General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
SKYLAB PROGRAM

EARTH RESOURCES EXPERIMENT PACKAGE

GROUND TRUTH DATA FOR TEST SITES (SL-4)

CONTRACT NAS8-24000
AMENDMENT JSC-14S

National Aeronautics and Space Administration
LYNDON B. JOHNSON SPACE CENTER
Houston, Texas

APRIL 30, 1974
GROUND TRUTH DATA

FOR TEST SITES (SL-4)

approved by:

Richard A. Moke
Manager, System Analysis and Integration Office, JSC/HC

Contract NAS8-24000
Amendment JSC-14S

Skylab Program
Lyndon B. Johnson Space Center
FOREWORD

This document is submitted by Martin Marietta Corporation in accordance with the requirements of Annex I to Exhibit A, Statement of Work, Part I, Data Requirements List (DRL), of Contract NASA-24000, Amendment JSC-14S, Line Item 296, and was performed under WBS-02216.

The work was performed by R. L. Hustrom and any inquiries should be addressed to him at (303) 794-5211, Ext. 3808. After June 30, 1974, inquiries should be addressed to NASA JSC, Earth Resources Program Office, Mail Code HA.
CONTENTS

FOREWORD.. ii
CONTENTS... iii

1. INTRODUCTION... 1

2. THERMAL INFRARED CALIBRATION MEASUREMENTS
 AND ANALYSES...................................... 2
 2.1 Instruments and Techniques..................... 2
 2.2 Measurements and Analyses..................... 3
 2.2.1 THE GEYSERS, CALIFORNIA, 18 DEC. 1973....... 3
 2.2.1.1 General Conditions........................ 3
 2.2.1.2 Near Surface Meteorology.................. 3
 2.2.1.3 Temperature and Humidity Profile......... 3
 2.2.1.4 Brightness Temperature................... 3
 2.2.2 RIO GRANDE RESERVOIR, COLORADO, 14 JAN. 1974 . 3
 2.2.2.1 General Conditions........................ 4
 2.2.2.2 Near Surface Meteorology.................. 4
 2.2.2.3 Brightness Temperature..................... 4
 2.2.3 LAGUNA RESERVOIR, ARIZONA, 26 JAN. 1974...... 4
 2.2.3.1 General Conditions........................ 4
 2.2.3.2 Near Surface Meteorology.................. 4
 2.2.3.3 Brightness Temperature..................... 4
 2.2.4 THE GEYSERS, CALIFORNIA, 26 JAN. 1974......... 9
 2.2.4.1 General Conditions........................ 9
 2.2.4.2 Near Surface Meteorology.................. 9
 2.2.4.3 Temperature and Humidity Profile.......... 9
 2.2.4.4 Brightness Temperature.................... 9
 2.2.5 WALKER LAKE, NEVADA, 27 JAN. 1974.......... 9

iii
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.5.1</td>
<td>General Conditions</td>
<td>9</td>
</tr>
<tr>
<td>2.2.5.2</td>
<td>Near Surface Meteorology</td>
<td>9</td>
</tr>
<tr>
<td>2.2.5.3</td>
<td>Temperature and Humidity Profile</td>
<td>9</td>
</tr>
<tr>
<td>2.2.5.4</td>
<td>Brightness Temperature</td>
<td>10</td>
</tr>
<tr>
<td>2.2.6</td>
<td>GREAT SALT LAKE, UTAH, 29 JAN. 1974</td>
<td>10</td>
</tr>
<tr>
<td>2.2.6.1</td>
<td>General Conditions</td>
<td>10</td>
</tr>
<tr>
<td>2.2.6.2</td>
<td>Near Surface Meteorology</td>
<td>10</td>
</tr>
<tr>
<td>2.2.6.3</td>
<td>Temperature and Humidity Profile</td>
<td>10</td>
</tr>
<tr>
<td>2.2.6.4</td>
<td>Brightness Temperature</td>
<td>10</td>
</tr>
<tr>
<td>2.2.7</td>
<td>DILLON RESERVOIR, COLORADO, 30 JAN. 1974</td>
<td>10</td>
</tr>
<tr>
<td>2.2.7.1</td>
<td>General Conditions</td>
<td>12</td>
</tr>
<tr>
<td>2.2.7.2</td>
<td>Near Surface Meteorology</td>
<td>12</td>
</tr>
<tr>
<td>2.2.7.3</td>
<td>Temperature and Humidity Profile</td>
<td>12</td>
</tr>
<tr>
<td>2.2.7.4</td>
<td>Brightness Temperature</td>
<td>12</td>
</tr>
<tr>
<td>2.2.8</td>
<td>LAKE MEAD, NEVADA, 01 FEB. 1974</td>
<td>12</td>
</tr>
<tr>
<td>2.2.8.1</td>
<td>General Conditions</td>
<td>12</td>
</tr>
<tr>
<td>2.2.8.2</td>
<td>Near Surface Meteorology</td>
<td>12</td>
</tr>
<tr>
<td>2.2.8.3</td>
<td>Brightness Temperature</td>
<td>12</td>
</tr>
<tr>
<td>2.2.9</td>
<td>KATHERINE PLAYA, NEW MEXICO, 01 FEB 1974</td>
<td>24</td>
</tr>
<tr>
<td>2.2.9.1</td>
<td>General Conditions</td>
<td>24</td>
</tr>
<tr>
<td>2.2.9.2</td>
<td>Near Surface Meteorology</td>
<td>24</td>
</tr>
<tr>
<td>2.2.9.3</td>
<td>Temperature and Humidity Profile</td>
<td>24</td>
</tr>
<tr>
<td>2.2.9.4</td>
<td>Brightness Temperature</td>
<td>24</td>
</tr>
<tr>
<td>3.1</td>
<td>Instrumentation and Techniques</td>
<td>24</td>
</tr>
<tr>
<td>3.2</td>
<td>Measurements and Analyses</td>
<td>24</td>
</tr>
<tr>
<td>3.2.1</td>
<td>KATHERINE PLAYA, NEW MEXICO, 27 JAN 1974</td>
<td>26</td>
</tr>
<tr>
<td>3.2.1.1</td>
<td>General Conditions</td>
<td>26</td>
</tr>
<tr>
<td>3.2.1.2</td>
<td>Near Surface Meteorology</td>
<td>26</td>
</tr>
</tbody>
</table>

SOLAR RADIATION CALIBRATION MEASUREMENTS AND ANALYSES
3.2.1.3 Total and Diffuse Solar Radiation 26
3.2.1.4 Atmospheric Optical Depth/Transmittance 26
3.2.1.5 Target Reflectivity and Radiance at Ground Level 26
3.2.1.6 Target Radiance at EREP 26
3.2.2 GREAT SALT LAKE DESERT, UTAH, 29 JAN, 1974 26
3.2.2.1 General Conditions 26
3.2.2.2 Near Surface Meteorology 26
3.2.2.3 Total and Diffuse Solar Radiation 26
3.2.2.4 Atmospheric Optical Depth/Transmittance 26
3.2.2.5 Target Reflectivity and Radiance at Ground Level 26
3.2.2.6 Target Radiance at EREP 26
3.2.3 KATHERINE PLAYA, NEW MEXICO, 01 FEB 1974 26
3.2.3.1 General Conditions 27
3.2.3.2 Near Surface Meteorology 27
3.2.3.3 Total and Diffuse Solar Radiation 27
3.2.3.4 Atmospheric Optical Depth/Transmittance 27
3.2.3.5 Target Reflectivity and Radiance at Ground Level 39
3.2.3.6 Target Radiance at EREP 46

APPENDIX
1. NEAR SURFACE METEOROLOGY A-1
2. ATMOSPHERIC TEMPERATURE AND HUMIDITY PROFILES A-1
3. THERMAL BRIGHTNESS TEMPERATURE A-3
4. SOLAR RADIATION-DIRECT, TOTAL, DIFFUSE, AND TARGET RADIANCE AT GROUND LEVEL A-3
5. TARGET RADIANCE AT EREP A-14
Figure

1 Rio Grande Reservoir, CO, Snow Brightness Temperature and Lake Location Map, 14 January 1974 5
2 Laguna Reservoir, AZ, Location Map 6
3 Walker Lake, NV, Location Map 6
4 Laguna Reservoir, AZ, Thermal Brightness Temperature Location, 26 January 1974 7
5 Imperial Dam, AZ, Thermal Brightness Temperature Location, 26 January 1974 8
6 Great Salt Lake, UT, Thermal Brightness Temperature and Lake Location Map, 29 January 1974 11
7 Dillon Reservoir, CO, Snow Brightness Temperature and Lake Location Map, 30 January 1974 13
8 Dillon Reservoir, CO, Radiosonde Temperature Profile Plot for 30 January 1974 14
9 Dillon Reservoir, CO, Radiosonde Humidity Profile Plot for 32 January 1974 16
10 Lake Mead, NV, Thermal Brightness Temperature and Lake Location Map, 01 February 1974 18
11 Katherine Playa, NM, Location Map 19
12 Katherine Playa, NM, Radiosonde Temperature Profile Plot for 01 February 1974 20
13 Katherine Playa, NM, Radiosonde Humidity Profile Plot for 01 February 1974 22
14 Katherine Playa, NM, Total Solar Radiation, 01 February 1974 28
15 Katherine Playa, NM, Diffuse Solar Radiation, 01 February 1974 29
16 Katherine Playa, NM, Ratio of Diffuse (D) to Total (H) Solar Radiation (D/H), 01 February 1974 30
17a Katherine Playa, NM, Broadband (ERTS) Pyrheliometer Meter Readings vs Air Mass, 01 February 1974 33
17b Katherine Playa, NM, Spectral Pyrheliometer Meter Readings vs Air Mass, 01 February 1974 34
MSC-05543

Figure (Cont'd)

17c Katherine Playa, NM, Spectral Pyrheliometer
Meter Readings vs Air Mass, 01 February 1974 35

17d Katherine Playa, NM, Spectral Pyrheliometer
Meter Readings vs Air Mass, 01 February 1974 36

17e Katherine Playa, NM, Spectral Pyrheliometer
Meter Readings vs Air Mass, 01 February 1974 37

18 Katherine Playa, NM, Broadband, Spectral, and
Model Optical Depth, 01 February 1974 38

19 Katherine Playa, NM, Relative Broadband (ERTS)
Measurements of Horizontal Direct Solar Radiation
vs Time of Day, 01 February 1974 41

20 Katherine Playa, NM, Determination of Target
Reflectivity using Cards, 01 February 1974,
(1058 MDT) 42 ...

21 Katherine Playa, NM, Broadband (ERTS) and Spectral
Target Reflectivities, 01 February 1974 43

22 Katherine Playa, NM, Helicopter Broadband (ERTS)
Target Radiance Measurements Location Map,
01 February 1974 44

23 Katherine Playa, NM, Broadband (ERTS) and Spectral
Target Radiance at Ground Level, 01 February 1974 49

24 Katherine Playa, NM, Broadband and Spectral
Atmospheric Path and Target Radiance at EREP,
01 February 1974 50

A-1 Absolute Intensity Calibration Factors for
I.S.C.O. Spectroradiometer A6

A-2 Cosine Response Correction Factors for I.S.C.O.
Spectroradiometer Diffuser Head - Visible Region A7

A-3 Cosine Response Correction Factors for I.S.C.O.
Spectroradiometer Diffuser - Infrared Region A8

A-4 Mt. Evans, CO, I.S.C.O. Derivations of Absolute
Solar Constant A10

A-5 Spectral Responses of Bendix R.P.M.I. - Filters
and Sensor A11
Figure (Cont'd)

Table

1 Dillon Reservoir, CO, Radiosonde Temperature Profile Listing for 30 January 1974 15
2 Dillon Reservoir, CO, Radiosonde Humidity Profile Listing for 30 January 1974 17
3 Katherine Playa, NM, Radiosonde Temperature Profile Listing for 01 February 1974 21
4 Katherine Playa, NM, Radiosonde Humidity Profile Listing for 01 February 1974 23
5 Katherine Playa, NM, Total and Diffuse Solar Radiation, 01 February 1974 31
6 Katherine Playa, NM, Helicopter Broadband (ERTS) Target Radiance Measurements, 01 February 1974 . . 45
7 Katherine Playa, NM, Broadband Target Radiance at Ground, 01 February 1974 51
8 Katherine Playa, NM, Broadband (ERTS) Atmospheric and Target Radiance, 01 February 1974 52
9 Katherine Playa, NM, Spectral Atmospheric and Target Radiance, 01 February 1974 53
A-1 Absolute Calibration Factors of Bendix R.P.M.I. . . A12
1. INTRODUCTION

During the SL-4 Skylab mission, field measurements were performed simultaneous with Skylab overpasses in order to provide comparative calibration and performance evaluation measurements for the EREP sensors. Wavelength regions covered were solar - 400 to 1300 nanometer (nm) - and the thermal - 8 to 14 micrometer (μm) - radiation regions. Similar measurements were also performed on the SL-2 and SL-3 mission. "Ground Truth Data for Test Sites (SL-2 and SL-3)", Report Nos. MSC-05531 and MSC-05537, NAS8-24000, Amendment JSC-14S.

