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EVALUATION OF THE PRESENT THEORETICAL BASIS FOR

DETERMINATION OF PLANETARY SURFACE PROPERTIES 

BY EARTH-BASED RADAR 

Leo D. Staton
Langley Research Center 

SUMMARY 

Spaceflight programs such as the planned Viking landing on Mars often require the 
determination of planetary surface slopes and surface dielectric constants by Earth-
based methods. Heavy reliance is often placed on radar backscattering data for estima-
tion of these surface properties. The present report, which is primarily directed toward 
users of such estimates rather than toward radar workers, is an assessment of the basic 
theory by which the raw radar data are interpreted. Certain serious difficulties and inter-
nal inconsistencies in the available theoretical formulas are reemphasized. These diff 1-
culties include questions of the fundamental applicability of Gaussian height statistics to 
planetary terrain, questions of the validity of certain assumptions necessary for applying 
results for perfectly conducting surfaces to dielectric surfaces, and questions surround-
ing a widely used rough-surface autocorrelation function that leads to several absurd and 
self-contradictory conclusions. The discussion therefore brings into serious question the 
reliability of the presently available results for these surface properties as obtained by 
Earth-based radar methods, and it points out that the theoretical difficulties are not likely 
to be remedied in the near future.

INTRODUCTION 

The interpretation of electromagnetic signals scattered from rough surfaces has 
important applications in both terrestrial and astronomical studies. This report concen-
trates on certain aspects of the astronomical area, particularly on methods of inferring 
surface electrical and scattering properties from data obtained by Earth-based radar 
reflections from celestial bodies (for example, from Mars). Since they can reveal infor-
mation about characteristic planetary surface slopes and surface particle composition 
and/or density, such inferences are important for the planning of planetary soft-landing 
missions such as the NASA Viking exploration of Mars in 1976. The principal aim of this 
paper, therefore, is to review and to criticize the basic theory by which radar astronomi - 
cal data have been interpreted in pursuit of this practical goal. Since rough-surface



scattering theory is still a highly active field of research, it is not surprising that most 
existing inferences of planetary surface properties, such as detailed surface slopes and 
dielectric constants, rest on somewhat unsatisfactory grounds. Of course, this does not 
demean the spectacular successes of radar astronomy over the last 20 years in other 
areas of lunar and planetary studies, such as large-scale topographic mapping, planetary 
rotation-rate determination, and interplanetary distance measurements. 

In the present report the fundamental statistical notions and the electromagnetic 
scattering approximations which are the basis for most inferences of surface properties 
from radar astronomical data are discussed, and certain inconsistencies in this work are 
pointed out. Some of these inconsistencies have been discussed in the literature of 
rough-surface scattering but have not yet been taken into account in the planetary radar, 
work.

SYMBOLS 

A	 covariance matrix defined by equation (37) 

C	 quantity defined as coefficient of sin 2 p in equation (47) 

D	 upper radial cutoff value associated with equation (44) 

E	 magnitude of electric field 

e	 magnitude of unit polarization vector 

F	 integrand function of equation (9); also, function defined by equation (38) 

f	 physical quantity associated with a statistically described surface 

H	 magnitude of magnetic field 

h	 local height of rough surface 

T	 unit dyad 

JO	 zeroth-order Bessel function of the first kind 

imaginary unit, \rT 
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k	 wave number, 27r/k 

L	 total length and total width of scattering surface 

surface correlation length 

M 1	 cofactor of covariance matrix 

N	 total number of sample functions in a statistical ensemble; also, total number 
of specular points on a rough surface 

n	 number of sample functions in ensemble having height between h and 
h + dh; also, magnitude of unit normal vector 

P	 angular power scattering function at angle 'p 

p	 probability density 

Q	 reflection coefficient for plane-wave incidence on plane surface 

q	 magitude of difference between incident and scattered propagation vectors 

R	 distance from radar antenna to planetary center 

r	 distance from point on scattering surface to field point 

S	 area of scattering surface 

t	 slope of surface in x-direction, dx 

u	 distance between point with coordinate x and a given stationary point on 
rough surface 

x,y,z	 coordinates with respect to mean surface 

a	 local slope angle
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y	 angle between local surface normal and overall mean surface normal 

operator indicating small increment 

€	 dielectric constant 

wavelength 

magnetic permeability 

P	 radius of curvature; also, autocorrelation function of rough surface 

total radar cross section, length squared 

a	 standard deviation; also, radar cross section per unit width, length; and radar 
cross section per unit area, dimensionless 

T	 time 

phase angle of individual scattered wave in equation (21) 

ço	 planetary great-circle angle from sub-Earth point, equal to angle of incidence 
with respect to mean surface 

Green's function of equation (6); also, local angle of incidence 

w	 angular frequency 

Superscripts: 

sc	 scattered field 

*	 complex conjugate 

quantity evaluated on scattering surface; also, first derivative 

second derivative 
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Subscripts: 

a,b	 two principal directions of curvature on a surface 

f	 property associated with the physical quantity f 

h	 horizontal polarization direction 

i	 general member of a collection; also, incident field 

j,k	 general member of a collection 

m,p	 specular point, summation index 

o	 total field incident on planet 

R	 received signal 

s	 scattered field 

sp	 quantity evaluated at specular point 

v	 vertical polarization direction 

x	 vector component in x-direction; also, derivative with respect to x in equa-
tions (24) to (28) 

y	 vector component in y-direction; also, derivative with respect to y in equa-
tions (24) to (28) 

z	 vector component in z-direction; also, general polarization direction 

1,2	 dummy variables of integration 

Mathematical notation: 

-	 (over symbol) average value over a particular sample surface of an ensemble 
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-	 (over symbol) vector quantity 

K)	 expectation value computed over an ensemble of sample surfaces 

(over symbol) unit vector 

( ; )	 simple probability density 

( I )	 conditional propability density 

(I I)	 joint probability density 

V	 vector gradient operator 

absolute value of a quantity 

STATISTICAL NATURE OF THE PROBLEM

OF ROUGH-SURFACE SCATTERING 

The exact calculation of the fields scattered by an object immersed in a specified 
incident electromagnetic field is an intractable problem for all but the simplest geomet-
rical shapes, and solutions for even these simple shapes often require extensive numeri-
cal computations, the complexity of which depends upon the ratio of the incident wave-
length to the characteristic size of the scattering object. Thus, for scattering objects as 
complicated as rough planetary surface terrain, no exact solution is possible and the 
problem becomes a search for an appropriate approximation scheme. Furthermore, if 
the basic problem is to deduce the properties of the scattering object by measurements 
on the scattered fields, the difficulty is manifestly compounded in that no unique solution 
exists. That is, it is impossible, in principle, to define the scattering object solely from 
measurements of the scattered field taken at any finite number of points in space. For 
any progress at all, then, plausible models of the scattering object must be constructed, 
with the field measurements being used to fix the values of whatever parameters the 
model incorporates. For the study of scatterers having the qualities of rough planetary 
terrain, for which it is impossible to ascribe, a priori, any particular shape, it is clear 
that the model must be a statistical one, the results of which must be interpreted only in a 
statistical sense. 

6



Statistical analyses of rough-surface scattering have been developed by many 
authors, most of them using the techniques of S. 0. Rice (ref. 1). These techniques are 
very closely related to the methods used in statistical communication theory (ref. 2). It 
is only necessary to replace the time variable by a spatial variable and to perform an 
obvious extension from one to two independent variables in order to adapt the formalism 
of reference 2 to the description of the statistical quantity of interest for rough-surface 
scattering problems. This quantity is the variable terrain height defined over some 
datum surface such that this height is a random function of position on the surface. The 
following elementary ideas are reviewed in this section for reference. 

