Three-Dimensional Time Dependent
Computation of Turbulent Flow

by

D. Kwak
W. C. Reynolds
and
J. H. Ferziger

Prepared from work done under Grant
NASA-NgR-05-020-622

Report No. TF-5

Thermosciences Division
Department of Mechanical Engineering
Stanford University
Stanford, California

May 1975

REPRODUCED BY
NATIONAL TECHNICAL
INFORMATION SERVICE
U.S. DEPARTMENT OF COMMERCE
SPRINGFIELD, VA. 22161

https://ntrs.nasa.gov/search.jsp?R=19750022404 2019-05-27T17:57:07+00:00Z
THREE-DIMENSIONAL TIME DEPENDENT
COMPUTATION OF TURBULENT FLOW

by

D. Kwak, W. C. Reynolds, and J. H. Ferziger

Prepared from work done under Grant
NASA-NgR-05-020-622

Report No. TF-5

Thermosciences Division
Department of Mechanical Engineering
Stanford University
Stanford, California

May, 1975
ABSTRACT

The three-dimensional, primitive equations of motion have been solved numerically for the case of isotropic box turbulence and the distortion of homogeneous turbulence by irrotational plane strain at large Reynolds numbers. A Gaussian filter was applied to governing equations to define the large scale field. This gives rise to additional second order computed scale stresses (Leonard stresses). The residual stresses are simulated through an eddy viscosity. 16x16x16 and 32x32x32 uniform grids were used, with a fourth order differencing scheme in space and a second order Adams-Bashforth predictor for explicit time stepping. The results were compared to the experiments and statistical information was extracted from the computer generated data.
ACKNOWLEDGMENTS

The authors gratefully acknowledge the useful comments of Drs. A. Leonard, M. Rubesin, H. Lomax and Mr. S. Shaanan. We appreciate Ms Nancy Silvis for the speedy typing of the final copy.

This work was sponsored by NASA Ames Research Center under Grant NASA-NgR-05-020-622.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>iii</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>iv</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>v</td>
</tr>
<tr>
<td>List of Figures</td>
<td>vii</td>
</tr>
<tr>
<td>Nomenclature</td>
<td>ix</td>
</tr>
<tr>
<td>Chapter I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Historical Background</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Motivation and Objectives</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Summary of the Results</td>
<td>2</td>
</tr>
<tr>
<td>Chapter II. THEORETICAL FOUNDATIONS</td>
<td>4</td>
</tr>
<tr>
<td>2.1 Definition of the Filtered and Residual Fields</td>
<td>4</td>
</tr>
<tr>
<td>2.2 The Dynamical Equations</td>
<td>6</td>
</tr>
<tr>
<td>2.3 Filter Selection</td>
<td>7</td>
</tr>
<tr>
<td>2.4 Residual Stress Models</td>
<td>11</td>
</tr>
<tr>
<td>2.5 Governing Equations for the Filtered Field</td>
<td>12</td>
</tr>
<tr>
<td>Chapter III. NUMERICAL METHOD</td>
<td>13</td>
</tr>
<tr>
<td>3.1 Grid Layout and Notation</td>
<td>13</td>
</tr>
<tr>
<td>3.2 Space Differencing</td>
<td>14</td>
</tr>
<tr>
<td>3.3 DG Operator</td>
<td>16</td>
</tr>
<tr>
<td>3.4 Transport Difference Operator</td>
<td>17</td>
</tr>
<tr>
<td>3.5 Time Differencing</td>
<td>18</td>
</tr>
<tr>
<td>3.6 Pressure Field Solution</td>
<td>19</td>
</tr>
<tr>
<td>3.7 Summary of Difference Equations</td>
<td>21</td>
</tr>
<tr>
<td>Chapter IV. DECAY OF ISOTROPIC TURBULENCE</td>
<td>23</td>
</tr>
<tr>
<td>4.1 Problem Description</td>
<td>23</td>
</tr>
<tr>
<td>4.2 The Benchmark Experiment</td>
<td>23</td>
</tr>
<tr>
<td>4.3 Mesh Size Selection</td>
<td>24</td>
</tr>
<tr>
<td>4.4 Initial Conditions</td>
<td>25</td>
</tr>
<tr>
<td>4.5 Boundary Conditions</td>
<td>28</td>
</tr>
<tr>
<td>4.6 Extraction of Statistical Information from the Computation</td>
<td>28</td>
</tr>
</tbody>
</table>
4.7 Selection of the Averaging Scale .. 29
4.8 Selection of C_s and C_v .. 30
4.9 Energetics of the Filtered Field ... 31
4.10 Other Aspects .. 32
4.11 Computational Details ... 33

Chapter V. DISTORTION OF HOMOGENEOUS TURBULENCE BY IRROTATIONAL PLANE STRAIN ... 35
5.1 Problem Description .. 35
5.2 Governing Equations .. 36
5.3 Anisotropic Initial Condition .. 39
5.4 Results ... 41
5.5 Energetics of the Filtered Field .. 43
5.6 Assessment of Turbulence Closure Models 43

