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ABSTRACT

Numerical computations of three-dimensional time-dependent turbulent
flows are now feasible for three main reasons. The state of the art of
numerical methods for solving the nonlinear Navier-Stokes equations, of
turbuTent flow modeling for numerical simulations, and of fast computer
hardware have all made three-dimensional simulation a reality.

The present work deals with the numerical calculations of the Targe
eddy structure of turbulent flows, by use of the averaged Navier-Stokes
equafions, where averages are taken over spatial regions small compared
to the size of the computational grid. The subgrid components of motion
are modeled by a Tocal eddy-viscosity model. A new finite-difference
scheme is proposed to represent the nonlinear averaged advective term
a/axj (ﬁ;ﬁ}) which has fourth-order accuracy. This scheme exhibits
several advantages over existing schemes with regard to the following:

1. The scheme is compact--it extends only one point away in
each direction from the point to which it is applied.

2. It gives better resolution for high wave-number waves
in the solution of Poisson equation.

3. It reduces programming complexity and computation time.

Three examples are worked out in detail.

1. Decay of isotropic turbulence. This problem serves as a
test for the proposed numerical method. Comparison of
numerical results to experimental data (Comte-Bellot and
Corrsin, 1971) shows satisfactory agreement. This brings
us to the conclusicn that the numerical method properly
distributes the turbuient energy among different scalées,
with proper decay rate.

2. Homogeneous turbulent shear flow. Numerjcal results con-
firm experimental data given by Champagne, et al. (1970)
and Harris (1974) wh1ch show departure from isotropy
and growth of Tlength scales in the d1rect1on of shear
as the result of the presence cf mean shear.
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3. Homogeneous turbulent shear flow with system rotation.
Numerical results show clearly the effect of rotation
on the stability of turbulence, as was shown experi—' :

‘mentally by Johnston (1974).

The numerical simulation of the model equatiohs of turbulence given in
this work proves to be a convenient way for extracting useful information
on the physics_of a variety of turbulent flows. The numerical results
extend”existfng experimental data cbnsidérabiy. |
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NOMENCLATURE

English letters

a = a constant defined by Eq. (6-44)

828558353 = constants defined by Egs. (B-13) and (B-14)

A = Rotta's constant defined by Egq. (5-28)

bij = anisotropy tensor defined by Eg. (5-30)

c = turbulence model constant

CqsCp = constants defined by Eq. (6-26)

D = {sotropic dissipation

Dsgs = subgrid scale dissipation

E = three-dimensional energy spectrum

f = a function

f = Fourier transform of f

g = filtering function defined in Appendix A

a = Fourier transform of g

h = mesh size

H = Tength of computational box

i,k = indices describing spatial Tocations on a mesh
I,d,K = computational indices

Kok, = wave-number vector

kak; = modified wave-number vector defined by Eq. (4-13)
k = magnitude of k, (k2 = kiki)

K = eddy-viscosity coefficient defined by Eq. (2-13)
% = mixing lenhgth

L = number of time steps
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m = spatial frequency (m = k/2w%)

M = diameter of bars of the isotropic turbulence generator
N = number of mesh points

Nc = Courant number

n = index

p = turbulent instantaneous pressure

P = instantaneous pressure

p* = modified instantaneous pressure

E = Fourier transform of p

q = RHS of Poisson equation {2-18)

a = Fourier transform of q

q2/2 = turbulent kinetic energy

r = rotation defined by Eq. (6-39)

Tors = separation vector

s = votation tensor of turbulence

qlij = rotation tensor of instantaneous field
Rij = correlation tensor
Rij = tensor defined by Eq. (6-36)

Re = Reynolds number

Ri = gradient Richardson number

5 = strain rate defined by Eq. (6-39)

P = RHS of momentum equation (2-17)

Si3 = rate-of-strain tensor of thbu1ence
315 = rate-of-strain tensor of instantaneous field
S = skewness

t = time

Xi



t.t. = reference vertor defined in Appendix B

= pressure-strain correlation tensor

1
MU = instantaneous turbulent velocity vector
gﬁui = instantaneous velocity vector
Uy VW = instantaneous turbulent velocity components
U,V,W = jnstantaneous velocity components
U0 = mean velocity
Uc = centerline velocity
XaXs = position vector
Xs¥s2 = Cartesian coordinates
X = stretched x coordinate

Greek symbols

o = numerical constant defined by Eq. (3-19)
B = a constant defined by Eg. (6-2)
Y = a constant defined by Eq. (3-2)
r = mean velocity gradient
i3 = Kronecker delta
A = filter width
Eijk = unit alternating tensor
£ = angle defined in Fig. B-1
n = random number
9 = angle defined in Fig. B-I]
A = Taylor microscale
v = kinematic viscosity
p = density
P = tensor defined by Eq. (6-30)

Xij



Other symbols

Dy sysD_s
1002 424 40,
;

()
(")
(')

>
1J

RHS
RMS
CHC

stress tensor defined by Eg.

(2-9)

shear tensor defined by Eq. (2-10)

angle defined in Fig. B-1
spectrum tensor
angular velocity vector

vorticity vector

finite-difference operators for first derivative

finite-difference operator in jth direction

vector

average according to definition given by Eag.

subgrid scale component
averages over planes defined by
averages over the entire volume
conjugate

convolution

Fourier transform

discrete Fourier transform

fast Fourier transform

right-hand side
root mean square

Champagne, Harris, and Corrsin

xiid

(2-4)

1] coordinates



CHAPTER 1
INTRODUCTION

A.  General Background

In recent years, because computers have become faster and Targer,

a new approach in handling turbulent flow simulations has emerged. This
is a three-dimensional, time-dependent numerical simulation of the large-
scale structures of turbuient flows. In this approach, a variation of

an old idea is used; one applies a spatial averaging operator to the
equations of motion. The averages are taken over regions small compared
to the size of the computational domain, and the subgrid components of
motion are modeled with a Tocal eddy-viscosity coefficient.

One of the first successful attempts in using this approach was
Deardorff's in a numerical study of three-dimensional turbulent channel
flow at high Reynolds numbers (Deardorff, 1970). The main purpose of
his work was %o extend earlier work by meteorologists (Smagorinsky,
et al., 1965; Lefth 1965), who used these methods in calculating the
general circulation of the atmosphere in two dimensions, to fully three-
dimensional turbulence for a laboratory problem. Other works of interest
that followed this approach are Deardorff (1972) and Schumann (1973).

The numerical discretization techniques that have been used in the
mentioned works and in other investigations fall hasically into two
categories, namely, spectral methods and real-space methods. Spectral
methods, which deal with the transformed equations in Fourier space, are
the most accurate methods. However, when applied to the Navier-Stokes
equations, they exhibit a major drawback. The nonlinear advective terms
appear as convolution sums, and have to be treated in quite a complicated
way in order to avoid aliasing errors. Ancther difficulty is that the
method is capable of handling only geometrically simple problems with
periodic boundary conditions. Detailed descriptions of the spectral
methods can be found in the work of Orszag and co-workers (Orszag, 1969,
1971 a,bs; fox and Orszag, 1973; Orszag and Patterson, 1972).




Real-space methods use finite differences for discretization in
various forms. The most popular methods are second-order schemes, which
have particular conservation and stability properties, as will be dis-
cussed later. The main contributions to these methods can be found in the
works of Fromm (1963), Harlow and Welch {1965}, Lilly (1965), Arakawa
(1966), Williams (1969), Deardorff (1970), and others. Although finite
difference methods are inferior to spectral methods with respect to accuracy,
they have the advantage of not being restricted to simply shaped regions
and periodic boundary conditions, and this generality makes them suitable
to flows of engineering interest, i.e., flows which contain wall-bounded
as well as boundary-free regions.

Only a few three-dimensional time-dependent flow simulations have
been reported so far. The main reason is the restricted capability of
computers in the past, in terms of speed and capacity. Even today, with
the use of the largest available computer (CDC 7600), a 323 mesh-point
problem is the upper 1imit for a core-contained program, provided the
simplest periodic boundary conditions are used, and an average simulation
consumes about half an hour of running time. The use of peripheral
equipment, such as tapes, discs, or other mass memory and storage, com-
plicates the operation significantly in terms of programming and turn-
around time.

The reported works include those of Deardorff (1970) and Schumann
(1973), simulating the channel flow, using 24x14x20 and 64x32x16 mesh
points, respecti#e1y, by finite-difference methods; of Orszag and Patterson
(1972), simulating three-dimensional homogeneous isotropic turbulence,
using 323 mesh points by spectral methods; and of Kwak, et al. (1975),
simulating an isotropic turbulence and a pure strained turbulent flow,
using 323 and 163 mesh points, respectively. Clark (ongoing Ph.D. re-
search, Stanford University) is working on turbulence modeling, using a
643 mesh-point program. It is hoped that a 643 mesh-point problem will
be standard for the ILLIAC IV computer, which will be operational in
the near future.



B. Objective of Study

The main objective of this study is to apply new ideas, pointed
out by Leonard (1974), to basic turbulent shear flows. According to
this approach, the averaging operator is defined as the convolution
integral of a normalized filtering function g{x) and the quantities
to be averaged. This definition relates, in a clear way, the actual
instantaneous field and the averaged field. Turbulent shear flows, which
exist in most natural and technological flows, exhibit peculiar character-
istics dominated by the interaction of the turbulence and the mean shear.
When rotation is imposed on the flow, additional effects are introduced.
It is the purpose of this study to try to understand the basic character-
istics of such flows by means of a numerical simulation. The numerical
method adopted in this work is the finite-difference approach in real
space, chosen with a view of extending it in the future to problems of
practical interest, which invoive nonsimple geometry.

In the course of study, a new fourth-order accurate finite-difference
scheme is proposed to represent the averaged advective term a/axj (aiﬁj) .
This scheme exhibits several advantages over existing schemes. It is com-
pact, thus reducing programming complexity and computation time, and gives
better resolution for high wave-number waves in the solution of the Poisson
equation. In addition, it can be applied to boundaries other than
periodic in a convenient way. The subgrid scale model is represented by
the eddy-viscosity hypothesis with a coefficient variable in space and
time of the form suggested by Smagorinsky (1963). The number of mesh
points used is 163 , which gives Timited resolution but proved to be of
a good size with regard to the efficient use of the CDC 7600 computer.
Three examples are worked out in detail:

1. Decay of isotropic turbulence. This problem serves as a
test for the proposed numerical scheme. Comparison of numeri-
cal results to experimental data (Comte-Bellot and Corrsin,
1971) shows satisfactory agreement. This brings us to the
conclusion that the numerical method properly distributes
the turbulent energy among different wave numbers, with the
proper energy decay rate.

3



2. Homogeneous turbulent shear flow. Numerical results confirm
experimental data given by Champagne, et al. (1970) and
Harris (1974) which show departure from isotropy and growth
of length scales in the direction of shear as the result of
the presence of mean shear.

3. Homogeneous turbuilent shear flow with system rotation.
Numerical results show clearly the effect of rotation on
the stability of turbulence, as was shown experimentally
by dJdahnston (1974).

The numerical simulation of the model equations of turbulence given in
this work proves to be a convenient way for extracting useful information
on the physics of a variety of basic turbuylent flows, and extends con-
siderably the existing experimental data for these flows.



CHAPTER 2
MATHEMATICAL FORMULATION

The basic equations for the following analysis are the Navier-Stokes
equations for an incompressible fluid:
2

au; (x,t) 220,
R s - I Jlep oL, ST sl i
ot o (UYy) otV s A8 (2D
J 1 |
au,
W - 0 (2-2)

1

where Uy s Ps P,V are the velocity, pressure, density, and kinematic
viscosity, respectively. The summation convention is implied.

In principle, any incompressible flow is completely determined by
the solution of these equations, provided boundary and initial conditions
are specified. Actually, analytical solutions exist only for a few
special cases, and one must resort to approximate solutions, by assuming
steady-state behavior, by assuming two-dimensionality, or by dropping
terms which are estimated to be small by an 'order of magnitude' analysis,
gtc., or one must re.ort to numerical methods. One of the major diffi-
culties arising in numerical calculations of furbulent flows is the wide
range of length scales presented in the flow. Any numerical method is
1imited by its own nature, namely, it can represent only a finite range
of length scales. The maximum wave-number that can be resolved on a
grid of points a distance h apart is kmax = w/h, and "honest" numerical
calculation of turbulence for high or even moderate Reynolds numbers,
requires a number of mesh points which is far behind the capability of
today's computers.

As an example, consider the probiem of grid-generated isotropic
turbulence (Comte-Bellot, and Corrsin, 1971). The reported Reynolds
number based on Taylor microscale A and RMS turbulent velocity level
is in the range of Rexﬂaﬁo to 70. The Kolmogorov wave-number, at which
molecular dissipation occurs, is kK = 34 c:m’1 . The wave-number which
corresponds to the location of the energy peak in the three-dimensional
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energy spectrum is kE = 0.5 cm'T . The number of mesh points regquired

to describe all scales by Fourier methods is therefore at least
N o= L r2(k/k)1® o 1.45x10° (2-3)
v3

If finite-difference methods are used, at least eight poinits are needed
to describe a wave in the same order of accuracy as by the Fourier methods
(Orszag, 1969), and the number of points increases to N 108 |

Our approach to overcome this difficulty is to average Egs. {2-1)
and (2-2). By doing so we give up the chance of resolving all scales
of motion. Only the large eddy structure of turbulence is calculated,
while the subgrid components of motion are modeled.

One convenient way of averaging is space averaging over small regions
compared to the size of the computational region. If f(x) 1is any function
of position, then the averaged function ¥(x) 1is defined as the convolution
integral of f(x) with a filtering function g(x) (Leonard, 1974):

flx) = gxf = [ g{x-x')F(x")dx’ (2-4)
a

11 space

If g 1is square integrable, this operator has the property

of _ af .
Xy T % (2-8)
(for a prosf see Appendix A).
Applying definition (2-4) to Egs. (2-1) and {2-2) and using property
(2-5) gives

8, 1 5 2T,

ot ( U) - S T Y TR (2-6)
J d

W = 0 (2-7)



The difference between the local velocity U and its averaged value

U% is due mostly to the high wave-number part of the flow which cannot

be included directly in the computations. If we set u; =y, - u; and

i i
substitute inte the term (ui”j)’ we obtain
u.u. = .d.+ ulg, + u u + uiut (2-8)

1d 1 13 Td

The last three terms in Eq. {2-8) represent the subgrid scales and must

be modeled in terms of the resolvable part of the velocity field, in order
to close the equations. A convenient way of modeling these terms is by
means of a local eddy-viscosity model. We define a stress tensor

.. = ! ul + ufut -8
i Ujtly * Ugly ¥ Uguy (2-9)

We further subtract the trace from 93 to define the stress tensor of
the subgrid scales as

) 1 L

Substitution of Eq. (2-10) into Eq. {2-6) gives

au. —_— 9

-2 T s
T (d;uy) 3% (7o + /3 0y ) + 55 JTu*"ax.ax

(2-11)

The term (p/p * 1/30kk) is a generalized pressure and will be designated
simply as p from now on.

Ti4 is modeled by an eddy-viscosity hypothesis,
ST 2Ks {2-12)
where e — .
au .
5. o= 14 d 5.
543 2'( X3 ax) (2-13)

K 1is a proportionality constant with the dimensions (length)Z/time.
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Following Smagorinsky (1963), K s defined to be proportional
to the magnitude of the Tocal rate-of-siiain tensor of the large structure.
To make K dimensionally consistent, a length scale should be introduced
into the definition, and if we take it to be the mesh spacing h , then

K = (ch)2(25;; 5350/ (2-14)

Li1ly (1966) estimated the model constant to be ¢ = 0.22 by assuming
that the wave number w/h 1ies in the inertial subrange in an isotropic
turbulence problem. However, Deardorff (1970), in his channel flow
simulation, has found that the constant must be modified downward by
about 50%. Later in this work, this constant will be assessed, based on
our numerical results,

Another model, which is similar, at least in the numerical complaxity,
to the above model is the vorticity model, where K s proportional to
the maghitude of the Tocal vorticity:

K = (ch)(@a;)' /2 (2-15)
where O, is given by a
1 _ I

= Eijkﬁ? (2-16)

In a recent simulation of isotropic turbulence (Kwak, et al., 1975), both
models were used and no major differences were found. Based on this
experience, we shall use Smagorinsky's model throughout this work.

Since dissipation due to molecular interaction is much smaller than
dissipation due to turbulence, the term BZE}/axjaxj appearing in Eq.
(2-8) will be excluded. To maintain incompressibility, we shall use
a Poisson equation instead of Eq. (2-7). This equation is derived by
taking the divergence of Eq. (2-6) and using Eq. (2-7) to eliminate some
of *he terms.

After all these modifications the model equations are reduced fo
the following set: '



Q>

q

(2-17)

(2-18)



CHAPTER 3
FINITE-DIFFERENCE FORMULATION

A. General Considerations

The major difficulty arising in the solution of the averaged set of
equations formulated in Chapter 2 is treatment of the term aiffﬁ (Eﬂf%ﬁ.
One approach suggested by Leonard (1974) is first to expand “153 in

a Taylor series around ﬁiﬁ- . If a symmetrical filter is used in the

J
definition
B _rny = alvex!) T0x") Tolxt) dx' §
B (d, ;) axjfgxﬁa) (') U (xf) dx (3-1)
the result fis
2 (0.3,) = l(aanﬁ 2 2 (@.0.) + ola™y  (3-2)
axj i~j axj i Y 9Xg8X, axj i

where A is the averaging length scale, and the constant vy depends on
the particular filtering function g{x) . For example, a Gaussian filter
defined by

1/2 13
glx) = [(%) 17] exp(-6 |x]%/a%) (3-3)

gives the value y = 24 . The second term of the RHS of Eq. (3-2) fis
the so-called "Leonard term." As we shall see, this term contributes
substantially in controlling the proper energy transfer among the eddy
scales, and therefore should be accounted for in the numerical calculations.
In general, any finite-difference scheme which is applied to the
incompressible Navier-Stokes equations must have certain integral con-
servation properties, if Tongtime integrations are required. The minimum
requirements are mass, momentum, and enargy conservation, which means that
in the absence of dissipation and truncation errors caused by the time-
differencing scheme, the method should have the following properties:

10



p

%%u1 =0 i=1,2,3 (3-5)
;,Ta%' 2ousu, = 0 (3-6)
FEAn

where %; is the sum over all mesh points in an infinite (or periodic)
domain, and (D)i' is the finite-difference operator for the first
derivative in the ith direction. Mass conservation is controlled by
a Poisson equation, and a discussion of this property will be given in
section C of this chapter. It can be shown easily that conditions (3-5)

and (3-6) impose the following requirements on the advective term:

)E,“ (D)j (u.iuj) = 0 i=1,2,3 (3-7}
% U.I(D)j (U.iUJ) = 0 (3—8)

In the past, two commaon second-roder schemes have been used to
implement these requirements. The first one uses a regular mesh configura-
tions where the variables uj.p are defined in the same location. This
scheme is given by

5%; (”i”j) = %‘[(Do)j(“i”j) + ”i(Do)j“j + ”j(Do)j”i1 + O(hz)
(3-9)

where (D ). 1is the central-difference operator defined by (one dimension)

0°J

(Do) pn = (un+1 - un_1)/2h (3-10)
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The second method uses a staggered-mesh configuration with the variables
Uss P defined as shown in Fig. 3-1. We will give the formuiis for this
case later.
It was shown by Leonard (1974) that if the averaged equations are

used and the term a/ax (U0, ”3) is expanded as in Eq. (3~2), the l.eonard
term is nonconservative, and preliminary estimates have shown that this
term has a significant part in energy extraction from large scales. How-
ever, the term S/BXJ (u u } s conservative. Since the Leonard is of
O(ha), a stra1ghtforward approach to retain it in a numerical calculation
is to use a fourth-order finite-difference schems for the term a/ax (us uJ)
and a second-order scheme for

AZ a2 @

Y axgaxg axJ

)

u'l.]

One possible realization which maintains properties (3-7) and (3-8) for
the term 3/9X. (ﬁiuj) is as follows.

The fourth-order scheme for the term a/axj (ﬁiﬁj) is obtained by
Richardson's extrapolation (Richardson, 1927). By applying the operator
defined by Eq. (3-9) to a mesh with 2h spacing, and then combining the
scheme derived for h with that for 2h with weights 4/3 and -1/3 ,
respectively, we have

5o () = %{%[(Do)j,h(ﬁiﬁj) +G0)5 T + T00)5 U‘i]}

J
] %{%[(Do)j,zh(ﬁiﬁﬂ Ui (Bg) 5, 2n T5 + 5(Bg)5,0n 51] } +0(h")
(3-11)

In order to get the Leonard term, the Laplacian az/axgaxg is approximated
by the second-order operator (D+D_)i » Where for one dimension we have

(D) uy = (ug,q - ug)/h (3-12)
() u, = (u - u 1)/ (3-13)
(0,0) uy = (U4 - 20 +u )/h° (3-14)

12



The finite-difference scheme for the Poisson equation in this realiza-
tion is given by

{(4[304“0 x ¥ (4Doalg)y * (4004‘30)2] P = q (3-15)

wiiere 4D0 is the fourth-order central-difference operator defined by
(one dimension)

(gBgduy = (-Upyo + Bup g - Buy o * U, _p)/12h (3-16)

This method has been used successfully in a recent numerical simulation
of turbulence (Kwak, et al., 1975). However, it has two major drawbacks:

1. The scheme extends four points in the major directions
away from the point to which it is applied. This makes
the method inconvenient to apply in problems with boundary
conditions that are not periodic.

2. 1t gives poor resolution for high wave-aumbers in the solu-
tion of the Poisson equation, as we shall see in section
C of this chapter.

