, we can observe the effect of the lens upon a uniform flat field of light. We can photograph this field and have a density representation of the effect at the lens.

We can approximate V_{ij} with one minus the difference between the known intensity K_{ij} of the flat field and the received Intensity R_{ij}:

$$V_{ij} = 1 - (K_{ij} - R_{ij})$$ \hspace{1cm} (7)

Since we are again collecting data via photograph. R_{ij} is effected by film non-linearity. Let $D(V)_{ij}$ be the density image of the flat field. Then equation (8) provides R_{ij}:

$$R_{ij} = H_V(D(V)_{ij})$$ \hspace{1cm} (8)

where H_V is the characteristic function of the film used to capture the flat field image.

We set $1-K_{ij}$ equal to some constant which is independent of position C and our vignetting function approximation becomes:

$$V_{ij} = C + H_V(D(V)_{ij})$$ \hspace{1cm} (9)
We place equation (9) into equation (6) and obtain

\[S_{ij} = \frac{H_I(D_{ij})}{C+H_v(D(v)ij)} \]

(10)

One of the conditions for a good algorithm is that \(S \) be easily implemented on the VICAR System. Equation (10) shows element by element division of one image \(H_I(D_{ij}) \) by another \(C+H_v(D(v)ij) \). The VICAR system did not have a division function for images. The drawback to implementation one is that the images within VICAR are 8 bit integers. Using integer arithmetic would cause too much of a loss of significant digits. We put equation 10 into this form

\[\log(S_{ij}) = \log(H_I(D_{ij})) - \log(C+H_v(D(v)ij)) \]

(11)

This allowed us to use the available subtractions routine, for vignetting removal. Within the VICAR system, the integers 0 thru 255 were assigned to represent certain log intensity values so that a change of one data number was a change of known log intensity. We called this form of the data scaled Log intensity.
Implementation of Algorithm

In this section, we follow the flow of fig. 1 and discuss each step and our attempts to fulfill its requirements. Tables and graphs are presented to show the actual data used. Although data was collected during Apollo 15, 16 and 17, we shall present just the details associated with the Apollo 15 data frames.

Step 1.a Obtain Data Frames

Seven data frames were obtained by the Apollo 15 crew - Al Warden, Dave Scott, Jim Erwin - which were deemed worth investigation by the Apollo project S-211 principle investigator R. D. Mercer. These included one 240 sec. exposure of the L₄ point for the earth-moon system, and a series of six exposures of the solar outer corona and zodical light. The film upon which these exposures was made was exposed to a calibrating sensitometer at the High Altitude Observatory at Boulder, Colorado prior to flight. This was to insure that the calibration received the same background radiation as did the data frames.

Step 1.b Obtain Vignetting Frames

After the flight lenses were returned to earth with the crew, they were brought to GSFC to determine their vignetting function. A set of film was calibrated at HAO in a manner similar to that for the data frames. The same film type was used for the vignetting exposures as was used on the flights. (Kodak 2485), although this is not a requirement of the algorithm.

An optical arrangement was set up by Walter Fowler of GSFC to present to the lens a uniformly illuminated field of light. Due to the high speed of 2485, great care was needed to insure uniformity tolerances greater than those observable by the film. The film containing these exposures and the calibrations were developed under controlled conditions by Al Stober of GSFC.

1Some of the smoothing done to the vignetting frame may not have been needed had a finer grain film been used for the vignetting exposures.

PRECEDING PAGE BLANK NOT FILMED
Step 2 Digitize and Scale

The data images and their calibration wedges were scanned on a high speed microdensitometer made by Boller and Chivens. The scanning process makes a linear transform from photometric density to the range 0-255. The density average is found within some aperture. That average is used as the density value for that point (pixel). The film was scanned from sprocket hole to sprocket hole so as to provide registration information.

A complication occurred that caused the aperture size to be different between the data and vignetting frames. The data was scanned with 35 micron circular pixel size. The vignetting frames were scanned with a 40 micron square aperture. This is not a severe problem. The vignetting effect is a slowly varying function. A 10% change in the vignetting value occurs over many pixels even with a 40 micron spot size. We have not lost any detail by scanning the vignetting with a larger spot size.

