General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
Final Report

CALCULATIONS FOR INTERPRETATION OF SOLAR VECTOR MAGNETOGRAPH DATA

May 1975

TELEDYNE BROWN ENGINEERING
Cummings Research Park • Huntsville, Alabama 35807
CALCULATIONS FOR INTERPRETATION OF
SOLAR VECTOR MAGNETOGRAPH DATA

By
A. R. Dunn, Ph.D.

May 1975

Prepared For
ELECTROMAGNETIC AND SOLID STATE DIVISION
SPACE SCIENCES LABORATORY
GEORGE C. MARSHALL SPACE FLIGHT CENTER
HUNTSVILLE, ALABAMA

Contract No. NAS8-26376

Prepared By
RESEARCH DEPARTMENT
ELECTRONICS AND ENGINEERING
TELEDYNE BROWN ENGINEERING
HUNTSVILLE, ALABAMA
ABSTRACT

This report describes the work which has been done on Contract No. NAS8-26376 between October 1970 and May 1975. The report is divided into three self-contained sections, each dealing with a separate portion of the performance period. In Section 1, the work done between October 1970 and October 1971 is discussed. Section 2 covers the period from October 1971 to June 1973. Section 3 covers the period from June 1973 to May 1975.

APPROVED:

[Signature]

N. E. Chatterton, Ph. D.
Manager
Research Department
SECTION 1

ANALYSIS OF SUNSPOT SPECTRAL DATA
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>5</td>
</tr>
<tr>
<td>SUNSPOT SPECTRUM OBSERVATIONS</td>
<td>6</td>
</tr>
<tr>
<td>REDUCTION OF THORIUM CALIBRATION WAVELENGTHS TO STANDARD CONDITIONS</td>
<td>12</td>
</tr>
<tr>
<td>LINE PROFILE DATA REDUCTION PROGRAM</td>
<td>16</td>
</tr>
<tr>
<td>MAGNETIC FIELD STRENGTH DETERMINATIONS FROM THE 5, 250.216 Å LINE</td>
<td>28</td>
</tr>
<tr>
<td>The Iron Line at 5, 250.216 Å</td>
<td>29</td>
</tr>
<tr>
<td>Preliminary Determination of Sunspot Magnetic Field</td>
<td>31</td>
</tr>
<tr>
<td>Detailed Magnetic Field Determination</td>
<td>34</td>
</tr>
<tr>
<td>REFERENCES - SECTION 1</td>
<td>37</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Microdensitometry Pattern for Sunspot Observations</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>Edlén Correction to Measured Wavelengths</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>Listing of Line Profile Reduction Program</td>
<td>17</td>
</tr>
<tr>
<td>4</td>
<td>Field Strength Program</td>
<td>32</td>
</tr>
<tr>
<td>5</td>
<td>Line-of-Sight Field Strengths in Gauss, Observations of 14 July 1969</td>
<td>33</td>
</tr>
<tr>
<td>6</td>
<td>Summary of Magnetic Field Calculation</td>
<td>35</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Observed Polarization Forms</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>Results of Testing Edlén Correction Program</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>Line Profile Reduction Program Input</td>
<td>26</td>
</tr>
<tr>
<td>4</td>
<td>Line Profile Reduction Program Output</td>
<td>27</td>
</tr>
<tr>
<td>5</td>
<td>Properties of Fe I λ5, 250.216</td>
<td>30</td>
</tr>
</tbody>
</table>
INTRODUCTION

Observations of the profile of the neutral iron line at 0.5250216 micrometer (5,250.216 Å) are described in this section. The reduction of the observations to obtain residual intensities, line widths, and the locations of the Zeeman components is discussed. The components of magnetic field strength along the line of sight are determined and plotted in the form of a sunspot map. Finally, the steps to be followed in a more complete analysis of the data are outlined.
This section describes the analysis of sunspot spectral observations made during July 1969 by Dr. M. J. Hagyard with the spectrograph of the McMath solar telescope at the Kitt Peak National Observatory. (The spectrograph and telescope are described in Reference 1). Although both photographic and photoelectric observations were made, the photographic data are of primary interest here.

Because the spectra were intended for Zeeman effect studies, the polarization form of the observed intensity had to be known. A partial linear polarization is introduced within the telescope in the reflection at the primary mirror; this was compensated in the observations by placing a glass flat in the light path. The only remaining instrumental effect is then a possible phase shift introduced at the primary. Such a phase shift would not be detectable in the results before a more advanced stage in the analysis is reached. In order to check for residual instrumental polarization, photoelectric and photographic observations were made of the photosphere, which should be intrinsically unpolarized. Photospheric intensities were measured in right and left circularly polarized light and in light linearly polarized at 0, 45, and 90 degrees to the entrance slit. No dependence of intensity upon polarization form was observed for any of the photospheric observations; residual instrumental polarization is, therefore, negligible.

Control over the polarization form of the observed light was achieved by placing polarizers in front of the spectrograph slit. The slit was always parallel to the east-west direction on the Sun. Immediately preceding the slit was a calcite analyzer oriented to pass only those light components which were linearly polarized parallel to the slit. The calcite analyzer was preceded by a soleil compensator, which can be adjusted to form a quarter-wave or a half-wave plate. The form of
polarization transmitted is defined by specifying the angle α between the compensator's axis and the transmission direction of the calcite analyzer. The polarization forms transmitted by the compensator-analyzer combination are summarized in Table 1; the sequence numbers 1 through 5 were used to identify the combinations throughout the observations.

A predisperser was used to eliminate overlapping orders. The slit width was 0.1 millimeter for all observations; the effective slit length was determined by the soleil compensator setting. The exposure times were either 6 or 12 seconds, and stepwedge calibrations were made for both these exposure times. All the spectra discussed in this report were photographed on 14 July 1969 between 2:40 and 3:15 p.m. M.S.T. The sunspot observed was then located near the center of the disk ($\cos \theta = 0.939$). The spot penumbra was approximately circular, but the umbra was divided by a light bridge. The position of the umbral center was marked on the spectra by a wire placed perpendicular to the slit. A second wire was placed parallel to the slit near the red end of the observed spectral range for a permanent position marker.

The spectrograph slit was first placed just south of the sunspot, with the length of the slit directed east-west on the Sun. A sequence of five exposures was made in the order given in Table 1. The slit was then moved 1 millimeter toward the north pole of the solar image, and the exposure sequence was repeated. The procedure was repeated, the slit being moved north by 1 millimeter each time, until the entire spot had been traversed. The solar image formed by the McMath telescope is approximately 800 millimeters in diameter, so a displacement of 1 millimeter in the image corresponds to approximately 1,740 kilometers on the Sun. Twelve positions on the Sun were observed with an exposure time of 6 seconds. The three positions containing the sunspot umbra were also photographed with a 12-second exposure time.
TABLE 1. OBSERVED POLARIZATION FORMS

<table>
<thead>
<tr>
<th>SEQUENCE NUMBER</th>
<th>SOLEIL COMPENSATOR SETTING</th>
<th>α (deg)</th>
<th>FORM OF TRANSMITTED LIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\lambda/4$ plate</td>
<td>+45</td>
<td>Left circularly polarized</td>
</tr>
<tr>
<td>2</td>
<td>$\lambda/4$ plate</td>
<td>-45</td>
<td>Right circularly polarized</td>
</tr>
<tr>
<td>3</td>
<td>$\lambda/2$ plate</td>
<td>0</td>
<td>Linearly polarized parallel to slit</td>
</tr>
<tr>
<td>4</td>
<td>$\lambda/2$ plate</td>
<td>+22.5</td>
<td>Linearly polarized at 45 deg to slit*</td>
</tr>
<tr>
<td>5</td>
<td>$\lambda/2$ plate</td>
<td>+45</td>
<td>Linearly polarized at 90 deg to slit*</td>
</tr>
</tbody>
</table>

*Recall that a half-wave plate alters the plane of vibration by 2α.

The photographic spectra were converted to digital form by measuring the photographic density as a function of position on the film with a digitizing microdensitometer. The films cover approximately 5×10^{-4} micrometers (5 Å) of the solar spectrum centered at 0.525 micrometer (5,250 Å); a shorter region of approximately 1.5×10^{-4} to 2×10^{-4} micrometers (1.5 to 2.0 Å) containing the neutral iron line at 0.5250216 micrometer (5,250.216 Å) was measured. The position scale was converted to dispersion in Å/mm by referring to the locations of the spectral lines and the wire position marker. The microdensitometer sample spacing could then be expressed in terms of angstroms on the film; the sampling points were found to be spaced at 5.88×10^{-7} micrometer (5.88 mÅ) intervals.

The films were sampled in a uniform pattern, which simplifies the correlation of the scans with their proper positions in the sunspot. The pattern is shown in Figure 1.

The spectral dispersion was along the north-south direction, so each microdensitometer scan was made parallel to the dispersion and had a height equal to the microdensitometer slit height of 1 millimeter. The width of spectrum sampled at each scan step was determined by the microdensitometer slit width of 30 micrometers. At the dispersion of the film, this represents a sample width of 4.20×10^{-7} micrometers (4.20 mÅ).

The center of the umbra is marked on the film by the image of the wire placed perpendicular to the slit. Microdensitometer scans were made beginning at the wire and working eastward, the final scan being entirely in the photosphere. These scans were labelled a through f. Scans were then made westward from the wire into the penumbra; these were labelled g through i. For those exposures which did not contain the entire sunspot, the same pattern was followed, but the reference line was the centerline of the film instead of the center of the umbra.
FIGURE 1. MICRODENSITOMETRY PATTERN FOR SUNSPOT OBSERVATIONS
The digital intensity data are labelled with three symbols which describe the position of the observed region and the polarization form of the recorded intensity. For example, in the label X-2-c, the Roman numeral X designates the north-south location of the region observed, in terms of millimeters on the primary solar image; 2 is the polarization form, in this case right-hand circular polarization; c is the east-west location of the measured strip, in terms of millimeters on the film. There are 564 strips in the 15 exposures made on 14 July 1969, but not all of these contain sunspot spectra.

The microdensitometer output represented measured film density in the sample areas of the film. The digital output data were recorded on magnetic tape and were converted to intensities by use of the characteristic curves derived from the stepwedge calibration exposures. The magnetic tapes thus contain intensities uniformly spaced 5.88×10^{-7} micrometers (5.88 mÅ) apart, defining a region approximately 1.5×10^{-4} to 2×10^{-4} micrometers (1.5 to 2. Å) long. The intensity values are in arbitrary units, in the sense that the continuum level shown on the tape records is usually considerably less than 1.00. The intensity values are in correct proportion to one another but should be rescaled to bring the continuum up to 1.00. These digital data were the values used in the analysis to be described in the subsection entitled "Line Profile Data Reduction Program".
REDUCTION OF THORIUM CALIBRATION WAVELENGTHS TO STANDARD CONDITIONS

To obtain a laboratory determination of the wavelengths of the solar spectrum lines, a thorium emission spectrum and a solar disk spectrum were exposed in parallel rows on the same film. The observed solar wavelengths can then be determined by measuring their distances from thorium standard reference lines (reference standards are discussed in References 2 and 3; precise determinations of additional thorium wavelengths are given in References 4, 5, and 6). This procedure refers the solar lines to the wavelengths for the thorium lines at the time of observation; the observed wavelength actually depends slightly upon the conditions of observation.

Because the index of refraction of air depends upon its temperature and pressure, and upon the wavelength of radiation being studied, measured wavelengths are reduced to the values they would have in some chosen standard conditions. The usual standard conditions are dry air at temperature 15°C, pressure 760 millimeters of mercury; or vacuum. Air values are used more often as standards for wavelengths in the visible range.

In 1952, a meeting of the Joint Commission for Spectroscopy, sponsored by the International Astronomical Union, the International Union of Pure and Applied Physics, and the International Council of Scientific Unions, recommended adoption of Edlen's formula for converting wavelengths in standard air to wavelengths in vacuum (Ref. 7). In the same paper, Edlen also gives a simple formula for converting measured wavelengths to values for standard air. This simple formula can be used when the conditions of measurement are not very far from the standard conditions. An additional correction for the presence of water vapor should be made in high-precision work.
A short FORTRAN program (Figure 2) has been written to correct wavelengths to standard air using Edlén's formula. The partial pressure of water vapor was not measured with the wavelengths to be corrected, so a moisture correction could not be included. The program uses the following version of Edlén's formula:

\[
\lambda_2^0 - \lambda_2 = (\Delta \lambda_2 - \Delta \lambda_1 \cdot \frac{\lambda_2}{\lambda_1})(\frac{0.0013882 \cdot p}{1 + 0.00367 \cdot t} - 1)
\]

where

- \(\lambda_2^0\) - unknown wavelength in standard air
- \(\lambda_2\) - measured value to be corrected
- \(\lambda_1\) - reference wavelength for standard air
- \(\Delta \lambda_1, \Delta \lambda_2\) - vacuum corrections to \(\lambda_1\) and \(\lambda_2\)
- \(p\) - air pressure, mm Hg
- \(t\) - temperature, °C.

The vacuum corrections \(\Delta \lambda_1, \Delta \lambda_2\) are tabulated in Table 3 of Reference 8.

The program has been tested on the two examples of wavelength corrections given by Babcock (Ref. 9). The results of the test are summarized in Table 2.

TABLE 2. RESULTS OF TESTING EDLÉN CORRECTION PROGRAM

<table>
<thead>
<tr>
<th>p (mm)</th>
<th>t (°C)</th>
<th>(\lambda_1) ((\mu))</th>
<th>(\lambda_2) ((\mu))</th>
<th>BABCOCK ((\mu))</th>
<th>DUNN ((\mu))</th>
</tr>
</thead>
<tbody>
<tr>
<td>620</td>
<td>20</td>
<td>0.4500</td>
<td>0.300</td>
<td>-6.4 \times 10^{-7}</td>
<td>-6.6 \times 10^{-7}</td>
</tr>
<tr>
<td>720</td>
<td>25</td>
<td>0.400</td>
<td>0.800</td>
<td>+5.2 \times 10^{-7}</td>
<td>+5.2 \times 10^{-7}</td>
</tr>
</tbody>
</table>

13
REDUCTION OF WAVELENGTHS TO STANDARD AIR 10/22/70

REFS. -- INTRO. TO TABLE OF WAVE NUMBERS 2000A TO 7000 A, NBS.
MONOGRAPH 3, VOL. 1 (GET VACUUM CORRECTIONS FROM
TABLE 3 OF THIS REF.), EDLEN, JOSA VOL. 43, PG. 339, 1953;
BABCOCK, AP. J., VOL. 111, PG. 60, 1950.

EDLEN FORMULA

MUST TREAT WAVELENGTHS IN 2 PARTS TO MINIMIZE LOSS OF
SIGNIFICANCE. CHARACTERISTIC WILL BE READ AS INTEGER
VARIABLE, MANTISSA AS REAL VARIABLE. LW1C, W1M ARE REFERENCE
WAVELENGTH, D1 IS ITS VACUUM CORRECTION. LW2C, W2M, D2 ARE
SAME QUANTITIES FOR WAVELENGTH TO BE CORRECTED.
D2 IS THE TABULATED VALUE FOR THE MEASURED WAVELENGTH. D2, D1
AND REF. WAVELENGTH ARE VALUES FOR STANDARD AIR.
NEGLECT MOISTURE CORRECTION.
P IS PRESSURE IN MM HG. T IS TEMPERATURE IN DEGREES C.

KPU=2
KPR=3
READ (KPU+1) LW1C, W1M, D1
1 FORMAT (I6, 2F10.0)
WRITE (KPR, 3)
3 FORMAT (1H ' WAVELENGTHS CORRECTED TO STANDARD AIR)
WRITE (KPR, 7)
7 FORMAT (1H ' ADD CORRECTION TO MEASURED WAVELENGTH)
WRITE (KPR, 9) LW1C, W1M
5 FORMAT (1H ' REFERENCE WAVELENGTH=, I6, 1H++, F10.6)
WRITE (KPR, 4)
4 FORMAT (1H ' MEASURED WAVELENGTH, 6X, 1H++, F10.6, 15H CORRECTION IN A)
READ (KPU, 2) P, T
2 FORMAT (2F10.0)
10 READ (KPU, 1) LW2C, W2M, D2
LOOK FOR LAST CARD (BLANK)
IF (LW2C=0) 6, 60, 6
6 W2C= LW2C
W1C= LW1C
A= W2C/(W1C + W1M)
B= W2M/(W1C + W1M)
FAC= (1.3882E-3*P/(1.0 + T*3.67E-3))-1.0
CORR= (D2-D1* (A + B))*FAC
WRITE (KPR, 8) LW2C, W2M, CORR
8 FORMAT (1H ' WAVELENGTHS CORRECTED TO STANDARD AIR, I6, 1H++, F10.6, 8X, F10.6)
GO TO 10
60 CALL EXIT
END

FIGURE 2. EDLEN CORRECTION TO MEASURED WAVELENGTHS
In practice, the corrections derived from this program will not be required. Unless the measurement conditions deviate grossly from standard, the wavelength corrections will be very small for wavelengths which lie within approximately 5×10^{-3} micrometers (50 Å) of the line used for a wavelength reference. The observed thorium calibration spectrum is very short, covering the range 0.5248 to 0.5256 micrometer (5,248 to 5,256 Å), approximately. There is no problem here of measuring wavelengths from a reference standard hundreds or thousands of angstroms away. The variation in wavelength caused by laboratory air will be negligible over the short observed wavelength range.
LINE PROFILE DATA REDUCTION PROGRAM

The sunspot spectra are to be used to determine sunspot magnetic field strengths from the profiles of the magnetically sensitive neutral iron line at 0.5250216 micrometer (5,250.216 Å). The digital intensity data described in the first subsection require additional reduction to prepare the profiles for determination of magnetic field strengths. A FORTRAN program (Figure 3) has been written to perform the reduction.

The intensity data are used here without correction for the effect of stray light. Stray light strongly distorts measured umbral continuum intensities, but the distorting effect is much smaller in the case of residual intensity in a spectral line which is present in both the sunspot and the photosphere. The 0.5250216 micrometer (5,250.216 Å) line is, in fact, stronger in spot umbrae than in the photosphere. The observed sunspot profiles without stray light correction are generally stronger than the photospheric 0.5250216-micrometer (5,250.216 Å) line in the Utrecht Atlas; and it was thought that in this case the distortion of the profiles by penumbral and photospheric stray light was smaller than the distortion by such other causes as blending of Zeeman components, absorption by telluric water vapor, and blending with the neighboring faint molecular line.

The digital intensity values appear on the magnetic tape in order of decreasing wavelength; the values are spaced 5.88 x 10^-7 micrometers (5.88 mÅ) apart. The spectral range runs from the marker wire near 0.5254 micrometer (5,254 Å), to approximately 0.5249 micrometer (5,249 Å). The portion of spectrum between 0.5252 and 0.5253 micrometer (5,252 and 5,253 Å) reaches the true continuum in the photosphere, according to the Utrecht Atlas. Examination of the sunspot spectral data shows that the measured intensities are generally largest in the 0.5252 to 0.5253-micrometer (5,252 to 5,253 Å) interval, so these intensities
PROFILE PARAMETERS 12/15/70 ARD

7094 VERSION 1/5/71

FIND MINIMUM VALUES, HALFWIDTH, AND EQUIVALENT WIDTH OF 5250.2 PROFILE.

Y's are unscaled intensities, CONT is continuum level for scan.
RLAM is residual intensity, W is equivalent width. Last Y value will be followed by Y = 2.0 to signal end of data. ID is identification number for scan. IBC is 'broadening code'. Describing expected form of Zeeman broadening. 121 is left of profile center. It is the right hand point of its interval. 122 is the left hand point of the same interval. 111 and 112 are respectively the left and right hand points of an interval to the right of the profile center.