Sites employed for the thermal radiation brightness temperature measurements consisted of, (1) snow sites - Rio Grande and Dillon Reservoirs, Colorado (2) warm water lakes - Laguna Reservoir, Arizona, and the Great Salt Lake, Utah; (3) cold water lakes - Walker Lake and Lake Mead, Nevada; (4) a dry lake bed - Katherine Playa, New Mexico; and (5) a geothermal site* - The Geysers, California.

Sites employed for the solar radiation region, consisted of the Great Salt Lake Desert, Utah, and Katherine Playa, New Mexico.

Measurements consisted of general conditions and near surface meteorology (wind, temperature, pressure, etc.) for all sites. Measurements at the thermal sites consisted of atmospheric temperature and humidity vs altitude, taken with a radiosonde, and the thermal brightness temperature (8-14 μm). Measurements at the solar radiation sites consisted of total and diffuse solar radiation, direct solar radiation (subsequently analyzed for optical depth/transmittance), and target reflectivity/radiance. The particular instruments used are discussed in the following sections, along with analyses performed. Detailed instrument

* Included in this report for general information only, Geysers effort was authorized by NASA JSC under a separate work statement (report MSC-05538).
operation, calibrations, techniques, and errors, are given in the Appendix.

The purpose of this report is to present the measurements and analyses made, how they were made, calibrations and analyses performed, techniques used, and results obtained. It is not within the scope of the work performed to interpret the measurements, calculations, results, etc., in terms of the detailed physical nature of the targets, the atmosphere, etc.

2. THERMAL INFRARED CALIBRATION MEASUREMENTS AND ANALYSES

2.1 Instrumentation and Techniques - The thermal brightness temperature, from 8 to 14 μm broadband, of the targets were measured with a Barnes Precision Thermal Radiometer, Model PRT-5. Where possible, the PRT-5 was flown on a helicopter in order to determine the spatial nature of the targets temperature; plus, derive an integrated temperature over a large resolution element. The PRT-5 has a sensitivity range of -20°C to +75°C, a FOV of 2°, an accuracy of .5°C, and a stability of .1%. The instrument used was calibrated by the Martin Marietta Calibration Laboratory, details are given in the Appendix.

The temperature and humidity profiles were measured with a Colspan (Boulder, CO.) radiosonde (rocket and balloon) system. This system uses a small electronics package, containing a bead thermistor and standard (ML-475) carbon element hygristor, that telemeters (as it descends on a parachute) data to a ground receiver (403 MHz). A net temperature error of ± .3°C exists, and a net humidity error of ± 5.5% R.H. exists. A slight error in altitude position exists because of the combination of the sensors response time and the descent rate (25 ft/sec) of the parachute. For the temperature profile the error is ± 32 ft., and for the humidity sensor a ± 19 ft. error exists. The calibration
and analysis technique used are given in the Appendix.

The near surface meteorology measurements were made with a sling psychrometer (wet and dry bulb temperature, 1°F accuracy), a cup anemometer (± 2 m.p.h. accuracy), and aneroid barometer (± .1 inch accuracy).

2.2 Measurements and Analyses

2.2.1 THE GEYSERS, CALIFORNIA, 18 DEC. 1973

Site Coordinates: 38°45'38" N Latitude
122°47'37" W Longitude

LREP Pass: Track 63, Pass No. 68, Rev. 3145

Time of Overpass: 352:1':36:11 GMT
0436 PDT, Local

2.2.1.1 General Conditions - Pre-dawn, generally clear
in Geysers area, ground fog in lower Big Sulfur Creek valley.

2.2.1.2 Near Surface Meteorology - Dry bulb temperature = 8.33°C; wet bulb temperature = 6.11°C; surface pressure = 712.5 mm of Hg (from U.S. Standard Atmosphere); wind-calm.

2.2.1.3 Temperature and Humidity Profile

2.2.1.4 Brightness Temperature

2.2.2 RIO GRANDE RESERVOIR, COLORADO, 14 JAN. 1974

Site Coordinates: 37°43'45" N Latitude
107°17'30" W Longitude

* The detailed analyses of this data is covered by a separate statement of work and will be reported in a later document, Report No. MSC-05538.
2.2.2.1 General Conditions - Extensive snow cover, low cirrus clouds near 20,000 ft. A.S.L. (60% scattered coverage) periodically shading area.

2.2.2.2 Near Surface Meteorology - Dry bulb temperature = -8.33°C; wet bulb temperature = not obtainable; surface pressure = 544.0 mm of Hg (measured); wind - calm.

2.2.2.3 Brightness Temperature - The brightness temperature was measured with a PRT-5 radiometer, flown in a helicopter. The results are shown in Figure 1.

2.2.3 LAGUNA RESERVOIR AND IMPERIAL DAM, ARIZONA, 26 JAN. 1974

Site Coordinates: 32°50'00" N Latitude
114°20'00" W Longitude

EREP Pass: Track 63, Pass No. 91, Rev. 3713

Time of Overpass: 026:19:43:30 GMT
1243 MST, Local

2.2.3.1 General Conditions - Clear

2.2.3.2 Near Surface Meteorology - Dry bulb = 19.4°C; wet bulb = 12.8°C; surface pressure = 759 mm of Hg (measured); wind - 10 mph/SW.

2.2.3.3 Brightness Temperature - The brightness temperature of Laguna Reservoir and nearby Imperial Reservoir are shown in Figures 4 and 5.
RIO GRANDE RESERVOIR
01-14-74
LOCATION: Coordinates
as noted on map
45 miles NE of
Durango, Colo.
SCALE: 1:48000
ELEVATION: 9400 ft.
A.S.L.

SNOW BRIGHTNESS TEMPERATURE

<table>
<thead>
<tr>
<th>Position</th>
<th>Helicopter Elevation</th>
<th>Time (MDT)</th>
<th>°C</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>On Surface</td>
<td>1045</td>
<td>-13.0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>9,500</td>
<td>1047</td>
<td>-18.5</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>9,600</td>
<td>1048</td>
<td>-18.0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>9,900</td>
<td>1049</td>
<td>-16.5</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10,400</td>
<td>1051</td>
<td>-15.0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10,400</td>
<td>1052</td>
<td>-14.0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10,400</td>
<td>1053</td>
<td>-16.0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10,400</td>
<td>1054</td>
<td>-16.5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>10,400</td>
<td>1055</td>
<td>-16.0</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 1: Rio Grande Reservoir, CO, Snow Brightness Temperature and Lake Location Map, 14 January 1974
Fig. 2: Laguna Reservoir, AZ, Location Map

Fig. 3: Walker Lake, NV, Location Map
Fig. 4: Laguna Reservoir, AZ, Thermal Brightness Temperature Location, 26 January 1974
Fig. 5: Imperial Dam, AZ, Thermal Brightness Temperature Location, 26 January 1974
2.2.4 THE GEYSERS, CALIFORNIA, 26 JAN. 1974

Site Coordinates: 38°45'38" N Latitude
 122°47'37" W Longitude

EREP Pass: Track 63, Pass No. 91, Rev. 3713

 1241 PDT, Local

2.2.4.1 General Conditions - Clear

2.2.4.2 Near Surface Meteorology - Dry bulb temperature = 10.0°C; wet bulb temperature = 5.6°C; surface pressure = 718 mm of Hg (measured); wind = 3.5 mph/N.

2.2.4.3 Temperature and Humidity Profile*

2.2.4.4 Brightness Temperature*

2.2.5 WALKER LAKE, NEVADA, 27 JAN. 1974

Site Coordinates: 38°45'00" N Latitude
 118°45'00" W Longitude
 (see Figure 3)

EREP Pass: Track 06, Pass No. 93
 Rev. 3727

Time of Overpass: 027:17:58:42 GMT
 1058 PDT, Local

2.2.5.1 General Conditions - 70% stratus cloud cover.

2.2.5.2 Near Surface Meteorology - Dry bulb temperature = 4.4°C; wet bulb temperature = 1.7°C; surface pressure = 663 mm of Hg (measured); wind = <2 mph/S.

2.2.5.3 Temperature and Humidity Profile - This data not reduced due to 70% cloud cover.

* The detailed analyses of this data is covered by a separate statement of work and will be reported in a later document, Report No. MSC-05538.
2.2.5.4 Brightness Temperature - The brightness temperature, as measured with a PRT-5 radiometer aboard a helicopter, is 6-7°C over water and 10-12°C over surrounding land.

2.2.6 GREAT SALT LAKE, UTAH, 29 JAN. 1974

Site Coordinates: 41°15'00" N Latitude
112°45'00" W Longitude

EREP Pass: Track 34, Pass No. 95,
1132 MDT, Local

Time of Overpass: 029:17:32:47 GMT
1132 MDT, Local

2.2.6.1 General Conditions - Scattered Cirrus clouds.

2.2.6.2 Near Surface Meteorology - Dry bulb temperature = -1.39°C; wet bulb temperature = -2.22°C; surface pressure = 650 mm of Hg (measured); wind - calm.

2.2.6.3 Temperature and Humidity Profile - This data not reduced due to excessive cloud cover.

2.2.6.4 Brightness Temperature - The brightness temperature, as measured with a PRT-5 radiometer aboard a helicopter, is shown in Figure 6.

2.2.7 DILLON RESERVOIR, COLORADO, 30 JAN. 1974

Site Coordinates: 39°31'12" N Latitude
106°03'10" W Longitude

EREP Pass: Track 48, Pass No. 96,
Rev. 3769

Time of Overpass: 030:16:50:49 GMT
1050 MDT, Local
Fig. 6: Great Salt Lake, UT, Thermal Brightness Temperature and Lake Location Map, 29 January 1974
2.2.7.1 **General Conditions** - Scattered, high, cirrus clouds.

2.2.7.2 **Near Surface Meteorology** - Dry bulb temperature = -0.3°C; wet bulb temperature = not obtainable; surface pressure = 544 mm of Hg (from U.S. Standard Atmosphere); wind - 12 mph/N.

2.2.7.3 **Temperature and Humidity Profile** - The temperature profile is shown in Figure 8, and is listed in Table 1. The humidity profile is shown in Figure 9, and is listed in Table 2.