In the following, a new finite-difference scheme is proposed, which
removes some of these difficulties. The scheme is compact, it uses in-
formation from adjacent points only, and the Poisson solver follows the
exact solution more closely. In addition, a reduction in computation
time is achieved.

B. The Space-Differencing Scheme
Consider the one-dimensional advective term

2 2
B 0D = g @)+ & Ly () (3-17)

If we choose AZ/Y = h2/6 , We can approximate this term by the central-
difference operator D0 with fourth-order error term:

13



2
d (G + l’;—“)—{?%(am = _(dd) * o(n*) (3-18)
One can interpret this result as follows. The usual central-~difference
operator, which is second-order accurate for the first derivative, is
fourth-order accurate for the entire advective term, provided an appro-
priate filtering function is chosen. The coefficient h2/6 corresponds
to a 2h-width filter, i.e., the filter width A 1is twice the width of
the mesh size h ,

This idea can be extended to higher dimensions, but the scheme turns
out to introduce instabilities due to energy nonconservation. To overcome
this difficulty, a staggered-mesh configuratic:. is used. For two dimensions
the variables are defined at the points shown in Fig. 3-1. The X~momentum
equation is enforced on control volumes surrounding the points (+1/2,3),
the y-momentum equation about {i,j+1/2), and the Poisson equation for the
pressure about the points (i,j). Using this configuration we define a
new finite-difference operator to represent the advective term. This
follows the idea of Eq. (3-18), i.e., the use of a Tower-order finite-
difference scheme, having a truncation error that matches the Leona»d
term, to represent the entire advective term to a higher order of accuracy.
If f=u,u, , this operator is given by

i3
: S I-a
o ik T ® PefaLgk T Bl gzt fga 2.
ket fi,j,k-1/2) (3-19)
where
Difisaak = (Frryz,,k = Fioayz,5,60/0 (3-20)

To make it clear, we expand the advective terms of the two-dimensional
case.

14



¥~momentum equation:

e . oo (i 1y [(d i

2 @iy, = B@is,5+ 220 @/, 5072 * @ii72,572]
(3-21)

2 (&%) = oD (G7) + e p [(ﬁV) + (0) } (3-22)

ay i+1/2,3 o i+1/2,3 2y i+1,] isd

y-momentum equation:

3 (7 . . (7 1-a o [rog -
B0 g1yp = DD gy + PO, g + 0 ] 029

—— 1-g p [ro -
i,g4172 = B4 saqpp + 7Dy () 11/2,54172 (172, 3072)

(3-24)

Since in the staggered-mesh configuration not all variables are available
at points where they are needed, averages are to be taken from adjacent
points. For exampie,

Waq/2,50172 = Wanyz,s * Uisrye,500) U gen72 * Vian 317208

(3-25)
Using these averages in the proposed scheme, and expanding in a Taylor
series about the points to which the scheme is applied, we obtain the

following (two representative terms are given; other terms can be obtained
by analogy):

15



finite-difference scheme of 53; (au) = Zﬁﬁx +

2
h [- . - Ry
t s 6U, U, + Al 3(1 os)(uuxyy

- o = = = = g 4
+ Uy, ud,, + L, * Uyl + ”z”xz)] +0(h™)

(3-26)
. s . , ‘ 9 rmoy == - -
finite-difference scheme of £ (uv) = uv, + uyv +
h Sav +3a. +207
*I7 [(Saﬂ)(z UV Wy, * 7 UV
P 20 F+30.7)
2 yyy yyy Yy
+5 (1 0‘)(uxy\'x UV FolUygyV T Uy
+ u_yvzz + uvzzy + Vzuyz + uzvyz + Vuzzy
+ 70 )] + o(nh) (3-27)
y 2z
The exact expansion of the desired terms is
2 (3 = 26 +ﬁ[sa G+ ofu... + 2dd,.. + 200
ax X Y XXX XXX Xyy XZZ
- - - - - - - - ‘oL
+ 2“xuyy + ZUXUZZ + Zuyuxy + 2uzuxz] '3-28)

16



+ uv + U +30 0V +20 V. +20V  +0 .V
Wypy F UpyyV Sy Uy 20V + 20V * Ukyy
+ “xxvy + uyvzz + “szy + 2vzuyz + 2uzvyz + vuzzy + vy zz}

(3-29)

By comparing the finite-difference scheme, Eqs. (3-26) and (3-27), to the
exact expansion of the advective term, Eqs. (3-28) and (3-29), it can be
seen that for o # 1 all terms of the finite-difference scheme occur in
the exact expansion with different multiplicative constants. 1In other
words, the proposed scheme contains a Leonard term, with filtering proper-
ties which depend on the numerical constant o . It is impossible to

find a simple expression for this equivalent filter in terms of o ,
but one can put upper and lower bounds for AZ/Y for any value of a .
For example, if o = 1/3, the scheme represents a filter with

2 2 2
L P

or, in terms of the Gaussian filter, the width of the filter is between

h and 2/2hwith most of the terms corresponding to A = v2h., When
a = 1, the scheme reduces to the staggered-mesh scheme first introduced

by Fromm (1963).

Other terms appearing in the governing equations are finite-differenced

in the usual way, for example,

(%)
ax 1+]/2'j’k = (P-i.l_'l ’j,k = p,i ’j,k)/h (3"30)

The eddy-viscosity coefficient K 1is evaluated at the same place as the
pressure p (see Fig. 3-1).

The complete expansion of the filtered advective term according to
Eq. (3-19) is given in Appendix D.

17



C. The Finite-Difference Poisson Equation

The present work revealed the fact that, in the incompressible case,
the finite-differance scheme for the Poisson equation cannot be chosen
independently. The difference method used in the equations of motion
dictate a particular scheme for the Poisson eguatjon. Otherwise, a nonstable
solution is obtained due to a rapid growth of kinetic energy. This is true
even if a higher-order method is used for the Poisson equation.

To exemplify this fact, consider Euler's equation.

du,

129
W - -3

where d/dt ds the substantial derivative. Multiply Eq. (3-31) by us
and integrate over all space:

%’fﬁ%‘.—(u‘iui) dx = "%f“i’z%% dx (3-32)
i
Integration by parts of the RHS of Eq. (3-32) gives
ou.
Tl gy = -1 N Y e | -
Y B, dx ) (u;p) |af p‘/rp 8%; dx, (3-33)

Since the contribution of usp at infinity is zero, and 'c}ui/a::(.i = (
for an incompressible fluid, we have

J?'['d“qf (uiui) dx = 0 (3-34)

or, the kinetic energy per unit mass is conserved. The finite-difference
form of the RHS of Eq. (3-32) is

- 15. % u; (D4p) (3-35)

We use the finjte-difference analog of integration by parts to expand
this term:

]

°[—

UL I T A P VLTI
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Each term in the RHS of Eq. (3-36) is equal to zero and energy is
conserved,

The use of integration by parts in a finjte-difference form is con-
sistent only if the operators of the expressions (Dip) and (Diui)
are identical. Therefore, a choice of an operator for the pressure-
gradient term (Dip) in the equations of metion forces us to choose
the same operator for the divergence term (Diui)’ which brings us to
the conclusion that the proper Poisson operator should be in the form

82
—5 v DD, (3-37)
Bx.i

To derive the Poisson operator for a staggered-mesh, one additional
fact has to be taken into account, namely, that the variables u; are
out of phase by half the mesh size relative to the pressure p . Since a

computational cell (see Fig. 3-1) is defined as

u{I,d,K) = Uis1/2,4,k
V(I,J,K) = V,i ,j"l"]/z,k
(3-38)
W(I ,J ,K) = W,i ,j,k+'!/2
P(IstK) = p't,j,k

we find that a second-order operator for 9p/8x , which appears in the
equations of motion, is given by '

(EE

ax)iﬂ/zj o [P(IH-J,K) - p(I.J,K)] /o= (D), p  (3-39)

and a second-order divergence operator for ou/ax 1is given by

(%{-)1 " [u(I,J,K) - u(1-1 ,J,K)] /o= () (3-40)
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Therefore, a consistent second-crder Poisson operator is given by

5 3 - 2 _
(§§.§§%)1 ~ [P(I+1,u,K) - 2p(1,0,K) + p(I-T,J,K)] /h® = (DD )P

(3-41)

and the entire finite-difference Poisson equation {s then
(0,00, + (0,0, + (0,0),]p = a (3-42)

It is possible to derive higher~order operators for dp/8x and 3u/dx
compatible with each other. For example, a fourth-order Poisson operator
is derived from the following pair:

ap
(3")1‘+1/2,j,k " [-p(I-i-Z,J,K) + 27p(I+1,3,K) - 27p(1,0,K) + p(I-1 ,J,K)] /24n

(3-43)
au " [-u(I+],J,K) + 27u(1,d,K) - 27u(I-1,d,K) + u(I-2,J,K)] /24h
9%/i,5.k

(3-44)

and the Poisson operator is given by

(gg-g%). " [p(1+3,J,K) - 54p(1+2,d,K) + 783p(I+1,d,K) - 1460p(I,d,K)
!
+ 783p(1-1,J,K) - 54p(I-2,3,K) + p(I-3=J=K)] /576h%  (3-45)

IT we define the RHS of Egs. (3-43) and (3-44), respectively,
as (4D+)xp and (4D_)xu, the finite-difference Poisson equation will
have the symbolic form

(042400 * (4D4aBL)y * (Dugd)y] 0 = @ (3-45)
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In order to assess the relative accuracy of these operators, it is

customary to compare them with the exact Fourier transform. Fourier
transforming the various one-dimensional finite-difference Poisson operators
and the continuous operator 32/3x2 and plotting the transformed coefficients
versus the nondimensional wave number kh , Fig. 3-2, one can see tne
relative distortion introduced in the solution by the different schemes.
The fourth-order regular-mesh curve represents Eq. (3-15). As is seen,
the staggered-mesh configuration shows a substantial advantage over the
regular mesh. For kh > 0.25 the difference between the fourth-order
regular mesh and the exact Fourier methed tends to grow sharply, while
the staggered-mesh curves trace the exact solution much more closely.

In this work, we shall use the second-order Poisson operator on
a staggered mesh. Although inferior to its fourth-order counterpart, it
has the advantage that the scheme extends only one point away from the
point to which it is applied.

The actual solution of the Poisson equation is by means of a direct
method. The discrete Fourier transform of Eq. (3-42) is given by

“f‘z‘[sinzlrﬂi +5'in2'1%qi +Sin2 ,FN['(—‘] 6 = a 3 i’j’k=-%,|-n,'&-1
(3-47)

To obtain p , we first transform q into 6 , then solve for ﬁ accerding
to Eq. (3-47), and finally inverse transform p to obtain p . The fast
Fourier transform algorithm (FFT) is used in the numerical realization.

For further details of rFT methods see Cochran, et al. (1967) and

Appendix C.

D. The Time-Differencing Scheme
The basic equations of motion can be reduced to the form

3
9

=l

= 8y (3-48)

ot

where S is a complicated nonlinear function evaluated at each time
step for every mesh point, by one of the methods described in the previous

sections.
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This equation, which is parabolic with respect to time, can be solved
by methods which are analogous to methods for first-order ordinary
differential equations. The existing methods can be classified according
to the following criteria: accuracy, stability, one step or multistep,
implicit or explicit methods. For extensive treatment of this subject
the reader is referred to the book by Gear (1971).

For the present problem two additional criteria were considered,
namely, the number of evaluations of s; per time step, and the amount
of storage required. These features are characteristic of probiems of
Targe volume and long computation time.

Two commonly used methods, which are second-order accurate and
require only one function evaluation per time step, are the leapfrog and
the Adams-Bashforth methods. Both are muitistep methods and require
storage for two time steps. The leapfrog method is given by

o e g Ty g e s (M) (3-49)

with truncation error
1.2 3351
- -G~At —3 (3-50)
ot

and the Adams-Bashforth method is given by

Gi(“+1) - ai(“) + At(SSgn) - si(""]))/z (3-51)

with truncation error

3-
g u.
5 2 i

A iinear-stability analysis shows that the Adams-Bashforth method is more
stable than the leapfrog method (Lilly, 1965).
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in this work we use the Adams-Bashforth method. The time step
's chosen to give a Courant number of Nc = 0.25 where

u__ At
_ _max -
J is the magnitude of the maximum velocity appearing in the prbbTem.

max
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Fig, 3-1. Staggered mesh configuration in two-dimensions.
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CHAPTER 4
DECAY OF ISOTROPIC TURBULENCE

A. General Description

The decay of isotropic trubulence has been chosen as the first
problem for numerical simulation. A random-velocity field which satisfies
certain correlation and energy properties is specified within a box, and
the evolution of this field is observed at later times. This problem,
although not of great practical importance, has several attractive
properties:

1. There exist experimental data to compare with.

2. The physical processes involved are the simplest of any
turbulent flow. Because the mean velocity is zero pro-
duction terms in the turbulent kinetic energy equation
are identically zero and the only processes involved are
energy transfer among the wave-numbers and dissipation.
Notwithstanding, all terms in the governing equation are
used, and can be assessed.

3. Boundary conditions are simple. It is assumed that the
domain of numerical integration is sufficiently large
compared to any characteristic length associated with the
flew field (for example, the integral scale), so that
correlations at distances comparable to the size of the
box are practically zero. This property allows us to
choose convenient periodic conditions for the boundaries.

It should be noted at this point that this problem has also inherent
limitations. Since the experimentalists measured only certain gross
properties, such as the shape of the three-dimensional energy spectrum
and the rate of energy decay, it is obvious that only these properties
can be compared with numerical results. Many of the details available
in the numerical simulation are averaged out. It is believed, however,
that the properties we are comparing with experimental data are the most
important ones for this flow, and that, if simulations predict these
properties correctly, they represent an actual turbulent flow field

closely enough.
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Decay of fisotropic turbulence also serves as a means of finding the
proper value for the model constant ¢ appearing in the subgrid scale
model. It is chosen to fit experimental data as close as possible.
Another method of determining ¢ from a purely computational experiment
is being pursued by Clark (ongoing Ph.D. research, Stanford University).

B. The Experimental Results

The experiment which has been chosan to be simulated is due to
Comte-Bellot and Corrsin (1971). Measurements are given for an isotropic
turbulent field which is generated in a wind tunnel behind a grid of
bars. The Reynolds number based on the Taylor microscale A and RMS
turbulent velocity level is in the range of Rel = 60 to 70 , which
corresponds to Tow levels of turbulence. Measurements are taken at three
stations downstream in the mean flow direction. Using Taylor's hypothesis,
the spatial loca’fions can be regarded as temporal stations with respect
to the evolution of homogeneous turbulence with the following relation:

Ax = u0 At (4-1)

where U0 is the mean velocity.
At these stations the three-dimensional energy spectrum E(k,t)
is given, where E(k,t) 1is defined as the integral over a spherical
shell of radius k of the trace of the spectrum tensor ®1j(£) )
which is the Fourier transform of the correlation tensor Rij(xj defined by

Reg(nd = <upn,t) uy(xte,t) > (4-2)

< > is an appropriate average (see Tennekes and Lumley, 1972, Chapter 8).
In Fourier space this function is given by

E(k) = 2nk® <u (k) u¥(k)> (4-3)

spherical shell
It should be ncted that the integral of the three-dimensional energy
spectrum over the entire wave-number range is equal to the Kinetic energy
per unit mass
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(==}

f Bk = <u,(x) u;(x) > /2 (4-8)
Q

Our aim is to start the numerical simulation with initial conditions
that correspond to the cxperimental data at the first station, then to
integrate the equations of motion for the interval of time between stations
one and two, and examine and compare numerical results with expzrimental
data for the second station. Two main properties are chosen for comparison,
nemely, rate of decay of turbulent kinetic energy, and the shape of the
three-dimensiocnal energy spectrum. These properties are basic for this
problem. Rate of decay shows how good our model for the subgrid scale
dissipation is. The shape of the energy spectrum shows how accurately
transfer and redistribution of energy among different waves are treated
and is an indication of how well the nonlinear terms are represented by
the numerical scheme.

Since experimental data are regarded as representing the instantaneous
field, while our method filters out the small-scale motion, it is required
to filter the experimental data, so that a common basis for comparison
is achieved. As waz shown ir Chapte» 3  the proposed numerical scheme
for he advective term is representing a filter with two bounds on AZIY .
For a Gaussian filter we have h < A < 2/2 h with most of the terms
corresponding tc A = v2 h . If we choose the Raussian filter with width
of +2 h as representing the filtering process, then the three-dimensional
energy spectrum at each station of the experiment would be

E(k,t) = [(k)]2 E(kat) = exp(-k2n?/6)E(k,t) (4-5)
This is the energy of the large scales of nrtion. For a 163 mesh problem

with h=2 cm, the filtered energy spectrum for the first station in the
experiment includes about 40% of the turbulence energy.
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C. The Initial Velocity Field
The Fourier transform of an isotropic turbulence field of an incom-
pressible fluid should satisfy at Teast four requirements:
1. incompressibility

ki) = 0 (4-6)
2. real field . (8-7)
G = [5(-0]
3. fisotropy
| b (k) (k> = 0 i#] (4-8)
4, given energy spectrum
0 (k) G5(k) = E(k)/2nk’ (4-9)

In a numerical simulation, a modification should be made in Eq. (4-6)
to account for the representation of derivatives by finite differences.
In order to arrive at this modification in a simple way, consider the
ene-dimensioi.al case. The finite-difference analog to the divergence
operator 3/8x , which is used in the present work, is (D_)x » Where

(0), @ = (i-d;_y)/h (4-10)

The Fourier transforms of these operators are

FT

a/ax ——> 4k, (4-11)
(), 2> [(1-cos§‘ﬂ’1’l) v 4 sinz—;]r—"l]/h (4-12)

where N 1s the number of mesh points in the discrete case, and m=k,/2m.
The Fourier operator associated with a continuous derivative is a pure
imaginary number, while in the discrete case it is a complex number, which
depends on the finite-difference scheme used. Therefore, the finite-
difference form of the incompressibility condition should be modified to
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KK G5(k) = O (4-13)

where k% is a complex vector field dependent on the finite-difference
divergence operator D; . This assures the numerical divergenceless
condition in real space,
by - )
D;u;(x) = 0 (4-14}
A method of generating a field which satisfies Egs. (4-7), (4-8),

(4-9), and (4-13) is described in detail in Appendiz B. The generated
field is periodic in space, since a spectral method is used to generate it.

D. Resuits and Discussion

In Figs. 4~1 and 4-2 numerical simulation of decay of turbuient
energy and three-dimensional energy spectra are compared to experiment
for the case of isotropic turbulence with mean velocity of U0 = 103
cm/sec behind a grid of bars of diameter M = 5.08 cm. The best fit
to the experiment was obtained with model constant ¢ = 0.24 and
numerical constant o = 1/3 .

Figures 4-3 and 4-4 show the dependence of energy decay and energy
spectrum on the numerical constant o . While energy decay differs only
sTightly for different values of o , the energy spectrum exhibits an
jrregular distribution in the o = 1 case, where energy piles up in the
region of high wave—numbers. This case is the staggered-mesh scheme used
by Hartow and Welch (1965), Deardorff (1970), and others. The proposed
scheme with o = 1/3 shows a more regular behavior, which suggests that
the Leonard term, which is included implicitly in this scheme, has an
jmportant effect on the correct transfer and distribution of energy, and
should be included in the numerical scheme for proper simulation, especially
in problems in which the energy is spread over a wide range of wave-numbers.
This conclusion agrees with that of Kwak, et al. (1975). It is interesting
to note that the staggered-mesh scheme with o = 1 contains implicitly
part of the Leonard term, as can be seen from Eqs. (3-26) and (3-27), and
was included in the past in simulations which used this scheme.

30



Sensitivity to che model constant is shown in Figs. 4-5 and 4-u.
The effect of changing ¢ acts mostly on the high wave-number region.
The chosen value of c¢ = 0.24 s 10% higher than Li1ly's theoretical
estimate of ¢ = 0.22 (Lilly, 1966) and more than twice the value used
by Deardorff in the channel simulation; he ran cases with ¢ = 0.06 to 0.17
and chose ¢ = 0.1 to be a representative value (Deardorff, 1970). Llater,
in a paper devoted entirely to the problem of the magnitude of c ,
(Deardorff, 1971), the author suggested that the Targe difference between
his numerical estimates and the value given by Lilly is due to the Targe-
scale valocity shear presented in his flow. Kwak, et al. {1975) have
found this constant to be c=.41.

Figure 4-7 shows the skewness defined by

T = <ad/exd> / <oti/axt > /2 (4-15)

for different values of o . This function, which starts practically from
zero, reaches a maximum value and then declines monotonically. The maximum
value for S 1is in the range based on theoretjcal estimates (Batchelor,
1953, p. 172). However, S depends on the high wave-number part of the
spectrum and our result cannot be fairly compared with experiment.

In this chapter a numerical simulation of isotropic turbulence has
been shown to be feasible and to give acceptable results. Computation
time for a ]63 mesh-point problem is about two minutes on the CDC 7600
computer. In the following chapters we shall use this method with constants
c=0.24 and o =1/3 to simulate homogeneous turbulence in the presence
of shear and system rotation.
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Fig. 4-1. Rate of energy decay of isotropic turbulence,
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CHAPTER b
HOMOGENEOUS TURBULENT SHEAR FLOW

A.  General Description

Most natural and technological flows are shear flows. In shear
flows most of the energy is contained in the mean (time-averaged) velocity
field. When the flow is turbulent, there is a coupling between the mean
velocity and the turbulent fluctuations, and the flow characteristics are
determined largely by this irteraction. In contrast to an isotropic
turbulent field with zero mean flow, in which turbulence levels are reduced
by dissipation, as was shown in Chapter 4, turbulence levels in shear
flows can be maintained or even increased by an energy-transfer mechanism
which subtracts energy from mean flow and feeds it into the turbulence
in preferred directions. This effect tends to make turbulence anisotropic.
Another characteristic of shear flows is the growth of length scales in
the direction of shear.