Chapter VI. CONCLUSIONS AND RECOMMENDATIONS 46
Figures .. 48
Appendix I. On the Conservative Space Differencing Scheme 84
Appendix II. Flow Charts and Program 90
References .. 122
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Gaussian filter</td>
<td>48</td>
</tr>
<tr>
<td>2.2</td>
<td>Filtered energy spectra, $\overline{E}(k, t)$</td>
<td>49</td>
</tr>
<tr>
<td>3.1</td>
<td>Comparison of modified wave numbers</td>
<td>50</td>
</tr>
<tr>
<td>3.2</td>
<td>Comparison of DIV(GRAD) operator</td>
<td>51</td>
</tr>
<tr>
<td>4.1</td>
<td>Sketch of wind tunnel test section for a generation of isotropic flow</td>
<td>52</td>
</tr>
<tr>
<td>4.2</td>
<td>Determination of A or B vector</td>
<td>53</td>
</tr>
<tr>
<td>4.3</td>
<td>Unfiltered initial energy spectrum</td>
<td>54</td>
</tr>
<tr>
<td>4.4</td>
<td>Evolution of energy spectra: $16 \times 16 \times 16$ mesh: Smagorinsky model: $\Delta_A = 0$</td>
<td>55</td>
</tr>
<tr>
<td>4.5</td>
<td>Filtered energy spectra: $16 \times 16 \times 16$ mesh: Smagorinsky model: $\Delta_A = \Delta$</td>
<td>56</td>
</tr>
<tr>
<td>4.6</td>
<td>Filtered energy spectra - a comparison of Smagorinsky and vorticity model $16 \times 16 \times 16$ mesh: $\Delta_A = 2\Delta$</td>
<td>57</td>
</tr>
<tr>
<td>4.7</td>
<td>Filtered energy spectra - effect of Leonard term: $16 \times 16 \times 16$ mesh: vorticity model: $\Delta_A = 2\Delta$</td>
<td>58</td>
</tr>
<tr>
<td>4.8</td>
<td>Filtered energy spectra: $32 \times 32 \times 32$ mesh: Smagorinsky model: $\Delta_A = 2\Delta$</td>
<td>59</td>
</tr>
<tr>
<td>4.9</td>
<td>Sensitivity of filtered mean square velocity decay rate to Smagorinsky model constant, c_s : $16 \times 16 \times 16$ mesh: $\Delta_A = 2\Delta$</td>
<td>60</td>
</tr>
<tr>
<td>4.10</td>
<td>Decay of mean square filtered velocity: $16 \times 16 \times 16$ mesh: $\Delta_A = 2\Delta$</td>
<td>61</td>
</tr>
<tr>
<td>4.11</td>
<td>Decay of mean square filtered velocity: $32 \times 32 \times 32$ mesh: Smagorinsky model: $\Delta_A = 2\Delta$</td>
<td>62</td>
</tr>
<tr>
<td>4.12</td>
<td>Skewness: $16 \times 16 \times 16$ mesh</td>
<td>63</td>
</tr>
<tr>
<td>4.13</td>
<td>Comparison of skewness</td>
<td>64</td>
</tr>
<tr>
<td>4.14</td>
<td>Components of dissipation</td>
<td>65</td>
</tr>
<tr>
<td>5.1a</td>
<td>Schematic of wind tunnel producing constant rate of strain in x-y plane</td>
<td>66</td>
</tr>
<tr>
<td>5.1b</td>
<td>Equivalent representation of the plane strain in a box</td>
<td>66</td>
</tr>
<tr>
<td>5.2</td>
<td>Tucker-Reynolds flow: turbulent intensities</td>
<td>67</td>
</tr>
<tr>
<td>5.3</td>
<td>Tucker-Reynolds flow: turbulent energy ratios</td>
<td>68</td>
</tr>
<tr>
<td>5.4</td>
<td>Tucker-Reynolds flow: change in structural parameter, K_1</td>
<td>69</td>
</tr>
<tr>
<td>5.5</td>
<td>Simulation of the Tucker-Reynolds flow: turbulent intensities (anisotropic initial condition)</td>
<td>70</td>
</tr>
<tr>
<td>Figure</td>
<td>Simulation of the Tucker-Reynolds flow: turbulent energy ratios under the plane strain and the return to isotropy in parallel flow (anisotropic initial condition)</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>5.6</td>
<td></td>
<td>71</td>
</tr>
<tr>
<td>5.7</td>
<td>Simulation of the Tucker-Reynolds flow: change in structural parameter, K_1 (anisotropic initial condition).</td>
<td>72</td>
</tr>
<tr>
<td>5.8</td>
<td>Simulation of the Tucker-Reynolds flow: turbulent intensities (isotropic initial condition)</td>
<td>73</td>
</tr>
<tr>
<td>5.9</td>
<td>Simulation of the Tucker-Reynolds flow: turbulent energy ratios under the plane strain and the return to isotropy in parallel flow (isotropic initial condition)</td>
<td>74</td>
</tr>
<tr>
<td>5.10</td>
<td>Simulation of the Tucker-Reynolds flow: change in structural parameter, K_1 (isotropic initial condition)</td>
<td>75</td>
</tr>
<tr>
<td>5.11a,b,c</td>
<td>One dimensional energy spectra (isotropic initial condition)</td>
<td>76</td>
</tr>
<tr>
<td>5.12a,b,c</td>
<td>One dimensional energy spectra</td>
<td>79</td>
</tr>
<tr>
<td>5.13</td>
<td>Filtered energy balance</td>
<td>82</td>
</tr>
<tr>
<td>5.14</td>
<td>Comparison of the pressure-strain correlations</td>
<td>83</td>
</tr>
</tbody>
</table>
A, B = random unit vectors
A₀ = constant in Rotta's model
Cₚ = constant in the Smagorinsky model
Cᵥ = constant in the vorticity model
D = finite difference form of divergence operator

\[D_{ij} = 2ν \frac{∂u_j}{∂x_i} \frac{∂u_i}{∂x_j} \]

