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ŷ

y^- i •	 nii	 b• s...	 — -_.-	 —	 ► ^• M •q ^^ _ •^ ! w•IY ^. •r.	 .^ .^ !• +^ arr rli ^! .Y^ •1! 4	 V-1 w w

	

Y 1' ' •	 _•U ^`•	 ". i.q w^ .^M.	 _ rlll •Y AI•• ^^	 ^^ +IY, dt .Y) ^^ _	 ! r• ^.MI• •"	 _q w w —

`	 i r^	 i ^^ ^ N •^^ .^ .A. ill► i •w^ ^IIY •r .^ _ _ .^^ .•M +iY`

	

} 	 C l^	 ^1 war ^^ 7^ M• ^^.	 .,^	 .^ fie+	 ..	 M	 V r'	 I:11 11

	

J V
S
l \I'	

w

S S S 
\

S S	 " ° `	 - ° - - -	 INTERPOLATION OF ERTS-1	 S -S '
{g Ŵ̂  
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li ^, Ì7, *^.+ rr ^. ^r .^ ^.s .r .^ +w^ .^, rr^ wr rr 	 .. +w^ ^lw. ... ,+r w^ .^ ^s

	

^ ^ ^. .^ y^ ^y {^ y. w .^ r rr err r .^ r w _ r ..s. w. ._. ^r .^ ► +^e^ w.	 +r. w rr rr.

S S S S S S S S S S S S S — S — i ri • 1• w S M — w— r _ w T	 M ^r+ 	 :Nr A.w ^•. •.! .w..Vw r

r. s S 3 S - S S S S S S S S w r— r W 
i
W W_— _-- w w ^J ►. s.

xy
wr ^r^....... :wrvr^ 	 wlr. arw err ^.r ..r r

_.A -5 S S S (S S S S S̀ S S S 5 — S `— w 

`
W w — — — .^ — [ ^..r ter- ^^.,.. s

S S S S V w/ S V S ^./ S S S V -° ... ^7 d J •7 	 W l' c►'^ 	 ,v w

	

II, /• I.	 C^"f' ` ^ ^ fiL' my ..,m .̂ ,	 ^....e^ .rw wrr rw wri +w.-
SS ` SSSSSSSSSSSS_ _ ww... _ ..	 . . ^.,_..^^^.. ,• ^^ :^._.,.^..^

\ lSSSSSSSSSSS- w ww w-^ ___— _ .. .,i .a._.^,^<» ^_.^..,^^..^^

SSSSSSSSSSS SSS vlww 

	

...	 ,,.._. ,.. ,....^ ..........1. I J M.:',1..► SST" ' ,.......^ +..	 ... ,.^ «......

N s s V S S S s V s s S w w w w	 4 w.► w ^r N rs aw	 nr ^^ w^ rw•	 N^

S S S S S S S S S S S M -- .
1 w w — — w..	 ^^ • .r WM .dab NNW FYI ^1^ i <.I^U •.^ AIM NIM .^ r► !U

Laborat©ry for 'A0pjjd*ionsjj-Wftte Seas "_.
WWWWWWW

S- S ^	 Purdue Universit-i . West Lafayette, Indllan̂a 
Wi ^.	 t	 .w a w ^+ w 	 W T1 ov •1	 A .rr w ^{

a1	
1	 • •

	

!^	 V w	 .r ^w	 MPS ^^.w. _ Ws +IA w.
1975—
	 +f _ ^r w ^- w ^7 • 1 w w w w ^. w

	

SSS^	 _.._^.^._^...-wwwwwwww
L_..	 _ , _ --....^..	 ..^..	

_	

wa^+
wrrrilry^q^l^ilriY•,;

SRS Information NbW
61	 1W WV



1

' LARS Information Note 022175

INTERPOLATION OF MSS DATA

C.	 D.	 McGillem( s
1.	 Introduction

j When continuous data	 is discretized through sampling there 	 is

A ^	Ii	 r	 „ inevitably distortion	 that occurs when	 the data	 is	 reproduced.	 Further-

k
more,	 there is no simple way to increase the scale of the sampled data

1,(
set.	 A good example of a data set having this problem is	 the output of

ti7e ERTS Multispectral	 Scanner	 System.	 This data set	 is sampled at a
t
d'.