The simplest turbulent shear flow is the spatially homogeneous flow.
Numerical results will be compared with two experiments. The first ex-
periment is due to Champagne, Harris, and Corrsin {1970) (referred to later
as CHC flow) and the second is due to Harris (1974). Both experiments were
conducted in a wind tunnel. The shear flow was generated by a row of
parallel, equal-width channels having adjustable internal resistances.

A schematic sketch of the mean flow is shown in Fig. b-1. In the first
gxperiment, measurements were taken between the nondimensional lengths
%x/H = 8.5 and x/H = 10.5 , where % 1is the downstream coordinate, and
H 1is the height of the tunnel (H =1 ft). The mean velocity gradient
was T = 12.9 sec”] with a tunnel centerline speed of 40.7 ft/sec.
This setup was Timited in performance and left only two feet for ex-
perimentation. In the second experiment the same setup was used, but
the mean velocity gradient has been increased to 44 sec“1 . If data are
referred to a dimensionless stretched coordinate % = (x/Uc) T , the
high- and low-shear axperiments appear as a continuation of each other.
Thus, the high-shear case can be regarded as Tow-shear data extended to
distance x/H = 35. |
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The purpose of these experiments was to confirm previous hypotheses
made by Corrsin (1963) concerning development of anisotropy with downstream
distances, which implies asymptotic nonstationarity of the flow in a
frame of reference convected with the mean flow. Another characteristic
that was found in the experiments was a growth in length scaies in the
mean flow direction. The data will be presented when needed for comparison
with calculation.

In the numerical simulation we will try to assess these properties.

In addition, the pressure-strain correlation tensor Tij will be computed.
The pressure-strain term is responsible for the intercomponent energy
transfer. According to Rotta (1951,1962), it dastroys shear stresses,

thus helps in redistribution of turbulence among the different components.
Numerical results will be compared to Rotta's estimates.

B. Mathematical Formulation
The mathematical representation of a spatially homogeneous turbulent
shear flow is given by

<>, = Ty + U, (5-1)
> = 0 | (5-2)
<M = 0 (5-3)
<P> = 0 (5-4)

where U,V,W,P are instantaneous velocity components and pressure, which
include the mean flow, I 4s the mean velocity gradiernt, < >;j are
averages over planes defined by 1j coordinates, and <> are
averages over the entire space.

It is advantageous to change coordinates to a convective frame
traveling in the x dijrection with centerline velocity UC . The mean
field in this frame is shown in Fig. 5-2. Let u,v,w, and p be the

turbulence components defined as deviations from the mean flow. To
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obtain the equations for the turbulence, we subtract the mean flow out
by the following transformation:

w = U-ry (5-5)
v =V (5-6)
w o= W (5-7)
p = P (5-8)

Substitution of these definitions in the Navier-Stokes equations for
U,v,W,P (molecular viscosity is neglected) gives

s

[+%] 1>
o<

= - .;__gg. -—[(u+I‘y)u ]-r -—- - (yu) (5-9)

- -LB- gﬁa— (vus) =T (yv) (6-10)
- %_.gg -a-% (wij) =T & (ym) (5-11)
- - 5,%1—3—35- (uug) - 20 2 =2 By (3] (5-12)

In order to maintain these equations in a conservative form, no further
simplifications should be made by means of the continuity equation.
Using the averaging operatcr according to Chapter 2, we get

du
3t

>

lay
H<|

|

oW
3t

- 1% 2 @Gl - & () (5-13)
J

S EE e ) T (o
J

= -LBL 2 - & W (5-15)
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P

120 . L2 3 ammy ol b _
p BX;8X; ax %, Uiy - 2T gy %; (yu;) (5-16)

If we set u=u+u' and Tump all subgrid components into the term
531- Ty s We abtain

J
U _ _ 38 . 8 rrenea Lo 8 fomy . 8 i
ot X 3Ky [(u+ry)uj] I' 5% (yu) + a%; Ty (6-17)
ﬂ = ....aE.__..g_ - - __a_ _:- L _
9t 5y - B, (VUy) - T g (yv) 4 B Ty; (5-18)
WL BB B (mmy (v 4 B i
3t 3z ij (qu) r Gy (yw) + ij sz {6-19)
2= -
B I N H 8 N S BNy O J R R Mg
BX_iBX.i Bx.i BXJ- 1] ox BXJ J BX.I BXJ 1]
(5-20)

A1l functionals of the form a/axj (yﬁj) are treated numerically in the
same manner as the advective term B/ij (E}ﬁj) » thus capturing implicitly
the Leonard tern that arises whenever a product of quantities is averaged.

T3 is assumed to be proportional to the rate-of-strain tensor of the
filtered turbulence components:
du, Au,
= S S & -
T35 K(ax:j * axi) (5-21)

K is given by Eq. (2-14), and we choose the model constant to be ¢ = 0.24,
as for the isotropic case (Chapter 4 ), on the assumption that the sub-
grid scales are nearly isotropic even in the presence of mean shear. It
should be noted that Ty oW contains terms of the type ﬁ??' i.e.,
averages containing the product of the subgrid scale turbulence and the
mean flow. These represent interactions of the mean flow with the subgrid

scale turbulence to produce resolvable scale flurtuations. Little is
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known about these terms or their effects, and in using the same value of
¢ as in the isotropic case we are tacitly assuming that they are
negligible. This point deserves further investigation but will not be
pursued here.

a. Boundary conditions

Since Egs. {5-17) to (5-20) contain turbulence components only, and
we assume that the computational domain is sufficiently large compared
10 the characteristic length scales of the flow, we shall assume u1, P
to be periodic with respect to the computational domain. Althcugh
convenient for numerical implementation, this assumption has some 1imita-
tions, in particular in shear flows, As we shall see, there is a growth
of Tength scales in the direction of mean shear. As time goes on, these
scales become comparable in size to the computational region, and periodicity
assumption is questionable. In the present simulation we start with a
field with A/H = 0.1, where A is the Taylor microscale, and H is
the Tength of the computational domain. Computation is terminated when
this ratio becomes ~ 0.2 . For longer simulations one must increase the
computational bex, at least in the shear direction, if periodic conditions
are to be retained.

b. Initial conditions

The initial turbulence velocity field is chosen to be isotropic,
with identical energy distribution to that of the case described in
Chapter 4. The turbulence level is adjusted to <u 2, 1/2/UC ~ 0.022 ,
which is approximately the initial value reported in the CHC experiment.

c. Computational time steps

The time steps are chosen to give a Courant number of N = 0.25 with
respect to the mesh size h and the largest mean velocity U hax presented
in the flow field. For Umax = U0/2 = 6.45 gt/sec and h =6.25 x 10
we find that At = 0.25 h/Umax = 2.422 x 107" sec, Using the Taylor
hypothesis for the convective velocity Uc = 40.7 ft/sec, the following

relation holds:
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10 time steps e——> 1 ft

These quantities will be used throughout the numerical simulation of the
present and the following chapter.

C. Results and Discussion
a. Comparison with experiments

Figures 5-3 and 5-4 compare numerical simulation to experiments.

The first figure compares the turbulent levels in different directions.
As in the experiment, the v and w components, which are perpendicular
to the shear direction, decay monotonically with distance, while the level
of U, the component in the shear direction, behaves differently. At
first it decays, then it levels off and starts to grow. The growth of

U in the CHC experiment is not clear enough, but it is shown clearly
in the extended experiment made by Harris. Numerical results confirm
the experimental evidence which shows that in the presence of mean shear,
energy is extracted from the mean shear and fed into preferred turbulence
components. This growth makes the flow nonstationary in a reference
frame convected with the centerline velocity Uc .

Note that the computed results show faster growth than the experi-
mental results. To bring the computations into agreement with experiment
would require increasing the subgrid scale constant ¢ which is incon-
sistent with what Deardorff {1970) and Schumann (1973) found. Furthermore,
the neglected interaction between the mean flow and the subgrid scale
fluctuations should be a production term and would tend to reduce the
subgrid scale constant. Thus, although the computed trends agree with
experiment, the results do differ quantitatively and the most obvinus
possible causes would change the results in the wrong direction. The
femaining possibility, 1.e., that the difference is due to jmproper
initial conditions, is also not 1ikely to be correct as an isotropic
initial conditicn should yield the smallest growth rate for a given
turbulence Tevel.
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The second figure compares the Reynolds shear stress  -<uv>,
As we shall see later, this shear stress acts together with the mean
shear to create a production term for the turbulence in the x direction.
This term is important also in two-dimensional turbulence modeling. As
is shown, computed results agree quite well with experiment. These com-
parisons, although limited, bring us to the conclusion that the numerical
simulation properly represents the main features of an actual shear flow.

b, Additional numerical results
In Figs. 5-5 to 5-11 additional information is extracted from the
numerical simulation. Some of this information is either difficult or
impossible to obtain experimentally. Examples in the first category are
spatial correlations and Tength scales, and in the second category ars
pressure-strain correlations and the "return to isotropy" simulation.
This information extends considerably the existing data set for shear
flows and can be of help in two-dimensional turbulence modeling. A
detailed description of these data follow.
Figure 5~5 shows the development of total turbulent kinetic energy
Giﬁi with time (or distance). Since the initial field is isotropic,
energy starts to decay at an equivalent rate as in the case of jsotropic
turbulence with zero mean flow (Chapter 4). As anisotropy develops,
enough energy is extracted from the mean fiow to compensate for dissipation,
and to allow the net energy to increase. There is no reason to believe
that the growth will not remain indefinitely; the steady mean field
jmplies that it is being pumped in such a way as to maintain its energy.
Figure 5-6 shows the development of turbulent levels in each direction.
Figure 5-7 shows the three components of shear stress "<ﬁiﬁj>
(normalized on the RMS values of Gi and ﬁj) . Ideally, initial conditions
for these terms should be zero, if the field is truly isotropic. Prac-
tically, it is difficuit to achieve this requirement in a 16 problem.
Nevertheless, the flow adjusts itself after a short period {about thirty
steps) and the terms -<uw> and =-<vWw> are reduced to zero {within
an error band of 0.01). The value of -<UV> , on the other hand, grows
to an approximate value of 0.5.
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Figure 5-8 shows the development of Tength scales X& in each
direction. The length scale in the shear direction grows considerably,
while in the other directions there is not a significant changa. Although
experimental data for the Tength scales exist in the CHC experiment,
comparison can be made qualitatively oniy. The reason is the large
difference in the initial length scales of the experiment ( A~ .016 ft)
and the numerical simulation (XA ~.10 ft). This difference comes mainly
from the fact that in the numerical simulation we are using filtered
rather than instantaneous quantities, and there is a considerable difference
between (au/ax)2 and (aﬁYax)z which occur in the definitions of
A and A, respectively. '

The explanation for the observed behavior of the turbulence quantities
and length scales that we prefer is that small nearly circular, eddies
with their vorticity in the z direction combine to form elongated eddies
with their major axes in the x direction. Such a process, similar to
the vortex-pairing process put forward by the USC group (Winant and
Browand, 1974) would lead to an increase in <:62> , 4 decrease in <=52> s
an increase in X; » and a constant i& . It will also decrease <<5§:>,
which was cbserved but is not shown in the figures.

Figure 5-9 shows nine components of spatial correlations. The most
significant change occurs in the R1](x,0,0) component. The reason for
that is the growth of Tength scales in the x direction which makes the
flow correlated over larger distances. It should be noted that the Teast
changes occure in the z direction, which means that most of the inter-
action takes place in the (x-y) directions.

Figure 5-10 shows the development of the pressure-strain correlation
tensor Tij » Where

al, 3,
S o e | ;
Ty = < p(axj + Bxi) > (5-22)

In an isotropic field of turbulence these terms should be identicaily
zero. As can be seen, the initial values, as with the stressas -~<ﬁiﬁj> s
are not zero, and a period of adjustment should be allowed before any

conclusion can be drawn from the simulation. In the present case we
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shall refer to data at time step L = 100, where the Tij show regular
behavior, and the length scales have not increased so much as to invalidate
the periodic boundary conditions used in this simulation. More details on
Tij will be given later in this section.

Figure 5-11 shows a “return to isotropy" simulation from a sheared
state. As the mean shear is turned off, the flow returns to isotropy
in a peculiar way. When the amount of anisotropy is large, there is a
transfer of energy between u and v which causes initially an increase
in the v component. When the anisotropy diminishes, dissipation effects
take over and all three components decrease toward isotropy. No such
effect is observed in the W component, which suggests that most of the
interaction and energy exchange is two-dimensional. This can be explined
physically by the rotation of the elongated eddies that were formed by
pairing. (In the absence of strain an elongated vortex will rotate.)

c. Pressure-strain correlation T1.j
The energy and stress balance equations for a homogeneous shear flow
are given (Hinze, 1959, p. 252) by

2 12, o Gv -
= <y U < uv>I‘+T.” +Dsgs (5-23)
8 _1=2_ _
5% gV T t Ty * Dsgs (5-24)
8 .1 =2_ _
5f < Wo> o= + Ta3 * Dggg (5-25)
2 <-Uy> = <32> P =Tan +D (5-26)
ot 12 5Qs
Dsgs scands for a subgrid dissipation term which will not be specified
explicitly here. T,. is defined in Eg. (5-22).

1]
Initially, when the flow is nearly jsotropic, Tij is identically

zero. As time elapses, the term <iPsT in Eq. (5-26), which is positive
definite, causes a positive increase in the stress term <-uv> . This,
in turn, increases the turbulence Tlevel of <ﬁ2> in Eq. {5-23), thus making
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the flow anisotropic. When the field is anisotropic, the terms Tij are
no Tonger zero. The values of Tij grow in a way which tends to equalize
the velocity levels and reduce the shear stresses. Qualitatively, the
values of Tij should be as follows:

This is indeed what we find in Fig. 5-10.

Because of the importance of the term Tij , and the extreme difficulty
of measuring it, it has Tong been a subject of mode]l estimation. One of
the simplest and most popular models is Rotta's estimate (1951, 1962),
where he assumed that the pressure-strain correlation tensor is proportional
to the amount of anisotropy presented in the flow:

Tij = -AD bij (5-28)

where D 1is the isotropic dissipation given by

0 = & (g/2) (5-29)

and bij is the anisotropy tensor defined by

_ 2 2
big = Rz - a” 8;5/3)/ (5-30)

(%j = <>, g7 = Ry

This model has been checked with data obtained from the “"return to
isotropy" simulation (Fig. 5-11). The results (for L = 280) are as follows:

a. component T]] gives a constant A = 2.3
b. component T22 gives a constant A = 3.8
c. component T33 gives a constant A=1.4

These results agree with estimates made by Norris and Reynolds
(Reynolds, 1975). They recommend a value of A = 5/2 » Which is the
average value of what we find for the separate components of Tij’
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Fig. 5-1. Schematic sketch of the homogeneous turbulent
shear flow.
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Fig. 5-2. Mean velocity in a convective frame.
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CHAPTER 6
HOMOGENEOUS TURBULENT SHEAR FLOW WITH SYSTEM ROTATION

A. General Description

The third probiem to be simulated adds one more parameter to the
flow field. Homogeneous turbulent shear flow is examined in the presence
of system rotation. This prob]em is of interest in two important fields.
The first one is atmospheric turbulence where the flow field is in a
rotating frame of the earth, and the second is the internal flow of turbo-
machines. Rotation has an effect on the stability of turbulence. It
has been shown by experiments (Halleen and Johnston, 1967) that, depending
on the magnitude and direction of rotation, either augmentation or sup-
pression of turbulence intensities results. Johnston (1974) investigated
the effects of rotation on boundary layers in turbomachine rotors and
proposed a relation for the mixing-length ratio /2 (usad in two-
dimensional turbulence modeling) which is based on the local gradient
Richardson number defined by

R,i = -ZQ!I‘ = 29! (6_1)

r

in the form
2/20 = 1 -8 Rj (6-2)

where & is defined by

g = <@ 2 p (6-3)

Based on experiments, B8 was found to be in the range of 2 to 6.

Since our simulation represents a small region of the flow field
away from solid boundaries or other interfaces, we do not c¢laim that this
simulation represents a real flow such as exhibited in an interior of a
turbomachine; therefore, comparison with available experiments shouid be
made carefully, if at all, at this stage. On the other hand, the experi-
ments are involved and results are affected by effects other than rotation,
as can be seen from the scattered data of the experiments (Fig. 6-6),
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while the numerical simulation is "clean" in the sense that we are testing
the exclusive effect of rotation on the flow.

In the following, numerical results will be given for different
Ri numbers and will be compared to experiment, and a simple explanation
will be given for the stabilizing effect of rotation on the turbulence.

B. Mathematical Formulation
The equations of motion relative to a frame which is rotating in
a constant angular velocity Q are given (Batchelor 1967, p. 144) by

al

P A/

n

- -}J—VP -2 x U -gx (axU) (6-4)
v - _l'_l_ = (6-5)

The term -20xU 1is the Coriolis force, which is perpendicular to both
U and 2, and -@x(oxU) 1is a centrifugal force, which can be written
also as

- ;l_,-v (gxx)? (6-6)

This term can be added to the pressure term -~1/pVP to form a generalized
pressure P*:

Pk = P+ %—p (oxx)? (6-7)

In Cartesian tensor notation the equations of motion read

U
i 9 . - . LaP* -
BU.i
s = 0 (6-9)

1

Let @ = (0,0,0), and the velocity field be defined as
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<U>. =Ty (6-10)
<y> = 0 (6-11)
<W> = 0 (6-12)
We define also a mean pressure
<P>.. = -pary (6-13)
Xz

To obtain the equations of turbulence, we subtract the mean values from
the instantaneous field:

u = U-ry (6-14)
v = V (6-15}
w o= W (6-16)
p = P* & por y {(6-17)

Substitution of these definitions in Navier-Stokes equations for U,V,W,P* ,
Egqs. (6-8) and (6-9), gives

%%. = - %.%E.- 5%; [(utry)u;l - T g%-(yu) + 20V (6-18)
oo %-—g-g-- 53;3— (vus) - T 2 (yv) - 20u (6-19)
L -%%g—ai—jcwuy - T 2 (yw) (6-20)

Following the same procedure of averaging described in Chapter 5, Egs.
(5-13) to (5-20), we get the conservative form of the filtered equations
of motion relative to a rotating frame.
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3u _ _ap 9 3 —
T T ey LBY)T;] BENEIE S g * 20 (6-22)

3y . _9% _ .8 (. - )
T T TR (Vi) r (yv) + 3 T3 - 2 (6-23)

W . 3B _ R -
3t 5y axJ () - (yw} *oae— BxJ 43 (6-24)

2_ m— -

2P _ .2 3 i R av _au\, B 9
axiax. 9Xs 09X, (uiuj) I1ax ax. (yu ) + 29 ax 3y /) Bx. 3X. Tij

! LR J i 9%
(6-25)

Again, we use periodic conditions for the turbulent components ﬁi, b,
Initial conditions are isotropic with the same energy spectrum as for
the case given in Chapter 5.

C. Results
Four different values for Q were used in the simulation:

Q = { -1.33, ~.591, .727, 3.22}

which correspond to gradient Richardson numbers:
Ri = {.25, .1, =1, ~.25 }

The mean velocity gradient was kept as in the case of @ = 0 in Chapter

5, = 12.9 Sec™. Figuras 6-1 to 6-5 show the dependence of the total
turbu]ent enerqy ~:u u >, the shear stress -<uv>, and the turbulence
levels < u > 1/2 on R1 . As can be seen, turbulent intensities and
shear stresses are higher for Targer rotations (or smaller Ri numbers)
and vice versa, which means that rotation either stabilizes or destabilizes
the turbulent field, depending on the magnitude and direction of Q .

With regard to the turbulence Tevels, the most profound change occurs in
the V component, where rotation changes its behavior entirely from a
decaying mode for Ri = .25 to a rapidly growing mode for Ri = -.25 .
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It is interesting to note that for Ri = -.25 , turbulence levels of U
and v are almost identical (a simple explanation will be given later
in this chapter).

Figure 6-6 shows the dependence of mixing-length ratio on the local
gradient Richardson number, as was evaluated from experiments (Johnston,
1974). As was mentioned before, this experiment is quite complicated
and data are scattered, which makes any interpretation difficult, at best.
Contrary to the experiment, which is conducted in stead-state canditions,
our sirmulation exhibits nonstationarity. Nevertheless, if we analyze
data from time step L = 100, at which time the flow has developed
(but not too much to invalidate the periodic conditions), we find that
B~ 1.7 which is in the lower range of experimental results (Fig. 6-6).