E = three-dimensional energy spectrum
\(E_{-1} \) = one-dimensional energy spectrum
\(\tilde{E}, \tilde{E}_{-1} \) = filtered spectra
\(\mathbf{e}, \mathbf{e}_y, \mathbf{e}_z \) = unit vectors in x-, y-, and z-direction
\(F_i \) = i-component of forcing term due to the mean strain
\(F_i \) = finite difference form of \(F_i \)
f = a general field variable; \(\tilde{f} \) = filtered field component; \(f' \) = residual field component
G = filter function; finite difference form of gradient operator
\(\tilde{g}_1 \) = RHS of Poisson equation for pressure; \(\tilde{g}_1 \) finite difference form
H = heaviside step function
\(K_i \) = \((\bar{v}^2 - \bar{u}^2)/(\bar{v}^2 + \bar{u}^2)\), structural parameter
\(k_i \) = wave number in i-direction
\(k'_i \) = modified wave number in i-direction (fourth order); \(k''_i \) (second order)
\(\ddot{k}_i \) = finite difference form of \(\nabla^2 \) operator
L = NA, computational box size; length scale of large eddies
M = grid size of turbulence generator in experiments
N = number of finite difference mesh points in one direction
Nc = \(Δt \sqrt{v^3/3} /Δ \) for isotropic turbulence;
\(\approx Δt \sqrt{u_{max}^3 + q^3/3} /Δ \) for straining flow
\(P = p + \frac{1}{3} R_{ii} \); imposed pressure field
\(P \)
- production term

\(P_L \)
- Leonard production term

\(p \)
- pressure

\(q^2 \)
- degree of anisotropy

\(R_T \)
- \(qL/v \)

\(R_{ij} \)
- residual stress

\(S_{ij} \)
- \(\frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \)

\(\overline{S}_{ij} \)
- computed; \((T_{ij})_c \)

\(T_{ij} \)
- Rotta's model; \((T_{ij})_m \)

\(t \)
- time

\(U_o \)
- free stream velocity in x-direction

\(U_i \)
- i-components imposed mean velocity

\(u_i \)
- i-components fluctuating velocity; \(\bar{u}_i \) = filtered field component; \(u'_i \) = residual field component; \(\hat{u}_i \) = Fourier transformed \(u_i \); \(u \) = vector notation

\(\delta/\delta_x, \delta/\delta_t \)
- finite difference form of \(\frac{\partial}{\partial x}, \frac{\partial}{\partial t} \)

\(\epsilon \)
- energy dissipation; \(\epsilon_R \) = residual fields contribution; \(\epsilon_L \) = Leonard terms contribution

\(\phi \)
- spectrum function

\(\phi, \theta \)
- random angle

\(\nu \)
- \(\mu/\rho \), kinematic viscosity

\(\nu_T \)
- eddy viscosity

\(\rho \)
- fluid density

\(\Gamma \)
- constant strain-rate

\(\gamma \)
- constant in Gaussian filter function

\(\eta \)
- Kolmogorov microscale

\(\overline{w} \)
- filtered vorticity, curl \(\overline{u} \)

\(\Delta_A \)
- averaging length scale
\(\Delta \) \quad = \quad \text{computational mesh width}

\(< \; >\) \quad = \quad \text{ensemble average in real space; shell average in wave-number space}

\textbf{Superscripts} \\
(n) \quad = \quad \text{time step}

\textbf{Subscripts} \\
(k, \ell, m) \quad = \quad \text{computational mesh number index}
CHAPTER I
INTRODUCTION

1.1 Historical Background

As computer capabilities grow, the three-dimensional time-dependent computation of turbulence is becoming possible. However, the retention of all scales of motion is not yet feasible (and probably never will be), so the best one can hope for is the simulation of the large scale structures. The large scale structures are strongly dependent upon the nature of the flow, but there is considerable evidence that the structure of the smaller scales is independent of the large scale structure. This suggests a mixed approach in which one computes the large scale motions and models the small scales.

To define the large scale motions, some sort of averaging operator has to be applied to the governing equations to filter out the small scale motions. However, in three-dimensional computations to date, the definition of the small scale motions was not precisely related to the filtering operation and consequently the meaning of those motions was not very clear. In any case, the resulting equations for the filtered field contain so-called sub-grid scale or residual scale Reynolds stresses, which must be modeled in the computation.

Two distinctive solution methods have been used in solving the resulting equations. The first is a conventional finite difference mesh calculation. In this approach, the simplest and perhaps the most usual way of relating the residual scale turbulence to the filtered motion is by a local eddy viscosity model. Smagorinsky (1963, 1965) related eddy viscosity to the local strain-rate of the filtered field. Deardorff (1970a, b) applied this model to three-dimensional turbulent channel flow and planetary boundary layer problems, and Schumann (1973) applied it to plane channels and annuli. Deardorff (1973) and Schumann later introduced more sophisticated residual Reynolds stress transport equations. Other examples of this approach are given by Lilly (1964, 1967), Smagorinsky et al (1965), Fox and Lilly (1972), Fox and Deardorff (1972). Previous work mentioned above has not paid sufficient attention to the basic
aspects of this type of simulation, so as yet this approach has not really progressed very far.

The second approach is the spectral (Fourier) method much advocated by Orszag (1969, 1971a,b). While this method has mathematically attractive features for certain problems, it is generally more difficult to extend to flows with interesting geometries. Moreover, work to date ignored the residual Reynolds stresses, and it is not clear how these could be incorporated in a Fourier calculation.

1.2 Motivation and Objectives

At the time this work was initiated there were some serious problems with work done previously:

(1) There was a need to define the large-scale field precisely, so that the equations can be systematically developed.

(2) There was a need to carefully evaluate the accuracy requirements to be sure that computational errors are higher order than the residual stresses.

(3) There was a need to carefully assess just what can really be learned from this type of turbulence simulation.

The main objective of this study was to carefully develop a numerical simulation method for turbulent flows away from solid or free boundaries, and to apply this method to study decaying isotropic turbulence and homogeneous turbulence with irrotational plane strain.

The present study is one in a systematic program investigating large eddy simulation of turbulence, and reports the details of the initial computations under this program.

1.3 Summary

The contribution of the present work includes

(a) a precise definition for the large-scale field (after Leonard (1973)),

(b) a study of the optimum averaging scale, as compared to the grid mesh scale,

(c) a study of two residual stress models, and evaluation of the model constant for each,
(d) a demonstration that the model constant is independent of mesh size,
(e) a fourth-order differencing scheme that properly conserves energy and momentum,
(f) a method for calculating the pressure so as to conserve mass at subsequent time steps,
(g) a demonstration that a coarse mesh can be used to obtain surprisingly good predictions for the Reynolds stresses in a straining flow,
(h) an evaluation of certain aspects of simple turbulence closure models.

