General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
HUMAN COMFORT RESPONSE TO RANDOM MOTIONS WITH A DOMINANT TRANSVERSE MOTION

Ralph W. Stone, Jr.

May 1975

This informal documentation medium is used to provide accelerated or special release of technical information to selected users. The contents may not meet NASA formal editing and publication standards, may be revised, or may be incorporated in another publication.
Subjective ride comfort response ratings have been measured on the Langley Visual Motion Simulator with transverse acceleration inputs with various power spectra shapes and magnitudes. The results show only little influence of spectra shape on comfort response. The effects of magnitude on comfort response indicate the applicability of psychophysical precepts for comfort modeling.
HUMAN COMFORT RESPONSE TO
RANDOM MOTIONS WITH A DOMINANT TRANSVERSE MOTION

By Ralph W. Stone, Jr.

SUMMARY

The effects of random transverse accelerations on passenger ride comfort response were examined on the Langley Visual Motion Simulator. The effects of power spectral density shape and frequency ranges from 0 to 2 Hz were studied. This paper presents the data obtained. There existed during this study motions in all other degrees of freedom, as well as the intended transverse motion, because of the characteristics of the simulator. These unwanted motions may introduce some interactive effects which should be considered in any analysis of the data.

INTRODUCTION

Consideration of the quality of airplane rides probably will become increasingly important, especially in terminal area operations and in short-haul operations using short take off and landing aircraft. As an increase in such operations is expected (ref. (1)), such operations at low altitudes or with relatively light wing loading aircraft may lead to conditions of flight where the motions of the aircraft will be less comfortable and less acceptable to passengers than is experienced in current jet aircraft operations. Understanding and defining the problems of passenger acceptance, and developing methods and systems for aircraft design that will allow for acceptable ride comfort, are encompassed in a NASA program (ref. (2)). This program includes the simultaneous measurement of subjective ride comfort responses and vehicle motions made on both scheduled airlines and simulators.

Much data has been obtained and ride comfort indices and acceptance ratings have been developed based on human exposures to the full six degree of freedom motion of aircraft (refs. (3), (4), (5), (6), and (7), for example). The interactions of the various degrees of freedom of motion as they affect human comfort responses is not known. The nature of these interactions is important to the understanding of the total comfort response. In addition, data available for subjective comfort responses to single degree of freedom motions exist primarily for sinusoidal oscillations at specific frequencies (ref. (8)).

The influence of single degree of freedom motions having random oscillations typical of those of aircraft in turbulence also is not known. Typical airplane response to turbulence have power spectra shape that decreases rapidly beyond 1 to 2 Hertz. However, some response motions of the airplane
(particularly the angular motion) have a somewhat flatter power spectra shape. It is not known if these different spectral shapes will have a significant influence on the ride comfort. Consequently, a program to measure human comfort response ratings in single degree of freedom random motions and the interactions of these motions in two, three, and six degrees of freedom using two types of power spectra shapes and three frequency ranges is in progress at the NASA Langley Research Center. Reference (9) presents the data obtained for the study of the subjective ride comfort responses to random vertical accelerations. The present paper presents the subjective ride comfort response ratings obtained when using oscillations in the transverse degree of freedom on the Visual Motion Simulator at Langley (fig. 1).

SYMBOLS

\[\sigma_R \] standard deviation of ride quality rating

\[g \] acceleration due to gravity

\[Hz \] frequency, cps

TESTS AND TEST CONDITIONS

As mentioned previously, typical airplane responses to turbulence have power spectra that decreases rapidly beyond 1 to 2 Hertz. However, some responses, particularly for angular motions, have flatter power spectra. In order to investigate the effect of spectral shape and the frequency distribution of the response power on ride comfort, six power spectral density distributions were developed to drive the simulator. There were two general groups, the first termed "typical," having variation with frequency like those experienced on typical aircraft and the second termed "flat" with shallower decreases at the high frequencies. In each group, three distinct frequency distributions were used; the first with peak power centered between 0 and 1 Hz, the second between 0 and 2 Hz, and the third between 1 and 2 Hz.
The six power spectra shapes were tailored by filtering the output of a random number generator. The nominal shapes of these spectra are shown in figure 2. In designing the spectra shapes to suit the simulator characteristics the "flat" spectra were not as flat as was intended and in figure 2 appear similar to those of the "typical" spectra. However, the "flat" spectra have more power in the 1 to 3 Hz range than the typical spectra for conditions with the same peak power. This increase in power, over the typical spectra, ranges from 35 percent for the 1 to 2 Hz spectra to 170 percent for the 0 to 1 Hz spectra.

