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PREFACE 

Qne of the great rewards enjoyed by persons who spend their 
lives in scientific research work is the unpredicitability of 
what they are doing. It is an exciting world and one I enjoy 
immensely. However, not all of the surprises are the kind one 
likes to boast about. Principal Investigators have to admit to 
less productive years as well as proudly present their successes. 

On this program, in the meteorological study area, we have had 
one of those years. While good work has been done i;,y several 
persons, it is as yet too incomplete to include in this report. 
We expect to preBent these efforts in next year's report. 

I am happy to pI:esent three papers by Dr. Aniruddha Das 
and his principal advisor, Professor T. C. Huang. Publica tion 
of these papers concludes Dr. Das' development of a generalized 
flexible satellite attitude control model and the application 
of that model to some relatively simple analyses. We anticipate 
that Das' model will be used by government agencies and by 
industry in more complex applications. 

I am especially grateful to Professor Huang for his assistance 
and support. We sincerely appreciate the patience and support of 
the many dedicated persons in the National Aeronautics and Space 
Administration with whom we have work0d during the past year. 

vi 

Verner E. Suomi 
Principal Investigator 



STABILITY OF STOCHASTIC SATELLITES 

T. C. Huang and Aniruddha Das 

ABSTRACT 

The effects of random environmental torques and noises in the moments of 
inertia of spinning and three-axes stabilized satellites are compared analyti
cally and by analog simulations. Four analytical methods are used to compute 
the mean values and variances of the satellite response. Among the analytical 
methods, it is shown that the Fokker-Planck formulation yields predictions 
which most coincide with the simulation results. The variances of the responses 
have been shown to have an initial period of growth. This growth rate falls 
off with time and the variances reach and stay at an equilibrium value. The 
growth rate is also shown to be an increasing function of the inertia noises 
and the nominal spin rate. 

NOMENCLATURE 
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~ Arbitrary constants; Eq. (74). 

z Coefficients defined by Eqs. (10-18) and Eqs. (19-27). 

c Arbitrary constant; Eq. (74). 

K Arbitrary constants; Eq. (74). 

= Vector £orcing function; Eqs. (91, 92). 

- Conditional joint probability density function of wet) 
given the values of ~(.). -

K Arbitrary random forcing functions; Eqs. (1),(19)-(21). 

= Mean values of f,{fi}' 

= Components of M200 , M020 ' MIlO' respectively; Eqs. (74), 

(74a), (74b) and (74 c) • 

• Stochastic moments of inertia of the satellite; Eq. (1). 

• Mean values of 11' 12 and I 3 , respectively. 

• Functional defined by Eq. (95). 

x Polynomial function of p: Eq. (70). 

K Derivative characteristic function with parameters 61 , 

62 and 63 for the random variables wi for a given w(t): 

Eq. (7). 
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i

, i .. 1-7 

Nij : i,j .. 1-6 

1" 

r 

r ij ; i,j .. 1-4 

Sij: i,j .. 1-4 

T 

t 

tij: i,j .. 1-4 

.!!.,{ui }: i - 1-.6 

.!.,{vi }; i" 1-6 

ai' i - 1-8 

aij : j .. 0-6 

ai' i .. 1-3 
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.. Matrix differential operator: Eq. (79). 

- Covariance matrix of .!!.: Eq. (5). 

- Statistical wo~nts of ~(t) for a given ~(O): Eq. (30) • 

.. Par~ters related t.o Nij by Eq. (108). 

.. Covariance matrix o.~:.!.: Eq. (94). 

- Eigenvalue of various equations. 

- A measure of the noise levels: Eq. (122). 

- Ccw.fficients defined by Eqs. (74e) - (74g) • 

.. Coefficients defined by Eqs. (74e) - (74g). 

- Period of time in which the most-likelihood estimates 
of ~are required • 

.. Time. 

• Coefficients defined by Eqs. (74e) - (74g). 

.. Random vector: Eq. (4) • 

• Random vector: Eq. (93) • 

.. Coefficients of the characteristic polynomial for Pi. 
Eq. (41). 

- Components of ai ; Eqs. (46), (58) etc. 

• Lagrangian multipliers; Eq. (95). 

aij , j - 0,1,2,3, .... Components of ai ; Eq. (109). 

6(t) .. Dirac's delta function. 

6i , 

'" 
"'i' 

Tli , 

6
i

, 

Afi , 

l~, 

i .. 1-3 

i .. 1-3 

i .. 1-3 

1 .. 1-3 

i .. 1-3 

i .. 1-3 

a White noises associated with A'fi ; Eq. (2). 

a Largest absolute value of Nij for all i and j: Eq. (108a). 

.. Sample space white noises associated with Ii; Eq. (75). 

a Time dependent white no.ises associated with 11 ; Eq. (75). 

.. Parameters of L: Eq. (7). 

a Total forcing functions defined by Eqs. (10) - (12) and 
Eqs. (19) - (21). 

a Kaan values of Afi • 
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OPERATORS 

E{ } 

INTRODUCTION 

- Total forcing functions defined by Eq. (1). 

- Mean values of A'fi • 

= Parameters defined by Eqs. (71), (72). 

- Total white noises associated with Ii; Eq. (2). 

= Parameter defined by Eq. (74d). 

Parameter defined by Eq. (74d). 
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= Statistical coefficients defined by Eqs. (6), (8). 

= Standard deviations of Wi; Eqs. (115), (116). 

= Nominal spin rate of the satellite. 

- Nominal angular velocity vector of the satellite. 

- Angular velocity vector of the satellite; Eq. (1). 

- Realized angular velocity vector corresponding to~. 

'" Components of wi; Eq. (;6). 

& Statistical expectation. 

= Mean value. 

= Transpose. 

This study compares the effects of stochastic geometry and random environ
mental torques on the pointing accuracy of spinning and three-axes stabilized 
satellites. A comparison of pointing accuracies requires a comparison of the 
rates of error growth over and above any criterion for the asymptotic stability 
of the satellites. For this reason, this study is oriented towards the deter
mination of the statistical properties of the satellites' responses. The 
questions of stability have been answered indirectly by the computed responses. 

The reason for considering the environmental torques on the satellites 
as random is self-evident·. The geometries of the satellites are considered 
stochastic in order to have a phenomenological model of the motions of the 
satellites' flexible structural elements. If a satellite were absolutely rig
id, its inertia properties would have been constant for all time and measured 
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to a near certainty. Because real satellites contain many flexible and moving 
parts, their moments of inertia can be assumed to be stochastic variables with 
certain associated noise. 

To be more specific, the rigid body Euler's equations 

(1) 

governing the motion of satellites will now be analyzed. In the above equation, 
II' 12, 13 are the stochastic principal moments <of inertia of the satellite. 

The vectors ~- [wl ,w2,w3]T and A'! - (A'fl ,A'f2,A'f3]T are the angular velocity 

vector and the environmental torque vector of the satellite, respectively, along 
the principal axes of inertia. And A' is a parameter. The vector A'! and, 
consequently, the vector ~ are random variables. 

Bquation (I) is an example of an intrinsically nonlinear system of equa
tions with random coefficients. The difficulty of obtaining an explicit solu
tion to Eq. (1) can be appreciated when we realize that the stochastic version 
of even a simple scalar linear equation is actually nonlinear due to the de
pendence of the solution on the random coefficients. (See Refs. 1, 2.) The 
situation has been made even more complex by the presence of several contradic
tory methods for solving stochastic equations [1]. A widely used method of 
solVing stochastic equations is the Fokker-Planck approach. In this, the equa
tions are assumed to define a Markoff process and the transition probability 
densities of the responses are computed directly as a function of time. Sev
eral interesting equations have been solved by this method in Refs. [3-7]. 

Another useful method, using perturbation techniques for solving stochas
tic equations, was discussed in Refs. [8,9]. This is one of the "honest" meth
ods in which response is solved analytically in terms of small random param
eters. The stochastic properties of the response are obtained from the analy
tic solution as secondary results. 

A third promising method of solution can be obtained by extending the line 
of logic shown in Ref. [10]. This method determines the most likelihood estimates 
of the response by maximizing the joint probability density of all the stochas
tic variables of the system. This is essentially a formulation of the Kalman 
filter for the case of deterministic coefficients and random forcing functions. 

Lastly, there is the obvious method of initially assuming the system of 
equations to be deterministic and then attributing the proper stochastic prcp
erties to the deterministic solutions. It is, of course, true that this method 
is rigorous only if the random parameters are constants in time. The stochastic 
properties of the eigenvalues and eigenvectors of such systems have been comput
e d in Refs. [11,12]. This method is worth investigating for slowly varying 
parameters with random step increments. 
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The response vector, ~(t), of a rigid satellite governed by Eq. (1) 
will .be analyzed using the above mentioned techniques. The analytical responses 
are then compared with results of an analog computer simulation. This al:~ws 
verification of the relative merits of the analytic methods. 

TOE FOKKER-PLANCK APPROACH 

This method of obtaining the response characteristics of stochastic equa
tions is based on the analysis shown in Refs. [1,131. The application of this 
method on Eq. (1) proceeds as follows: 

Let the random variables ~l' ~2' ~3' °1 , °2 and 03 be defined by the equa
tions 

Ii z Ii + ~i i. 1,2,3 

A'fi - IIIi + 0i ; i - 1,2,3 

The bar on top of a symbol indicates mean values. Hence, 

(2) 

~i - 6i '"' 0 ; i • 1,2,3 (3) 

Let the stochastic vector ~ be defined as 

(4) 

It is assumed that ~i and 0i' i'"' 1-3, are white noise disturbances, such that 

the matrix elements, Mij , i,j ~ 1-6, are defined by 

(5) 

In Eq. (5) and in the follOWing, (t) is the Dirac's delta function and the 
operator E{.} denotes statistical expectation. 

~ A 

Let Pktm(wl ,w2,w3 ,t) be the statistical coefficients of various orders 

where wi are the realizations of the responses wi' for i - 1-3, at any point 

in the time and sample spaces. Let it also be defined that f*[~,tli(O),01 
is the joint conditional probability density of the response vector, w, given 
the values of ,§.(O) at t '"' O. Thus, -

Although Eq. (6) is used to define the coefficients Pktm , these are usual
ly calculated from the derivative characteristic function 

L(61 ,62 ,631~, t) 

This, in turn, is defined by 
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where i - .cr . 
Comparing Eqs. (6) and (7), an alternative definition of Pktm can be 

obtained as 

(8) 

Let it be assumed that 

The values of Pktm are now easily calculated from Eqs. (7,8,9). For example, 

or 

or 

Expanding the right hand side and neglecting the cubic and higher order terms 
in IJ

j
, 

(10) 

Proceeding similarly, it is easily seen that 

(11) 

(12) 
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4 - - •• 
+ {Yl (I3-12)HI4 - 2(H34-H24)}w2w3 + K44] (13) 

1 . (13-12) 

PUo • 1112 [(H13 + H23 - ~3 - ~2 + --x;:-- ~3-~1) 

(14) 

(15) 
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(17) 

(18) 

All of the first and second order expressions of Pktm are listed in Eqs. (10-

18) above. The third and higher order Pktm are usually small and can be neglect

ed. Suitably defining the set of constants a
j

• j • 1-27. Eqs. (10-18) can be 
rewritten as 

P100 • a1w2w3 + 1fl - a 2 

POlO· a 3w1w3 + ~f2 - a 4 

POOl - aSw1w2 + Af3 - a6 

(19) 

(20) 

(21) 

(22) 
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(23) 

(24) 

·2·2 •• 
P020 - a18wl w3 + a19wl w3 + a20 (25) 

.2. • • • • • 
POll - a2lwlw2w3 + a22wl w2 + a23wl w3 + a24 (26) 