Although many questions have been answered by this work, new ones have been raised. Suggestions for follow-on work in this project are made in Chapter VI.
Chapter II
Theoretical Foundations

2.1 Definition of the Filtered and Residual Fields

To resolve the smallest scales of turbulence in a grid-based calculation, the mesh size has to be smaller than the dissipation length, which is on the order of the Kolmogorov microscale, \(\eta = (\nu^3 / \varepsilon)^{1/4} \). Here \(\nu \) is the kinematic viscosity and \(\varepsilon \) is the energy dissipation rate per unit mass. It is known that (see Tennekes and Lumley 1972) \(\varepsilon = q^3 / L \) where \(q \) is the R.M.S. velocity and \(L \) is the length scale of large eddies. Thus the minimum number of mesh points that must be used in a three-dimensional grid computation that resolves both the large and small scales can be estimated as

\[
N = \left(\frac{L}{\eta} \right)^3 = \left(\frac{qL}{\nu} \right)^9/4 = R_T^{9/4}
\]

Using this estimate, we find that an \(R_T \) of \(10^3 \), typical of turbulent flows, would require \(2 \times 10^7 \) worlds of storage for four variables. This is approximately 50 times the Large Core Memory of the CDC 7600, and about 10 times the available memory of the ILLIAC IV disk.

It is clear that one can not do a full simulation, except at extremely low Reynolds number. The best one can hope for is a computation that will yield the large-scale motions. Fortunately these contain most of the turbulence energy, and are responsible for most of the turbulent transport, and so a large-eddy simulation technique would be very useful, especially if it could handle arbitrary flows.

The first problem one faces is in defining the large scale field. Conventionally the large scale motions have been defined by volume-averaging in a continuous manner over computational grid boxes (e.g. Deardorff 1970a). Schumann (1973, 1974) applied a slightly different technique involving averaging over the surface of grid boxes.

A more general approach that recognizes the continuous nature of the flow variables is the "filter function" approach of Leonard (1973). Let \(f(x) \) denote a field variable, for example velocity. \(f \) may contain
large and very small components. Then, we define the filtered field f by

$$ f(x) = \int G(x-x') f(x') \, dx'$$

(2.1a)

where G is a selected filter function. For $C = C$, where C is a constant, the filter G must satisfy

$$ \int G(x) \, dx = 1$$

(2.1b)

Now f can be decomposed into its filtered field (FF) component, f, and residual-field (RF) components, f', by

$$ f = \bar{f} + f'$$

(2.2)

Note that \bar{f} is not the conventional mean used in the classic-turbulence literature.

In the present work we treat only flows that are homogeneous, for which the integration in (2.1) extends over all space. Careful consideration will have to be given to the domain of integration when one desires to treat a flow near a wall.

Now note that, if G is piecewise continuously differentiable and $G(r)$ goes to zero as $r \to \infty$ at least as fast as $1/r^4$, then

$$ \frac{\partial \bar{f}}{\partial x} = \int_{-\infty}^{\infty} G(x-x') \frac{\partial f}{\partial x'} \, dx'$$

$$ = fG \bigg|_{0}^{\infty} - \int_{-\infty}^{\infty} f(x') \frac{\partial}{\partial x'} G(x-x') \, dx'$$

$$ = \frac{\partial}{\partial x} \int_{-\infty}^{\infty} G(x-x') f(x') \, dx'$$

$$ = \frac{\partial \bar{f}}{\partial x} \bar{f}$$

(2.3a)

Also,

$$ \frac{\partial f}{\partial t} = \frac{\partial \bar{f}}{\partial t}$$

(2.3b)
However, \[\bar{f}_g \neq \bar{g}_g \] (2.3c)

2.2 The Dynamical Equations

Applying (2.1) to the Navier-Stokes equations, and using (2.2) and (2.3), one obtains (for incompressible flows)

\[\frac{\partial \bar{u}_i}{\partial x_i} = 0 \] (2.4)

\[\frac{\partial \bar{u}_i}{\partial t} + \frac{\partial}{\partial x_j} \bar{u}_i \bar{u}_j = - \frac{1}{\rho} \frac{\partial \bar{p}}{\partial x_i} + \nu \nabla^2 \bar{u}_i \] (2.5)

The advection term is

\[\bar{u}_i \bar{u}_j (x_0, t) = \bar{u}_i \bar{u}_j + \bar{u}_i \bar{u}_j + \bar{u}_i \bar{u}_j + \bar{u}_i \bar{u}_j \]

\[= \bar{u}_i \bar{u}_j + R_{ij} \] (2.6)

where

\[R_{ij} = \bar{u}_i \bar{u}_j + \bar{u}_i \bar{u}_j + \bar{u}_i \bar{u}_j \]

\(R_{ij} \) is the residual field contribution to the advection term. \(-\rho R_{ij}\) is called the "residual stress."

To localize the first term on the right in (2.6) we carry out a Taylor series expansion,

\[\bar{u}_i \bar{u}_j (x_0, t) = \int G(x_0-x) \bar{u}_i \bar{u}_j (x) \, dx \]

\[= \int \left\{ \frac{\partial \bar{u}_i}{\partial x_k} (x_k-x_{ko}) + \frac{1}{2} \frac{\partial^2 \bar{u}_i}{\partial x_k \partial x_{ko}} (x_k-x_{ko}) (x_k-x_{ko}) \right\} \]

\[+ 0(x-x_0)^3 \}

\[\times \left\{ \frac{\partial \bar{u}_j}{\partial x_k} (x_k-x_{ko}) \right\}

\[+ \frac{1}{2} \frac{\partial^2 \bar{u}_j}{\partial x_k \partial x_{ko}} (x_k-x_{ko}) (x_k-x_{ko}) + 0(x-x_0)^3 \}

\[\times G(x_0-x) \, dx \] (2.7)
For the above filtering of the dynamical equations to be useful, the integrals in (2.7) must exist. This requires that \(G(r) \to 0 \) exponentially as \(r \to \infty \).