The nominal spectra shown in figure 2 are normalized to have a peak of 1. For the actual motions on the simulator the magnitude was raised for each spectra type by adjusting the gain of the input signal. Four magnitudes were examined for each of the six spectra shapes. Thus, the 24 flight segments were developed for use in the study.

The Langley Visual-Motion Simulator (VMS) is primarily used for piloted flight, stability, control, and display studies, and does not contain a passenger compartment. The passengers used in this study sat in the pilot's compartment and rode passively, the controls and instruments being inoperative for these experiments. Figure 3 is an interior view of the cockpit. Two passengers rode each experimental "flight."

The normal operational envelope of motion frequencies and magnitudes of the VMS are presented in reference (2). The largest practicable input frequency is about 3 Hz. As noted in references (6) and (7), the major energy in aircraft motions is in the region of 2 Hertz and less.

The VMS is a large mechanical device with six hydraulically operated telescoping legs and associated switching valves. The desired motions are developed by extending the legs in a prescribed manner. In order to obtain the desired motions without exceeding the mechanical limitations of the simulator, various control and limiting systems were incorporated. The simulator, as a dynamic device, has its own natural frequencies and damping, and thus exerts an effect on the resulting motion. For precise development of a single degree of freedom, the six legs would have to move synchronously. Because of friction in the hydraulic systems and valves, and variations in the hydraulic pressure, it was not possible to produce the precise conditions necessary for one degree of freedom. Therefore, the motions developed by the simulator had the transverse acceleration as the dominant motion with various lesser amounts of the other five degrees of freedom present. For these same reasons, the motions were not precisely duplicated even for identical computer inputs. As a result of the dynamic characteristics of the simulator, the actual motion power spectra experienced by the subjects was somewhat different than the nominal spectra used as input to the computer. The four different magnitudes mentioned previously were supposed to be alike for each input spectra shape; however, because of the dynamic response characteristics of the simulator, it provided different RMS values of the transverse accelerations for the different spectra shapes.

Each "flight" was flown four to five times so that 8 to 10 subjects experienced each motion. As these "flights" were not precisely duplicated, the data discussed in the "Data" section of this paper are the average values.
of the four or five "flights" used. The standard deviation of the transverse accelerations from the average values for the various segments in terms of percent of the average values is 5.97 percent. The maximum deviation was 19.96 percent. The actual output of the simulator for a test segment representing most nearly the average output for a given input segment and, therefore, the motions essentially experienced by the subjects are presented in figures 4 to 9. Those include time histories for all six degrees of freedom, histograms of the vertical acceleration, and power spectral densities of the transverse accelerations for the 24 segments of "flight" as follows:

<table>
<thead>
<tr>
<th>Figure</th>
<th>Spectra shape</th>
<th>Frequency range</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Typical</td>
<td>0-1 Hz</td>
</tr>
<tr>
<td>5</td>
<td>"</td>
<td>0-2 Hz</td>
</tr>
<tr>
<td>6</td>
<td>"</td>
<td>1-2 Hz</td>
</tr>
<tr>
<td>7</td>
<td>Flat</td>
<td>0-1 Hz</td>
</tr>
<tr>
<td>8</td>
<td>"</td>
<td>0-2 Hz</td>
</tr>
<tr>
<td>9</td>
<td>"</td>
<td>1-2 Hz</td>
</tr>
</tbody>
</table>

The four segments of motion in each figure are for progressively increasing values of transverse acceleration.