Step 3 Remove Fog

On all of the density images, including the calibration wedges, an area of unexposed film was histogrammed to yield the mean grey level. This value was subtracted from the density pictures. This zeroed the density scale so that no light meant 0 on the scaled density image.

There is, of course, a problem that the matrix, which represents the image for the data, will have a different number of rows and columns than will the vignetting frame. This problem is met by stretching the vignetting image to a size which it would have had if it had been scanned at 35 microns. In this technique, linear interpolation is used to fill in the missing pixels. This is completely adequate because of the smooth nature of the vignetting function.

Step 4 Determine film characteristics

The calibration step wedges were scanned with the same
aperture setting as the frames to which they correspond. The wedges were made by a known amount of light falling on the film. By scanning these wedges, we were able to build a table which related density to intensity. Fig 2 is the calibration curves for the Apollo 15 vignetting frames in terms of scaled density versus scaled Log Intensity.

The techniques used to determine the values for this graph were fairly straight forward. First a histogram was taken of the entire wedge and is shown in fig. 3. From this histogram, we can see count peaks at each of the wedge levels. In the figure (3) is a picture of an example test wedge with the region for the histogram shown. The next step was to simulate a slit averaging technique. Figure 4 shows a slit average as a function of position for a test wedge. This provides us with a detailed position of the steps and ramps. The last pass at the wedge is to histogram just the step regions of the wedge image. From this pass we get mean and standard deviations of the wedge steps. The mean is used as the scaled density created by a known intensity. The standard deviation is our measure of error bars. The error ranges from 9 to 12 counts. Figure 2 was drawn with the points on tables 1 and 2.

Step 5 Rescaling to Log I

The tables created in step 4 were used to change for scaled density to scaled Log intensity. A 256 entry table was built to map each input number to an output number. Linear interpolation was used to add conversion table values between calibration table values.

Step 6 Remove vignetting

The data and vignetting frames were measured to locate the pixel position for allignment. Figure 4 shows how the sprocket holes were used to register the pictures. Each of the four corner sprocket holes were used as fiducial marks. We made the assumption that between frames on the same strip of film and with the same
camera body the position of the optical axis is fixed with respect to the sprocket holes. This assumption was later reinforced by observing frame to frame discrepancy on the two pixels. That is the relative distance between the sprocket hole and the corner of exposed film varied by not more than two pixels in X and Y.

When the subtraction is performed, results between -255 and 255 may be obtained. We rescale these values to 0,255 by a linear shift so the minimum difference is set to zero. This causes a slight offset of the Log Intensity scales from one data frame to the next. It prevents, however, loss of data off the low contrast or high contrast end of the scale. We have also preserved the equality of data number and log intensity.
obtain data image on calibrated film

1a

scan to sample film image and scale 0,255 in density

2

determine and remove film density fog

3

scan calibration wedges to obtain film characteristics

4

rescale to log intensity of the light which created the image

5

subtract vignetting image from data image and rescale 0,255

6

output image is vignetting removed Log I picture

6a

figure 1
Table 1
Neutral Density 2

<table>
<thead>
<tr>
<th>Scaled Log I</th>
<th>240sec.</th>
<th>180sec.</th>
<th>120sec.</th>
<th>90sec.</th>
<th>60sec.</th>
<th>30sec.</th>
<th>15sec.</th>
</tr>
</thead>
<tbody>
<tr>
<td>157.7</td>
<td>99</td>
<td>95</td>
<td>91</td>
<td>86</td>
<td>66</td>
<td>67</td>
<td>48</td>
</tr>
<tr>
<td>137.5</td>
<td>92</td>
<td>87</td>
<td>81</td>
<td>75</td>
<td>47</td>
<td>48</td>
<td>30</td>
</tr>
<tr>
<td>119.6</td>
<td>86</td>
<td>75</td>
<td>67</td>
<td>59</td>
<td>29</td>
<td>29</td>
<td>13</td>
</tr>
<tr>
<td>101.1</td>
<td>63</td>
<td>59</td>
<td>48</td>
<td>41</td>
<td>13</td>
<td>14</td>
<td>4</td>
</tr>
<tr>
<td>82.9</td>
<td>50</td>
<td>41</td>
<td>29</td>
<td>23</td>
<td>4.5</td>
<td>4.2</td>
<td>1.2</td>
</tr>
<tr>
<td>63.9</td>
<td>31</td>
<td>23</td>
<td>14</td>
<td>10</td>
<td>1.2</td>
<td>1.1</td>
<td>.6</td>
</tr>
<tr>
<td>47.9</td>
<td>16</td>
<td>11.2</td>
<td>3.1</td>
<td>3.4</td>
<td>.4</td>
<td>.3</td>
<td>0</td>
</tr>
<tr>
<td>30.0</td>
<td>7</td>
<td>4.5</td>
<td>1.4</td>
<td>1.5</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>15.6</td>
<td>3</td>
<td>4.9</td>
<td>.5</td>
<td>.03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1.0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2
Neutral Density 1