2.3 Filter Selection

(a) Sub-Grid-Scale filter

Let us first seek a filter that makes the scales of motion in the residual field smaller than the scales in the filtered field, in the Fourier sense. Let

\[
f = \int_{-\infty}^{\infty} \hat{f}(k) \, e^{ik \cdot \mathbf{x}} \, dk \tag{2.8}
\]

Then,

\[
\overline{f} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \hat{f}(k) \, G(\mathbf{x} - \mathbf{x'}) \, e^{ik \cdot \mathbf{x'}} \, d\mathbf{x'} \, dk \tag{2.9}
\]

We want to have \(\overline{f} \) contain all scales larger than a cut-off scale. Thus we want

\[
\overline{f} = \int_{-k_c}^{+k_c} \hat{f}(k) \, e^{ik \cdot \mathbf{x}} \, dk \tag{2.10}
\]

where \(k_c \) is the cut-off wave number. Hence, we can write

\[
\int_{-\infty}^{\infty} H(k) \, \hat{f}(k) \, e^{ik \cdot \mathbf{x}} \, dk = \int_{-\infty}^{\infty} \hat{f}(k) \int_{-\infty}^{\infty} G(\mathbf{x} - \mathbf{x'}) \, e^{ik \cdot \mathbf{x'}} \, d\mathbf{x'} \, dk \tag{2.11a}
\]

where

\[
H(k; k_c) = \begin{cases}
0 & \text{if } k_i > k_c \text{ for any } i \\
1 & \text{otherwise}
\end{cases} \tag{2.11b}
\]

So we have an integral equation for \(G \),

\[
H(k; k_c) = \int_{-\infty}^{\infty} G(\mathbf{x} - \mathbf{x'}) \, e^{ik \cdot (\mathbf{x'} - \mathbf{x})} \, d\mathbf{x'} \tag{2.12}
\]

The solution to (2.12) is

\[
G(\mathbf{x} - \mathbf{x'}) = \prod_{i=1}^{3} \frac{\sin \pi (x_i - x'_i) / \Delta}{\pi (x_i - x'_i)} \tag{2.13}
\]
where $\Delta_A = \pi/k_c$ is the averaging or filtering length scale. This is the proper filter if one wishes to have the residual field really be "sub-grid scale." A grid-based computation made using this filter would be equivalent to a Fourier computation.

The second moment of G involves integrals like

$$\int_{-\infty}^{\infty} x^2 \sin(\pi x/\Delta_A) \, dx$$

This integral does not exist, and hence the expansion (2.7) could not be used. This filter is not suitable for a grid-based numerical method; hence one can not expect to really have the residual field be sub-grid scale.

(b) **Top-hat filter**

The filter used implicitly by many workers is the top-hat,

$$G(x-x') = \begin{cases} 1/\Delta_A & \text{for } |x-x'| < \Delta_A/2 \\ 0 & \text{else} \end{cases}$$

Then the filtered velocity is

$$\bar{u}(x) = \frac{1}{\Delta_A^3} \int_{-\Delta_A/2}^{\Delta_A/2} u(x+\xi) \, d\xi$$

This is equivalent to volume averaging. The Fourier transform of (2.16) is

$$\hat{\bar{u}}(k) = \frac{1}{\Delta_A^3} \int_{-\infty}^{\infty} \int_{-\Delta_A/2}^{\Delta_A/2} u(x+\xi) \, e^{-ik\cdot x} \, dx \, d\xi$$

$$= \frac{1}{\Delta_A^3} \int_{-\Delta_A/2}^{\Delta_A/2} \hat{u}(k) \, e^{ik\cdot \xi} \, d\xi$$

$$= \left\{ \frac{3}{\pi} \sin(k_c \Delta_A/2) \right\} \hat{u}(k)$$

Here $\hat{u}(k)$ is the Fourier transform of u.
Equation (2.17) shows that the spectrum of the filtered field will contain components of all wave-numbers. Moreover, at the wave-numbers for which the coefficient of $\hat{u}(k)$ in (2.17) is zero, the inverse transform will be singular. This makes it impossible to predict the actual spectrum $\hat{u}(k)$ from the filtered spectrum $\hat{u}(k)$, and this very undesirable feature of the top-hat filter renders it useless if we want to compute spectral features with a grid-based method. However, the top-hat filter could be used if spectral results were not sought.

Using (2.15) in (2.7), and carrying out the integration over x,

$$\bar{u}_i\bar{u}_j(x_0,t) = \bar{u}_i\bar{u}_j(x_0,t) + \frac{\Delta^2}{24} \nabla^2(\bar{u}_i\bar{u}_j) + O(\Delta^4) \quad (2.18)$$

The second term on the right is called the Leonard term; $-\rho\Delta^2 \nabla^2(\bar{u}_i\bar{u}_j)/24$ is called the "Leonard stress." As will be shown later, $R_{ij} = O(\Delta^2)$ and $\Delta = O(\Delta)$. So both the residual stresses and the Leonard stresses have to be included; moreover, the computational difference scheme must be accurate to $O(\Delta^2)$ to avoid introduction of numerical errors comparable with these stresses.