In an attempt to obtain simple correlations, we have plotted <iv>
and <G> /2 (which is proportional to the mixing length)versus both @
and Ri . The best it was obtained with <iv> /2 versus Ri and is
shown in Fig. 6-7. We find

1/2

~ C; - C, Ri (6-26)

<uv> 1 -5

where C, ~ .5 and Cy .04t72
D.  Interpretation of Results

Simple shearing motion can be viewed as a superposition of a pure
straining motion and a rigid rotation., When simple shear and rigid rota-
tion are applied together, there is a value of rotation which cancels
the rotational part of the shear and thus reduces the flow to a pure
strain, the principal axes of which are at 45° to the (x-y) axes. The
case of simple shearing motion in a rotating frame is similar. Let us
write Eg. (6-8) in the form

aU.
i - . L3p* .
where
all. au.
1 i _
45 - 2‘(‘5@:*‘ mz;l) (6-28)
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o,  au.
® = 1 J -
iy 2 (ax ET ) (6-29)

J i
For simple shear with 3U/ay = T and D = (0,0,2) we have in twe
dimensions
0 T/2
31.3. = (6-31)
r/2 0
0 r/2
Rij - (6-32)
r/2 0
0 -28
p'ij = (6-33)
20 0
It is easy to see that if /2 = 20 , then@, = =0i; and the motion
reduces to pure strain with principal axes at 45°
The general form of the turbulent shear stress tensor for pure
strain in the principal axes {two dimensions) is given by
< ﬁz > 0
<Oyl > = > (6-34)
0 <y >
If we rotate this tensor 45°, we obtain
-] <GZ>+<\72> ":52:* - <\-/.27-" (6"35)
z -2 -2 2 ~2

<SU >-<Vy > <UT> + <yT >

with the result that the terms on the diagonal are equal. If we examine
the case of pure shear in a rotating frame with T/2 =20 or Q= 3,22
{Ri = -.25), we find that within computatmna1 accuracy the diagonal
elements of <u, uJ > are equal, or <u »1/2 72> 1/2

=<y 2> , as can be seen
frowm Figs. 6-3 and 6-4. 65



This view also leads to a simple picture of turbulence production.
If we focus strictly on the production terms, “hen the three most important
equations for the turbulent velocities may be written:

-2
d<u®> _ -2 == -=
‘_‘H'.E""‘ - -2<U-[ >£-[-| - 2<uv>:r12 - 2<UV>IR]2 (6"36)
d<02> =2 - _
“F— - -2<y >522 - 2<m.v>(_f]2 + 2<uy >R]2 (6-37)
Ei_fa%".’_? = ..<ﬁ'\}>(-jﬂ +322)-(<G2>+<Gz>)j]2-(<\72>~<62>)R]2
(6-38)

where R]Z =Q12 *pqp and we have noted that :512 =3°2] R 12 = ”P21‘
Without Toss of generality we can choose the principal axes to be along
the coordinate uirections so that

:]’12 = 0, 2:f11 = 24, = s, 2R, = r (6-39)

and Egs. (6-36) to (6-38) reduce to

d<ﬁz>

at . 5 < i

> - pr<uv> (6-40)

Y4
d<d¥ > -5 < 02

B

> + peuv> (6-41)

v

ALl oop(<i®> -<i?>)/ 2 (6-42)

The kinetic energy obeys the equation

d - 2
a———(<u

2 > - <§f>) {6-43)

> + <¥>) = s(<i
so that there is no production of turbulent kinetic energy 17 the tur-
bulence is isotropic. If, however, < L'lz > > <\72> , there will be
growth caused by the fact that < ﬁz> grows faster than < Vz> decays.
66



Thus, if the turbulence is anisotropic, there will be production, and the
production is in such a direction as to increase both the energy and the
anisotropy.

It is interesting to note the effect of rotation on production.
Equations (6-40) to (6-42) are linear ordinary differential equations in
<W>,<¥%>, and < G¥> and thus have exponential solutions. Seeking
solutions of the form eat , we find

a = 0 , +¢s°“ -r (6-44}

Thus, we see that the greatest production results when r =0 , i.e.,

for pure strain (corresponding to Ri = -.25). Any rotation inhibits the
production and, in fact, for r > s there is no production at all.

When r = s , the growth is algebraic.

Physically, rotation mixes the components, i.e., it transfers some
of the U component to the ¥ component. In so doing, it reduces the
anisotropy and, indirectly, inhibits the production of turbulent kinetic
eneragy.
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CHAPTER 7
SUMMARY

A. Conclusions

Three-dimensional time-dependent numerical simulations of simple
turbulent flows using the filtered incompressible Navier-Stokes equations
with the simple formulation of Smagorinsky for the subgrid scale eddy
coefficient prove to give very reasonable resuits. Although the number
of degrees of freedom of 163 mesh points is Tlimited, with respect to
resolution, it was shown that useful information can be extracted from
these simulations, which contain much of the physics of these flows.
Furthermore, the approach is convenient and reasonably economical with
regard to speed and capacity of available computers.

The proposed numerical scheme for the filtered advective term,
which contains a Leonard term implicitly, was shown to be important for
proper energy transfer down the wave-number scale and is recommended Tor
use in future investigations, in particular when lTong time integrations
are needed and when the turbulent energy is spread over a wide range of
wave numbers (high Reynolds numbers}.

The imposed periodic conditions for the turbuience, which have been
used in all of our examples, have advantages as well as disadvantages,
The advantages are twofold. First, the mathematical problem is well
posed on the boundaries, and does not introduce errors into the domain
of numerical integration. Second, periodic conditions allow the use of
rapid routines in the solution of the Poisson equation. The disadvantage
is that turbulent Tength scales must be kept small compared to the compu-
tational dimension, and in problems where these scales grow, numerical
simulation cannot be carried out for long times without invalidating
this requirement.

B. Recommendations

Based on the experience gained in this work the following recommen-
dations are proposed for future work in this field:
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1. Improvement of initial conditions to aliow better
control on the statistics of the velocity and pressure
fields such as stresses < Eiaj > and pressure-
strain correlations Tij .

2. Extension of boundary conditions to allow other con-
ditions than periodic. For example, treatment of a
rotational-irrotational interface and a solid boundary.

3. Extension of the computational region, at least in
important directions such as the shear direction in
a homogeneous shear problem, to allow Tonger integra-
tion periods. This will require the use of peripheral
equipment.

4, Simulation of other basic flows for which experimental
data exist such as vortex pairing and far field
solutions of jets and wakes.

This work is one of many efforts made in recent years the aim of
which is to explore the basic problaems of turbulent flow simulations,
and it is believed that eventually it will bring about the solution of
actual problems on the engineering Tevel.




APPENDIX A
THE FILTERING OPERATOR AND ITS PROPERTIES

The filtered function T(x) s obtained as the convolution integral
of the function f(x) with a filtering function g(x)

Flx) = olx) * f(x) = / gex') Flx') de' (A1)
all space

x. x' are position vectors whose components in a Cartesian system are
Xy Yo z and x', y', z' , respectively, and dx' 1is the volume element
dx' dy' dz' .

The only requirement on the filtering function g(x) s that it is
Fourier transformable, which means that it should be square integrable.
Since

fF ;5%'[9(_&)* f(ﬁ)]} =L k a(k) F(K) (A-2)
and 0
a ~ ~
fF [ gxg_ *f(i)] = 4 k; g(k) Fk) (A-3)
i
and also
()7 o~ e
? [9@* X ] =4k olk) k) (A-4)
then
g‘%’(gf) = %i_—*f = g*a%-;%— (A-5)

and an important conclusion can be drawn:

af | 3
il (A-6)
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The filtering function used in this work for averaging the
Navier-Stokes equations is the Gaussian filter defined by

1/2 173
o(x) = [(5-) %—] exp (~6]x1%/8%) (A-7)

m

the Fourier transform of which is
~ 3 21,12
g(k) = exp( - A%[kl"/24) (A-8)

Other functions can be used as well. For example, the running mean
filter is defined by

j§ |x] < box of sides &
glx) = {8 (A-9)
0 |%] > box of sides A
its Fourier transform is given by
n 3 sin (kiA/Z)
g(&) = .i'f=1'1 —-———-———k1 72 (A-10)

This filter has been used by Deardorff (1970). For a detailed discussion
of the properties of these filters see Kwak,et al. (1975).
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APPENDBIX B

GENERATION OF INITIAL VELOCITY FIELD FOR ISOTROPIC
TURBULENCE SIMULATION

The initial velocity field for isotropic turbulence simulation
should satisfy the following requirements (to simplify, we shall drop
the averaging symbol (7))

ki(k) u;{k) = 0 (B-1)
a0 = [uy (0] (B-2)
< uy(k) u;(k)> = 0 13 (B-3)
u; (k) wt(k) = E(K)/2nk® (8-4)

where k% » Uy are complex vector fields, and k 1is the position
vector in Fourier space. Let

t

= (kg 4 (k) (3-5)

u (uido *+4 us)g (B-6)

Substituting the last two equations into Eqns. (B-1) and (B-4), and
separating real and imaginary parts. we have

(k'%)R(u'i)R - (k"})l(u'i)]: = 0 (3'7)
(Ugus)p * (wi) = E(K)/20k? (8-9)

To satisfy Eq. (B-3), the velocity components should be random.
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The required field is generated in two stages. First, two fields
Ui » oYy are generated, with ki real and equal to (k.i')R and (k%)l ,
respectively. Second, the fields are combined to give the required
field that satisfy Egqs. (B-1) to (B-4}.

Let us assume for the moment that we have generated these two fields;
then

(k%)R(]u‘l) = 0 (B"]O)
(kidi(ous) = 0 (B-11)
144 ]u?f = ol 2“:’{ = E(k)/Z‘n‘kz (B-12)

Let the desired field be a Tinear combination of the two fields

(g = ayquglg = a(puy)g (B-13)

(il = aglyuydp + aglpu); (B-14)

Substitute Egs. (B-13) and (B-14) into (B-7) to (B-9) and use Egs.
(B-10) and (B-11) to get

2ptkidplalylg - 2glkidrluydy = 0 (8-15)
ap(kidp(qupdp - aglkidglouydy = 0 (B-16)
a2( Us Us)p * 2aqa,{-Us olUs)p + az( Us oUs)
10745 qupdp * 2aq3p0up pudp + ap(ouy pusdy
2 2
*aglyuy quydp * 2agaglyuy guy)y + Aoty i)y (B17)
_ 2
= E(k)/2nk
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In order to determine the field us o we have to determine the
constants 815 8gs 895 3y - This 1s done by solving the three algebraic
equations (B~15) to (B-17) in four unknowns {one is determined arbitrarily),
for every value of ki in the region k3 < 0 . The other half-space
ky >0 s obtained by condition {B-2), which makes ui(g) real.

The two separate fields are generated as follows: Consider a
coordinate system in wave-number space, as shown in Fig. B-1. For any
position vector Ki s the vector k% is specified. k% depends on the
specific finite-difference scheme used for the divergence operator; for
example, see Eq. (4-12). Let s be a vector which 1ies in a plane P
perpendicular to k% , and which makes an angle £ with a reference
to vector t , which is the intersection of P and the plane formed by
k% and g5 . & fis chosen randomly in the range (0,2w) . usug is
chosen to be equal to E(k)/Zwk2 . Let n be another random number

in the range (0,1) . Decompose Ul into two parts such that

(u'iui)R = n(uiu-i) (B-18)
(uiui)I = (1~n)ﬁuiui) (B-19)
1/2 1/2
Then decompose (u1.u,i)R 8, and (u_]u1.)I e, into their components

along the vectors g s 8 » & according to the formulae

(u])R = -{cos& cosd¢ cosB + sing sine)(uiui)TR/Z (B-20)
(UQ)R = (-cosE cos¢ s5in® + sing c:ose)(uiui)ly2 (B-21)
(US)R = (cos& S'ind))(u.iui);/z (B-22)
(u1)I = -(cosg cos¢ cosg + sing sine)(uiui)}/2 (B-23)
(UZ)I = (-cos& cos¢ sing + sing coso )(uiu.i)}/2 (B-24)
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(u3)I = (cosE sing )(uiui)}/2 (B~25)

This procedure is repeated twice for (k1.')R and (k%)l . The sub-
routine INICON 4s a realization of this method,
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Fig. B-1. Coordinate system for decompasition of u.
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APPENDIX C

THE DISCRETE FOURIER TRANSFORM AND ITS
COMPUTATIONAL FORM

The truncated sum of a Fourier expansion up to wave number N/Z
is given by

N/2-1
f(n} = 3 F(m) exp(27 imn/N)  n=0,...,N-] (C-1)
m=-N/2

The inverse of this transformation is given by
'] N-]
F(m) = N'§: f(n) exp(-2mLnm/N) m=-N/2,...,N/2-1 (C-2)
n=0

A more frequently used transform pair is given by the definition

N-1
f(n) = 2:0 F(m) exp(2w imn/N)  n=0,...,N-1 (C-3)
m:
'] N "‘.[ .
Fim) = g A f(n) exp(-2md nm/N) m=0,...,N~1 (C-4)
n‘:

which is used in most fast Fourier transform (FFT) algorithms.

Since exp is a periodic function in N , it is, in general,
immaterial whether one set is used or the other. Both will recover
the oribinai function after applying a transform followed by an inverse.
However, when discrete Fourier transforms are used to solve differential
equations, the first pair should be used, otherwise the method will pick
up an aliased solution which contains higher frequencies. Nevertheless,
it is not required to give up the existing FFT codes, because there is
a one to one correspondence between the two definitions.

Consider that f(n), n=0,...,N=1 1is given. Then, according to
Eg. {C-2) we have
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N1
Fm) = & Fn) expl-zrim/) /2, W21 (G
n=
]N4 min for -N/2 <m< 0
=N f(n) exp(-2mimm'/N) m' =
n=0 . m for 0<m< N/2-1

m' now varies from 0 to N-1 , as in Eqn. (C-4), but the ordering of

F{m) has been changed. As an example, consider the case of N=4 ., Let

f) = { £(0), 7(1), £(2), £(3)}

The discrete Fourier transform of f(n) using Eqn. (C-2) gives
Fm) = { F(-2), F(-1), F(0), F(1D }

while using Egqn. (C-4) the order of F(m) is changed to
Fim) = {F(0), F(1), F(-2), F(-1)}

For a detailed description of the fast Fourier transform algorithms the
reader should see Cochran,et al. (1967).
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APPENDIX D

THE COMPLETE EXPANSION OF THE FILTERED ADVECTIVE TERM
FOR THE STAGGERED MESH CONFIGURATION
In the following, a complete expansion of the term a/axj (ﬁiﬁj)'
in three dimensions is given for the staggered-mesh configuration which
contains implicitly the Leonard term as part of its truncation error
(see Chapter 3) (the overbar is dropped from Ui in the expansion).

3 .
a Wia1/2, 5.k

2

L,

2
h [(“1+3/2,5,k * u1+1/2,j,k) - (ui+1/2,j,k * ui-I/Z,j,k) ]

O .

1-a
&h Tu

-+

2
[(ui+3/29jak i+3/2,3%1,K “1+'[/2,j+1 oK * u1+]/21jsk)

2

- (Uiaqy,9.k ¥ Yie1/2,340 0k F Yia1/2,540 .k T Yia1/2,5 k)

B

+

2
+ (Mipay2, 5.1,k U5e3/2,0,k F Uie172,3,k ¥ Yie1/2,5-1,K)

?
Ui 172,541,k

= {Ui092,5-1,k © Yie1/2,5,k  %-1/2,00k

2

ot

-+

*lugpare,5.ke1 T Yieas2,g.k T YiH1/2,30k u1+1/2,j,k+1)

+

| o P N
- (u1+1/2,j,k+] FlUiry2,5.k T Yi-1/2,5.k 4 1725 k1)

S . | Y
* (Ugean sk F Yisa/2,5 ka1 T Y172,5 k-1 T U5a1/2,5 )

B (“1‘+1/2-,j,|< T U4172,5,k-1 T Yi-172,3,k-1 ui—1/25j,k)' ] (D-1)
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a -
32 41/2. 5.k =

[+
i L0172, * 950172,0,060 Wit g 12 * 5 10172)

" (Mia172,5,0e1 ¥ 994172,5 00 et g k12t Y ,j,ku]/E)}
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" Ui/2,5,000 * Y1720,k F 912,00kt Y172,k Y5 kT2

= (Mia172,5,0 ¥ Yis1/2,9 k-1 T Yi-1/2,9 01 * Ui1/2,5 kW ,j,k-1/2]

.I"O!. S
e [(ui+1/2,j,k FUiy2,0k+ T Yiery2,501 0k Uis1/2,541 k+1)

M2 g kes2 T Vi 50 ke T Y g ke )

- (W05 k1 Yi4172,5.k T Yie172,541 k-1 T Va2, 541 K0
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+ (u1’+1/2,3’—1,k T Usr1/2,5-1,k61 F Yie172,5,k T Yie1/2,5 ke
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(b-3)
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*%ﬁ[ww1'mw2+”"wwz+w Fu )
1*1ds Tads P+1,541,k+1/72 © Wi, 541,k+1/2

*(Uiy2,5,001 T Yie172,3.0 T Ye1/2,54T k0T T Yia /2,54 k)

g ke1/2 g k2 T L ke 2t Y5 k)

* (ui-1/2,j,k+1 T Uy2,5.k Y Yia172,541 k4 F “i—l/z,j+1,k)

0y o1 ke172 P YL,k 72 T Y, k12 T Y g ke 2)

* (Ui, 5-T, k01 T Yia1/2,5-1,k T Yie1/2,5,k6 T Yie1/2,5,K)

= W o172 91,31, ke172 YL ket T YT, kel /2)
(U512, 541,k *”i4/zd4,k+‘%4/zJJw1+‘quza,ﬁ]
(D-7)
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5%—(55)1. k)2
i [(‘”-f 3oka1/2 T Y5 a1 k1720 Vi 5172,k F Ve, 541 /2,001
HURERN R Wi,5,k172) Vi 172,k ¥ "1,5-1/2,k+1)]
[0 Y k72 T Y 5 ka2 T Y g ka2 Vi L5412 k]
" U etk 172 F Y ks Y eyt YL 0 key2) Y 23-1/2,k+1
+

Mi,00k=172 5500 k172 ¥ 040 ,ke 172 T YL,k 720V 412,k

" W50 k172 T g ket T Y gk ”1,571,k+1/2’vi,j-1/2.k]

*,Ta

6ah [(wi,j,kﬂ/z WL kH72 T Y5, k2 T Y, 54 ke 2)

" V12,6t Y 172,k T Vi1 geis2,k  Vier, 54172 ke 1)

= U ke1/2 gkt e g ke )2 * Wi1,5 k172!

* a2, T VL a1,k Vi =172,k F Vi#1,5-1/2,k41)

t W, 5,k072 F ¥ia G ,k#172 95 5 k172 T e 540 ket /2)

" iy 52,0 * Yy G2,k TV g2,k T Ve, 5172,k

= (i1 520, ke1/2 ¥ Wi Jak#1/2 T 50 kg2 W g ke 2)
" Maa,g172,k VAT g2k Y2k T Y ,J'—'I_/Z,kﬂ)]

(0-8)
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p
EE{WW)i,j,k+1/2

2

o 2
A L0 5 ey * “Laake32) T Mg T Y g eye) ]

1-0 2
+FFDWJJHR+WhLHWZ+WHJ$HR+WHLLHWﬂ

) 2
(Wi,j,k~]/2 T Wy s k12 t U141, 5,0-172 F Wi, 5 k1 72)

2
* (Wi-l,j,k+1/z T W, ke32 T Y g ke Wi 5 ka3/2)

- (W, 4 . W o W, . g )2
i-1,7,k-1/2 i=T,J,k+1/2 1,7.k=~1/2 Tadsk+1/2

+ (W, . oW, o, W, . + W, )2
i,d:k+1/2 1,Jsk+3/2 Tyt k+1/2 1,4+1,k+3/2

- (w, ., . . W, . W . )?
T.3,k=1/2 i,0.k+1/2 1,J+1,k=1/2 T3+ ,k+1/72

2
* (wi,j~1,k+1/2 T W i-1,ke372 Y Y5 ket Wi 5.k+3/2)

2
- 0y 51 ke1z2 F M,3-1ok+ 172 T W5 k172 T Y5 ket o) ]

(D-9)
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APPENDIX E

PROGRAI TFC {INPUT,QUTPUT, TAPES=1HNPUT, TAPEG=0UTPUT, TAPES, TAPEY)

C I ET T XTI L SIS LA AT AL SRS 2SR S LS SR T AT SRS ELES RIS IR SRS X XS
c * LANGUAGE:FORTRAN COMPUTER:CNRC7GH0 COMPILER:BRUN76, LBL BERKELEY+*
c * NOMENCLATURES *
C * H MESH SIZE *
C * DT TIME STEP *
C * U0 MAXTHMUN MEAN VELOCITY IH SHEAR FLOW *
C * OMEGA ROTATION *
C * C TURBULENT [SODEL COMHSTANT *
c * FDC FINITE MIFFERENCE COMNSTANT *
C * L MUMBER OF TIME STEPS *
C LA X T XTI ISR E LR L PI LSS SR EL RS 2SRRI LR LR FARSI RS YRR LRSS L LR L

LARGE PR1(16,16,16),P11(16,16,16),YAVE(1G, 16,16)

LARGE U1¢(16,16,19),v1(16,1G,19),41(16,16,19)

LARGE RX1{(16,16,16)},nY1(16,16,26),RZ1(16,16,16)

DIMENSION ul22,22,7),v(22,22,7),4(22,22,7)

DIMENSION EV(20,20,5),PR(20,20,5)

EQUIVALEMCE (EV(1,1,1),PNR(1,1,1))

DIMENSION SX(18,18,3),5Y(15,18,3),52(18,18,3)

DIMENSION QR(1G,16),a1(16,16)

DIMENSION N(3),11(6),12(8),TRR(16,3), TRI(16,3),E(16)

CoMMdN/Sc/aQr, ql , N, 01,M2, TRA, TR, E, 151 GN, PAL

REAL LANBDA

PAl=3,141592653589793

PAL 2=PAL *PAI

H=1l./16.

i12=tt*xH

RPT=0.025

C=0.24%

Uo=0.0

INEGA=0,0

FDC=1./3.

Ci=FDC/I

C2=(1.~FDC)/4./H

Co=CxCx*l

Ch=Cl/4,

C5=C2/16.