DIMENSION Y(10), RLAM(150), RMIN(6)
DIMENSION XMIN(6)
DIMENSION NUN(5), FT(3), FNNT(3), FOT(2)
DIMENSION FAT(2), MALL(2)
DIMENSION ILOSE(9)
DATA FOT/8H(I1+2A6)/
DATA FNNT/18H(2A69I3oI5+1X+9A6)/
DATA FAT/5H(^A6)/
DATA FT/15H(I1+F6.4+9F7.4)/
KPU= 5
KPR= 6
WRITE (KPR, 15)
WRITE (KPR, 16)

15 FORMAT (49H POSITIONS ARE IN TERMS OF DATA SPACING INTERVALS)
16 FORMAT (26H AN INTERVAL IS ABOUT 5 MA)

AN INTERVAL IS 5.88 MA FOR DATA OF 14 JULY 1969

CALL REDTPD (8, FOT, IER, 1, ICK, 2, MALL)
IF (IER .EQ. 2) GO TO 67
IF (ICK .NE. 1) GO TO 300
C LOOK FOR DATE (FIRST RECORD IN SCAN)

68 READ (KPU, 1) ID, IBC, IRR, CONT
1 FORMAT (3I5, F10.0)
C IBC is number of resolved and unresolved minima obtained from visual inspection of profile plots. It is used only as a means of checking the program, which determines the number, types, and positions of minima in a different way. IBC = (No. of resolved min.)*10 + (No. of unresolved min.)
IF (ID) 67, 67, 301
C NOW READ 2ND RECORD AND CHECK TO MAKE SURE YOU HAVE THE RIGHT SCAN

FIGURE 3. LISTING OF LINE PROFILE REDUCTION PROGRAM
301 CALL REDTPD (8, FNNT, IER, 2, NUN, 1, IROLL, 1, IPAP, 9, ILOSE)
 IF (IROLL .EQ. IRR) GO TO 30
18 CALL REDTPD (8, FOT, IER, 1, ICK, 2, MALL)
 IF (IER .EQ. 2) GO TO 67
 IF (ICK .NE. 1) GO TO 18
 CALL REDTPD (8, FNNT, IER, 2, NUN, 1, IROLL, 1, IPAP, 9, ILOSE)
 IF (IROLL .NE. IRR) GO TO 18
C IF IRR NOT EQUAL TO IROLL, SAVE IRR AND CONT AND SKIP TO NEXT
C SCAN
30 CALL REDTPD (8, FAT, IER, 5, NUN)
66 J=1
C J IS USED TO COUNT STORE VALUES
WRITE (KPR, 12) ID*, IROLL
17 FORMAT (1H, 8HID*, NO*=, 15, 7H IROLL=, 15)
 YT = CONT * .475
5 CALL REDTPD (8, FT, IER, 1, ICK, 10, Y(1))
2 FORMAT (10F7.4)
 DO 7 I= 1, 10
 IF (Y(I)-YT) 4, 7, 7
4 IF (YT(I)) 300, 300, 9
 STORE = Y(I)
 WRITE (KPR, 74) STORE
74 FORMAT (1H, 10F7.4)
73 IF (I=30) 71, 70, 70
70 CALL REDTPD (8, FT, IER, 1, ICK, 10, Y(1))
 I= 1
 GO TO 72
71 I= I + 1
72 IF (Y(I)-YT) 73, 73, 104
104 IF (J-3) 17, 8, 6
17 J= J + 1
7 CONTINUE
 GO TO 5
8 K=1
 DO 119 KK= 1, 15
 WRITE THE 150 POINTS AFTER THE THIRD 'STORE' INTO RLAM ARRAY
 BUT START WITH 1ST DATA POINT OF NEXT GROUP OF 10, NOT NEXT
C DATA POINT
 CALL REDTPD (8, FT, IER, 1, ICK, 10, Y(1))
 DO 6 I= 1, 15
 RLAM(K)= Y(I)/CONT
 K= K + 1
6 CONTINUE
119 CONTINUE
11 CALL REDTPD (8, FOT, IER, 1, ICK, 2, MALL)
 IF (IER .EQ. 2) GO TO 67
 IF (ICK .NE. 1) GO TO 11

FIGURE 3 - Continued
C FIND MINIMA WITHIN 5250
ICHK = 0
ICHK IS VARIABLE USED TO COUNT MINIMA
I10 = 10
I1 = 1
DO 250 KK = 1, 15
WRITE (KPR, 251) (RLAM(I), I = 11, I10)
251 FORMAT (1H10, 10F7.4)
I1 = I1 + 10
I10 = I10 + 10
250 CONTINUE
I = 40
NR = 0
NUR = 0
81 DELM = RLAM(I) - RLAM(I-1)
DEL = RLAM(I+1) - RLAM(I)
DELP = RLAM(I+2) - RLAM(I+1)
IF (DELM) 83 82 83
82 I = I + 1
GO TO 81
83 IF (DELP) 84 88 84
88 IF (DEL) 89 90 89
90 IF (RLAM(I+3) - RLAM(I+2)) 89 89 91
91 ICHK = ICHK + 1
RMIN(ICHK) = RLAM(I+1)
XMIN(ICHK) = I + 1
I = I + 1
NUR = NUR + 1
WRITE (KPR, 155) ICHK, XMIN(ICHK), RMIN(ICHK), NR, NUR
IN THIS CASE, WANT TO ARRIVE FINALLY AT STATEMENT NO. 82
WITH I = ORIGINAL I + 2, SO INCREASE I TWICE
155 FORMAT (10H MIN. NO. 15X5X2HI*9F6.295X95HRLAM=9F8.4,2I7)
GO TO 89
84 IF (DEL) 85 92 85
85 IF (ABS(DELM + DEL) - (ABS(DELM) + ABS(DEL))) 86 87 87
92 IF (DELM) 93 89 89
93 IF (DELP) 89 89 94
94 ICHK = ICHK + 1
RMIN(ICHK) = RLAM(I)
XS = I
XMIN(ICHK) = XS + 0.500
NR = NR + 1
WRITE (KPR, 155) ICHK, XMIN(ICHK), RMIN(ICHK), NR, NUR
GO TO 89
86 IF (DELM) 96 89 89
96 IF (DEL) 89 89 97
97 ICHK = ICHK + 1
ISV = 1

FIGURE 3 - Continued
NR = NR + 1
RMIN(ICHK) = RLAM(I)
XMIN(ICHK) = I
WRITE (KPR, 155) ICHK, XMIN(ICHK), RMIN(ICHK), NR, NUR
GO TO 89
87 IF (ABS(DEL) - ABS(DELP)) 98, 89, 89
98 IF (ABS(DEL) - ABS(DELM)) 99, 89, 89
99 ICHK = ICHK + 1
RMIN(ICHK) = RLAM(I)
XMIN(ICHK) = I
NUR = NUR + 1
WRITE (KPR, 155) ICHK, XMIN(ICHK), RMIN(ICHK), NR, NUR
89 IF (I = 65) 82, 100, 100
100 IF (RLAM(I) = 800) 82, 82, 101
101 ITRY = 10*NR + NUR
IF (IBC - ITRY) 103, 102, 103
103 WRITE (KPR, 105) NR, NUR, ITRY, IBC
105 FORMAT (4H NR=, I5, 3X, 4HNUR=, I5, 3X, 5HITRY=, I5, 3X,
116HBROADENING CODE=, I5)
WRITE (KPR, 107)
107 FORMAT (25H CHECK DATA FOR THIS SCAN)
102 IF (ICHK = 3) 19, 20, 20
19 ICHK = ICHK + 1
RMIN(ICHK) = 1.00
GO TO 102
20 IF (RMIN(1) - RMIN(2)) 21, 21, 22
21 ABSMN = RMIN(1)
GO TO 23
22 ABSMN = RMIN(2)
23 DO 24, 6
IF (RMIN(I) = ABSMN) 57, 57, 924
57 ABSMN = RMIN(I)
24 CONTINUE
WRITE (KPR, 128) ABSMN
128 FORMAT (1H, F10.4)
C START HALFWIDTH CALCULATION
24 HMIN = 0.50*(1.0 + ABSMN)
II = ISV
C ISV IS LOCATION OF FIRST RESOLVED MIN. THERE MUST ALWAYS BE
C AT LEAST ONE OF THEM.
C WORK TO RIGHT OF PROFILE CENTER FIRST
25 TEST = HMIN - RLAM(II)
IF (TEST) 59, 58, 58
58 II = II + 1
GO TO 25
59 II2 = II
II1 = II - 1
C NOW WORK TO LEFT OF PROFILE CENTER
I2 = ISV

FIGURE 3 - Continued
26 TEST = HMIN - RLAM(I2)
 IF (TEST) 48 49 49
49 I2 = I2 - 1
 GO TO 26
48 I22 = I2
 I21 = I2 + 1
 FRAC = (HMIN-RLAM(I21))/(RLAM(I22)-RLAM(I21))
C LINEAR INTERPOLATION TO GET POSITIONS OF HALFWIDTH POINTS
C THIS SHOULD BE OK BECAUSE PROFILE SHOULD BE NEARLY LINEAR IN
C THIS RANGE
 X121 = I21
 POS2 = X121 - FRAC
 FRAC = (HMIN-RLAM(I11))/(RLAM(I12)-RLAM(I11))
 X111 = I11
 POS1 = X111 + FRAC
 FWHM = POS1 - POS2
 WRITE (KPR, 60) POS2, POS1, FWHM
60 FORMAT (1H 19HALFWIDTH POINTS AT, F7.3,5H AND, F7.3)
17H FWHM=, F7.3)
C START EQUIVALENT WIDTH CALCULATION
 I = I22
C LOOK FOR ENDS OF PROFILE
27 X = RLAM(I) - RLAM(I-1)
 IF (X) 46 47 47
46 I = I - 1
 GO TO 27
47 ISTRT = 1
 WRITE (KPR, 147) ISTRT
147 FORMAT (1H ,9HISTRT=, I5)
 I = 112
78 X = RLAM(I+1) - RLAM(I)
 IF (X) 45 45 44
44 I = I + 1
 GO TO 28
45 ISTP = I
 WRITE (KPR, 148) ISTP
148 FORMAT (1H ,5HISTP=, I5)
 NI = (ISTP-ISTRT + 1)/2
 XI = ISTP - ISTRT + 1
 XI2 = X1/2.
 XI = NI
 IF (XI-XI2) 29 43 29
43 ISTP = ISTP - 1
29 SUM = 0.
 DO 41 I = 1, 150, 2
 SUM = SUM + XI
41 CONTINUE
C WILL NEVER GET TO I = 150
 IS = ISTRT + 1

ORIGINAL PAGE IS OF POOR QUALITY

FIGURE 3 - Continued
SUM = RLAM(IS)*4. + RLAM(IS + 1)*2. + SUM
IF (IS - (ISTP - 3)) 41, 62 41
41 CONTINUE
62 S = RLAM(ISTRT) + RLAM(ISTP) + 4. * RLAM(ISTP - 1)
 SUM = (S + SUM)/3.
 DLAM = ISTOP - ISTRT
 W = DLAM - SUM
 WRITE (KPR, 65) W
65 FORMAT (3H W=95X9F10.5,5X,22H IN DATA SPACING UNITS)
 GO TO 68
67 WRITE (KPR, 10)
10 FORMAT (9H END FILE)
STOP
END
were adopted as the continuum values for the sunspot scans, and the remaining intensities were scaled to them. The continuum intensity was determined for each scan by inspection of the magnetic tape printout, and that value was read as the variable "CONT" for the line profile reduction program.

Starting at the red end of the region, and including the image of the wire, the measured intensity falls below 50 percent of the continuum intensity three times before the 0.5250216-micrometer (5, 250.216 Å) line is reached. This fact was used to isolate the 0.5250216-micrometer (5, 250.216 Å) profile from the rest of the spectrum. The minima deeper than some fraction of CONT were counted, and the third minimum was known to be λ5250.6, the strong line immediately adjacent to λ5250.2. (The fractional value used was usually 0.475. However, because the relative intensities of the spectral lines are different on different scans, this value was sometimes adjusted to avoid counting unwanted lines or overlooking one of the desired minima. It was always possible to find a fraction which would select the three desired minima.)

When the third minimum has been found, the program tests the succeeding intensity values until it finds the next local intensity maximum, which represents the dividing line between the λ5250.6 profile and the λ5250.2 profile. (The intensity usually does not quite return to the continuum level between the two profiles.) The next spectral line, then, will be λ5250.216. An array of 150 values is set aside for that profile. One hundred fifty intensities following the local maximum are read into this array, called RLAM, and the rest of the unscaled digital values are not used. The intensities are scaled by dividing them by CONT before they are stored; they are stored as residual intensities.
The program next locates the intensity minima within the 0.5250216-micrometer (5,250.216 Å) profile. These minimum value locations will be used later as the positions of the Zeeman components. The program begins searching at the fortieth point in the profile. In a few cases, unresolved minima appeared before the fortieth point, so the starting index should probably be changed. The presence of such neglected minima can always be detected because the program prints the 150 RLAM values for each profile.

The program searches for two kinds of minima, called "resolved" and "unresolved". A "resolved" local minimum is defined as an intensity value which lies between two greater intensities. The intensity value immediately adjacent on one side may be equal to the minimum value. For example, in the sequence 0.5210, 0.5009, 0.4841, 0.4995, 0.5196, the value 0.4841 would be selected as a resolved minimum. Its position would be given by its index: in this case, 3. In the sequence 0.5210, 0.5009, 0.4841, 0.4841, 0.4995, the resolved minimum would again be the lowest intensity value, 0.4841, but the position would be taken as halfway between the two intensity points with that value, or 3.5. An "unresolved" local minimum is defined as the left-hand point of an interval which is bounded by two intervals having slopes of the same sign but greater magnitude. Because the digital data are smooth, the use of minima found over a region only four or five points long is successful; noise fluctuations are rarely detectable on this scale.

As a check, the number of resolved and unresolved minima is also estimated visually from plots of the profile scans, and a code

*All positions found by this program are the array indices of the corresponding intensity values. They may be converted to wavelength values by using the fact that adjacent intensity values are separated by 5.88 × 10⁻⁷ micrometers (5.88 mA).
number (IBC) equal to ten times the number of resolved minima plus
the number of unresolved minima is read for each scan. This code
number is checked against the number of minima found by the program,
and a warning message is printed if they do not agree. Lack of agree-
ment is not necessarily a sign of error, since the program's selection
criteria are not exactly the same as those of the eye. However, the
warning message provides a screening mechanism which selects the
scans that are most likely to contain errors. The data can then be
checked to ensure that the correct scan is being read and that the
0.5250216-micrometer (5,250.216 Å) line has been correctly isolated.

The program next determines the full width of the 0.5250216-
micrometer (5,250.216 Å) profile at half the minimum intensity, where
the minimum intensity, \(I_{\text{min}} \), is taken to be the intensity of the deepest
minimum in the profile. The intensities \(I_{\text{half}} \) at half minimum are then
equal to \((1.00 + I_{\text{min}})/2\). The program searches outward on both sides
of the profile from the deepest minimum until it finds the intervals
containing the intensities \(I_{\text{half}} \) and interpolates, if necessary, to find
the positions of the \(I_{\text{half}} \) values.

Finally, the program defines the ends of the profile as the
positions near the continuum at which intensity reaches local maximum
values. The indices corresponding to these local maxima are printed.
The equivalent width \(W_\lambda \) is then obtained by direct integration of the
profile between the end points, using the defining equation

\[
W_\lambda = \int_{\lambda_1}^{\lambda_2} [1 - I(\lambda)] \, d\lambda
\]
where

\[\lambda - \text{wavelength} \]

\[\lambda_1 \text{ and } \lambda_2 - \text{ends of the profile} \]

\[I(\lambda) - \text{residual intensity as a function of wavelength.} \]

The card input and program output are summarized in Tables 3 and 4.

TABLE 3. LINE PROFILE REDUCTION PROGRAM INPUT

<table>
<thead>
<tr>
<th>VARIABLE NAME</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>Identification number for program output. Each scan has a unique number; they range from 1 to 564.</td>
</tr>
<tr>
<td>IBC</td>
<td>Code number for visual estimate of number of minima within profile.</td>
</tr>
<tr>
<td>IRR</td>
<td>Identification number of the scan on the magnetic tape. Two scans on different tapes may have the same IRR.</td>
</tr>
<tr>
<td>CONT</td>
<td>Continuum level obtained from the magnetic tape printout.</td>
</tr>
</tbody>
</table>

One card for each scan: ID, IBC, IRR, CONT Format (3I5, F10.0)
TABLE 4. LINE PROFILE REDUCTION PROGRAM OUTPUT

1) ID, IRR for identification of scan
2) Intensities of the three minima preceding λ5,250.216
3) 150-value array containing the profile of λ5,250.216
4) For each minimum found, a line is printed containing its position and intensity, and a two-digit code defined like IBC, giving a running total of the number of resolved and unresolved minima found in the profile.
5) Total number of resolved and unresolved minima, the two-digit minimum-count code (ITRY) for the entire profile, and the IBC value read, for comparison.
6) Warning message if ITRY is not equal to IBC.
7) Intensity of the deepest minimum in the profile.
8) Locations of the Ihalf points and the full width at half minimum in the data spacing units.
9) and 10) Ends of the profile.
11) Equivalent width, in data spacing units.
MAGNETIC FIELD STRENGTH DETERMINATIONS
FROM THE 5,250.216 Å LINE

METHODS OF DETERMINING FIELD STRENGTHS

Determination of sunspot magnetic field strengths from the Zeeman splitting of spectral lines is discussed in detail in several textbooks (see, for example, Refs. 10 and 11). Reference 10 also contains a discussion of Unno's theory of spectral line formation in a magnetic field. Unno's technique was one of the first to permit calculation of absorption Zeeman profiles in a stellar atmosphere. It has been used by a number of investigators and is still used occasionally. It assumes a Milne-Eddington atmosphere; profiles which are formed in pure absorption and LTE; a uniform magnetic field; and a ratio of line to continuous absorption which is constant with depth.

Two more recent approaches are those of Beckers (Refs. 12 and 14) and of Moe (Ref. 13). Reference 13 also contains a summary of other methods. [A discussion by Staude (Ref. 15) of notational differences in recent papers is helpful in interpreting the literature.] Moe's method is probably the most popular one now. It is simple to program and permits calculation of profiles for any desired atmospheric model. (Refs. 16 and 17 contain results obtained by Moe's method.)

Moe's method consists of a different procedure for solving Unno's transfer equations for the Stokes parameters. Again, the line profile is assumed to be formed in LTE, and the magnetic field is assumed homogeneous over the region of line formation. The requirement of depth-independence of the absorption coefficients, however, is relaxed. The ratio of line to continuous absorption is represented as a product of a depth-dependent, wavelength-independent factor and a depth-independent,
wavelength-dependent factor. The emergent intensities of the Stokes parameters I, Q, and V can then be written analytically and can be evaluated by numerical integration for a given model atmosphere. Numerical calculations are practical only for lines formed in pure absorption, although Moe indicates the form of the solution for scattering lines.

THE IRON LINE AT 5,250.216 Å

The iron line at 0.5250216 micrometer (5,250.216 Å) is often used for magnetograph field determinations. It has a strong triplet splitting and, in general, appears to conform with von Klüber's criteria for suitable lines for magnetic field measurements (Ref. 18).

Upon closer acquaintance, however, the line has revealed some unfavorable characteristics. It is a strong line with a low excitation potential and a large scattering component (Ref. 19). Detailed analysis is further complicated by the fact that the upper level of the line is split. Because the line is strong, it tends to saturate easily; this property has been suggested as the reason the line sometimes appears to have an "anomalous" Zeeman π-component (Refs. 20 and 21). The line is extremely temperature-sensitive, becoming stronger in regions of lower temperature (Ref. 22). Moreover, Moe has recently discovered a weak molecular line in the red wing of the profile, so the 0.5250216-micrometer (5,250.216 Å) line usually observed is actually a blend.

Some of the properties of the line are given in Table 5.
TABLE 5. PROPERTIES OF FE I \(\lambda 5,250.216 \)

Transition	\(\text{a}^5\text{D}_0 - \text{z}^7\text{D}_1 \)	Ref. 10, p. 179
Lower and Upper	0.121 eV, 2.471 eV	Ref. 10, p. 179
Excitation Potentials		
Zeeman Pattern	(0) 3	Ref. 10, p. 179
Lande g Value	3	Ref. 23, p. 382
*Log \(g_f \)	-4.46	Refs. 24 and 25
(\(g \) is statistical weight of lower level; \(f \) is oscillator strength for transition)		
*Photospheric Fe Abundance	\(\log \left(\frac{N_{\text{Fe}}}{N_\text{H}} \right) = -5.2 \)	Ref. 26

*The proper choice of abundance and \(f \)-values of iron is not yet established; other published values are as justifiable as those given here. (See, for example, Refs. 27, 28, and 29.) Fortunately, the \(g_f \)-abundance product, which is the quantity needed for line profile calculations, is better known than either of its constituent factors.
Preliminary Determination of Sunspot Magnetic Field

For simple triplet splitting, the magnetic field strength along the line of sight can be derived immediately from

\[\Delta \lambda_H = \frac{eH}{4\pi m_e c^2} \lambda_0^2 \]

where

- \(\Delta \lambda_H \) - separation of the \(\pi \) and \(\sigma \) Zeeman components, cm
- \(\lambda_0 \) - undisturbed wavelength, cm
- \(H \) - field strength, gauss
- \(e \) - electron charge, e. s. u.
- \(m_e \) - electron mass, g
- \(c \) - speed of light, cm sec\(^{-1}\).

A simple FORTRAN program has been written to calculate field strengths from the triplet splittings obtained from the spectral data. The results are field strength components, in gauss, along the line of sight. This solution gives no information about the field orientation and is limited to determination of field strengths large enough to produce resolvable Zeeman components. The field strengths will be required for calculating line profiles in the spot; they can also be used to construct a crude sunspot map of the projected field vectors.