The term random function means a quantity, in this case the height, which takes on 
variable values for its various argument coordinates x and y, such that at a given point 
the quantity takes on a particular value within the interval (h, h+dh) according to a prob-
ability p(h;x,y) dh. The situation is thus describable by a (sufficiently) large collection 
or ensemble, say N in number, of the physically possible realizations of specific func-
tions h1 (x,y) (for I = 1, 2, . . ., N) such that at every point (x,y), each physically possi-
ble value of h, to within some arbitrarily small tolerance dh, is taken on by some one 
or more, say n(h,x,y), of the h(x,y). Then the probability density p(h;x,y) is related 
to this ensemble by the relation 

p(h;x,y) dh = n(h,x,y)	 (i) 
N 

The totality of information in the ensemble of specific functions h1(x,y) constitutes a 
random process. All this information may be represented by the infinite set of joint 
probability densities p(h 1,h2,. . .,hjJx i ,yi ;x 2 ,y2 ;. . .;xj ,yj) defined by 

p(h 1,h2,. . .,hj x l,y l ;x 2,y2;. . .;xj ,yj) dh 1dh2 . . . dhj = (1,1,
y1;2,2,y2; . 

N
(2) 

where j = 1, 2, 3, . . ., °°, and n(h i ,x i ,y i ;h2 ,x2 ,y2 ;. . .;h,x j ,y j) is the number of 
functions in the ensemble which take on the specific set of values hk at the points (xk,yk) 
within the arbitrarily small tolerances dhk, and where k takes on the values 
1,2,.. .,j. 

With these notions, physical experiments such as the following can be analyzed. 
Suppose that some physical quantity, say f(h,x,y), which is a function of height and posi-
tion on a randomly rough surface, must be measured. Further, suppose that a collection 
of surfaces which have been produced by the same physical process is available for study, 
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each surface differing in the detailed height variations upon it. The fact that the surfaces 
were produced by the same process ensures that these surfaces are sufficiently alike that 
it is sensible to perform averages over results obtained from each individual surface. 
This similarity is summarized in the notion that the sample surfaces all belong to a sin-
gle statistical ensemble. If measurements of the quantity I are made at the corre-
sponding points (x,y) on each surface and the results are averaged to obtain a result 
T(x,y), there is reason to identify T(x,y) with the quantity 

(f(h,x,y)) =
	

f(h,x,y) p(h;x,y) dh	 (3) 

which is the expectation value of f(h,x,y) at the point (x,y). The probability density 
p(h;x,y) is that defined in equation (1) in terms of an idealized ensemble of sample sur-
faces. Note that (f(h,x,y)) does not necessarily agree with any particular measurement 
at the point (x,y) on any particular experimental surface. A logical second set of experi-
mental measurements can be performed by finding the set of values f(h,x,y) at a large 
number of points (x,y) on a single experimental surface, say the kth one, and subsequently 
averaging these results to obtain the quantity 1k• Certain further stipulations about the 
character of the random process allow the identification of 1k with a quantity calculated 
from the probability density. These stipulations are summarized in the notion that the 
random process is ergodic (ref. 2). An example of an ergodic process is the stationary 
Gaussian random process (with an integrable autocorrelation function) for which all the 
joint probability densities of equation (2) are independent of the location of the origin of 
the coordinates x and y. The second-order joint probability density for this process 
has the exponential form' indicated subsequently. When the random process is ergodic, 
one has

=	 h f(h,x,y) p(h;x,y) dh
	

(4) 

Although the physical quantity f(h,x,y) may depend on position, the ergodic stipulation is 
such that the averages over the random process obliterate this dependence. Thus, the 
expectation value (f) is independent of position, and 1k or <f> is a global property of 
the particular sample surface and does not necessarily correspond to any value f(h,x,y) 
measured at a particular point on the surface. A measure of the degree to which a single 
measurement at a single point may differ from 1k is the variance cr1 of the quantity 
f(h,x,y) which is given by 

'Virtually all the work done to date pertaining to rough-surface scattering theory 
has assumed that the random processes involved are of this kind. 
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01f  = (f2) -	 (5) 

These statistical ideas enjoy successful application in many areas of theoretical 
physics, but their application to the problem of radar scattering from planetary surfaces 
is not without conceptual difficulties. The goal of many of the planetary scattering appli-
cations (e.g., refs. 3 and 4) has been to study as small an area of the planetary surface 
as possible within the resolutional capabilities of the radar system, with the quantity <f) 
being related to the electromagnetic power backscattered by the area. In order for such 
an identification to be reliable, it is necessary first of all that the surface topography be 
describable as a sample function of a stationary ergodic random process. Unfortunately, 
terrestrial experience shows that natural terrain, in contrast to the ever-changing sur-
face of the oceans, is fixed and over wide areas can assume large-scale features that 
obviously are not random in character. The fact that a measured quantity, such as back-
scattered power, may fluctuate from point to point on such a surface is not evidence of 
randomness. An example which amply illustrates this is the rapid fluctuation with aspect 
angle of the radar cross section of an aircraft, a target whose every contour represents 
careful design rather than randomness. Thus, the basic assumption that a planetary sur-
face is describable by a stationary ergodic random process is open to serious question, 
and certain contrary evidence is in fact in existence. For example, Hughes (ref. 5) has 
emphasized that a Gaussian height distribution is not appropriate for the Moon, and, as is 
discussed in the section "Experimental Results for Radar Scattering," it has been shown 
(ref. 6) that certain lunar radar studies have led to absurd results for the surface corre-
lation length, a crucial parameter in the statistical description of any surface. 

An additional weakness in the statistical analyses surrounding planetary radar work 
is that apparently no one has calculated the variance of the scattered power (eq. (5)) in 
order to obtain an idea of the theoretical error associated with the reported results. 

The next section outlines the electromagnetic theory into which these statistical 
ideas are inserted to yield the overall planetary scattering theory. 

ELECTROMAGNETIC SCATTERING APPROXIMATIONS 

If S represents a closed surface containing all sources of the electromagnetic 
field, then it can be shown (ref. 7) that the electric field Rp at a point P exterior to 
S is given by

= I 
	

[jC011(fi x i ) Ii + (ii x ) x v4i + (ii . )v4i] dS	 (6) 
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where E and H are the electric and magnetic field vectors on the surface and ñ is 
the outward unit vector normal to S. Green's function ti = exp (-ji 	 )/r, where r 
is the distance from a given point on the surface to the field point P. All fields are 
assumed to have an exponential time dependence exp (jwr). Equation (6) can be trans-
formed (ref. 7) into an alternative form 

P=	 5cEdS an	 an) 

Equations (6) and (7) are the mathematical representation of the Huygens -Fresnel princi-
ple, which states that the field at a given point is produced by the sum of the fields of 
individual wavelets propagating from each point on the preceding wave front. Equation (7) 
can be written separately for each component of E, and the resulting scalar equation is 
the basis for much of the work in the field of physical optics. 

In order to apply equation (6) or (7) to rough-surface scattering, it is necessary to 
identify the closed surface S and to relate the fields E and H on S to their 
sources. Usually, S is identified with the actual scattering surface, and the source of 
the fields E and H is taken to be an isolated point, exterior to S, but placed so that 
no energy from the source can reach P without being scattered by S. Even if the 
shape of the scattering surface is known precisely, the determination of R and 11 on 
the surface in the presence of electromagnetic radiation from a distant point source is a 
formidable problem. The problem is greatly simplified if the scattering surface is a 
perfect conductor whose surface undulations are gently varying on a lateral scale of very 
many wavelengths. In such a circumstance the region in the neighborhood of any given 
point has the characteristics of a very large, nearly planar surface. Provided that there 
are no paths by which energy reflected from a given point on the surface can reach 
another point on the surface, the electromagnetic fields at the given point are approxi-
mately those which result from reflection of a plane electromagnetic wave by a perfectly 
conducting plane tangent to the surface at the given point. When this approximation, 
called the tangent-plane approximation, is incorporated into equation (6) or (7), it forms 
the basis for most so-called physical-optics methods of surface scattering study. 2 For a 
surface satisfying the assumed conditions, the E and H fields in this approximation 
are easily evaluated from the incident field values and the boundary conditions for a per-
fect conductor. Thus 

2Rea, Hetherington, and Mifflin (ref. 8) have even asserted that the tangent-plane 
approximation is universally valid for perfectly conducting surfaces whatever their shape. 
However, a surface shape allowing a previously reflected ray as well as the incident plane 
wave to reach a given point will alter the total incident field and thus invalidate the 
approximation.

(7) 
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• ñ = 2E1 . ii 

EXft=O
(8) 

•rI=O 

X 11 = 2i x ft 

where Ei and Hi are the components of the incident plane wave. 