discrete set of spatial	 coordinates and	 is quantized	 in amplitude.	 When

p
the data	 is	 reproduced for visual	 observation,	 there	 is an	 intrinsic

i
graininess	 in	 the picture due to the sampling.	 When an attempt	 Is made

- to enlarge the picture, 	 difficulty	 is encountered because data exists

only at discrete spatial coordinates and there	 is no data between these

points.	 One method of attacking this problem is to repeat each point a
t.

number of times	 thus generating a picture that	 is enlarged	 in proportion

to the number of	 repetitions of the points.	 As can be	 imagined	 this

type of enlargement does not lead to an improvement of the picture but
j

rather serves to make some of the details more easily seen. 	 Figure 1

L shows this type of enlargement of a portion of an ERTS frame taken

from the Washington,	 D.C.	 region.	 Figure	 la	 is a	 reproduction of the

data using each point only once. 	 Figure	 lb	 is a 4 x 4 enlargement	 in

which each point	 is	 repeated sixteen times. 	 The graininess and artificial

5 appearance of the enlarged picture are very evident on close	 inspection.

From a distance the appearance is somewhat more acceptable but still

has	 a very artificial	 look.

aAnalternative method of producing an enlarged picture	 is to compute

new values between tha original	 sample points by means of an appropriate

kind of interpolation. 	 It	 is the purpose of this paper to describe three

The work described in this report was sponsored by the National Aeronautics

"	 and Space Administration under Grant Number NGLNGL-1^ and Contract

NAS9-14016. T-1039/4.
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such interpolation procedures and to illustrate the results obtained by

applying them to the same area as shown in Figure 1.

The mathematical bases of the interpolation procedures will be

presented first and then the results of applying these procedures will

be given.

2. Mathematical Bases of Interpolation

There are various rationales for selecting interpolating functions.

However, none has been found that indicates the appropriate function to

use for interpolating the ERTS MSS data so as to minimize any errors

between the interpolated image and the true original image. There are

reasons to believe that such a rationale may exist and when it has been

properly defined a new kind of interpolation may be appropriate. In

the meantime three more or less conventional procedures will be used:

polynomial interpolation, trigonometric interpolation and -inc function

interpolation. The first two methods involve passing an appropriate

curve through the data points surrounding the range of coordinates where

the interpolation is to be performed and then computing the interpolated

values from the curve. The third method consists of taking a weighted

sum of all data points in the set to compute the interpolated values.

The weighting function is the sinc function and this type of interpolation

is exact for samples taken froi a continuous function having no spatial

frequency components higher than one half the sampling frequency. These

procedures will be considered individually.
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(a) Original Data Points

e^

(b) Repeated Points 4 x 4

Fig. 1	 Washington Q.C. area Run 72041900 10/11/72 Ch 3, Lin
1129- 1257, Col 1217-1345
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3. Polynomial Interpolation (POLYINT)
i

By passing a nth order polynomial through n + 1 points it is

possible to compute interpolated values from the resulting
I'

polynomial. There are several equivalent ways of looking at this

I^	 ) j	 type of data modification. Among the most useful are: computing

interpolated values as a weighted sum of surrounding points;

two dimensional convolution; and processing in the frequency domain.

These various approaches will be illustrated in the following

I
example of interpolating three intermediate points between equally

spaced samples.

i
The technique of achieving two dimensional interpolation

will be to carryout a sequential operation: interpolate in

x-direction first and then interpolate the modified data in the

y-direction. This process is equivalent to assuming that the

interpolation surface can be represented as the product of functions

s	 i'	 involving only cne coordinate, i.e., if the two-dimensional

Interpolating surfar,,: is)	 p	 g	 g(x,y) then it is assumed

9(x, y) = 9 1 (x) g 2 (y )	 (1)
,

The proper weighting for polynomial interpolation can be

computed from the Lagrarge interpolation formula as follows:

f 	 = Lo f(X^) + L  f(X i ) + ... L  f(Xn )	 (2)

where

f(Xk) = kth sample value

	

n-1	 n-1

	

L k = 11	 (x-xJ )	 11	 (Xk-xj )	 (3)

	

j=0	 j=0

	

jA	 jA
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For a cubic polynomial four sample values are required and

the coefficients can be written as follows. (Note the change in

indices so that x varies from x  to x 1 in the central portion of

the interpolation region.)