The program is given in Figure 4; the results, in the form of a sunspot map, are given in Figure 5. Figure 5 is not drawn to scale. The length of a cell in the East-West direction represents approximately 1,750 kilometers on the Sun. The length in the North-South direction...
C CALCULATE MAGNETIC FIELD STRENGTHS FOR TRIPLET SPLITTING
C READ POSITIONS OF MINIMA AND ASSUME THESE ARE CENTERS OF COMPONENTS
KPU= 2
KPR= 3
READ (KPU, 1) W, G
1 FORMAT (F10.0, F5.0)
C WAVELENGTH OF UNSHIFTED LINE IN ANGSTROMS, LANDE G VALUE
C CONVERT W TO CM
W= W*1.0E-8
2 READ (KPU, 3) ID, XL, XC, XR
3 FORMAT (I5, 5X, 3F10.0)
C READ POSITIONS OF COMPONENTS IN DATA SPACING UNITS
C IF A COMPONENT DOES NOT APPEAR, LEAVE IT OUT
C IF ALL 3 COMPONENTS ARE PRESENT, ASSUME ZEEMAN SPLITTING IS
C AVERAGE OF THE 2 VALUES THUS DETERMINED.
C THIS PROGRAM ASSUMES AT LEAST 2 MINIMUM VALUES ARE READ FOR
C EVERY LINE
NXL= XL
IF (NXL-0) 2 5 6
5 DLH= (XR-XC)*5.88E-11
C DLAMBDADH IN CM
GO TO 10
6 NXC= XC
IF (NXC-0) 2 7 8
7 DLH= (XR-XL)*2.94E-11
GO TO 10
8 NXR=XR
IF (NXR-0) 2 9 11
9 DLH= (XC-XL)*5.88E-11
GO TO 10
11 DLH=((XC-XL)+(XR-XC))*2.94E-11
10 H= DLH/(4.67E-5*G*W*W)
WRITE (KPR, 12) ID, H
12 FORMAT (4H ID=, I5, 10X, 2H=, E12.5, 7H GAUSS)
GO TO 2
13 CALL EXIT
END

FIGURE 4. FIELD STRENGTH PROGRAM
<table>
<thead>
<tr>
<th></th>
<th>i</th>
<th>h</th>
<th>g</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td></td>
<td></td>
<td>914</td>
<td>1,065</td>
<td>761</td>
<td>609</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>457</td>
<td>837</td>
<td>1,040</td>
<td>1,421</td>
<td>1,408</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V, VI</td>
<td>608</td>
<td>990</td>
<td>1,614</td>
<td>1,599</td>
<td>1,738</td>
<td>1,325</td>
<td>761</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VII, VIII</td>
<td>1,319</td>
<td>1,598</td>
<td>1,928</td>
<td>1,796</td>
<td>1,631</td>
<td>1,370</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IX, X</td>
<td>1,760</td>
<td>1,985</td>
<td>1,991</td>
<td>2,132</td>
<td>1,959</td>
<td>1,724</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XI</td>
<td>1,637</td>
<td>1,979</td>
<td>2,025</td>
<td>2,008</td>
<td>1,781</td>
<td>1,903</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XII</td>
<td>1,085</td>
<td>1,551</td>
<td>1,979</td>
<td>1,941</td>
<td>1,614</td>
<td>1,218</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XIII</td>
<td>1,066</td>
<td>1,243</td>
<td>1,040</td>
<td>1,446</td>
<td>761</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XIV</td>
<td>685</td>
<td>913</td>
<td>799</td>
<td>952</td>
<td>685</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XV</td>
<td></td>
<td>761</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 5. LINE-OF-SIGHT FIELD STRENGTHS IN GAUSS, OBSERVATIONS OF 14 JULY 1969
is approximately 175 kilometers on the Sun, and the separation of observations in the North-South direction is approximately 1500 kilometers. The Roman numerals along the left side of the figure and the lower case letters along the top are the labels of the observations corresponding to the plotted locations.

DETAILED MAGNETIC FIELD DETERMINATION

The complete determination of magnetic field strength and inclination can be summarized in a diagram (Figure 6). The three operations in the left-hand column (observations, determination of Zeeman splitting, and calculations of field strength components along the line of sight) have been completed. The remainder of the diagram is discussed below.

The dependence of the observed profile shapes upon the magnetic field configuration and upon the properties of the atmosphere is so complicated that the only practical way of determining the fields is to calculate line profiles for a number of magnetic field strengths and inclinations and compare these to the observed profiles. The initial field strength derivation can be used to obtain starting values for the field strength, and profiles can be calculated for a given strength at a number of different orientations. Most theoretical procedures assume homogeneous fields. This assumption is a limitation in principle but not in practice, since the spatial resolution of the observations is small. The observed profiles represent averages over an area on the Sun of approximately 175 by 1,750 kilometers; they are averages over the depth range where the line is formed. The fields, therefore, could not be determined to smaller scale, even if the theory permitted it.
STARTING POINT

OBSERVATIONS

ZEEMAN SPLITTING

MAGNETIC FIELD STRENGTHS IN LINE OF SIGHT

COMPARE WITH OBSERVATIONS

PROFILES FOR VARIOUS POLARIZATION FORMS AND FIELD INCLINATIONS

LINE PROFILE CALCULATION PROGRAM

RESULT

MAGNETIC FIELD STRENGTHS AND INCLINATIONS

MOE THEORY

FIGURE 6. SUMMARY OF MAGNETIC FIELD CALCULATION
The solution consists of intensities of the Stokes parameters; these can be combined to yield calculated intensities corresponding to the five observed polarization forms. The calculated profiles can then be compared to the observations, and the field strengths and inclinations in the sunspot will be assumed to be those which yield the best matches to the observed profiles.

Because the theory is restricted to Zeeman triplets, this procedure cannot be used to derive field properties from lines with more complicated Zeeman patterns. Another line in the observed spectral region has a large triplet splitting: the neutral chromium line at 0.5247574 micrometer (5247.574 Å), with Zeeman pattern \(\frac{0}{2} \). The same analysis could be performed for this line. Because the chromium line has approximately the same strength as the iron line (and, therefore, forms at approximately the same depths), its analysis would serve as a check on the iron line calculations but would not provide information concerning the fields at different depths in the sunspot.
REFERENCES - SECTION 1

REFERENCES - SECTION 1 - Concluded

SECTION 2

TOPICS RELATED TO
MAGNETOGRAPH OPERATION
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>43</td>
</tr>
<tr>
<td>PROPERTIES OF THE NEUTRAL IRON LINE, $\lambda 5250.216$</td>
<td>44</td>
</tr>
<tr>
<td>ALTERNATIVE SPECTRAL LINES FOR MAGNETOGRAPH OPERATION</td>
<td>57</td>
</tr>
<tr>
<td>SOURCES OF ERROR FOR SOLAR MAGNETOGRAPH</td>
<td>61</td>
</tr>
<tr>
<td>Effects Which Depend Solely on Position on the Solar Disk</td>
<td>61</td>
</tr>
<tr>
<td>Effects Caused by Changes in Strength and Shape of Line Profile</td>
<td>63</td>
</tr>
<tr>
<td>Errors Which Originate Within the Telescope and the Magnetograph</td>
<td>66</td>
</tr>
<tr>
<td>Errors Caused by Limited Resolution</td>
<td>67</td>
</tr>
<tr>
<td>Errors Associated With Uncertainties in Theory</td>
<td>70</td>
</tr>
<tr>
<td>Probable Errors in Field Strengths Determined from Zeeman Splitting</td>
<td>73</td>
</tr>
<tr>
<td>Summary of Error Study</td>
<td>77</td>
</tr>
<tr>
<td>VARIATION OF CIRCULAR POLARIZATION CONSTANT WITH POSITION ON THE SOLAR DISK</td>
<td>79</td>
</tr>
<tr>
<td>PROGRAM TO LOCATE AND PLOT MAGNETIC FIELD NEUTRAL LINES</td>
<td>90</td>
</tr>
<tr>
<td>CONCLUSIONS AND RECOMMENDATIONS</td>
<td>101</td>
</tr>
<tr>
<td>REFERENCES - SECTION 2</td>
<td>103</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Depth Dependence of $\log N_i$</td>
<td>49</td>
</tr>
<tr>
<td>2</td>
<td>Depth Dependence of $\log \eta_\lambda$</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>Contributions of Depths in the Hénoux Atmosphere to Emergent Intensity in $\lambda 5250$ and $\lambda 6173$</td>
<td>53</td>
</tr>
<tr>
<td>4</td>
<td>Revised Line-of-Sight Field Strengths in Gauss for Sunspot Observations of July 14, 1969</td>
<td>74</td>
</tr>
<tr>
<td>5</td>
<td>$C_1 (\mu)/C_1 (1)$ as a Function of Position on Solar Disk</td>
<td>89</td>
</tr>
<tr>
<td>6</td>
<td>Point Labeling Patterns for Neutral Line Program</td>
<td>91</td>
</tr>
<tr>
<td>7</td>
<td>Plot of Neutral Lines Produced by Test Program</td>
<td>93</td>
</tr>
<tr>
<td>8</td>
<td>Flowchart of Test Program</td>
<td>94</td>
</tr>
<tr>
<td>9</td>
<td>Listing of Test Program</td>
<td>98</td>
</tr>
<tr>
<td>Table</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>1</td>
<td>Properties of Fe I λ5250.216</td>
<td>45</td>
</tr>
<tr>
<td>2</td>
<td>Line Profile Calculations in Sunspots</td>
<td>46</td>
</tr>
<tr>
<td>3</td>
<td>Preliminary Survey of Spectral Lines Near 5200 Angstroms</td>
<td>58</td>
</tr>
<tr>
<td>4</td>
<td>Deviations of Separate Field Strength Values from Mean Value for Location</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Line Profile Parameter Values for Determining Maximum and Minimum C_1 (μ)/C_1 (1)</td>
<td>83</td>
</tr>
<tr>
<td>6</td>
<td>Range of Values of C_1 (μ)/C_1 (1) for Physically Possible Values of Line Profile Parameters and for $\beta_0 = 0$</td>
<td>84</td>
</tr>
<tr>
<td>7</td>
<td>C_1 (μ)/C_1 (1) for Photosphere and Penumbrae</td>
<td>85</td>
</tr>
<tr>
<td>8</td>
<td>Center-to-Limb Intensity Distribution for Sunspot Umbrae at $\lambda = 5250$ Angstroms</td>
<td>86</td>
</tr>
<tr>
<td>9</td>
<td>Values of Umbral Limb Darkening for $\beta_0 = 0.093$ Compared to Measured Values</td>
<td>87</td>
</tr>
<tr>
<td>10</td>
<td>C_1 (μ)/C_1 (1) for Sunspot Umbrae</td>
<td>88</td>
</tr>
</tbody>
</table>
INTRODUCTION

The results of several studies of factors related to the practical use of solar magnetographs are collected in this section. Special emphasis is placed on uncertainties in the observed quantities and in their interpretation. The work reported was done between October 1971 and June 1973.

Several factors which influence magnetograph operation are discussed in this section, with special attention being given to uncertainties in the final results. A preliminary error estimate of ±20 percent is suggested as a reasonable value on the basis of experience with other systems.

The spectral line for which the Marshall Space Flight Center (MSFC) magnetograph was designed is shown to possess a number of disadvantages. Line profiles in sunspots cannot be calculated for this line, even approximately; the height of formation in the solar atmosphere is not known; and the strength of the line changes significantly for different regions on the solar disk. These disadvantages are largely a consequence of the fact that the line in question, \(\lambda 5250.216\) of neutral iron, has a very low excitation potential (e.p. = 0.121 electron volt for lower level). A number of Zeeman triplet lines have lower excitation potentials of 2.0 electron volts or higher, and these lines would show these disadvantages to a much smaller degree. It is therefore recommended that serious consideration be given to choosing a new line of higher excitation as an alternative magnetograph line. Such a line also would be more likely to be observable at higher temperatures than those prevailing in sunspots and might permit the magnetograph to be used for study of magnetic stars.
The MSFC Real Time Solar Magnetograph was designed to measure the degree of polarization in the neutral iron line at 525.0216 nanometers (5250.216 angstroms). This line has a lower-level excitation potential of 0.121 electron volt; the central intensity in the photosphere as shown in the Utrecht Atlas is 0.39 (Ref. 1); the equivalent width in Moore, Minnaert, and Houtgast's table of solar spectrum wavelengths is 62 milliangstroms (Ref. 2). The line is strengthened in sunspots. In a magnetic field, it shows a triplet Zeeman pattern with a strong splitting of about 4 milliangstroms per 100 gauss of field. The properties of the line are summarized in Table 1.

The very low excitation potential of the lower level suggests that the line has a strong scattering component. That suggestion is supported by observations which show that the strength of the profile does not vary greatly with position on the solar disk; such behavior is characteristic of scattering lines. Therefore, a valid theoretical treatment must consider both the absorption and scattering mechanisms.

Although a scattering matrix for the line has been derived (Ref. 3), the detailed calculation of a scattering line profile is very complicated. Obridko has done a calculation for a simple case (Ref. 4), but treatment of scattering alone using a realistic sunspot model is not yet practical. A calculation combining the effects of absorption and scattering for a realistic sunspot model is even more difficult.

For this reason, most calculations of λ5250 profiles assume pure absorption. Some recently published calculations of λ5250 profiles and of other profiles in sunspots are listed in Table 2.
TABLE 1. PROPERTIES OF Fe I €5250.216

<table>
<thead>
<tr>
<th>Transition</th>
<th>(a^5 D_0 - z^7 D_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower and Upper</td>
<td>0.121, 2.471</td>
</tr>
<tr>
<td>Excitation Potentials (eV)</td>
<td></td>
</tr>
<tr>
<td>Zeeman Pattern</td>
<td>((0)\frac{3}{1})</td>
</tr>
<tr>
<td>Landé g Value</td>
<td>3</td>
</tr>
<tr>
<td>Log (gf)</td>
<td>-4.46</td>
</tr>
<tr>
<td>(g is statistical weight of lower level; (f) is oscillator strength for transition)*</td>
<td></td>
</tr>
<tr>
<td>Photospheric Iron Abundance*</td>
<td>(\log \left(\frac{N_{Fe}}{N_H}\right) = -5.2)</td>
</tr>
</tbody>
</table>

*The proper choice of abundance and \(f\)-values of iron is not yet established; other published values are as justifiable as those given here. The \(gf\)-abundance product is better known than either of its constituent factors.
TABLE 2. LINE PROFILE CALCULATIONS IN SUNSPOTS

<table>
<thead>
<tr>
<th>AUTHOR</th>
<th>SPECTRAL LINE</th>
<th>SUNSPOT MODEL</th>
<th>PHOTOSPHERIC MODEL</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moe and Maltby</td>
<td>$\lambda 5250.2$</td>
<td></td>
<td>Holweger</td>
<td>5</td>
</tr>
<tr>
<td>Hénoux</td>
<td>Na D, Mg b (wings)</td>
<td>Hénoux</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Hénoux</td>
<td>Weak to medium Fe I, Fe II, Cr I, Cr II, Ti I, Ti II</td>
<td>Hénoux</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Yun</td>
<td>Na D (wings)</td>
<td>Yun</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>Beckers</td>
<td>$\lambda 5250.2$</td>
<td></td>
<td>Bilderberg Continuum Atmosphere</td>
<td>8</td>
</tr>
<tr>
<td>Göhring</td>
<td>$\lambda 5250.2$</td>
<td></td>
<td>Arbitrary η_0</td>
<td>9</td>
</tr>
<tr>
<td>Göhring</td>
<td>$\lambda 5250.2$</td>
<td></td>
<td>Holweger</td>
<td>9</td>
</tr>
<tr>
<td>Moe</td>
<td>$\lambda 5250.2$</td>
<td></td>
<td>Combination of Müller-Mutschlecner and Goldberg</td>
<td>10</td>
</tr>
<tr>
<td>Staude</td>
<td>$\lambda 5250.2$</td>
<td>Hénoux</td>
<td></td>
<td>11</td>
</tr>
</tbody>
</table>
Although some of this work was elaborate, only one author, Staude, has published profiles of λ5250 calculated with a sunspot model. (Moe states that he has succeeded in making a similar calculation but has published no results.) As will be shown later, the profiles calculated in sunspots do not appear to be valid.

In sunspot spectra, a weak line of titanium oxide is blended with the red wing of λ5250, and this blend should be considered in a precise profile calculation. Each line modifies the radiation field seen by the other, and a rigorous approach requires that the source functions for both lines be modified correspondingly. Since in this case the strengths of the lines are so different, it is probably acceptable to assume that the titanium oxide line has negligible effect on the source function for the iron line and that the titanium oxide line is so weak that the effect of the modification of its source function by the iron line would be found to be of the order of the observational uncertainty or smaller. Then the separate profiles can simply be superimposed; the residual intensity for the combined line will be given by:

$$R(\lambda)_{Fe+TiO} = R(\lambda)_{Fe} - [1.00 - R(\lambda)_{TiO}].$$

No blend calculations, even on this level of approximation, have been published. Moe has calculated but not published sunspot profiles for λ5250 in which he treated the presence of blends by adjusting the continuum level. His reasoning is that the apparent continuum under the conditions prevailing in sunspots is likely to be crowded with weak, unresolved molecular lines. This approach yields profiles which agree well with observations, but the physical validity of the argument is questionable. Moreover, it will be shown that in this case the fact that calculated profiles agree with observations is not sufficient evidence that the calculation is correct.
The low excitation potential of the lower level of the line causes the absorption coefficient to be sensitive to the temperature and electron pressure in the model atmosphere. Figure 1 shows the fraction of iron atoms in the lower level as a function of depth in the sunspot model atmosphere (the model is that of Hénoux, Ref. 6). The top curve in the figure, marked by triangles, is the relation for $\lambda 5250$. The lower curve, shown for reference, is the corresponding set of values for the neutral iron line at 617.3348 nanometers. This line has a lower excitation potential of 2.213 electron volts (Ref. 12); it is used for comparison because self-consistent profiles can be calculated for it in sunspots. The number of atoms capable of absorbing $\lambda 6173$ decreases by about a factor of ten with increasing height in the atmosphere, but the number for $\lambda 5250$ is nearly constant over most of the range and is close to its peak value at the top of the atmosphere. [The N_i values were calculated using the Boltzmann and Saha equations, assuming that iron could exist in neutral and singly-ionized forms; this calculation, of course, implicitly assumes the atmosphere is in local thermodynamic equilibrium (LTE).]

Figure 2 shows η_λ, the ratio of line-to-continuous absorption coefficients, as a function of depth in the Hénoux model atmosphere. Again, the triangles are used to signify $\lambda 5250$ and circles to signify $\lambda 6173$. The η_λ values for both lines rise sharply toward the top of the atmospheric model, primarily because the opacities fall rapidly over the same range. The effect of the increase in η_λ is much more serious for $\lambda 5250$ because of the different line absorption coefficients for the two lines; the coefficient for $\lambda 6173$ is much smaller at the top of the atmosphere, compared both to its own peak value and to the values for $\lambda 5250$. The coefficient for $\lambda 5250$ declines more slowly with height and has a much larger average value. Figure 2 also
NOTE: \(N_i \) EQUALS THE FRACTION OF IRON ATOMS IN THE LOWER LEVEL OF THE LINE-FORMING TRANSITION. \(\triangle = \lambda 5250.216, \circ = \lambda 6173.348. \)

FIGURE 1. DEPTH DEPENDENCE OF LOG \(N_i \)
NOTE:
\(\eta \) equals the ratio of the line-to-continuous absorption coefficients at line center. \(\Delta = \lambda 5250.216 \), \(\circ = \lambda 6173.348 \).

Figure 2. Depth dependence of \(\log \eta_\lambda \)
provides the reason why Moe's addition of continuous absorption improved the appearance of his calculated profiles without correcting the fundamental difficulty: adding continuous absorption will reduce the ordinate values of the curves of Figure 2, but the values of the line absorption coefficients also are important to the result, and they are unchanged by the addition of continuous absorption.

When combined, these effects are sufficient to make impossible a self-consistent LTE profile calculation of λ5250 in sunspots. The residual intensities, R_λ, may be evaluated by direct integration of

$$R_\lambda = \frac{1}{t_\lambda} \int_0^{t_\lambda} B_\lambda (t_\lambda) \exp \left(-\frac{t_\lambda}{\mu} \right) \frac{dt_\lambda}{\mu}$$

where

$$t_\lambda = \int_0^{\tau_\lambda} (1 + \eta_\lambda) \, d\tau_\lambda$$

and

- $B_\lambda (t_\lambda)$ - source function (here, the Planck function)
- t_λ - optical depth in the line at wavelength λ
- τ_λ - optical depth in the continuum at wavelength λ ($\tau_0 = \tau_\lambda = 500$ nanometers)
- I_λ^c - continuum intensity at wavelength λ and position on the solar disk given by $\mu = \cos \theta$
- η_λ - ratio of line-to-continuous absorption at wavelength λ.

51
The calculations were done at the disk center ($\mu = 1.00$) for zero magnetic field. (The addition of a magnetic field will not affect the derived contribution relation, since the line-to-continuous absorption ratio for circularly polarized light in a longitudinal magnetic field is equal to the value in the zero field case.) The f-values were taken from Corliss and Warner (Ref. 13). The iron abundance ($\log_{10} N_{Fe}/N_H$) was set equal to -5.20 (Ref. 14). The microturbulent velocity in the sunspot was assumed to be constant with depth and equal to 1.0 kilometers per second.

The contributions of the various depths to the emergent intensity are displayed in Figure 3 by plotting the differences, $\Delta R_\lambda /\Delta (\log_{10} \tau_0)$, as a function of $\log_{10} \tau_0$; the ΔR_λ values were obtained from the integration of Equation (2). The $\Delta (\log_{10} \tau_0)$ intervals in each case are the depth intervals at which the Hénonux model is tabulated; the differences are plotted at the centers of their depth intervals.

As Figure 3 shows, the intensity contribution to $\lambda5250$ is at its maximum at the top of the model, with the peak value being undefined. Integration of these values over depth clearly will not yield a completely defined emergent intensity. On the other hand, the contributions to $\lambda6173$ are essentially all within the depth range of the model, so the residual intensity obtained by integrating those values over depth can be considered to be significant.

For photospheric conditions, the temperatures and electron pressures are high enough that the number of atoms in the lower level of the $\lambda5250$ transition is reduced, and self-consistent LTE profiles can be calculated. The $\lambda5250$ profiles calculated for photospheric models are therefore valid insofar as their underlying assumptions are valid. However, it does not seem reasonable to expect that profiles
FIGURE 3. CONTRIBUTIONS OF DEPTHS IN THE HÉNOUX ATMOSPHERE TO EMERGENT INTENSITY IN λ5250 and λ6173
calculated for photospheric models will also be representative of sunspot conditions, and they therefore should not be used to interpret sunspot observations. (In practice, most magnetographs which use the λ5250 line and depend on calibration from calculated profiles were calibrated using profiles calculated with photospheric models.)

Because λ5250 is quite strong in sunspots, its profile is often saturated. When saturated profiles in different polarization states are superimposed, the intensity distribution of the combination may appear quite different from the distributions in the separate components. Often, in fact, the combination appears to have a spurious Π component, usually shifted somewhat from the normal position (Refs. 5, 9, 11, 15, and 16). This so-called "anomalous Π component" further complicates the analysis of λ5250 observations.