€6=C2/4,

C7=1.7(112+4,)

Ca=1l./(2.%4)

Ci=1./H

Cll=¢1/2.

C12=02/%,

CALL TRRTR]
Lmmwuw- s TIAL DATA:
Crmmm= SUBROUTINE ITHTCIN GENERATES THE (HITIAL VELOCITY FILLD
(emr— ACCORNING TO APPENDIX B

CALL INICON
N0 11 K=1,16
ng 11 J=1,16
nNo 11 1=1,18
RRLC,V,K)=0,0
RYL(!,J,ik)=0.0
RZLI(t,d,K)=0,0
11 CONTIHUE
C-===~FIPST STEP 13 ADVAHCER 3Y EULER METIHOD (ALPIA=1,0),

CRIGINAL PAGE I
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----- ADAMS-BASHFORTH METHOD |5 USEl. THEREAFTER (ALPHA=1,5)
ALPHA=1.0
L=0
USQR=0.0
DUDX2=0.0
DUDX3=0.0
ENRG=0.0
DIV=0.0

6 M=l
DO 2 K=l,3
KK=K+16
DO 2 J=1,16
Do 2 1=1,16
U1Cl, d, KRI=ULCT, J, KD
VICH, d, KKY=VI(1,Jd,K)

WLCL, d, \RY=H1CT, J,K)

2 CONT I NUE
WRITE(G,102) L

102 FORMAT(1H1,10%,22HNUMBER OF TIME STEP L=,13)
WRITE(6,107)

107 FORMATC1H , 180, U COMPOMENT OF VEL FIELD *)
SMALLINCQRC1,1},U1¢1,1, 9), 256)
no 44 1=1,16,8
URITE(G,106) I
URITE{G,105) (QR(],J),Jd=1,15)

L CONTINUE
YRITE(G,108)

108 FORMAT(IH ,10%,% V COMPOMENT OF VEL FIELD #)
SMALLINC¢OR(1,1),v1{1,1, 9), 256)
Do 45 [=1,16,8
WRITE(G,106) |
WRITE(G,105) C(QRCI,d),J=1,16)

k5  COMTINUE
WRITE(G,109)

109 FORMAT(1H ,10X,* W COMPONENT OF VEL FIELD *)
SMALLINCQRCL,1),W1(1,1, 9), 256)
DO 46 I=1,1G,8
YRITECG, 206) |
WRITE(G,105) (QRCI,J),d=1,1G)

46  CONTiNUE

1 IECM,EQ.1) GO TO 8
K=?

GO TO 16

8 N0 20 K5=1,7
(=K S
K2=K5+13
IF(KR2,GT.16) K2=K2~16

16 SHALLIH{aR(1,1),01C1,1,K2), 256)
no 29 J=1,16
DO 29 1=1,16
Ju=y+3
li=1+3
UCLE, Jd, RY=QRCT, J)

29 COWTIHUE
SMALLITICQRC1, 1), VIC¢1,1,42), 258)

o ORIGINAL PAGE 15
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DO 89 1=1,16
DO 89 J=1,16
Jd=J+3
Fl=1+3
VIIT,JdJ,K)=0R(1,d)

89 CONTINUE
SMALLIN(QR(I,l),Hl(l,I,KZ), 2563
Do 99 J=1,16
00 99 [=1,16
Jd=Jd+3
| 1=1+3
WO, JJ,RY=QR(I,4d)

09 CONTINUE

----- EXTEND VELOCITY FIELD PERIODICALLY 1IN £,Y DIRECTIONS.
D& 24 J=4,19
Ull, d,Ry=u(17,4,K)
VI1,J,K)=V(17,4d,K)
W1, Jd,K)=(17,Jd,K)
Uiz, d,K)ysu(is, J,K)
v(2,J,K)=v(18, J,K)
W(2,J,K)=4{18, J,K)
uis,d,£y=u(19,d,K)
V{3,d,K)=v(19, J,K)
(3, J,8)=1(19,4,K)
U{20,J,R)=U(k,d,K)
v(20,d,)=v{t,Jd,R)
W20, Jd,8)=\0%,d, %)
Ue21,4J,8)=U(5,4,K)
V{21,d,K)=V{5,J,K)
W21, J,0)=1(5, 4, 1K)
uzz, 1, Ky=U0(86,J,K)
V{22, d,K)=v(6,J,K)
(22, d,18)=(6,4,K)

24 CONTINUE
Do 22 1=1,22
U1, 1,R¥=0¢1,17,K)
VI, 1,8%)=v(1,17,K)
A01, 1,08 =000 ,17,K)
u¢r,2,18)=u¢i,18,K)
VeI, 2,K)y=v(1,18,K)
WO, 2,R)=H(1,18,K)
U1, 3,1)=u¢1,19,K)
v(il,3,R%)=v(1,19,K)
WL, 3, K)=0(1,19,K)
udl,20,RK)=0(!,u,K)
Vi, 20, KY=v(i,u,K)
VO, 20,000 =001, 8, 12)
M1, 21, RI=0CE,5,1K)
VO, 21, 63eV(t,5,K)
O, 21, 8)=\0(1,5,K)
Ulr,22,K)=0(1,6,K)
V(I,22,K)=v¥(1,6,K)
WO, 22, %=1 ,6,%)

22 CONTINUE

20 COHNTIHUE



58

* % ¥ ¥ F X ¥ OF % N ¥ ¥ ¥

-

* ¥ ¥ H A A X & N M

* % ¥ ¥ %

COMPUTE THE EDDY VISCOSITY COEFFIC|ENT

no 25 K=2,86

Do 25 J=2,21

po 25 1=2,21

KK=K~1

dd=d=1

11=1~-1

EVCIT, JJ,KR)=C3*SQRT(2. =« (U(T,J,K)~UCI=-1,d,K))*%2

+2 .8V, J,K)=V{1,d=1,K)) %242 = (W{1,d,K)=H(],J,K=1))*%2
+,25%x((UCT,d+1, K)~UCI,J, BI+V{T+1,d,K)=V(I,J,K))**2

+(UC] =1, J+1,K)~UCI =1, J, K)+¥ (1, J,K)=V(I=1,J,K) ) *%2
+{UCI-21,d,K)=-001~2,J=1,KI+Vv(!,Jd=-1,K)=-v(I-1,J=-1,K))&*2
H{(UCL,Jd,K)=-u(t,d=1,K)+V{[+1,J=-1,K)=-V(I,J=-1,K))=%2

(VO J Ke1)=VU,J,K)+U0T , 1, KY=W(T,Jd,K) )*=x2
FOV0L,JLR)Y=VO, d, =10, 1, K=1)=W{1,d,K=1)) %2

(Y01, d=-1,K)=V(1,d=1,K=1)+UC) ,J,%=1)=W({1,d=1,K=1))»x2

(V0L d=1,8+1)=V{1, J=1,00 #0001, J,RKI=W(t,d=1,K))**2

F(WCI+L, 1 =W {1, J, KY+UCT, J 1+ 1)~UCT, J,K) ) *%2

(WO +1, J, R=1)-W{1,d, K=1)+U(1 , J,R)-U{l,Jd,K~1)) %*2

(W01, d,K-1)}~U{1=1,Jd,K~1)+U(]~1,d,K)=U(]~1,,{-1))2ex2
F(WCT,d,K)=wW(T~1,d,KY+UC1 =0, J,K+1)~U(1-1,d.K)Y)*%x2))}

CONTINUE

COMPUTE R.!.5., OF MOMENTUM EQUATION (PRESSURE GRADIENT

NOT [NCLUDED)

1F{I1.EQ.1) GO TO 26

K=h
w0 TO 27
nog 35 K=2,4
DO 35 J=2,19
Do 35 1=2,19

KK=K-1
Jd=J-1

i=i=1

Ji=1

J2=1

IF(JJ.NE.1) GO TO 58

Jl=-1

Ji==]1
S8X=

=Ch%({U(T+2,J+1, R+1)+U(T1+1, J+1,K+1) ) #*2

-(U(T+1,J+1,K+1)+U(}, J+], |+1))**z) Co*

((u(r+2, d+1, +1)+U(!+2,d+2 K+1)+U(L+1, d+2, k+1)*U(t+1,d+1 K1) )#e2
-(U(l+1,d*l K+e1Y+UCI+1, d+2, K+1)+0UC1, J+2, K+12+UCT, J+1, K+1) ) %22
U +2,Jd, K+1)+UC1+2, Jd+1, K4+1)+UC T+, J+1, Kel)#0(1+1, J, Rel ) y a2
“AUCT+1, d,R+1)+U 01+, JH+L, K+ 1) +U(T, I+ 1, Ke1)4+U(1, J,K+1) ) #%2
#(UCT+2,d+1,K+2)Y 400142, J+ 1, K+1Y+UC 41, J+1, K+ 1) +U(t+1, Jel, K32} ) %2
~(UCT+2,J+1, 5+2)+UC1+1,J+1, K+l +UC1, J+1, K+1)+U (], 1, K+2) I %x2
+(UCT+2,J+1, K+ 1) +U(1+2,d+1, K0 +00 1 +1, J+1, K)+U{ + 1, J+1, K+1) ) %x2
=S(UCT+1, d+1, K+1)+UCE+1, J3 1, K00, J31, %)+UCT, J+1, K+1) y#%2)
§SX=85K-Clx*

(UL +1,041, 8+ L) +U{T+1, J+2, K203 (V{1+2,J+1, K+1 4V (1 +1, J+1,K+1))
~(UCT+1, 0, K+T3+U 01+, J+1, K+ ) (V (1 +2,d,K+2)+V(1+1,4d, k+1))) CG
*((U(1+2,d+1,R+1)+U(I+2,d+2,K+1)+U(l+1,d+2,u+1)+ucI+1,J+1,K+1})*
V{1 #2,d%],K+1)
=(UCT+2, 5, KeD)+U(T+2, J+ 1, K1) +U T+, J+ 1, K+2)+U (143, J, K+1) ) %

G IS <
ORIGINAL PA
98 OFPOOR R QUALITY

e R



ViI+2,d,6+1)

+(UCT+1,d+], Ke1)+U(T+1, J+2, K+1)+UCT, J#2,K+1)+U( T, J+1,K+1) )
VOl +1,J+1,K+1)

=(UCT+1, Jd, R+l )00+, 41, K1) +U(], J+1,K+132UL), J, K+1) ) e
Vil+1,d,K+1))-C5%

(U +1, 0+2, R+1I+UCT+1, J+2, K+1)+UCT+1, J+1, K+2)+U(1+1, J+2,K+2) )=
(V{1 +2, J+1, K+l d+V (L1, J+1, Ke1)+V1+2, 041, K+2)+V{1+1, d+1,K+2))
S(UCT+L, J, KT +UCT 3, B+, KeD)+UCT+1, J, K+2)+UCH+T, J+1, K+2) )
(VOT+2, KLY+ (T2, QK )+ V(I +2, J,K42)+V(1+1,d,K+2))
+(U(l+1,d+1,KJ+U(I+1,d+2,K)+U(l+1,d+1,K+1)+U(I+l,d+2,K+1))*

(V1 #2, 042, K4V (1 +1,J+1, K)+V(1+2, J+1, K+ 1) +V ([ +1, d+1,K+1))
={UCT+1, J,K)+UCE+1, J+1, K)+UCT+1, J, B+1)+U(C 1 +1, g1, K+1) )%
(VOT+2,d, 10+ VT+1,J,00+V {1 +2, 4,8+ 1) +V(1+1, 4, K+1)))

SS5X=8S5X-Ch
AO(UCT+L, J+1, R+ 13+UC1+1, J+ 1, K+2) )5 (U (142, J+1, K+ 1)+ 41, J+1,K+1))
-(U(I+1,J+1,K)+U(i+1,d+1,K*1))*(H(]+2,J+1,K)+H([+1,d+1,K)))*C6
*(CUCT+2,J+1, Ke2) #0011 +2, J+1, R+1)+0 01 +1, J+1, K+1}+U(1+1, J+T, K+2) )
Uir+2,J+1,K+1)
=(UCT+2, J+1, R+10+U 0T +2, J+1, KI+UCT+1, J+1, KI+ULT+1, J+1,K+1) ) *
Wi1+2,d+1,K)

F(UCT+L, J+L, B+ 2)+0 0T +1, J 1, Ke 134001, J+1, Ke1)+UCL, J+1,K+2) )=
HEE+l,U+1,1+1)

“{UCT+1, J#1, K+21)Y+UQ 11, Jo, KI=UQT, J+1, 8)+UCT, J+1,K+1) )+
WI+1,Jd+1,K))-C5+

(QUCT+1, J+1, K+ 1) +UCT+1, U1, K+2)+ U0 +1, J+2, 8+ 13 +UC 1+ 1, g+ 2, K+2) ) *
(U012, D+, e 10T +0, S, Ke L)+l (1 +2, J+2, K+ 1) H {1 +1, J+2,K+1))
=(UCT+E, J+1, K3+UCT 3, J+ 1, B+ 1) +U (1 +T, J+2, 1) +U( 1+, J+2,K+1) )+
GICE+2, 041, K)HICT+D, I 1, ) +W (12,052 480+ 1+1,0+2,%))

UG+, J, R+ D) #0142, 0, B+ 2)+UC1+1, J+1, Ke1)+UCTI+1, J+1,K42) )
(H(!+2,J,K+1)+H(l+1,d,ﬁ+1)+u(I+2,J+1,K+l)+”(]+1,d+1,K+l))
“(UCI+T1, J,K)+UC1+1,d, K+ 1) +UCT1+1, J+1, 1K) 20 ( L +1, g+1,K+1) ) *
CICT+2, J )00 +1, J, R0 +2, U+, )+ (T +1, J+1,K) )
SX{11,Jd,KK)y=58)%

FOB e {(EVOI+T, J,K)%(UCI+2, J+1, Ka+1)-U(1+1, J+1, %+1))

~EV(I, 0, KI*(UCE+1, J+1, KeL)~Ull,d+1,K+2)))

+ (EV(1,d,K)+EV(i+1,d,K)+EV(I+1,J+1,K)+EV(I,J+1,K))*

(UCT+1, 042, 8+ 1)~UC1 +1, I+ 1, Ke)4V (142, J+1, E+1)-V( 1 +1, J+1,K+1))
SCEV(T , JLRIHEVOE+1, J, RIFEV(I+1, =L, R)+EV(L, J=1,K) ) *
CU(I+1,J+1,K+1}-U(1+1,d,K+1)+V(l+2,d,K+l)-V(i+l,d,K+1))
HCEVOL, J,RIPEVII+1, J, K)+EV(T, 0, K+1)+EV(I+1, J, K+1)) =

(UCT+1, Jr1, Ke2)=U{T+1, J+ 1, KoL) #W (1 #2,J+1, K+1)-H(1+1, J+1, K+1))
—(EV(I,J,K)+EV(!+1,J,K)+EV(1,J,K-1)+EV(I+1,J,K~I))*

(UCT+1, J+1, 05 0)~UCT# 1, U+, KY4U(T+2,J+1, R)=H(1+1,d+1,K)))*C7

SACLL, I, KRY=SX(11,dd,KR)

* =2, U3  ((FLOAT(JJ=1)i0=C.5400) )% ((UCT+2,d+1, %+1)~UC1, J+1, K+1) ) *C11
+{UCT+2, J+1, K+2)+2 #0011 +2, d+1,K+1)-2,#UC], J+1, K+1)-U(t, J+1,18+2)
+HIOI+2,d+1,K)-U(1,d+1,K)I*xC12)

“{(FLOAT(JJd=1)*H+0, S%]1=( . 5+]]) ) *
(U(I+2,J+1,K+l)+U(l+2,d+2,K+1)~U(l,J+2,K+1)-U(!,d+l,K+1))*ClZ
+(FLOAT{(JJ=1)}*H~0.5%H={ . 5¢|])}*
(U(]+2,J,K+1)+U(I+2,d+1,K+1)-U(I,J+1,K+1)-U(I,J,K+1))*CIZJ

SACHL I, BRI =SK01 ], Jd, ik)

* -UU*(((FLOAT(JJ«lJ*H+.5*H—(.5+H))*(V(!+2,J+I,K+1)+V(I+l,d+1,K+1))

* "(FLUAT(JJ-I)*H-.S*H~(.5+H))*(V(I+2,d,K+1)+V(I+1,J,K+1)J)*Cll

* +((FLOAT(JJ=1) b+, Bl (, 5+1{) ol Y ([ +2,041,K+1)

ORHGHYAI;IUM}m_I
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~{FLOAT(JJ=1 )%= Sxt={ 5+11) )b «V{1+2,d,K+1)
+{FLOAT(SJ=1)%H+ Soll={  5+11) ) ek . *V{1+1,d+1,K+1)
=(FLOAT(JJ=1) %=, 5%H=( B+H} )l *V¥(]+1,d,K+1)
+{FLOAT(JJ~1)*H+ ba{=( . 5+i{) )}

(Vi142, J¢1, K+e1)4V(E+1, d%)l , KeXd+V(1+2,J+1, K+2)+V (141,041, K+2)}
«~{FLOAT(JU=1)xi=,5%H={,5+{1) }*

(VC1+2, J, Kel)+v (1 +1,Jd, Bel)eV{1+2,J,K+23+V(1+1,J,K+2))
+{FLOAT(JJ=1) *H+ 5wli={ ,5+H} I *

CVO1+2,d#1, K)+V( 1 +1,d+3, K+ V(I +2, J+ 1, Ke1)+V(+1,d+1,K+1))
=(FLOAT(JJ=1)*l}= 5api= (. B+HI I *

(VOI+2,d, K)+V1+1, 0,000 +V (1 +2,d,K+1)+V(1+1,4,K+1)) }%C12)
SX(U1,Jdd, RK)=8X(11,dJ,KK)

~U0*{(FLOAT{ JJ=1)#*H=(,5+) )%

(HCT+2,J+, Re1)+W (1 +1, 0+, K+ 1)~ (1+2,J+1, K)~W(1+1,J+1,K))*
(Cli+C2)

+((FLOAT(JU=1)#H+, 5%l=(.5+H))*

({12,041, B+ M (i +1, 0+, K+ 1D+ (1+2,d+2 K+1)+U(T1+1, J+2,K+1)
“HTH2, d+1, K01 +1, J+1, 000 =001 +2,d+2, 10 =-U(1+1,J+2,K))
+(FLOAT(JJ=1)*H=_5%~{ . 5+H} }*

(T2, J,Rel) U {1 +1, J, RETI+H{T+2, J+1, K+ L)+ (142, J+1, R+1)
ST #2, J, RI=WO+1, J, KXW +2, J+ L, K)=i(1+1,d+1,K)))*C12)
+2,%*01EGA*, 25* :

V{142, d, 5+1)+V{E+2, J+1, Ke R +V 0T+l J+ 1, K+1)+Y {1+, d,K+1))
S5Y==Ch*

AV +2, Jel, B+1)+V (141, J+1 K1) ) U1+, J+1, K1) +U{1+1, J+2 , Ke1))
SUVEE+1, J+L, K+ 1)V, d+1, K1) 0 (U0 J+ 1, K+1)+U(T1,J+2,K+13))-C6
®(IVCL42, 041, B+ 1)+V(I+2,J+2 , R+L) 4V (11, J+2, Be1) V(41 J+1, Kel) )
UCl+1,d+2,K+1) )

(VO +1, JR1, Kel) eV (141, J52,m+ 1)V, J+2, K+ 134V ( ], J+], K+1) ) *
Ull,J+2,K+1)

FVOI 42, KeL)#W{ 142, 0+, K+ 1)V {1 +1, J+1, K+1)+V{I+1,J,K+1) )+
UC1+1,d+1,K+1}

ST+, J, BTV T+, J+ L, B +V(T, J+ 1, K+1) 4V (L, J, K410 %
U(l,J+1,K+1))=-C5%

(CViT+2,d380, 8+ 1)+ V(I +1, Jd+1, KeL)+V(1+2, %1, Ke2)eV(1+1, J+1,K+2) )=
(UCT+1, 1, K+1)Y+U01+1, J+2, K+ 104001+, J+1, K+2)+U(1+1,d+2,K+2))
(V1 de L, K+1)+v {0, 0+, %+1)+V (141, U+ 1, K+2) V(1 , J3 1, K+2) )
(UG, Jel, K6 1)U, 092, K1) +U01, 331, K2 2) +UCT, J+2,K+2))

YOI +2, 041, 000+ 41, J+1, BY+Y 01 +2, 0+, K+ L) +Vi i+, J+1, Kt1l))*
(UCt+1,d+1, )40+, Jd+2,K)+001+1, J+1, K+ L) +UC1+1, J+2,K+1))
(V0141 d+, K)+V (1, J+1, R)+V(H+1,d+1, K+l +V( 1, J+1, K+1) )%
(UCT, d+ 1, KY+UC1, dv2, KI+UCT , J+1, K+1)+U( ], J+2,K+1)))
S5Y=55Y~Chx

(VT +1, J%2, R+1)+V{ 1 #1, 01, K+ 1) ) wu2
(VT +1, J+1, K+ D) +V {1 +1,d, K+1)I%*2)~Ch*