The reference axis used was relative to the seated passengers and is shown in figure 10. The transverse accelerations used for this paper were along the transverse axis shown in figure 10. The actual motions of the simulator, as experienced by the passengers, were measured by an inertial instrument package containing three linear accelerometers, one aligned with each axis, and three rate gyros also aligned with each axis.

As noted previously, 24 segments of flight were used in examining the transverse degree of freedom. These 24 segments were randomly scattered in two "flights." Each flight was 36 minutes long and consisted of 24, one- and one-half minute segments. The subjects rated a 20-second portion in the center of each segment. A computer-driven buzzer system was used to identify this center portion of the segments. The subjects were instructed to consider only this 20-second segment of "flight" when making their comfort response rating. The subjects rated the segments on a seven-statement scale, as follows:

- Very comfortable
- Comfortable
- Somewhat comfortable
- Acceptable
- Somewhat uncomfortable
- Uncomfortable
- Very uncomfortable
Many subjective ride comfort indices have been based on a five-point numerical scale (see refs. (4) and (7), for example). Accordingly, for analysis purposes the seven-statement rating scale was converted to numerical values for a five-point scale as follows:

1 = Very comfortable
2 = Comfortable
2-1/2 = Somewhat comfortable
3 = Acceptable
3-1/2 = Somewhat uncomfortable
4 = Uncomfortable
5 = Very uncomfortable

For the data presented herein, average numerical ratings for the 8 to 10 subjects based on this scale and standard deviations from these averages are used.

The subjects, in general, were supplied by the Hampton Institute and consisted of a relatively broad spectra of people. For the total program, 138 passenger "flights" were made using a total of 98 persons. No person rode the same flight twice. A general profile of the persons used on these "flights" is shown in table I.

DATA

The mean RMS values for all six degrees of freedom of the four or five "flights" performed for each input segment along with the mean subjective ride comfort response ratings \(R_s \) are shown in table II. The standard deviation of the response ratings for the passenger group on each "flight" segment are also shown in table II. The standard deviation of the response ratings for the passenger group on each "flight" segment are also shown in table II. Cross correlation coefficients for the various motion components are shown in table III. The four segments of motion on tables II and III for each spectra shape are for progressively increasing values of RMS transverse acceleration.

As noted previously, the data presented herein are for transverse motion inputs and the existence of the other motion components in tables II and III are the result of simulator characteristics. Until data is available for each degree of freedom of motion and for combined motions, it will not be clear how significant the existence of the other motion components are in the subjective ride comfort responses presented in this paper. The transverse RMS accelerations varied from about 0.9 to 9 times larger than the longitudinal or vertical RMS accelerations that occurred. These can be compared because they are similar types of stimulation to the transverse RMS acceleration. Because the angular RMS velocities are a different form of stimulation than the linear accelerations, no comparison as to their relative significance to the transverse RMS acceleration can be
directly made. It should be noted that the values range from about 0.38 to 2.1 degrees per second and have an average value of 0.838 degrees per second. Estimates of thresholds of perception of angular velocity (see refs. (10) and (11)) range from about 0.5 to 4.0 degrees per second. The values of RMS angular velocity that existed in the experiment to study the response to transverse motion are therefore near the estimate of thresholds of perception and may not have had important influences on the comfort responses of this paper. Any analysis made of the data presented herein should maintain cognizance of the existence and possible influence of motion in the degrees of freedom other than transverse.

The subjective ride comfort responses presented on table II have an average standard deviation for all 24 segments of 0.690. This compares favorably with other experiences as, for example, the average standard deviation of the ride quality index for the results of reference (7) is 0.758 units of response rating. The value of 0.690 for this transverse acceleration study is somewhat smaller than that for the vertical motions of reference (9).

As expected, there is a progressive increase in response ratings with increasing transverse acceleration. The variation (table II) is not, however, a linear function of transverse acceleration. The subjective ride comfort responses are therefore plotted against the \(\log_{10} \) of the RMS transverse accelerations for typical power spectra in figure 11 and for flat power spectra in figure 12. Thus plotted, the data show a nearly linear variation of the response, with the \(\log_{10} \) of the acceleration stimulus. This observation implies that the comfort response to RMS transverse accelerations conforms to the laws of psychophysical responses, wherein the response varies with the \(\log_{10} \) of the stimulus (ref. (12)).