Another source of complication of the theoretical treatment of λ5250 is the effect of polarization of the atomic sublevels involved in the transition. If the splitting in a magnetic field is not complete, so that different sublevels overlap, then the sublevels are not independent, and phase relations exist between their wave functions. This interference between sublevels is called "level-crossing interference". The Hanle effect is an example of level-crossing interference.

The sublevel polarization is distinct from the polarization introduced by the Zeeman splitting. An unusually brief and clear description of the various sources of polarization has been given by Lamb (Ref. 17); it is quoted in the following paragraph.

The polarization of light in solar absorption and emission lines may result from the action of one or more of three distinct processes. First, in the presence of a magnetic field the light in absorption or
emission lines may become partially polarized simply as the result of Zeeman splitting. Although the radiation absorbed or emitted at each frequency in the line by an assembly of atoms is then at least partially polarized, if atomic level polarization does not accompany the Zeeman splitting and if the assembly is optically thin in the line the total radiation absorbed or emitted, when integrated in frequency over the whole of the line, will be isotropic and unpolarized (one speaks of no "net" polarization of the line). Second, the light in Zeeman split absorption or emission lines formed in an assembly which is not optically thin may show a different partial polarization at each frequency from that of an optically thin assembly. Even in the absence of atomic level polarization, this phenomenon usually leads to net polarization of the light in the line. Finally, light in absorption or emission lines may become polarized as a result of the polarization of one or both of the atomic levels involved in the formation of the line, since in this case the assembly will preferentially absorb, emit, and scatter radiation of a particular polarization and angular distribution in radiative processes beginning at each of the polarized levels. Generally speaking, atomic level polarization leads to net polarization of the light in the line, whether or not the line also undergoes Zeeman splitting or the assembly is optically thin.

The study of these effects is still in its infancy; both Lamb and L. L. House have been working actively in this field (see Ref. 18, for example). A fairly complete analysis can be done only for certain simple resonance lines. The sublevel structure of \(\lambda 5250 \) is far too complicated to permit an analysis of that transition with the techniques now in use. It should be observed, however, that Lamb (Ref. 17, p. 159) has estimated from collisional relaxation rates that "at photospheric densities the energy 'overlap' of states within the same atomic level will not be significant [for \(\lambda 5250 \)] when the magnetic field strength
is greater than 10^2 G. Presumably, level-crossing interference also will be unimportant for lines formed in the lower depths of sunspots. For lines formed at greater heights, however, level-crossing interference may become important. The exact height of formation of $\lambda 5250$ is uncertain, but it probably is formed in the upper photosphere. Therefore, the possibility of the existence of level-crossing interference in this line cannot yet be eliminated.
ALTERNATIVE SPECTRAL LINES FOR MAGNETOGRAPH OPERATION

Because a theoretical calibration from calculated sunspot profiles for \(\lambda 5250 \) cannot now be accomplished, it may be advantageous to consider adopting another spectral line for magnetograph operation. With this in mind, a number of Zeeman triplet lines within about 200 angstroms on either side of \(\lambda 5250 \) were examined for suitability as magnetograph lines. The results of this preliminary study are summarized in Table 3. The lines were first checked for the presence of blends, using the photospheric tracings in the Utrecht Atlas (Ref. 1) and a photographic sunspot spectrum borrowed from the Kitt Peak National Observatory. The lines which did not appear to be badly blended in those two references were investigated further. In Table 3, "UA" signifies Utrecht Atlas; "KPNO", the Kitt Peak photographic spectra; and "MMH", the Moore, Minnaert, and Houtgast solar wavelength table (Ref. 2). The spectral line identifications in this last reference are useful for detecting and identifying blends.

It must be emphasized that probably no strong line can be found to be entirely free of blends in sunspots because of the large number of molecular lines which can form under these conditions. The presence of weak blended lines therefore cannot disqualify a spectral line for magnetograph use.

Spectral lines at greater distances from \(\lambda 5250 \) also might be considered. Some interest now exists in the polarization of lines in the near infrared (Ref. 19), but these would not be suitable for use in a magnetograph located near sea level because of the strong telluric absorption by water vapor at long wavelengths. Harvey (Ref. 20) has published a list of lines with large Zeeman splittings, which could be
<table>
<thead>
<tr>
<th>WAVELENGTH (Å)</th>
<th>RESULT OF BLEND STUDY</th>
<th>CONCLUSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>5082.351 (NII, multiplet number 130)</td>
<td>KPNO and UA spectra suggest blends are not serious; according to MMH, it may be blended in the wings with lines of C2 and MgH.</td>
<td>Probably best avoided because of small splitting and weakness in sunspots</td>
</tr>
<tr>
<td>5145.104</td>
<td>Both KPNO and UA spectra show serious blends</td>
<td>Not usable</td>
</tr>
<tr>
<td>5202.351</td>
<td>KPNO spectrum shows serious blend, confirmed by MMH.</td>
<td>Not usable</td>
</tr>
<tr>
<td>5215.190 (FeI, multiplet number 553)</td>
<td>UA spectrum shows blend in red wing; continuum is depressed in this region.</td>
<td>Not usable</td>
</tr>
<tr>
<td>5217.398 (FeI, multiplet number 553)</td>
<td>Profile looks fairly clean in UA and KPNO spectra; MMH suggests possible blend</td>
<td>Probably could be used but is not a good choice because of small splitting (see entry for λ5263)</td>
</tr>
<tr>
<td>5229.862 (FeI, multiplet numbers 553, 1090)</td>
<td>Profile looks clean in UA but KPNO spectrum shows possible blend in red wing.</td>
<td>Probably could be used but is not a good choice because of small splitting (see entry for λ5263)</td>
</tr>
<tr>
<td>5247.576 (CrI, multiplet number 18)</td>
<td>This line has no advantages over λ5250.</td>
<td></td>
</tr>
</tbody>
</table>

Transition: $5^3 P^o - e^3 P^o$

Excitation potential of lower level = 3.642 electron volts

According to von Klüber, line is weakened in sunspots.

Transition: $5^3 D^o - e^3 D^o$

Excitation potential of lower level = 3.197 electron volts

This line, like λ5250, would be an excellent magnetograph line if it had a higher excitation potential. Attempts to calculate absorption profiles for sunspot models have shown that a profile cannot be defined for the same reasons that profiles are not defined for λ5250.
TABLE 3 - Concluded

<table>
<thead>
<tr>
<th>WAVELENGTH (Å)</th>
<th>RESULT OF BLEND STUDY</th>
<th>CONCLUSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>5253.470</td>
<td>Appearance of profile is good in UA and KPNO spectra; MMH shows blends with two faint lines</td>
<td></td>
</tr>
<tr>
<td>(FeI, multiplet number 553)</td>
<td></td>
<td>Splitting may be too small for line to be a good choice. It is probably usable.</td>
</tr>
<tr>
<td></td>
<td>g</td>
<td>^2 = 41 × 10^{-10} cm^2</td>
</tr>
<tr>
<td></td>
<td>Transition: z ^4D^2 - e ^4D^2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Excitation potential of lower level = 3.27 electron volts</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zeeman splitting is not detectable in the KPNO spectrum. For a field of 2000 gauss, the value of (\Delta H) should be about 38 milliangstroms, compared to about 90 milliangstrom for (\lambda)6173 for about the same field strength. If a (\Delta H) as small as 2.5 milliangstroms could be resolved, the lower limit on measurable field strength would be about 130 gauss.</td>
<td></td>
</tr>
<tr>
<td>5263.316</td>
<td>Appears badly blended in UA and KPNO spectra</td>
<td></td>
</tr>
<tr>
<td>5273.172</td>
<td>Appears badly blended in UA and KPNO spectra</td>
<td></td>
</tr>
<tr>
<td>5283.631</td>
<td>Appears badly blended in UA and KPNO spectra</td>
<td></td>
</tr>
<tr>
<td>5302.309</td>
<td>Profile looks clean in UA but KPNO spectrum appears blended</td>
<td></td>
</tr>
<tr>
<td>(FeI, multiplet number 553)</td>
<td></td>
<td>Not usable because of conspicuous blend in sunspots and small splitting</td>
</tr>
<tr>
<td></td>
<td>g</td>
<td>^2 = 42 × 10^{-10} cm^2</td>
</tr>
<tr>
<td></td>
<td>Transition: z ^4D^0 - e ^4D^0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Excitation potential of lower level = 3.269 electron volts</td>
<td></td>
</tr>
<tr>
<td>5324.193</td>
<td>Profile looks clean in UA but appears to be blended with a weak line, possibly Cr I, in KPNO</td>
<td></td>
</tr>
<tr>
<td>(FeI, multiplet number 553)</td>
<td></td>
<td>Probably usable. (This is the line used by the Aerospace Corporation magnetograph.)</td>
</tr>
<tr>
<td></td>
<td>g</td>
<td>^2 = 42.5 × 10^{-10} cm^2</td>
</tr>
<tr>
<td></td>
<td>Transition: z ^4D^0 - e ^4D^0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Excitation potential of lower level = 3.20 electron volts</td>
<td></td>
</tr>
<tr>
<td></td>
<td>For a field of 2000 gauss, (\Delta H) = 39.6 milliangstroms</td>
<td></td>
</tr>
<tr>
<td>5339.939</td>
<td>Profile looks blended in both UA and KPNO spectra</td>
<td></td>
</tr>
<tr>
<td>5393.178</td>
<td>Profile looks blended in both UA and KPNO spectra, confirmed by MMH</td>
<td></td>
</tr>
<tr>
<td>(FeI, multiplet number 553)</td>
<td></td>
<td>Not usable</td>
</tr>
<tr>
<td></td>
<td>Not usable</td>
<td></td>
</tr>
</tbody>
</table>
examined. Zwaan and Buurman have compiled a list of sunspot lines which are very weak in the photosphere and which therefore should not be distorted in shape by the effects of stray light. This list does not appear to have been published. One of the lines listed, according to Reference 21, is \(\lambda 6064.626 \) of neutral titanium. Another relevant reference is Reference 22, in which Wittmann reports the results of examining a number of red lines for the presence of blends. This material would form a starting point for a more extensive search of the solar spectrum.
SOURCES OF ERROR FOR SOLAR MAGNETOGRAPH

EFFECTS WHICH DEPEND SOLELY ON POSITION ON THE SOLAR DISK

As is well known, the radiation observed at the center of the solar disk characterizes a greater range in depth than that observed at the limb. A crude numerical estimate of this effect can be made by using the Eddington-Barbier relation,

\[\tau_\theta = \cos \theta = \mu , \]

where \(\tau_\theta \) represents the maximum optical depth in the solar atmosphere which can be observed at solar position angle \(\theta \).

Since the geometrical depth, \(d \), in the atmosphere is approximately proportional to the log of the optical depth,

\[d_{ph} = K_{ph} \log \tau_{ph} \]
\[d_{pe} = K_{pe} \log \tau_{pe} \]
\[d_u = K_u \log \tau_u , \]

where

\(ph \) - photosphere
\(pe \) - penumbra
\(u \) - umbra.
In general,

\[K_{\text{ph}} \neq K_{\text{pe}} \neq K_u \]

and

\[d_{\text{ph}} \neq d_{\text{pe}} \neq d_u . \]

The approximate form of the relation between \(d \) and \(\mu \) across the solar disk can be shown by letting \(K = 1 \). The zero point in the geometrical depth scale is arbitrary; here it has been chosen so that \(d = 1 \) at \(\mu = 1 \), which is the deepest level observed.

<table>
<thead>
<tr>
<th>(\mu)</th>
<th>(d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>0.90</td>
<td>0.955</td>
</tr>
<tr>
<td>0.80</td>
<td>0.903</td>
</tr>
<tr>
<td>0.70</td>
<td>0.846</td>
</tr>
<tr>
<td>0.60</td>
<td>0.779</td>
</tr>
<tr>
<td>0.50</td>
<td>0.700</td>
</tr>
<tr>
<td>0.40</td>
<td>0.603</td>
</tr>
<tr>
<td>0.30</td>
<td>0.478</td>
</tr>
<tr>
<td>0.20</td>
<td>0.301</td>
</tr>
<tr>
<td>0.10</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Increasing depth

Thus, for a given solar feature the depth observed at \(\mu = 0.5 \) will be about 0.7 of that observed at \(\mu = 1 \). This property can be very useful, since it allows a partial determination of the variation of observable quantities with depth in the Sun.

Foreshortening toward the limb will tend to decrease the spatial resolution of the observations. The magnetograph aperture has a projected size of about 5 minutes of arc square, at the distance of the Sun from the Earth. The aperture will accept a distance on the Sun at the
center of the disk of \(2.17 \times 10^5\) kilometers. If the aperture is placed so that its outer edge is just at the limb, the linear distance it subtends on the Sun becomes \(5.84 \times 10^5\) kilometers, or more than two and one-half times as large as at the disk center.

Finally, any observation using line profiles will be affected to some extent by the tendency of profiles to broaden and flatten toward the solar limb. This tendency should not be reflected in the degree of polarization in the profile, so the effect for a polarization magnetograph will be mostly that of reducing the signal level somewhat, since both the brightness of the Sun and the depth of the line profile, which provides contrast, are reduced. The "limb darkening" is observed to be smaller in the umbrae of sunspots than in the photosphere; the photospheric and penumbral limb darkening are approximately the same.

EFFECTS CAUSED BY CHANGES IN STRENGTH AND SHAPE OF LINE PROFILE

One assumption which is implicit in the entire magnetograph design and operation is that the line absorption coefficient in each of the Stokes parameters is identical to the line absorption coefficient in the absence of a magnetic field, although it may be shifted in wavelength by an amount which corresponds to the Zeeman splitting. Knowledge of the form of the line absorption coefficient is, in principle, sufficient to determine the shape and strength of the line profile corresponding to a transition between known levels in a model atmosphere of known properties; therefore, the interpretation of the magnetograph results can be derived from the properties of the line profile thus determined. It follows that anything which alters the shape or strength of the line profile on the Sun will affect the interpretation of the magnetograph measurements.
The profile of $\lambda 5250.216$ is particularly susceptible to alteration by varying local conditions on the Sun. Since determining and using a separate magnetograph calibration for each of these local areas is difficult, an average calibration usually is used. The local variations will then result in errors when the average calibration is used to interpret results in the variant regions.

The local variations can be dependent on time and on position of the solar disk. They also vary in magnitude. A quantitative estimate of their effects is almost impossible to achieve, but qualitative descriptions can be given.

The effect on line profiles of motion of the solar gas is well known. If the scale of the motion is small compared to the range of depths over which the lines are formed (microturbulence), the line profile is broadened and its equivalent width is increased. If the scale of the motion is large compared to the range of line-formation depths (macroturbulence), the profile is broadened but its equivalent width is unchanged. Large-scale motions may also shift the entire profile in wavelength or cause it to become asymmetrical. The turbulence effects depend upon position on the solar disk: the profiles tend to broaden and flatten toward the limb.

The normal variation toward the limb can be determined and compensated for in the reduction and analysis. (If it is not compensated, errors of residual intensity of 0.10 or more -- 10 percent of the continuum value -- can result.) In a system which uses a filter to isolate the line, and does not have an entrance slit, shifts of the entire profile must be compensated in that way also. Most of the uncompensable error will come from undetected asymmetries and from unresolved random motions in umbrae, penumbrae, and active regions. The
uncompensable errors in residual intensity in each Stokes parameter probably will be less than 0.05; the relative error in each measurement, of course, will depend upon the part of the profile in which the measurement is made. Since the average degree of circular polarization, P_v, is found by combining signals measured in two different polarization states, and since both signals may contain errors which are comparable in absolute value and partially interdependent, the resulting error in P_v cannot be estimated for a general case. Wiehr (Ref. 23) discusses errors caused by miscentering of the line profile in the original polarimeter designs used at the Crimea observatory and at the Locarno station of the Göttingen observatory; these errors can be very large.

Of the spectral lines used for magnetic field determinations, $\lambda 5250.2$ shows some of the largest natural variations in strength. The line has moderate strength in the photosphere; it is stronger in sunspots and weaker in photospheric magnetic regions. Chapman and Sheeley (Ref. 24) give the photospheric equivalent width as 62 milliangstroms; the equivalent width they measured in photospheric magnetic regions is 27 percent smaller. The equivalent width in sunspots is difficult to determine because the spot spectra are usually contaminated by stray light, and no reliable estimate has been found.

The strength variations are thought to be caused partly by temperature effects and partly by magnetic saturation (Refs. 24, 25, and 26); the temperature effects appear to be confined to the line cores. Whatever the cause, the variations in profile strength have been responsible for discrepancies between magnetograph results obtained with $\lambda 5250$ and with other lines. Usually, the calibration for $\lambda 5250$ is based on an "average" profile for the solar disk and thus cannot account for the strength variations. Harvey and Livingston (Ref. 27)
found that the fields they measured using \(\lambda 5250 \) appeared to underestimate the true field strength by a factor of about 2 in the linear portion of the profile and about 5 near the line core; Chapman and Sheeley (Ref. 24) have estimated that a calibration using an average disk profile of \(\lambda 5250 \) will yield magnetic field strengths which are too low by a factor of 1.5 to 2; and measurements made with molecular lines also differ consistently from the \(\lambda 5250 \) values (Ref. 28).

Therefore, calibrations based only on disk-average profiles of \(\lambda 5250 \) generally appear to yield estimates of magnetic field strength which are much too low. Some supplementary information is needed. Indeed, Harvey et al (Ref. 25) now use data from \(\lambda 5233 \) to establish the average field strength in the areas they observe, and use the \(\lambda 5250 \) observations to provide finer detail.

ERRORS WHICH ORIGINATE WITHIN THE TELESCOPE AND THE MAGNETOGRAPH

The magnitudes of errors arising within the magnetograph and the telescope will be determined by making measurements of auxiliary sources or solar regions whose characteristics are known. Although a complete description of the errors cannot be made until that has been done, a general review of some of the possible sources of error can be given here.

The magnetograph contains a flat glass plate to be used to compensate for residual polarization introduced by the telescope. Even after this compensation has been made, a careful check should be made for residual polarization in all modes to be measured, because residual polarization is very difficult to remove completely. Furthermore, if any residual polarization can be measured, it may be possible to remove its effect in the data analysis. Residual polarization studies should be made for a number of different source intensities and telescope orientations.
One of the chronic difficulties experienced with umbral and pen-
umbral observations is contamination of the fainter solar intensities
by stray light from brighter regions. The scattering processes which
redistribute the light occur in the Earth's atmosphere and within the
telescope. The net polarization produced by the atmospheric scattering
should be negligible, but the redistribution of light at the telescope
optical surfaces may introduce a net polarization. Thus, a small
polarized component of stray light may exist which would tend to dis-
tort the relative intensities measured in different polarization states.
This component, if present, would probably be essentially linear and
therefore less serious for the circular polarization measurements.
Nevertheless, it is a possibility that should be examined, since such
polarized stray light might cause an appreciable distortion if the signal
level is very low.

A more serious possibility is that of intercommunication or
"crosstalk" between signals. If, for example, some fraction of unpolar-
ized intensity is mixed with a circularly polarized component, a sizable
error can result. Instruments which use electrically switched polarizing
crystals are subject to this type of signal leakage, so the possibility of
its existence should be examined (see, for example, Reference 25).

ERRORS CAUSED BY LIMITED RESOLUTION

The Cassegrain telescope to which the magnetograph is
attached has a diameter of about 30.5 centimeters. The corresponding
Rayleigh criterion value at $\lambda = 5250$ angstroms is 0.43 second of arc; this
will be assumed to be the diffraction-limited spatial resolution of the tele-
scope. The design goal for the magnetograph optics is a spatial resolu-
tion of 2.5 seconds of arc for the 5-by-5 minute of arc field size, and
1 second of arc for the 2-by-2 minute field size obtained with the magnification system (Ref. 29, p. 2-11). The resolution values 1 or 2.5 seconds thus represent the best possible performance of the system; the resolution may be further limited by atmospheric seeing.

The typical daylight seeing values at the telescope tower have not yet been completely determined; in most locations, however, 1 second of arc is considered excellent, and 2 seconds or more are more usual (Ref. 12, p. 19). Moreover, the seeing usually varies rapidly with time, even on the best days, so an observation of more than a few seconds in length probably will show distortion. A reasonable prediction would be that on average days, observations made with the 5-minute field size should not be severely seeing-limited; the full resolution of the 2-minute field will be attained only at times of exceptionally good seeing.

Good spatial resolution is required for precise mapping of magnetic fields on the Sun. (A really fine discrimination of position is not possible from the Earth, since here an angle of 1 second of arc corresponds to a linear distance of about 725 kilometers at the center of the solar disk.) Spatial resolution is also important because the Sun shows many surface inhomogeneities of sizes near the limit of resolution or smaller. At maximum resolution, the smearing of these inhomogeneities will be smallest, and the resulting distortions of the observations will be minimized. Several of these inhomogeneities are briefly described below:

- **Umbral dots** are small, bright transient regions which appear in sunspot umbrae. The mean diameter of the dots measured by Beckers and Schröter (Ref. 30) was 420 kilometers (about 0.6 second of arc); the mean lifetime was 1500 seconds. (The lifetime was defined as the time between the occurrence
of half-maximum brightness in the increase and decrease of the dot's intensity.) Umbral dots may be associated with inhomogeneities in the umbral magnetic field.

- **Penumbral filaments** (Ref. 12, p. 75) are irregular, elongated bright regions in the penumbra. The lengths of the filaments vary a good deal; a representative value for large spots is about 10 seconds of arc. Their lifetimes are of the order of a few hours, so a prominent penumbral filament in an observed region probably would be noticed.

- **Magnetic knots** are small regions in the photosphere which are characterized by unusually strong magnetic fields (Ref. 31). The strengths of many spectral lines, including λ5250, decrease in these regions. A typical field strength is 1000 gauss; diameters are about 1000 kilometers. Lifetimes of knots are greater than 30 minutes.