2.2.7.4 **Brightness Temperature** - The brightness temperature of the snow was measured at ground level in the area shown in Figure 7, and found to be -6.2 ± .2°C

2.2.8 **LAKE MEAD, NEVADA, 01 FEB 1974**

Site Coordinates: 36°07'30" N Latitude
114°37'30" W Longitude

EREP Pass: Track 06, Pass No. 98, Rev. 3798

Time of Overpass: 032:1700:36 GMT
1000 PDT, Local

2.2.8.1 **General Conditions** - Clear

2.2.8.2 **Near Surface Meteorology** - Dry bulb temperature = 11.1°C; wet bulb temperature = not obtained; surface pressure = 724.0 mm of Hg (measured); wind - calm.

2.2.8.3 **Brightness Temperature** - The brightness temperature was measured with a PRT-5 radiometer, aboard a small aircraft; the results are shown in Figure 10.
Dillon, CO

Area of Surface Brightness Temperature Measurements.

Sunlit Area: -6.0°C
Shaded Area: -6.4°C
Time: 1030-1130 MDT

Location of Ground Station
39° 31' 12" N Latitude
106° 03' 10" W Longitude

Fig. 7: Dillon Reservoir, CO, Snow Brightness Temperature and Lake Location Map, 30 January 1974
DATE: 30 January 1974
LAUNCH TIME: 1112 MDT
LOCATION: Dillon Reservoir, CO
TIME OF FLIGHT: 2.08 min
RATE OF DESCENT: 25 ft/sec

NOTE: The continuous curve is derived from the actual chart recording of the ground station.

\(\pm 0.3^\circ C \)
\(\pm 32 \text{ ft} \)

Lake Elevation Level

Fig. 8: Dillon Reservoir, CO, Radiosonde Temperature Profile Plot for 30 January 1974
MSC-05543

RADIOSONDE EVALUATION DATA

<table>
<thead>
<tr>
<th># of Δ" from Drop</th>
<th>Raw Data from St.CH.</th>
<th>Time from Drop</th>
<th>Altitude Drop Ref:12125'</th>
<th>Altitude (A.S.L.)</th>
<th>Temperature</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4- 38.5</td>
<td>0 sec.</td>
<td>0 ft.</td>
<td>12125 ft.</td>
<td>1.0 °C</td>
<td>Stabilize</td>
</tr>
<tr>
<td>2</td>
<td>4- 35.0</td>
<td>2.5</td>
<td>- 125</td>
<td>12000</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4- 34.5</td>
<td>15.0</td>
<td>- 375</td>
<td>11750</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>4- 35.0</td>
<td>25</td>
<td>- 625</td>
<td>11500</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>4- 35.0</td>
<td>35</td>
<td>- 875</td>
<td>11250</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>4- 38.0</td>
<td>45</td>
<td>-1125</td>
<td>11000</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4- 35.0</td>
<td>55</td>
<td>-1375</td>
<td>10750</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>4- 35.5</td>
<td>65</td>
<td>-1625</td>
<td>10500</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>4- 40.0</td>
<td>75</td>
<td>-1875</td>
<td>10250</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>4- 40.5</td>
<td>85</td>
<td>-2125</td>
<td>10000</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>4- 41.5</td>
<td>95</td>
<td>-2375</td>
<td>9750</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>4- 46.5</td>
<td>105</td>
<td>-2625</td>
<td>9500</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>5- 9.7</td>
<td>115</td>
<td>-2875</td>
<td>9250</td>
<td>4.4</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>5- 21.5</td>
<td>125</td>
<td>-3125</td>
<td>9000</td>
<td>6.4</td>
<td>Ground Contact</td>
</tr>
</tbody>
</table>

DATE 01-30-74
LOCATION Dillon Reservoir, CO

NOTES:
1) Recorder travels at 2.5 sec/Δ" Div
2) Radiosonde launched at 1112 MDT, approximately 20 seconds later.
sonde separated from rocket and sensors stabilized 10 seconds following separation.
3) Descent rate was 25 ft/sec.

Table 1: Dillon Reservoir, CO, Radiosonde Temperature Profile Listing for 30 January 1974
MSC-05543

DATE: 30 January 1974 LOCATION: Dillon Reservoir, CO
LAUNCH TIME: 1112 MDT TIME OF FLIGHT: 2.08 min
RATE OF DESCENT: 25 ft/sec

NOTE: The continuous curve is derived from the actual chart recording of the ground station.

+ 5.5% Humidity
+ 19 ft

Humidity - %

Fig. 9: Dillon Reservoir, CO, Radiosonde Humidity Profile Plot for 30 January 1974
MSC-05543
RADIOSONDE EVALUATION DATA

<table>
<thead>
<tr>
<th># of " from Drop</th>
<th>Raw Data from ST.CH.</th>
<th>Time from Drop</th>
<th>Altitude Ref:12125 ft.</th>
<th>Altitude (A.S.L.)</th>
<th>Humidity from Chart</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1- 40.0</td>
<td>0 sec.</td>
<td>0 ft.</td>
<td>12125 ft.</td>
<td>46.5%</td>
<td>Stabilize</td>
</tr>
<tr>
<td>2</td>
<td>1- 44.5</td>
<td>2.5</td>
<td>- 125</td>
<td>12000</td>
<td>48.5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1- 49.0</td>
<td>15.0</td>
<td>- 375</td>
<td>11750</td>
<td>50.5</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1- 49.0</td>
<td>25</td>
<td>- 625</td>
<td>11500</td>
<td>50.5</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1- 49.0</td>
<td>35</td>
<td>- 875</td>
<td>11250</td>
<td>50.5</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>2- 1.0</td>
<td>45</td>
<td>-1125</td>
<td>11000</td>
<td>51.0</td>
<td>Scale Change</td>
</tr>
<tr>
<td>22</td>
<td>2- 3.5</td>
<td>55</td>
<td>-1375</td>
<td>10750</td>
<td>51.5</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>2- 5.0</td>
<td>65</td>
<td>-1625</td>
<td>10500</td>
<td>52.0</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>2- 6.5</td>
<td>75</td>
<td>-1875</td>
<td>10250</td>
<td>53.0</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>2- 8.0</td>
<td>85</td>
<td>-2125</td>
<td>10000</td>
<td>53.0</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>2- 7.0</td>
<td>95</td>
<td>-2375</td>
<td>9750</td>
<td>53.0</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>2- 15.0</td>
<td>105</td>
<td>-2625</td>
<td>9500</td>
<td>55.0</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>2- 17.0</td>
<td>115</td>
<td>-2875</td>
<td>9250</td>
<td>56.0</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>2- 25.0</td>
<td>125</td>
<td>-3125</td>
<td>9000</td>
<td>58.5</td>
<td>Ground Contact</td>
</tr>
</tbody>
</table>

DATE 01-30-74
LOCATION Dillon Reservoir, CO

NOTES:
1) Recorder travels at 2.5 sec/" Div.
2) Radiosonde launched at 1112 MDT, approximately 20 seconds later sonde separated from rocket and sensors stabilized 10 seconds following separation.
3) Descent rate was 25 ft/sec.

Table 2: Dillon Reservoir, CO, Radiosonde Humidity Profile Listing for 30 January 1974
Virgin Basin: $11.5^\circ C \pm .25^\circ C$

Boulder Basin: $12.0^\circ C$

Canyon: $11.5^\circ C$

Fig. 10: Lake Mead, NV, Thermal Brightness Temperature and Lake Location Map, 01 February 1974
Fig. 11: Katherine Playa, NM, Location Map
DATE: 01 February 1974 LOCATION: Katherine Playa, NM
TIME OF FLIGHT: 1.83 min LOCATION: Katherine Playa, NM
LAUNCH TIME: 1236 MDT RATE OF DESCENT: 25 ft/sec

NOTE: The continuous curve is derived from the actual chart recording of the ground station.

\(\circ \) = Worst Case Limits
\(\pm 0.3^\circ C \)
\(\pm 32 \text{ ft} \)

Fig. 12: Katherine Playa, NM, Radiosonde Temperature Profile Plot for 01 February 1974
<table>
<thead>
<tr>
<th># of ¼" from Drop</th>
<th>Raw Data from ST. CH.</th>
<th>Time from Drop Drop</th>
<th>Altitude Ref: 6950'</th>
<th>Altitude (A.S.L.)</th>
<th>Temperature from Table</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5-14.0</td>
<td>0 sec</td>
<td>000 ft</td>
<td>6950 ft</td>
<td>+5.2 °C</td>
<td>Drop</td>
</tr>
<tr>
<td>3.2</td>
<td>5-17.5</td>
<td>8</td>
<td>-200</td>
<td>6750</td>
<td>5.7</td>
<td></td>
</tr>
<tr>
<td>7.2</td>
<td>5-21.0</td>
<td>18</td>
<td>-450</td>
<td>6500</td>
<td>6.3</td>
<td></td>
</tr>
<tr>
<td>11.2</td>
<td>5-23.5</td>
<td>28</td>
<td>-700</td>
<td>6250</td>
<td>6.7</td>
<td></td>
</tr>
<tr>
<td>15.2</td>
<td>5-28.0</td>
<td>38</td>
<td>-950</td>
<td>6000</td>
<td>7.5</td>
<td></td>
</tr>
<tr>
<td>19.2</td>
<td>5-31.5</td>
<td>48</td>
<td>-1200</td>
<td>5750</td>
<td>8.1</td>
<td></td>
</tr>
<tr>
<td>23.2</td>
<td>5-34.2</td>
<td>58</td>
<td>-1450</td>
<td>5500</td>
<td>8.5</td>
<td></td>
</tr>
<tr>
<td>27.2</td>
<td>5-38.0</td>
<td>68</td>
<td>-1700</td>
<td>5250</td>
<td>9.2</td>
<td></td>
</tr>
<tr>
<td>31.2</td>
<td>5-41.5</td>
<td>78</td>
<td>-1950</td>
<td>5000</td>
<td>9.8</td>
<td></td>
</tr>
<tr>
<td>35.2</td>
<td>5-41.0</td>
<td>88</td>
<td>-2200</td>
<td>4750</td>
<td>9.7</td>
<td></td>
</tr>
<tr>
<td>39.2</td>
<td>5-39.8</td>
<td>98</td>
<td>-2450</td>
<td>4500</td>
<td>9.5</td>
<td></td>
</tr>
<tr>
<td>43.2</td>
<td>5-39.5</td>
<td>108</td>
<td>-2700</td>
<td>4250</td>
<td>9.4</td>
<td>Ground Contact</td>
</tr>
<tr>
<td>44.0</td>
<td>5-39.2</td>
<td>110</td>
<td>-2750</td>
<td>4200</td>
<td>9.4</td>
<td></td>
</tr>
</tbody>
</table>

DATE 02-01-74

LOCATION Katherine Playa, NM

NOTES:
1) Recorder travels at 2.5 sec/¼" div.
2) Normal drop; radiosonde descended at approximately 25 ft/sec.

Table 3: Katherine Playa, NM, Radiosonde Temperature Profile Listing for 01 February 1974
DATE: 01 February 1974
LOCATION: Katherine Playa, NM
TIME OF FLIGHT: 1.83 min
LAUNCH TIME: 1236 MDT
RATE OF DESCENT: 25 ft/sec

NOTE: The continuous curve is derived from the actual chart recording of the ground station.