The physical-optics method with incorporation of the tangent-plane approximation 
is thus capable of describing the scattered electric and magnetic fields of a relatively 
smooth, perfectly conducting surface in a way that retains the coherence effects due to 
phase interference among field amplitudes scattered from different points on the surface. 
Under appropriate conditions 3 which are rigorously discussed in references 7 and 9, the 
physical-optics formalism reduces to that of geometrical optics. Geometrical-optics 
propagation is characterized by the fact that the wave amplitude and phase at a given 
point on the wave front are related uniquely to those points and only those points on pre-
ceding wave fronts which lie on the ray trajectory traced by the Poynting vector passing 
through the given point. The method of stationary phase, when applied to a wave front 
satisfying the conditions of geometrical-optics propagation, then leads to the results of 
ray optics (ref. 7) for which all diffraction phenomena are excluded. 

A theory to describe scattering from rough, natural surfaces could, on the basis of 
the present discussion, follow one of four procedures. First, equation (6) or (7) could be 
used, so that the results conform to exact methods of electromagnetic theory. For rough 
surfaces, this approach is entirely intractable. 

In the second approach the tangent-plane approximation for evaluation of the total 
surface fields could be applied to equation (6) or (7) so that the results contain the effects 
of point-to-point coherence. Unfortunately, most natural surfaces are dielectric rather 
than perfectly conductive. Even for plane waves incident upon locally plane regions, the 
reflection coefficients are complicated functions of the angle of incidence and are differ-
ent for the two components of polarization. Furthermore, since a part of the incident 
wave energy penetrates a dielectric material, one must stipulate that none of this pene-
trating energy can be scattered from underlying strata to emerge subsequently from the 

surface. 

The third approach would involve incorporation of the tangent-plane approximation, 
required assumptions for valid application to dielectric surfaces (as in the second 

3 mese conditions are satisfied in the far-field zone of a source or scattering object 
for which case the field variations both along and transverse to the wave front are small 
on a scale of many wavelengths.
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approach), and in addition, application of a method of stationary phase, so that the results 
take on the character of a geometrical-optics approximation. This is the approach taken, 
for example, in references 10 and 11 and applied in references 3 and 4. Kodis in refer-
ence 12 applies this approach in a consistent way for the special case of a perfectly con-
ducting surface and effects the transition from equation (6) through the classical method 
of stationary phase to the formalism of pure ray-optics scattering. 

The fourth approach would invoke ray optics from the outset and would treat the 
scattering surface as a collection of mirrorlike facets from which the incident rays are 
specularly reflected according to the usual laws of elementary geometrical optics. This 
approach is followed in the work of references 8, 13, and 14. 

Each approach requires that the rough surface be treated in a suitable statistical 
manner. Details of the statistics vary among the approaches and give rise to certain 
difficulties in reconciling the results of the several approaches. First, that approach 
containing the least number of theoretically objectionable features, the method of Kodis 
(ref. 12) and certain extensions of his work by Barrick (ref. 15), are examined. 

STATIONARY-PHASE APPROACH OF KODIS 

Kodis (ref. 12) begins his work on perfectly conducting, rough surfaces by applying 
the tangent-plane approximation to an expression similar to equation (6) and by evaluating 
the surface fields by means of the equivalent of equation (8). He considers the incident 
plane wave to have unit amplitude when it reaches the surface, time dependence. JWT, 

propagation vector j, and electric field polarization direction ê. He finds for the 
field Esc scattered in the direction of k 5 the expression 

= ii exp (jkr) .c (fi,,i 5) exp	 - i) . F'] dS'	 (9) 2irr 

where the integration is over the scattering surface, F' is the vector position of a point 
on the surface, r = I FI represents the distance from the origin to the field point, and 

= (T -	 . (ij x ê x n) 

with T being the unit dyad. For backscatter, qs = - i j, and F reduces to (n . i)8. 
For sufficiently small wavelengths, the phase of the exponential term of the integrand in 
equation (9) varies very rapidly on a distance scale for which the remainder of the inte-
grand varies only slightly. The principal part of the integral of equation (9) can thus be 
approximated by the classical method of stationary phase (refs. 7 and 16). Because of the 
rapid oscillation of the integrand, significant contributions to the integral can occur only 
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at the end points of the interval or at those interior points at which the derivative of the 
exponential argument vanishes. The exponential argument can thus be represented by a 
Taylor's series in the neighborhood of these stationary points, and the slowly varying 
remainder of the integrand can be evaluated at the stationary points themselves and thus 
removed from the integrand. The integral then becomes a summation of contributions 
from each of the stationary points. 

Kodis treats in detail the case of a one-dimensionally rough or corrugated surface 
with height in the z-direction given by h(x) (C in Kodis' notation) and width L in the 
y-direction extending from y = -L/2 to L/2. He also gives the results of the straight-
forward extension to a two-dimensionally rough surface. In both cases the mean surface 
is assumed to be planar. He finds for the one-dimensional case 

	

N	 - 

sc()	
\'	 exp jk	 Fm	 (jkr)	 exp (jk . F') dy' dx' / - Li

 
M=l 2lTrfim.êz	 Sm 

N* 
=	 Fm exp Okr)	 exp Jk[. fl YSm1 ir m m 

+ (x' - x) 2	 . F' ) J , , 1 dy' dx'	 (10) 
x =xmj 

	

where iT = qi -	 dS' has been replaced by dy' dx'/(flm . ), and the points xj 
are the points at which iT . F is stationary with respect to x and y. Thus, at these 
points

dh(x')I	 = h'(xj) = - 

	

dx'	 qz	 y = 0	 (11) 

Equation (11) implies that 	 is collinear with fim, the unit normal at the stationary-
phase points x' . This is the usual condition for specular reflection. The integrals in 
equation (10) are performed over small neighborhoods 5m about each of the points rj-
and can be written as
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Im = L exp (i ) exp (jkiT F)
 [

2ir	 il/2 
iq--z h" (xiT!)

(13) 

Im = exp (jk	 YSM 	
[x - xh)2	 h"(xi)] dy' exPik[	 2

- X
in
	

h' t (xn)] =Lexp(jkFj) '	 expjkl CIx 

= L e	 F)	 exp Jk[	 h"(x)] du 

where U = X' - Xj, LU &m is a small interval around xj, and 

_ h"(xj) - d2 —h(x')I 
dx'2

IX'=X Ti 

In the last integral in equation (12), the increasingly rapid oscillation of the integral with 
increasing u renders the integi'al insensitive to the exact interval Au, so that the 
stationary-phase approximation allows Au to be replaced by the interval (-oo,00)• Then 
use of the formula from reference 16 

Y__ 00
o

exp (jm 2u2) du = - exp (i ) 

reduces equation (12) to

(12) 

Substituting equation (13) into equation (10) gives for the absolute square of the scattered 
electric field the value 

scl 2
N N -1/2 

=	 L2 sc• Esc*	 J2	 [h"xi h"(xj)]	 exp [Jk	 - it^j 
27Tr2	

m=1 p=l 

where use has been made of the fact that at the specular points ft m =	 The total
radar cross section F, is then related to the scattered field by the expression 

14



= 41Tr2I2 

and the cross section cr per unit,width L of the corrugated surface is then 

____	 -1/2 = L 2kq2j12/

	
[h" x 	 h"(x)]	 e	 . (F -	 (14) 

qz	 —Q] \m =i p=i 

where the ensemble average has been inserted and is taken over the physically possible 
realizations of random surfaces. The number of specular points N, the positions ?in 
of the specular points, and the quantities h"(xj) evaluated at those points differ for 
each realization. 