(x-x0)(x-xI)(x-x2)

L_ I =	 x
-I -xo x-I-x1 x-I-x2

(x-x-I)(x-x1)(x-x2)

Lo	 xo-x- 
I 

xo-x 1 xo-x2

(x-x_I)(x-xo)(x-x2)

L l	 x1-x-I x1-xo x1-x2

(x-x_I)(x-xo)(x-x1)
L2 = x2_x-I x2-xo x2- T

Considerable simplification results when the samples are

equally spaced and when the coordinate x Is expressed as a fraction

of the sampling interval. For this case letting u = x/Ax the

interpolation equation becomes.

NO _ - V(I-u)(2-u)f(-I) + 2(1+u)0..,,^ 2-u)f(o)

+2(1+u)(u)(2-u)f(1) -I(1+u)(u;''•-u)f(2) 	 (5)

For a specific interpolation interval the coefficients can

be evaluated and a specific equation determined. As an example

consider the interpolation of three equally spaced values between

the original values. For this case u = , Z, 
3 
and the coefficients

are

(4)
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u L_1 LO
L1 L2

1/4 -7/128 105/128 35/128 -5/128

q ij	 1/2 -8/128 72/128 72/128 -8/128

Ii
3/4 -5/128 35/128 105/128 -7/128

The resulting equations are

f(0) = f(0)

f(t) _ -7 1 128f(-I) + 12T 
f(0) +	 2-E f ) - ^5 	 f(2)

f(2) _ -8/1^?f(-1) + 12 72
 f(0)

72
+	 12$ f(1) - 1-2- f(2)

f O _ -5/128f(-1) 
+12 

f(0) +	 105	 f(1) -	
128	

f(2)

This set of equations can be written in matrix form as

(6)

f(0) 0 1 0 0

f 
(r+ ) - 128 12^ 12g 128"

f( 1 ) -8 72 72 -8
2 128 128 128 12g

f(ri ) 128 12d 128T 12B

f	 = A f

f(-1)

F (0)

f(1)

f(2)

(7)

The process of interpolating can also be interpreted as discrete

convolution. By augmenting the original time series with zeros

at points where interpolated values will occur the interpolated

time series can be written as

{fu aug) * {h)
	 (g)

(...f_2,0,O,O,f_I,O,O,O,f0,0,0,0,fI,0,0,0,f2 .... )::

(0,-5,-8,-7,0,35,72,105,128,105,72,35,0,-7,-8,••5) x 1
128	 (9)

This representation will be considered in more detail later when

the three interpolation schemes are compared.
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An equivalent process can be carried out	 in the frequency domain.

I Taking the discrete Fourier transform of the above equation we have

4N-1	
- 2znk

it f(NT^)	 FD(fuaug}	 E	 f(n^)	 e	 N	 k-0,	 1 ... L/N-1	 (10)
b

N ^
but since f(n6T/4)	 = 0 for all	 n not a multiple of 4 	 this can be

simplified	 to
- 2nnk

I N-1

N
F D {fuaug }	=	

E	 f(nT)	 e	 k =0, 1..L/N-1	 (11)
o

Since F(k NT)	 is periodic	 in k with period of N	 it	 is evident	 that

the above	 transform	 is just the original	 spectrum with three

replications	 following	 it.

- In order to carry out 	 the convolution by multiplication of

j; the DFT it	 is necessary that the functions have the same number
- N

{ of points and	 t'.at a sufficient number of zeros be added 	 in	 the

14
time domain	 to prevent alising.	 For	 the present	 instance	 this

means adding	 16 zeros after the data points. 	 To keep the total

t
number of points a power of two the number of data points should '+

Lj be set equal	 to 2 k -	 16.	 For example if k = 7 the number of data

points	 is	 128 -	 16 -	 112 and	 the convolution	 is

' ! (foIfl...f127,0...0)	 ,t	 (ho,h...h15,0'0..0)

The processing operation would then be

{f
inter }	-	 1p-1	

{F(k)	 H(k)}	 (12)

-1where 3D is the	 inverse discrete Fourier transform operator and

^
•

I
F(k)	 and H(k)are the discrete Fourier transform of {f(n)} 	 and

{h(n)}	 respectively.	 These operations can be carried out using

ithe fast Fourier transform algorithm.