(c) **Gaussian filter**

A filter with much more desirable properties is

$$G(x-x') = \left\{ \sqrt{\frac{2\pi}{\Delta}} \right\}^{-3} \exp \left\{ -\frac{(x-x')^2}{\Delta^2} \right\}$$

where γ is a constant. Then the filtered velocity is

$$\bar{u}(x) = \left(\sqrt{\frac{2\pi}{\Delta}} \right)^3 \int_{-\infty}^{\infty} u(x') e^{-\gamma(x-x')^2/\Delta^2} \, dx' \quad (2.20)$$

The Fourier transform of this is
\[
\hat{u}(x) = \left(\frac{1}{\sqrt{\pi}} \frac{1}{\Delta_A}\right)^3 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} u(x+\xi) e^{-ik \cdot \xi} e^{-\gamma \xi^2/\Delta_A^2} d\xi \, d\xi
\]
\[
= \left(\frac{1}{\sqrt{\pi}} \frac{1}{\Delta_A}\right)^3 \int_{-\infty}^{\infty} \hat{u}(k) e^{ik \cdot \xi} e^{-\gamma \xi^2/\Delta_A^2} d\xi
\]
\[
= \left(\frac{1}{\sqrt{\pi}} \frac{1}{\Delta_A}\right)^3 \hat{u}(k) \exp \left\{ -\frac{1}{4} \frac{\Delta_A^2}{\gamma} \left(k_1^2 + k_2^2 + k_3^2\right) \right\}
\]
\[
= \hat{u}(k) \exp \left(-\frac{\Delta_A^2}{4\gamma} k^2 \right)
\]

Consider now the three-dimensional energy spectra of the actual and filtered fields:

\[
E(k) = 2\pi k^2 < \hat{u}(k) \cdot \hat{u}^*(k)>
\]
\[
\overline{E}(k) = 2\pi k^2 < \hat{\hat{u}}(k) \cdot \hat{u}^*(k)>
\]

Here \(< >\) denotes an average over an ensemble of experiments, and \(*\) denotes a complex conjugate. Equations (2.21) and (2.22) show that

\[
\overline{E}(k) = E(k) \exp \left(-\frac{\Delta_A^2}{2\gamma} k^2 \right)
\]

We see that the use of the Gaussian filter will result in a filtered field that misses only a very small amount of large scale motion; most of the small scale motions are placed in the residual field. Thus, in many respects this filter has the desirable properties of the sub-grid-scale filter. However, its behavior at \(r \to \infty\) makes the integrals in (2.7) exist. Moreover, the conversion back and forth between the spectrum of the filtered field and the spectrum of the actual field is easily accomplished, and hence the Gaussian filter is preferable to the top-hat filter.
Using (2.19) and (2.7), one obtains

\[\overline{\ddot{u}_i \ddot{u}_j (x_o, t)} = \overline{\dddot{u}_i \dddot{u}_j (x_o, t)} + \frac{\Delta^2}{4\gamma} \nabla^2 (\overline{\dddot{u}_i \dddot{u}_j}) + O(\Delta^4) \quad (2.24) \]

When \(\gamma = 6 \), the Leonard term in (2.24) is exactly the same as in (2.18). Hence the Gaussian filter with \(\gamma = 6 \) was chosen for the present study. This filter is illustrated on Fig. 2.1 and an example of \(E \) and \(\dot{E} \) relation (2.23) is shown on Fig. 2.2.

2.4 Residual Stress Models

The following eddy viscosity model is used for \(R_{ij} \).

\[R_{ij} = \frac{1}{3} R_{kk} \delta_{ij} - 2\nu_T \overline{S_{ij}} \quad (2.25) \]

where

\[\overline{S_{ij}} = \frac{1}{2} \left(\frac{\partial \overline{u_i}}{\partial x_j} + \frac{\partial \overline{u_j}}{\partial x_i} \right) \]

is the strain-rate tensor, and \(\nu_T \) is an effective viscosity associated with the residual field motions.

(a) Smagorinsky model

Smagorinsky (1963) suggested a model for \(\nu_T \),

\[\nu_T = (c_S \Delta)^2 (2 \overline{S_{ij}} \overline{S_{ij}})^{1/2} \quad (2.26) \]

where \(c_S \) is a constant. In experiments one observes a sharp separation of turbulent regions, containing vorticity and non-turbulent regions which are irrotational. A weakness of this model is that, in a non-turbulent irrotational region, \(\nu_T \) will have a non-zero value. This will give rise to residual stresses in the non-turbulent flow outside of a boundary layer.
(b) **Vorticity model**

A way around this drawback is to relate ν_T directly to vorticity. A likely possibility is

\[\nu_T = (c_v \Delta_A)^2 \sqrt{\bar{\omega}_i \bar{\omega}_j} \] \hspace{1cm} (2.27)

where $\bar{\omega} = \text{curl} \bar{u}$ is the vorticity, and c_v is a constant.

2.5 **Governing Equations for the Filtered Field**

Now, neglecting the molecular viscosity term, and dropping terms of higher order than Δ^2_A, filtered momentum equations become

\[\frac{\partial \bar{u}_i}{\partial t} + \frac{\partial}{\partial x_j} \left(\bar{u}_i \bar{u}_j + \frac{\Delta^2_A}{24} \nabla^2 \bar{u}_i \bar{u}_j - 2\nu_T \bar{S}_{ij} \right) = - \frac{\partial P}{\partial x_i} \] \hspace{1cm} (2.28)

where $P = \frac{\rho}{\rho} + \frac{1}{3} R_{11}$. This may be written as

\[\frac{\partial \bar{u}_i}{\partial t} = h_i - \frac{\partial P}{\partial x_i} \Delta \bar{H}_i \] \hspace{1cm} (2.29)

where

\[h_i \Delta = - \frac{\partial}{\partial x_j} \left(\bar{u}_i \bar{u}_j + \frac{\Delta^2_A}{24} \nabla^2 \bar{u}_i \bar{u}_j - 2\nu_T \bar{S}_{ij} \right) \]

It is in this form that we shall deal with the problem computationally. The manner in which continuity was used to fix P is discussed in the next chapter.
3.1 Grid Layout and Notation

A uniform cubic mesh is used, as sketched below. The mesh width Δ need not be the same as the averaging scale Δ_A introduced in the previous chapter.