CONCLUDING REMARKS

A study has been made on the Langley Visual Motion Simulator to examine the influence of random transverse accelerations on human subjective ride comfort responses. The effects of two general shapes of power spectral density of the transverse acceleration for three frequency ranges in the 0 to 2 Hz region were examined. The data obtained in this study are presented in this paper. Although this study was made basically to examine the influence of random transverse accelerations, because of the characteristics of the simulator there occurred in the study some amounts of motion in all other degrees of freedom. Analysis of these data must maintain cognizance of this fact. The response data appear to vary linearly with the \(\log_{10} \) of the transverse RMS accelerations indicating congruity with psychophysical law.
REFERENCES

TABLE I. - PASSENGER PROFILE FOR VMS RIDE QUALITY PROGRAM

Total Passengers - 98 Persons

Sex Distribution

<table>
<thead>
<tr>
<th></th>
<th>Number</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Males</td>
<td>47</td>
<td>48</td>
</tr>
<tr>
<td>Females</td>
<td>51</td>
<td>52</td>
</tr>
</tbody>
</table>

Age Distribution

<table>
<thead>
<tr>
<th></th>
<th>Number</th>
<th>%</th>
<th>Sex</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Male</td>
<td>Female</td>
<td></td>
</tr>
<tr>
<td>18-25 yrs</td>
<td>55</td>
<td>56</td>
<td>44%</td>
<td>56%</td>
<td></td>
</tr>
<tr>
<td>26-45 yrs</td>
<td>30</td>
<td>31</td>
<td>47%</td>
<td>53%</td>
<td></td>
</tr>
<tr>
<td>46 - yrs</td>
<td>13</td>
<td>13</td>
<td>69%</td>
<td>31%</td>
<td></td>
</tr>
<tr>
<td>Long. acc. g</td>
<td>Transverse acc. g</td>
<td>Vertical acc. g</td>
<td>Pitching velocity deg/sec</td>
<td>Rolling velocity deg/sec</td>
<td>Yawing velocity deg/sec</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>--------------------------</td>
<td>-------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>(a) Typical 0-1 Hz inputs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0051</td>
<td>0.0163</td>
<td>0.0052</td>
<td>0.5000</td>
<td>0.7978</td>
<td>0.4264</td>
</tr>
<tr>
<td>0.0056</td>
<td>0.0395</td>
<td>0.0059</td>
<td>0.4535</td>
<td>0.8307</td>
<td>0.3834</td>
</tr>
<tr>
<td>0.0084</td>
<td>0.0718</td>
<td>0.0078</td>
<td>0.5152</td>