.2.2 •• 
P002 = a25wl w2 + a26wl w2 + a27 (27) 

Because the values of Pk~m ' corresponding to the system given by Eq. (1) 

are at hand, the Fokker-Planck equation involving the density f*[~,tl~(O),O] 
for that system can now be set up. This equation for the density is [1] 

(28) 

Substituting Eqs. (19-27) in Eq. (28) and neglecting all third and higher order
derivatives, Eq. (28) reduces to 

(29) 
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The values of the density function can be obtained by solving this for
midable linear second order partial differential equation. But little useful 
information is obtained from the density function. The truly useful statisti
cal parameters are the mean values, variances, covariances, and other higher 
order moments of the satellite response. These parameters form a family, ~~m' 
which is defined by 

(30) 

and hence 

(31) 

where ° is the nominal value of the spin rate. Substituting the expression 
af· for ~ from Eq. (29) into Eq. (31) and integrating, it is seen that 

M100 • a1oM010 + 81M011 - 82 + Af1 

M010 • a30M100 + 83M101 ~ 84 + Af2 

M001 • 8i1no - 86 + Af3 

(32) 

(33) 

(34) 

~200 • 2(1£1-82)M100 + asoK010 + 281oMllO + a702M020 + asMOll + 89 (35) 

~10 • (a110 + 1£2 - a4)~100 + (a120+Afl-82)M010 + a1aa020 + a100~10 
+ al1"101 + a3oM200 + a12"011 + 813 

1\01 .. (~f3-a6)M100 + a16oM010 + (">'£1-82)"001 + 815M110 

+ (a10+816)M011 + 817 
: ~ - - - 2- ~ 
"020 • 819OMfOO + 2(Af2-84)"010 + 81S0 "200 + 2a3~10 

+ a19"101 + 820 

. "011 - 823oM100 + (W3-86)"010 + 6£2-a4)MOOl + 82;110 

+ (823+830)M101 + a 24 

M002 • 2(~f3-86)M001 + 826M110 + 8 27 

(36) 

(37) 

(3S) 

(39) 

(40) 

In deriving Eqs. (32-40), all third 8nd higher order moments have been neglect
ed. Solving these nine first order ordinary differential equations, the mean 
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values, the variances, and the covariances of the satellite response are ob
tained completely. 

THE FOKKER-PLANCK RESPONSE 

At this point, it will be interesting to analyze the response predicted 
by Eqs. (32-40). These predictions will later be compared with an analog simu
lation of Eq. (1) • 

• Let it be assumed that, at teO, all second order moments (k+1+m - 2) 
and KOOI are equal to zero. In this stage, the satellite will behave as it 

does in the deterministic situation, that is, it will begin. to precess with 
a rate proportional to n. Then, as the values of MOOI and M002 grow with time, 

the precessing rate and the nutation angle will also grow. Finally, the satellite 
topples down. This phenomenon occurs physically and in simulations. Thus, Eqs. 
(32-40) predict that the satellite response is greatly sensitive to the values 
of as' (Xf3-a6), a26 and a27 • Because a27 , a20 , and a9 are non-negative, these 

equations predict that an uncontrolled satellite governed by Eq. (1) is inher
ently unstable in the presence of random errors. The same copclusion can be 
drawn by applying the stability criteria of Refs. [14,15] to Eq. (1). The 
error growth rate of the satellite response can be minimized by minimizing the 
values of as' a6 , a26 , and Af3' This can be done if 1f3 • 0, i l = Jr2 and the 

matrix Mij is a diagonal matrix. 

The relative rates of error growth of spinning and non-spinning satellites 
will now be examined from the characteristics of the eigenvalues of Eqs. (32-
40). It can be shown that the eigenvalues of these equations satisfy a ninth 
degree algebraic equation of the form 

where ai' i = 1-8, are appropriate constants. 

It is obvious that to have bounded growth rates, ai for all i must be non
negative. It can be shown that 

(42) 

Because usual satellite geometries are such that 
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Eq, (42) says that aa ~ 0 if, and only if any of the following conditions exist: 

O· 0 

max[M13 ,M23] ~ min [Mll'MI2,M22,M33] 

In particular, CIa ~ 0 1£ M12 ~ 0 and 

(43) 

(44) 

(45) 

Equation (45) states that one of the conditiona for a bounded error growth 
rate is satisfied if the inertia noises in II and 12 are independent of the 

noise in 13, But this condition usually is not satisfied because 

13 • 11 + 12 and 13 • 11 + 12 and hence 

and, therefore, 

~3 • Mll + MI2 

Thus, at this point it appears that Eq, (43) provides the only suitable con
straint and that this constraint is available only to three-axes stabilized 
satellites, 

Now, let the conditions required to make a 7 non-negative be considered, 
It can be shown that a 7 is of the form 

where 

2 4 
a7 • Cl70 + Q7l0 + a 720 + Cl740 , (46) 

a70 • - [a22a12 + a23a16 + a15all] 

a 7l • - 2[al a23 + a3a16] 

a .-72 

(47) 

(4a) 

(49) 

(50) 

Another reasonable assumption we can make now is that the inertia noises, ~i' 
are independent of the forcing funcitons, Af i , Assuming this, 
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(51) 

(52) 

Using Eqs. (51,52), the criterion for non-negative a
7 

becomes either Eq. (43) or 

2 
a 72 + a 74r1 ~ 0 (53) 

Equation (53) can be expanded to obtain 

or 

Assuming the satellite geometry to be given by 

(55) 

(56) 

and that Mij are small compared to Ii' Eq. (54) can be further simplified to 
read 

(57) 

Equation (57) is almost certainly satisfied for all real satell~tes and hence, 
a1 is almost certaillly positive. Equation (57) also states the obvious fact 
that, in the presence of inertia noise, a high spin rate tends to make the sat
ellite unstable. 

The expressions for a6 will now be considered. lt can be shown that a6 is given by 

(58) 

where 



Q60 • - [a12a15a23 + a11a16a22+ (Af1-a2)(a3a15+a5a11) 

+ (Af2-a4)(a1 a22+a5a12) + (~f3-a6)(a3a16-a1 a23) 1 

14 

a61 • - [a3a Sa22 + a1a15a19 + 2a3a12a15 + 2ala11a22 + 4a1a3(Xf3- a6)] 

a63 • 2[a1a10a23 + a3a10a16] 

2 2 
Q64 - 2[a1a3a10 - a3a7 - a1a1S] 

It has already been mentioned that, if ~f3-a6) is non-zero, then even the de

terministic response is unbounded. Hence, to make any useful comparison, it 
must be assumed that (A!3-a6) is either zero or han been made so by appropriate 

controllers. Assuming this and the satisfaction of Eqs. (51,52), u 6 becomes 

(59) 

Hence, for non-zero values of n, small Mij , and with the geometry given by 

Eqs. (55,56), the condition for non-negative values o~ a6 can be obtained as 

(60) 

The above relation is satisfied almost certainly ~or all real satellites. 

A similar treatment for the coefficient as yields the inequality 

which is also satisfied. 

Carrying on with this procedure, it can be shown that the coefficients 
a4, a3 , a2, and al are all well behaved and positive definite. Thus, the 

only critical coefficient is as' This is approximately given by 

2 n2 
as • -alOn • - -r (~1+M22) 

1. 

(62) 

where M1.1. and "22 are the variances of the inertia noise along 11 and 12, 
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Tespectively. 

To give a clearer picture of the error growth phenomenon. we will analyze 
the response of a three-axes stAbilized satellite. 

Let it be assumed that initially 

G· 0 (63) 

(64) 

(65) 

and Eqs. (51,52) are satisfied. In this case, all coupling in Eqs. (32-40) 
are lost and the Tesponses grow linearly with time, according to the relations 

MOOl - 0 

~OO • [1fl - a21t 

MOIO c [1£2 - a41t 

M
200 

• [1f
l 

- a212t2 

M020 • [1£2 - a412t2 

(66) 

The growth rate of the responses is greaUycbanged if Eq. (65) is not used, a 
though Eqs. (63,64) and Eqs. (51,52) are used. In this case, the following 
four equations remain coupled: 

(67) 

where 

The eigenvalues of Eq. (67) satisfy the following algebraic equation: 

(68) 

i 
-~ 
{ 

:n :, 
:ji 

I 

~ 
~i 
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Equation (6S) states that, apart from the linearly growing components, there 
will be exponential and sinusoidal components in the satellite response, when 
(X'£3-a6) is large. 

The above mentioned cases, identified by Eqs. (66) and (67), are extremes. 
A real situation can be portrayed better by assuming (X'£3-a6)is non-zero but 

very small, leading to a slight coupling in Eqs. (32-40). This causes a small 
non-zero value of n to be developed, although Eqs. (51,52) are satisfied. With 
this compromise, the eigenvalues of Eqs. (32-40) satisfy the following charac
teristic equation: 

p2(p2+nZ)2[p3_alOn2p2 + (4n2-a7alSn4)p + (a7alOalSn2-2a7-2alS)n4] 

- a5Kp - 0 (69) 

- - 1-
where it is assumed that 11 - I Z - 2 13 and 

3 2 2 2 
+ 2A1A2n(a7+alS)] + 4pn [A1A2(1+a7alSn ) + n(AlalS-A2a7) 

5 2 2 
+ n [a7.a18n(~-A2) - 2\A2(a7+alS)] 

In Eq. (70), Al and A2 are given by 

Al • ).fl - a2 

A2 - ).£2 - a4 

(70) 

(71) 

(72) 

Equation (69) can be viewed with a better perspective by considering as' 
a7 , and alS to be small. This reduced Eq. (69) to the for~ 

(73) 

It is now clear that a spinning satellite will begin to satisfy Eq. (73) 
immediately in the presence of noise. A three-axes stabilized satellite, on 
the other hand, will satisfy Eq. (73) only after P. period of linear error growth. 
If a

lO 
is equal to zero, Eq. (73) predicts a dominant cyclic response with the 

well known frequencies of nand 2n. The solutions of Eqs. (32-40), corres
ponding to the characteristic Eq. (73), are ~asily obtained as follows: 

"001 - n 

A 2 
"002 - n 

i 
1 
r ,. 
i 
\ 
t 
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MOll .. A4sinOt - A3cosOt (74) 

~ 1 2 
M200 " C + exp[I a100 t]{D1cos20t + D2sin20t} + Gl(t) 

~ 1 2 
M020 .. C - exp[zal00 t]{Dlcos20t + D2sin20t} + G2(t) 

1 2 
A1A2 exp[I a100 t] 

Mno .. -7 + (16+al002) {(16Dl -4alOnD2)sin20t 

- (16D2+4a10nDl)cos20t} + G3(t) 

where AI' A2, A3, A4, C, Dl and D2 are arbitrary constants, and 

+ r 43sinOt + r 44cosOt] (74a) 

2 
alOAl A2 A2 

G2(t) .. - -2-0-- - "2 + Al [sncosOt + s12sinOt] 
o 

+ A2[s21cosOt + s22sinOt] + A3[s31tcosOt + s32tsinOt 

(74b) 

(74c) 
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In Eqs. (74a-74c), the constants r ij , Sij' and t ij are defined .s follows: 

Then, 

Let wI and p be the nuaber8 given by 

2 
1f1 •• 100 

P • [902 + w~]-l 

t12 • - 3p(3A20 - A1w~) 

2A1 
r11 • -n- - 2t11 ; r12 • 2t12 

2A2 
sll • - -n- - 2t12 ; 6 12 • 2tll 

t31 • tIl ; t32 • t12 

£. 3 2 2 3 
t33· 0 [81A20 -18A10 wl-21A20w~-2A1w1] 

£. 3 2 2 3 
t34 • 0 [8lA10 -72A20 w1+9AlOw1+2A2w1] 

2A1 2t32 
r 31 • -n- - 2t3l r 32 • 2t32 ; r33 • -2t33 - -0-

2t31 2Al 2A2 
r 34 • 2t34 - -0- + --02 ; 831 • -2t32 - -n-

. 2t31 2t32 2), 2 
833 • -2t34 + -0- ; 834 • 2t33 + -0- + 2 

o 

t41 • -t21 t 42 • -tIl 

li: 3 2 2 3 
t 43 • 0 [8H10 -72).20 WI - 2nlolf~ + 2A2w1] 

(74d) 

(74e) 

(74£) 

(74g) 
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2Al 
r 4l - -2t4l ; r 42 - 2t42 + n ; 

2t4l 
r 44 - 2t44 - -0- ; s4l - -2t42 
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(74h) 

The nature of the functions Gl(t) , G2(t), and G3(t) can be given a simpler form 

if alO is neglected in Eqs. (74a-74h). In this case, the functions are given by 

2 
Al 2 

Gl(t) • - 2+2 [\A3 -A20(Al+A3t)]cosOt 

° ° 2 
- 2 [AlAI, + A20(A2-A4t)]sinOt 

° 2 
A2 2 

G2(t) - - 2+ 2 [A2A4 - AlO(A2-A4t)]cosOt 

° ° 2 + 2 [A 2A3 + AlO(Al +A3t)]sinOt 
II 

1 1 
• 0 [Al(~+A3t) + A2(A2-A4t) +0 (A2A3+AlA4)]cosOt 

1 1 
- 0 [A2(Al +A3t) - A1 (A2-A4t) - 0(AlA3-A~4)]sinOt. 