GOV 2, JHT, KAL)+ 0T+2,d+2, 0+ 1Y +V (141, J+ 2, K+1) V{1 +1, J+1,%+1) Y %2
(VT2 J, R DV 12, d+1, K+1)+V (141, 0%, %+ 13+V{1+%,J,K+1) ) *%2
VYL, Jel, K1)V (T +1, J+2,0+1)+V( 1, J+2, 63104V (], J+1 , K+1) Jun2
V(I Ll, J, Bel )V #1, Jel, Keld eV, J5 L, Kal)+V0 ], J, K+1) JoxZ
FOVCOL+1, e, Re2) V(T + 1, J+2, Bl ) eV (1 +1,J+2, Ne2) 4V (1 +1,J+1, K+2) a2
(VI +0, J,Reld+ V(1 +1, J+l, KD+ V1 +1, J+1, K+2)+V ({41, J,5+2) ) x%2
FOV(I L, deL, KY+V(1+1, J2, Ky (L+1,J+2, Ke1)+V{1+1, J+3, Kel) ) w2
“(VCL L, J, K+ {T+l, J+ 1, K)+V{T+1, 051, K+1)+V {1 +1, J, Ke1) ) %#2)
55Y=8S8Y~Ch»
o (V0T L, Q4L Rel)+V 0T+, I+, 05+2) )% (M0 T+ 1, J+ 1, X+1)+W(1+1, 442, K+1))

* 4 % % * & A * ¥ ¥ %

¥ ¥ % % % * % ¥ ¥ ¥ ¥

* N X & % ¥ % % X ¥ 3 ¥ % ¥ ¥ F ¥ %

E N O A
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~(V{T+1,J+ 1, R)+V T +1, 0+1, K+12)w(W(T+1, 041, KI#0(1+1,d+2,K)))=C5
w((V(T+1, J+ 1, KAL)V (I41, 041, K+2)+V( 142, J+1, K+1)4V{I1+2,J+1,K+2) )%
(HCY+1,JF 1, K+1d 401 +1, J+2, K32+l 142, d4) , K+ 1) +0(1+2,d+2,K+1))
=(VC1+1,d+1, BI+V(1+1,J+1, K+13+V{1+2,d+1,K)+V{1+2,J%],{+1)} )=
CUCT+1, d%1, KI+W(T+1, d+2, 8)+00{ 142, J+1 RY+{1+2,d%2,K))

+(V{1,J*+1, K+1)+V(],d+1, K+2)+V (141, J+1, K1) +V (141, d+1,K+2) )%
(WO, 1, Re L)+, J+2, K1) +4 0T +1, Je 1, K 1) +U0E+1, J+2, R+1))

SCVOT, L, RV, de K13+ Y0 +3, Je 1,000+ 01 +1, J+1, K1) )%

(WCE,Jel R)+ 0T, J+2, 1)1+, Je1 0401 +1,J+2,K)))-Co*

(VO +L, J+1, K1)+ (141, 52, K+ 1) +V( T+, J#2,K+2)+V{1+1, J+1,K+2) )
WET+1, J+2,K+1)

(VO R, R+ + 1, J42, ) +V (1 +1,J+ 2, K+1)+V(1+]1,d+1, K+1) )=
”( I +1; \j"'z' KJ

+(VOI+1, J E+L) 4V +1, dv L, Ke1)+V (1 +1, J+1, K+2)+V (141, d,K+2) )=
Wll+1,d+1,K+1)

(VL1 L KIeVOT 2, JF T, KI+V(T+1, J+1, K+1)+V {1 +1,J,K+1) )=
W(l+1,Jd+1,K))

SY(11{,dJd,KK}=SSY

#(CEV(L , J, RI+EV(T, J+1, K)+EV(), J+ 1, K+ 1)+EV(E, J,K+1) )%

(VO L, Jvl, Ke2)=V{I+1,J+1, K+1)+W {1+, J+2 K+ 1)=(1+1,J+1,K+1))
=(EV{L,d RY+EVOL ,J, KeT)+EV(Y , J+1, K=1)Y+EV(I, d+ 1, K) ) *

(VOT+1, d41, K+1)=V01+1, d%1, #) 4001 +1, J+2,K) =4 (1 +1, +1,%) )

+3 o (EV(L,Jel, RI®(V(1+1,d+2,8+1)-V(I1+1,d+1,%+1))

~EVC],J, 0% (V(1+1,Jd+1,0+1)~Y (1 +1,J,K+1}))

+(EVCL,J, RI+EVCI+1,J, RY+EV(I+1, J+1, i) +EV(], J+1,K) )%

(VOE+2, 941, 8{+1) =V +1, J+ 1, K1)+ (T +1, J+2, K+1)=-U(1+1, J+1,K+1))
~CEV(E, J,Y+EVC , d+, K)+EV(I =1, J+1, KI+EV(I-1,d,K))*

(VOIT+1, J+31, 8+ )=V (1, J+1, K+ 1) +UCT, J+2,R+1)~U(T ,J+ 1, K+1)))*CT7
SY(I],dd, KI=SY (11 ,4dd,%XK)

SUO% ((FLOAT(JJ=1)*l=0l% 5% (1, +J2%H) ) *

(VT #2, 041, K+1)~-V(I1,d+1,K+1))*C11

F(2,8V0I+2, d+ L, K+1) V{142, d+1, Ke2)=2 >V (], J+1,K+1)=Y(!,J+1,K+2)
FVOI+2,d+1,K)=-V(],J+1,K})*C12)
+(FLOAT(JU=1)*H+  Bafl=JLlx 54 ( L, +J2#H) ) *

(V{142,071 Re2)+V (122, 42, K+1)=YLT, J+2, K+ 1)=V(1 , H+1,K+1))%C12
+(FLOAT(JI=1)#li~, 5%i=dl* 52(1 ., +J2%1|) )=

(VCI+2, 0, Re2)+V(1+2, J+1, Kel)d=V(I,J+1, K+1)~V(Il,J,K+1))}*C12)
~2.*OMEGA*D,25%

(UCT+1, J+1, K+1)+UCT+1,d+2, Re1)+U01, J+2,K+1)+0(1, J+1,K+1))
SSZ=-Ch*

(T2, 41 R+ HICT L, Jd+ 1, 85+ 1) ) *(UCT+1, 0+, K+2)+U(1+1,J+1,K+1))
“(UCT+1, JRL, KAL)+, J+1, R+ 1))« (UCT, J+1, K2 )+U(1, J+1,K+1)))~C5
(U0 #2, 041, Ke D)+ (141, e, 3+ 1)U (1 +2, 042, 84 1) 4001 +1, 0+2,%+1) )=
(UCT+1, 4+, K+2)+UCT1+1, J+1, K+ L) +U( T+, J+2, K+2)+UC 1+, 042 ,K+1))
WO+, 1, K1) U0, S 1, Re1) 4001+, d+2, K+1) 4001, 0+ 2, K+1) )+
(UCT,J+1, Ee2)+0(1 , J+2, K1)+, J%2,K42)+0(1 ,J*+2,K+1))

O +2, QR0 +1, J, R4 Y ¥ (142, d+ 1, K1) 0001 +1,d+1, K+1) ) *
(UCT 2,0, 0420 +U( 1 +1,d, B+ U (141, J+T , K42)+U(1+1,J+1,K+1))
~(HCT+1, B+ 1) w0, J KLY 4T, I+, K1)+, g+, Kel) )
(UG, J,Ke2)+U 01, 3, K1) +U() , 41, K+ 2)+U (T, J+1,K+1)))-06%

CONCI+2, J+1, B+2)+U (1 #2, d+ 1, K1)+ 0T+ 1, J+ 1, e 1)+ 0T+ 1, J+1,K+2) )
UCl+1,d+1,K+2)

OO+, J+1, 0+ 2) 400 +1, J+ 1 K+ 1) +UCT, J+ 1, B+ 1) 80T, d+, H42) ) *
UCH,J+1,K+2)
HUCT+2, 04 L, Ke 14042, J+ 1,00+ +1, g+ 1, R+ (T2, J+ 1, Kel) )

F % 4 K ¥ X N HF K % B X X BN XN

* % % F ¥ % ¥ & F ¥

* 4 4 * ¥ ¥ N X ¥ ¥

® ¥ ok oE N % N ¥ X O F ¥ X %
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* U(+1,d+1,K+1)

* =(U0T+1, J+1, Ke )0 +1, d%1, LYWL, I+, K HI(] , J+1 , Kel) ) w
* U1, d+1,K+1))

SSZ=SSZ-ChLx*

O+, Jr L, K1) +U 0+, 042, K+ 1)) = (V{1 +1, J+1, K+1)+V(1+1, J+1,K+2))
=1 +1,J,K+1)+U01+1, J+ L, K+1) )% (V(1+1,d,K+1)+V(1+1,d,K+2}))-C5
w00+, I+, Bel) 401 +1,d42, R+1)+9 (1 +2, 041, Ke1)V( 142,042 ,K+41) )
(V{1 +#L, JH3, RAT0eV{Te1, J2 1, K234V 42, U4 K3 L)+V(1+2,J41,K+2})
ML +L, Jd, BEL) (T +1, S+, R+1 30 (1 +2, J, Ke1)+I( 142,41, K+l) )=
(VOI+1, J, K234V (T +1, 0, K20V 142, Jd, K+ 1) +V(]1+2,d,K+2))

H0W01, J+1, Ke 1)+, I+ 2, K+1) W (1 +1, I+ 1, K1) HI(1+1, 042, K+1))
(ver, d+1,k+1)+V(l,d+1 Br2)+V(1+1,J+1, K+1)+V(I+1 J+1,K+2))
-(h(l,d Kel)+W0L, a0+, K+1)R(1+1,4d, K+1)+N(l+1 JPI,K*I))*
(vil,J,K+2)+V (3, J, h+2)+V(1+1 d,“+1)+V(l+1 J,K+2)))~Ch*

(cwc|+1,d+1,K+1)+w(|+1,d+z,u+1>+u(1+1,a+2,n+z:+u(:+1,d+1,K+2))*
V{i+1,d+1,K+2)

SO+, J,ReT) T +1, O+, Kel) #1141, 9+ 1, K424V {1+ 1, J, K42} &
V{l+1,d,K+2)

01+, J+1, K)+W(1+1, 0+ 2, KI+U(T+1, J+2 ,K+L)+W(1+1, J+1,K+1) )
V(I+1,d+1,K+1)

S(UCE L, J, KW +1,0+1, KY+W(1+1, J+ 1, K+l )+W (141, J,K+1) )+
V{l+1,d,K+1))
SS8Z=5SZ~-ChL«*

(Ol +1, J+l, K+eD) (T +1, 041, Ke2) )% 2~
(HOT+1,d+L, )+ (1 +1, J+1, K+1) ) *%2)=Ch%

(O, Jel, Rel)sU(E+1, J+1, K23+ (142, J+1, Ke1)+U (1 +2, 3+, K42) ) %2
QU +1, 9+, 8)HC1 2, S+, KDY+ 0 2, 0+ 1, 1)+ {1+2,J+1 , K+1) Y *w2
FWCT, J%L, Kel) #3001, J+1, K+2) #U (141, I+, K+L) (141, J+1, K+2) ) *%2
(W0, d+ L 10, dF L, KDY H3 (1 42, I, K)+U(I+1 J+l, K+1))**2
+(U(l+1 d+1 K+l3+Ui(1+1, d+1,“+2)+U(l+1 J+2, k+l)+”(l+1 JE2,K+2) ) %2
-(J(l+1,d+1 BRI+ 1, d+1, K+1)+\ (1 +1,d+2, % )+U(l+1 J+2, K+1))**2
+(WU{1+1,4d, k+1)+l(1+1,d,u+“)+“(l+l J+l, L+1)+H(!+1,d+1 K¥2))%=2
-(H(l+1,J,K +H(l+l,J,K+1)+H(I+1,J+1,K)+w(l+1,d*1,K+1))**2)
SZ(11,Jdd,KK)=55Z

+(CEVOY, J,ReL)+EV(1+], J, R+2)+EV(I+1, J, KI+EV(L,J,K))*

(U142, J41, K+ 1) -U(1+1, d+1, h+1)+u(l+l J+1 K+2)=- U(1+1 J*l,K+1))
-(EV(I~1 J, *1)+LV(1,J,\+1)P[Ifl,d,a)+EV(l 1,J,K) )

(uCi+1, d+1 Kel)=Cl, J+1, Rel)+U(E,J+1,K+2)~ U(l,d*l K+1))
+(EV(I,J,K+1)+EV(I,J,K)*EV(I,J+1,K)+EV(I,J+1,K+1))*

QUCT+L, 342, K1)~y +3, J+ L, B+ 1)V (141, J+ 1, Re2)~V(1+1, J+1, K+1))
“(EV(l,d=1,K+1Y+EV(L,J-1,K)+EVY, J, KY+EV(T, J, 1N+1) )

(oCr+1, oL, Ke1) =0l 1, d, K+1)+V (1 +1, d, K+2)=V(1+1,d,K+1))

3 % CEVOL, J, KeLd) 0 +2, 0+ 1, K+2)=U(1+1,J+1,K+1))
-EV(I,J,K)*(U(I+1 JEL, K+L)-4(1+1,d+1,K))))=C7
SZCVE,Jd,KKY=SZ(1, Jd, kK)

-uﬂ*((FLOAT(JJ 1) %1~ ( S+MI) {1 +2, J+1,K+1}~u(I,d+1,K+1))*Cll
FOUCI+2, d+1, K202, %0 1 +2, 0+1, %K+L)=2 &4 ( 1, J+ 1, K+1)=4(1 ,J+1,K+2)
+{1+2, J+1 K)~WCI,J+1 F))*CIZJ

+(FLU&T(JJ~1)*H+0.S*H—£.5+H))*

(U2, 0+, K D) #0142, 0+2, Ke1) =001, J+1, K+1)=4(1 , J+2,K+1) ) *C12
#(FLOAT(JU =) *i=0,5%1=( . 5+1) )

(UL +2, 0, K+1) 4401 +2, 41, KR+ 1)-W{1, J, Kel)=0{1,J+1,K+1))*C12)

35 CONTINUE
----- ADYANCE SX,S8Y,5Z TN TIME

n=2

* % o %k ¥ ¥ N N ¥ F % ¥ ¥ ¥ X B % ¥

£ % F % ¥ F ¥ ¥ X *

% % t % % % % F * ¥

¥ & % N X ¥ ¥
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SHALLIN(QI(1,1},U1¢3,1,i1), 256)
no 60 J=1,16
DO GO f=1,16
QECE,J¥=01 (1, S)+LALPHARSX (141, 4+, K)=. 5*QR(1,J) )*DT
60 CONTIHUE
SHALLOUT(qQ1(1,1),U2¢2,1,M), 256)
DO 12 Ju=1,16
Do 12 1=1,16
a1(1,d)=8X(1+1,4J+1,2)
12 CONTINUE
SHALLOUT(QI(L, 1) ,RX1(1,1,1), 256)
SMALLINCOQI (1,13, V1(1,1,M), 256)
SMALLIN(QR(1,2),RY1(1,1,M4), 256)
DO 61 J=1,16
Do 61 t=1,16
QAICT, D)= O, I+ CALPHARSY (1 +1, J+1, 1)~ 5=0QR( 1, d) )=DT
61 CONTINUE
siAaLLOUT(QI (1, 1),Vv1(1,1,M), 256)
DO 14 J=1,16
no 14 i=1,16.
QO ,d)=8Y(1+1,4+7,.2)
14 CONTINUE
sMALLOUT(QI(1,1) ,RYL(L,1,#), 256)
SHALLINCQY(L,1),41(1,1,i%), 256)
SHMALLIN(QR(L,1),RZ1(1,1,1), 25G)
no 62 dJd=1,16
DO 62 I=1,16
UL, d)=a1 (1, Jd)+(ALPHAXSZ (141, J+1,K)-.5+0R (1, J) )*DT
652 CONTINUE
SHALLOUT(QI(1,1),W1(L,1,it), 256)
DO 15 J=1,16
DO 15 1=1,16
QILCl,0)=8Z(1+1,J+1,2)
15 CONTINUE
SMALLoUT(QI(1,1) ,RZI{1,1,M)}, 256}

_____ FORH THE R.H.S, OF POISSON EQUATIOHN
C10=1./(DT*ALPHA}
K=t
DO 30 J=k,19
DO 30 I=4,13
Jd=d-3
1=1-3

AL, Jdy=CUCl, J, 8300 =1,d, 12V { 1, J,KY=V(Il,J=1,K)+ (1, d,K)
* =1J(l,J,K=1))*C9
QROTL,JdUd=0Q1 (11 ,Jd)*C10+
* (SX(t1-2,0-2,K=-2)~8%(1~3,4-2,K~2)+8Y(1-2,4~2, r-2)-uY{!-2 - 3 K=22+
* SZ(I-Z,J Z, k 2)-57¢1-2, J 2,K=3))*%C9-
e ———— CONPUTE UIVERGENCE, TURdULENT EHMERSY

DlV=DIV+QI(II,JJ)

USaR=U(!, J, ) *=2+USHR

DUDX=(U(],dJd,R)-U(1=-1,d,K) ¥/

DUDXZ=DUDX*x2+DUDX2

LUDXS=DUDR**3+DUDX3

EFRG=ENRG+UCT , J,R) #%2+V (T, J,K)%x231(1, U K)*x2
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30

103
104

186
105

- —a

32

3%

38

CONTI HUE

IF (M.EQ. 9) GO TO §

GO TO 7

WRITE(G,103)

FORMAT(Li} ,1DX,*DIVERGENCE V «) !
WRITE (G,104) M

FORMATCIH ,10X, 2iM=,12)

no 19 t=1,16,8

WRITE (&6,108) |

FORMAT{1il ,10X,2Hi=,12)
WRITE(6,105) (qi(l1,J},d=1,16)
FORMAT(2X,8(E16.7))

CONTINUE
SMALLOUT(QR(1,1),PR2(1,1,1), 256)
SINFT U,V,H,S%,5Y,5Z ONE PLANE IN Z DIRECT!ON
Do 32 K=1,E

Do 32 g=1,22

DO 32 §=1,22

Ui, Jd,Kd)=U(1,4,K+1)

VO, J,KY=V(,d,K+1)

VL, J,8Y=4{1,J,K+1)

CORTIHUE

D0 34 K=1,2

DO 34 J=1,18

po 34 1=1,18
SX{1,d,KY=SX(1,J,K+1)
SY(!,Jd,K)=5Y(]l,Jd,K+1)
SZ(1,d,K)=SZ (1, J,K+1)

CONTINUE

IF{i§.EQ.16) GO TO 38

Hall+1

R2=K2+1

G0 TO 1

D0 55 K=1,16

D0 55 J=1,16

Do 55 1=1,16

PIX1(1,J,K)=0.0

CONTINUE

{IVERT THE POISSON EQUATION BY SUSROUT!NE PSHEQN
CALL PSHNEQN

WRITE{G,110)

FORIMAT(L1H ,10¥%,* PRESSURE FIELD =*)
SHALLINCQR(L,1),PR1C(1,1, 9), 25G6)
DO 47 |=1,1G,8

WRITE(G,10G6) |

WRITE(B,105) (QR(T,d),d=1,16)
CONTIHUE

ADXANCE PRESSURE GRADIEMT IN TIME
=

Ki=15

DO 41 K=1,3

Ka=Kh+K

IF(X3.GT.16) K3 K3-16
IF(K3.0T.16) K3=K3=-186
SHALL!H(Qﬂ(l,l),PRl(l,l,KS), 256)

oB
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po 42 J=1,16
no w2 1=1,16
Ju=d+l
[1=1+1
PRV, JJ,KY=QR{T, J)
42 CONTINUE
Crenam EXTEND PRESSURE FILELD PERIOQDICALLY It ¥,Y DIRECTIQHNS
DO 39 J=2,17
PRI, J,%)=PR(17,4,K)
PR(IS'J’K)=PR(24 \-II K)

39 COHTINUE
DO 43 1=1,18
PROL, 1, RK)=PR{I,17,K)
PR{I,18,KI=PR{I1,2,K)

43 CONTIHUE

41 CONTI NUE
K=2
Do 54 J=1,16
Do 54 1=1,16
R0, d)==(PR{1+2,d+1,K)=-PR{I+1,d+1,KI)I*CT

54  CONTIMUE . )
SHALLIM(OIC(L,1),U1¢2,2,M ), 256}
N0 52 J=1,16
Do 52 1=1,16
QrCl,3=041,3)+Qr(1 ,J)*ALPHA*DT

52 CONTINUE .
SHALLOUT(NI(1,1),U3¢1,1,M% ), 256)
SHALLIN(OI(L, 1), RALC2, 1,10 ), 258)
PO 53 J=1,16
Do 53 1=1,16
N0, dY=001{1, )+0n(t, Jd)

53 CONT INUE
SHALLOUTCQIEL, 1), RX1C2,1,H ), 25B6)
no 64 J=1,16
no 64 1=1,16
R, JI==(PR(1+1, J+2,K)~PR{1+1,J+1,K) I}*C9

Gh CONTIRUE
sHALLIN(AT(L,1), V101, 1,1 ), 2586)
PO 65 1=1,16
DO G5 J=1,16
A, 9=t 01, )+anl, J)*ALPHA*DT

G5 CONTINUE
SHALLOUT(QI (L, 1), v1(1,1, ), 256)
SHALLIN(QILL,1),RY1(1,1,1 ), 258)
ny 63 J=1,16
Y 63 1=1,16
MO, )=, J;+QRY, Jd)

63 COHTINUE
SHALLOUT(QI (L, 1), RYL(L, N, M ), 256)
Do 74 J=1,16
PO 74 1=1,16
RO, ) == (PROt+1, J+1, B+1)=PRCI+1, d+1,K))*CO

74 CONTI NUE
SHALLIN(QI (L, 1),u1 (2, 1,11 ), 25G)
N0 75 1=1,1F
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Do 75 J=1,16
Ql(1,)=01 i, Ji+QR(1, J}*ALPHA*DT
CONTI HUE

SHALLOUT(QI(1,2),%W1{1,1,M ), 25B)
SMALLINCQI(1,1),RZ2(L, 1,1 ), 25B)
0C 73 J=1,186

D0 73 1=1,16

Qi {i,dy=qQi(t,J}+QrR(1,d)

CONTINUE .
SHALLOUT(QI(1,1),RZ1(1,1,M ), 256)
IF(H.EQ.16) GO TO 40

M=all+1

Ki=Rh+1

G0 TO 50

L=l+1
~COMPUTE TAYLOR MICROSCALE, SKEWNESS
LAMBDA=SQRT(USQR/DUDX2)
DUNDX2=DUDX2/ %096,

DUDX3=DUDX3/ 409G,
SKEW=DUDX3/DUDX2*%1,5

EMRG=ENRG/ 4094,

WRITE(G,111) SKEYW, ENRG, DIV, LAMBDA

FORMAT(// , 10X, 1004SREWHESSX=,E16.7,5X, 7HENERGY=,E16.7,

* 5X, 1110 VERGENCE=,E16. 7, 5X, BHLAMBDAX=,E16.7)
Div=0.0
ENRG=0.0
USQR=0, 0
pURX2=0.0
NUDX5=0.0
IF(L.GT.0) ALPHA=1.5
{F(L.GT. 0) GO TO 78
Lo TO B
CONTIHUE
STOP
END
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SUBROUTIHE PSNEQM

R LT R Ll LT L e e 2 S L AL E L I

PO1SSON SOLVER FOR 16 CUBE POINTS WITH PERIODIC B.C., BY FFT *

ALGOR|ITHH ’ *

WAVE(1,J,K) IS THE WAVE MUMBER K' NEFIMED M CHAPTER 111 *

1SIGN=1, ISIGN=-1 ARE FOR FORWMARD AND BACKWARD TRANSFORMS, *
»
*

* * % % 4

RESPECTIVELY .