- **Pores** are small sunspots with no penumbrae (Ref. 31). Their diameters are 2 to 5 seconds of arc, so at times of very poor seeing they may not be resolved. They typically have brightnesses of about half that of the surrounding photosphere and field strengths greater than 1500 gauss.

- **Nonmagnetic gaps** (Ref. 31) are regions in the photosphere where the strength of certain spectral lines decreases and the continuum brightness increases, but there is no strong local magnetic field. The diameters of these regions are about 1100 kilometers, and lifetimes are about 40 minutes.

Any of these inhomogeneities is capable of producing some distortion of the magnetograph record, especially at times of poor seeing. The amounts of such distortion will be determined largely by the magnitudes of the effects of errors arising within the telescope and magnetograph.
It is apposite to quote here a statement made by Deubner and Liedler in their discussion of the magnetograph at the Fraunhofer Institut (Ref. 32): "In attempting to calibrate the vectormagnetograph, it has been shown here that due to our limited knowledge of the nature of these inhomogeneities (on the solar surface), which doubtless exists, the construction of a universal calibration curve is more or less impossible or even meaningless. Such a calibration would be valid only for the single spot from which it was derived during a particular state of development, and only for the prevailing spot field."

ERRORS ASSOCIATED WITH UNCERTAINTIES IN THEORY

Calibration curves relating magnetograph signal levels to magnetic field strengths on the Sun must be based, ultimately, on some theory of line formation in magnetic fields. As will be shown later, theory does not yet permit a precise prediction of signal levels for all conditions on the Sun.

Approximate calibration curves have already been calculated. While they are not exactly applicable, they should serve to show the general behavior of signal as a function of field strength. The relations thus obtained consist of a series of nested curves, one for each value of the field orientation angle. These curves are fairly closely spaced; since in some cases the spacing may be of the order of the uncertainty of the signal, the interpretation could be ambiguous even supposing that the calibration curves were precisely known. Moreover, the curves are not monotonic; the signal increases with increasing field strength until a field of the order of 1000 gauss is reached; as the field increases beyond that value, the signal drops abruptly. Therefore, an additional ambiguity exists in the region around the peak unless
independent information is available to show on which branch of the curve the signal lies. To make matters worse, at present there is no way to determine an absolute calibration curve for λ5250, so given signal values cannot be attributed to specific field strengths. This comes about partly through the inherent difficulties of calculating the polarized intensities in a solar magnetic field, and partly through the properties of the transition producing λ5250.216.

Only one or two transitions can be treated in detail in solar magnetic fields, and the calculations for these cases are so cumbersome as to be impractical for the large number of repetitions needed to define a calibration curve. House and Cohen (Ref. 33) described the calculations necessary to define the scattering in a magnetic field (with simplifying approximations) for a resonance line which gives rise in a magnetic field to a normal Zeeman triplet. The field must be weak. The transition considered is \(^1S_0 \rightarrow ^1P_1 \), which for the solar astrophysical case would be found only in the resonance lines of neutral calcium and magnesium, in the visible wavelengths.

The 5250.216 angstrom line comes from the transition \(^5D_0 \rightarrow ^7D_1 \) (Ref. 34); the lower excitation potential is 0.12 electron volt, the upper 2.47 electron volt. The line is therefore one of low excitation but not a resonance line. One would expect it to have a strong scattering component, and this expectation is reinforced by its behavior on the Sun, where the variation in line strength from center to limb is less than would be expected for a line formed in pure absorption (Ref. 4). Nevertheless, the line also has a strong absorption component. It cannot be correctly treated by either a pure scattering or a pure absorption approximation, and these are the only computational methods which are practical for the large number of calculations required. The two most often used procedures for calculations in a magnetic field, described in References 10 and 35, require that pure absorption or pure scattering be assumed.
There is general agreement that, because of the intrinsic differences between the regions, calibration curves established for the photosphere should not be used in interpreting sunspot observations. The calculation of expected signal values in sunspots is even more difficult than in the photosphere. All the difficulties of the photospheric calculation remain, and in addition the existing sunspot models do not permit a self-consistent profile calculation under any set of assumptions (Ref. 36).

The interpretation of the observations is even more uncertain because of several magneto-optic effects which can alter the plane of polarization after it is produced in the spectral line transition on the Sun. The Hanle effect usually is mentioned in this connection; others may enter as well (see Ref. 37, for example). The effects are much more severe for linear than for circular polarization. Indeed, Beckers has stated, "There is no simple relationship between the amount and direction of linear polarization and the strength and direction of the magnetic field. Only with very large approximation can one say that the degree of polarization is related to the total field strength and the direction to the longitudinal magnetic field strength." (See Ref. 38, p. 13.)

Many magnetograph calibrations take advantage of the fact that, for small fields, the measured signal is (approximately) directly proportional to the field strength. This relation can be used if it is understood that it applies to small fields only and that the proportionality "constant" depends explicitly on position on the solar disk, so that the value used must be correct for the solar coordinates of the sunspot (see Ref. 12, p. 194, and Ref. 29, p. 1-17). Adjustment of the "constant" according to disk position will be discussed in a later section of this report.
PROBABLE ERRORS IN FIELD STRENGTHS DETERMINED FROM ZEEMAN SPLITTING

The results of a determination of magnetic fields in sunspots from the Zeeman splitting of \(\lambda \) 5250 illustrates the error which can enter a well-documented field strength determination. The observations and method of deriving field strengths are described in Section 1. The calculated field strengths were reviewed to estimate the error in the final values. Most of the field strengths are averages of several values obtained from separate spectra made of the same location in the sunspot, so the deviations of the separate values from the average form a part of the error estimate. When the calculated field strength values were reviewed, the identification of the separate Zeeman components was also reviewed. In some cases, the identifications were revised, causing changes in the average field value for the location. These changes generally were small. A value which departed greatly from the average of the other values was discarded in one location (square XI-g of the magnetic field map). The final map is shown in Figure 4; it does not differ appreciably from the one given in Reference 39. The deviations from the mean values shown in the map are tabulated for each location in the sunspot in Table 4.

The average deviation for all the values from their separate means is 180 gauss; the uncertainty caused by scatter in the individual magnetic field values for this sunspot, therefore, is \(\pm 180 \) gauss.

The final values are uncertain for other reasons also. Because the splittings are determined from the observed positions of the Zeeman components, uncertainties in wavelength will affect the results. The spectral intensities were recorded at wavelength intervals of 5.88 milliangstroms, so this interval size imposes a limit to the wavelength resolution. If the location of a Zeeman component is defined as the wavelength of its minimum measured intensity, the uncertainty in that location is at least \(\pm 5.88/2 \) milliangstroms.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V, VI</th>
<th>VII, VIII</th>
<th>IX, X</th>
<th>XI</th>
<th>XII</th>
<th>XIII</th>
<th>XIV</th>
<th>XV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>i</td>
<td>h</td>
<td>g</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>f</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>906</td>
<td>908</td>
<td>805</td>
<td>605</td>
<td>1,070</td>
<td>1,250</td>
<td>1,230</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>151</td>
<td>830</td>
<td>1,070</td>
<td>1,250</td>
<td>1,230</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>944</td>
<td>1,330</td>
<td>1,430</td>
<td>1,680</td>
<td>1,670</td>
<td>1,430</td>
<td>1,670</td>
<td>1,360</td>
<td>604</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>926</td>
<td>1,400</td>
<td>1,900</td>
<td>1,780</td>
<td>1,670</td>
<td>1,360</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,680</td>
<td>2,010</td>
<td>1,990</td>
<td>2,060</td>
<td>1,770</td>
<td>1,640</td>
<td>1,360</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,510</td>
<td>2,020</td>
<td>2,060</td>
<td>1,940</td>
<td>1,680</td>
<td>1,300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,120</td>
<td>1,670</td>
<td>1,840</td>
<td>1,750</td>
<td>1,450</td>
<td>1,440</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,060</td>
<td>1,240</td>
<td>1,580</td>
<td>1,210</td>
<td>755</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>680</td>
<td>754</td>
<td>792</td>
<td>966</td>
<td>680</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>755</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 4. Revised line-of-sight field strengths in Gauss for sunspot observations of July 14, 1969
TABLE 4. DEVIATIONS OF SEPARATE FIELD STRENGTH VALUES FROM MEAN VALUE FOR LOCATION

<table>
<thead>
<tr>
<th>LOCATION IN SUNSPOT</th>
<th>MEAN FIELD STRENGTH (gauss)</th>
<th>NUMBER OF VALUES AVERAGED</th>
<th>AVERAGE DEVIATION FROM MEAN (gauss)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IIIa</td>
<td>908</td>
<td>2</td>
<td>152</td>
</tr>
<tr>
<td>IIIb</td>
<td>805</td>
<td>3</td>
<td>67</td>
</tr>
<tr>
<td>IIIc</td>
<td>605</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>IIIg</td>
<td>906</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>IVa</td>
<td>1,250</td>
<td>4</td>
<td>609</td>
</tr>
<tr>
<td>IVb</td>
<td>1,230</td>
<td>3</td>
<td>686</td>
</tr>
<tr>
<td>IVg</td>
<td>1,070</td>
<td>5</td>
<td>315</td>
</tr>
<tr>
<td>IVh</td>
<td>830</td>
<td>2</td>
<td>75</td>
</tr>
<tr>
<td>IVi</td>
<td>151</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>V, VIa</td>
<td>1,680</td>
<td>7</td>
<td>155</td>
</tr>
<tr>
<td>V, VIb</td>
<td>1,670</td>
<td>7</td>
<td>139</td>
</tr>
<tr>
<td>V, VIC</td>
<td>1,420</td>
<td>9</td>
<td>279</td>
</tr>
<tr>
<td>V, VID</td>
<td>604</td>
<td>2</td>
<td>151</td>
</tr>
<tr>
<td>V, VIG</td>
<td>1,430</td>
<td>10</td>
<td>300</td>
</tr>
<tr>
<td>V, VIH</td>
<td>1,330</td>
<td>3</td>
<td>419</td>
</tr>
<tr>
<td>V, VIi</td>
<td>944</td>
<td>2</td>
<td>416</td>
</tr>
<tr>
<td>VII, VIIIa</td>
<td>1,780</td>
<td>5</td>
<td>126</td>
</tr>
<tr>
<td>VII, VIIIb</td>
<td>1,670</td>
<td>8</td>
<td>140</td>
</tr>
<tr>
<td>VII, VIIc</td>
<td>1,360</td>
<td>4</td>
<td>150</td>
</tr>
<tr>
<td>VII, VIIg</td>
<td>1,900</td>
<td>6</td>
<td>120</td>
</tr>
<tr>
<td>VII, VIIIh</td>
<td>1,400</td>
<td>4</td>
<td>376</td>
</tr>
<tr>
<td>VII, VIIIi</td>
<td>926</td>
<td>4</td>
<td>284</td>
</tr>
<tr>
<td>IX, Xa</td>
<td>2,060</td>
<td>5</td>
<td>104</td>
</tr>
<tr>
<td>IX, Xb</td>
<td>1,770</td>
<td>5</td>
<td>313</td>
</tr>
<tr>
<td>IX, XC</td>
<td>1,640</td>
<td>10</td>
<td>211</td>
</tr>
<tr>
<td>IX, XD</td>
<td>1,360</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>IX, XG</td>
<td>1,990</td>
<td>5</td>
<td>87</td>
</tr>
<tr>
<td>IX, XH</td>
<td>2,010</td>
<td>5</td>
<td>206</td>
</tr>
<tr>
<td>IX, XI</td>
<td>1,680</td>
<td>5</td>
<td>268</td>
</tr>
</tbody>
</table>
Table 4 - Concluded

<table>
<thead>
<tr>
<th>Location in Sunspot</th>
<th>Mean Field Strength (gauss)</th>
<th>Number of Values Averaged</th>
<th>Average Deviation from Mean (gauss)</th>
</tr>
</thead>
<tbody>
<tr>
<td>XIa</td>
<td>1,940</td>
<td>5</td>
<td>126</td>
</tr>
<tr>
<td>XIb</td>
<td>1,680</td>
<td>5</td>
<td>139</td>
</tr>
<tr>
<td>XIc</td>
<td>1,300</td>
<td>4</td>
<td>169</td>
</tr>
<tr>
<td>XIg</td>
<td>2,060</td>
<td>4</td>
<td>58</td>
</tr>
<tr>
<td>XIh</td>
<td>2,020</td>
<td>5</td>
<td>202</td>
</tr>
<tr>
<td>Xii</td>
<td>1,510</td>
<td>5</td>
<td>120</td>
</tr>
<tr>
<td>XIIa</td>
<td>1,750</td>
<td>5</td>
<td>277</td>
</tr>
<tr>
<td>XIIb</td>
<td>1,450</td>
<td>5</td>
<td>313</td>
</tr>
<tr>
<td>XIIc</td>
<td>1,440</td>
<td>2</td>
<td>225</td>
</tr>
<tr>
<td>XIIg</td>
<td>1,840</td>
<td>5</td>
<td>134</td>
</tr>
<tr>
<td>XIIh</td>
<td>1,670</td>
<td>5</td>
<td>131</td>
</tr>
<tr>
<td>XIIi</td>
<td>1,120</td>
<td>4</td>
<td>170</td>
</tr>
<tr>
<td>XIIIa</td>
<td>1,210</td>
<td>5</td>
<td>392</td>
</tr>
<tr>
<td>XIIIb</td>
<td>755</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>XIIIg</td>
<td>1,580</td>
<td>5</td>
<td>360</td>
</tr>
<tr>
<td>XIIIh</td>
<td>1,240</td>
<td>5</td>
<td>187</td>
</tr>
<tr>
<td>XIIIi</td>
<td>1,060</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>XIVa</td>
<td>966</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>XIVb</td>
<td>680</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>XIVg</td>
<td>752</td>
<td>2</td>
<td>37</td>
</tr>
<tr>
<td>XIVh</td>
<td>754</td>
<td>3</td>
<td>151</td>
</tr>
<tr>
<td>XIVi</td>
<td>680</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>XVg</td>
<td>755</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

NOTE: The mean field strengths have been rounded off to three significant figures.
The uncertainty in field strength corresponding to this wavelength uncertainty is ±75.5 gauss for \(\lambda 5250.2 \). That value also represents the minimum field strength that can in principle be detected from these spectroscopic data. In practice, the minimum may be somewhat larger because the resolving power of the spectrograph and the distorting effect of the finite slit width may determine the minimum resolvable separation.

The total probable error for the magnetic field values can be estimated as the root mean square of 180 gauss and 75.5 gauss, or 195 gauss. The probable error in the spectroscopically determined field strengths, therefore, is approximately ±200 gauss.

SUMMARY OF ERROR STUDY

Magnetographs are, in general, subject to large systematic errors. The magnitudes and nature of the errors depend upon the particular type of magnetograph. Numerical error estimates rarely appear in the literature; errors in the range of 10 to 20 percent are generally considered to be moderate (Ref. 40). Most systems are considered to be more reliable for field strengths less than about 1500 gauss than for very large fields.

It may be possible for a large systematic error to go undetected, although fortunately that is less likely now that results from many different instruments can be compared. [In 1962, Stepanov, Shaposhnikova, and Petrova determined that Mt. Wilson measurements underestimated a field of 1000 gauss by no less than 700 gauss, on the average (Ref. 12, p. 205).]

If observations in \(\lambda 5250.216 \) are used, all previous experience shows that the calibration must be done by comparing the signal levels to those measured for the same solar features in another line for which a calibration can be made.
Refined error estimates, of course, must wait until the system has been in use long enough for observers to collect a large mass of data and to conduct careful tests for instrumental error. In making a preliminary estimate, no justification exists for assuming the field strengths will have accuracy better than 20 percent of the measured value. Therefore, ±20 percent is recommended as a provisional minimum error estimate.
VARIATION OF CIRCULAR POLARIZATION CONSTANT WITH POSITION ON THE SOLAR DISK

For real-time rapid reduction of magnetograph signals, the relation between degree of circular polarization and magnetic field strength is assumed to be linear, for fields up to about 1000 gauss. The magnetograph calibration includes determining the slope C_1 for this relation. The value of C_1, however, depends explicitly upon position on the solar disk.

If the Unno formulation for polarized residual intensities is used, the variation of C_1 with position on the solar disk can be written as a function of known quantities (the Unno formulation is used because it permits C_1 to be written as a linear function of β_0, the limb darkening constant). The expected variation in C_1 across the disk can then be estimated using a minimum number of line-dependent parameters.

For small magnetic fields, the relation between the mean circular polarization, $\overline{P_v}$, and the magnetic splitting is assumed to be given by

$$\overline{P_v} = (V_H \cos \psi) C_1$$ \hspace{1cm} (3)

where

$$C_1 = \frac{\int_{v_i - \delta}^{v_i + \delta} \left[\frac{dH(a, v)}{dv} \right] T(v, v_i) dv}{\int_{v_i - \delta}^{v_i + \delta} \left[1 + \frac{\mu H(a, v)}{1 + \eta H(a, v)} \right] T(v, v_i) dv}$$ \hspace{1cm} (4)
Equations (3) and (4) are taken from Reference 29, p. 1-17; Equation (4) is Equation (1.14) of Reference 29. All symbols have the same meanings as in Reference 29 and will not be redefined here.

Because \(v \) is independent of \(\mu \) and \(\beta_0 \), the three integrals in Equation (4) can be written in a form that is independent of position on the solar disk.

\[
A = \int_{v_i - \delta}^{v_i + \delta} \left(\frac{dH(a, v)}{dv} \right)_v \frac{T(v, v_i)}{\left(1 + \eta_0 H(a, v)\right)^2} dv
\]

\[
B = \int_{v_i - \delta}^{v_i + \delta} T(v, v_i) dv
\]

and

\[
D = \int_{v_i - \delta}^{v_i + \delta} \frac{T(v, v_i)}{\left(1 + \eta_0 H(a, v)\right)} dv.
\]
Then

\[C_1 = \frac{-\mu_0 \beta_0 \eta_0 A}{B + \mu \beta_0 D} \]

\[
\frac{\partial C_1}{\partial \mu} = \frac{-\beta_0 \eta_0 A}{B + \mu \beta_0 D} + \frac{\mu \beta_0^2 \eta_0 A D}{(B + \mu \beta_0 D)^2}
\]

\[
\frac{\partial C_1}{\partial \mu} = \frac{C_1}{\mu} \cdot \frac{\beta_0 \partial \psi}{B + \mu \beta_0 D}
\]

(5)

B and D are easily evaluated, and \(\beta_0 \) is known. So Equation (5) can be used to find the change in \(C_1 \) for different positions on the solar disk.

Since the value of \(C_1 \) at \(\mu = 1.00 \) has not yet been established, the quantity to be calculated will be

\[\frac{C_1 (\mu)}{C_1 (\mu = 1.00)} \]

Approximately,

\[
\frac{C_1 (\mu)}{C_1 (\mu = 1)} = \frac{C_1 (\mu + \Delta \mu)}{C_1 (\mu = 1)} \cdot \left(\frac{\partial C_1}{\partial \mu} \right) \left(\frac{\Delta \mu}{C_1 (\mu = 1)} \right)
\]

(6)
So if \(C_1 (\mu = 1) \) is assumed to be known,

\[
C_1 (\mu = 1) = C_1 (\mu = 1)
\]

\[
\frac{C_1 (\mu = 0.9)}{C_1 (\mu = 1)} = \frac{C_1 (\mu = 1)}{C_1 (\mu = 1)} \left[\frac{1}{0.9} - \frac{\beta_0 D}{B + 0.9 \beta_0 D} \right] (1.0 - 0.9)
\]

\[
\frac{C_1 (\mu = 0.8)}{C_1 (\mu = 1)} = \frac{C_1 (\mu = 0.9)}{C_1 (\mu = 1)} \left[\frac{1}{0.8} - \frac{\beta_0 D}{\beta + 0.8 \beta_0 D} \right] (0.9 - 0.8)
\]

etc.

To evaluate \(D \), several spectral line parameters must be known:

- \(\Delta \lambda_D \) - the Doppler width, which must be known in order to evaluate \(H(a, v) \)
- \(a \) - the damping parameter, which is also required to evaluate \(H(a, v) \)
- \(\eta_0 \) - the ratio of line-to-continuous absorption coefficients.

None of these quantities is well known for \(\lambda 5250 \) in sunspots. Fortunately, however, the values found from Equation (5) are far more sensitive to the better-known quantities \(\mu \) and \(\beta_0 \) than to the three line profile parameters. The use of photospheric values of \(\Delta \lambda_D, a, \) and \(\eta_0 \) should not introduce serious errors.

To investigate this point, a set of maximum and minimum values for \(C_1 (\mu) \) was calculated by using the smallest and largest values of \(\Delta \lambda_D, a, \) and \(\eta_0 \) which would be expected on the Sun, for any
spectral line formed in LTE. The results for λ5250 should lie well within this range. The line profile parameters used for this calculation are given in Table 5. The value of \(\beta_0 \) was 1.70 for both cases.

TABLE 5. LINE PROFILE PARAMETER VALUES FOR DETERMINING MAXIMUM AND MINIMUM

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>VALUE FOR MAXIMUM</th>
<th>VALUE FOR MINIMUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta \lambda_D)</td>
<td>5.0 milliangstroms</td>
<td>40.0 milliangstroms</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>0.05</td>
<td>0.295</td>
</tr>
<tr>
<td>(\eta_0)</td>
<td>5.0</td>
<td>30.0</td>
</tr>
</tbody>
</table>

From Equations (5) and (6), it appears that the smallest possible values that could be obtained for \(C_1(\mu)/C_1(1) \) would be found if \(\beta_0 = 0 \). A set of \(C_1(\mu)/C_1(1) \) values was calculated for this case; it is tabulated in Table 6 under the heading, "lower envelope". The maximum and minimum values found using the parameters given in Table 5 also are given in Table 6. The difference between these sets of values is an overestimate of the error that would be introduced by using photospheric parameters to calculate \(C_1(\mu) \) for sunspots.