<table>
<thead>
<tr>
<th>Scaled Log I</th>
<th>Scaled Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>255.0</td>
<td>107</td>
</tr>
<tr>
<td>233.9</td>
<td>103</td>
</tr>
<tr>
<td>216.9</td>
<td>98</td>
</tr>
<tr>
<td>198.6</td>
<td>90</td>
</tr>
<tr>
<td>180.4</td>
<td>81</td>
</tr>
<tr>
<td>161.2</td>
<td>69</td>
</tr>
<tr>
<td>145.1</td>
<td>54</td>
</tr>
<tr>
<td>127.6</td>
<td>38</td>
</tr>
<tr>
<td>113.2</td>
<td>24</td>
</tr>
<tr>
<td>97.7</td>
<td>13</td>
</tr>
<tr>
<td>82.1</td>
<td>4</td>
</tr>
<tr>
<td>68.1</td>
<td>2</td>
</tr>
<tr>
<td>52.4</td>
<td>.2</td>
</tr>
</tbody>
</table>
Fig. 3

Fig. 4
Comparison of Vignetting

The algorithm presented under sections 2 and 3 was developed during the S211 project. It was felt that further work was needed to obtain a better approximation of the vignetting function. Figure 5 shows the noise on the 60 sec. A15 vignetting frame used in our first attempt to remove vignetting. In this display, every 8th grey level has been set to 255 (white). We can see the shape of the function clearly in this display. The contour lines are wide and diffuse.

Noise in the approximation to the vignetting has had an adverse affect upon the output image. We could have used averaging to remove some of this noise. If we were to have averaged several exposures together, the film grain noise would have been removed. Unfortunately, we did not have multiple exposures of the vignetting function at each exposure time.

Another approach would have been to convolve some smoothing function within a small non-zero window over the vignetting image. This would have had a smoothing effect. As long as the non-zero region of the convolution mask was small compared to the region of high gradient on the vignetting image, no adverse effect would have been produced.

VICAR did not provide an easy means by which to experiment with convolution masks. We therefore chose to average vignetting frames of different exposure time. To insure that this was a legitimate operation, we had to measure the shape of the vignetting function between cameras, exposure times and color filters.

By subtracting two vignetting frames, we could measure their similarity. Figures 6a and 6b show the results of three subtractions. Fig 6a is the 60 A15 frame. Fig 6b is the rescaled difference image, where the 60 sec A15 frame has been subtracted from another A15 60 sec. image. The rescaled histogram shows a large symmetric peak at 128 (zero before rescaling).
Figure 7 a,b shows A15 60 sec. subtracted from A15 - 30 sec. A15 - 15 sec. respectively. This difference shows the same properties as fig. 6b and are therefore the same basic shape. We can use the six Apollo 15 frames to form an average Apollo 15 frame without distorting the vignetting shape. Figure 10a is that average image with every eighth grey level enhanced to show contours. The Log intensity difference between contours is 0.17. The averaging has had the desired result of lowering the noise as evidenced in the less diffuse contours. We conclude that, as predicted by the geometrical optics explanation of 1 vignetting, shape is independent of exposure time.