(74i) 

The constants AI' A2, A3, A4, C, Dl , and D2 are calculated from the appropriate 

initial conditions. Equations (66) and (74) provide a basis for comparison of 
the error growth rate of spinning and three axis stabilized satellites. If alO ' 
given by Eq. (62), is large and Al or A2 are small, then a three-axes stabilized 

design is warranted. The reverse is also the case. Interestingly enough, all 
these predictions have been borne out by analog Simulations. 

THE PERTURBATION SCHEME 

A perturbation solution of Eq. (1) will now be obtained with the assumption 
that A'fi and that the noises associated with the moments of inertia of the 
satellite are small. The inertia noises are defined as 

(75) 

wh~re £i and ni are the noises in the sample and time spaces, respectively. 

The angular velocity responses, Wi' are assumed to be functions of the seven 
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small parameters A', Ei and ni of the form: 

Wi- 0t + A'wiO + E1wil + E2Wi2 + E3Wi3 + nl wi4 + n2wi5 + "3Wi6 

+ (A,)2Wi7 + A'El wi8 + A'E2Wi9 + A'E3WilO + ~'nlwill 
2 

+ A'n2wi12 + A'n3wil3 + (El ) wi14 + EIE2wi15 + EIE3wi16 

2 
+ Elnlwi17 + Eln2wi18 + Eln3wi19 + (E2) Wi20 + E2E3wi2l 

2 
+ E2nlwi22 + E2n2wi23 + E2n3wi 24 + (E3) wi25 

2 
+ E3nlwi26 + E3n2wi27 + E3"3Wi28 + (nl ) wi29 + nln2wi30 

2 2 
+ nln3wi3l + ("2) wi32 + n2n3wi33 + ("3) wi34 (76) 

In Eq. (76), the cubic and higher powers of the small parameters are neglected. 
The quantities Or are the nominal values of the angular velocities wi. It is 
assumed that 

n~ - ° - a constant 

(77) 

Equations (75), (76), and (77) are substituted into Eqs. (1) and separate 
equations are then formed corresponding to each of the various combinations 
of the small parameters. This classical principle of separation of parameters 
results in only a few of the multitude of terms on the right hand side of Eq. 
(76) being non-zero. Thus, a more compact expansion for the angular velocities 
is obtained as 

w1 - A'wlO + (A,)2w17 + A'E1w18 + A'E2w19 + A'E3w110 + A'nlwl11 

+ A'n2wl12 + A'n3wl13 

w
2 

= A'w
20 

+ (A,)2w27 + A'E
1

w
28 

+ A'E2W
29 

+ A'E3w210 

+ A'n1w211 + A'"2W212 + A'n3w213 

w3 • 0+ A'w30 + (A,)2w37 + A'E3w310 + A'n3w313 

Let L* be a matrix differential operator defined by 

T 1 
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Then the perturbation equations for the components of w given in Eq. (78) take 
the form -

11 

~ 
~\ 

Il 
t 
Ii 
t] 
Ii 
11 

II 
IJ 

~ 
£1 

( 
, ) [ , n \'[ , , • ]T L* A E3wilO = -UE3A w20 ' .. E3~ wlO ' -E3~ w30 

L*(A'nlwill) = - [A'nl~lO ' ~nlUwlO ' O]T 

Equations (79-86) are easily solved. 

- - I-
II = 12 = '2 13 

In particular, assuming 

II the solutions to Eq. (79) and (80) are obtained as 
~i 

Ii 
1 

,i and hence 
I 

1 t 
A'W = - =- f sinU(t-,)A'f (,)d, 

20 II 0 1 

(79) 

(80) 

(81) 

(82) 

(83) 

(84) 

(85) 

(86) 

(87) 

(88) 

'(89) 

(90) 

(79) 

i 

I I 

I 
I 
I 

l 
I 
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The perturbation solutions obtained so far from Eqs. (89,90) agree closely 
with the Fokker-Planck solutions given by Eq. (74). But the drawbacks of the 
perturbation scheme become apparent when Eqs. (81-83) are solved. Equations 
(81-83) predict a secular growth of the angular velocities even for the time
independent sample space inertia noises, E. This is obviously not true from 
a physical standpoint. Thus, all perturbation equations involving Ei , but not 
ni , must be discarded and the parameters Ei must be absorbed in Ii. Equations 

(81-83), then, are discarded and Ei are set equal to zero, so that Eq. (78) re
duces to 

(90a) 

Equation (90a) predicts that, if A'fi and ni are independent, then the mean val

ues of the amplitudes of wI and w2 do not grow with time. It also states that 

the variances of the amplitudes are stable and oscillatory and that the ampli
tudes of oscillation of the variances are constants for all time. In other 
words, no growth rate of the variances of wi is predicted by Eq. (90a). Con
trary to this prediction, it will be seen in analog simulations that the ampli
tudes do ~row with time, even if A'fi and ni are independent. 

THE MOST-LIKELIHOOD APPROACH 

The method of most-likelihood estimates will now be applied to the system 
described by Eq. (1). As mentioned earlier, this method is based on maximizing 
the joint probability density of the random variables under the constraint 
that Eq. (1) holds. It can be shown that this method, when applied on even a 
linear equation, finally requires the solving of a nonlinear equation. For 
this reason, the nonlinear Eq. (1) needs to be linearized initially to make ana
lytic manipulations possible. 

The well-known linearized form of Eq. (1) is given by 

IlWl Fl 

~ F2 (91) 

I3w3 = F3 

where 

F = 1 A'fl - (I3-I2)Ow2 

F2 = A'f2 - (Il -I3)Ow1 
(92) 

~. A'f 3 

~~h the vector defined by 
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Let the matrix elements Nij be defined by 

Let the functional J be defined by 

J .. 
T -1 • 

L ! {Vi[N ]ij Vj + 2Bk[IkWk-Fk]}dt 
i,j,k 0 
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(93) 

(94) 

(9S) 

where Bj are arbitrary time-dependent Lagrangian multipliers. It can be shown 
[10] that the most likelihood estimates of wi are obtained by minimizing the 
functional J in the interval [O,T] with respect to the variables vi and wi' 

The variational equations for minimizing J are given by Eq. (9l) and the 
following two equations: 

d dF~ 
dt [IkBk] + L B ~ .. 0 j jdWk 

The terminal point condition on B is given by 

Bi (T) = O. 

Assuming that 

and 

N4j c Nj4 = 0 if j r 4 

NSj .. NjS = 0 if j r 5 

N6j .. Nj6 .. 0 if j + 6 

Equation (96) can be opened up to read 

~l .. Nll [Bl~l + nwl B2] + N12 [B2~2 - nBl w2] 

~2 = Nl2 [Bl~l + nW1B2] + N22 [B2~2 - nBl w2] 

~3 .. N33 [B3~3 + n{Bl w2 - wl B2)] 

01 .. -N44Bl 

(96) 

(97) 

(98) 

(99) 

(lOO) 

{lOll 
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62 - -NSSIl2 

63 - -N661l3 
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Using Eqs. (92) and (101), Eqs. (91) and (97) can now be reduced to the follow
ing forms: 

[11 + Nll(lll~1+nwlIl2) + N12(1l2~2-nlllw2)]~1 + n[I3-12 

+ N33{1l3~3 + n(lllw2-wlIl2)} - N12(lll~1+nwla2) 

- N22(1l2~2-nlllw2)]w2 - 1'fl + N441l1 = 0 

[12 + N12(lll~1 + nwlll2) + N22(1l2~2-nlllw2)~2 + n[Il-~3 

- Nll(lll~1+nwlIl2) + N12(1l2w2-nlllw2) - N33{1l3~3 

+ n(lllw2-wlIl2)}]w2 - 1'f2 + NSSIl2 = 0 

[13 + N33{1l3~3 + n(alw2-wlIl2)}]~3 - I'f3 + N661l3 = 0 

[11 + Nll(lll~1+nwlIl2) + N12(1l2~2-nlllw2)]al - n[Il~3 

+ Nll(lll~1+nwlIl2) + N12{1l2~2-nlllw2) - N33{1l3~3 

+ n(lllw2-wlIl2)}]1l2 = 0 

[12 + N12(lll~1+nwlIl2) + N22(1l2~2-nlllw2)]a2 - n[I3-I2 

+ N33{1l3~3 + n(lllw2-wlIl2)} - N12(lll~1+nwlIl2) 

- N22(1l2w2-nlllw2)]lll = 0 

[13 + N33{a3~3 + n(lllw2-Wlllz)}]a3 = 0 

(102) 

(103) 

(104) 

(105) 

(106) 

(107) 

Equations (102-107), together with the initial conditions on wi and the end 
conditions on Ili given by Eq. (98), form the final two-point boundary value 
problem coverning the stochastic motion of the satellite. To solve this 
problem, a perturbation sequence for Ili and wi has to be adopted. 

Let it be assumed that E is a small parameter and the numbers Nij are of 
the order of E or less. Let Ni' i = 1-7, be defined as 

Nll - ENl 

N12 - EN2 
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I 

2S 

N22 • EN3 

N33 • EN4 (108) 

N44 - ENS 

NSS • EN6 

N66 • £N7 

where 

(108a) 

Let the variables wi and ~i be assumed in the form 

2 wi .. wiO + EWil + E wi2 + 

2 
~i .. ~iO + E~il + E ~i2 + (109) 

such that 

(110) 

Substituting Eqs. (108) ~nd (109) in Eqs. (102-107) and separating the co

efficients of EO, £1, £2, etc., it can be seen that the zeroth order response 
is given by 

~iO .. 0 

Il~lO + (I3-12)nw20 .. I'fl 

12~20 - (I3-Il )nwlO .. I'f2 

13~30 .. I'f3 

(Ill) 

(112) 

After some involved algebra and the use of Eq. (110), it can be seen that the 
predicted response from the higher order perturbation equations has essential
ly the same .characteristics as that obtained by the straight forward pertur
bation scheme explained in the preceding section. Thus, the method of the 
most likelihood estimates suffers from the same drawbacks as those of the per
turbation method. 