When \(\mu \) is less than 0.5, the maximum error which would be introduced by using photospheric values is certainly only a few percent. It should be emphasized that the range of values covered in Table 5 is truly enormous, and the parameters for any single line can be estimated with reasonable certainty to within much smaller limits.

The results in Table 6 suggest that the \(C_1(\mu) \) values for sunspot umbrae can be approximated by using the \(\Delta \lambda_D \), \(\alpha \), and \(\eta_0 \) values...
TABLE 6. RANGE OF VALUES OF $C_1(\mu)/C_1(1)$ FOR PHYSICALLY POSSIBLE VALUES OF LINE PROFILE PARAMETERS AND FOR $\beta_0 = 0$

<table>
<thead>
<tr>
<th>μ</th>
<th>MAXIMUM $C_1(\mu)/C_1(1)$</th>
<th>MINIMUM $C_1(\mu)/C_1(1)$</th>
<th>LOWER ENVELOPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>0.917</td>
<td>0.962</td>
<td>0.929</td>
<td>0.909</td>
</tr>
<tr>
<td>0.833</td>
<td>0.920</td>
<td>0.855</td>
<td>0.818</td>
</tr>
<tr>
<td>0.750</td>
<td>0.873</td>
<td>0.778</td>
<td>0.727</td>
</tr>
<tr>
<td>0.667</td>
<td>0.819</td>
<td>0.698</td>
<td>0.636</td>
</tr>
<tr>
<td>0.584</td>
<td>0.758</td>
<td>0.614</td>
<td>0.546</td>
</tr>
<tr>
<td>0.500</td>
<td>0.686</td>
<td>0.526</td>
<td>0.455</td>
</tr>
<tr>
<td>0.417</td>
<td>0.603</td>
<td>0.433</td>
<td>0.364</td>
</tr>
<tr>
<td>0.333</td>
<td>0.502</td>
<td>0.335</td>
<td>0.273</td>
</tr>
<tr>
<td>0.250</td>
<td>0.382</td>
<td>0.232</td>
<td>0.182</td>
</tr>
<tr>
<td>0.167</td>
<td>0.231</td>
<td>0.122</td>
<td>0.092</td>
</tr>
<tr>
<td>0.083</td>
<td>0.024</td>
<td>0.003</td>
<td>0.000</td>
</tr>
</tbody>
</table>

which are found for $\lambda 5250$ in the photosphere. That approximation must be made because of the scarcity of high-quality umbral profiles of $\lambda 5250$ in unpolarized light. The value of β_0 certainly changes between the photosphere and sunspot umbrae, and this factor is dominant. Fortunately, β_0 for sunspot umbrae can be determined. Two separate calculations of $C_1(\mu)/C_1(1)$ were therefore made: one for the photosphere and penumbralae, and one for umbrae.

For the photospheric calculation, the values of $\Delta \lambda_D$, a, and η_0 were found by fitting an absorption profile to M. J. Hagyard's observations of $\lambda 5250$ in the photosphere. The values determined
were $\Delta \lambda_D = 12$ milliangstroms, $a = 0.2$, and $\eta_0 = 9$. For the photosphere at $\lambda = 5250$ angstroms, $\beta_0 = 1.70$ (Ref. 41, p. 171). According to Moe and Maltby (Ref. 42), "The intensity ratio between the penumbra and the photosphere shows little or no variation with position on the solar disk." The same value of limb darkening constant β_0 will therefore be good for both photosphere and penumbra, and the line profile parameters will be the same because good penumbral profiles of $\lambda 5250$ are as rare as good umbral profiles. The resulting values of $C_1 (\mu)/C_1 (1)$ are given in Table 7.

<table>
<thead>
<tr>
<th>μ</th>
<th>$C_1 (\mu)/C_1 (1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>0.917</td>
<td>0.957</td>
</tr>
<tr>
<td>0.833</td>
<td>0.908</td>
</tr>
<tr>
<td>0.750</td>
<td>0.855</td>
</tr>
<tr>
<td>0.667</td>
<td>0.796</td>
</tr>
<tr>
<td>0.584</td>
<td>0.729</td>
</tr>
<tr>
<td>0.500</td>
<td>0.652</td>
</tr>
<tr>
<td>0.417</td>
<td>0.566</td>
</tr>
<tr>
<td>0.333</td>
<td>0.464</td>
</tr>
<tr>
<td>0.250</td>
<td>0.345</td>
</tr>
<tr>
<td>0.167</td>
<td>0.202</td>
</tr>
<tr>
<td>0.083</td>
<td>0.016</td>
</tr>
</tbody>
</table>

For the umbral calculation, the same values of $\Delta \lambda_D$, a, and η_0 will be used, but a new β_0 must be found. Wittmann and Schröter (Ref. 43) give center-to-limb intensities of sunspots at $\lambda = 4680$ angstroms and 6400 angstroms. On the authority of Figure 3 of
Reference 44, the values for $\lambda = 5250$ angstroms can be found by linear interpolation between the two sets of Wittmann-Schröter values. The results are shown in Table 8.

TABLE 8. CENTER-TO-LIMB INTENSITY DISTRIBUTION FOR SUNSPOT UMBRAE AT $\lambda = 5250$ ANGSTROMS

<table>
<thead>
<tr>
<th>μ</th>
<th>I_u (4680 angstroms)</th>
<th>INTERPOLATED I_u (5250 angstroms)</th>
<th>I_u (6400 angstroms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>3.68</td>
<td>3.77</td>
<td>3.94</td>
</tr>
<tr>
<td>0.90</td>
<td>3.66</td>
<td>3.75</td>
<td>3.93</td>
</tr>
<tr>
<td>0.80</td>
<td>3.63</td>
<td>3.72</td>
<td>3.90</td>
</tr>
<tr>
<td>0.70</td>
<td>3.60</td>
<td>3.69</td>
<td>3.87</td>
</tr>
<tr>
<td>0.60</td>
<td>3.56</td>
<td>3.65</td>
<td>3.83</td>
</tr>
<tr>
<td>0.50</td>
<td>3.52</td>
<td>3.61</td>
<td>3.78</td>
</tr>
<tr>
<td>0.40</td>
<td>3.47</td>
<td>3.55</td>
<td>3.70</td>
</tr>
<tr>
<td>0.30</td>
<td>3.35</td>
<td>3.33</td>
<td>3.59</td>
</tr>
<tr>
<td>0.20</td>
<td>2.98</td>
<td>3.12</td>
<td>3.40</td>
</tr>
<tr>
<td>0.10</td>
<td>2.24</td>
<td>2.50</td>
<td>3.02</td>
</tr>
</tbody>
</table>

The change in intensity between center and limb is quite small.

To obtain β_o, the values of $I_u (\mu)/I_u (\mu = 1)$ are fitted to the form

$$\frac{I_u (\mu)}{I_u (1)} = 1 - u_1 + (u_1) (\mu)$$

(7)

where

$$\beta_o = \frac{u_1}{1 - u_1}$$
A simple equation of the form of Equation (7) does not permit a good fit over the entire range of \(\mu \) values, but an acceptable fit for \(1.0 \geq \mu \geq 0.4 \) can be obtained by setting \(\beta_o = 0.093 \) (\(u_1 = 0.086 \)). In Table 9, the values of \(I_u (\mu)/I_u (1) \) for \(\beta_o = 0.093 \) are compared to the interpolated measured values.

<table>
<thead>
<tr>
<th>(\mu)</th>
<th>(I_u (\mu)/I_u (1), \beta_o = 0.093)</th>
<th>(I_u (\mu)/I_u (1)) FROM TABLE 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>0.90</td>
<td>0.991</td>
<td>0.993</td>
</tr>
<tr>
<td>0.80</td>
<td>0.983</td>
<td>0.987</td>
</tr>
<tr>
<td>0.70</td>
<td>0.974</td>
<td>0.978</td>
</tr>
<tr>
<td>0.60</td>
<td>0.966</td>
<td>0.968</td>
</tr>
<tr>
<td>0.50</td>
<td>0.957</td>
<td>0.958</td>
</tr>
<tr>
<td>0.40</td>
<td>0.948</td>
<td>0.942</td>
</tr>
<tr>
<td>0.30</td>
<td>0.940</td>
<td>0.884</td>
</tr>
<tr>
<td>0.20</td>
<td>0.931</td>
<td>0.828</td>
</tr>
<tr>
<td>0.10</td>
<td>0.923</td>
<td>0.664</td>
</tr>
</tbody>
</table>

(\(\beta_o \) value is less accurate in this range)

The value \(\beta_o = 0.093 \) was used to calculate \(C_1 (\mu)/C_1 (1) \) for umbrae. The values of \(C_1 \) when \(\mu \) is less than 0.40 should be given less weight because the approximate limb darkening relation is less accurate in that range.

The line profile parameter whose value in umbrae is most uncertain is probably \(\eta_o \). Values \(C_1 \) were calculated using \(\eta_o = 9, \) the photospheric value, and \(\eta_o = 40, \) since \(\eta_o \) may be much larger in
umbrae. The results for both η_0 values are given in Table 10; they are almost identical.

TABLE 10. $C_1(\mu)/C_1(1)$ FOR SUNSPOT UMBRAE

<table>
<thead>
<tr>
<th>μ</th>
<th>$C_1(\mu)/C_1(1), \eta_0 = 9$</th>
<th>$C_1(\mu)/C_1(1), \eta_0 = 40$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>0.917</td>
<td>0.915</td>
<td>0.913</td>
</tr>
<tr>
<td>0.833</td>
<td>0.827</td>
<td>0.825</td>
</tr>
<tr>
<td>0.750</td>
<td>0.740</td>
<td>0.737</td>
</tr>
<tr>
<td>0.667</td>
<td>0.652</td>
<td>0.648</td>
</tr>
<tr>
<td>0.584</td>
<td>0.562</td>
<td>0.558</td>
</tr>
<tr>
<td>0.500</td>
<td>0.471</td>
<td>0.467</td>
</tr>
<tr>
<td>0.417</td>
<td>0.380</td>
<td>0.376</td>
</tr>
<tr>
<td>0.333</td>
<td>0.286</td>
<td>0.283</td>
</tr>
<tr>
<td>0.250</td>
<td>0.192</td>
<td>0.190</td>
</tr>
<tr>
<td>0.167</td>
<td>0.098</td>
<td>0.096</td>
</tr>
<tr>
<td>0.083</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

(β_0 value is less accurate in this range)

Should it become necessary to do so, a supplement to Table 10 for $\mu < 0.4$ can be calculated, using a value of β_0 which gives a better fit to the umbral intensities near the limb.

The values of Tables 7 and 10 are shown plotted in Figure 5. The relation for the umbra is almost linear.
FIGURE 5. $C_1(\mu)/C_1(1)$ AS A FUNCTION OF POSITION ON SOLAR DISK
PROGRAM TO LOCATE AND PLOT MAGNETIC FIELD NEUTRAL LINES

Two of the properties which are of the greatest interest in solar magnetic field maps are the regions where the magnetic field gradients are steepest and the locations of the boundaries between field regions of opposite polarity. The regions of steep gradient are easily located on magnetic field contour plots because they are the regions where the contours are most closely spaced. However, the boundaries between opposite-polarity field regions (the boundaries will be called "neutral lines" for brevity) are generally less distinctive in appearance on contour plots, and it is convenient to provide a separate program to plot the neutral line locations directly from magnetograph data.

A FORTRAN program to make such plots has been written for the Univac 1108. The position of each neutral line is identified by selecting the coordinates of pairs of adjacent points for which the measured signals are opposite in sign. The program in its present form will analyze a square grid of data 128 points on a side and will store 1998 coordinate values. Places where the signal changes sign because of the sign reversal of the magnetograph calibration curve for large magnetic field values will be identified by the program as portions of neutral lines. When the field strength values at which the calibration curves change sign have been established, the program will be modified to ignore signal sign changes for field strengths in the reversal range.

The program compares points in two adjacent horizontal data rows. Beginning with rows 1 and 2, the signs of pairs of points are compared by taking groups of four data points at a time. The points are labeled as shown in Figure 6; their signs are compared in the order P1, P2; P1, P3; P2, P3; P1, P4. If all four points are of the same sign,
points 1-4 and P4 are relabeled P1 and P2, and the next vertical pair to the right becomes P3 and P4 for a new four-point group. The comparison process is repeated across the data row. When two points of opposite sign are found, their coordinates are stored. In order to save space in memory, the program then stops testing values in a particular four-point group and moves to the next group. This explains why, in the final plots, the lines which connect points of opposite sign may take any of the four directions: they simply record the relative positions of the members of the first pair of points of opposite sign which was found in each group of four points. When the first two data rows have been scanned, the process is repeated with the second and third rows, and the full sequence is repeated until the entire frame has been scanned or until the array reserved for coordinate values has been filled.

After the scanning has been completed, the coordinate values of the pairs of points of opposite sign are plotted by connecting them with short lines. A line drawn joining the midpoints of these short connecting lines will trace the location of a neutral line to the precision allowed by the spatial resolution of the data. To assist in determining the coordinates of the plotted points, grid lines are drawn at every fourth data row and column.
The program was tested on a frame of magnetograph data which was obtained from the Kitt Peak National Observatory and which has been used for testing other magnetograph analysis programs at MSFC. This particular data set forms a grid 120-by-120 data points in size. Three cards were missing from the data deck; one of these contained data which crossed a neutral line and produced a gap in the upper right-hand corner of the final plot. Except for this gap, the plot agrees in every detail with the neutral line pattern obtained from the data by the Kitt Peak Observatory. It also agrees with a hand plot of the data.

The plot of the test data is given in Figure 7. Figure 8 is a flowchart of the test program, which reads data from cards, and Figure 9 is the listing of the test program. For use with real MSFC magnetograph data, the program will be modified to read the appropriate magnetic tape formats.
FIGURE 7. PLOT OF NEUTRAL LINES PRODUCED BY TEST PROGRAM
START

READ RMS NOISE LEVEL FOR FRAME.

ILOC = 1

READ FRAME DIMENSIONS IMAX AND IMAY AND SIZE ISIZE ALLOTTED TO ZERO GRADIENT COORDINATE ARRAY.

ISZ1 = ISIZE - 1

READ FIRST TWO ROWS OF DATA: X1(I), X2(I)

NMAY = IMAY - 1

NY1 = 1

NY2 = NY1 + 1

NMAX = IMAX - 1

I = 1

NX1 = I
NX2 = I + 1

FIGURE 8. FLOWCHART OF TEST PROGRAM
P1 = X1(I)
P2 = X2(I)
P3 = X1(I+1)
P4 = X2(I+1)

P1 AND P2 OF SAME SIGN?

P1 AND P3 OF SAME SIGN?

NLX(ILOC) = NX1
NLY(ILOC) = NY1
NLX(ILOC+1) = NX2
NLY(ILOC+1) = NY1
ILOC = ILOC+2

ILOC ≥ ISZ1?

NY1 ≥ 70?

WRITE MESSAGE AND TERMINATE RUN

FIGURE 8 - Continued
FIGURE 8 - Continued
FIGURE 8 - Concluded
\textbf{Figure 9. Listing of Test Program}

```
C 6ZEPG GRADIENTS CONTURED IN MAGNETOGRAPF DATA
C VERSION FCP TEST WITH KPNO MAGNETOGRAPF DATA
DIMENSION X1(128), X2(128), NLY(1280), NLY(1280)
DIMENSION AARRAY(22)
DATA (AARRAY(I),I=1,22)/2HARECOPY ONLY+ONE COPY +186H
KRE= 5
KWR= 6
READ (KPE, 1) RMSN
READ RMS NOISE LEVEL FOR FRAME
C FORMAT (1F6.6)
ILOC= 1
C COUNTER FOR 6ZERO8 GRADIENTS
READ (KPE, 46) IMAY, IMAY, ISIZE
C FORMAT (31I6)
C NO. OF ROWS* NO. OF COLUMNS* NO. OF NEUTRAL LINE POSITIONS TO AF
C STIFES
ISIZE= ISIZE - 1
C READ 1ST 2 PCWS OF DATA
READ (KPE, 46) (X1(I), I= 1, IMAX)
READ (KPE, 46) (X2(I), I= 1, IMAX)
C FORMAT (12(F6.4, 1X))
C SET Y COORDINATE COUNTER AND START SEARCH OF FRAME
NMAY= IMAY - 1
CY 9 NY1= 1* NMAY
NY2= NY1 + 1
C START OF 6GRADIENT EVALUATION LOOP
NMAY= IMAY - 1
CC 10 I= 1* NMAY
C SET X COORDINATE COUNTER
NX1= I
NX2= I + 1
P1= X1(I)
P2= X2(I)
P3= X1(I + 1)
P4= X2(I + 1)
IF (P1 < P2) 104; 103
103 IF (P2) 4; 3
104 IF (P2) 3; 2
4 NLX1(ILOC) = NX1
NLX1(ILOC) = NY1
NLX1(ILOC + 1) = NY1
NLX1(ILOC + 1) = NY2
WRITE (KWR, 101) P1, P2, NX1, NY1
C FORMAT (1H + 2(E12.4, 5X), 2(IF, 5X))
ILOC= ILOC + 2
IF (ILOC-1251) 105, 5, 5
5 IF (IN(1-70)) 6; 7, 7
F WRITE (KWR, 8) NY1
C FORMAT (1H + 69HARRAY RESERVED FOR ZERO GRADIENT COORDINATES IS F1
ILOC NY1= 1)
WRITE (KWR, 111)
11 FORMAT (1H + 13HTERMINATE RUN)
CC TO 999
3 IF (P1) 112; 12, 11
112 IF (P1) 12; 12, 13
```
112 IF (L2) I3. 12, 12
113 NLX(ILOC) = NY1
114 NLX(ILOC + 1) = NY2
115 WRITE (KWR, 30) P1, P7, NY1, NY1
116 ILCC = ILCC + 2
117 IF (ILOC-15?1) 10, 5, 5
118 IF (P1) 110, 15, 114
119 IF (PT) 15, 15, 14
120 IF (P3) 14, 15, 114
121 WRITE (KWR, 30) P2, P3, NY1, NY1
122 ILCC = ILCC + 2
123 IF (ILOC-15?1) 10, 5, 5
124 CONTINUE
125 P1 = X1(IMAX)
126 P2 = X2(IMAX)
127 IF (P1) 138, 18, 17
128 IF (P2) 18, 18, 17
129 CONTINUE
130 IF (NY1-70) 100, 7, 7
131 WRITE (KWR, 9) NY1
132 WRITE (KWR, 11)
133 GO TO 999
134 IF (NY1-NIMAX) 10, 7, 7
135 CONTINUE
136 9 CONTINUE
137 THIS COMPLETES SEARCH FOR ZERO GRADIENT POINTS
138 IFIN = ILCC - 1
139 WRITE (KWR, 132) IFIN
140 132 FORMAT (1H, 5SHIFIN=, I10)
141 WRITE (KWR, 21)

FIGURE 9 - Continued
FIGURE 9 - Concluded
CONCLUSIONS AND RECOMMENDATIONS

Even the best magnetograph results are subject to large uncertainties. It is unwise to assume the uncertainties in results obtained with a new system are less than ±20 percent. They may be larger.

To reduce some of the uncertainties of calibration and interpretation, it is recommended that the magnetograph be modified to operate using a line other than the neutral iron line at 5250.216 angstroms. The new line, of course, should be carefully selected to introduce a minimum number of new uncertainties. If compelling instrumental reasons exist for requiring the new line to be near 5000 angstroms in wavelength, both λ5253 and λ5324 would be worthy of closer investigation. Because the amount of Zeeman splitting is proportional to the square of the wavelength, lines of wavelength longer than 5000 angstroms would tend to produce larger splittings and therefore could be advantageous choices. A number of red spectral lines have been suggested by various authors as possible magnetograph lines; two neutral iron lines which should be investigated are λ6173.348 (lower excitation potential = 2.213 electron volts) and λ6302.508 (lower excitation potential = 3.671 electron volts) (Ref. 12, p. 179). A number of other candidates may exist.

Evaluation of the characteristics of possible new magnetograph lines should begin with a preliminary study of the type summarized in Table 3. Lines which are not rejected in the preliminary study must then be further examined to prove that their properties are compatible with the assumptions implicit in the magnetograph calibration analysis. As was shown earlier in this report, attempts to calculate line profiles for sunspot models may reveal such incompatibility. The profile
calculation thus forms a test which should be applied to each line which is seriously considered for magnetograph operation.

When the magnetograph is operated using λ5250, it is recommended that no reliance be placed on calibration systems which require, even indirectly, the calculation of residual intensities of that spectral line in magnetic fields.
REFERENCES - SECTION 2

REFERENCES - SECTION 2 - Continued

REFERENCES - SECTION 2 - Concluded

34. Moore, C. E., A Multiplet Table of Astrophysical Interest, Contr. from Princeton University Observatory No. 20, 1945.