It is straightforward to show that for the surface under discussion, 

-1 
[h" f(x)]	 = pm11 + ht2(xj)] -3/2 

where pm is the radius of curvature at the point xj. Also, use of equation (11) gives 

1+h'2(x)- q 2 
-(;) 

Substitution of equation (16) into equation (15) and of that result into equation (14) gives 

N \	 /NN 
= L 2kI2	 Pm +	 (PmPp)2 exp	 . (	 -bd m=1 /	 \m=1 p=l 

\ pom 

The first ensemble average on the right side of equation (17) can be written 

(m) (m)

(15)

(16) 

(17)

(18) 
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where j5m is the average radius of curvature at the N specular points of a single 
realization of the ensemble of rough surfaces. Kodis makes the assumption that although 
the number N of specular points on a given surface realization may vary from one 
realization to another in the ensemble, the average radius of curvature at the specular 
points j5m is the same for all realizations of the ensemble. Since the angle of inci-
dence of the radiation, and hence the locations of the specular points, is arbitrary, this 
assumption is equivalent to assuming that the random process generating the radius of 
curvature at any point on the surface is an ergodic process. If this assumption is true, 
then

(m) = (N)m	 (19) 

An equation analogous to equation (19) can be written for the second ensemble average of 
equation (17) as 

\m=1 p=i 
(pmpp) 1 1 1 e	 (F-1-	 = (N(N 1)) (PmPP)112 e	 (Fin- 

\ pm
(m * p )	 (20) 

Kodis uses equations (18), (19), and (20) in equation (17). The physically plausible 
assumption that the location of a specular point and the radius of curvature at that point 
are independent random variables over each surface realization allows Kodis to write 

(PmPp) 1 "2 exp j 01 - P) = (PmPp) 1/2 exp 1(m - q )
	

(m"p)	 (21) 

where 95t = k . i with t = m and p. For a large number of specular points N and 
with m - 'Pp distributed uniformly over all angles (as is the case for any given surface 
if the wavelength is short enough), exp j ('Pm - 	 on the right side of equation (21) 
tends to zero. Thus, equation (17) reduces to 

	

= LIFI 2 (N)m	 (22) q 

For the backscattering case = _ii, 12 = 1, and q = 2. Kodis extends his calcula-
tions from one-dimensionally rough to two-dimensionally rough surfaces and obtains for 
the total backscattering radar cross section 
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= TPaP1 (N)
	

(23) 

where (N) is the ensemble average of the total number of specular points and ab is 
the average value over a surface realization of the product of the two principal radii of 
curvature at each specular point. 

Equation (23) is analogous to a result given in reference 7 for scattering from a 
smoothly curving object in the stationary-phase or geometrical-optics approximation. It 
is also analogous to the geometrical-optics cross section of a smoothly curving body, 
such as an ellipsoid or sphere, given in reference 17. The theory leading to equation (23) 
predicts no depolarization of the reflected wave, so that if depolarization of the signal is 
actually observed, there is reason to believe that the underlying assumptions for validity 
of the theory are invalid. Depolarization in actual planetary radar reflections is dis-
cussed further in a subsequent section. 

BARRICK'S EXTENSION OF KODIS' RESULTS 

In order to complete the calculation of the radar cross section (eq. (23)) it is nec-
essary to evaluate the quantities (N) and a1y Some work of Barrick (ret, 15) that 
attacks this problem directly is discussed here. Barrick notes that the problem of 
counting the number of points on a corrugated surface at which the slope attains a speci-
fied value (i.e., the number of specular points on the surface) is formally similar to the 
problem of counting the average number of zero crossings per unit time of a random 
function of time with specified statistical properties. This problem is solved by 
S. 0. Rice (ref. 1), and its solution is adapted by Barrick to rough surfaces and extended 
to a two-dimensionally rough surface. For the two-dimensional surface, Barrick finds 
for the expected number nA = (N>/Total surface area of specular points per unit area 

nA = P(hx sp ) hy sp)  
00	 00	 00 

^_m Y_m Y_00  hxxhyy - hyp(hxx,hxy,hyyhx sp,hy sp) dh, dhxy dhyy 

(24) 
where

hxsp2	 hysph' ay 

	

XXm 	 37Ym 

and where P(hx sp,hysp) is the probability density for the surface slopes evaluated at 
the specular values and p(hxx,hxy,hyyhx sp,hy sp) is the conditional probability density 
for the three second derivatives of the surface height given that the first derivatives have 
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(1 + hsp + h 5 ) - 
r 1r2 = ________________ -

 h^yj 
-

sec4 y
2 hyjchyy - hxy

(26) 

their specular values. The double subscripted quantities h,, hxy, and h
yy

corre-
spond to the respective second partial derivatives of the surface height h(x,y). The 
functional notation for h has been dropped for convenience. 

Barrick then develops an expression for PaPbl or (I r i r2p) in his notation. (This 
notation implies that he is replacing the average over a single surface with an ensemble 
average, a permissible substitution under a suitable ergodic hypothesis.) In his develop-
ment, he adopts the rather unsatisfactory tactic of replacing (j ii) with	 where 

I JI = hxxhyy -	 Barrick asserts that no quantitative measure of the error involved 
in this replacement is available, but that for large values of I JI, the error should not be 
excessive. It is shown here by an alternative method that Barrick's final result for 

(I r ir 2I) is in fact exact, so that his unsatisfactory assumptions regarding () are not 

essential. 

From equation (24), the ensemble-averaged number dnA of specular points per 
unit area such that at the specular points the second derivatives of the surface have 
values within dh	 of h, within dhxy of hxy, and within dhyy of hyy, is 

dnA = p(hxsp,hysp) hxxhyy - hyp(hxxhxy,hyyhxsp,hysp) dhxx dhxy dhyy 	 (25) 

Assume that dnA also represents the number of specular points with the above pre-
scribed values of hxx, hxy, and hyy for a single surface realization from the 
ensemble. This will be a plausible ergodic assumption if the number dnA of such 
specular points is large. At these specular points the quantity Jr 1 r2J can be written 

where v is the angle between the mean surface normal and the local surface normal. 
To find the average of I r i r2I over a single surface, it is necessary merely to add up 
the quantities represented by equation (26), each quantity being multiplied by the number 
of times it occurs (from eq. (25)), and then to divide by the total number (from eq. (24)). 
Thus 

__ ^ l r i r 2I dnA =	 se c4 v	 P(hxx,hxy,hyyhxsp,hysp) dh dhxy dhyy 

(rlr2I 
=  

Yyylhxxhyy -	 P(hxx,hxy,hyyhx	 sp) dh, clhxy dhyy
(27) 
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Since the triple integral in the numerator of the right member of equation (27) is 
unity, equation (27) is identical with the final result of Barrick. Dividing equation (23) by 
the total surface area and substituting equations (24) and (27) give for the radar cross 
section per unit area 

a = 7T sec4 ' p (hx SPY h 5p) = 11 sec4 y p(y)
	

(28) 

where P(v) P(hx	 sp). At each specular point contributing to the result in equa-
tion (28), the direction of incidence is parallel to the local surface normal. It is plausi-
ble therefore that equation (28) can be extended from a perfectly conducting surface to a 
dielectric surface by insertion of the reflection coefficient for normal incidence on a 
dielectric plane. Note that such a procedure is justifiable only after the reduction of the 
problem to that of a summation of scattering contributions from the set of specular points. 
An attempt to insert into equation (9) a dielectric-surface reflection coefficient, which is 
a complicated function of the local angle of incidence at each point on the surface, would 
have resulted in additional complicated factors in the integrals over Sm of equation (10). 
These factors would have altered the subsequent development substantially and would have 
led to problems of interpretation similar to those discussed in the section "Correlation-
Function Method." 

Barrick quite plausibly inserts the dielectric reflection coefficient into equation (28) 
to get

= iT sec4 y p(y) I R 2
	

(29) 

as the backscattering cross section per unit area for a dielectric body, where	 and ij
refer to the polarization states (horizontal or vertical) of the incident and scattered waves, 
respectively, and the absolute values of the Fresnel reflection coefficients for normal 
incidence of a plane wave on a plane surface are denoted by R. These coefficients 
are such that

Rhhl 	 Rj2=(E - 
7=)

(30) 

Rhvj 2 = I H'vhI 2 0 

where h and v refer to horizontal or vertical polarization. Equations (29) and (30) 
show that for a dielectric as well as a perfect conductor, there is no depolarization of the 
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radar signal upon reflection in this approximation. If depolarization is actually observed, 
these formulas must be used with extreme caution. 