^

11 If the	 interpolation	 is	 to be done one	 line at a	 time	 it

I
appears	 that matrix multiplication would 	 be more rapid	 than using

^'
the FFT.	 However,	 if a number of lines are	 to be processed 1

r p

simultaneously the transform method may reduce the computation time. a

i
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4. Trigonometric Polynomial Interpolation (TRIGINT)

By passing a nth order trigonometric poiynomial through

n + 1 data points an interpolation can be performed by computing

intermediate values from the polynomial. This process is

equivalent to computing the Fourier series expansion of a function

having sample values corresponding to the data subset. One reason

for using trigonometric interpolation is that the errors are

uniformly distributed over tha interpolation interval as compared

to polynomial interpolation in which the errors are much greater

near the end points. i In the present case this is not a major

consideration since the interpolated values all lie in the center

interval of a multi-interval data set. However, because it

does utilize different basis functions for performing the inter-

polation it was selected as one of the methods to be studied.

The rate at which the coefficients of a Fourier series

approximation of a particular function decrease is determined by

the smoothness of the function. If the function is continuous

and has a continuous first derivative, the coefficients decrease

at least as rapidly as 
2 

where k is the order of the harmonic.
k

One way of obtaining these conditions for an arbitrary function

represented by N sample values is as follows.

(i) Choose the interval (0,N) as one half the period
of a period function.

(ii) Subtract away from the data the linear trend from
the first to the last point, i.e., form a new data

set

Z 
	 k + Yo	(13)

This will made zo = zN = 0 and thereby make the periodic function

continuous.

(iii) Reflect the data set {zk ) around the origin as an odd
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1
function.	 This will	 cause	 the periodic function	 to have a continuous

derivative at z 	 and z- N'

(iv)	 Expand	 this new data set	 in a sine series according

to the formulas.

^ N-1	 ^rkt
z(t)	 E	 bk 	sin (14)

'
k=	

N

a

^i b	 =	 2	 N E I	 z	 sin irk
N	 N

(15)
k	 n=1	 n

h

r
Both bo and b N are	 indeterminant since the sine functions are

I zero for both of these cases.

Finally	 the	 interpolated values z(t)	 are coryrputed and	 the

i linear trend of the data added 	 in again giving
III

YN	 y°j Y(t)	
= z(t)
	 +	 t + yo (16)N

i If the	 interpolation	 is	 restricted	 to	 the center	 interval

then we can replace t by u = t -	 and allow u to vary from 0

3' E to	 1.	 Thus,	 the equation	 for	 interpolation becomes

S L y- y	 N

y(u) = z(2 + u) + ( NN	 0)(u +	 2 ) + Y o (17)

°I j11
As an example consider a six point	 interpolation for which N = 5

4

b 
	 = 5
	

E	 zn sin 5n
r! n=1

!'

^	 I5

tf
bi	 = 0.41.58779z 1 	+ .95106 z 2 -	 .58779 z 3 -	 .95106 z4]

^,•	 ^; b2 = o.4[.95106z 1 	+ .58779z, -	 .58779z, -	 .95lo6z412 J

b 3 = o.4[.951o6z 1 	-	 .58779z 2 -	 .58779z 3 + .951o6z4]

{i
b 4 = 0.4[.587792 1 	-	 •95106z2 +	 .951062 3 -	 .587792 4 1 (18)

I

Z(U) = b l	 sin 5	 (u+2.5)	
+ b2 sin Sr	

( u+2.5)	 + b3 sin 
5	

(u+2.5)

+ b4 sin 5 ( v+2.5) (19)

= b l cos 5 u	 be sin 
5 

u - b 3 cos 35 u + b 4 sin 5—' u C (20)-



1®1
i	 a N-1	 7rk(u+N/2)

z(u) =	 E	 bk sin N (21)

k=1

N-1	 N-1	
2	 rrkn	 Wk(u+N/2)

(22)=	 E	 E	 z n stn	 sin	 -°
N	 N	 2

k=I	 n=1

This can be put into the weighting function form by combining	 all

^	 N
X

i
the coefficients that multiply the same sample value. 	 The weightingy

i
function form is as follows.

P(u) = N	
N E l 	 zn stn vrNn
	 sin	 zck(uNN/2) n < u <	 n + 1

l

I

k=1
(23)

i
i

11

4
,r

J

P

l	 -
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5. Sinc Function Interpolation (SINCINT)

When a signal is bandlimited to frequencies no higher than

one nalf of the sampling frequency it is possible to exactly

reconstruct the signal from its samples. The expression is

X(t) = E	 x(k) sinc (t-k)
	

(24)

k=-w

where sinc t is defined as sinrrt/nt. The above operation is

clearly the convolution of sinc t with samples of x(t) as discussed

earlier.