- = Worst Case Limits
± 5.5% Humidity
± 19 ft

Humidity - %

Fig. 13: Katherine Playa, NM, Radiosonde Humidity Profile Plot for 01 February 1974
RADIOSONDE EVALUATION DATA

<table>
<thead>
<tr>
<th># of ½" from Drop</th>
<th>Raw Data Drop from ST.C.H.</th>
<th>Time from Drop</th>
<th>Altitude Ref: 6950' (A.S.L.)</th>
<th>Altitude Humidity from Table</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2- 8.0</td>
<td>0 sec</td>
<td>000 ft</td>
<td>6950 ft</td>
<td>19%</td>
</tr>
<tr>
<td>3.2</td>
<td>2- 8.5</td>
<td>8</td>
<td>- 200 ft</td>
<td>6750 ft</td>
<td>19</td>
</tr>
<tr>
<td>7.2</td>
<td>2- 9.0</td>
<td>18</td>
<td>- 450 ft</td>
<td>6500 ft</td>
<td>19</td>
</tr>
<tr>
<td>11.2</td>
<td>2- 8.0</td>
<td>28</td>
<td>- 700 ft</td>
<td>6250 ft</td>
<td>19</td>
</tr>
<tr>
<td>15.2</td>
<td>2- 8.0</td>
<td>38</td>
<td>- 950 ft</td>
<td>6000 ft</td>
<td>19</td>
</tr>
<tr>
<td>19.2</td>
<td>2- 7.5</td>
<td>48</td>
<td>- 1200 ft</td>
<td>5700 ft</td>
<td>18.5</td>
</tr>
<tr>
<td>23.2</td>
<td>2- 8.0</td>
<td>58</td>
<td>- 1450 ft</td>
<td>5500 ft</td>
<td>19</td>
</tr>
<tr>
<td>27.2</td>
<td>2- 7.5</td>
<td>68</td>
<td>- 1700 ft</td>
<td>5250 ft</td>
<td>18.5</td>
</tr>
<tr>
<td>31.2</td>
<td>2- 8.0</td>
<td>78</td>
<td>- 1950 ft</td>
<td>5000 ft</td>
<td>19</td>
</tr>
<tr>
<td>35.2</td>
<td>2- 11.0</td>
<td>88</td>
<td>- 2200 ft</td>
<td>4750 ft</td>
<td>21</td>
</tr>
<tr>
<td>39.2</td>
<td>2- 12.5</td>
<td>98</td>
<td>- 2450 ft</td>
<td>4500 ft</td>
<td>23</td>
</tr>
<tr>
<td>43.2</td>
<td>2- 20.0</td>
<td>108</td>
<td>- 2700 ft</td>
<td>4250 ft</td>
<td>32</td>
</tr>
<tr>
<td>44.0</td>
<td>2- 25.0</td>
<td>110</td>
<td>- 2750 ft</td>
<td>4250 ft</td>
<td>35</td>
</tr>
</tbody>
</table>

Ground Contact

Raw Data

Raw Data Drop	X	Y	I	D.P.	Hum %	Cc/Xc=
2- 8.0	258.0	210.56	1	10.6	19	
2- 8.0	258.5	210.96	1	11.0	19	
2- 9.0	259.0	211.37	1	11.4	19	
2- 8.0	258.0	210.56	1	10.6	19	
2- 8.0	258.0	210.56	1	10.6	19	
2- 8.0	257.5	210.148	1	10.1	18.5	
2- 8.0	258.0	210.56	1	10.6	19	
2- 8.0	258.0	210.148	1	10.1	18.5	
2- 8.0	257.5	210.148	1	10.1	18.5	
2- 8.0	257.5	210.148	1	10.1	18.5	
2- 8.0	258.5	210.96	1	11.0	19	
2- 11.0	261.0	213.00	1	13.0	21	
2- 12.5	262.5	214.23	1	14.3	23	
2- 20.0	270.0	220.35	1	20.4	32	
2- 25.0	275.0	224.43	1	24.3	35	

Notes:

1) Recorder travels at 2.5 sec/½" div.
2) Normal drop; radiosonde descended at approximately 25 ft/sec.
3) Field calibration was incorrect, therefore a correction factor must be applied and this was supplied by the vendor of the radiosonde.

\[
X = \left[\frac{200}{50(R-1)}\right] + D.P. \quad Y = \left(\frac{C_c}{X_c}\right) X = \text{Data}' = \left(\frac{Y-350}{50}\right) + R = \text{Range} = \text{Data Point}; C_c = \text{Correct Calib.} \quad R = 1, \quad D.P. = 21.9 \quad X_c = \text{X at incorrect calib. D.P.}; \quad \text{Data}' = \text{Corrected Data Point}; \quad I = \text{Integer} \Rightarrow \text{Corrected R}; \quad \text{Re} = \text{Fractional Remainder} \% \text{ of } 50 \text{ D.P.'s of full scale.}
\]

DATE 02-01-74
LOCATION Katherine Playa, NM

Table 4: Katherine Playa, NM, Radiosonde Humidity Profile Listing for 01 February 1974
2.2.9 KATHERINE PLAYA, NEW MEXICO, 01 FEB 1974

Site Coordinates: 32°18'00" N Latitude
108°53'00" W Longitude

EREP Pass: Track 06, Pass No. 98,
Rev. 3798

Time of Overpass: 032:17:02:08 GMT
1102 MDT, Local

2.2.9.1 General Conditions - Clear

2.2.9.2 Near Surface Meteorology - Dry bulb temperature = 7.22°C; wet bulb temperature = 1.7°C; surface pressure = 662 mm of Hg (from U.S. Standard Atmosphere); wind - calm.

2.2.9.3 Temperature and Humidity Profile - The temperature profile is shown in Figure 12, and is listed in Table 3. The humidity profile is shown in Figure 13, and is listed in Table 4.

2.2.9.4 Brightness Temperature - The brightness temperature was measured with a PRT-5 radiometer, at ground level. The brightness temperature of the playa surface was found to be 10 ± 1°C.

3. SOLAR RADIATION CALIBRATION MEASUREMENTS AND ANALYSES

3.1 Instrumentation and Techniques - Two types of instrumentation were used to measure direct, diffuse, total and reflected solar radiation.

The first type of instruments used were two interference wedge, spectral scanning, spectroradiometers, manufactured by I.S.C.O (Instrumentation Specialties Company, Lincoln, Neb.). The wavelength covered was 400 to 1300 nm, with halfband widths of 15 nm, from 400 to 750 nm, and 30 nm from 750 to 1300 nm. The sensing element is a planar diode, with a teflon diffuser at the acceptance end of a fiber optics probe. One
I.S.C.O was used to periodically monitor (≈1/2 hr. increments) the direct solar beam, with a 6° collimator. The measurements were subsequently used to derive atmospheric optical depth, by using the Lambert/Beers Law method. The other I.S.C.O was used to measure the total (180°) incident solar radiation and the diffuse (sky) radiation (180°). The total was measured by positioning the teflon diffuser so that it viewed the entire upper hemisphere, making certain that the surface of the diffuser was horizontal. The diffuse (sky) radiation was measured by simply shading the diffuser with a "shading disc", from the direct solar beam. The target reflectance/radiance was measured by rotating the diffuser 180° so that it viewed the target. The detailed calibration of the I.S.C.O instruments is given in the Appendix.

The second type of instrument used was a Bendix Model 100 Radiant Power Measuring Instrument (R.P.M.I.). This instrument was developed, by Dr. R. Rogers of the Bendix Aerospace Division, for ground calibration measurements for the Earth Resource Technology Satellite (ERTS). It was kindly supplied, at no cost. It is basically a filtered radiometer having bandpasses of (1) Bl-.500 to .600 μm (micrometers), (2) B2-.600 to .700 μm, (3) .700 to .800 μm, and (4) .800 to 1.10 μm. Where the B1, B2, B3, and B4 are band No. 1, No. 2, etc; and they correspond to the ERTS bands 4,5,6, and 7. The real bands of the RPMI are (1) B1R - .505 to .590 μm, (2) .600 to .720 μm, (3) .680 to .815 μm, and (4) B4R - .810 to 1.02 μm. Both the ERTS and real bands are reported herein. The R.P.M.I. was used to derive atmospheric optical depth, and directional (nadar view) target reflectance (using standard reflectance cards) and absolute target radiance. All these were compared with the higher resolution ISCO derivations of same.
3.2 Measurements and Analyses

3.2.1 KATHERINE PLAYA, NEW MEXICO, 27 JAN. 1974

3.2.1.1 General Conditions
- Poor. High winds causing intermittent dust clouds moving from north to south. Large cumulus clouds moving through area, causing shadows on the playa.

3.2.1.2 Near Surface Meteorology

3.2.1.3 Total and Diffuse Solar Radiation

3.2.1.4 Atmospheric Optical Depth/Transmittance

3.2.1.5 Target Reflectivity and Radiance at Ground Level

3.2.1.6 Target Radiance at EREP

3.2.2 GREAT SALT LAKE DESERT, UTAH, 29 JAN. 1974

3.2.2.1 General Conditions
- Poor. High altitude cirrus cloud cover. Water standing on portions of the desert, remaining portions of desert were very muddy.

3.2.2.2 Near Surface Meteorology

3.2.2.3 Total and Diffuse Solar Radiation

3.2.2.4 Atmospheric Optical Depth/Transmittance

3.2.2.5 Target Reflectivity and Radiance at Ground Level

3.2.2.6 Target Radiance at EREP

3.2.3 KATHERINE PLAYA, NEW MEXICO, 01 FEB 1974

Site Coordinates: 32°18'00"N Latitude 108°53'00"W Longitude (See Figure 11)

EREP Pass: Track 06, Pass No. 98, Rev. 3798

Time of Overpass: 032:17:02:08 GMT 1102 MDT, Local
3.2.3.1 General Conditions - Clear

3.2.3.2 Near Surface Meteorology - Dry bulb temperature = 7.22°C; wet bulb temperature = 1.7°C; surface pressure = 662 mm of Hg (from U.S. Standard Atmosphere); wind - calm.

3.2.3.3 Total and Diffuse Solar Radiation - The absolute quantities of total and diffuse solar radiation are shown in Figures 14 and 15 respectively, and they are listed in Table 5. The ratio of diffuse to total solar radiation is shown in Figure 16, and is listed in Table 5.

3.2.3.4 Atmospheric Optical Depth/Transmittance Measurements - Measurements of the direct solar beam were made, over a period of time, in order to subsequently derive the optical depth of the atmosphere (\(\tau \)). The optical depth of the atmosphere and the measurements of the direct solar beam (\(M \)) are related by Lambert's law, as follows.

\[
M = M_0 e^{-\tau m}
\]

where \(M \) is the meter reading of the pyrheliometer (I.S.C.O or Bendix R.P.M.I., equipped with collimator), \(M_0 \) is their extraterrestrial meter reading, and \(m \) is the relative air mass.