SECTION 3

PROGRAMS FOR PRESENTATION OF VECTOR MAGNETOGRAPH DATA
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>110</td>
</tr>
<tr>
<td>MAGNETIC FIELD NEUTRAL LINE PROGRAM</td>
<td>111</td>
</tr>
<tr>
<td>MAGNETIC FIELD GRADIENT PROGRAM</td>
<td>120</td>
</tr>
<tr>
<td>RESULTS OF PLOT PROGRAMS</td>
<td>129</td>
</tr>
<tr>
<td>NOISE REMOVAL PROGRAM</td>
<td>133</td>
</tr>
<tr>
<td>TRANSVERSE MATRIX GENERATION PROGRAM</td>
<td>140</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Point Labeling Patterns for Neutral Line Program</td>
<td>112</td>
</tr>
<tr>
<td>2</td>
<td>Listing of Neutral Line Plot Program</td>
<td>114</td>
</tr>
<tr>
<td>3</td>
<td>Listing of Magnetic Field Gradient Plot Program</td>
<td>123</td>
</tr>
<tr>
<td>4</td>
<td>Sample Neutral Line Plot</td>
<td>130</td>
</tr>
<tr>
<td>5</td>
<td>Sample Gradient Plot</td>
<td>131</td>
</tr>
<tr>
<td>6</td>
<td>Magnetic Field Contours for Data Plotted in Figures 4 and 5</td>
<td>132</td>
</tr>
<tr>
<td>7</td>
<td>Magnetograph Data Tape Format</td>
<td>134</td>
</tr>
<tr>
<td>8</td>
<td>Listing of Noise Removal Program</td>
<td>136</td>
</tr>
<tr>
<td>9</td>
<td>Listing of Transverse Matrix Generation Program</td>
<td>140</td>
</tr>
<tr>
<td>Table</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>1</td>
<td>Gradient Plot Program Symbols</td>
<td>121</td>
</tr>
<tr>
<td>2</td>
<td>Contour Labels for Figure 6</td>
<td>129</td>
</tr>
<tr>
<td>3</td>
<td>Data Statements for Spike Noise Removal Program</td>
<td>135</td>
</tr>
</tbody>
</table>
This section contains documentation for four programs written for the Univac 1108. Two of them have been described in Teledyne Brown Engineering Interim Report No. EE-MSFC-1815 (May 1974). Some minor changes have been made to these programs, so updated descriptions and current listings are given here. These two programs plot selected portions of Real Time Solar Magnetograph data: one program displays locations of magnetic polarity changes, and the other shows relative steepnesses of magnetic field gradients as a function of location in the data matrix. The third program removes isolated large data values from the data array and replaces each of the removed values by the average of the values surrounding it. The "corrected" array is then written on a new tape in the same format as the original data. The fourth program is a simple routine which combines the "U" and "R" matrices from the original magnetograph data to form the matrix of values corresponding to transverse magnetic field data. This new matrix is written on a new tape in the same format used for the longitudinal data.
MAGNETIC FIELD NEUTRAL LINE PROGRAM

This program locates and plots the locations in the magnetogram at which the magnetic field changes polarity. At these points, the sign of the magnetograph signal changes, so the program really plots the locations where the signs of adjacent signal values are different.

The position of each neutral line is identified by selecting the coordinates of pairs of adjacent points for which the measured signals are opposite in sign. The program in its present form will analyze a square grid of data 128 points on a side and will store 1998 coordinate values. Places where the signal changes sign because of the sign reversal of the magnetograph calibration curve for large magnetic field values will be identified by the program as portions of neutral lines. When the field strength values at which the calibration curves change sign have been established, the program will be modified to ignore signal sign changes for field strengths in the reversal range.

The program compares points in two adjacent horizontal data rows. Beginning with rows 1 and 2, the signs of pairs of points are compared by taking groups of four data points at a time. The points are labeled as shown in Figure 1; their signs are compared in the order P1, P2; P1, P3; P2, P3; P1, P4. If all four points are of the same sign, points P3 and P4 are relabeled P1 and P2, and the next vertical pair to the right becomes P3 and P4 for a new four-point group. The comparison process is repeated across the data row. When two points of opposite sign are found, their coordinates are stored. In order to save space in memory, the program then stops testing values in a particular four-point group and moves to the next group. This explains why, in the final plots, the lines which connect points of opposite sign
FIGURE 1. POINT LABELING PATTERNS FOR NEUTRAL LINE PROGRAM

may take any of the four directions: they simply record the relative positions of the members of the first pair of points of opposite sign which was found in each group of four points. When the first two data rows have been scanned, the process is repeated with the second and third rows, and the full sequence is repeated until the entire frame has been scanned or until the array reserved for coordinate values has been filled.

After the scanning has been completed, the coordinate values of the pairs of points of opposite sign are plotted by connecting them with short lines. A line drawn joining the midpoints of these short connecting lines will trace the location of a neutral line to the precision allowed by the spatial resolution of the data. To assist in determining the coordinates of the plotted points, grid lines are drawn at every fourth data row and column.

The program uses as data the magnetograph output tapes in their format after undergoing initial processing. In this format, the transverse and longitudinal components are written on separate tapes. Each magnetogram consists of 9 records: a label record of 19 words, and then 8 records of 2049 words each (a counter plus 2048 signal values). In some cases, a few words at the beginning of each magnetogram were lost when the original tapes were processed. The tape read portion of this program contains a short routine to correct for this condition.
Two values must be supplied in order to execute the program. Both of these are entered in DATA statements within the program. The first is the number of longitudinal matrices contained on the tape. This quantity is given the variable name of IPP and is entered as an integer variable. For example, for a tape containing 12 longitudinal matrices, the DATA statement would have the form

```
DATA IPP/12/
```

Only longitudinal matrices are processed by this program. The determination of transverse field strengths from data recorded in the format used here requires that a transverse field value be calculated as the square root of the sum of the squares of its components. The algebraic signs of the transverse field values therefore cannot be determined, and polarity reversals cannot be detected.

The second datum to be supplied is the mean background noise level for the frame of data. This variable is called RMSN; for the matrices that have been processed so far, the value RMSN = 0.05 is usually satisfactory. RMSN is a real variable. The DATA statement which specifies RMSN would be written

```
DATA RMSN/.05/
```

for a typical data frame.

A listing of the program is given in Figure 2. A sample plot is shown in Figure 4.
C 1200 GRADIENT CONTINUES IN MAGNETOGRAM DATA HNO 7/74

DIMENSION NLX(2000),NLX(2000),ARRAY(221,TEMP(3000),Y(32),12M

DIMENSION A(20)

DATA (ARRAY(1)=1, 221/244 HARD COPY ONLY, ONE COPY, 18*6K)

DATA HL/R/

DATA RNS/ 02/

KRD = 5

KAD = 6

CALL OPENER (1, 3)

IMAX = 128

IAMY = 128

ISIZE = 2000

C NO. OF ROWS, NO. OF COLUMNS, NO. OF NEUTRAL LINE POSITIONS TO BE

C STORED

ISIZE = ISIZE - 1

C DATA ARE WRITTEN ON TAPE FROM RIGHT TO LEFT, IN ROW ORDER, A

C ROWS AT A TIME, PRECEDED BY A RECORD CONTAINING 19 WORDS

C OF HEADER INFORMATION

CALL OPENER (2, 1, IPP)

DO 121 K1= 1, 129

CALL OPENER (1, K2)

CONTINUE

DO 121 K1= 1, 129

J = TEMP(K1) = 0.

CONTINUE

FIGURE 2. LISTING OF NEUTRAL LINE PLOT PROGRAM

ORIGINAL PAGE IS OF POOR QUALITY
00214 524 131 CONTINUE
00216 534 129 IF (IER-1) 395, 450 395
00221 544 395 WRITE (KWR, 392) IER, NW
00225 554 450 IF (T=1) 65, 465 65
00230 564 455 IX = 100
00231 574 IY = 50
00232 584 IDELY = 25
00233 594 N = FLD(2, 1O, TEMP(11))
00234 530 1129 IFDAYS = 200*FLD(26, 1, N)+100*FLD(27, 1, N)+10*FLD(31, 1, N)+8*FLD(32, 1, N)
00235 424 2*4*FLD(33, 1, N)+2*FLD(34, 1, N)+FLD(35, 1, N)
00238 654 N = FLD(18, 7, TEMP(11))
00239 644 FLDO(30, 2, N) = FLD(12, 4, TEMP(11))
00237 654 I0HOURS = 20*FLD(30, 1, N)+10*FLD(31, 1, N)+8*FLD(32, 1, N)
00238 664 I + 4*FLD(33, 1, N)+2*FLD(34, 1, N)+FLD(35, 1, N)
00240 694 N = FLD(20, 7, TEMP(11))
00241 684 TMIN = 40*FLD(29, 1, N)+20*FLD(30, 1, N)+10*FLD(31, 1, N)
00240 624 10*FLD(10, 1, N)+40*FLD(31, 1, N)+10*FLD(32, 1, N)
00243 634 ISEC = 20*FLD(29, 1, N)+10*FLD(30, 1, N)+10*FLD(31, 1, N)+8*FLD(32, 1, N)
00243 644 I + 4*FLD(33, 1, N)+2*FLD(34, 1, N)+FLD(35, 1, N)
00245 724 ENCODE (10, LT1ME) I0DAYS, I0HOURS, IMIN, ISEC
00246 714 90 FORMAT (T4, 3HAYS 9, 6H HOURS 9, 8H MINUTES 9, 18H SECONDS)
00247 704 CALL FRAMEV(3)
00248 744 CALL PRINTV (54, LT1ME, IX, IY)
00249 774 CALL STOPTV
00250 794 AB CONTINUE
00250 794 ILOC = 1
00261 804 1C# 1
00261 814 C ICT IS NO. OF RECORDS READ FROM TAPE
00261 824 C ICT IS NO. OF TIMES TAPE IS EXECUTED
00261 834 C ICT SHOULD BE EQUAL TO ICT - 1
00262 844 T = 129
00263 854 NO 6A JMJ = 7, 32
00266 874 JM = 1, 128
00271 874 Y(JJ, KK) = TEMP(1)
00272 884 T = 1 + 1
00273 894 CONTINUE
00275 914 48 CONTINUE
00275 914 C REMOVE STRIPF
00277 924 DO 454A IM = 1, 32
00277 924 1X = (IM-1)*28 + 111
00280 934 TEMP(IX) = TEMP(IX + 1)
00280 944 CONTINUE
00280 954 454A CONTINUE
00280 964 C SET X COORDINATE COUNTER AND START SEARCH OF FRAME
00280 974 NMAX = IMAX - 1
00280 984 XMAX = IMAX - 1
00280 994 C START SEARCHING COLUMNS 2 THROUGH 16
00280 1004 C START SEARCHING COLUMNS 2 THROUGH 16
00280 1014 C SPIKE NOISE FILTER
00280 1024 211 DO 4051 JM = 1, 31
00280 1034 4051 DO 4051 KK = 1, 172
00280 1044 XTEMP = ARS(KRR=ARS(Y(JJ, KK))
00280 1054 IF (XTEMP = 3) 4051, 4951, 4952
00280 1064 4952 XTEMP = ARS(KRR=ARS(Y(JJ,1,1))
00280 1074 IF (XTEMP = 3) 4951, 4953, 4951

ORIGINAL PAGE IS OF POOR QUALITY

FIGURE 2 - Continued

115
Irr

00327 108* 4054 Y(JJ, KK) = RMSN / 1.50
00330 109* GO TO 4051
00331 110* 4053 ZTEM = ABS(RMSN - ABS(Y(JJ, KK+1)))
00332 111* IF (ZTEM = 3, RMSN) 4055, 4055, 4051
00335 112* 4055 ZTEM = ABS(RMSN - ABS(Y(JJ, KK+1)))
00336 113* IF (ZTEM = 3, RMSN) 4054, 4054, 4051
00341 114* 4051 CONTINUE
00343 115* 4050 CONTINUE
00345 116* DO 9 JJ = 11, 16
00346 117* C PREPARE TO GET CORRECT COORDINATES FOR VALUES TO BE STORED
00347 118* C MISUNDERSTANDING AMOUNT OR ORDER IN WHICH TAPE WAS WRITTEN
00348 119* C SO MUST EXCHANGE X AND Y COORD AFTER THEY ARE DETERMINED
00350 120* NX1 = JJ + (IC - 1) *16
00351 121* MX2 = NX1 + 1
00352 122* DO 10 IQ = 1, 127
00353 123* C SET Y COORDINATE COUNTER
00355 124* NY1 = IQ
00356 125* NY2 = IQ + 1
00357 126* P1 = Y(JJ, 1)
00358 127* PX1 = Y(JJ+1, 1)
00359 128* P3 = Y(JJ+1, 1)
00360 129* PX3 = Y(JJ+1, 1)
00361 130* PP = ABS(P1) - RMSN
00362 131* IF (PP) 902, 902, 902
00363 132* 902 = PP = C
00364 133* 903 IF (P1) 904, 902, 903
00367 134* 904 P1 = -PP
00368 135* 905 GO TO 902
00369 136* 906 PP = C
00370 137* 907 IF (P1) 908, 907, 903
00373 138* 908 PP = -PP
00374 139* 909 GO TO 902
00375 140* 910 PP = C
00376 141* 911 IF (P1) 904, 901, 905
00377 142* 904 PP = D
00378 143* 905 IF (P2) 905, 901, 916
00381 144* 916 P2 = PP
00382 145* 917 GO TO 901
00383 146* 918 P2 = PP
00384 147* 919 IF (P2) 901, 807, 912
00387 148* 920 PP = D
00388 149* 921 IF (P3) 917, 912, 908
00391 149* 922 P3 = -PP
00392 150* 923 GO TO 912
00393 151* 924 PP = D
00396 152* 925 IF (P4) 908, 911, 909
00400 153* 926 PP = D
00401 154* 927 IF (P4) 909, 911, 910
00404 155* 928 PP = -PP
00405 156* 929 GO TO 911
00408 157* 930 PP = D
00409 158* 931 IF (P1) 904, 903, 103
00412 159* 932 IF (P2) 901, 912, 904
00415 160* 933 IF (P3) 917, 912, 908
00416 161* 934 P4 = -PP
00417 162* 935 MLX = Y(JJ) = NY1
00418 163* 936 MLX = Y(JJ) = NY2

FigurE 2 - Continued

ORIGINAL PAGE IS OF POOR QUALITY
FIGURE 2 - Continued
00644 220 CONTINUE
00650 221 CONTINUE
00652 222 IC = IC + 1
00653 223 CALL REDTPR(A; 2, IER, NW, 1, ICNT, 2048, TEMP(I))
00654 224 WRITE (KWR, 989) NW, ICNT
00655 225 ICT = ICT + 1
00656 226 IF (NW-2049) 230, 230
00657 227 WRITE (KWR, 988) ICT
00658 228 -230 WRITE (KWR, 988) ICT
00659 229 KK = 2049-NW + 1
00660 230 JM = 1
00661 231 DO 231 K = KK, 2049
00662 232 TEMP(K) = TEMP(JM)
00663 233 JM = JM + 1
00664 234 CONTINUE
00665 235 K = KK - 1
00666 236 DO 236 J = 1, K
00667 237 IF (ICNT-NW) 238, 238
00668 238 WRITE (KWR, 392) NW, ICNT
00669 239 KK = KK - 1
00670 240 DO 240 J = 1, K
00671 241 TEMP(J) = TEMP(J) + K
00672 242 IF (IER > 1) 243, 243
00673 243 RITF (KWR, 132, IER, NW)
00674 244 IFIN = IFIN + 1
00675 245 K = K - 1
00676 246 IFIN = IFIN + 1
00677 247 CONTINUE
00678 248 IFIN = IFIN + 1
00679 249 CONTINUE
00680 250 REMOVE STRIPE
00681 251 DO 251 NW, I = 17, 32
00682 252 TEMP(I) = TEMP(I) + 111
00683 253 CONTINUE
00684 254 IFIN = IFIN + 1
00685 255 GO TO 211
00686 256 IFIN = IFIN + 1
00687 257 CONTINUE
00688 258 IFIN = IFIN + 1
00689 259 IFIN = IFIN + 1
00690 260 CONTINUE
00691 261 IFIN = IFIN + 1
00692 262 IFIN = IFIN + 1
00693 263 IFIN = IFIN + 1
00694 264 GO TO 211
00695 265 IFIN = IFIN + 1
00696 266 THIS COMPLETFS SEARCH FOR *ZERO GRADIENT* POINTS
00697 267 7 IFIN = ILOC - 1
00698 268 WRITE (KWR, 132) IFIN
00699 269 CONTINUE
00700 270 IFIN = IFIN + 1
00701 271 CONTINUE
00702 272 CONTINUE
00703 273 PLOT TAPE
00704 274 CALL GRIDIV (0.0, 0.128, 0.0, 0.128, 0.4, 0.4, 0.0, -5.5, -10.0, IC, 4, 4)

FIGURE 2 - Continued

ORIGINAL PAGE IS OF POOR QUALITY
<table>
<thead>
<tr>
<th>Line</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>01004</td>
<td>276*</td>
<td>IFI = ILOC-2</td>
</tr>
<tr>
<td>01005</td>
<td>277*</td>
<td>DO RDO I = 1, IFI, 2</td>
</tr>
<tr>
<td>01010</td>
<td>278*</td>
<td>X = NLX(I)</td>
</tr>
<tr>
<td>01011</td>
<td>279*</td>
<td>CALL XSCLVI(X, NXP, IERR)</td>
</tr>
<tr>
<td>01012</td>
<td>280*</td>
<td>NXI = NXP</td>
</tr>
<tr>
<td>01013</td>
<td>281*</td>
<td>X = NLX(I+1)</td>
</tr>
<tr>
<td>01014</td>
<td>282*</td>
<td>CALL XSCLVI(X, NXP, IERR)</td>
</tr>
<tr>
<td>01015</td>
<td>283*</td>
<td>NX2 = NXP</td>
</tr>
<tr>
<td>01016</td>
<td>284*</td>
<td>YY = (NMAY+1)-NLY(I)</td>
</tr>
<tr>
<td>01017</td>
<td>285*</td>
<td>CALL YSCLVI(YY, NYP, IERR)</td>
</tr>
<tr>
<td>01020</td>
<td>286*</td>
<td>NYI = NYP</td>
</tr>
<tr>
<td>01021</td>
<td>287*</td>
<td>YY = (NMAY+1)-NLY(I+1)</td>
</tr>
<tr>
<td>01022</td>
<td>288*</td>
<td>CALL YSCLVI(YY, NYP, IERR)</td>
</tr>
<tr>
<td>01023</td>
<td>289*</td>
<td>NY2 = NYP</td>
</tr>
<tr>
<td>01024</td>
<td>290*</td>
<td>CALL LINEV(NXI, NYI, NX2, NY2)</td>
</tr>
<tr>
<td>01025</td>
<td>291*</td>
<td>ADD CONTINUE</td>
</tr>
<tr>
<td>01027</td>
<td>292*</td>
<td>CALL ENDJOB</td>
</tr>
<tr>
<td>01031</td>
<td>293*</td>
<td>999 CONTINUE</td>
</tr>
<tr>
<td>01032</td>
<td>294*</td>
<td>STOP</td>
</tr>
<tr>
<td>01033</td>
<td>295*</td>
<td>END</td>
</tr>
</tbody>
</table>

END OF COMPIlATION: NO DIAGNOSTICS.
MAGNETIC FIELD GRADIENT PROGRAM

One way to represent magnetic field energy distributions in sunspots is to plot values of magnetic field gradient as a function of position in the spot. A second special-purpose program has been written to generate such displays.

The value actually plotted is not the value of magnetic field gradient; instead, it is the difference between signal values of adjacent grid positions. This procedure was chosen for several reasons. First, it gives the most direct representation of the actual data. Second, the plotted values are independent of uncertainties in the field strength calibration of the signal. Third, evaluation of distances on the solar surface and foreshortening corrections are not required, so the plot is independent of the assumptions which must be introduced to make those calculations. Fourth, if differences only are used, the evaluation of a numerical derivative is avoided; that procedure is notoriously unstable. The final plot is presented in the original magnetogram grid format, so it can be easily compared with contour plots and with photographs of the scope display at the time of observation. A label page giving the date and time of the observation is written for each plot.

Difference values in three size ranges are plotted. The scale factor used for demonstration was the approximate mean noise level of the observations, XNSE, but any interesting scale factor could be substituted. The plotting symbols were chosen to give an appearance of increased density as the signal difference value increased. The difference ranges and corresponding symbols are listed in Table 1.

The magnetograph signal data are read from magnetic tapes in the same format as are used for the neutral line program. In addition
TABLE 1. GRADIENT PLOT PROGRAM SYMBOLS

<table>
<thead>
<tr>
<th>GRADIENT DIFFERENCE</th>
<th>SYMBOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 \cdot XNSE \leq \text{difference} < 5 \cdot XNSE</td>
<td>0</td>
</tr>
<tr>
<td>5 \cdot XNSE \leq \text{difference} < 10 \cdot XNSE</td>
<td>+</td>
</tr>
<tr>
<td>\text{difference} \geq 10 \cdot XNSE</td>
<td>*</td>
</tr>
</tbody>
</table>

to the data tape, a mean noise level or other plotting scale factor must be specified. This value is supplied in a DATA statement by assigning a value to a variable called XNS; the appropriate noise value, XNSE, is later calculated from XNS. In the sample given here, XNS = 0.05. As in the neutral line program, the number of matrices to be processed is supplied in a DATA statement. Again, the variable name assigned to this quantity is IPP, and again it is an integer variable. This program processes either longitudinal or transverse data but cannot do both types in a single run. If longitudinal data are to be plotted, the magnetograph data tape, after initial processing, is used as the data source. IPP is the number of longitudinal matrices on the tape. A third DATA statement must be included:

DATA LT/1/

and will cause the program to select the correct procedure for reading and plotting the longitudinal data. If transverse data are to be plotted, the data tape must be generated by the fourth program described in this section. IPP is the number of transverse matrices to be plotted, and LT must be supplied by the DATA statement

DATA LT/2/

No separate data deck is required.

The logic of the program is like that of the neutral line plot program, except that value differences instead of sign differences are
recorded. Sequences of small grids, numbered P1, P2, P3, P4 as shown in Figure 1, are used to evaluate the differences across the magnetogram. The plot symbol is assigned to the coordinates of either P1 or P2. The coordinates of P1 are used if one of the differences (P1-P2), (P1-P3), or (P1-P4) is plotted; the coordinates of P2 are used if (P2-P3) or (P2-P4) is plotted. The value plotted is the largest difference found in the small four-point grid. No difference values smaller than 2·XNSE and no isolated difference values larger than 6·XNSE are plotted.