The i-component of the filtered velocity at the nth time step is written as

$$u^I_i (n, k, \ell, m)$$

where (k, ℓ, m) is the meshpoint index for (x, y, z).

We now define the following operator notations:

- $\delta / \delta x_i$ = finite difference operator corresponding to $\partial / \partial x_i$
- $\delta / \delta t$ = finite difference operator corresponding to $\partial / \partial t$
- G = finite difference form of gradient operator
- D = finite difference form of divergence operator
- $\frac{\delta}{\delta x_j}(u_i f) = $ transport operator corresponding to $\frac{\partial}{\partial x_j} (u_i f)$

Further details of these terms are given next.
3.2 **Space Differencing**

A fourth order differencing scheme is applied where fourth order accuracy is needed. Since the Leonard and residual stress terms are second order, they can be approximated by second order formula to give the same accuracy. The central difference fourth order scheme is, for example,

\[
\frac{\delta \bar{u}}{\delta x} = \frac{1}{12\Delta} \left\{ \bar{u}(k-2) - 8\bar{u}(k-1) + 8\bar{u}(k+1) - \bar{u}(k+2) \right\} \tag{3.1}
\]

For simplicity, the subscripts \(l \) and \(m \) are not shown.

Suppose we represent \(\bar{u} \) by a discrete Fourier expansion,

\[
\bar{u} = \sum_n \hat{u}(k) e^{ikx} \tag{3.2}
\]

where

\[
k_1 = \frac{2\pi}{N\Delta} n_1 = \text{wave number in the } x_1 \text{ direction}
\]

\[
n_1 = -N/2, \ldots, 0, 1, \ldots, (\frac{N}{2} - 1)
\]

\[
N = \text{Number of mesh points in one direction}
\]

The sum extends over all \(n_1, n_2, \) and \(n_3 \). Substituting (3.2) in (3.1), the Fourier transform of \(\delta u/\delta x \) is identified as

\[
\frac{\hat{\delta \bar{u}}}{\hat{\delta x}} = \frac{1}{12\Delta} \left(e^{i2\Delta k} - 8e^{i\Delta k} + 8e^{-i\Delta k} - e^{-i2\Delta k} \right) \hat{\bar{u}}
\]

\[= \frac{1}{6\Delta} \left\{ 8 \sin(\Delta k_1) - \sin(2\Delta k_1) \right\} \hat{\bar{u}} \tag{3.3}
\]

If a modified wave number, \(k_1' \), is defined by

\[k_1' \triangleq \frac{1}{6\Delta} \left\{ 8 \sin(\Delta k_1) - \sin(2\Delta k_1) \right\} \tag{3.4}\]

then the Fourier transform of \(\bar{D}\bar{u} = 0 \) can be written as

\[k_1' \hat{\bar{u}}_1 = 0 \tag{3.5}\]

Note that the exact transform of \(\text{div} \bar{u} \) is \(k_1' \hat{\bar{u}}_1 \). Hence, \(k_1' \) may be interpreted as the wave number that allows continuity to be satisfied in grid space.
If instead one were to use a second-order central difference scheme,

\[
\frac{\partial \tilde{u}}{\partial x} = \frac{1}{2\Delta} \left(\tilde{u}_{(k+1)} - \tilde{u}_{(k-1)} \right) \tag{3.6}
\]

The modified wave number, \(k''_1 \), would be

\[
k''_1 = \frac{1}{\Delta} \sin(\Delta k_1) \tag{3.7}
\]

\(k_1, k'_1 \) and \(k''_1 \) are compared in Fig. 3.1.

The fourth-order \(D \) and \(G \) operators are therefore (again only subscripts different from \(k, \ell, \) or \(m \) are explicitly shown).

\[
D(\tilde{u}) = \frac{\partial \tilde{u}}{\partial x} + \frac{\partial \tilde{v}}{\partial y} + \frac{\partial \tilde{w}}{\partial z}
\]

\[
= \frac{1}{12\Delta} \left\{ \tilde{u}_{(k-2)} - 8\tilde{u}_{(k-1)} + 8\tilde{u}_{(k+1)} - \tilde{u}_{(k+2)} \right\}
\]

\[+ \frac{1}{12\Delta} \left\{ \tilde{v}_{(\ell-2)} - 8\tilde{v}_{(\ell-1)} + 8\tilde{v}_{(\ell+1)} - \tilde{v}_{(\ell+2)} \right\}
\]

\[+ \frac{1}{12\Delta} \left\{ \tilde{w}_{(m-2)} - 8\tilde{w}_{(m-1)} + 8\tilde{w}_{(m+1)} - \tilde{w}_{(m+2)} \right\}
\]

\[= \text{div } \tilde{u} + O(\Delta^4) \tag{3.8}
\]

\[
G(P) = \left(\hat{e}_x \frac{\partial}{\partial x} + \hat{e}_y \frac{\partial}{\partial y} + \hat{e}_z \frac{\partial}{\partial z} \right) P
\]

\[
= \hat{e}_x \frac{1}{12\Delta} \left\{ P_{(k-2)} - 8P_{(k-1)} + 8P_{(k+1)} - P_{(k+2)} \right\}
\]

\[+ \hat{e}_y \frac{1}{12\Delta} \left\{ P_{(\ell-2)} - 8P_{(\ell-1)} + 8P_{(\ell+1)} - P_{(\ell+2)} \right\}
\]

\[+ \hat{e}_z \frac{1}{12\Delta} \left\{ P_{(m-2)} - 8P_{(m-1)} + 8P_{(m+1)} - P_{(m+2)} \right\}
\]

\[= \text{grad } P + O(\Delta^4) \tag{3.9}
\]
where \(\hat{e}_x, \hat{e}_y, \hat{e}_z \) are unit vectors in the \(x-, y-, \) and \(z- \)directions.