<td>1.0836</td>
<td>0.4313</td>
</tr>
<tr>
<td>0.0093</td>
<td>0.0821</td>
<td>0.0091</td>
<td>0.5488</td>
<td>1.2359</td>
<td>0.4931</td>
</tr>
<tr>
<td>(b) Typical 0-2 Hz inputs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0046</td>
<td>0.0106</td>
<td>0.0050</td>
<td>0.4649</td>
<td>0.7088</td>
<td>0.4007</td>
</tr>
<tr>
<td>0.0061</td>
<td>0.0330</td>
<td>0.0061</td>
<td>0.4725</td>
<td>0.8625</td>
<td>0.3958</td>
</tr>
<tr>
<td>0.0085</td>
<td>0.0608</td>
<td>0.0082</td>
<td>0.4880</td>
<td>1.1954</td>
<td>0.4035</td>
</tr>
<tr>
<td>0.0126</td>
<td>0.0857</td>
<td>0.0119</td>
<td>0.5670</td>
<td>1.7006</td>
<td>0.4523</td>
</tr>
<tr>
<td>(c) Typical -2 Hz inputs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0048</td>
<td>0.0084</td>
<td>0.0053</td>
<td>0.4832</td>
<td>0.7918</td>
<td>0.4163</td>
</tr>
<tr>
<td>0.0059</td>
<td>0.0239</td>
<td>0.0068</td>
<td>0.5223</td>
<td>0.9556</td>
<td>0.4395</td>
</tr>
<tr>
<td>0.0084</td>
<td>0.0494</td>
<td>0.0086</td>
<td>0.5548</td>
<td>1.183</td>
<td>0.4619</td>
</tr>
<tr>
<td>0.0126</td>
<td>0.0864</td>
<td>0.0121</td>
<td>0.5996</td>
<td>1.7478</td>
<td>0.4688</td>
</tr>
<tr>
<td>(d) Flat 0-1 Hz inputs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0069</td>
<td>0.0175</td>
<td>0.0073</td>
<td>0.7301</td>
<td>1.1114</td>
<td>0.6023</td>
</tr>
<tr>
<td>0.0078</td>
<td>0.0405</td>
<td>0.0083</td>
<td>0.7410</td>
<td>1.2159</td>
<td>0.6257</td>
</tr>
<tr>
<td>0.0125</td>
<td>0.0743</td>
<td>0.0124</td>
<td>1.0419</td>
<td>1.8438</td>
<td>0.8710</td>
</tr>
<tr>
<td>0.0121</td>
<td>0.0869</td>
<td>0.0119</td>
<td>0.8959</td>
<td>1.7721</td>
<td>0.7753</td>
</tr>
<tr>
<td>(e) Flat 0-2 Hz inputs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0072</td>
<td>0.0109</td>
<td>0.0077</td>
<td>0.7715</td>
<td>1.1819</td>
<td>0.6519</td>
</tr>
<tr>
<td>0.0082</td>
<td>0.0341</td>
<td>0.0083</td>
<td>0.7373</td>
<td>1.2097</td>
<td>0.6137</td>
</tr>
<tr>
<td>0.0091</td>
<td>0.0612</td>
<td>0.0092</td>
<td>0.5647</td>
<td>1.3271</td>
<td>0.4665</td>
</tr>
<tr>
<td>0.0135</td>
<td>0.0890</td>
<td>0.0134</td>
<td>0.7968</td>
<td>1.9964</td>
<td>0.6763</td>
</tr>
</tbody>
</table>
TABLE II. - MEAN RMS VALUES OF MEASURED MOTION COMPONENTS
WITH TRANSVERSE ACCELERATION INPUTS AND MEAN RIDE COMFORT RESPONSES - CONTINUED.