T T T T Y R T T T T PP e PP s
LARGE PR1(16,16,1G6),P11(1G6,16,16) ,\IAVE(16,16,16)
DIMENSION MN(3),M1(6),M2(63,TRR(16,3),TR1{16,3),E(16)
DIMENSIOMN QR(16,16),01(16,16)
COHMON/SCM/OR, Q) , N, M1, M2, TRR, TR1 ,E, I S1GN, PAl
H=1./186.
1{2=H*H
M3=H2#*H
Ni=16
MN3=HN*NH=NN
Cl=1./HM3
C2=PAl /HN
C3=1./H2
ISIGN=]

CALL FFTX
CALL FFTY
CALL FFTZ.
ng 26 J=1,16
o 26 1=1,16
PRL(T,J,KI=PRI(I,J,KI*CL1/UAVE(],d,K)
PIICT,J,KY=PIL(L,d,KI*CI/WAVE(T,Jd,K)
26 CONTINUE
PR1C1,1,1)=0.0
PI2(1,1,1)=0.0
[S1GN=~1
CALL FFTZ
CALL FFTY
CALL FFTX
RETURN"
END
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SUBRQUTINE FFTX

(T2 P2 T I3 22222223 23R AR 2 22 3 s 2 d 2322 ]l syt sssy) ]

* FAST FOURIER TRANSFORM IMN X DIRECTINON

* |SiGH=1, 1S5iGHN=~1 ARE FON FORWARD AND BACKWARD TRAHSFORMS,
* RESPECTIVELY, THE FORWARD TRAHSFORM NETURNS 16 TIMES

» THE REQUIRED RESULT, FOR DEFIHITIOM OF FFT SEE APPENDIX C

L ]
*
*
*

Ak kk kA Ak kkkrhdkhdkhhd bk kbbb bk hrd

LARGE PR1(16,16,16),Pi1{1G,18,16),WAVE{16,15,18)
DIMENSION N(3),M1(6),42(6),TRR(16,3),TR1(16,3),E(16)
DIMENSION QR(16,16),01(16,16) _
COHMOR/SCI/QR, O, N, M1, M2, TRR, TRI ,E, 1 S1GN, PA]
DO 200 K=1,16

no 208 J=1,16

bo 100 M=1,3

JJd=N(M)

KK=Q

T =KK+dd+1

K=l 1 +JJ=1

Do 10 t=11,KK

L=l-dd

Z==PR1(L,dJ,K)

T==P11(L,d,K)
PRI(L,J,K)=PR1(1,d,KI+PRI(L,d,K)
PII(L,Jd,KI=PI1{1,d,KI+P12(L,Jd,K)
Z=PRI(1,J,K)+2Z

T=P1101,d4,K)+T

PRICY, J,K)=Z%*TRR{I,M)-T*TRI (1 ,M)*ISIGN
PIL1(1,d,K)=Z*TRI(|,M)*ISIGN+T*TRR(1,M)
IF(KK.HE.16) GO TO 5

CONTINUE

no 110 1=2,16,2

PR]-( H ’ I.,‘ K)E-PR]-( { ,\.I' K)""PRl(l -1' d' K)
PII(1,d,K)==P11(1,J,K)+P12(1-1,J,K)

Do 120 1=1,15,2
PRI(E,J,K)=2,%PR1(!,J,KI-PR1(!1+1,J,K}
PI1(1,d,KI=2,%P11{1,d,K)=-P12(1+1,J,K)
DO 20 L=1,6

[1=M1(L})

12=M2(L)

DUM1=PR1(12, J,K)
PR1(12,J,K}=PR1{11,J,K)
PRI{I1,d,K)=DUML

DUMI=PI1{12,4,K)
PI1(12,4d,1K=P11(11,4,K)
PI1CIL, J, K)=DUML

CONTINUE

CONTINUE

RETURN

END:

*lc},fﬁ_
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SUBROUTINE FFTY

LA 22 SRSl A2t RS TR LT Y LT T 2 R T R

* FAST FOUR!ER TRANSFORM IN Y DIRECTION

*

L R RS A AR AR s d st il At ettt st LI YL ESITT LY TN LLL ]

LARGE PR1(16,16,16),P12(16,16,16),WAVE(16,16,16)
MMENSION N(3),1M1(6),M2(6), TRR(16,3),TRI(16,3),E(16)

NIMENSION QR(16,16),01(16,16)

coMMOoM/SCH/QR,Ql , N, M1, M2, TRR, TR1 ,E, ISIGN, PAI

DO 200 K=1,16

npg 200 1=1,16

no 100 M=1,3

JJd=N{M)

KK=0

{1 =KK+JdJd+l

KK=l]1+JdJ=1

n- 1] J=II}KK

Lsu=dd

Z=-PR1(!,L,K)

T==PI11{I,L,K)

PRICE, L, KY=PR1{1,J,K)+PRI(I,L,1K)
PILICT, L,XY=PIIC1,0,)+PI1(i,L,K)
2=PR1(1,J,K)+Z

T=P11(],d,K)+T
PRICY,J,RI=Z*TRR(J,MY=-T*TR{ (d,1) %1 SIGN
PLIC),d,KI=Z2TRI(J, 14D %1 SICHN+T*TRR{J, M)
IF(KK.NEL16) GO TO 5

CONTINUE

PO 110 J=2,16,2
PRICI,dJ,KY==PR1(],J,KI+PRI(Y,¥=1,K)
PEICT, U, R)==-PLI(],Jd,K)+PI1{},d=1,K)
po 120 J=1,15,2
PRICI,J,R)=2.%PR1(!),J,KI-PR1CI,J+1,K)
PILICT,J,KI=2,%P12(1,J,K)=-P11{1,J+1,K)
00 20 L=1,6

[1=M1(L)

[2=H2(L)

PUMI=PRI(L,12,K)
PRICI,12,K)=PR1CL,I11,K

PRICI, T1,K)=DUML

CUML1=PI1(1,12,K)
PI1¢1,12,K)=PI1C1,11,K)
PI1CI,11,R)=DUM1

CONTINUE

CONTINUE

RETURN

END
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SUSROUTINE FFTZ

(21 2202 21 R A RS2 222 s 222l il sttt s s s sl

* FAST FOURIER TRAMSFORM IN Z DIRECTION

]

T2 T TR T ST T R R R PR LS E R L IR R I R R e 2

L5RGE PR1(16,16,16),P11(16,16,1G),4AVE(16,16,16)
DIMENSION N{3),M1{6),142{6), TRR{1G,3),TRI{16,3),E(1G)
DIMENSION QR{16,16),01(¢16,15)
COiMON/SCHM/QR, Qi ,M,11, M2, TRR, TRI ,E, 1S1GH, PAl
o 200 J=1,16

Do 200 1=1,16

Do 100 HM=1,3

JJ=H(M)

KK=0

[1=K+Jd+]

K¥=11+dd~1

Do 10 K=i1,KK

L=K~dd

Z==PRIL{I, 4, L)

T==-P11(1,d,L)
PRI{!,d,L)=PRY(1,d,KI+PR1LT, 4, L)
P131¢T,d,LY=Pt3{1,d,RI+PI1(1,J,L)
Z=PR1(!,J,K3+Z

T=PL L], d,K)+T

PRLE), d, K)=Z*«TRR{K, MY=T*TRI (K, H)*1SIGN
PILICH, J,R)=Z*TRI (K, M)« 1SIGH+T*TRR(¥, N}
IF(KK.HE,16) GO TC 5

CONTINUE

DO 110 K=2,16,2
PRICI,d,%y==PR1CI,J,KI+PRI(L,J,(=1)
PI2CI,Jd,K)==PIL1{!,), E3+P12C],d, K ~1)

no 120 K=1,15,2
PRICL,J,KY=2,%PR1CY,J,K)=PR1{},d,K+1)
PI1{1,d,K)=2.%P11Cl,Jd,K)-PI1{],d,K+1)

DO 20 L=1,6

P1=H1(L)

12=H2(L)
DUHL=PRI(I,d, 12)
PR1(1,J,12)=PRE(],d,11)
PR1C1,d, 11}=DUML
DUIL=P11CE, J, 12)
PYLICI,d,12)=P11(1,d,11)
PILCT,d, |1)=DUN1

CONT{ HUE

CONT I NUE

RETURN

END
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SUBRUUTINE TRRTR!
I 222222222 2R R XY R AT ER Rl 22222 LR LTRSS E R Y LR Y ¥
* INITIATION OF THE TRIGONGMETRIC FUNCTIONS TRR,TRI REQUIRED FOR «
* THE FFT SUBROUTIMES, AHD VWAVE (THE WAVE NUMBER K') FOR PSMEQN *
I EI PR LIRSS RS T RTE ELA LIRSS RS R RS R R Y TR R Y
LLARGE PR1(16,16,16),P11(16,16,16),AVE(16,16,16)

DIMENSTON N(3),ML{6),M2(6),TRR(16,3),TRI(16,3),E(16)

DIMENSION QR(16,16),01(16,16) .
conMoM/scH/nRr, al , N, M1, M2, TRR, TRE, E, ISIGN, PAI

DATA M1/2,3,4,6,8,12/

NATA M2/9,5,13,11,15,14/

DATA E/U.}1.'2.’3"l;.'5.'5!’7',-80’-7.I-6I’-5I'-h.'hsll-zl ;"1./
iI=1./16,

HZ=lxH

NH=186

C2=PA{ /NN

c3=1./H2

M{1)=g

H(2)=h

N(3)=2

00 24 K=1,16

D0 24 J=1,18

Do 24 1=1,16

WAVE(], J, KY=s~b  ®(STH(C25E{1) J%*2+S|HH{C2*E{J) I x*2
* +SIN{C2*E(K))*x%2)x(3

CONTIHUE

WAVE(1,1,1)=1.0

po 10 M=1,3

L=N{M)

J=1

K=d+ 24t (M) -1

na 20 I=J,K

IFCL.GT,L) GO TG 22

T™R{1,M)=1,

TRIC(L,M)=0,

GO TO 20

TRACI, M)=COS(PAL*(1~=1)/H{1)})

TRICL,H)Y==SIHN(PAL*(!=1)/N{M))

CONTINUE

[F(K.EQ.16) GO T0 10
CL=KAN(M)

J=K+1

GO TO 3¢

CONTIHNUE

RETURN

END
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SUBROUTINE INICOH

T T L R L Ll L e Y L 2 1 1
* [NITIATION OF A RANDOM FIELD WHICH SATISFY COMD!TIONS SET IN
* APPENDIX B, THE TWO RERUIRED FLELDS TO START WITH ARE *
* GENERATED IN SUBROUTIHNE RANDHM *
* SUBROUTINE SPECT3 EVALUATES THE THREE-DIMENSIGNAL ENERGY *
= SPECTRUM OF THE GENERATED FIELD *
T T L R S R R L I I T T T )
LARGE PR1(16,16,16),P11(16,16,16),WAVE(16,16,16)

LARGE U1(18,16,19),v1i(16,16,19),41(16,16,19)

LARGE v2(16,16,18),v2(16,16,18),W2(16,16,18)

DIMENSIOHN QR(16,16),Q(16,16)

NMMENSION SR(16,16,6),51(16,16,6)

DIMENSION N(3),141(6),M2(6),TRR(16,3},TRI(16,3),E(16)
COMMON/SCM/QR, 01, N,M1,M2, TRR, TRI . E, [ S1GN, PAL

H=1./16.

HN=16.

HN3 =HN*HHN*HN

CALL RANDM

ARG=2, *PAl /RN

DO 70 K=1,9

LL=K+9

SMALLIN(SR(1,1,1),U1(1,1,K), 256)
SMALLIN(SI(1,1,1),U1(1,1,LL ), 256)
SMALLIN(SR(1,1,2),V1(1,1,K), 256)
SMALLIN(S1(1,1,2),V1(1,1,LL ), 25B)
SMALLIN(SR(1,1,3),W1(1,1,K), 256)
SHMALLIN(SI(1,1,3),W1(1,1,LL ), 256)
SMALLINCSR(T,1,5),U2(1,1,K), 256)
SHALLIHCST(1,1,4),02(1,1,LL ), 256)
SMALLIN(SR(1,1,5),v2(1,1,K), 256)
SMALLIN(SI(1,1,5),v2(1,1,LL ), 256)
SMALLIN(SR(1,1,6),92(1,1,K), 256)
SMALLINCSI (1, 1,6),M2(1,1,1L 3, 256)
KK=K~8

PO 72 J=1,16

DO 72 |=1,16

Ju=J-1

[T=l-1

1F{J.GT. 8) JJ=J-17

IF(L.GT. 8) Il=1=-17

ARG1=ARG~ |

TRC1=1.-COS(ARGL)

TRS1=S111(ARGL)

ARG1=ARG*Jd

TRC2=1.~COS(ARGY)

TRS2=51IN(ARGL)

ARG1=ARG*KK

TRC3=1.-CNS{ARG1)

TRS3=S1MH(ARGL)
A=TRCI*SR(1,J,4)+TRC2*SA(!l,J,51+TRC3*SR(!,d
B=TRS1*31(1,dJ,1)+TRS2*S1(1,J,2)+TRS3*SI(t,d
C=TRCI+S1(I,J,4)+TRC2#S1(1,J,5)+TRC3*51({,d
N=TRS1*5N{1,J,1)+TRE2%SR(1,J,2)+TRS3*SR(1,J
E1=5R{1,d,1)x*x2+5R(],J,2)%*2+50(],d,3)**2
E2=SR(!,J,b)%*2+5RC1 ,J,5)%*2+SR{1,J,6)%*2
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E3=S1{1,J,1)%e*2+51(1,J,2)**2+S}{1,J,3)%x2
Eh=SICE,d, ) **x2+51(1,J,0)**2+81(]1,J,6)%%x2
ES=SR(E,J,1)*SR(I,J,0)+SR(1,J,2)*SR({1,d,5)+SR(,d,3)
E6=S1(¢1,J,1)*51(),J,4)+S1(1,d,2)%81(1,4,5)+S1(C1,4,3)
EEE=(E1+E2+E3+El)}/2.
NDD=A*B-C =)
[F(DDD.HE.0.0) GO TO 71
BROB=A*C
IF(R.EQ.0.0,AND.BBB.NE.O,0) GO TOQ 75
CCC=B+D
IF(C,EQ.0,Q0,ANC.CCC,.HE.0.0) GO TO 77
{F(C.EQ.0,0,AMD.ND,EQR,0,0,AND,B.ME.O0,0) GO T2 79
IF(A,EN,0.0,AND.B.EQ,0,0,AND.C.HE.0,0) GO TO 200
FF(A,NE.O0.0.AND.B,EQ.0.0,48HD.C.EN.O0.D.AND.D.EQ.0.0) GO TO 210
IF(A.EQ.0.0.8MP . B.EQ.0.0,AHR,.C,EN, 0,0, AND, D, HE,0,0) GO TO 220
IFCA.HE.O.O0.AND . B EN. 0.0, AN, C.EQ,0,0,AND, P, NE.C,0) GO TO 230
1FCALEQ.O0.0.AND.B.EQ. 0.0, AND.C,ENR. 0.0, AND.N.ER.D0.0) GO TO 81
71 PETA=RGEN(X1)
IF(RETA.EN.0.0) Go TO 71
771  GANA=A/B+BETA '
F1=E1+D#*%2/C*x*x2*EhL
F2=2,*BETA*ES~2, *GANA*D /C*EG
F3=BETA*»*2%E2+GAMA**2+E3~FEE
FU=F2*F2-4L,*F1xF3
IF(F4,.GT.0.0) GO TO 772
BETA=BETA/2.
GO TQ 771
772  ALPHA=(-F2-SQRT(F4))/2./F1
RELTA=-D/C*ALPHA
Go TO 73
75 GAHA=NGEM(X2)
IF(GAMALEQ.0.0) GO TO 75
BETA=3/A*GAMA
F1=El4D*#2/Cx%2*E}
F2=2 *NETA*ES-2, *CANA*DN/C*E6
FI=BETA**2%xE2+GAMA**2xE3-EEE
FU=F2#*F2=-4 ,*F1*F3
IFCF4 . LT.0.0) GN TD 75
ALPHA=(~F2-SORT(F4)}Y/2./F1
PELTA=~DN/C*ALPHA
GO T 73
77 DELTA=RGEN{X3)
[F(DELTA.EQ.0,0) G0 Tn 77
ALPHA=-C/N*DELTA
Fl=E2+A**2/B**2*E3
F2=2,«ALPHA*ES
F3=ALPUA**2*E1+DELTA**2*EL+2, *ALPHA*DELTA+*EG~EEE
FU=F2%F 2~ % 1xF3
IF(FL . LT.0,0) GO TOQ 77
BETA=(=F2~-SART(FBI}/2./F1
GANA=BETA*A/B
o TO 73
79 ALPHA=RGEN{XL)
NELTA=NGEN{X5)
'FCALPHALLN, 0.0, 0R.DELTALEN.D.0) GO TD 79
779 Fl=E2+A%%2/Bx%2*[3
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202

213

211

212
220

221

222
230

232

F2=2,*ALPHA%ES
F3=ALPHA**2*%E1+DELTA**2xEL+2, s ALPHA*DELTA*EG-ERE
Flhi=F2#«F2=4 . *F1xF3

IF{F4.GT.0.0) GO TO 780

ALPHA=ALPHA/2.

NELTA=DELTA/2.

GO TG 779

BETA=(-F2-SORT(F4)}/2./F1

GAMA=BETA*A/B

GO TO 73

BETA=RGEN(X6)

GAMA=RGEN(X?7)
|¢#(BETA.EQ.0.0.0R,GAMA.EQ1, 0.0} GO TO 200
Fl=El+D%*2/Cw*x2#El

F2=2, *(BETA*ES-CAMA*D/C*EG)
F3=BETA*»2%E2+GAMA**2*E3-EEE

Fh=F2xF2-4 «F1%F3

IF{(F4,G6T.0,0) GO TO 202

SETA=BETA/Z2.

GAMA=GAMA/ 2.

GO T0 201

ALPHA=(~-F2~50RT(F4)})/2,./F1
DELTA=-N/C*ALPHA

G0 TN 73

GAMA=RGEN(XS)

DELTA=RGEMN(X9)

BETA=0.0
IF(GAMA,EN.0.0.0R.NDELTA.EN.0,0)GN TO 210
Fh=(EEE~GANA**2«ET=NELTA**2*Ey-2 , wGAHA*DELTA*EG)/E1
IF(F4.GT.0.0) GO TO 212

GAlMA=GAMA/ 2.

NELTA=DELTA/2,

GO0 TO 211

ALPHA=-SORT(F4)

GO To 73

GAMA=RGEM(X12)

DELTA=RGEN(X13)

ALPHA=0.0
IF(CAMA,ER,.D0,0,0R.DELTA.EN.0.0) GO TO 220
Fh=(EEE~GAMA*«2*xE3~DELTA**2%ElL -2, *xGAMA*DELTA*EG) /E2
1F(FL.GT.0,0) GO TO 222

GAMA=GAMA/S 2.

DELTA=DELTA/2.

60 TO 221

BETA=-SORT(FL)

G2 To 73

3ETA=0.,0

ALPHA=0.0

GANA=RGEN(X1L)

IF(GAHALEQ.0,0) GD TO 230

F1l=Eh

F2=2, *GAMA*EG

F3=GAMA** 24 [3=-CEE

Fh=F2xF2=4 «F14F3

IFCFH.GT.0,0) Gn TO 231

GAMA=GAMA/ 2.