Equation (28) - which agrees with the results of Muhleman (ref. 13), who based his 
work from the outset on a pure geometrical-optics (ray-optics) method - has thus been 
traced back to first principles, so that its domain of validity is reasonably clear. 
Although equation (28) or (29) indicates that the angular scattering dependence is the 
same as the distribution of surface slopes, this may not be true for arbitrary slope dis-
tributions. In particular, the slope distribution must fall off with y sufficiently rapidly 
so that neither surface self-shadowing nor multiple scattering is important. Surface 
self-shadowing would tend to reduce the number of contributing specular points per unit 
area and would be important for large angles of incidence or large surface slopes. Sim-
ple geometrical considerations show that multiple scattering could be important if there 
are a significant number of surface slope angles a such that a 	 - Z . For slopes 

with such angles, incident rays can reach a given specular point by intermediate reflec-
tion from nonspecular points located on those slopes. 

An alternate route to equation (29) has occupied a principal place in the literature 
of rough-surface scattering. That route is through the so-called correlation-function 
method, whose intermediate results have provided many of the formulas used in planetary 
radar data reduction methods. 

CORRELATION -FUNCTION METHOD 

The theoretical work which has had the most impact on radar studies of planetary 
surface properties has probably been that of Hagfors (refs. 10, 11, and 14). This work, 
which falls into the third category discussed previously in the section "Electromagnetic 
Scattering Approximation," unfortunately contains many contradictory features, and appli-
cations of parts of it to some lunar and planetary radar data analyses (refs. 3, 4, and 18) 
have led to unreasonable results. Some of these results are discussed in the following 
section. The purely theoretical aspects of Hagfors' work are discussed in this section. 

In reference 10, Hagfors attacks the problem of plane-wave scattering from a one-
dimensionally rough (corrugated) surface with random height deviations from a mean 
plane. He extends the final result to the two-dimensionally rough, mean-planar surface. 
His work for this special surface is presented in detail, since it will help to clarify his 
work (ref. 11) on a rough-spherical surface which is the basis for certain data analysis 
techniques. In Hagfors' development, the height of the rough surface in the z-direction 
h is independent of the y-direction which extends from - to +°°. The slope of the 
surface qh in the x-direction is denoted by t, so that the slope angle a is given by 

dx 
a = tan-' t. The angle of incidence of the impinging wave with respect to the mean sur-
face is denoted by q'. The local angle of incidence ip is then given by /i = - a. As 
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before, k is the wave number 21T/X. The scalar value of an electric field component of 
the incident wave at point x on the surface is then of the form 

E = E0 exp [_jk(x sin (p - h cos (P)]	 (31) 

By means of the tangent-plane approximation with the necessary stipulations for applica-
tion to dielectric bodies, the scattered electric field amplitude on the (dielectric) surface 
is given by E Q(//), where Q(V) is the plane-wave reflection coefficient. After 
straightforward manipulation of the scalar form of equation (7), Hagfors writes for the 
backscattered field amplitude ER at the radar antenna 

ER = E
0

k 2jR exp (-jkR) Q(/-,) cos p exp [2jk(x sin q' - h cos co)] ds 	 (32) 

where R is the distance from the origin to the radar antenna and ds is the line ele-
ment along the rough surface. Introducing dx = cos a ds and eliminating .' in favor 
of t and ço, Hagfors writes 

ER = K Q(t)(cos q + t sin q) exp 1-2jk(x sin (p - h cos c7)] dx	 (33) 

where K represents the constant factor outside the integral in equation (32). The power 
received at the radar antenna is then proportional to ERE, and the expectation value of 
this quantity over a suitable ensemble of surfaces describing the random height h is 
proportional to the ensemble-averaged received power. Thus 

(ERE ) = K 	 = K1 2 	 dx1 th 2 Q(t 1 ) Q*(t2) (cos (p + t 1 sin (cos (p + t2 sin 

exp [2jk(h, - h2) cos ]) exp 1-2jk(x l - x2) sin	 (34) 

where the subscripts 1 and 2 denote dummy variables of integration. Introduction of the 
new variables ih = h1 - h2 and Ax = x 1 - x2 gives
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(lEt 2) = 1K1 2 dx1 Y d(ix)[(Q(ti) Q*(t2) (cos q + t 1 sin )(cos q' + t 2 sin 'p) 

exp (2jk Ah cos	 exp (-2jk ix sin (P)]	 (35) 

In order to evaluate the expectation value within the integral in equation (35), a joint 
probability density function corresponding to equation (2) must be introduced for the 
height difference ih and the slopes t1 and t2. Hagfors assumes this joint probabil-
ity density to be that of a Gaussian process and writes explicitly 

p(h,t1t2) = (2 3/2(det A)/2 exp	 A) [Mu (h) 2 + M22t 1 2 + M33t22 
2(de 

+ 2M 12 ih(t 1 - t2 ) + 2M23tit2]
	

(36) 

where the Mij are the cofactors of the symmetric matrix 

2[l p(ix)] 

ap(Lx) 

A = hms -  

ap(x) 

a (ix)

ap(&) 

a(ix) 

- a2P(Ax) 

a(x)2 x=O 

a2 MAX) 

a(x)2

ap(ix) 

a(&) 

- a2p(x) 

- a2p(Lx)

(37) 

and where det A is the determinant of A. The quantity p(&) is the autocorrelation 
function of the random surface height and h2 ms is the root-mean-square height. Ref- 
erence 1 or 2 cover the theory surrounding equations (36) and (37). To use this formal-
ism, it would be necessary to identify the expectation value in the integral of equation (35) 
with the quantity (f) of equation (3) and to substitute equation (36) into equation (3), where 
the single integral had been replaced by a triple integral over Ah, t1, and t2. 

At this point a hard fact comes to the surface, namely, that Q(t) is a very com-
plicated function of t which has a different functional form for each of the two possible 

- 
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local polarizations of the incident wave. Since the local polarizatiorl changes with posi-
tion according to the detailed variation of the rough surface, it is completely unclear how 
to proceed from this point. Hagfors' approach is to seek a method for effectively remov-
ing the t dependence of Q. His argument is as follows: Suppose that certain slope 

values t1 and t2 can be found such that the quantity F(t 1 ,t2) defined by 

F(t 1,t2) = Q(t 1) Q*(t2) (cos	 + t 1 sin p) (cos	 + t2 sin co)	 (38) 

can be expanded in a Taylor's series about the points t 1 and t2 with the first deriva-
tive terms vanishing identically. This condition is met if 

	

dx 1 d(Ax) exp (-2jk Ax sin 	 d(iTh) dti dtj .
	

- (t ati
ti=ti 

- Ti) exp (2jk zh cos 'p) p(h,ti,t) = 0	 (39) 

where i,j = 1,2 with i * j and p is defined by equation (36). 

Hagfors asserts that equation (39) yields 

11 = t2 = tan 'p
	

(40) 

If equation (40) holds, and if the second and higher derivatives are arbitrarily dropped 
from the Taylor's series for F, then F reduces to 

F(t 1 ,t2) = F(t1,t2) = Q(tan 'p) Q*(tan p ) cos-2 'p	 (41) 

The value Wan q.') then corresponds exactly to the Fresnel reflection coefficient for 
plane-wave normal incidence on a plane surface, which is independent of polarization. 
Thus, Q(tan 'p) Q*(tan(P) is given by equation (30) (with it set equal to unity). Use of 

equations (30), (40), (36), and (37) in equation (35) then gives 

(1E12) = lK121_L1-\	 1	 -'2	
5	

d(x) exp (-2jk Ax sin q')	 dt 1 dt2 ' d(h)[exp (2jk Ah cos q') p(h,t02)]	 (42) 
+ i) cos2 q'
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Equation (42) can now be integrated over t 1 , t2, and Ah to give 

(IER 2) = IKI2( - 
1\ 2 	 1 L/2 

E + 1)	 L/2	 i 

00 

d(x) exp (-2jk x sin 'p)
Cos 

exp [4k2h ms cos2 q2[1 - P ( A XO
	

(43) 

where L is the extent of the surface in the x-direction. Equation (43) can be extended 
to a two-dimensionally rough surface for which p(x) can be identified with p(r), 
where ir is the separation distance between two points on the surface. The one-
dimensional Fourier transform indicated by the integration over ix in equation (43) 
can be replaced by a two-dimensional Fourier transform such that 

ERR 2) =	
- 1\ 2 1	

L/2	 L/2 00
 ^_L/2 

dyc d(r)ir 
+	 cos2	

dX
-L/2 	 0 

exp (4k2 h ms cos2 7[i - p(r)]) J0(2k ir sin çü)	 (44) 

What Hagfors' method actually represents is a form of stationary-phase approxi-
mation similar to Kodis' method but different in detail from this classical method. The 
previous discussion shows that the particular choice Ti = tan ço has nothing to do with 
the ensemble average indicated in equations (34) or (35). If the ensemble-average brack-
ets of equation (34) are moved outside the integrals, the two exponentials of the integrand 

may be combined to give -1 = 2 = t1 = t2 = tan q2 as a point of stationary phase of the 

integrand. The method of stationary phase permits the remainder of the integrand to be 

evaluated at this point and removed from the integrals. Up to this point, the procedure 
is the same as that of Kodis. Instead of evaluating the remaining integrals only in the 
neighborhood of the points of stationary phase, however, Hagfors' method retains the 
entire integration range. When the ensemble-average brackets which were placed out-
side the integrals of equation (34) are moved back within the integrals over x 1 and ix, 

the result is equation (42). 