Figure 8 shows the difference between the Apollo 16 30 no filter and blue filter vignetting frame. The histogram is shifted because of different incident intensity levels with the red filter in place. The histogram is still symmetric and no banding is evident. It is our conclusion that the various filters used did not effect the basic shape of the vignetting function.

The next comparison is that between lenses. If the lens for the three flights were to be the same, a single average vignetting function can be produced and used independent of the flight upon which the data were taken. Grain noise removal would have also been better with a higher number of images to average. Figure 9a,b shows the Apollo 16 - 15 30 sec. and Apollo 17-15 30 sec. There appears to be no banding. However, the histograms have become more asymmetric. Figure 10 a, b, c are the average contoured A15, A16 and A17. The contours show the difference in the vignetting shape between lens. We conclude from this that the three lens used are different enough in their vignetting functions to advise against using a single average vignetting in removal attempts.

Examples of Results

Figures 11a through 11h are results of processing frame AS15-101-13566-LL4-240SEC, a photograph of the fourth lagrange libration point for the earth moon system. The photograph was taken on 31 July 1971 at 13:37 GMT. The 240 second exposure was centered at 23° 15' Right Asension -3 declination taken from lunar orbit in double umbra shadow. Figure 11a is the density image. 11b is 11a after converting to Log Intensity. Note the circular shape to the 'bright' (dark) region in 11b. This is the same shape one sees in figure 10a (the A15 vignetting function). There is a spacecraft oscuration in the upper left side of all these images. Figure 11c is an attempt to contour the Log I image by setting to black every 4th grey level. Figure 11d is a vignetting removed image. Comparison of the background between 11b and 11d along a horizontal line Y4 of the way up the image shows the background flatter in 11d than in 11b. The pronounced circular edge of 11b is gone from 11d. A bright spot appears to still exist at center in the upper portion at 11d. This region is asymmetric and off axis so thus may well be the L4 dust cloud.

Figure 11f is another Log I image which has been shifted to avoid scale truncation when vignetting is removed. The DN/4 Log I factor is left constant but dn of 64 on all such offset images does not imply the same intensity light created the image. Figure 11e is a contoured vignetting removed version. There seems to be some residual vignetting as evidenced by the short arc in the lower righthand corner of 11e. Figures 11g and 11h are contrast enhanced versions of 11d (vignetting removed). These two images show the L4 cloud to be quite asymmetric and off axis.

Figure 12 through 17 are images taken of the rising sun to show outer corona and inner zodical light. Table 3 gives the data on when and how these images were taken. Figure
12a, b, c and d are density, Log I, contoured Log I and vignetting removed respectively. Figure 12e is a contoured vignetting removed image with offset log scale.

Figure 13a is a density image while 13b is an offset Log I image. Figures 13c and 13d are both vignetting removed images with different vignetting functions used. 13d was done with the 60 sec A15 function while 13c was done with the Average A15 function. Figure 13e and 13f are contoured offset images. 13e has vignetting still in it and 13f has it removed. Figure 13f has visible circular bands. It appears that in this case we over-corrected for vignetting. Figure 13 is a short exposure time image. Although we have seen the exposure time has no effect upon vignetting shape, the light levels of a 20 sec exposure are sufficiently different from those of a 60 sec one as to lose normalization when we subtract.

Figures 14a, b, c and d are density Log I, offset Log I vignetting removed series of a zodical light image. Figure 15a, b, and c represent another zodical light series of density, offset Log Intensity and vignetting removed offset contoured image.

Figure 16a is a density image. Figure 16b is a Log I image that has had the contrast diminished by an attempt to contour it by setting every eight grey levels to 256. 15c is the offset Log I image and 16d has had the vignetting removed. Here there seems to be a small residual vignetting not apparent in the upper lefthand corner (where there was spacecraft obscuration).

Figure 17a, b and c is a series similar to that of figure 15 density, offset Log I, and contoured vignetting removed, offset image respectively.
Figure 11a

Figure 11b
Figure 11e

Figure 11f
Figure 13c

Figure 13d

Figure 13e

Figure 13f
Figure 14a

Figure 14b
Figure 15a

Figure 15b

Figure 15c