The relative air mass can be given as \(\sec \theta_o \), where \(\theta_o \) is the solar zenith angle, for air masses \(\leq 2.0 \). For greater air masses, atmospheric refraction has to be taken into account. This was performed by using the following equation (which is a simplified version of Bemporad's formula).

\[
C.F. = 5.534 \times 10^{-4} \sec \theta_o^{3.34}
\]

and

\[
m = \sec \theta_o - \left[C.F. \frac{\rho}{\rho_o} \right]
\]
Fig. 14: Katherine Playa, NM, Total Solar Radiation, 01 February 1974
Fig. 16: Katherine Playa, NM, Ratio of Diffuse (D) to Total (H) Solar Radiation (D/H), 01 February 1974
<table>
<thead>
<tr>
<th>Wavelength (nm)</th>
<th>H (10^36)</th>
<th>D (10^31)</th>
<th>D/H</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>33.75</td>
<td>14.82</td>
<td>.439</td>
</tr>
<tr>
<td>425</td>
<td>53.24</td>
<td>17.84</td>
<td>.335</td>
</tr>
<tr>
<td>450</td>
<td>80.14</td>
<td>20.63</td>
<td>.257</td>
</tr>
<tr>
<td>475</td>
<td>69.43</td>
<td>16.07</td>
<td>.231</td>
</tr>
<tr>
<td>500</td>
<td>65.38</td>
<td>12.85</td>
<td>.197</td>
</tr>
<tr>
<td>525</td>
<td>61.28</td>
<td>10.08</td>
<td>.164</td>
</tr>
<tr>
<td>550</td>
<td>61.77</td>
<td>9.26</td>
<td>.150</td>
</tr>
<tr>
<td>575</td>
<td>65.20</td>
<td>8.58</td>
<td>.132</td>
</tr>
<tr>
<td>600</td>
<td>60.05</td>
<td>6.99</td>
<td>.116</td>
</tr>
<tr>
<td>625</td>
<td>58.44</td>
<td>6.04</td>
<td>.103</td>
</tr>
<tr>
<td>650</td>
<td>57.30</td>
<td>5.34</td>
<td>.093</td>
</tr>
<tr>
<td>675</td>
<td>56.94</td>
<td>4.88</td>
<td>.086</td>
</tr>
<tr>
<td>700</td>
<td>52.05</td>
<td>3.87</td>
<td>.074</td>
</tr>
<tr>
<td>725</td>
<td>44.83</td>
<td>3.05</td>
<td>.068</td>
</tr>
<tr>
<td>750</td>
<td>44.52</td>
<td>3.11</td>
<td>.070</td>
</tr>
<tr>
<td>800</td>
<td>42.46</td>
<td>2.48</td>
<td>.058</td>
</tr>
<tr>
<td>850</td>
<td>37.94</td>
<td>1.86</td>
<td>.049</td>
</tr>
<tr>
<td>900</td>
<td>34.58</td>
<td>1.61</td>
<td>.046</td>
</tr>
<tr>
<td>950</td>
<td>18.34</td>
<td>0.60</td>
<td>.033</td>
</tr>
<tr>
<td>1000</td>
<td>27.69</td>
<td>0.66</td>
<td>.024</td>
</tr>
<tr>
<td>1050</td>
<td>27.66</td>
<td>.049</td>
<td>.018</td>
</tr>
<tr>
<td>1100</td>
<td>23.54</td>
<td>0.42</td>
<td>.018</td>
</tr>
<tr>
<td>1150</td>
<td>10.55</td>
<td>0.15</td>
<td>.014</td>
</tr>
<tr>
<td>1200</td>
<td>15.90</td>
<td>0.17</td>
<td>.011</td>
</tr>
<tr>
<td>1250</td>
<td>16.69</td>
<td>0.12</td>
<td>.007</td>
</tr>
<tr>
<td>1300</td>
<td>14.86</td>
<td>0.08</td>
<td>.005</td>
</tr>
</tbody>
</table>

* microWatts (centimeter)^-2 (nanometer)^-1, MDT.

Table 5: Katherine Playa, NM, Total and Diffuse Solar Radiation, 01 February 1974
where C.F. is the refraction correction factor, P is the atmospheric pressure at the site, and P_o is the pressure at sea level. In order to derive the optical depth, the pyrheliometer meter readings are plotted vs. date, as shown in Figures 17a to 17e. Extrapolation of the line yields N_o, and Equation 1 can then be solved to yield the optical depth. The degree of linearity of the plots is a direct indication of the degree of atmospheric stability, in terms of aerosol content, i.e.; the meter readings will deviate from a linear function if the atmospheric aerosol content varies as a function of time of day (air mass). As can be seen in Figures 17a to 17e the atmospheric conditions, above the Playa, were somewhat unstable. This is especially exhibited in the infrared region, where aerosols account for almost the entire optical depth.

In cases of nonlinearities, an average had to be taken. This does result in some degree of uncertainty for the atmospheric transmittance ($T = e^{-\tau}$) for the radiances at EREP, as discussed later; because, EREP sensors viewed the target (nadir or near nadir) through an air mass of 1.0, i.e.; a nadir view is an angle of zero degrees and the air mass is given by the secant of the viewing angle. The resultant optical depths are shown in Figure 18. As can be seen, good agreement exists between the I.S.C.O and Bendix instruments. Shown also, is a model (Visual Range = 40 Km) derived from "Vertical Attenuation Model With Eight Surface Meteorological Ranges 2 to 13 Kilometers", L. Elternan, AFCRL - 70-0200, E.R.P. No. 318. This model, as discussed later, is then used to derive the atmospheric path radiances between the EREP sensors and the target. For detailed discussions of the relationship of optical depth to atmospheric aerosol, molecular, and water vapor current, a paper entitled, "Spectral Distribution of Solar Radiation at the Earth's Surface", 32
Fig. 17a: Katherine Playa, NM, Broadband (ERTS)
Pyrheliometer Meter Readings vs Air Mass,
01 February 1974.
Fig. 17b: Katherine Playa, NM, Spectral Pyrheliometer Meter Readings vs Air Mass, 01 February 1974
Fig. 17c: Katherine Playa, NM, Spectral Pyrheliometer Meter Readings vs Air Mass, 01 February 1974
Fig. 17d: Katherine Playa, NM, Spectral Pyrheliometer Meter Readings vs Air Mass, 01 February 1974
Fig. 17e: Katherine Playa, NM, Spectral Pyrheliometer Meter Readings vs Air Mass, 01 February 1974
Fig. 18: Katherine Playa, NM, Broadband, Spectral and Model Optical Depth, 01 February 1974

INSTRUMENT:
- Spectroradiometer
- Actual Filter Bands
- Model - 40 km Visual Range

![Graph showing optical depth at different wavelengths with peaks at O_3, H_2O, and H_2O (1140 nm)]

3.2.3.5 Target Reflectivity and Radiance at Ground Level - Kathrine Playa is a typical dry lake bed mud flat, having a fair degree of uniformity. The target surface consists of polygon shaped, dried mud features (about 2 to 6 inches across) surrounded by a shallow crevice, containing a higher "albedo", fine grain "dust" material.

Both spectral (ISCO) and broadband (Bendix R.P.M.I.) measurements of target reflectivity and radiance were made, at the main site shown in Figure 22. As discussed previously, the I.S.C.O. reflectivity measurements were made by measuring the total incoming solar radiation, then rotating (180°) the diffuser/fiber optics probe so that it viewed the target, then taking a ratio (reflectivity) of the outgoing to incoming radiation. The directional, (nadir view), Bendix R.P.M.I. measurements were made by first viewing a standard "gray" card, then the target, then a standard "white" card; the targets reflectivity was then determined by comparing the radiances (meter readings) of the standard cards vs. the target, shown in Figure 20. The results are shown in Figure 21. As can be seen good agreement exists between the I.S.C.O. and Bendix R.P.M.I. determinations. Also, it can be seen that the targets reflectivity varied as a function of sun angle (time); this is probably due to the extremely low sun angles due to the time of the year (winter).

In order to determine the reflectivity nature of the entire playa, the Bendix R.P.M.I. was mounted to the undercarriage of a helicopter, and flown on flight paths shown in Figure 22. Due to operator time limitations, a complete set of band (B1, B2, B3, and B4) measurements could only be made at three posi-
Target radiance for band No. 2 (.6 to .7 μm) was measured at twelve other positions on the playa. The results are listed in Table 6; plus, a comparison with the main site. The values listed in Table 6 have been corrected for collimator radiance and normalized to EREP overpass. This was performed by using premission and postmission measurements of the standard "white" card radiances; plus, real time (during the helicopter flight) measurements of total incident (.4 to 1.1 μm) solar radiation were made and radioed to the operator in the helicopter. He then recorded them according to the corresponding Bendix R.P.M.I. radiance measurements. The target radiance at EREP overpass (1102 MDT) is related (normalized) to the target radiance measured from the helicopter, at some other time (t) by

\[
N(1102) = \frac{N(t)}{H(t)} \times \frac{H(1102)}{H(t)}
\]

where \(H(1102)\) is the broadband (.4 to 1.1 μm) measurement of total incoming radiation at 1102 (EREП overpass), and \(H(t)\) is the corresponding measurement during the helicopter mission. As mentioned previously, the radiances of standard "gray" and "white" cards were also used to normalize the helicopter data to EREP overpass. Instead of the normalization factor of \(H(1102)/H(t)\) a factor of \(N_w(1102)/N_w(t)\) was used, where \(N_w\) is the "white" card radiance at the EREP overpass (1102) and during the helicopter mission \(N_w(t)\). The "white" card radiance during the helicopter mission was derived (interpolated with respect to time) from pre and post flight measurements. The use of the "white" card measurements allowed normalization factors to be derived for each wavelength band, as opposed to the broadband (.4 to 1.1 μm) total measurements. The two methods of deriving the
Fig. 19: Katherine Playa, NM, Relative Broadband (ERTS) Measurements of Horizontal Direct Solar Radiation vs Time of Day, 01 February 1974

Time - Local MDT

Horizontal Direct Solar Meter Reading:

- Band 2
- Band 1
- Band 3
- Band 4

Overpass
Fig. 20: Katherine Playa, NM, Determination of Target Reflectivity using Cards, 01 February 1974, (1058 MDT)
Fig. 21: Katherine Playa, NM, Broadband (ERTS) and Spectral Target Reflectivities, 01 February 1974
Fig. 22: Katherine Playa, NM, Helicopter Broadband (ERTS) Target Radiance Measurements Location Map, 01 February 1974
HEICOPTER TARGET RADIANCE MEASUREMENTS

<table>
<thead>
<tr>
<th>Position</th>
<th>B1</th>
<th>B2</th>
<th>B3</th>
<th>B4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>9.20</td>
<td>9.91</td>
<td>8.94</td>
<td>17.62</td>
</tr>
<tr>
<td>3</td>
<td>9.83</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>9.49</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>9.98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>11.06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>10.52</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>9.98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>5.59</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>8.20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>7.88</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>7.67</td>
<td>8.26</td>
<td>7.39</td>
<td>15.22</td>
</tr>
<tr>
<td>13</td>
<td>8.74</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>9.73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>10.78</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>9.99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>9.35</td>
<td>9.91</td>
<td>9.14</td>
<td>17.86</td>
</tr>
<tr>
<td>Mean</td>
<td>8.74</td>
<td>9.44</td>
<td>8.49</td>
<td>16.90</td>
</tr>
<tr>
<td>Main Site</td>
<td>8.39</td>
<td>9.42</td>
<td>8.85</td>
<td>19.31</td>
</tr>
</tbody>
</table>

* Katherine Playa, New Mexico, 01 Feb. 1974, W m$^{-2}$ Å sr$^{-1}$

B1 - .500 to .600 µm
B2 - .600 to .700 µm
B3 - .700 to .800 µm
B4 - .800 to 1.100 µm

Table 6: Katherine Playa, NM, Helicopter Broadband (ERTS) Target Radiance Measurements, 01 February 1974
target radiance at EREP overpass resulted in very consistent results (2-3%); thereby resulting in a high degree of certainty. A comparison given in Table 5, of all the helicopter measurements (their mean) with the main site measurements, shows that the main site was fairly typical of the playa. However, sites existed on the playa that were significantly higher and lower in reflectivity; with the lower reflectivity sites existing near the edges of the playa and the higher reflectivity sites existing near the center of the playa.