When there are actually higher frequency components present

this reconstruction leads to the bandlimited function that most

closely fits the original data set.

One problem that arises immediately in using this Interpolation

procedure is the requirement for a very large data set. The

reason for requiring a large number of points is the very slow

rate at which the interpolating coefficients fall off away from

the point being interpolated. The large width of the interpolating

pulse means that it is possible to get undesirable edge effects

that will persist through the interpolated picture if there is a

sharp discontinuity at the start of the image. These difficulties

can be essentially eliminated by using either a Fourier series

expansion of the data set or the discrete Fourier transform which

is virtually the same thing. Using the latter approach the

interpolation is accomplished as follows:

(i) The OFT of the data set is calculated. The

highest frequency component will be one half

the sampling frequency.

r	 a
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(il) Under the assumption that the data is bandlimited

the spectrum is extended to any arbitrary higher
frequency by adding zeros for the higher frequency

samples.

(iii) The augmented (with zeros) spectrum is now toverted
to give the original function but with data points

spaced by an amount determined by the number of
zeros added to the original spectrum. If there
originally N samples and kN zeros are added to the
spectrum then there will be (k+l)N points in the

reconstructed signal. Their the scaling will be
k+l.

This operation is carried out most rapidly by means of the

fast Fourier transform. In order to use the FFT the number of

original data points must be an integral power of two and the

scale factor k+1 must also be a power of two.

If there is concern about the presence of large discontinuities

in the data that may lead to anticipatory or trailing oscillations,

it is possible to modify the interpolation process by multiplying

the spectrum by an appropriate Hamming window function that will

taper the high-frequency response so as to reduce such oscillations.

This capability is included I n the interpolation routine and is

provided as an option to the user.

r	 _.

F
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6. Interpolation as a Convolution Operation

Interpolation can be viewed as the result of convolving samples

^-	 of a signal with an appropriate interpolating pulse. Comparison

of the interpolating pulse shapes corresponding to different

interpolation schemes provides considerable insight into their

^}	 )	 relative performances. The basis of the interpolation-convolution

a ^

i analogy is the fact that both may be considered as weighted sums

of the original data points. for interpolation we have

° 	 NO =	 E	 f(k) c (u)	 (25)
I<=-^

	= 	 ... c-I(u)f(-1)+c0(u)f(o)+cl(u)f(1)+...	 (26)

where c k (u) is the interpolation coefficient corresponding to the

fpoint f(k). For example, in the case cubic polynomial interpolation

I L
	

there are only four non-zero coefficients, namely

i3

C_ 
I
N)_	 - 6 u(1-u)(2-u)

1	 Co(u)	 =	 2(1+u)(1-u)(2-u)

l`	 C1 (u)	 =	 2 u(l+u)(2-u)

C 2 (u)	 _	 - 6 u(l+u)(1-u)	 (27)

The convolution operation can be expressed as

w

f (u)	 -	 { E	 f (u) 6(u-k))  * p ( u ) }	 (28)
K=-m

E f(k) p(u-k)	 (29)

...P(u+l)f(-1) + P(u)f(o) + P(u-1)f(1)+... 	 (30)

e

k	 , _
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	 ^I

A

l

1

i
a	 °

where p(u) is the interpolating pulse. From (26) and (30) we obtain

the following correspondence between the interpolating pulse and the

weighting function.

p (u-k) = t..( u )	 0 < u < 1

or

P(u)	 = ck (u+k)	 0 < u+k < 1
-k<u< 1-k

For the cubic interpolation coefficients we obtain

P(u) = c2
 (u+2) = - I(u+2)(u+3)(-i-u)	 -2 < u < -1

c l (u+l) = Z(u+l)(u+2)(i-u) 	 -1 < u < 0

= co (u) = Z(1+u)(1-u)(2-u)	 0 < u < 1

c-1 (u-1) _ - I(u-1)(2-u)(3-u)	 1 < u < 2

Substituting u = -u into the above equations shows that p(u) is an

even function of u and so only the positive values need be calculated.

Similar calculations can be carried out for the other interpolation

methods and the convolution operator determined. Figure 2 shows the

convolution pulses for the three kinds of interpolation considered here:

polynomial, trigonometric and sinc function.