<table>
<thead>
<tr>
<th>Long. acc. g</th>
<th>Transverse acc. g</th>
<th>Vertical acc. g</th>
<th>Pitching velocity deg/sec</th>
<th>Rolling velocity deg/sec</th>
<th>Yawing velocity deg/sec</th>
<th>R_s</th>
<th>σ_{R_s}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0084</td>
<td>0.0107</td>
<td>0.0117</td>
<td>0.8657</td>
<td>1.2824</td>
<td>0.7197</td>
<td>1.450</td>
<td>0.693</td>
</tr>
<tr>
<td>0.0097</td>
<td>0.0246</td>
<td>0.0103</td>
<td>0.9931</td>
<td>1.5792</td>
<td>0.8301</td>
<td>2.850</td>
<td>0.669</td>
</tr>
<tr>
<td>0.0108</td>
<td>0.0489</td>
<td>0.0110</td>
<td>0.8885</td>
<td>1.6190</td>
<td>0.7331</td>
<td>3.250</td>
<td>0.709</td>
</tr>
<tr>
<td>0.0136</td>
<td>0.0836</td>
<td>0.0140</td>
<td>0.8273</td>
<td>2.0753</td>
<td>0.6468</td>
<td>4.850</td>
<td>0.474</td>
</tr>
<tr>
<td></td>
<td>Longitudinal - Vertical</td>
<td>Longitudinal - Pitch</td>
<td>Transverse - Roll</td>
<td>Transverse - Yaw</td>
<td>Vertical - Pitch</td>
<td>Roll - Yaw</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>-------------------------</td>
<td>----------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>-----------------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>(a) Typical 0-1 Hz inputs</td>
<td>0.8510</td>
<td>0.9032</td>
<td>0.2620</td>
<td>0.3929</td>
<td>0.8757</td>
<td>0.9325</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.6475</td>
<td>0.6225</td>
<td>-.1123</td>
<td>0.0435</td>
<td>0.6614</td>
<td>0.7952</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.5991</td>
<td>0.3967</td>
<td>-.1171</td>
<td>-.1282</td>
<td>0.5037</td>
<td>0.6816</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.5014</td>
<td>0.4145</td>
<td>-.1398</td>
<td>-.2421</td>
<td>0.5212</td>
<td>0.6304</td>
<td></td>
</tr>
<tr>
<td>(b) Typical 0-2 Hz inputs</td>
<td>0.7935</td>
<td>0.8912</td>
<td>0.3318</td>
<td>0.4753</td>
<td>0.8399</td>
<td>0.8955</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.6382</td>
<td>0.6040</td>
<td>-.0570</td>
<td>0.1139</td>
<td>0.6002</td>
<td>0.7928</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.4708</td>
<td>0.3093</td>
<td>-.1290</td>
<td>0.0642</td>
<td>0.4096</td>
<td>0.6263</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.4278</td>
<td>0.0646</td>
<td>-.2803</td>
<td>-.1781</td>
<td>0.2070</td>
<td>0.5021</td>
<td></td>
</tr>
<tr>
<td>(c) Typical 1-2 Hz inputs</td>
<td>0.7839</td>
<td>0.9179</td>
<td>0.4165</td>
<td>0.5619</td>
<td>0.8182</td>
<td>0.8860</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.6342</td>
<td>0.7238</td>
<td>-.0501</td>
<td>0.1123</td>
<td>0.6610</td>
<td>0.7903</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.5246</td>
<td>0.4215</td>
<td>-.1414</td>
<td>0.0676</td>
<td>0.4882</td>
<td>0.6862</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.4008</td>
<td>0.1135</td>
<td>-.2828</td>
<td>-.2135</td>
<td>0.2201</td>
<td>0.5450</td>
<td></td>
</tr>
<tr>
<td>Longitudinal - Vertical</td>
<td>Longitudinal - Pitch</td>
<td>Transverse - Roll</td>
<td>Transverse - Yaw</td>
<td>Vertical - Pitch</td>
<td>Roll - Yaw</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>---------------------</td>
<td>------------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>-----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(d) Flat 0-1 Hz inputs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.8574</td>
<td>0.9516</td>
<td>0.3812</td>
<td>0.4982</td>
<td>0.8982</td>
<td>0.9221</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.7750</td>
<td>.8720</td>
<td>.0937</td>
<td>.2247</td>
<td>.8289</td>
<td>.8713</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.7000</td>
<td>.7599</td>
<td>-.0007</td>
<td>.1178</td>
<td>.7519</td>
<td>.7673</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.5663</td>
<td>.6154</td>
<td>-.1617</td>
<td>-.0920</td>
<td>.6104</td>
<td>.6426</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(e) Flat 0-2 Hz inputs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.7778</td>
<td>.9192</td>
<td>.3904</td>
<td>.5260</td>
<td>.8476</td>
<td>.8750</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.8102</td>
<td>.8809</td>
<td>.1336</td>
<td>.2532</td>
<td>.8391</td>
<td>.8690</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.4748</td>
<td>.4031</td>
<td>-.2415</td>
<td>-.0724</td>
<td>.4934</td>
<td>.4676</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.4684</td>
<td>.4107</td>
<td>-.2250</td>
<td>-.0803</td>
<td>.4700</td>
<td>.3892</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f) Flat 1-2 Hz inputs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.9062</td>
<td>.9788</td>
<td>.7524</td>
<td>.8278</td>
<td>.9364</td>
<td>.9461</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.8016</td>
<td>.9061</td>
<td>.2559</td>
<td>.3700</td>
<td>.8496</td>
<td>.8876</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.7519</td>
<td>.8169</td>
<td>.0619</td>
<td>.2127</td>
<td>.7786</td>
<td>.8333</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.4363</td>
<td>.3966</td>
<td>-.2451</td>
<td>-.0608</td>
<td>.4319</td>
<td>.4136</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 1.- Langley six-degree-of-freedom visual-motion simulator.
Figure 2. Nominal power spectra of motion components.