THE METHOD OF STOCHASTIC EIGENVALUES 

According to this method, the deterministic solutions of Eq. (1) are to 
be obtained first. Stochasticity is then imposed on these solutions to esti-
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mate the behavior of the system which was random from the beginning. Although 
this method is not exact, it is much simpler than the methods previously dis
cussed. 

~or example, the approximate deterministic response of a three-axes stabi
lized, F,ai ellite is given by 

t A'f r __ i dt 
o Ii 

W .. 
i 

, i '" 1,2,3 (113) 

Hence, assuming T'fi to be a constant, the mean values and the variances of Wi 
are given by [16] 

(114) 

(115) 

where 

(116) 

In deriving Eq. (116), it was assumed that ~i and 0i are Gaussian random variables. 

For the case of a spinning satellite with Il = I2 ~ t I 3, T'f3 = 0, and 

constant values of T'fl and T'f
2

, the deterministic amplitudes and frequency of 

oscillation of WI and w2 are given by 

A'f2 A'f2 
Amp. [wl ] - 1

2
W
3 

"120 

A'fl A'f1 a--=--
11w3 IIO 

(117) 
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when wl(O) - w2(O) • O. 

Hence, the growth rates of the amplitudes and frequency are described by 
the variances, which are 

2 1 
E{[Amp. [Wl ]] } - -2 2 

In 2 

(118) 

(119) 

From Eqs. (114) and (115), it is seen that the approximate predictions 
for the responses of three-axes stabilized satellites are quite satisfactory. 
Equation (118) approximately predicts the frequency growth phenomenon. Equa
tion (119) predicts that, when t is small, such that D3t is small compared to 

n, the variances are of the form 

(120) 

But for large values of t, the variances will reach a constant value. This is 
given by 

The prediction of an initially g'rowing variance finally levelling off to 
a constant value is satisfactory and is corroborated by analog simulations. 
The only problem with Eqs. (120) ond (121) is that these equations predict a 
lower growth rate and a lower value of the asymptotic variance as n becomes 
large. In this respect, Eqs. (120) and (121) differ from the Fokker-Planck 
formulation and the analog simulations which give higher growth rates and 
higher values of the asymptQtic variance for larger values of n. 

ANALOG SIMULATION 

The results of simulation of the satellite response, as given by Eq. (I), 
can now be presented. The simplified system block diagram is shown in Figure 
1. This system was programmed on an AD-256 (Analytical Dynamics-256) analog 
computer. The white noise inputs ~i and 0i' i - 1-3, were obtained from a 
coupled SDS-930 (Scientific Data Systems-930) real time digital computer. A 
high frequency RO (ReJletitive Operation) clock circuit from the AD-256 was 
used to trigger a pseudo-random number generating program in the SDS-930. Sam-
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ples of twenty such pseudo-~andom numbers were used to form a Gaussian white 
noise sequence with a zero mean value and suitable peak values. Six such in
dependent noise sequences were continuously generated in the SDS-930 and fed 
to the AD-256 through six DAC (Digital to Analog Converter) lines. One test 
line was also used to interrupt the SDS-930 and change .the peak values of the 
noise sequences. A sample of the noise sequences Vi' i'" 1-3, is shown in 
Figure 2 at a high brush recorder speed. At any instant of time, the frequencies 
of generation and the peak values and, hence, the bandwidth of all Vi and 0i 

i - 1-3, were maintained equal. Thus, 0 i' i '" 1-3, are similar in nature to 
that shown in Figure 2, although all six noise sequences were independent of 
each other. 

Let r be the ratio defined by 

r '" [Peak value of Vi and 0i' i • 1-3]/13 (122) 

where 13 is the nominal moment of inertia about the spin-axis. Brush records 
of the simulated angular v.elocities wl ' w2' and w3' for different values of 

T and 0, are shown in Figures 3-15. The values of rand 0, corresponding to 
each of these figures, are tabulated in Table 1. In all cases the initial 
values of wI and w2 were taken to be zero. 

Table 1: Index to the attached figures showing samples of the sto
chastic satellite Tesponses. 

~ 1 1 1 r '" 12 '" 0.083 T--- 0.166 r-7;- 0.25 
Values of 0, 6 

rad./sec. 

Figure Nos. Figure Nos. Figure Nos. 

Fast spinner: 0- 1.0 3,4 5 6,7 

Slow spinner: 0- 0.5 8 9 10,11 

Three-axes stabilized: 12 13 14,15 
o - 0.0 

EVALUATIONS AND COMPARISON 

The Tesults of the analog simulation will now be evaluated and compared i; 
with the predictions of the ,analytical methods discussed earlier. 

The first important result of the simulation study is that, in every calle, 
the responses grow with time. The growth phenomenon is predicted by all four 
of the analytic methods only for the case of a three-axes stabilized satellite. 
This was true because, if 0 - 0, Eq. (1) leads to a perturbed equation given by 
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(123) 

Responses given by the ~clutions of Eq. (123) are the integrals of ~'fi and, 
hence, must grow linearly with time, even if X'r! are equal to zero. But, 
in the case of spinning satellites, only the Fokker-Planck formulation pre
dicts an initial exponential growth. The perturbation method and the most
likelihood approach predict a constant variance. The stochastic eigenvalue 
method also predicts a linear growth rate which, however, is inversely propor
tional to 02. Looking at Figures 4, 8, and 12, or at Figures 5, 9, and 13, 
or at Figures 7, 11 and IS, it is seen that the variances increase with O. 
Thus, at this point, the Fokker-Planck formulation is apparently the best of 
the theories under consideration. 

A second interesting result, discernible from Figures 3, 7 and 11, is 
that, with time, the response amplitudes reach a stable value. Such stable 
values are predicted directly by the stochastic eigenvalue method. The per
turbation method and the most-likelihood approach also yield the same result 
if it is assumed that these methods are valid ,only for the asymptotic case. 
It is to be noted that the Fokker-Planck formulation can also be made to 
yield this result, al~hough no~ as directly as the other methods. To do thiS, 
let the solutions of M200 and M020 as given by Eq. (74) be considered: 

1 2 
C + exp[Z alOO t]{Dlcos20t + D2sin20t} + Gl(t) 

(124) 

The exponential terms in M200 and M020 appear with opposite signs. 

According to Eq. (124), one of the variances must grow and the other de
cay with time. Thus after a certain time, one of these variances will tend 
to be negative. But variances are by definition non-negative quantities. 
Hence, Dl and D2 are to be taken as non-zero until one of the variances first 

becomes zero. Dl a~d D2 sho~ld then be set equal to zero in order not to have 

negative values of M200 and M020 ' This procedure yields the prediction that 

the response amplitudes become stable after a certain time, which is in agree
ment with the simulation results. 

The last obvious result obtained from the simulation is that, for a given 
value of 0, the variances and the growth rates increase with r. This is ex
pected, both intuitively and rationally, and all four theories predict it. 

A comparison can now be made of the theoretical methods, based on purely 
analytical grounds. The strength of the Fokker-Planck method lies in the fact 
that it does not require either uncoupling or linearization of coupled non
linear systems such as that of Eq. (1). The statistical moments of all orders 
are obtained directly as the solution of a coupled linear set of equations. 
Hence, digital computer methods can be used easily to solve such equations. 
The other three methods are based on initial linearization and possible un
coupling. This linearization results in a loss of useful statistical information. 
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There are, however, some disadvantages of the Fokker-Planck method. The 
vrimary disadvantage is that all statistical moments are couVled. Hence, when 
the number of dependent variables is large, the resulting set of equations is 
more so, even if the third and higher order moments are neglected. This method 
then requires some foreknowledge of the higher order moments and the statistical 
forms of the input random functions. 

In view of the above discussion, the following conclusions can be made: 

i) The Fokker-Planck formulation yields the most complete information 
on the responses of a satellite with random disolrbing torques and stochastic 
moments of inertia. 

ii) For a satellite with very small inertia noises, the spinning configu
ration is better than a three-axes stabilized configuration. The reverse is 
also the case. 

iii) In all cases, the responses have an initial fast rate of growth. 
But after some time, this growth rate falls off, leading to a constant variance 
level depending on the variances of the input disturbing torque and on the mean 
moments of inertia of the satellite. 
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STABILITY AND OONTJK)L OF FLEXIBLE SATELLITES 

PARr I - STABILITY 

T. C. Huang and Aniruddha Das 

ABSTJ'.ACT 

This investigation has two distinct parts. In this first part the environ
mental and control torques experienced by a satellite are assumed to be random 
so as to account for the inherent en'ors in the control systems and the lack 
of exact III>de1s of the environmental torques. It has been shown that under this 
assumption the required stability criteria of a satellite is quite different 
from that obtained by a deterministic 8}'proach. It has also been shown that 
a flexible three-axes stabilized satell~,te can be made allll>st certainly asympto
tically stable, while the same is not true for a flexible spinning satellite. 

NO!£NCLATURE 

A* • Composite body of a flexible satellite. 

[Ai]' i • 1-5· Matrices associated with the equations of III>tion of the flex
ible elements; Eqs. (3), (49), (53) - (57). 

[Ai], i • 1-5 • Matrices similar to [Ai]; Eq. (44). 

a 

a* 

B* 

[B
l

], [B
2

] 

b
l

, b
3 

[C] 

C
i

, i. 1-10 

e
i

, i - 1-4 

!(t) 

f2' f4 

!*(t) 

• Radius of the cylindrical rigid core of the assumed satell~,te 
configuration; Fig. 2. 

• Normalizing factor of the joint probability density; Eq. (17). 

• Additional composite body for a flexible dual-spin satellite. 

~ Matrices associated with combined equations of motion of the 
satellite; Eqs. (5) - (7). 

• Elements of ~l' Ed3; Eq. (38). 

• Stochastic system matrix; Eqs. (21), (27). 

• Coefficients of the characteristic Eq. (71); Eqs. (74) - (77), 
(80;'. (85), (86) .. 

• Elements of~, i· 1-4; Eq. (38). 

• Deterministic forcing function; Eqs. (5), (10). 

• Elements of ~2' ~4; Eq. (";). 

• Deterministic environmental torque vector on the satellite; 
Eqs. (4), (45), (50) • 
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[Gl 

gij 

h.[~(t) 1 

[11 

[I] 

Ix' Iy ' I z 

J 

J* 

J** 

'"' Stochastic control matrix, Eqs. (21), (26). 

= Elements of coefficient matrix defined by Eq. (63). 

~ Deterministic observed function of ~(t); Eq. (13). 

~ Identity matrix. 
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= Moment of inertia matrix of the nominal configuration of the 
satellite. . 

= Diagonal elements of [11; Eq. (52). 

= The join!.. probability density of (!.-~, (~:!!), (k"D and 
[x(O) - ~(O) 1, Eq. (17). 

= Functional defined by Eq. (17a). 

= Functional defined by Eq. (18). 

R.i , i = 1-4 = Lengths of flexible beams of the satE>llite. 

-1 [Nil, i = 1-4 = Submatrices of [B1 ] ; Eqs. (28), (29). 

[0] = Null matrix. 

= Covariance matrix of [~(O) - ~(O)]; Eq. (12). 

[P i ], i • 1-5 ~ Matrices associated with the angular momentum equations of the 
flexible satellite; Eqs. (4), (50). 

[PI], i = 1-5 = Matrices similar to [Pi 1; Eq. (45). 

Pi = Eigenvalues of [-B~~2]. 

pr, 

[Q] 

Qij' 

~ 

S' 

%i' 

[R] 

r 
~ 

i = 1-4 

i,j=1-6 

i ~ 1-4 

~ Exponents of the assumed beam displacement function; Eq. (42). 

~ Covarience matrix of [.!!(t) - ~(t)]; Eq. (15). 