This view of equation (43) shows it to be a combination of the method of Kodis and of 
an attempt to retain the effects of point-to-point coherence of the scattering process. The 
coherence retention is not complete, however, since the reflection coefficient allows only 
for locally normal incidence. Therefore, coherence can be retained, at best, only among 
the isolated specular points, but the integral on Ax of equation (43) contains the phase 
variations of a continuum of points over the entire surface. The physical meaning of 
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equation (43) is thus somewhat obscure and it is unclear whether it is capable of describ-
ing to any reliable extent the effects of surface correlation or coherence. 

ANGULAR SCATTERING LAWS 

In order to proceed from equation (44) to a practical result for real surfaces, a 
form for the autocorrelation function p(Er) must be assumed. For reasons of mathe-
matical simplicity, attention in the literature has been devoted almost exclusively to two 
forms: the exponential correlation function 

p(r) = exp(_)
	

(45) 

and the Gaussian correlation function 

[ (r)1 
p(r) = exp [
	

2 j
	

(46) 

where f is the correlation length of the statistical process representing the rough sur-
face. Actually, equations (45) and (46) are almost never used as they are written. For 
large values of khrms cos ço, the so-called deep-phase modulation case, the exponential 
factor containing p(r) in equation (44) drops rapidly to zero with the slightest depar-
ture of p(r) from unity. It is generally assumed that equations (45) and (46) can be 
approximated by the first two terms of a Taylor's series expansion about a point at or 
near the origin. A controversy has appeared in the literature over whether the point of 
expansion should be the origin or another point near it and whether an expansion of equa-
tion (45), which has no Taylor's expansion about the origin, can represent a sensible cor-
relation function at all. This controversy is discussed in detail by Barrick in reference 6 
and to some extent by Fung and Chan in reference 19. 

If equation (45) is approximated by p(ir) = 1 - Ar/f and if this form is substituted 
into equation (44), the latter equation can be integrated exactly to give for the power 
reflected per unit surface area

-3/2 

(	 )2[cos4 + (2khrms)2(hrmS)	
(47) 
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If equation (46) is approximated by p(tr) = 1 - ( i r) 2/ 2, the analogous result is 

(PR(c°))	
f \r - 1\ 2	 1	 exp /
	 2 

+	 cos4	 4hms tan
2	 (48) 

Hagfors (ref. 10) obtains these results for a mean-planar surface and in reference 11 he 
ostensibly obtains the same results for the case for which the mean surface is sperica1 
as is needed in planetary studies. The development of reference 11 is somewhat unsat-
isfactory, however, since Hagfors is forced to drop the distinction between the sub-
scripted dummy variables in the analog of equation (34). Furthermore, he makes some 
approximations in his integrand functions that are valid only if ' p = 0. The effect of 
these arbitrary steps is to suppress the spherical nature of the surface. Notwithstanding 
these incongruities, he asserts that equations (47) and (48) represent the expected varia-
tion with incidence angle of the power backscattered from a spherical planetary surface, 
and these expressions are used in actual data reduction of radar scattering from Mars in 
references 3 and 4. 

Note that the use of either equation (45) or (46) in equation (44) produces an integral 
over ir that does not exist because of the infinite upper limit of that integral. It is 
only the two-term approximations which lead to a finite result. Fung and Chan (ref. 19) 
obtained numerical results for the integral in equation (44) by using an unspecified upper 
cutoff D for that integral. Although they did not comment on the dependence of their 
result on the value of D, it can be readily shown that their numerical results do, in fact, 
depend on D. Their plotted curves result from a specifically chosen value of D that 
bears no apparent relationship to any other physical parameter of the problem, and their 
results would have diverged as \Ji5 for larger values of D. 

Extensive difficulties with the exponential correlation function of equation (45) have 
been discussed by Barrick (ref. 6). He points out that this surface correlation function 
violates the fundamental assumption of the theory that the surface is of a gently varying 
nature. Equation (45) corresponds to a surface with many abrupt, vertical discontinuities. 
Furthermore, Barrick shows that in the limit of small radar wavelength, which is the 
only limit in which the developed theory can claim validity, the total power scattered in 
all directions by a perfectly conducting, rough surface described by equation (45) is zero, 
even if the surface slopes are small. Equation (46), on the other hand, describes an 
admissibly smooth surface and leads to a plausible value for the scattered power, if the 
slopes are small. 

The angular scattering law of equation (48), being based on equation (46), does not 
lead to the absurdities pointed out by Barrick, although it is still subject to the inconsis-
tencies discussed in the previous section. As € - , the dielectric-surface reflection 
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coefficients for all angles of incidence reduce to those appropriate for a perfectly con-
ducting surface. Similarly, if the limit € - oo is taken in equation (48), the resulting 
angular scattering law agrees with the angular scattering law deduced by Beckmann 
(ref. 20) for a perfectly conducting, rough surface having the same statistical properties. 
Although no satisfactory derivation of equation (48) for a dielectric surface has ever been 
given, the agreement of that equation as € - 	 with a correctly derived result for the 
perfectly conducting surface makes it conceivable that there does exist some undiscovered 
basis for its validity. From the standpoint of Martian radar studies, however, this con- 
jecture is merely academic, since the experimental results are not describable by 
equation (48). 

EXPERIMENTAL RESULTS FOR MARTIAN SURFACE SCATTERING 

The Haystack Microwave Facility of the Massachusetts Institute of Technology 
Lincoln Laboratory has been extensively used to study radar signals reflected from the 
surface of Mars (refs. 3 and 4). In these studies, determination of the dielectric constant 
and surface slopes of Mars has relied upon the previously discussed theoretical work of 
Hagfors. It is unfortunate that, within the context of this theory, only the theoretically 
unacceptable correlation function of equation (45) has been found to fit the experimental 
data.

The data reduction procedure used in references 3 and 4 consisted of fitting the 
angular scattering law of equation (47) to the experimental angular scattering function 
and matching the theoretical and the experimental powers at 'p = 0 and at another value 
of p. The fit at the two points gives a value for the dielectric constant € and an exper-
imental number for the coefficient of sin2 -4 This coefficient, denoted by C, is such 
that C /2 is approximately equal to the tangent of the angle 'p for which equation (47) 
falls to 1/e of its value at 'p = 0. Although this is called the root-mean-square sur-
face slope in reference 4, this designation is clearly a misnomer, since for a surface 
described by equation (45), which contains arbitrarily large slopes with many vertical 
discontinuities (ref. 6), the root-mean-square slope is infinite. Arguments for the inter-
pretation of C 1/2 as an "effective" slope are given in references 3, 11, and 14. These 
arguments center around the assertion (ref. 14) that the effective slope seen by the radar 
depends upon ". . . structural detail in the correlation function near the origin which will 
not appreciably influence the value of the integral [equation (44)] determining the back-
scattered power." Unfortunately, it is precisely the form of the correlation function near 
the origin which gives rise to the angular scattering law used (eq. (47)). A change in the 
behavior near the origin from a linear variation in Ar to a quadratic variation is just 

4In addition to radar system parameters, the constants of proportionality of equa-
tions (47) and (48) also contain the unknown quantities f and firms, so that € cannot 
be obtained by a single measurement at 'p = 0.
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the change necessary to achieve equation (48), which does not fit the data, rather than 
equation (47). Ignoring this point, Hagfors argues that the finite radar wavelength 
imposes a "filtering action" on the wave number spectrum generating the rough surface, 
so that the higher spatial frequencies of this spectrum are truncated or attenuated. Thus 
the infinite actual slopes of the model are of no consequence and interpretation of c112 
as the "effective" root-mean-square surface slope is justified. This argument is also 
unsatisfactory, however, since such a filtered spatial frequency spectrum does not give 
rise in the first place to the angular scattering law containing the C parameter. 