(a) Typical spectra.
Figure 2.- Concluded.
Figure 3. Interior of Langley Six-Degree-of-Freedom, Visual Motion Simulator.
Figure 4 - Measured motion characteristics using transverse acc. with typical 0-1 Hz inputs.
Vertical acc., Transverse acc., Longitudinal acc., g's
time, sec
Roll rate,
deg/sec
deg/sec
Pitch rate,
yaw rate,
Time histories (RMS transverse acc. 0.0718 g)
Figure 4, - Continued
(a) Time histories (RMS transverse acc. 0.0821 g)

Figure 4. - Continued
Figure 4 - Continued

(b) Transverse acceleration histogram (RMS transverse acc. 0.0163 g)
Figure 4 - Continued
Figure 4 - Continued

(b) Transverse acceleration histogram (RMS transverse acc. 0.0718 g)
Figure 4 - Continued

(b) Transverse acceleration histogram (RMS transverse acc. 0.0821 g)
Figure 4 - Continued

(c) Transverse acceleration power spectrum (RMS transverse acc. 0.0163 g)
Figure 4 - Continued

(c) Transverse acceleration power spectrum (RMS transverse acc. 0.0395 g)
(c) Transverse acceleration power spectrum (RMS transverse acc. 0.0718 g)

Figure 4. - Continued
(c) Transverse acceleration power spectrum (RMS transverse acc. 0.0821 g)
Figure 5. Measured motion characteristics using transverse acc. with typical 0-2 Hz inputs.

(a) Time histories (RMS transverse acc. 0.0106 g)
Figure 5. - Continued

(a) Time histories (RMS transverse acc. 0.0330 g)
(a) Time histories (RMS transverse acc. 0.0608 g)

Figure 5, Continued
(a) Time histories (RMS transverse acc. 0.0857 g)

Figure 5. - Continued
Figure 5. - Continued

(b) Transverse acceleration histogram (RMS transverse acc. 0.0106 g)
Figure 5. - Continued

(b) Transverse acceleration histogram (RMS transverse acc. 0.0330 g)
Figure 5. - Continued

(b) Transverse acceleration histogram (RMS transverse acc. 0.0608 g)
Normalized frequency of occurrence

Acceleration level, g's

(a) Transverse acceleration histogram (RMS transverse acc. 0.0857 g)

Figure 5. - Continued
Figure 5, Continued

(c) Transverse acceleration power spectrum (RMS transverse acc. 0.0106 g)
Figure 5. - Continued

(c) Transverse acceleration power spectrum (RMS transverse acc. 0.0330 g)
(c) Transverse acceleration power spectrum (RMS transverse acc. 0.0608 g)

Figure 5. - Continued
Figure 5. - Concluded

(c) Transverse acceleration power spectrum (RMS transverse acc. 0.0857 g)
Figure 6. - Measured motion characteristics using transverse acc. with typical 1-2 Hz inputs.
(a) Time histories (RMS transverse acc. 0.0239 g)

Figure 6. - Continued
(a) Time histories (RMS transverse acc. 0.0494 g)

Figure 6. - Continued
(a) Time histories (RMS transverse acc. 0.0864 g)

Figure 6. - Continued
Figure 6. - Continued

(b) Transverse acceleration histogram (RMS transverse acc. 0.0084 g)

Acceleration level, g's

Normalized frequency of occurrence
Figure 6 - Continued
(b) Transverse acceleration histogram: RMS transverse acc. 0.029 g
(b) Transverse acceleration histogram (RMS transverse acc. 0.0494 g)

Figure 6. - Continued
Figure 6. - Continued

(b) Transverse acceleration histogram (RMS transverse acc. 0.0864 g)
Figure 6, Continued

(c) Transverse acceleration power spectrum (RMS transverse acc. 0.0084 g)
Figure 6. - Continued

(c) Transverse acceleration power spectrum (RMS transverse acc. 0.0239 g)
Frequency, Hz