'"' Elements of" the characteristic matrix of Eqs. (49). (50); 
Eqs. (70), (71). 

• Generalized position vector of the flexible elements of the 
satellite; Eqs. (3), (4), (49), (50). 

• Vector, similar to~; Eqs. (44), (45). 

- Time dependent part of ~i; Eq. (42). 

• Covariance matrix of [!.(t) - i(t)]; Eq. (14). 

- Displacement vector of the center of mass of the flexible sa
tellite from its nominal position; Eq. (63). 
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.!:di' i • 1-4 - Nominal position vectors of the spring-mass-damper system; 
Eq. (38) • 

.!:n' i C 1-4 - Nominal position vectors of the bea~end masses; Eq. (37). 

[SK1, K = 1-3 '" Coefficient matrix; Eq. (67). 

S Covariance matrix of t!.(t) - l{t) 1; Eq. (16). 

~ ~ Generalized velocity of the flexible elements; Eq. (8), (ll). 

T '" Terminal point of controlling time interval. 

T '" Terminal point of the time interval in which the maximum like-
lihood estimates are required. 

T '" Total kinetic energy of the flexible satellite. 

t = Time. 

~ = Augmented control torque vector; Eqs. (5), (9). 

!:!* '"' Control torque vector; Eqs. (4), (45) , (50) • 

.! Stochastic system state variable; Eqs. (21), (24). 

~ = Deterministic system state variable; Eqs. (5), (8). 

Ini' i c 1-4 = Displacement vector of beam. 

'/ di' i = 1-4 Components of ~; Eq. (41). 

~, i = 1-4 = DisplacellEnt vector of spring-mass-damper system. 

~, i = 1-4 '"' DisplacellEnt vector of be~end masses. 

- Stochastic forcing func.tion; Eqs. (2l), (25). 

c Observed values of the state variables; Eqs. (13) , (19), (23). 

a - Characteristic values of Eqs. (49), (50); Eq. (70). 

[akl, k = 0-3'" Coefficients of structural equations; Eqs. (64) - (68). 

O{t) 

l!. 
k 

l1,ij 

'" Dirac's delta function. 

= Relative angular displacement vector of A* with respect to B*. 

- Lagrangian multiplier and state variable; Eqs. (18) , (22). 

- Lagrangian multiplier; Eq. (18). 

'" Coefficients of structural equations; Eqs. (64) - (66). 
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T
bij • Be .. displacement mode parameters; Eqs. (46), (47). 

Td:!. • Spring-.lD88s-damper displacelEnt mode parSlEters; Eq. (48). 

.£ • Nominal angular velocity vector of the satellite. 

..!!! • Perturbed angular velocity vector; Eq. (2) • 

..!!!* • Angular velocity vector of the satellite • 

.JII* A • Angular velocity vector of A*. 

w* -B • Angular velocity vector of B*. 

OPERATORS 

(") • Time derivative; d: 

[ ]T • Transpose. 

() - Vector cross product operator; Eq. (69). 

n - Mean value. 

u - Vector. 

Det. [ ] - Determinant of the matrix. 

E[ ] • Statistical expectation. 

Tr. [ ] - Trace of the matrix. 

INTBODUCTION 

The primary requirement of an artificial satellite is that it should be 
capable of precise orientation in space. This capability is determined mainly 
by the stability and controllability of the sat:ellite when viewed as a dynamic 
system. A large nuui>er of investigations have been made in the area of flexible 
satelli te dynamics. But several interesting questions on the, stability and 
controllability of flexible satellites have not been examined in sufficient de
tail. The present study looks at two of these questions: 

(a) What are the stability criteria of flexible satelli tes in the 
presence of errors in the controlling torques and largely unknown 
environmental torques? 

(b) For a given control system, and for a given number of torquing 
jets, is it possible to increase the controllability of a flexible 
satellite by monitoring the deflections of the flexible elements? 

In the first part of this study it will be shown that, in the presence of 
random errors in the external torques on a flexible satellite, the stability 
criteria are far more restrictive than those deduced from a deterministic 
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approach. The second part of this study will present reasons for an affirma
tive answer to question (b). 

As r£ntioned earlier. deterministic criteria for the stability of flexible 
satell::'tes have been studied extenSively [1-4]. It must be noted that, to ac
count for e.rrors in the external torques acting on the satellite, these torques 
and the dynamic state variables of the satellite model must be treated as 
stochastic variables. Several studies [5-7] on the state identification prob
le m have been done. These studies generally assumed Gaussian distributions 
and used Kalman filtering techniques. Using methods similar to that gi.ven in 
Ref. [8], equ~tions of motion and the stochastic angular velocity response of 
flexible satellites have been computed in Refs. [9,10]. But the problp,m of 
comparing the stability characteristics of various satellite configurations 
subjected to random excitations has not been investigated. 

~TERMINISTIC EQuATIONS OF MOTION 

Formal deterministic equations of motion of a flexible satellite can be 
established. The stochastic stability boundaries can be determined only when 
these equations are available. 

Let ~*(t) be the angular velocity vector of a flexible satellite. For a 
single body satellite, w*(t) is a (3xl) vector. For a dual-spin satellite with 
two main composite bodies (A* and B*) , ~*(t) is usually taken as 

• T 
~* (t) = [~(t), !!!.~(t), ~(t)] (1) 

In the above equation, !!!.1 and ~~ a~e the (3xl) angular velocity vectors of the 

composite bodies A* and B*; while ~ is the (3xl) relative angular velocity vec
tor of the body A* with respect to B*. Let Q be the constant vector of the 
nominal values of !!!,*(t) , such that the perturbing angular velocity vector ~(t) 
is defined by 

!!!,(t) = ~*(t) - g (2) 

Let the motions of the flexible elements of the satellite be represented by 
the generalized (nxl) position vector set). With these definitions, the equa
tions of motion of the flexible elements can be expressed in the follOWing form: 

[Al]ii,(t) + [A2(!!!.,~,g,t>li(t) + [A/!!!'.~.g,t)lS(t) 

= [A4]~(t) + [A5(!!!.,g.t)l~(t) (3) 

Similarly, the equations for the conservation of angular momentum of the compos
ite bodies of the satellite can be shown to be of the form: 

[P 1 l.ii, (t) + [P 2 (!!!.,~.g" t})i (t) + [P 3 ~,~,g" t) ls. (t) 

= [P4]~(t) + [P5(!!!..g,t)]~(t) + ~*(t) + !*(t) (4) 
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where u*(t) and f*(t) are the controlling and environmental torque vectors, re-
specti\rely. -

Detailed methods of developing Eqs. (3,4) are given in Refs. 11-4] and es
pecially in Re~s. [11,12]. Eqs. (3,4) provide the complete set of equations 
of motion of the flexible satellite. EqUbtion (3) contains In' scalar equa
tions, such that the matrices [AI]' [A2] and [A3] are square. Equation (4) con
tains either three or nine equatIons depending on whether the satellite is of 
a single body or a dual-spin type. 

Equations (3,4) can be colllbined in the foI'lll 

[Bl],i + [B21.!." .!!.(t) + i(t) 

where, defining [1] to be the identity matrix, 

and 

l P, -PI 

:] [B
l

] .. A4 -~ 

0 0 

[~ 
-P

2 -P1 [B2
1 .. -~ -A3 

-1 0 

.!.(t) .. [~(t), !.(t), S(t)]T 

.!!.(t) .. [.!!.*(t), Q. Q]T 

.f(t) .. [i*(t). Q • .Ql 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

Equation (5) is the req·.u.red differential equation describing the determi.nis
tic motions of Ii flexfole satellite. 

STOCHASTIC EQ1T!.J:IONS OF K>T10N 

The stochastic equations of motion of the flexible satellite will now be 
obtained following the method shown in Refs. [8,9]. 

Let it be assumed that the initial values, x(O), have a Gaussian distribu
tion with a known mean value. ~(O). and a known covariance matrix, [POl. given by 

[Po] .. E{[.!.(O) - ~(O) H.!.(O) - ~(O) ]T} (12) 

Here the operator E denotes statistical expectation. Let .!.(t) be monitored on 
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the Earth by measuring a variable z (t) where the mean value, I(t) , of 1:. (t) is 
related to .!.(t) by -

(13) 

Let it also be assumed that the variables z(t), u(t) , and f(t) are Gaussian 
with known mean values and covariance matrices R(t) , Q(t) ,-and Set), respec
tively. Hence, assuming zero lag, we get 

E{[1:.(t) - K(t) ][1:.(T) - K(T)]T} E R(t)~(t-T) 

E{[~(t) - :!!(t) ][E.(T) - 3!(T) ]T} - Q(t)O(t-T) 

E{ (!.(t) - ret) ][!.(T) - l(T) l} • S (t)6(t-T) 

where :!!(t) and let) are the mean values of ~(t) and !.(t), respectively. 

(14) 

(15) 

(16) 

Let the maxim~likelihood estimates of the response of the satellite be 
required in the time interval [0 ,T]. In viEW of the definitions given above, 
the joint probability density, J, of ~ID, ~-lY' <f-£) and I.!.(O) - ~(O)] is 
given by 

J = a*[exp(- J*)] 
2 

where J* is defined as 

J* = [.!.(O) - ~(O)]T [PO]-l[.!.(O) - ]:(0)] 

+ J~ [1:.(t) - ~(t)]T[R(t)]-l[~(t) - ~(t)] 

- T -1 + [~(t) - E.(t)] [Q (t) ] [~(t) - ."!!(t)] 

+ [!.(t) - !(t)]T[S(t)rl[!.(t) - ret)] dt 

and 'a*' is the normalizing factor. 

(17) 

(17a) 

The maxim~likelihood estimates can be obtained by maximizing the proba
bility density ,J. In other words, we minimize the functional J*. subject to 
the constrainta that Eqs. (5), (13) be satisfied. This is done by defining 
J** by the relation 

J** • J* + 2 ;f {)JTrz(t) - hex)] o - - --
T· -1 + ~ [.!. + Bl {B2.!.-E.-!.} )}dt (18) 

and minimizing J** by considering .!.(O) , :!:(t) , E.(t) , !.(t) ,.!.(t) and the La
grangian vector multipliers ~(t) and ~(t) as the independent variables. 

It will now be assumed that 
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.which means 

.!o(t) • h[~(t)] • ~(t) 

ah.. [I] 
il~ 
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(19) 

(20) 

With this 88sUJll)tion, the variat:lonal equationa obtained by minimizing J** are 
expressed 88 

and 

where 

~(t) • fC]~(t) + lGN(t) + ~(t) 

l(T) • 0 

~(O) • ~(O) + [Po)l(O) 

.!(t) • [~(t), l(t)]T 

-1 -1 
!.(t) • [Bl !(t), - R .!o(t}] 

[C) 

[G) • [BO~l] 
B-

1 
[Q+S)[B -1) T] 1 1 

-1 T 
[Bl B21 

(2l) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

Equations (21-23) are the required st\,chastic differential equationa of .ation 
of the flexible satellite. 