There is clearly much similarity among the three interpolation

operations. The most noticeable difference is the extended nature of

the sinc function compared to the other two. Because of this it is

possible to get significant edge effects if there is a large dis-

continuity in amplitude at the edge of the image. It is evident that

all of the interpolation schemes will give some overshoot when a step

discontinuity in amplitude is encountered. However this has not been

found noticeable in the processed images -- possibly because of the

limited number of gray shades that can be viewed on the display.

^4
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Figure 2 Comparison of Interpolating Pulses

I
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7. Examples of Interpolated Imagery

A number of examples of interpolated ERTS imagery are shown in

the accompanying figures. Using POLYINT, the area in the vicinity of

the Pentagon Building is shown with magnification of 4 x 4, 8 x 3 and

32 x 32 in Figure 3. The smooth transition between points of greatly

in these images.

Figure 4 shows the Pentagon interpolated with SINCINT. In Figure

4(a) the image is displayed with 16 gray levels and is seen to be very

similar to the comparable image obtained using POLYINT and shown in

Figure 3(c). Figure 4(b) and 4(c) show the effect of reducing the

number of gray levels displayed and illustrate the type of contouring

that can be obtained in this manner.

Figure 5 shows the same area interpolated using TRIGINT. However,

in this case a different magnification is used in the vertical and

horizontal directions to correct for the scale differences of ERTS

images in these directions. The scaling ratio used is 38:27 which

is quite close to the correct value of 79:56 specified in the "ERTS Data

Users Handbook. Figure 5(a) shows 16 gray levels which Figure 5(b)

and 5(c) are binary images with the thresholds set at the 4th and 3rd

gray levels respectively of the original image.

Figure 6 shows a comparison of TRIGINT and SINCINT using a different

ERTS frame. Figure 6(a) is the original data set while 6(b), 6(c) and

6(d) are 4 x 4 magnifications using repeated points, TRIGINT and SINCINT

respectively. Figure 4(d) has a somewhat different appearance than 4(c).

The texture appears to be mottled somewhat. This is a general charac-

teristic of images interpolated by SINCINT and has not been satisfactorily

explained as yet. One possibi!ity is that the SINCINT process is pro-

I

w



a; p

viding a type of enhancement in which adjacent points are more completely

separated than in the other kinds of interpolation.

It can be concluded from examination of the above examples of

interpolated imagery that the scene appears to be enlarged without

introducing any major changes in its appearance. In many cases details

of the scene are more easily discerned.
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POLYINT 4V x 4H	 Lin 1129-1257 Cal 1217-1345
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POLYINT 8V x 8H	 Lin 1148-1212	 Col 1213-1277
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POLYINT	 32V x 32H Lin 1172-1188 Col 1242-1258
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Fig. 3 Pentagon

Run 72041900 10/11/72 Ch 3
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(a) SINCINT 32V x 32H	 16 Gray Levels

4

(b) SINCINT 32V x 32H 4 Gray Levels

dp	 tq4:
(c) SINCINT 32V x 32H 2 Gray Levels
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Fig. 4 Pentagon
Run 72041900 10111172 Ch 3
Lin 1172-1182 Col 1242-1258
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(a)	 TRIGINT 32V x 27H	 16 Gray Levels

•

(b) TRIGINT 32V x 21H Threshold 4th Level

41d
10 •

(c) TRIGINT 32V x 27H Threshold 3rd Level

pUUR Qt-1^^Lii'Y

Figo 5 Pentagon
Run 72041900 10/11/72 Ch 3

Lin 1172-85	 Col 1242-1260
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(a) Original Data
	

(b)	 Repeated Points 4 x 4

(c)	 TRIGINT 4 x 4
	

(d)	 SINCINT 4 x 4
if

Fig. 6 Calument Area	 Run 72059900	 Chan. 2
Line 1326-1453	 Col 1360-1487

r
i


	GeneralDisclaimer.pdf
	0001A01.pdf
	0001A02.pdf
	0001A02_.pdf
	0001A03.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A09_.pdf
	0001A10.pdf
	0001A11.pdf
	0001A12.pdf
	0001A13.pdf
	0001B01.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf
	0001B05.pdf
	0001B05_.pdf
	0001B06.pdf
	0001B07.pdf
	0001B08.pdf
	0001B09.pdf