A listing of the program is given in Figure 3, and a sample plot is shown in Figure 5.
00100 10 C GRADIENT CONTURS IN MAGNETIC FIELD
00100 20 C BLANK IS PLTTE IF GRADIENT VALUE IS LESS THAN 2X NOISE;
00100 30 C 0 IF GRADIENT IS 2 TO 5X NOISE; 1 IF GRADIENT IS MORE THAN
00100 40 C 10X NOISE. ALL GRADIENTS MORE THAN 2X NOISE ARE PRINTED.
00101 50 C DIMENSION XTO(1000),YTO(1000),XFLY(1000),YFLY(1000)
00103 60 C DIMENSION XTN(500),YTN(500),XTEN(500),YTEN(500),Y(32), 128
00104 70 C DIMENSION ARRAY(22), GTEM(5)
00105 80 C DIMENSION FDX(12), FLRY(12)
00106 90 C DIMENSION A11(9)
00107 100 C DIMENSION LTIME(9)
00110 130 C DATA IPP/38/
00111 120 C DATA FLDX(2)/6H
00117 140 C DATA (ARRAY(1), 1=1, 22)/9*6H
00118 160 C DATA (ARRAY(1), 1=1, 22)/24H HARDCOPY ONLY, ONE COPY
00120 170 C DATA HL/8/
00125 180 C DATA LT)/1/
00125 190 C LET = IF LONGITUDINAL, 2 IF TRANSVERSE
00127 200 C DATA XNS*/05/
00131 210 C KRE = b
00132 220 C KN = 6
00133 230 C CALL OPEN(8, 1, 5)
00134 240 C IMAX = 128
00135 250 C IMAX = 128
00136 260 C ISIZE = 1000
00137 270 C NO. OF ROWS, NO. OF COLUMNS, NO. OF GRADIENT VALUES STORED
00140 290 C IS = 1000
00141 300 C IS2 = 1000
00141 310 C IS3 = 500
00142 320 C IS4 = ISIZE - 1
00143 330 C CALL IDENT(9, ARRAY)
00144 330 C DO 997 I = 1, IPP
00144 340 C READ HEADER INFORMATION
00147 350 C 300 CALL HEDTPR (8, 2, 1ER, WR, 170, A)
00150 360 C IF (HR=19) 300, 1, 300
00150 360 C IF (HR=19) 300, 1, 300
00156 380 C WRITE (XNS, 990)
00157 390 C IF (IP=30) 997, 700, 700
00162 400 C CONTINUE
00163 410 C IF (LT=1) 170, 170, 171
00164 420 C 170 XNSE = A17(1+XNS-A(171))
00167 430 C 60 TO 192
00170 440 C 171 XNSE = SORT(481)*SORT(XNS)
00170 450 C XNSE IS MEAN NOISE LEVEL
00171 460 C TXNS = XNSE-2.00
00172 470 C DXNS = XNSE=5.00
00173 480 C DXNS = XNSE=10.00
00174 490 C FLDLX11 = A(3)

FIGURE 3. LISTING OF MAGNETIC FIELD GRADIENT PLOT PROGRAM

ORIGINAL PAGE IS OF POOR QUALITY

123
FIGURE 3 - Continued
FIGURE 3 - Continued
FIGURE 3 - Continued
FIGURE 3 - Continued
GO SEARCH FIRST 16 COLUMNS AGAIN

GO TO 211

DO 219 JJ = 1, 16
 DO 220 KK = 1, 128
 YY(JJ, KK) = YY(JJ + 14, KK)
 CONTINUE
 219 CONTINUE

GO TO 211

THIS COMPLETES CALC OF GRADIENT VALUES

WRITE (KRR, 27) J1, J2, J3

FORMAT (1H, 3HJ1++, 15, 5X, 3HJ2++, 15, 5X, 3HJ3++, 15)

INVERT X AND Y ARRAYS FOR PLOTTING

WRITE (KRR, 27) J1, J2, J3

CONTINUE

DO 799 to 1. J1

DO 799 to 1. J2

DO 799 to 1. J3

END OF COMPILATION: NO DIAGNOSTICS.

CALL WUIK3L (-1, 0.0, 128.0, 0.0, 128.0, 1.0, FLDX, FLDT, JJ, XTWO, YTWO)

CALL WUIK3L (-1, 0.0, 128.0, 0.0, 128.0, 1.0, FLDX, FLDT, JJ, XTEN, YTEN)

CALL WUIK3L (-1, 0.0, 128.0, 0.0, 128.0, 1.0, FLDX, FLDT, JJ, XTWO, YTWO)

CALL WUIK3L (-1, 0.0, 128.0, 0.0, 128.0, 1.0, FLDX, FLDT, JJ, XTEN, YTEN)

FIGURE 3 - Concluded

ORIGINAL PAGE IS OF POOR QUALITY
RESULTS OF PLOT PROGRAMS

Figures 4 and 5 show results of the two plot programs for the same frame of data (23 October 1973, 23\(^h\) 41\(^m\) 9\(^s\) U.T.). Figure 4 is the neutral line plot and Figure 5 the field gradient plot. Figure 6 is a contour plot of the same data frame, made by the Computer Sciences Corporation. (The orientation of Figure 6 is reversed both vertically and horizontally from Figures 4 and 5.) The contour intervals of Figure 6 are labeled according to the code given in Table 2.

TABLE 2. CONTOUR LABELS FOR FIGURE 6

<table>
<thead>
<tr>
<th>LABEL</th>
<th>FIELD STRENGTH (gauss)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-2.581 \times 10^3</td>
</tr>
<tr>
<td>B</td>
<td>-1.290 \times 10^3</td>
</tr>
<tr>
<td>C</td>
<td>-6.452 \times 10^2</td>
</tr>
<tr>
<td>D</td>
<td>-2.581 \times 10^2</td>
</tr>
<tr>
<td>E</td>
<td>-2.581 \times 10^1</td>
</tr>
<tr>
<td>F</td>
<td>0.000</td>
</tr>
<tr>
<td>G</td>
<td>+2.581 \times 10^1</td>
</tr>
<tr>
<td>H</td>
<td>+2.581 \times 10^2</td>
</tr>
<tr>
<td>I</td>
<td>+6.452 \times 10^2</td>
</tr>
<tr>
<td>J</td>
<td>+1.290 \times 10^3</td>
</tr>
<tr>
<td>K</td>
<td>+2.581 \times 10^3</td>
</tr>
</tbody>
</table>

The position of the solar limb shows clearly in each of these three figures. (The vertical streak in Figures 5 and 6 is a flaw on the magnetograph vidicon tube. The gradient plotting program now contains a routine which removes this streak.) In addition, the active region shown contains two neutral lines which run across the regions of steepest magnetic field gradient. There is also some evidence, in Figures 4 and 6, of a weak but complex field structure near the limb.
FIGURE 4. SAMPLE NEUTRAL LINE PLOT
FIGURE 5. SAMPLE GRADIENT PLOT
FIGURE 6. MAGNETIC FIELD CONTOURS FOR DATA PLOTTED IN FIGURES 4 AND 5
Some of the data matrices contain noise values which appear as single values much larger than any other values near them. This program removes each of these values, replaces it by the average of the points surrounding the removed value, and writes a new tape containing the corrected matrices in the same format as on the original tape. Both longitudinal and transverse matrices can be corrected in one pass.

The program also removes the vertical streak which appears in Figures 5 and 6. This stripe always occurs in column 111 of the data matrix as it is read in (the matrix is stored reading from right to left across the frame). Because the location is always the same, the stripe can be removed as soon as the matrix has been read. The value in the location \(X = 111 \) in each line is replaced by the value \(X = 112 \) in the same line.

The isolated values to be removed are identified by comparing them to criterion values which are supplied as data. Two criterion values are needed, one for longitudinal data and one for transverse. The data tapes used are the magnetograph data tapes after the initial processing, so the data values are signal values, not field strengths. Also, the transverse criterion value is the criterion for the U or the R component, not for the resultant transverse field vector. It is assumed that the same criterion value can be used for the U and R matrices.

After a matrix is read, the proper criterion value is chosen, and the absolute value of each matrix data point is compared to the criterion value. If the matrix value is more than six times the
criterion value, the adjacent matrix points are examined. If one or more of the adjacent values is greater in absolute value than six times the criterion, the tested value is assumed to be valid. If none of the adjacent values is greater in absolute value than six times the criterion, the tested value is assumed to be invalid and is replaced by the average of the adjacent values.

The magnetograph data for the program are taken from the data tapes after initial processing. These tapes have the general format shown in Figure 7.

![Diagram of magnetograph data tape format]

Figure 7. Magnetograph Data Tape Format
On any tape, the longitudinal matrix may or may not be present, the intensity matrix may or may not be present, and the U-R matrix pair may or may not be present. This program will process any combination of matrices if the correct data are supplied. (It is assumed, however, that the intensity matrices are either always present or always absent. All tapes processed so far have complied with this assumption.)

In addition to the tape, values must be furnished to the program through four DATA statements. The contents and formats of these statements are described in Table 3.

TABLE 3. DATA STATEMENTS FOR SPIKE NOISE REMOVAL PROGRAM

<table>
<thead>
<tr>
<th>VARIABLE NAME</th>
<th>VARIABLE DEFINITION</th>
<th>MODE (REAL OR INTEGER)</th>
<th>EXAMPLE OF DATA STATEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMAT</td>
<td>Number of magnetograms on tape (i.e., number of groups of matrices as shown in Figure 7)</td>
<td>Integer</td>
<td>DATA NMAT/7/</td>
</tr>
<tr>
<td>XNA</td>
<td>Criterion value for longitudinal data = six times largest valid isolated signal value</td>
<td>Real</td>
<td>DATA XNA/.005/</td>
</tr>
<tr>
<td>XNB</td>
<td>Criterion value for each component of transverse data = six times largest valid isolated signal value expected in U and R matrices</td>
<td>Real</td>
<td>DATA XNB/.002/</td>
</tr>
<tr>
<td>DINT</td>
<td>DINT = 1.0 if intensity matrices are present on tape and = 0.0 if no intensity matrices were recorded</td>
<td>Real</td>
<td>DATA DINT/0.0/</td>
</tr>
</tbody>
</table>
After the matrix has been corrected, the program writes it on tape in the same format in which it was read and reads the next matrix. The tape which is produced contains NMAT groups of matrices; each group contains the same number of matrices as were in that group on the original tape.

A listing of the program is given in Figure 8.

```
00100 1  C   REMOVE SPIKE NOISE VALUES
00101 2  C   DIMENSION TEMP(16384),A(15),IA(4),Y(128,128)
00103 3  C   DIMENSION TEME(2049)
00104 4  C   DIMENSION XNSET(4)
00105 5  C   NMAT= NO. OF MAGNETOGRA MSON DATA TAPE
00106 6  C   DATA NMAT/7/
00107 7  C   DATA XNA/00583/
00111 8  C   DATA XNB/00156/
00111 9  C   XNA IS LIMIT FOR L MATRIX
00111 10 C   XNB IS LIMIT FOR T MATRIX
00113 11 C   DATA DINT/100/

FIGURE 8. LISTING OF NOISE REMOVAL PROGRAM
```

ORIGINAL PAGE IS OF POOR QUALITY
```
C DINT=0 IF NO INTENSITY MATRICES. *1. IF INTENSITY MATRICES
C PRESENT
KRE= 5
KAR= 6
CALL OPEN (8,1.5)
CALL REIND (8)
CALL OPEN (9,1.5)
CALL REIND(9)
DO 100 IMAT= 1, NMAT
CALL REIND191
CALL READ (HEADER
CALL REDTPR
CALL WRITER
WRITE (KWkr, 211)
WRITE (KWkr, 299)
WRITE (KWkr, 168) (A(1), 1= 8, 15)
WRITE (MAT
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
IF (DINT) 2, 2, 3
2 IF (IA(2)=5) 4, 5, 5
9 IRUN= 1
XNSE(1)= XNA
GO TO 50
5 IF (IA(2)=61) 6, 6, 7
6 IRUN= 2
XNSE(1)= XNB
XNSE(2)= XNB
GO TO 50
3 IF (IA(2)= 51) 8, 8, 9
8 IRUN= 2
XNSE(1)= XNA
XNSE(2)= XNA
GO TO 50
9 IF (IA(2)=61) 10, 10, 11
10 IRUN= 3
XNSE(1)= XNA
XNSE(2)= XNB
XNSE(3)= XNB
GO TO 50
11 IRUN= 4
XNSE(1)= XNA
XNSE(2)= XNB
XNSE(3)= XNB
GO TO 50
50 DO 51 I= 1, IRUN
```

FIGURE 8 - Continued
00245 & ^ & C READ MATRIX
00250 69 & J = 1
00251 70 & CALL REDTPR(8,2,IER,NW,1,ICNT,2048,TEMP(J))
00252 71 & WRITE (KWR,989) NW, ICNT
00256 72 & 989 FORMAT (1H1,3HNM=,11,5X,5HICNT=,15)
00256 73 & C CHECK FOR WRONG RECORD LENGTH IN 1ST RECORD
00257 74 & IF (LMW=2049) J = 59; 130
00262 75 & WRITE (KWR,989) NW, ICNT
00266 76 & WRITE (KWR,1130) (TEMP(IL), IL=1,20)
00274 77 & 1130 FORMAT (5(IH,6E12.5))
00275 78 & DO 122 IB = 1, 3
00300 80 & 122 TEME(1B)= TEMP(1B)
00303 81 & IMB = IMB + 1
00310 84 & 123 CONTINUE
00312 85 & DO 124 IB = 4, 10
00315 86 & 124 TEME(1B)= XNSE(1B)
00317 87 & DO 125 IB = 1, 2048
00322 88 & 125 TEME(1B)= TEME(1B)
00324 89 & WRITE (KWR,1133) (TEMP(IL), IL=1,20)
00332 90 & 59 J = J + 2048
00333 91 & CALL REDTPR(8,2,IER,NW,1,ICNT,2048,TEMP(J))
00334 92 & WRITE (KWR,989) NW, ICNT
00340 93 & IF (ICNT=8) 12, 129, 129
00343 94 & 12 J = J + 2048
00344 95 & GO TO 53
00347 98 & C REMOVE STRIPE
00349 97 & 129 DO 4056 IM = 1, 328
00350 98 & IX = (IM-1)*128+11
00351 99 & TEMPE(IK)= TEMP (IK + 1)
00352 100 & 4056 CONTINUE
00352 101 & C WRITE MATRIX INTO Y ARRAY
00354 102 & IX = 1
00355 103 & DO 68 JJ = 1, 124
00356 104 & DO 70 KK = 1, 124
00363 105 & Y(JJ,KK)= TEMPE(1Y)
00364 106 & IX = IX + 1
00365 107 & 70 CONTINUE
00367 108 & 68 CONTINUE
00367 109 & C SPIKE NOISE FILTER
00371 110 & 211 DO 4050 JJ = 1, 127
00374 111 & DO 4051 KK = 1, 127
00377 112 & XTEM = ABS(XNSE(1)) - ABS(Y(JJ,KK))
00380 113 & XMK = Y(JJ,KK)
00390 114 & 4052 YTEM = ABS(XNSE(1)) - ABS(Y(JJ+1,KK))
00400 115 & IF (XTEM=5*XNSE(1)) 4351, 4051, 4052
00401 116 & 4052 YTEM = ABS(XNSE(1)) -ABS(Y(JJ+1,KK))
00405 116 & IF (YTEM=5*XNSE(1)) 4353, 4053, 4051
00410 117 & 4054 TTM1 = Y(JJ+1,KK)+Y(JJ,KK)+Y(JJ+1,KK+1))/3.
00411 118 & IF (JJ=1) 3002, 3003, 3001
00414 119 & 3001 TTM2 = (TTM1+Y(JJ-1,KK)+Y(JJ+1,KK)))/3.
00415 120 & GO TO 3002
00416 121 & 3002 TTM2 = TTM1
00417 122 & 3002 IF (KK=1) 3003, 3003, 3004
00422 123 & 3004 TTM3 = (TTM2+Y(JJ,KK-1)+Y(JJ+1,KK-1))/3.

FIGURE 8 - Continued
```
00423  124  IF (JJ = 1) 3005, 3005, 3006
00426  125  3006  TTM4 = (TTM3 + Y(JJ-1, KK-1))/2.
00427  126  GO TO 3010
00429  127  3005  TTM4 = TTM3
00430  128  GO TO 3010
00432  129  3003  TTM4 = TTM2
00433  130  3010  Y(JJ, KK) = TTM4
00434  131  WRITE (KWR, 4049) JJ, KK, XMG, Y(JJ, KK)
00435  132  4049  FORMAT (IH, 15, 5X, 15, 2(5X, E12.5))
00436  133  GO TO 4051
00437  134  4053  ZTEM = ABS(XNSE(1)) - ABS(Y(JJ, KK+1))
00438  135  IF (ZTEM = 5.*XNSE(1)) 4055, 4055, 4051
00439  136  4055  ZTEM = ABS(XNSE(1)) - ABS(Y(JJ+1, KK+1))
00440  137  IF (ZTEM = 5.*XNSE(1)) 4054, 4054, 4051
00441  138  4051  CONTINUE
00442  139  4050  CONTINUE
00443  140  C   REWRITE CORRECTED Y ARRAY IN TEMP
00444  141  DO 171       J = 1
00445  142  171  JJ = J + 120
00446  143  DO 170       KK = 1 + 120
00447  144  170  TEMP(IY) = Y(JJ, KK)
00448  145  IY = IY + 1
00449  146  171  CONTINUE
00450  147  170  CONTINUE
00451  148  171  CONTINUE
00452  149  C   WRITE TAPE.RECORD
00453  150  ICNT = 1
00454  151  CALL WRITER (9, 2, IER, 1, ICNT, 2348, TEMP(J))
00455  152  IF (ICNT = 8) 54, 56, 56
00456  153  54  J = J + 2048
00457  154  ICNT = ICNT + 1
00458  155  GO TO 55
00459  156  56  WRITE (KWR, 57) IMAT
00460  157  57  FORMAT (18H WRTE MATRIX NO., 14)
00461  158  51 CONTINUE
00462  159  100 CONTINUE
00463  160  CALL CLOSE (19, 31)
00464  161  STOP
00465  162  END

END OF COMPILATION: NO DIAGNOSTICS.

FIGURE 8 - Concluded

ORIGINAL PAGE IS OF POOR QUALITY

139
TRANSVERSE MATRIX GENERATION PROGRAM

This is a very simple program which reads a magnetograph data tape, selects the U and R matrices, and calculates the transverse component T of the signal according to \( T = (U^2 + R^2)^{1/2} \), for each matrix point. The matrix of T values is then written on a new tape. The tape written by this program is not in the same format as the original tapes; it consists only of header records and T matrices.

The data tapes for this program are the same as for the other programs described in this section. Two data values must be supplied through DATA statements; these are NMAT and DINT. The definitions of these variables and formats of the DATA statements are exactly the same as for the Noise Removal Program. Note, in particular, that NMAT is the total number of magnetograms on the tape, whether or not all those magnetograms contain transverse data matrices. On the output tape, however, headers and matrices are written only for those magnetograms which contained transverse data.

A listing of the program is given in Figure 9.

```
00100 10 C WRITE TAPE FOR PLOTTING TRANSVERSE FIELD PATTERNS
00101 20 C DIMENSION U(14384), R(12048), HT(12048)
00103 30 C DIMENSION A(151, 15)
00103 40 C NMAT = NO. OF MAGNETOGROMS ON DATA TAPE
00104 50 C DATA NMAT/15/
00104 60 C DATA UNTG/15/
00106 70 C DINT=D IF NO INTENSITY MATRIX PRESENT, =1 IF INTENSITY MATRIX
00106 80 C PRESENT
00110 90 C KRE=5
00111 100 C KRR = 6
00111 110 C CALL OPEN (8, 1, 5)
00113 120 C CALL REWIND (8)
00114 130 C CALL OPEN (9, 1, 5)
00115 140 C CALL REWIND (9)
00115 150 C IMAT = 1
00116 160 C SKIP DOWN TO FIRST U MATRIX
00117 170 C I CALL REDTPR (8, Z, 1ER, hN, 2, 1A(11), 7, 1A(1), 2, 1A(3)), 8, 1A(8))
00120 180 C 21 FORMAT (NH, NASA, 1b)
```

FIGURE 9. LISTING OF TRANSVERSE MATRIX GENERATION PROGRAM
FIGURE 9 - Continued
13 CALL REDTPR (8, 2, IER, NW, 1, ICNT, 2048, R(1))
00303 94  WRITE (KWR, 22) NW, ICNT
00313 77  DO 10 J = 1, 2048
00316 78  I = J + 11
00317 79  HT(J) = SQRT(SQRT(U(I)*U(J)*R(J)*R(J)))
00320 80  10 CONTINUE
00322 81  I1 = I1 + 2048
00323 82  CALL WRITER (9, 2, IER, 1, ICNT, 2048, HT(11))
00324 83  IF (ICNT-8) 13, 12, 12
00327 85  12 WRITE (KWR, 19) IMAT
00332 86  14 FORMAT (21H WROTE HT MATRIX NO. , IMAT)
00333 87  IF (IMAT - NMAT) 15, 14, 16
00336 88  15 IMAT = IMAT + 1
00337 89  GO TO 1
00340 90  16 CALL CLOSE (9, 3)
00341 91  STOP
00342 92  END

END OF COMPILATION: NO DIAGNOSTICS.

FIGURE 9 - Concluded