STABILITY CRITERIA 

The stochastic Eq. (21) has twice IW many scal.u equations as the deter
ministic Eq. (5). The deternd.nistic equations .are .stable if the eigenvalues 

of [-1>.~\2) have negative real parts. The stocha.'3tic equations are stable if 

all the eigenvalues of [C] have negative real parts. If there were no errors 
involveo' with u(t) and f(t), the matrices [Q] and [S] would be null matrices • 
Conseq\lj!'ntly, Eq. (21) would d~\generate into Eq. (5) • 

The hypothesis of this study is that [Q) and [S] are not 'null matrices, 
but hav ... positive elements which are very small collpared to thoae of IB ] or 
[B

2
]. Hence, half of the eigenvalues of [Cl will be al.ast equal to tht eigen-
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values, Pi' of [-B~~2J and the other half wi.l1 be almost equal to -Pi' That 

the eigenvalues of [e] 11e symmetrically about the imaginary axis can be veri
fied by noti.ng that 

Tr[e] K 0 

-1 T and that the eigenvalues of [B11l2] are equal 
-1 

[-B
1 

B2 ]· 

and opposite to those of 

In view of this, it is evident that Eq. (21) is always unstable. Even i.f 
the real parts of PL are zero, the instabi1Uy will be caused by the -multiple 
roots. Thus, accorCling to the classical meaning of the term, no stability cri
terion exists for the stochastic Eq. (21). The physical reason behind thi.s is 
that the probable errors i.n the dependent variables accumulate with time. This 
accumulation causes the maxim~like1ihood estimates to be asymptoti.cally di
vergent, even if the deterministic Eq. (5) is stable. The growth phenomenon, 
for a sate11i.te in which the vector x(t) is measured at discrete intervals of 
time, is illustrated in Figure 1. Let the mean values of x{t) be considered 
to be given by the solutions of Eq. (5). Let the variances of x(t) be compu
ted from the differences of the values of .?f(t) computed from EqS. (5) and (21). 
The error functions computed from these mean values and varianc~3 are shown at 
three i.nstants of time in Figure 1. In Figure lA, there is a data input and 
the computation cycle has been started. Hence the error distribution curve 
has a high peak.. The variances here correspond only to the -measurement errors 
of the variables x(t). In Figures 1B and 1e, it is seen that the hei~lt of the 
error function bec:omes shorter and shorter, although the mean position given 
by Eq. (5) approaches the origin. In Figure 1e, the error function is very 
flat just before the new data input. It becomes sharp again just after the new 
data input when a new computation cycle is started. 

Since Eq. (21) is necessarily unstable, the stochastic stability cirteria 
for a flexible satellite must be formulated in a particular manner. The sto
chastic stabi.1ity criteri.a of the response of a flexible satellite are those 
which make 

(a) the deterministic model given by Eq. (5) stable, and 

(b) the growth rate of the stochastic IOOde1 given by Eq. (21) a minimum. 

In the absence of further information about the covariance -matrices Q, Rand S, 
these two requirements are met if the real parts of Pi are equal to zero. 
Thus, a flexible satellite will be called stochastically stable if all the eigen

-1 values of [-Bl B2] are purely imaginary. It is interesting to note at this 

point that a perfectly rigid satellite satisfies this requirement. 

Specific stability criteria can be obtained for a satellite when the ele
ments of [Bl ] and [B2] are known. For this, a particular satellite configura-

tion has to be assumed. In the absence of such a specific configuration, sev
eral conditions sufficient to make the Pi purely imaginary can be established 
in ter-ms of the matrices [Ai.] and [Pi.]' i = 1-5, when the matri.ces are square. 



56 

SUFFICIENT CONDITIONS 

The sufficient condition for the Pi to be purely iBsginary, the matrix 
-1 [B1 B2) must be antisymmetric. Let [Ai] and [Pi)' i • 1-5, be square 

-1 matrices. Let [B1 ] be given by 

(.,)-' - [:: :: :J 
Comparing Eqs. (6) and (28), the matrices Ni , i • 1-4, are given by 

-1 -1 
[NIl· [P4 - P1Ar A4] 

[N2] • [A4 - ArP~~4]-1 

-1 -1 
[N3] • [P4A4 AI-PI] 

-1 -1 
[N4] • [A4P4 PI-All 

-1 
Hence from Eqs. (7) and (28), [Bl B2l is g1 ven by 

[OJ [-IJ [0] 

To have [B~lB2J antisy_tric, the required conditions become 

Nl P5 + N2A5 - 0 

Nl2 + N4A2 • 0 

N1P3 + N2A3 - 0 

N3P3 + N4A3 • -I 

Nl P2 + N2A2 • Nl5 + N4A5 

(28) 

(29) 

(30) 

(31) 
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Eliminating Ni' i - 1-4 from Eqs. (29) and (31), the required sufficient con
ditions are finally obtained as 

[P 3] E [PI] (32) 

[A3] - [All (33) 

[P2l -1 
[P 4Al A5] (34) 

[~] 
-1 

[A4,\ A5] (35) 

-1 
[P5] a [PIAl A5] (36) 

The stochastic stability criteria given by Eqs. (32-36) are much too re
strictive and it will be almost impossible to obtain a practical design of a 
satellite satisfying these constraints. For example, Eq. (33) requires that 
the natural frequencies of the flexible elements of the satellite should be 
equal to unity. This is not a feasible constraint. 

In spite of these drawbacks, Eqs. (32-36) do provide several guidelines 
for satellite design. It can be easily verified that Eqs. (34-36) are satisfied 
identically by a three-axes stabilized satellite in which all subbodies have 
undamped, purely elastic mountings. A spinning or a dual-spin satellite, even 
if it is free of damping, generally does not satisfy Eqs. (34-36). Equation 
(32) is satisfied by all types of satellites in which there is an axis of sym
metry, and in which the flexible elements are so constrained that the center 
of >mass moves only along the axis of s}'1Illlletry. Hence it can be claimed that, 
among satellite designs with comparable mass, stiffness, damping and covariance 
matrices, a symmetric, three-axes stabilized satellite is likely to have the 
lowest error growth rate. 

A SPECIFIC CONFIGURATION 

The constraints given by Eqs. (32-36) are too restrictive because, in their 
derivation, no attention has been paid to the zero elements of the matrices in
volved. To utilize the location of the zero elements in the matrices [81 ] and 
[B2], a particular satellite configuration (shown in Figure 2) will now be con
siaered. The satellite consists of a rigid cylindrical body with four beams, 
four beam-tip masses, and four spring-mass-damper systems, placed sYDDlletrically 
as required by Eq. (32). The bell11l3 are perpendicular to the axis of symmetry 
and are assumed to be axially rigid. The spring-mass-da~?er systems are assumed 
to be constrained to move only parallel to the axis of synu=try. These assump
tions lead to a large number of zeros in the matrices [Bl ] and [82], making the 
algebraic manipulations considerably simpler. 

The major drawback of any stability analysis with a particular satellite 
configuration is that conclusions drawn from it cannot be extended to other 
configurations. The method of modelling and analysis of the satellite configu
ration (shown in Figure 2) that has been used in chis study partially overcomes 
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this disadvantage. In this ~thod, the location of zeros in [B
l

] and [B2 ] re

main unchanged when the nWli>ers of bellllll, tip-masses, or spring-mass-damper sys
tems are changed. 

THE DYNAMIC !l)DEL 

Let 'a' be the radius of the main rigid body and R.
i

, i· 1-4, be the lengths 
of the bel!lIIB. Let ~ and~, i • 1-4, be the nominal position coordinates 

of the beam-tip masses and the spring-mass-daq>er syste1lll, respectively. Ac
cording to the choice of coordinate axes shown in Figure 2, we have 

T 
~l • [(&+11), 0, 0] 

T 
~r2 • [0, -(a+12), 0] 

T 
~r3 • [-(&+13), 0, 0] 

T 
~r4 • [0, (&+14), 0] 

Let it be defined that 

T 
~3 • [-b3 , 0, e 3 ] 

T 
~4 • [0, f4' e4 ] 

(37) 

(38) 

Let x be the distance along the axes of the beams measured frolll the fixed ends. 
Let l.ri (t), 4i (x, t) and ~i (t), i • 1-4 be the deflections of the beam-tip 

masses, the beams, and the spring-mass-damper syste .. , respectively. According 
to the previously assumed constraints, let it be defined that 

T 
Zrl{t) = [0, Yrl,2(t), Yrl,3(t)] 

Zr2(t) "' [Yr2,l(t), 0, Yr2,3(t)] 
T 

Zr3(t) • [0, Yr3,2(t), Yr3,3(t)] 
T 

Zr4(t) • [Yr4,I(t), 0, Yr4,3(t)] 
T 

(39) 
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~1 (x,t) - [0, yb1•2(x,t), Yb1 ,3(x,t)J 
T 

~2(x,t) -
T 

[Yb2 ,1(x,t), 0, Yb2,3(x,t)] 
(40) T 

~3(x,t) • [0, Yb3,2(x,t), Yb3 ,3(x,t)] 

~4(x,t) • [Yb4 ,l (x,t). 0, Yb4,3(x,t)] 
T 

and 

zai(t) • [0, 0, Ydi(t)] 
T (41) 

Equations of motion in the coordinates~, Yri,j' Ybi,j and Ydi for i = 1-4, 

j - 1,3 are obtained using the method shown in Ref. [1]. The space dependence 
of these equations is e1iminated by assuming 

(42) 

and applying the Ga1erkin's method [l,11J. The space-dependent shape func
tions in Eq. (42) are assumed to be known and correspond to those of a canti
lever beam with a tip-mass. 

At this point, the boundary conditions 

are applied, and the equations of motion reduce to the form 

and 

[AiEi.'(t) + [A2~,~,f!,t)Ji'(t) + [Aj(~,~,O,t)]~'(t) 

= [AiJ§.(t) + [A5(~'0) ]~(t) 

[Pi]s.'(t) + [P2(~&,f!,t)]i'(t) + [Pj(~,~,f!,t).l!l'(t) 

= [P4]~(t) + [P5(~,O)J~(t) + ~*(t) + t*(t) 

(43) 

(44) 

(45) 

where !l'(t) consists of the non-zero elements of ~i and Ydi ' i a 1-4. The 

set of Eqs. (44) and (45) is of the order of 27. It is still quite difficult 
to extract any meaningful analytic stability criterion out of this set. 

It is now assumed that there exists certain unknown constants 'bij and 
'di' i • 1-4, j • 1,3, such that 

(46) 

(47) 

i 
1 
~j 
'I 
l.~ 
~ 

~' 
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and 

(48) 

The values of Tbij and Tdi can be obtained from the eigenvectors of Eqs. 

(44), (45). But it is not our intention at this point to look for eigenvalues 
and eigenvectors of Eqs. (44), (45). Substituting Eqs. (46), (47), and (48) 
into Eqs. (44) and (45), the equations of motion of the satellites are reduced 
to the form 

and 

where 

T 
set} - [Ydl' qbl,2' qbl,3] 

(49) 

(51) 

It should be noted that set) given by Eq. (51) is a (3xl) vector and all 
matrices [Ai] and [Pi]' i - 1-5, are (3x3) matrices. The Eqs. (49), (50) now 

form only a ninth order set of ordinary differential equations. This great re
duction was made possible by the assumptions of Eqs. (46), (47). (48). It should 
also be noted that, irrespective of the number of beams or spring-mass-damper 
systems introduced at the initial stages of the dynamic modelling, Eqs. (49) 
and (50) can always be made a ninth order set by suitably augmenting the equa
tions in Eqs. (46), (47), and (48). 

~ 

Let it be assumed that the moment of inertia matrix, [I], of the satellite 
is given by 

[I] - (52) 

The linearized form of the matrices [Ai] and [Pi]' i - 1-5, can then be shown 
to be as follows: 

0 
1 3 4 

(Jlb12 -gllJlb12-g21Jlb12) 0 

[Al ] -
3 1 3 

-g33J1bl3 0 (Jlb13-g32lib13) 

1 4 
(Jldl-g33J1dl 0 

I. 
-g32J1dl 

(53) 
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, 
~ 

l;, 
5 6 

il 
-(gll~bl2 + g21~bl2) 0 * i! 