(c) Transverse acceleration power spectrum (RMS transverse acc. 0.0494 g)

Figure 6. - Continued
(c) Transverse acceleration power spectrum (RMS transverse acc. 0.0864 g)

Figure 6. - Concluded
Figure 7. - Measured motion characteristics using transverse acc. with flat 0-1 Hz inputs
Figure 7. - Continued
Figure 7. - Continued
Figure 7. - Continued
Figure 7. - Continued

(b) Transverse acceleration histogram (RMS transverse acc. 0.0175 g)
Figure 7. - Continued

(b) Transverse acceleration histogram (RMS transverse acc. 0.0405 g)
Figure 7 - Continued

(b) Transverse acceleration histogram (RMS transverse acc, 0.0793 g)
(b) Transverse acceleration histogram (RMS transverse acc. 0.0869 g)

Figure 7. - Continued
Figure 7. - Continued

(c) Transverse acceleration power spectrum (RMS transverse acc. 0.0175 g)
Figure 7. - Continued

(c) Transverse acceleration power spectrum (RMS transverse acc. 0.0405 g)
(c) Transverse acceleration power spectrum (RMS transverse acc. 0.0793 g)

Figure 7. - Continued
Figure 7. Transverse acceleration power spectrum (RMS transverse acc. 0.0869 g)
Figure 8. Measured motion characteristics using transverse acc. with flat 0-2 Hz inputs.
Figure 8 - Continued
(a) Time histories (RMS transverse acc. 0.0612 g)

Figure 8. Continued
(a) Time histories (RMS transverse acc. 0.0890 g)

Figure 8 continued
Figure 8 - Continued

(b) Transverse acceleration histogram (RMS transverse acc. 0.0109 g)
Figure 8 - Continued

(b) Transverse acceleration histogram (RMS transverse acc. 0.0341 g)
Figure 8. - Continued

(b) Transverse acceleration histogram (RMS transverse acc. 0.0612 g)
(b) Transverse acceleration histogram (RMS transverse acc. 0.0890 g)

Figure & - Continued
Figure 8 - Continued

(c) Transverse acceleration power spectrum (RMS transverse acc. 0.0109 g)
(c) Transverse acceleration power spectrum (RMS transverse acc. 0.0341 g)

Figure 8. - Continued
Figure 8 - Continued

(c) Transverse acceleration power spectrum (RMS transverse acc. 0.0612 g)
Figure 8. Concluded

(c) Transverse acceleration power spectrum (RMS transverse acc. 0.0890 g)
Figure 9. - Measured motion characteristics using transverse acc. with flat 1-2 Hz inputs
Figure 9. - Continued

(a) Time histories (RMS transverse acc. 0.0246 g)
(a) Time histories (RMS transverse acc. 0.0489 g)

Figure 9. - Continued
(a) Time histories (RMS transverse acc. 0.0836 g)

Figure 9. - Continued
Figure 9. - Continued

(b) Transverse acceleration histogram (RMS transverse acc. 0.0107 g)
Figure 9 - Continued

II. Transverse acceleration histogram (RMS transverse acc. 0.0246 g)

Normalized frequency of occurrence

Acceleration level, g's

-10 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
(b) Transverse acceleration histogram (RMS transverse acc. 0.0489 g)

Figure 9. - Continued
(b) Transverse acceleration histogram (RMS transverse acc. 0.0836 g)

Figure 9. - Continued
(c) Transverse acceleration power spectrum (RMS transverse acc. 0.0107 g)

Figure 9. - Continued
(c) Transverse acceleration power spectrum (RMS transverse acc. 0.0246 g)

Frequency, Hz

Figure 9 - Continued
(c) Transverse acceleration power spectrum (RMS transverse acc. 0.0489 g)

Figure 9. - Continued
(c) Transverse acceleration power spectrum (RMS transverse acc. 0.0836 g)

Figure 9. - Concluded
Figure - Reference axes.
Figure 11.- Variation of ride comfort response with RMS transverse acceleration having typical power spectra.
Figure 12.- Variation of ride comfort response with RMS transverse accelerations having flat power spectra.