Because of these basic theoretical difficulties, the reliability of the Martian 
dielectric-constant and slope values quoted in references 3 and 4 is unclear. It may be 
thought that an indicator of the reliability of the method for Mars might be application of 
the same method to lunar radar data. Such is not the case however, because of the fol-
lowing considerations. Earth-based lunar data have given results for the dielectric con-
stant in the range from 2.5 to 3, which agree well with actual values. These good values 
for the Moon are clouded, however, by other difficulties. Barrick (ref. 6) has pointed out 
that the lunar radar data imply the absurd result that the surface correlation length f is 
as large as one-half of the distance from the Earth to the Moon. Notwithstanding this 
intrinsic contradiction, one might argue that a theory can give a right answer for the 
wrong reason, so that some confidence in the dielectric-constant values for Mars could 
still be retained by analogy with the lunar case. Such an argument could have merit only 
if the Martian dielectric constants and surface roughness were qualitatively similar to 
those of the Moon. The spread in radar-obtained values of c for Mars ranges from 1.5 
to more than 6, and the radar data indicate that Mars is ostensibly much smoother than 
the Moon. This marked qualitative difference in the radar return from the two bodies 
severely weakens the probability that a defective method, which happens to be successful 
for € for the Moon will be successful for € for Mars. 

Other radar studies of Mars, using the radar facility at the Goldstone Tracking 
Station, has been reported in reference 21. These studies produced radar cross-section 
data and an empirical angular scattering function, but since no a priori theoretical model 
was used, it was impossible to produce any local values of dielectric constant. It is 
notable that the empirical angular scattering function resulting from these studies does 
not agree with equation (47), the angular scattering function of references 3 and 4. 

DISCUSSION 

The difficulties of the correlation-function method tend to obscure the relationship 
of this method to other methods of analysis of rough-surface scattering. Hagfors has 
concluded (ref. 14) that for the Gaussian autocorrelation function, the correlation-function 
method is equivalent to that of equation (29). The status of the exponential correlation 
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function with regard to this equivalence remains unclear. To the extent that this equiva-
lence holds for the Gaussian case, only one type of acceptable theory for radar scattering 
from rough, dielectric planetary surfaces, namely, the theory underlying equation (29), is 
left. This theory is constrained to small slopes and gently varying terrain on the scale 
of a radar wavelength. Therefore experimental data to which the theory could be reason-
ably applied must necessarily fall off rather sharply with the incidence angle of the sig-
nal (p of eqs. (47) and (48) and y of eq. (29)). The Martian radar data fall off rather 
slowly with incidence angle, however, so that the theory of equation (29) is still 
inadequate. 

Refinements to the specular-point theory include the introduction of a shadowing 
function into equation (29) so that obscuration of specular points near the planetary limbs 
can be taken into account. Beckmann (ref. 22) has developed such shadowing functions 
and has applied them with some success to lunar scattering data, although Brockelman 
and Hagfors (ref. 23) contest the success of his method. In any event, the introduction of 
shadowing would tend to drive down the level of the return with increasing angle of inci-
dence, an effect which is opposite to that desired for explaining the Martian data. Also, 
inclusion of shadowing does not alter the limitation that the basic tangent-plane-
approximation theory, to which the shadowing is appended, cannot take into account mul-
tiple scattering or small-scale structure. These factors would be more important for 
regions near the planetary limbs, since their contribution to the total scattered power 
would not decrease with increasing incidence angle to the extent that the specular-point 
contribution does. The presence of these factors on the planetary surface would be char-
acterized by larger-than-expected backscatter levels and increasing depolarization of the 
backscattered signal in the data returned from the planetary limbs. Both these features 
are invariably present in the radar data, giving further evidence that any theory based 
upon the tangent-plane approximation is incapable of describing backscattering for large 
incidence angles. 

Other theoretical models for planetary radar data analysis are composite surface 
models containing two or more correlation-length scales. Some of these methods (e.g., 
ref. 24) are straightforward extensions of the basic theory described in the present 
report, whereas others (refs. 25 and 26) attempt to combine a large-scale roughness the-
ory based on these same methods with a small-scale result based on a perturbation solu-
tion to an exactly soluble scattering problem. Recent work by Burrows (ref. 27) has 
indicated that the small-perturbation solution is, in fact, equivalent in many respects to 
the solution obtained from the tangent-plane approximation, if this approximation is arbi-
trarily applied to a surface with structure much smaller than the radar wavelength. 
Since in this case the physical basis for the validity of the tangent-plane approximation is 
completely lacking, the meaning of Burrows' result is unclear, but it does cast some 
doubt on composite models using a small -perturbationapproach. None of these more
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elaborate approximations have yet influenced the interpretation of Martian radar data. 
More disheartening, however, is the fact that not one of the theories available at present 
is likely to bring order out of the confusing and sometimes self-contradictory radar 

results. 

The selection of references which have been discussed in detail has been made in 
order to present work that has had considerable impact upon planetary radar studies. 
In general, the best theoretical work has been limited to perfectly conducting surfaces. 
For example, Hoffman (ref. 28) gave in 1955 an excellent treatment of scattering from a 
rough, perfectly conducting surface in the tangent-plane approximation. He obtained for-
mal results for the scattered Poynting vector, including the cross-coupling of the polari-
zation components (depolarization) produced by local variations in the surface normal. 
Probably because of the formal nature of his results, Hoffman's work has had no impact 
upon practical applications. An obvious extension of Hoffman's work in the direction of 
the theories discussed in this paper could be incorporation of the reflection coefficients 
for arbitrary incidence angles in order to cover the dielectric scattering case. Even if 
successful, such a course would no doubt produce complex formal results not readily 
amenable to data analysis. In addition, the fundamental difficulty (discussed previously 
in the section "Statistical Nature of Rough-Surface Scattering") remains that planetary 
surfaces may not be describable in terms of the theory of random processes, so that 
attempts to extract meaningful results from such theories may be hazardous at best. 

CONCLUDING REMARKS 

The theoretical basis for the most widely accepted and used models for describing 
planetary rough-surface scattering has been examined. These models are basically more 
capable of describing rough, perfectly conducting surfaces than the dielectric surfaces of 
real planets. In order to obtain models which can describe dielectrics, it has been nec-
essary to ignore all points of the planetary surface for which the local angle of incidence 
of the radar wave is not zero. Such a procedure cannot be justified unless the scattering 
surface is gently undulating with no structure on the scale of a radar wavelength. The 
presence of depolarization of the returned radar signal near the planetary limbs may be 
evidence that multiple scattering or small-scale structure actually exists, so that the 
theory, which predicts no depolarization, may not even be applicable to the sub-Earth 
areas of the planet that show no significant depolarization. 

In addition to the difficulty in extending the theory to dielectric scatterers, there 
are numerous questions concerning the theoretical development of the statistical scatter -

ing properties. The theoretical formulation underlying the most often quoted experimen-
tal results for the planet Mars has been found to be internally inconsistent and to lead to



an absurd result for the total scattered power in the limit of small wavelength for which 
the theory has its only clear basis for validity. 

The presently available approaches to the theory are incapable of accounting for the 
slow falloff of scattered power with angle of incidence for the planet Mars, and introduc-
ing shadowing effects into the theory produces a correction in the wrong direction. In 
view of the difficulties involved with the basic theory, it is not apparent that more elabo-
rate methods, such as the use of composite roughness scales, would produce better 
results. 

It is concluded that a fundamental breakthrough in the theoretical description of 
scattering from rough terrain is required before dependable results can be expected for 
such detailed properties as dielectric constant and surface slopes when even the statisti-
cal properties for the scattering body remain unknown. Such a breakthrough represents 
a formidable problem that is not likely to be solved in the near future. 