[1.2] - 0 0 (54) i~ 
rJ 

0 0 lli 
1,1 
l:J 
1~ 

-., 

[ ::, '~13] 
;-

278 H 
~bl2-gll~bl2-g2l~bl2) h 

t; 
F 

[A3l .. 0 (55) L: 
H 

0 1: 
~ I 

~ 
0 0 9 

I ~bl2 
1 

i [A
4

] .. 4 
\.lbl3 

5 
~bl3 0 (56) 

E 5 6 0 , \.ldl ~dl ;1 
1'\ 

~ g 

~ [+,., 
0 

:] 

Ii 

~ [AS] -
7 

(57) ~bl303 

I 8 

I 
~dl03 \.ldl03 

, 
o 4 0 o 4 ! (a13g33-S

ll
) al2g2l (a13g32-s13) 

" " 

I [Pl] .. 
o 4 0 o 4 (58) (a23g33-S21) aUgll (a23g32-S23) 

0 004 0 j (al3gll+a23g21-S32) 

4 0 0 4 0 
(S2l-a23g33) -a12gn (S23-a23g32> 

g 
o 4 0 o 4 (59) 

~ [P2] a (a13g33-Sn a12g2l (al3g32-Si3) °3 
i1 
11 
Ii 

0 0 0 r ,j 
~ 

~ 

I 



1 3 ? 3 3 
(S23+~23g33) ~23gZl (S32+~23g32) 

CPS] • 
1 3 1 3 3 02 

-(S13+~13g33) -~13gll (S3l-~13g32) 3 

0 0 0 

A 

[P
4

] • [I] 
::v' 

[P5] • O[I] - [I !!1. 

The undefined constants introduced in Eqa. (53) - (62) are defined by 
lowing relations: 

[ 'll 

0 0 qbl,2 

r = gZl 0 0 qbl,3 -c 

0 g32 g33 Ydl 
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(60) 

(61) 

(62) 

the fol-

(63) 

where r is the displacement of the center of mass of the satellite from its 
nomina~position, and 

(64) 

(65) 

(66) 

aT A 1 2 3 1 
aJ! - [I].!!!. + rc,l [tlij ].!!!. + r c ,2[aij ].!!!. + r c ,3[aij ].!!!. + Yd1 [Sij].!!!. 

Z 3' 4- O· 
+ qbl,2[Sij].!!!. + qbl,3[Sij]~ + [Sij]~ - [aij]rC 

(67) 

where T is the kinetic energy functional [1] of the satellite. The operator 

r 
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(~) on any (3xl) vector ~ is defined" by 

(68) 

such that the cross-product between any two arbitrary vectors ~ and ~ is given 
by 

~x.!.·uv·-v~ (69) 

Analytic search for the eigenvalues of Eqs. (49) and (50) is now quite 
easy. because these form only a ninth order set. As in the elements of the 
matrices [Ai] and [Pi]' i - 1-4. these eigenvalues are functions of the unknown 

constants Tbij and Tdi • The method of analysis to be adopted now is to obtain 

the stability criteria in terms of Tbij and Tdi • Then we must obtain the union 

of all criteria such that the resulting criteria become independent of Tbij and Tdi • 

EIGENVALUE EQUATIONS 

The characteristic equation in a for Eqs. (49) and (50) is given by 

[ IP'-4J -I>, ... ,+o>J] 
Det. ~ a (70) 

[As+aA4] - [A3+aA2+a AI] 

With the help of Eqs. (53) - (62). it can be seen that Eq. (70) is of the form 

Qll Q12 a Q14 QIS Q16 

Q21 Q22 a Q24 Q2S Q26 

a a Q33 a Q3s a 
Det. - a (71) 

a rJ Q43 a Q4S a "--' 

QSl QS2 a QS4 0 Qs6 

Q61 Q62 a Q64 0 Q66 

It can be verified that the locations of the zeros of the matrix in Eq. 
(71) remain the same even if the number of beams or spring~ss-damper systems 
are increased. 
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Equation (71) can be factorized into 

Qll Q12 Q14 Q16 

Det. 
Q2l Q22 Q24 Q26 

[Q43Q35-Q33Q45) - 0 
Q5l Q52 Q54 Q56 

Q6l Q62 Q64 Q66 

Thus, the characteristic equations become 

(Q43Q35-Q33Q45) • 0 (72) 

and 

Qll Q12 Q14 Q16 

Det. 
Q2l Q22 Q24 Q26 

·0 (73) 
Q5l Q52 Q54 Q56 

Q6l Q62 Q64 Q66 

Equation (72) yields three roots of a and the other six roots are obtained from 
Eq. (73). One of the roots of a from Eq. (72) is identically equal to zero. 
The other two roots of Eq. (72) are given by the equation 

(74) 

where 

134 940 0 
Cl - [Iz(Pb12-gllPb12-g21Pb12) + Pb12(S32-a13gll-a23g2l)] (75) 

5 6 
Cz • - I z(gllPb12 + g2l~b12) (76) 

(77) 

Hence the requirement of purely imaginary roots leads to the conditions 

(78) 

Expanding Eq. (73), the resulting equation in a is obtained as 

(79) 

To si~lify the expressions of Ci , i • 4-10, let it be assumed that 
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(79a) 

This assumed mode corresponds to that which, in terms of pointing accuracy, 
we are most interested. This mode leads to pure rotational motions of the rigid 
core about its center of mass. With this assumption, the coefficient C9 is 
given by 

222 2 31 
C9 • (Iz~Ix)(Iz-Iy)n3~dl~13 + 2bl~b13n3S23(Ix-Iz) 

3 2 1 4 
+ 2n3(Td2/Tdl)f2~b13[IxS13-S2l(Iz-Ix)] 

2 7 3 4 ,. 3 3 5 3 7 2 
+ n3{n3~b13~dl[S23(Iz-~x) - S3lI x1 - IxS3l(~b13~dl+n3~b13~dl)} 

2521 72 14 
- n3{~dl~b13Sl3(Iz-Iy) + ~dl~b13[n3IyS23 + Sll(Iz-Iy)]} 

33 34 6 2 336 3 4 
+ n3S3l(Iz-Iy)(~dl~b13+n3~b13~dl) - n3~dl~b13[IyS32+Sl3(Iz-Iy)] 

51757 4 866 4 4 4 4 
+ n3[(~dl~b13+~b13~dl-~b13~dl-~b13~dl)(S23Sll-S2lSl3) 

7 7 6 8 4 1 3 4 4 1 4 3 
+ (~dl~b13-~b13~dl)(S23Sl3+S32Sll-Sl3S23+S2lS3l)]' (80) 

Expressions for the other coefficients in Eq. (79) are similarly obtained. 

For th~ roots of a in Eq. (79) to be purely imaginary, 

(81) 

Examining Eq. (80) and similar expressions for'C5 and C~ it becomes evident 
that Eq. (81) can be satisfied for arbitrary values of bij and Tdi if and 
only if 

(82) 

Equation (82) is another proof of our previous claim that stochastic stability 
1; 'possible only for undamp@d three-axes stabilized satellites. 

THREE-AXES STABILIZED SATELLITES 

For a three-axes stabilized satellite, the constraints given by Eq. (78) 
are almost always satisfied. Also for this configuration, 

(83) 
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such that Eq. (79) becomes 

4 2 a [C6+C
4

a ] • 0 (84) 

Hence the required stability criteria are 

(85) 

and 

43445 2 453 
o ~ C6 • IyS13~dl~b13 + IySll~dl~b13 + IxS23~b13~dl 

2 4 3 1 1 2 
+ 2bl~b13IxS2l + rxIy(~dl~b13 + ~dl~b13) (86) 

Constraints given by Eqs. (85) and (86) can be satisfied usually without great 
difficulty, irrespective of the values of 'bij and 'di' This is due to the 

fact that C4 and C6 are mainly the mass and stiffness terms of the satellite 

model. Hence, it can be concluded that three-axes stabilized satellites are 
more likely to be stable under random environmental and control torques. 
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STABILITY AND CONTROL OF FLEXIBLE SATELLITES: 

PARI II - CONTBDL 

T. C. !luang and Aniruddha Das 

ABSTRACT 

This is the second part of an earlier investigation. In this seccion, it 
is dem:mstrated that, by monitoring the detormations of the flexible elements 
of a satellite, the effectiveuess of the satellite control system can be in
creased considerably. A siIl{lle model of a flexible satellite had been analyzed 
in the first part of this work. The same model has been used here for digital 
computer simulations. 

NOMENCLATURE 

(A~ 1, i = 1-5 = Matrices governing the equations of motion of flexible struc
tural elements of the satellite: Eq. (1) 

(B~], i = 1,2 
~ 

[B(t) ] 

i. 

f* 

[I] 

[K] 

[K
l

] 

n 

[0] 

[Pi], i = 1-5 

q', {q~} 

T 

t 

= Matrices governing the satellite motion; Eqs. (3,7,8). 

Upper (3x3) left corner submatrix of [cI>(t) ][B1)-1. 

= External forcing function; Eq. (6). 

External torque vector on. the satellite; Eq. (2). 

= Identity matrix. 

= System fundamental matrix; Eq. (22). 

= Hatrix defined by Eq. (28). 

= Number of scalar elements in S' . 

= .Null matrix. 

= Matrices governing the rotational motion of the satellite, 
Eq. (2) 

Generalized structural position coordinate Vector. 

= Oencralized position coordinate for the ith beam. 

= Terminal time for optimal control.. 

= Time. 
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u* 

T 

[~] 

[~i]' i - 1-4 

.!!!.' {wi} 

wi {W~} 
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- Torque magnitude parameter, defined by Eq. (25). 

- Generalized control vector; Eqs. (5), (22). 

- Control tOJ:qtJe vector on the satellite; Eq. (2). 

- Various control torque functions ; Eqs. (14) - (21). 

- State vector; Eqs. (3), (4), (22). 

= Uncontrolled response; Eq. (22). 

- Position vector of the ith spring-mass-damper system. 

= Position vector of the ith beam-end mass. 

= Control system parameter; Eqs. (24), (26). 

- Relative control tOJ:que magnitude vector; Eqs. (24), (27). 

= Dwmny time variable. 

-1 
Fundamental matrix of -[Bi] [Bi]; Eqs. (9), (10). 

Component matrices of [~]; Eq. (11) • 

- Angular velocity vector of the satellite; Eqs. (I), (2). 

= Various simulation responses of~; Eqs. (14) - (21). 

In the first part [1] of this study, the question of stochastic stability 
of flexible satellites was discussed. Specific stability criteria were devel
oped for a simple flexible model of a satellite (shown in Figure 1). In this 
part of the study, we determine whether it is possible to increase the pointing 
accuracy of a satellite by observing the deflections of the flexible elements. 
To do this, we use the same satellite configuration (Figure 1) and the theore
tical model developed in Ref. [1]. 

Likins and Fleischer [2] have shown that the flexible elements of space
craft can have a destabilizing influence. They have shown a method of design
ing a proportional linear control system employing root-locus plots and eigen
value analyses. The control loop gains in [2] were based on a dynamic model, 
using hybrid coordinates, of a spacecraft containing long flexible beaIl5. An 
essentially similar approach was employed by DiLorenzo and Santinelli r~]. 
Here also a linear proportional control system was designed by considering the 
equations of motton of the spacecraft along with those of the flexible elements. 
The spacecraft model in [3] consisted of a rigid body with two spring-mass 
systems • 

In this study, a time-optimal 'bang bang' control policy has been assUlOOd. 
The method of calculating the control tOJ:ques is essentially the same as that 

"i 
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given in Ref. [4]. Ful~ detai~s of the computation of contro~ torques are pre
sented in Ref. [5]. Apart from the control policy. this analysis differs from 
Refs. [2,3] in another important aspect. In the analyses of Refs. [2,3J, the 
deflections of the flexible elements are not observed. Hence, zero initial 
deflections and velocities of the flexible elements are inherently assumed. 
The present method can accommodate arbitrarily large initial conditions of the 
flexible elements of the satellite. 