3.2.3.6 Target Radiance at EREP - The apparent target radiance at the EREP sensors, N_s, is the sum of the directional target radiance (that reflected from the target), $N_t(d)$, and radiance introduced (backscattered) by the intervening atmospheric column of aerosols and molecules, N_a. Hence,

$$N_s = N_t(d) + N_a$$

where $N_t(d)$ can further be given as

$$N_t(d) = \frac{\rho HT}{\pi}$$

where ρ is the target reflectivity, H is the total incident solar radiation, and T is the atmospheric transmittance - given as $T = e^{-\tau \text{sec} \theta}$. Where θ is the sensor view angle (scan angle) and τ is the previously discussed optical depth. The total solar radiation is equal to the sum of the direct (on a horizontal surface), I_h, and the global diffuse radiation, S, hence

$$H = I_h + S$$

The direct solar radiation can be given as
\[I_h = I_0 \cos \theta_0 e^{-\tau \sec \theta_o} \]

(8)

where I_o is the extraterrestrial solar constant, and θ_o is the solar zenith angle.

The directional target radiance, $N(d)$, is derived from all measured quantities $- \rho$, H, and $T (e^{-\tau \sec \theta})$. The atmospheric path radiance, N_a, between the EREP sensors and the target cannot be measured directly. In order to determine N_a, a radiative transfer computer program* was employed. This program was modified to allow it to be used on the CDC 6000 MACE Operating System, at Martin Marietta Aerospace, Denver Division. The required program inputs (path radiance determinates) are (1) altitude of sensor, (2) target reflectivity, (3) target background reflectivity, (4) solar zenith angle, (5) solar-sensor azimuth angle, (6) sensor scan angle (view angle), and (7) atmospheric visual range. The altitude of the sensor was input as 50 Km, which is equivalent to orbital altitude. The target reflectivity was a measured input; the target's background albedo was taken to be equivalent to the target's reflectivity. For the area, Katherine Playa, under consideration this assumption is reasonable. Solar zenith and solar-sensor azimuth angles were available from SKYBET data, and ephemeris data. The sensor scan angle was varied from 0 to 5°. The atmospheric visual range is defined as that distance an object, having a 2% contrast with the sky background, can be seen. Such a measurement is difficult (often impossible) to make. Instead, the measured atmospheric optical depth was used to select a visual range model that yielded a close fit between the measured and model optical values.

depth. As can be seen in Figure 18, this technique was successful. The field measurement derived visual range was then input into the program, and the atmospheric path radiance calculated. The resultant target radiances and path radiances at EREP are shown in Figures 23 and 24, and are listed in Tables 7, 8, and 9.

A discussion of the errors associated with the above techniques of deriving path radiance and radiance at EREP is given in the Appendix.
Fig. 23: Katherine Playa, NM, Broadband (ERTS) and Spectral Target Radiance at Ground Level, 01 February 1974
Fig. 24: Katherine Playa, NM, Broadband and Spectral Atmospheric Path and Target Radiance at EREP, 01 February 1974

- Spectral EREP Radiance
- Spectral Directional Radiance
- Spectral Path Radiance
- Broadband EREP Radiance
- Broadband Directional Radiance
- Broadband Path Radiance

Radiance - W cm⁻² m⁻¹ sr⁻¹
Wavelength - nanometers
Katherine Playa (02/01/74) Broadband Target Radiance at Ground

<table>
<thead>
<tr>
<th>Band</th>
<th>Meter</th>
<th>Collimator Correction</th>
<th>(N_{e}(g)) Meas</th>
<th>(N_{e}(g)) Corr*</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>895</td>
<td>1.12</td>
<td>9.40</td>
<td>8.39</td>
</tr>
<tr>
<td>B1R</td>
<td>743</td>
<td>1.12</td>
<td>7.80</td>
<td>6.96</td>
</tr>
<tr>
<td>B2</td>
<td>758</td>
<td>1.11</td>
<td>10.46</td>
<td>9.42</td>
</tr>
<tr>
<td>B2R</td>
<td>943</td>
<td>1.11</td>
<td>13.01</td>
<td>11.72</td>
</tr>
<tr>
<td>B3</td>
<td>773</td>
<td>1.10</td>
<td>9.74</td>
<td>8.85</td>
</tr>
<tr>
<td>B3R</td>
<td>1079</td>
<td>1.13</td>
<td>13.60</td>
<td>12.04</td>
</tr>
<tr>
<td>B4</td>
<td>2245</td>
<td>1.07</td>
<td>20.66</td>
<td>19.31</td>
</tr>
<tr>
<td>B4R</td>
<td>1665</td>
<td>1.12</td>
<td>15.32</td>
<td>13.68</td>
</tr>
</tbody>
</table>

\[
\left\{ \begin{array}{l}
N_{e}(g) \div \text{Collimator Correction} \\
\text{Watts (meter)}^{-2} \text{(steradian)}^{-1} \Delta \lambda^{-1} \\
\end{array} \right.
\]

\[
\Delta \lambda \text{ (micrometer)} = B1 = 0.500 - 0.600 \quad B1R = 0.505 - 0.590 \\
B2 = 0.600 - 0.700 \quad B2R = 0.600 - 0.720 \\
B3 = 0.700 - 0.800 \quad B3R = 0.680 - 0.815 \\
B4 = 0.800 - 1.100 \quad B4R = 0.810 - 1.022 \\
\]

Table 7: Katherine Playa, NM, Broadband Target Radiance at Ground, 01 February 1974
Katherine Playa (02-01-74) Broadband Atmosphere and Target Radiance

<table>
<thead>
<tr>
<th>Band</th>
<th>(\tau)</th>
<th>(T)</th>
<th>(\rho)</th>
<th>(N_t(g)^*)</th>
<th>(N_t(d)^*)</th>
<th>(N_a^*)</th>
<th>(N_s^*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>.255</td>
<td>.774</td>
<td>.333</td>
<td>8.39</td>
<td>6.49</td>
<td>2.73</td>
<td>9.22</td>
</tr>
<tr>
<td>B2</td>
<td>.170</td>
<td>.844</td>
<td>.417</td>
<td>9.42</td>
<td>7.95</td>
<td>1.76</td>
<td>9.71</td>
</tr>
<tr>
<td>B3</td>
<td>.128</td>
<td>.880</td>
<td>.453</td>
<td>8.85</td>
<td>7.79</td>
<td>1.09</td>
<td>8.88</td>
</tr>
<tr>
<td>B4</td>
<td>.107</td>
<td>.889</td>
<td>.487</td>
<td>19.41</td>
<td>17.26</td>
<td>1.36</td>
<td>18.62</td>
</tr>
</tbody>
</table>

* Watts (meter\(^{-2}\)) (steradian\(^{-1}\)) \(\Delta \lambda \)^{-1} [Incorporates Collimator Radiance Correction]

\(\Delta \lambda \) (micrometer) = B1 = .500 - .600
B2 = .600 - .700
B3 = .700 - .800
B4 = .800 - 1.100

\(\tau \) = Atmospheric Depth
\(T \) = Transmittance = \(e^{-\tau \sec \theta} \)
\(N_t(g) \) = Target Radiance at Ground Level = \(N(t)g \)(meas)
\(N_t(d) \) = Target Directional Radiance at EREP = \([N(t)g] T \)
\(N_a \) = Atmospheric Path Radiance
\(N_s \) = Radiance at EREP = \(N(t)d + N_a \)

Table 8: Katherine Playa, NM, Broadband (ERTS)
Atmospheric and Target Radiance,
01 February 1974
Table 9: Katherine Playa, NM, Spectral Atmospheric and Target Radiance, 01 February 1974

<table>
<thead>
<tr>
<th>Wavelength (nm)</th>
<th>τ</th>
<th>T</th>
<th>$H(1102$ MTD$)$</th>
<th>ρ</th>
<th>$N_t(g)$</th>
<th>$N_t(d)$</th>
<th>N_a</th>
<th>N_s</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>0.541</td>
<td>582</td>
<td>51.5</td>
<td>0.222</td>
<td>3.642</td>
<td>2.120</td>
<td>4.401</td>
<td>6.521</td>
</tr>
<tr>
<td>425</td>
<td>0.465</td>
<td>628</td>
<td>64.454</td>
<td>0.238</td>
<td>4.974</td>
<td>3.061</td>
<td>4.551</td>
<td>7.612</td>
</tr>
<tr>
<td>450</td>
<td>0.412</td>
<td>662</td>
<td>90.206</td>
<td>0.248</td>
<td>7.133</td>
<td>4.722</td>
<td>4.533</td>
<td>9.255</td>
</tr>
<tr>
<td>475</td>
<td>0.376</td>
<td>687</td>
<td>77.001</td>
<td>0.283</td>
<td>6.940</td>
<td>4.768</td>
<td>4.128</td>
<td>8.896</td>
</tr>
<tr>
<td>500</td>
<td>0.338</td>
<td>713</td>
<td>72.184</td>
<td>0.313</td>
<td>7.195</td>
<td>5.130</td>
<td>3.454</td>
<td>8.584</td>
</tr>
<tr>
<td>525</td>
<td>0.300</td>
<td>741</td>
<td>70.369</td>
<td>0.332</td>
<td>7.444</td>
<td>5.516</td>
<td>3.022</td>
<td>8.538</td>
</tr>
<tr>
<td>550</td>
<td>0.278</td>
<td>757</td>
<td>71.357</td>
<td>0.359</td>
<td>8.155</td>
<td>6.173</td>
<td>2.572</td>
<td>8.745</td>
</tr>
<tr>
<td>575</td>
<td>0.262</td>
<td>770</td>
<td>71.951</td>
<td>0.440</td>
<td>10.072</td>
<td>7.755</td>
<td>2.498</td>
<td>10.253</td>
</tr>
<tr>
<td>600</td>
<td>0.255</td>
<td>775</td>
<td>67.755</td>
<td>0.445</td>
<td>9.587</td>
<td>7.430</td>
<td>2.237</td>
<td>9.667</td>
</tr>
<tr>
<td>625</td>
<td>0.214</td>
<td>807</td>
<td>67.102</td>
<td>0.465</td>
<td>9.927</td>
<td>8.011</td>
<td>2.016</td>
<td>10.027</td>
</tr>
<tr>
<td>650</td>
<td>0.202</td>
<td>817</td>
<td>66.720</td>
<td>0.471</td>
<td>9.698</td>
<td>7.923</td>
<td>1.737</td>
<td>9.660</td>
</tr>
<tr>
<td>675</td>
<td>0.180</td>
<td>835</td>
<td>64.684</td>
<td>0.457</td>
<td>9.621</td>
<td>8.033</td>
<td>1.520</td>
<td>9.553</td>
</tr>
<tr>
<td>700</td>
<td>0.172</td>
<td>838</td>
<td>59.182</td>
<td>0.463</td>
<td>8.729</td>
<td>7.314</td>
<td>1.328</td>
<td>8.642</td>
</tr>
<tr>
<td>725</td>
<td>0.174</td>
<td>840</td>
<td>51.240</td>
<td>0.487</td>
<td>7.949</td>
<td>6.678</td>
<td>1.215</td>
<td>7.693</td>
</tr>
<tr>
<td>750</td>
<td>0.132</td>
<td>876</td>
<td>49.736</td>
<td>0.506</td>
<td>8.015</td>
<td>7.021</td>
<td>1.087</td>
<td>8.108</td>
</tr>
<tr>
<td>800</td>
<td>0.116</td>
<td>890</td>
<td>48.871</td>
<td>0.479</td>
<td>7.453</td>
<td>6.633</td>
<td>0.865</td>
<td>7.498</td>
</tr>
<tr>
<td>850</td>
<td>0.105</td>
<td>900</td>
<td>42.721</td>
<td>0.468</td>
<td>6.348</td>
<td>5.722</td>
<td>0.681</td>
<td>6.403</td>
</tr>
<tr>
<td>900</td>
<td>0.091</td>
<td>913</td>
<td>40.962</td>
<td>0.417</td>
<td>5.432</td>
<td>4.959</td>
<td>0.529</td>
<td>5.488</td>
</tr>
<tr>
<td>950</td>
<td>0.216</td>
<td>806</td>
<td>20.674</td>
<td>0.396</td>
<td>2.603</td>
<td>2.098</td>
<td>0.424</td>
<td>2.522</td>
</tr>
<tr>
<td>1000</td>
<td>0.077</td>
<td>926</td>
<td>30.275</td>
<td>0.360</td>
<td>3.467</td>
<td>3.211</td>
<td>0.318</td>
<td>3.529</td>
</tr>
<tr>
<td>1050</td>
<td>0.065</td>
<td>937</td>
<td>30.618</td>
<td>0.294</td>
<td>2.869</td>
<td>2.688</td>
<td>0.238</td>
<td>2.926</td>
</tr>
<tr>
<td>1100</td>
<td>0.079</td>
<td>924</td>
<td>25.049</td>
<td>0.258</td>
<td>2.123</td>
<td>1.961</td>
<td>0.178</td>
<td>2.139</td>
</tr>
<tr>
<td>1150</td>
<td>0.238</td>
<td>773</td>
<td>12.334</td>
<td>0.235</td>
<td>0.923</td>
<td>0.713</td>
<td>0.140</td>
<td>0.853</td>
</tr>
<tr>
<td>1200</td>
<td>0.098</td>
<td>907</td>
<td>19.713</td>
<td>0.240</td>
<td>1.245</td>
<td>1.129</td>
<td>0.104</td>
<td>1.233</td>
</tr>
<tr>
<td>1250</td>
<td>0.109</td>
<td>897</td>
<td>21.837</td>
<td>0.159</td>
<td>1.103</td>
<td>0.989</td>
<td>0.081</td>
<td>1.070</td>
</tr>
<tr>
<td>1300</td>
<td>0.191</td>
<td>826</td>
<td>20.209</td>
<td>0.129</td>
<td>0.831</td>
<td>0.686</td>
<td>0.066</td>
<td>0.752</td>
</tr>
</tbody>
</table>