Langley Research Center 
National Aeronautics and Space Administration 
Hampton, Va., 23665 
May 2, 1975

31



REFERENCES 

1. Rice, S. 0.: Mathematical Analysis of Random Noise. Selected Papers on Noise and 
Stochastic Processes, Nelson Wax, ed., Dover Pub., Inc., c.1954, pp. 133-294. 

(From Bell System Tech. 3., vols. 23 and 24.) 

2. Middleton, David: An Introduction to Statistical Communication Theory. McGraw-

Hill Book Co., Inc., 1960. 

3. Radar Studies of Mars. NASA CR-108312, 1970. 

4. Pettengill, G. H.; Counselman, C. C.; Rainville, L. P.; and Shapiro, I. I.: Radar 
Measurements of Martian Topography. Astron. J., vol. 74, no. 3, Apr. 1969, 

pp . 461-482. 

5. Hughes, V. A.: Diffraction Theory Applied to Radio Wave Scattering From the Lunar 
Surface. Proc. Phys. Soc. (London), vol. 80,.pt. 5, no. 517, Nov. 1, 1962, 

pp. 1117-1127. 

6. Barrick, D. E.: Unacceptable Height Correlation Coefficients and the Quasi -Specular
Component in Rough Surfaces Scattering. Radio Sci., vol. 5 (New ser.), no. 4, Apr. 

1970, pp. 647-654. 

7. Silver, Samuel, ed.: Microwave Antenna Theory and Design. McGraw-Hill Book Co., 

Inc., 1949. 

8. Rea, D. G.; Hetherington, N.; and Mifflin, R.: The Analysis of Radar Echoes From 
the Moon. J. Geophys. Res., vol. 69, no. 24, Dec. 15, 1964, pp. 5217-5223. 

9. Born, Max; and Wolf, Emil: Principles of Optics. Second rev. ed., Macmillan Co., 
c. 1964. 

10. Hagfors, T.: Backscattering From an Undulating Surface With Applications to Radar 
Returns From the Moon. J. Geophys. Res., vol. 69, no. 18, Sept. 15, 1964, 

pp. 3779-3784. 

11. Hagfors, T.: Relations Between Rough Surfaces and Their Scattering Properties as 
Applied to Radar Astronomy. Radar Astronomy, John V. Evans and Tor Hagfors, 
eds. McGraw-Hill Book, Co., Inc., c.1968, pp. 187-218. 

12. Kodis, Ralph D.: A Note on the Theory of Scattering From an Irregular Surface. 
IEEE Trans. Antennas & Propagation, vol.- AP-14, no. 1, Jan. 1966, pp. 77-82. 

13. Muhleman, D. 0.: Radar Scattering From Venus and. the Moon. Astron. 3., vol. 69,. 

no. 1, Feb. 1964, pp. 34-41. 

14. Hagfors, T.: Relationship of Geometric Optics and Autocorrelation Approaches to 
the Analysis of Lunar and Planetary Radar. J. Geophys. Res., vol. 71, no. 2, 
Jan. 15, 1966, pp. 379-383. 

32



15. Barrick, Donald E.: Rough Surface Scattering Based on the Specular Point Theory. 
IEEE Trans. Antennas & Propagation, vol. AP-16, no. 4, July 1968, pp . 449-454. 

16. Lamb, Horace: Hydrodynamics. Sixth ed., Dover Publ., Inc., 1945. 

17. Ruck, George T.; Barrick, Donald E.; Stuart, William D.; and Krichbaum, Clarence K.: 
Radar Cross Section Handbook. Volume 1, Plenum Press, Inc., 1970. 

18. Evans, J. V.: Radar Studies of Planetary Surfaces. Annual Review of Astronomy and 
Astrophysics, vol. 7, Leo Goldberg, ed., Annu. Rev., Inc., 1969, pp. 201-248. 

19. Fung, A. K.; and Chan, H. L.: On the Integral for Backscattering From a Randomly 
Rough Surface. Proc. IEEE, vol. 59, no. 8, Aug. 1971, pp. 1280-1281. 

20. Beckmann, Petr; and Spizzichino, André: The Scattering of Electromagnetic Waves 
From Rough Surfaces. Macmillan Co., 1963. 

21. Downs, G. S.; Goldstein, R. M.; Green, R. R.; Morris, G. A.; and Reichley, P. E.: 
Martian Topography and Surface Properties as Seen by Radar: The 1971 Opposition. 
Icarus, vol. 18, no. 1, Jan. 1973, pp. 8-21. 

22. Beckmann, Petr: Shadowing of Random Rough Surfaces. IEEE Trans. Antennas & 
Propagation, vol. AP-13, no. 3, May 1965, pp. 384-388. 

23. Brockelman, R. A.; and Hagfors, T.: Note on the Effect of Shadowing on the Back-
scattering of Waves From a Random Rough Surface. IEEE Trans. Antennas & 
Propagation, vol. AP-14, no. 5, Sept. 1966, pp. 621-627. 

24. Beckmann, Petr: Scattering by Composite Rough Surfaces. Proc. IEEE, vol. 53, 
no. 8, Aug. 1965, pp. 1012-1915. 

25. Fung, A. K.; and Chan, Hsiao-Lien: Backscattering of Waves by Composite Rough 
Surfaces. IEEE Trans. Antennas & Propagation, vol. AP-17, no. 5, Sept. 1969, 
pp . 590-597. 

26. Barrick, Donald E.; and Peake, William H.: • Scattering From Surfaces With Different 
Roughness Scales: Analysis and Interpretation. BAT-197A-10-3 (Contract 
No. DA-49-083 OSA-3176), Battelle Mem. Inst., Nov. 1, 1967. (Available from DDC 
as AD 662 751.) 

27. Burrows, M. L.: On the Composite Model for Rough-Surface Scattering. IEEE Trans. 
Antennas & Propagation, vol. AP-21, no. 2, Mar. 1973, pp. 241-243. 

28. Hoffman, William C.: Scattering of Electromagnetic Waves From a Random Surface. 
Quart. Appl. Math., vol. XIII, no. 3, Oct. 1955, pp. 291-304. 

NASA-Langley, 1975	 L -9889	 33



NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 
WASHINGTON. D.C. 20546 

OFFICIAL BUSINESS 
PENALTY FOR PRIVATE USE $300 SPECIAL FOURTH-CLASS RATE 

BOOK

POSTAGE AND FEES PAID 
NATIONAL AERONAUTICS AND 

SPACE ADMINISTRATION
45,

U&MAIL 

If Undeliverable (Section 158 POSTMASTER:	 Postal MaIIIIIII) Do Not Return 

"The aeronautical and space activities of the United States shall be 
conducted so as to contribute . . . to the expansion of human knowl-
edge of phenomena in the atmosphere and space. The Administration 
shall provide for the widest practicable and appropriate dissemination 
of information concerning its activities and the results thereof." 

—NATIONAL AERONAUTICS AND SPACE ACT OF 1958 

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS 
TECHNICAL REPORTS: Scientific and 
technical information considered important, 
complete, and a lasting contribution to existing 
knowledge. 

TECHNICAL NOTES: Information less broad 
in scope but nevertheless of importance as a 
contribution to existing knowledge. 

TECHNICAL MEMORANDUMS: 
Information receiving limited distribution 
because of preliminary data, security classifica-
tion, or other reasons. Also includes conference 
proceedings with either limited or unlimited 
distribution. 

CONTRACTOR REPORTS: Scientific and 
technical information generated under a NASA 
contract or grant and considered an important 
contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information 
published in a foreign language considered 
to merit NASA distribution in English. 

SPECIAL PUBLICATIONS: Information 
derived from or of value to NASA activities. 
Publications include final reports of major 
projects, monographs, data compilations, 
handbooks, sourcebooks, and special 
bibliographies. 

TECHNOLOGY UTILIZATION 
PUBLICATIONS: Information on technology 
used by NASA that may be of particular 
interest in commercial and other non-aerospace 
applications. Publications include Tech Briefs, 
Technology Utilization Reports and 
Technology Surveys. 

Details on the availability of these publications may be obtained from: 

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 
Washington, D.C. 20546


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37