THEORETICAL BASIS OF COMPARISON 

The theoretical analysis and comparison of the satellite responses is 
based on the dynamic mdel explained in Section 6 of Ref. [1]. It was shown 
there [1] that, by using the Galerkin's method, the deflections of the flex.·· 
ib~e elements of the satellite are governed by purely time-dependent generalized 
position vectors, ~i(t), ~i(t) and ~(t). It was also shown that these vec-

tors can be condensed subsec;uently, and r!"duced to a vector 3,' (t) by applying 
suitable boundary and continuity conditions. Usually the number of elements 
in 3,' is much smaller than that in the set [~i' ~i' ~]T. 

Let wet) be the angular velocity vector of the satellite. Let ~*(t) and 
i*(t) be the control torque and environmental torque vector on the satellite. 
Given these definitions, it is well known D. ,6,7] that the satellite response 
is governed by a pair of matrix equations of the form 

and 

[A{ls.'(t) + [AZ(!!!.,t)j3,'(t) + [A3(!!!.,t}J3,'(t) 

= [AiJ~(t) + [AS(!!!) ]!!!.(t) 

[Pil.i(t) + [Pi<.'!! .• t)].9,'(t) + [P3~,t)]3,'(t) 

= [Pi. ]~(t) + [Ps(!!!) ]!!!.(t) + 2.*(t) + i*(t). 

(1) 

(?) 

Equation (1) governs the flexible motion of the beanr;, spring-mass-dampers. and 
beam-end masses of the satelli te IDOdel. Equation (2) is based on the principle 
of conservation of angular momentum of the satellite. ;[f 3,' (t) is a (nxl) vec
tor, then there are 'n' scalar equations in Eq. (1). Equation (2) always has 
three scalar equations. ECl'.lIltions (1) and (2) correspond to -Eqs. (44) and (45) 
of Ref. [1]. 

Equations (1) and (2) are now combined together to form one first order 
equation given by 

(3) 

where 

• T 
x = [!!!.,3,',.5l.'] (4) 
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T 
(5) u- [,!!.*,Q.,Q.] 

f - [!.*,Q.,.Ql (6) ['ll -[Pi] I~J [Bi] '" [A:'] -[Al] [0] (7) 

[0] [0] [I] 

and 

[';1 -[Pi] -IPl] 
[Bi] '" [AS] - [Ai] -[AJ] (8) 

[0] - [I] [0] 

Let [oI>(t)] be the fundamental matrix of' the homgeneous equation 

• -1 
~ - -[Bi] [Bi]~ (9) 

such that the sOlution of Eq. (3) is given by 

(10) 

(3x3) (11) 
[01>] = 

[2n x(2n+3») 

when!!!. (t) and.!l' (t) are (3xl) and (nxl) vectors, respectively. Then the eq ua
tions corresponding to ~(t) can be separated from Eq. (10) in the form 

(12) 

where [B(t)] is the (3x3) upper left hand corner submatrix of [oI>(t)](Blr
l

• 

It should be noted that previous investigations [2,3] were concerned main
ly with the determination of [oI>l(t)] and [Bet)] and then with the approximation 
of Eq. (12) by 

:1 
J 
i 

:~; 
I;: 
~ 
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(13) 

It is now clear that a control system based on Eq. (13) will be successful if 
[~2(t)] and [~3(t)] approach zero sufficiently fast. On the other hand, 

as explained in Ref. [1], such large dallt'ing rates may create fast error growth 
rates in the presence of random disturbances. Hence it is advisable to use 
zero dSlltling rates and obtain the control system from Eq. (12) while measuring 
i' (0) and,3..' (0) • 

NUMERICAL SIMULATION 

To illustrate the differences in the responses of the flexible satellite 
under the above mentioned control policies, the results of several numerical 
simulations are now presented. The assumed satellite geometry, mass, inertia, 
and stiffness properties are: 

Nominal spin rate of the satellite =0.05 rads/sec. 

Nominal principal IOOments of inertia of the sate11i te: 

Ix = 100.0 ; Iy & 100.0 ; I z = 200.0 slug-in.
2 

Total mass of the satellite" 50.0 slugs. 

Diameter of the rigid core = 50.0 ins. 

Length of the beams = 30.0 ins. 

Linear mass-density of the beams = 0.0625 slugs/in. 

Area moment of inertia of the beam cross-section r. 0.5 in.4 

Young's modulus for the beam material = 3Oxl0
6 

psi. 

Mass at the ends of the beams c 0.005 slugs. 

Mass in the spring-mass-damper systems .. 0.005 slugs. 

Spring constant of the spring-mass-dSlltler systems .. 50.0 1bs/:!,n. 

Damping constant of the s.m.d. systems = 0.1 Ibs/sec/in. 

Radial distance of the s.m.d. systems from the center of the rigid core & 

15.0 ins. 

Initial values of !!l.(t): 

Wl(O) .. 0.01 ; w2 (0) • 0.0 

Initial values of !i' (t), i' (t): 

W
3

(0) = 0.01 rads/sec. 

qi(O) .. qZ(O) - 0.01 ; qj(O) • 0 ,j f 1,2. 
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qi(O) - q.i(O) - 0.01 ; qj(O) - 0 , j ~ 1,2. 

The coq>lete numerical experiment is performed through the following 
steps: 

Step 1: A time intervai [O,T] in which the controls are to be effected 
is fixed. In this case T was taken as 5.0 sees. 

Step 2: The satellite is assumed to be rigid! and without controls, such 
that ~(t) is given by the solut~n ~ (t), of the equation 

Step 3: 

Step 4: 

Step 5: 

Step 6: 

(14) 
1 1 Equation (14) is integrated and the responses wl(C) and w2(t) are 

plotted in Figure 2. 

The satellite is assumed to be rigid and subjected to a time-op
timal 'bang-bang' control, .!!l(t), such that ~(t) is given by the 
solution ~2(t), of the equation 

(15) 

The ul(t) are computed so as to yield W
2(T) - 0 by the method 

showll in Appendix A. Equation (15) is-integrated and the res-
2 2 ponses wl(t) and w2(t) are plotted in FLgure 3. 

The satellite is assumed to be flexible, without control and 
with i' (0) = s.' (0) '" Q., such that ~(t) is given by ~3(t). Here 

~3(t) a [~l (t)J~(O) + r~ [B(t-T»)!*(T)dT . (16) 

3 3 The responses Wl(t) and w2(t) from Eq. (16) are plotted in Figure 4. 

The satellite is assumed to be flexible, with i'(O) = s.'(O) = Q.. 
The satellite is subjected to the control torque ul(t) computed 
in Step 3, such that ~(t) is given by ~4(t), where-

(17) 

The responses wiCt) and wi(t) from Eq. (17) are plotted in Figure 
5. 

The satellite is assumed to be flexible, with i' (0) = s.' (0) = Q., 
and subjected to a time-optimal 'bang-bang' control, .!!.2(t) , such 
that ~(t) is given by ~5(t), where 



Step 7: 

Step 8: 

Step 9: 
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The ~l(t) are computed so 

shown :in Appendix A. The 
are plotted :in Figure 6. 

as to yield ,,,,s (T) • 0 by the method 
5- -5 

responses Wl(t) and w
2
(t) from Eq. (18) 

The satellite ~.s assumed to be flex:l.ble, with i' (0) .; 0 -;'.!i' (0) 
and without control, such that ~(t) is given by ~6(t), vhere 

i ('t) = [~l (t) l!!!,.(O) + [~2 (t) li' (0) + [~3 (t) ls.' (0) 

+ f~ [B(t-T) Hi*(-t) ldT • (19) 

6 6 The responses w
l 

(t) and W
2 

(t) are plotted in Figure 7. 

l'he satellite is assumed to be flexible, with i' (0) .; Q -I s.' (0) 
and subjected to the control torque li(t) cOll\>uted in Step 6, 

such that ,!!!.(t) is given by ~7 (t), where 

,!!!.7 (t) = [~1 (t) 1!!!,.(0) + [~2 (t)]9..' (0) + [~3 (t) ls.' (0) 

t ~ 2 
+ fO [B(t-T)][.!:!. (T) + i*(T)ldT (20) 

7 7 The responses Wl(t) and W2(t) are plotted in Figure 8. 

The satellite is assumed ·to be flexible, with i'(O) .; 0 -;. s.'(0). 
It is ru so subjected to a time-optilll'l.l 'bang-bang' control, 

~3(t), such that ,!!!.{t) is given by ~\t), where 

~8(t) = [~l (t) 1!!!,.(0) + [~2 (t) li' (0) + [~3 (t) ls.' (0) 

t ~ 3 + fO [B(t-T)][!!. (T) + i*(-r))dT (21) 

3 8 
The torques ~ (t) are also computed to yi.eld!!!,. (T) = Q by the 

8 9 
method shown in Appendix A. The responses w

l 
(t) and w

l 
(t) from 

Eq. (21) are plotted in Figure 9. 

COMPARISON AND EVALUATION 

One important result of the simulation, as seen from Figures 2 and 3, is 

that the control ,sequence ul(t) is very effective on the rigid model of the sa-
- 1 

tellitc. But Figure 5 shows that, for the same values of ,!!!.(O) , .!:!. (t) produces 
unwanted non-z~ro values of ,!!!.(1') when it is applied to the flexible satellite mo
del, although s.CO) and .!i(O) a.re assumed to be zero. Thus, another important 

result, presented in Figures 5 and 6, shows that .!:!.2 (t) i.s more effective than 

~(t) when a flexible satellite model is considered. Up to this point, then, ve 
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have essentially the same conclusion as that in Refs. [2], [3], that for a flex
ible satellite the control should not be based on a rigid model. The difference 
between Refs, [2], [3] and tha present study is in tha adopted control policy. 
'Bang-bang' controls have been used here instead of linear proportion&i control. 

The oost illportant results are presented in Figures 8 and 9. When the 
S(O) and S(O) are observed and found different from zero, u2 (t) does not lead 
to the required zero values of W(T). In contrast, u3 (t) , lJhich is based on the 
observed values of S(O) and ~(O), yields zero values of .!!!.(T). Another point 
to be considered is the divergence of wet) from zero in the two cases. The 

2 - -4 
maximum divergence of wet) and u (t) is 11.0 x 10 rads/sec, while that with 

3 -=-4-
u (t) is only 7.0 x 10 rads/sec. This bears out the theoretical claims that 
a control basad on Eq. (12) is oore effective than one based on Eq. (13) and 
that the effectiveness of a control system can be greatly improved if the de
flections of the flexible elements of a satellite are observed. 
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APPENDIX A 

The method of computing the time-optimal control torques for a system 
given by 

(22) 

is now presented. Reference [5] pres~nts computing al~thms ~nd other de
tails of the method. In Eq. (22) ,x(t) is the output vector of the system, 
~(t) is the control vector, and2(t)l and [K(t)] are known vector and matrix 
functions of the time, t. 

It is assumed that, for a given t = T, u(t) should be such that 

(23) 

and I~(t) I for all t is a minimum. Thus, the minimum time problem is converted 
to the equivalent minimum control effort problem. The solution for ~(t) is 
then given by [5J. 

where 

such that 

1.0 

and 

1 -1 
)1* = - 11 [K1 ] 2(T) 

[~]ij = f~ [Kij(t-T)] sgn [l:: >.*K j (T-T) ]dT 
r r r 

(24) 

(25) 

(2(,) 

(2.7) 

(28) 

The summation convention of repeated indices :1.8 not to be used in Eqs. (24) 
to (27) above. 
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