14




GO TO 232
231 DELTA=(-F2~SQRT(FL)}}/2./F1l

GO TO 73
81  CONT!NUE
DELTA=0.0
BETA=0.0
ALPHA=D, 0
GAMA=0, 0
73 SR(1,J,1)=ALPHA*SR(!,J, 1)+BETA*SRCI,J,4)
S1C1,4d,1)=GAMA®ST(1,d, 1)+NELTA*S1 (1, Jd,4)
SR(1,J, 2) =ALPHA*SR( 1, J, 2)+BETA*SR(1,J,5)
S101,J,2)=GAHA*S1(1,J,2)+DELTA*SI(,d,5)
SR{1,d,3)=ALPHA*SR(1,J, 3)+BETA*SR(], J, 6)
SIC1,d,3)=GAHA%SI(1,J,3)+DELTA*SIC1,d,6)
72 CONT.MJE
SHMALLOUT(SR(1,1,1),u1(1,1,K), 258)

SMALLOUT(SI(1,1,1),0U2(1,1,K), 258B)
SMALLOUT(SR(1,1,2),Vv1(1,1,K), 256)
SMALLQUT(SI(2,1,2),v2(1,1,K), 256)
SHALLOUT(SR(L,1,3),w1(1,1,K), 256)
SMALLOUT(SI(1,1,3),¥W2(1,1,K}, 258)
70 CONTINUE
[SIGN==]
D0 74 K=1,9
M=K
SHALLINC(QR(1,1),uL(1,1,K), 256)
SMALLINCQI(1,1),02(1,1,K), 25bB)
{F(M,EQ. 9) MaM~-18
MM =+8
SMALLOUT(QR(1,1),PRI(I,1,MM 3, 2586)
SHALLOUT(QI(1,1),P12(1,1,M4 ), 2586)
74 CONTINUE
Do 76 K=1D,16
LL=18~K
Po 76 J=1,16
DO 76 1=1,16
IF(!,.EQ, 9.0R.J.EQ. 9) GO TN 1
JU=18-d
F1=18-1
IF(JJLEN,17) Jdd=l
IFCIT.EQ.17) 1=l
PRICED, JJ,LLY=PRICY, LK)
PELCTY, 00, LLY=~-P11(],d,K)
GO TO 76
1 PRIC1,J,LLY=0.0
PILCL,d,LLY=0,0
76 COHTINUE
CALL FFTZ
CALL FFTY
CALL FFTX
Do 78 K=1,16
no 78 J=1,1%
po 78 1=1,16
Uil oy K)“PR].(',J,K)
78 CNONTINUE
N0 84 K=1,8
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84

46

88

94

96

MK

SMALLINCQRCL,1),V1(1,1,K), 256)
SMALLINCQI(1,1),v2(1,1,K), 256)
IF(M.EQ, 9) M=M=18

Mi=H+8
SMALLOUT(QR(1,1),PR1(1,1,MM ), 258)
SMALLOUTCQI(1,1),P11(1,1,M4 ), 256
CONT! NUE

PO 86 K=10,16

LL=18~K

D0 86 J=1,16

D0 86 I=1,16

IF{1.EQ. 9.0R.J.EQ. 9) GO TO 2
Ju=18=J

{1=18=

IF(JJ.EN.17) Ju=1

TECHILEN,17) 1=l
PRL{1, Jd, LLY=PRICE, J,K)
PITCHT, dd, LLY==PI1(],d,K)

GO TG 86

PR1CY,J, LL)=0,0

PI1CI,d,LL)=0,0

CONTIHUE

CALL FFTZ

CALL FFTY

CALL FFTX

nO 83 K=1,16

DO 88 J=1,16

no 88 1=1,16
v1(1,J,K)=PR1(1,J,K)

CONTINUE

no 94 K=1,9

HeK

SMALLINCOR(1,1),U1(1,1,K), 256)
SMALLI(QI(1,1),942(1,1,K), 256)
1F(M.EQ. 9) M=H=-16

HIA=M+8 :
SMALLOUT(QR(1,1),PR1(1,1,MM ), 256)
SHALLOUT(QIC1,1),P11C¢1,1,M1 ), 256)
CONTIHUE

DO 96 K=10,16

LL=18-K

DO 96 J=1,16

DO 96 |=1,16

IF(1.EQ. 9.0R.J.EQ. ) GO TO 3
Ju=18-4

11=18-1

IF(JJ, EQ.17) Jy=1

IE¢11,EQ.17) 1=l

PRICIT, JJ,LLI=PRL(T,,K)
PILCTL, Jd,LL)==P11(],d,K)

G0 TO 96

PR1CI,J,LL)=0.0

PIL1{),d,LL)=0.0

CONTIHUE

CALL FFTZ

116




CALL FFTY

CALL FFTX

DO 98 K=1,186

ng 98 J=1,16

N0 98 I=1,16

W1(1,J,KY=PR1(I,d,K)
93 CONTI MUE

CALL SPECT3

RETURN

END

SUBROUTINE RANDM

C L g g Y T Ty T R e S P T P Y R P T T
c * INITIATION OF TWO RANDOM FIELDS REOUIRED FOR IN!{CON *
c L T L L Y s P Lt e iRt s

LARGE PR1{16,16,16),P!1(16,36,16),WAVE(16,16,16)
LARGE UI1(16,16,19),v1(16,16,19),%w1(16,16,19)
LARGE U2z(16,16,18),v2(16,16,18),%42(16,16,18)
DIMENSION QR(16,16),Q1(16,16)
DIMEMSTON SR(16,16,6),51(16,16,6)
NIMENSION H{3),M1{(6),12(6),TRR(16,3),TRI(16,3),E(16)
comMMON/scH/aqRr, at ,N,111,M2, TRR, TR, E, 1S1GHN, PAI
DIMENSION EN(14)
C=====~EN IS E{K), THE THREE-DIMENSIONAL ENERGY SPECTRUM, AMD IS GIVEN
Cum=m—-= AS A FUNCTION OF K AT 2+PAl, LxPAl, 6+PAl, ETC,
DATA EN/,52,1.5,1.3,.96,.66,.46,.33,.23,.16,.105,.072,.05,.032,.0/
HH=186,
ARG=2.*PAl JIIN
DO 20 Ke=1,9
KK=K-9
Do 10 J=1,16
Do 10 !=1,16
Jd=d=-1
IF(J.GT.8) Ju=J=17
[1=]=1
IF(!.GT. 8} I=l=17
IF(THLEQ.0,AND . JJ.EN.OLAND L KK,EDLB) GO TO 10
Y=RGEN(X}
ZETA=2,#PA *Y
Al=1.~COS{ARG=*I1)
A2=1.-~COS{ARG*.ddJ)
A5=1,-COS{ARG*KK)
R=SORT(AL**2+A2* %2+ AT%%2)
PH1=ACOS(A3/R)
IF(AL.NE.D.) GO TO 5
IF(A2,GT.0.0) THETA=PAL/2.
1FCA2,LT.0.0) THETA==PAL/2.
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20

IFCA2.EQ.0.0) THETA=2.%PAl Y

G0 TO 2

CONTINUE

THETA=ATAN2(A2,Al)

CONTINUE

AMAG=SQART(FLOAT( 1 %) | +JdJwJu+KEERK) ) #2, #»PAl
WN=AMAG/ (2. »PAl)

14 H=N

JHHPL=i1H+1

ABSVEL=(EHCIWH) +(ENCIWNPLIY-ENCIWHI I *(WUN=IWN) } /(2. *PAT * AMAG**2)
Y1=RGEN{X1)

VELR=SQRT{Y1+ABSVEL)
VELI=SART((1.-Y1)*ABSVEL)

U1(!,J,K) ==(COS(ZETA)*COS{PHI)I*COS{THETA)+SIN(ZETA)*5] H(THETA))
* *VELR

V1(1,d,K) =(=COSCZETAY*COS({(PH!I)*SINC(THETA)+S1 N(ZETA)*COS(THETA))
* *VELR

Wi{l,d,K) =COS(ZETAY*SIN(PH!)*VELR
UL{1,d,%+9) =-(COS(ZETAY*COS{PH!I)*COS{THETA)+SIN(ZETA)*SIN(THETA))
* wYEL!

V1(1,d,K+9) =(~COSC(ZETA)*COS{PH! }*SIN(THETA)+SIN(ZETA)*COS(THETA))
* *VEL|

W1(1,J,K+2) =COS{ZETAY*SIN(PHI }*VELI
CONT | NUE

CONTINUE .

U1¢1,1,9¥=0.0

v1(1,1,93=0.0

W1(1,1,9)=0.0

UL(1,1,18)=0.0

¥1¢1,1,18)=0,0

W1(1,1,18)=0,0

D0 60 K=1,9

KK=K-9

no 50 J=1,16

no 50 1=1,16

Ju=d=1

IF(J.GT,.8) Jd=d=17

H=l-1

IF{!.GT.8)11=1=27
IF¢11,EQ.0.AND,. JJ,EQ. 0. ANDL KK, EQ, ) GO TO 5O
Y=RGEM(X)

ZETA=2,*PAl »Y

AL=S[NCARG#11)

A2=STH{ARG=JJ)

A3=SIN{ARG*KK)

ReSORT(AL**2 +A2*%2+AZ%%2)

Pi{1 =ACOS(A3/R)

IF(A1.8E.0.) GO TO 6

IF{A2.0T,0,0) THETA=PAY/Z,

IF(A2.LT.0, U3 THETA==PAl/2Z.

IF(A2.EQ,0,0) THETA=2.%PAl=*Y

GO TO &

CONTINUE

THETA=ATAN2(AZ,AL)

CONTINUE
MAAG=SORT(FLOATC T # 1 1+ Jdwdd +KE*KK) ) #2, *PAL
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WN=AMAG/ {2, %PAL )

FHN=WN

IWNPLwitN+1

ABSVEL=( EN(IWNY+(EHC [MNPL)=ENCIWND ) (UN=11N) )/ (2. #PA] *AMAG##2)
Y2=RGEN(X2)

VELR=SQRT(Y2*ABSVEL)

VELI=SQRT((1,-Y2)*ABSVEL)

UZ(1,Jd,K) ==(COS(ZETA)*COS(PHI)*COS(THETA)+SIN(ZETA) *SINCTHETA))
* *VELR

V2(1,J,K) =(~COS(ZETA)*COS(PHI)*S1N(THETA)+SIN(ZETA) *COS{THETA))
« *VELR

W2{1,d,K) =COSCZETA)*SIH(PHT)*VELR

W2(1,J,K+3) ==(COS{ZETA)*COS{PHI)*COS{THETA) +SIN(ZETA) *SIN{THETA))
* *VEL]

V2(1,J,K+9) =(-COS(ZETA)*COS{P!U1)*SIN(THETA) +SIN(ZETA) *COS(THETA))
* =VELI

W2(1,d,K+9) =COSCZETA)*ST1H(PHI)*VELI

50 CONTINUE
50  CONTINUE

u2(1,1,9)=0.0

v2(1,1,9)=0.0

¥2(1,1,9)=0,0

12(1,1,18)=0,0

v2(1,1,18)=0,0

W2(1,1,18)=0.0

RETURN

END
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SUBRODUTINE SPECT3
T T T T L L R T T R L R LI ITIIL
* EVALUATION OF THREE-DIMENSIONAL EMERGY SPECTRUM ]
T L 3 L 3 L L L L g B S R P T T I T T P T R T e PP T D P T PP T e
LARGE PR1(16,16,16),P11(1G,16,16),ENERGY(16,16,16)

LARGE U1(16,16,19),Vv1(16,16,19),¥1(16,16,19)

NIMENSION OR(16,16),n1(16,16)

DIMENSION N{3),M1(6),M2(6),TRR{16,3),TRI(16,3),E(16)
COMMDHM/SCM/QR, 01, N, M1, M2, TRR, TR, E, t SIGH, PAl

PAI 2=PAl *PAlL

H=1./16.

H2=H#H

H3=H2*H

HN=16

NH Sl = NN*NN

C=0.6

-=-TRANSFORMATION OF VELOCITY FIELD TO WAVE NUMBER SPACE, AND
--FORMATION OF THE TURBULENT KINETIC EMERGY

1S1GN=1

DO 10 J=1,16

PO 10 t=1,16

nrr,d)=0.0

CONT i HUE

DN 12 K=1,16
SMALLIM(QR(I,1),U1(1,1,%), 256)
sMALLOUT(QR(1,1),PR1(1,1,K), 256}
SMALLOUT(QI(1,1),Pr12(1,1,K), 258)
COMTINUE

CALL FFTX

CALL FETY

CALL FFTZ

DO 1k K=1,16

DO 14 J=1,16

Do 14 1=1,16

PRI{Y, J, RY=(PRL(I,d,K)/NM3I**x2+(P11(1,d,K)/HN3)}*=2
CONT I NUE

DO 16 K=1,16
SHALLIN(ORC1, 1}, PRICL, 1,K), 256)
SMALLOUT(QR(1,1),ENERGY(L,1,K), 256)
CONTINUE

DO 29 J=1,16

no 20 1=1,16

ey, Jd)=0,0

COMT I NUE

DO 22 K=1,1%
SMALLIN(QR(1,1),V2(1,1,K), 256)
SMALLOUT(QR(1,1),PRI(1,1,K), 256)
sHALLOUT(QI(L, 1), P11(2,1,K), 256)
CONT1I NUE

CALL FFTX

CALL FFTY

CALL FFTZ

no 24 K=1,16

no 24 J=1,16

Do 2% 1=1,16
PRICE,d,R)Y=(PRL(1,J,KI/HN3)*%2+4(PI1(],d,K)/NN3Ix*2
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24 CONTINUE
N0 26 K=1,16
SMALLINCQR(1,1),PR1I(1,1,K), 25G)
SMALLIN(QI(L,1),ENERGY(L,1,K), 256)
no 28 J=1,16
no 28 1=1,16
I, Ja=01(t,d)+Qr(E, J)
28  CONTINUE
SMALLOUT(QI(1,1),ENERGY(Y,1,K), 258)
26  CONTINUE
Do 30 J=1,1d
no 39 1=1,16
q1¢1,Jd)=0,0
30  CONTINUE
no 32 K=1,16
SMALLIN(NAR(L, 1),W1(1,1,K), 25B)
SMALLOUT(QR(I1,1),PR1(1,1,K), 256)
SHALLOUT(QIC1,1),P11(¢1,1,K), 256)
32  CONTINUE
CALL FFTX
CALL FFTY
CALL FFTZ
D0 34 K=1,16
No 34 J =1,16
DO 34 I=1,18
PR1C(I,J, RJ=CPR1(I,J,k)/NNE)**2+(PI1(1 J,KY/HN3)*+2
54 COHTINUE
N0 36 K=1,16
SMALLINCOR(1, 1),PR1(1,1,K), 256)
SMALLINCQI(1,1),ENERGBY(2,1,K), 256)
PO 38 J=1,16
no 38 1=1,16
ar{l,d)=CalC1,)+QRrRC1,4)?
38  CONTIHUE
SMALLOUT(QI(1,1),ENERGY(1,1,K), 256)
36 CONTINUE
Commnw EVALUATION OF THE 3-D ENERGY SPECTRUM
HRITE(E,IOO)
100 FORHAT(IH ,10¥,*THREE=-DIMEHSIOMAL ENERGY SPECTRUM*)
=l
EE=0,0
UN=FLOAT{M~1)%2,  *PA}
LL=]
WRITE(G,101) YN, EE
101 FORMAT(1H ,10X, 21K~ F6.2,5X,510E(K)=,E16.7)
DO h2 M=2, 15
HH=FLOAT(M-1}*2.*PA§
£E=0.0
RADPalftl+PAL
RADM=IN~PAL
LL=0
DO 44 K=1,16
JMAILIH(QR(I 1), ENFRFY(I 1 K}, 256)
N0 u4 J=1,16
DO 4k 1=1,18
KKeX-1
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48

45
Ly

42

IFEK.GT. 8) KK=K~17

Jd=d-l.

IF(J.GT, 8) JJu=J=17

Hi=l-1

1F(1.GT, 8) 11=1-17
R2=FLOAT(I1 %11 +Jd*JJ+KK*KK)
RR=SQRT(R2)*2. *PAl

IF{RR.LT.RADP, AND.RR,GE. RADI1) GO TO 45

GO TO 45

LL=LL+]
EE“EE*QR(I:J)
CONTI NUE

CONTINUE
EE=EE/(FLOAT(LL))
EE=L, *PAl * CxEE*UN*WYN
WRITE(,,101) MWN,EE
CONTIUE

CALL " RRTRI

RETUR!

END

122
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SAMPLE QUTPUT

THREEwDIHENSIONAL ENFRGY SPECTRUM

Ks
Kx
ne
Kn
Kx
Kn
K®
Kn
Ku
K®
Kn
Ks
K3
Kn
Ke

n'oo

beo®
12,57
16,75
25,13
31,42
37,70
43,98
50,27
5,55
62,83
A9,17
75,40
Ri,68
87,96

E(K}e
E(X)x
E(¥)=
E{K)w
E(K)n
E(k)e
E(K)e
E{K)x
EfK)e
F{K}m
E{d)m
E(K)a
E{k}n
F(¥)Ix
E(K)m

123

almno1RusE«01
1,27NT0AREAG?D
1,?TB2RO0CE=02
105921 28F =07
7.0280417Fe0?
5,0183201Ea01
SF7H?EHOSF-01
2,8924519E=0Y
1.6P0U311Ea0}
?,4052206F w08
4 851nRT0Fw0Y
3,7001281E=04
1,462154)1€<04
P.129R2TEE=04



174}

98
28
= B
L
]
S

5
B

1

&
7

MUKRER OF TIME 3TEP L
U CONPONENT NF VEL FIELD

T= §
=g, 85Ta% 1 EL02
«5, 054727 7Ea02

In 9
«{,0991599E W0
»2,088p525E-02

«? OIUTIINENDS
wp 96941 02Fen2

B,5894391FuDY
1.4550951Fw02

o
2.1571%%%E202
-3,n5527565-02

5. 2838267602
$1.1578525Em02

V COMPONENT RF VEL FIFLD

Is |
w7, 050u0huEwd3
2,14 180KEEwD2
In &
2.7120103E02
1 97050 0EaD3

wl,39797 20803
2. 1652726Ew03

2.7P1R737Ee02
=3, 8002653Em03

»2,0152500E002
3.9071220EL02

a;osqo:EuE.sz
w?,3578723Ew01

® COMPONENT OF VEL FIELD

Ic |
w{ A5LO1AGF 4p3
{,9990725F )2
Iz %
1,68010T 1 %Ewp2
1,56553715=02

2.b81AGRUT w02
1,524R 1556w

=2,355815% 02
3,227R211Ewn2

GIVESGENCE v

My ©
e
w3, 197042381y
teb831301E~1D
In @
Y 1050270k w15
q,9295902Fuid

=X CEORNESERLD
|, 4210458514

1,8%3R028 a1
1,0198086Eutq

PRESSURE FIELD

In )
d,1662180EwpE
wi,752BBaLENGD

- In 9
1,6507560E wnG
L, 9R20503C~08

EXEANESSYE

6,80%583 1884
1.723P522ER00

4,170813hE00
0,1%350128m0d

wil ,03320DRENDY

1,01108091E002
“5, 1650981 E003

w5, 968150103
2.7333025EL02

-it) H1A52TREQtd .
[

.

0, .
-y 8210B5SEL{Y

1,5025046E .08
%, 50312561E003
1,u276703E004
w) ALTULIRENOL

ENERGYS

199201 19E=D2
=], 8514895Eul?

3,510:639802
], ,AB9551{PED]Y
«3, TORULQ{E«DD

Te1785000Ew02

b i0RUUNNEDS
wl ALPRR00EDR

q,3385655nEN00
=5 251304002

=l AGIRAYER0D
b A1 SuBELOR

3, 730340 18
1, TTL35#AEALY

3,5527117C«15
=1,5527117E=15
1553368]75-05
nl AR1TRLI3EQU
=, SulstLERCD
wi B8366570E=019

2,7575251EwD3

2,3752706Ew02
«],9255035Em02

3,5783505Em02
*2,1359734E=02
~8 , GHTL91UEL0R
£,295u2a1Ee02
Q,0802695E02
»E 5532839Eu0?
8,n0172u5kn03
] SL6UTTREOR

wh, 2780713Ea0?
9,911uR71E-02

w1, G079AG0Fall
=2, 1316PB2ER1Y

0,

o,
{.4901220E=048
=2, 25%2621En00
wd, 41A2054EmD
wf, 602365UE =Y

DIVERGFNCE=®

w1,61T6500E202
-0, 3585057Em02

2,2515A55Em02
oll , 8302598E=03
=3, 0293187E=02
%, 7079720E=03
b,672a22UF D2
uEﬂSHEIDQIE-OE
wi,2303907E=02
1,59¢a30EEw02

wl ,55705TE=N2
s_u:72¢n5F102

1,7763563E=t4
w5, 3290705814

w5, ARG3aIPE"YA
w?,1658274E=1S
2,7277U4F w04
2,3267268E000

w9, 51 USHREE=DY
1.05634928Ew0Y

=1,0507819E=10

wl],3162030%w02
»] 1078603E=0?

2,3a316%1Em02
w3 BOCAIVEENOD
1.,1577700E=p2
wd, 1197RTRED
2,393728%Ew02
at 6310043 Em03
®l,N3BBHLRERGD
1.R0SI977Eu(?

2,39021355«02
1,0124581E=02

»3,0005927Ew02
2,91757755w02

24TE32ATIE D
=3,0704101Ew02
2+ STTRHSUE~DD
i R)12720Er2
14 2283B0REn0]
1.1933409Em)2
w3, A0REG]1E=N3
wl,b6B75R1GEwucE

4,1420431503
Ss1730710kwn?

1,6219555Ew1a e 7SD1SL0E]D
=i ,u210855E~14d T.10502TUEw1S
1,9534914%w14 S, 7T31597Eml
7.1054274E=18 4,97370%2c=14
a,0115030 Dl «5,L855E8 E=06
w2, 7256A73F=0U w2,62139i6Ew08
w3, 11 3558RE=pU 2,5255R3QE=45
B, BETIRIIE=0L 2s126P5206EmRa
LAHEDAXE  9,U250448E=02
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