** = microWatts (centimeter)$^{-2}$ (nanometer)$^{-1}$

** = microWatts (centimeter)$^{-2}$ (nanometer)$^{-1}$ (steradian)$^{-1}$

τ = Atmospheric Depth

T = Transmittance = $e^{-\tau \sec \theta}$

H = Total Solar Radiation

ρ = Reflectance

$N_t(g)$ = Target Radiance at Ground Level = $\frac{\rho \cdot H}{\pi}$

$N_t(d)$ = Target Directional Radiance at EREP = $N_t(g) \cdot T$

N_a = Atmospheric Path Radiance

N_s = Radiance at EREP = $N_t(d) + N_a$
APPENDIX

Instrument Calibrations, Analyses Techniques, and Error Analyses
1. NEAR SURFACE METEOROLOGY

The near surface meteorology measurements were made with a sling psychrometer, dry and wet bulb temperatures - accuracy of ± 1°F; a hand-held cup anemometer - accuracy of ± 2 m.p.h., and an aneroid barometer - accuracy of ± .1 in. of Hg.

2. ATMOSPHERIC TEMPERATURE AND HUMIDITY PROFILES

The atmospheric temperature and humidity profiles were obtained by releasing a Colspan Environmental Systems Co. (Boulder, CO) radiosonde from a helicopter. Data from a coated bead thermistor (temperature) and a carbon element hygristor (ML-476) were telemetered to a ground receiving station (403 MHz). The radiosonde descended to the surface on a parachute at approximately 25-26 ft/sec. The data was recorded on two identical strip charts, during the radiosonde descent. To calibrate the radiosonde temperature sensor/recorder, an internal potentiometer (within the ground station) is set just prior to being loaded into the helicopter. This potentiometer adjusts the slope of the current vs. temperature response, which is set according to the measured (mercury thermometer) ambient air temperature. Because the current output of the sensor is linear with respect to temperature, the atmospheric profile temperatures can then be accurately determined, based on the ground-based mercury thermometer calibration. To calibrate the humidity sensor, just prior to being loaded in the helicopter, the hygristor is replaced with a precise 20k ohm resistor. This value of resistance corresponds to a humidity of 33%, an internal potentiometer is then set to correspond to this humidity. Calibration tables relating the outputs of the bead thermistor and hygristor sensors to temperature and humidity are subsequently used to derive the absolute atmospheric temperatures and humidities.
The combined accuracy of the radiosonde telemetry system and the ground receiving and recording (strip charts) station equals the accuracy of the sensors plus 1.0% of recorder (strip chart) span. The temperature sensor's accuracy is $\pm 0.2^\circ C$ from 0 to $50^\circ C$, and $\pm 0.4^\circ C$ from -40 to $0^\circ C$. This accuracy combined with the 1.0% of recorder span factor results in a net $\pm 0.30^\circ C$ accuracy of the final data reported. The accuracy of the humidity sensor is $\pm 5.5\%$ relative humidity (R.H.), above $0^\circ C$, and in an operating range of 10 to 100% R.H. This accuracy combined with the 1.0% of recorder span factor, results in a net $\pm 6\%$ R.H. accuracy of the reported data.

The response times of the sensors combined with the descent rate of the radiosonde, results in a slight error of altitude positioning. The temperature sensor has a response time of 2.5 seconds, resulting in a 62 ft. altitude error, and the humidity sensor has a response time of 1.5 seconds, resulting in a 38 ft. altitude error. In all cases of data analysis, four time constants (10 sec.) were allowed for the temperature sensor to stabilize to ambient air conditions, and two time constants (5 sec.) were allowed for the humidity sensor to stabilize. Any data prior to this, as recorded on the ground station strip charts, were not used/reported. The altitude errors of 62 and 38 ft., mentioned above, are not significant compared to a total drop range (typically 10,000 to 3,000 ft.) of the radiosonde.

The actual altitude of the radiosonde, above sea level, was derived by having a knowledge of the helicopter’s altitude when the radiosonde was released, the radiosonde’s descent rate (25 - 26 ft./s.c.) and the rate of travel of the data strip chart recorders. In addition, the point/time of radiosonde impact with the surface could be detected by a sharp fluctuation in the data. From this point, the known descent rate, and the rate
of travel of the strip chart, were then used to reconstruct the altitude profile.

3. THERMAL BRIGHTNESS TEMPERATURE

The thermal brightness temperatures of the lake waters were measured with a Barnes PRT-5 Radiation Thermometer. This instrument senses thermal, blackbody, radiation from 8 to 14 \(\mu \text{m} \); it has a sensitivity range of \(-20\) to \(+75^\circ\text{C}\), a field of view of \(2^\circ\), an accuracy of \(0.5^\circ\text{C}\), and a stability of better than 1%.

Two methods of calibration were used to calibrate the PRT-5. For temperatures below ambient temperature, a blackbody temperature equivalent was immersed in a dry ice and acetone controlled bath and allowed to stabilize for one-half hour at each temperature measured. The temperature of the bath was monitored by a stem thermometer traceable to the National Bureau of Standards. For ambient and higher temperatures, a blackbody standard, traceable to N.B.S., was allowed to stabilize at given temperatures.

The PRT-5 was simply taken aloft in helicopter in order to make rapid and thorough determinations of the lake waters. The PRT-5 sensor head was pointed directly down (nadir), out of the helicopter's door. The reference blackbody cavity control was continuously monitored in order to assure that no adverse effects on the data occurred.

4. SOLAR RADIATION - DIRECT, TOTAL, DIFFUSE, AND TARGET RADIANCE AT GROUND LEVEL

In order to derive absolute quantities of total and diffuse solar radiation, the I.S.C.O. spectroradiometer and Bendix Model 100 R.P.M.I. were calibrated with standard, tungsten strip, bulbs.* Intensity calibration factors, \(C.F. (I)\), were derived by comparing the raw outputs of the I.S.C.O. and Bendix, \(I_\beta\), with that of the

*Traceable to N.B.S. and the National Research Council of Canada.
standard bulb absolute intensity, \(I_{\text{std}} \). The desired intensity calibration factor is then

\[
\text{C.F. (I)} = \frac{I_{\text{std}}}{I_r}
\]

Hence, field data consisting of \(I_r \) values can be converted to absolute units by simply multiplying the raw data by the intensity calibration factor. The resultant absolute accuracy is approximately ± 5\% in the 400 to 750 nm region, and ± 7\% in the 750 to 1300 nm region.

For the I.S.C.O., the intensity calibration factor was derived at each wavelength increment (25 nm from 400 to 750 nm, and 50 nm from 750 to 1300 nm) of the wavelength scan. The results are shown in Figure A-1. In addition, because the I.S.C.O. was used to measure total solar radiation, the actual cosine response of the I.S.C.O. diffuser, fiber optics head, was measured. A true cosine response is defined as

\[
I_{\theta} = I_{(\theta = 0)} \cos \theta
\]

where \(I_{\theta} \) is the instrument intensity reading when the normal to the diffuser makes an angle of \(\theta \) with the source (plane parallel) radiation, and \(I_{\theta} = I_{(\theta = 0)} \) is the intensity reading when the source radiation is normally incident to the diffuser. The I.S.C.O. diffuser head was positioned at angles of 0°, 10°, 30°, 45°, 60°, and 70° with respect to the standard bulb source, and each intensity reading at each wavelength increment of scan was recorded. A cosine response Correction Factor, \(\text{C.F. (c)} \), was derived by the following relationship

\[
\text{C.F. (c)} = \frac{I_r(\theta = 0) \cos \theta}{I_r(\theta)}
\]
where \(I_r(\theta) \) is the I.S.C.O. intensity reading when the diffuser is normal to the source, and \(I_r(\theta) \) is the actual intensity reading at an angle \(\theta \). Hence, if the diffuser has a true cosine response the C.F. \((c) \) would be equal to unity. The derived cosine response Correction Factors are shown in Figures A-2 and A-3. As can be seen, the diffuser has an excellent cosine response in the visible wavelength region; however, a very significant departure occurs at the longer wavelengths. The raw field data of total solar radiation taken with the I.S.C.O. required correction for this departure. This was done by simply multiplying the raw data by the cosine response Correction Factors, for the specific solar zenith angle that occurred at the time of measurement. Hence, the I.S.C.O. raw field data for total solar radiation was converted to absolute units, \(I_{abs} \), by the following relationship,

\[
I_{abs} = I_r \times \text{C.F. (I)} \times \text{C.F. (c)}
\]

The raw field data for diffuse solar radiation was converted to absolute units by the following relationship;

\[
I_{abs} = I_r \times \text{C.F. (I)}
\]

because the diffuse sky radiation has no directional properties (hence, no cosine correction is required).

The wavelength scan of the I.S.C.O. was periodically, both in the field and laboratory, checked with a Schott BG-36 absorption filter. This filter has well defined, by a Beckman DK-2 Spectrophotometer, narrow absorption bands that were used to check the I.S.C.O. wavelength integrity. The wavelength integrity was found to be very good and accurate to approximately \(\pm 2 \) \(\mu \text{m} \) in the 400 to 750 nm region, and \(\pm 3 \) nm in the 750 to 1350 nm region.
Fig. A-1: Absolute Intensity Calibration Factors for I.S.C.O. Spectroradiometer

I.S.C.O. Spectroradiometer No. 30109
6 ft Probe
Bulb # 363
10 cm Distance
11 April 1974
Fig. A-2: Cosine Response Correction Factors for I.S.C.0 Spectroradiometer
Diffuser Head - Visible Region.
Each curve represents wavelength from top (1350nm) to bottom (750nm) in 50nm increments.

Fig. A-3: Cosine Response Correction Factors for I.S.00 Spectroradiometer Diffuser Head - Infrared Region.
As an independent check for the I.S.C.O. measurements and integrity, a field mission was performed on top of Mt. Evans, CO., 14,000 feet A.S.L. Meter readings at various air mass were obtained and used to derive a meter reading outside of the atmosphere, as described in section 3.2.3.4. This meter reading was then multiplied by the intensity calibration factors derived in the manner described above. This resulted in an absolute measurement of the solar constant. These Mt. Evans, I.S.C.O. measurements for the solar constant were then compared to those reported by M. Thekaekara, "Evaluating the Light from the Sun", Optical Spectral, March, 1972. A mean deviation (over all wavelengths) of less than 5% was obtained, as shown in Figure A-4. Both the I.S.C.O. (No. 30109) used for deriving the total and diffuse solar radiation quantities reported herein, and the I.S.C.O. (No. 17336) used for deriving optical depth, were used. The agreement between the two instruments and with the proposed standard solar constant is considered to be acceptable and within the absolute accuracy, ± 5% in the 400 to 750 nm region and ± 7% in the 750 to 1300 nm region, that is associated with the calibration techniques described previously.

The Bendix R.P.M.I. was calibrated for both total, direct, and diffuse measurements, as discussed above, and for target radiance measurements. Calibrations were performed both for the ERTS bands (B1-.500 to .600 μm, B2-.600 to .700 μm, B3-.700 to .800 μm, and B4-.800 to 1.10 μm), and for the actual/real half-bands, as shown in Figure A-5, (B1R-.505 to .590 μm, B2R-.600 to .720 μm, B3R-.680 to .815 μm, and B4R-.810 to 1.02 μm). The calibrations were adjusted for the fact, because of the broad-bands, that the calibration source spectrum (standard bulb) is different than that of the solar radiation spectrum. These bulb to solar correction(s) were performed by Bendix. The results are
Fig. A-4: Mt. Evans, CO, I.S.CO Derivations of Absolute Solar Constant.

- Spectroradiometer No. 30109 Mt. Evans, CO 08/16/73
- Spectroradiometer No. 17376 R. Hulstrom, MMA
Fig. A-5: Spectral Responses of Bendix R.P.M.I. Filters and Sensor.
shown in Table A-1.

Table A-1

<table>
<thead>
<tr>
<th>Band</th>
<th>CF(I) Solar</th>
<th>8x</th>
<th>CF(T) Radiance</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>11.52</td>
<td>.970</td>
<td>895</td>
</tr>
<tr>
<td>B1R</td>
<td>9.59</td>
<td>.970</td>
<td>743</td>
</tr>
<tr>
<td>B2</td>
<td>9.80</td>
<td>.988</td>
<td>758</td>
</tr>
<tr>
<td>B2R</td>
<td>12.24</td>
<td>.988</td>
<td>943</td>
</tr>
<tr>
<td>B3</td>
<td>10.41</td>
<td>.985</td>
<td>778</td>
</tr>
<tr>
<td>B3R</td>
<td>14.01</td>
<td>.985</td>
<td>1079</td>
</tr>
<tr>
<td>B4</td>
<td>31.05</td>
<td>.958</td>
<td>2245</td>
</tr>
<tr>
<td>B4R</td>
<td>21.96</td>
<td>.958</td>
<td>1665</td>
</tr>
</tbody>
</table>

* Radiant Power Measuring Instrument for ERTS
Ground Truth, Operation and Maintenance Manual
for PN2373045, Bendix Aerospace Systems Division

The Bendix R.P.M.I. meter readings when multiplied by CF(I)_solar (direct, total, diffuse) result in absolute quantities of watts meter⁻² Δλ⁻¹, and when multiplied by CF(I)_radiance (viewing the target with a 7.0° F.O.V. collimator) results in absolute quantities of watts meter⁻² steradian⁻¹ Δλ⁻¹.

The absolute accuracy of the R.P.M.I. is ± 5%. In addition, a determination of the solar constant was performed with the R.P.M.I. by Dr. R. Rogers of Bendix, resulting in a +5.2% (R.P.M.I. value compared to solar constant) agreement for B1, a -0.3% agreement for B2, a -0.3% agreement for B3, and a +1.2% agreement for B4. In addition, a comparison of Calibration Factors derived by R. Hulstrom of Martin Marietta Aerospace, shown in Table A-1, with those derived by R. Rogers of Bendix Aerospace, indicates an agreement ranging
from .5% for B1 to 5% for B4. This is well within the accuracy of the calibration limitations of the methods used.

No cosine response calibration of the Bendix R.P.M.I. was performed because it was not required for analyzing the field data. The R.P.M.I. was used only on the 08 August Great Salt Lake Desert (SL-3) mission to measure total and diffuse solar radiation. The method used to derive the total solar radiation was that of measuring the direct horizontal solar radiation and adding that to the measured diffuse solar. Hence, no cosine response function was involved.

As shown in the text, it is suspected that the collimator of the R.P.M.I. introduces additional radiance to the direct measurements of target radiance. During SL-3 missions, this was detected by comparing the direct field measurements of target radiance with those obtained by deducing target radiance from measuring the incident solar radiation and the target's reflectivity. This comparison revealed that the collimator radiance attributed an additional 7-12% radiance. To verify this field measurement finding, a laboratory experiment was conducted. A plane-parallel calibration source of light was viewed with and without the collimator in place. It was found that the collimator in-place readings were 10% higher for B1, 12% higher for B2, 13% higher for B3, and 14% higher for B4. These laboratory derivations are in fair agreement with the field derivations. Therefore, the target radiance values reported throughout the main text of this report were adjusted for collimator radiance. However, it should be kept in mind that the actual magnitude of such an adjustment depends upon the incoming solar radiation conditions and target reflectivity. Due to the fact that most of the targets measured were roughly similar in reflectivities, the collimator radiance adjustments made are thought to be fairly accurate.
5. TARGET RADIANCE AT EREP

The target radiance at EREP, \(N_s \), was determined by

\[
N_s = N_t(g) T + N_a
\]

where \(N_t(g) \) is the target radiance at ground level, \(T \) is the atmospheric fractional transmittance, and \(N_a \) is the atmospheric path radiance. The target radiance at ground level can further be given by

\[
N_t(g) = \frac{H \rho}{\pi}
\]

where \(H \) is the total amount of solar radiation, and \(\rho \) is the target reflectivity.

The accuracy to which the target radiance at ground level is mainly determined by the accuracy to which the total solar radiation was measured. As mentioned previously, this is \(\pm 5\% \) in the I.S.C.O. visible and Bendix bands, and \(\pm 7\% \) for the I.S.C.O. infrared. The accuracy of the target reflectivity is much less of a factor because it is derived from relative instrument readings. Both the I.S.C.O. and Bendix have \(\pm 1\% \) meters and/or strip charts. Taking the worst case then, the accuracy of the target radiance at ground level is approximately \(\pm 6\% \) for the I.S.C.O. visible and Bendix bands, and \(\pm 8\% \) for the I.S.C.O. infrared region.

The atmospheric transmittance, \(T \), can be given as

\[
T = e^{-\tau \sec \theta}
\]

where \(\tau \) is the atmospheric optical depth and \(\theta \) is the sensor
view angle, which was zero or near zero in all cases reported. The I.S.C.O. measurements from Mt. Evans, discussed previously, and comparisons of the Bendix and I.S.C.O. derivations of optical depth, suggest that the atmospheric optical depth measurements are consistent/accurate to within approximately ± .02 units. The optical depths reported herein ranged from approximately .600 to .100, the optical depth error of ± .02 then becomes equivalent to a ± 2% accuracy for atmospheric transmittance.

Taking the combined errors of the target radiance at ground level and the measurement of atmospheric transmittance, an accuracy of ± 8% for the 400 to 750 nm and a ± 10% for the 750 to 1300 nm region is obtained.

The accuracy/error associated with the atmospheric path radiance is difficult to assess. The use of actual field measurements of atmospheric optical depth and target reflectivity should maximize the accuracy of the computer model calculations of path radiance. A comparison of experimental path radiance measurements with model calculations is shown in Figure A-6. As can be seen, a good agreement exists. However, it is simply impossible to assign a quantitative accuracy to the path radiance derivations. Further research utilizing EREP and ERTS data is required in order to do this. Since the path radiance constitutes a major portion of the radiance derived at EREP (see Figure 24) for the shorter wavelengths, it is this region that has the highest degree of uncertainty. Since the path radiance decreases very rapidly at longer wavelengths, it is this region that has the lowest degree of uncertainty. The accuracy of the radiance derived at EREP in the infrared region (750 to 1300 nm) is approximately equal to the accuracy derived previously -- ± 10%.

● Calculated (V = 336 km)
 Albedo = 0.25; Solar Angle = 60°;
 \(\lambda = 0.550 \text{ \(\mu \text{m} \) } \\

☆ Experimental (clear sky)
 Albedo = 0.20; Solar Angle = 61.3°;
 \(\lambda = 0.553 \text{ \(\mu \text{m} \) } \\

Sky Radiance - mW cm\(^{-2}\) sr\(^{-1}\) \(\mu \text{m} \) \(^{-1}\)

Zenith Scan Angle - degrees
Recently the author of this report (R. Hulstrom) has had the opportunity to make direct comparisons of the path radiance determined by techniques/measurements used in this report with measurements made by the Russian "Soyuz-7" and "Soyuz-9" spacecraft and measurements by Dr. R. Rogers. The Russian spacecraft measurements were given in a letter from Dr. O. B. Vasilyev to Dr. A. F. Gregory, President of "Gregory Geoscience Ltd.", Ottawa, Canada. Copies of this letter were obtained by Dr. R. Rogers and R. Hulstrom. No details of how the Soyuz measurements were made were given. The measurements by Dr. R. Rogers are explained in detail in "A Technique for Correcting ERTS Data for Solar and Atmospheric Effects", ERTS Symposium, NASA SP-322. They are basically derived by ground measurements using the model 100 R.P.M.I. to measure the sky radiance at various look-angles, and then correcting them to the ERTS situation of looking down at nadir. The comparisons are given below.

<table>
<thead>
<tr>
<th>Band - B1 (.500 to .600 μm)</th>
<th>Measurement</th>
<th>Soyuz-7</th>
<th>Soyuz-9</th>
<th>Rogers</th>
<th>Hulstrom*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmittance</td>
<td>.80</td>
<td>.84</td>
<td>.80</td>
<td>.87</td>
<td>.77</td>
</tr>
<tr>
<td>Path Radiance</td>
<td>2.50</td>
<td>1.90</td>
<td>3.00</td>
<td>2.73</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Band - B2 (.600 to .700 μm)</th>
<th>Measurement</th>
<th>Soyuz-7</th>
<th>Soyuz-9</th>
<th>Rogers</th>
<th>Hulstrom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmittance</td>
<td>.87</td>
<td>.91</td>
<td>.85</td>
<td>.84</td>
<td></td>
</tr>
<tr>
<td>Path Radiance</td>
<td>1.00</td>
<td>1.30</td>
<td>1.60</td>
<td>1.76</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Band - B3 (.700 to .800 μm)</th>
<th>Measurement</th>
<th>Soyuz-7</th>
<th>Soyuz-9</th>
<th>Rogers</th>
<th>Hulstrom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmittance</td>
<td>--</td>
<td>--</td>
<td>.89</td>
<td>.88</td>
<td></td>
</tr>
<tr>
<td>Path Radiance</td>
<td>--</td>
<td>--</td>
<td>1.00</td>
<td>1.09</td>
<td></td>
</tr>
</tbody>
</table>

* Katherine Playa (02-01-74), in this report.
** W m⁻² Δλ⁻¹ sr⁻¹
The agreement between the three independent methods is very good. However, more specifics are required to make an exact comparison.