3.3 DG Operator

\[
DG(P) = \frac{\delta}{\delta x_1}\left(\frac{\delta}{\delta x_1} P\right) \tag{3.10}
\]

Expanding one term of (3.10), using the fourth-order difference scheme,

\[
\frac{\delta}{\delta x}\left(\frac{\delta}{\delta x} P\right) = \frac{1}{(12\Delta)^2}\left\{P(k-4) - 16P(k-3) + 64P(k-2) + 16P(k-1) - 130P(k) + 16P(k+1) + 64P(k+2) - 16P(k+3) + P(k+4)\right\} \tag{3.11}
\]

If \(P \) is expanded in a discrete Fourier series, similar to (3.2), the Fourier Transform of (3.11) is identified as,

\[
\left\{\delta\frac{\delta P}{\delta x}\right\} = \frac{1}{(12\Delta)^2}\left\{e^{14\Delta k_1} - 16e^{13\Delta k_1} + 64e^{12\Delta k_1} + 16e^{11\Delta k_1} - 130 + 16e^{-1\Delta k_1} + 64e^{-12\Delta k_1} - 16e^{-13\Delta k_1} + e^{-14\Delta k_1}\right\} \hat{P} = \frac{1}{72\Delta^2}\left\{-65 + 16 \cos(\Delta k_1) + 64 \cos(2\Delta k_1) - 16 \cos(3\Delta k_1) + \cos(4\Delta k_1)\right\} \hat{P} = -k_1^2 \hat{P} \tag{3.12}
\]

(3.12) may be obtained directly from (3.4). Therefore, in Fourier space DG operator becomes

\[
\hat{DG} = -k_1^1 k_1' \tag{3.13}
\]

Compare (3.12) to the following fourth order central differencing scheme, which is a commonly used approximation to \(\frac{\delta^2}{\delta x^2} \) operator;
\[
\frac{\delta^2 P}{\delta x^2} = \frac{1}{12\Delta^2} \left\{ -P(k-2) + 16P(k-1) - 30P(k) + 16P(k+1) - P(k+2) \right\} \\
\hat{\Delta} = \hat{k}_1^2 \hat{\rho}
\]

(3.14)

(\frac{\delta^2 P}{\delta x^2} = -\frac{1}{6\Delta^2} \left\{ 15 - 16 \cos(\Delta k_1) + \cos(2\Delta k_1) \right\} \hat{\rho}

where \(\hat{k}_1 \) is defined by (3.15). \(\hat{k}_1^2, k_1^2, \) and \(\hat{k}_1^2 \) are compared in Fig. 3.2 for \(N = 16 \).

3.4 Transport Difference Operator

Differencing the transport terms in the form of (2.28) will automatically conserve momentum in an inviscid flow. But the computation becomes unstable and the kinetic energy increases. This happens in real flows in spite of the dissipative nature of \(R_{ij} \) and the Leonard term. This non-linear instability, first reported by Phillips (1959), arises because the momentum conservative form does not necessarily guarantee energy conservation, and truncation errors in the energy equation are not negligible.

Arakawa (1966) devised a differencing scheme that conserves both mean square vorticity and energy in two-dimensional calculations that use the vorticity and stream function as dependent variables. This is not useful in a three-dimensional flow.

A fourth-order transport differencing scheme that does conserve energy and momentum was developed for the present work:
\[
\frac{\delta}{\delta x} (\bar{u} \bar{f}) = \frac{1}{3\Delta} \left\{ (\bar{u} \bar{f})_{(k+1)} - (\bar{u} \bar{f})_{(k-1)} \right. \\
+ \bar{u}(\bar{f}_{(k+1)} - \bar{f}_{(k-1)}) + \bar{f}(\bar{u}_{(k+1)} - \bar{u}_{(k-1)}) \biggr\} \\
- \frac{1}{24\Delta} \left\{ (\bar{u} \bar{f})_{(k+2)} - (\bar{u} \bar{f})_{(k-2)} + \bar{u}(\bar{f}_{(k+2)} - \bar{f}_{(k-2)}) \right. \\
+ \bar{f}(\bar{u}_{(k+2)} - \bar{u}_{(k-2)}) \biggr\}
\]

Again we only show subscripts that differs from \(k\), \(l\), or \(m\). For details see Appendix I. In the present work this was used for the terms \(\partial(\bar{u}_l \bar{u}_j)/\partial x_j\); for the Leonard term a second-order version of (3.16) was used,

\[
\frac{\delta}{\delta x} (\bar{u} \bar{f}) = \frac{1}{4\Delta} \left\{ (\bar{u} \bar{f})_{(k+1)} - (\bar{u} \bar{f})_{(k-1)} \right. \\
+ \bar{u}(\bar{f}_{(k+1)} - \bar{f}_{(k-1)}) + \bar{f}(\bar{u}_{(k+1)} - \bar{u}_{(k-1)}) \biggr\}
\]

The familiar second-order central difference approximation was used for \(v^2\) in the Leonard term,

\[
\frac{\delta^2 \bar{f}}{\delta x^2} = \frac{1}{\Delta^2} (\bar{f}_{(k+1)} - 2\bar{f}_{(k)} + \bar{f}_{(k-1)})
\]

For the residual stress terms, (3.17) was used. The strain-rates and vorticity were computed from the second-order central difference (3.6).

3.5 Time Differencing

A second order Adams-Bashforth method was used for the time integration. As shown by Lilly (1965), this method is very weakly unstable, but the total spurious computational production of kinetic energy is small.

The Adams-Bashforth formula for \(\bar{u}_l\) at time step \(n+1\) is
\[
\begin{align*}
\vec{u}_i^{(n+1)} &= \vec{u}_i^{(n)} + \Delta t \left(\frac{3}{2} \, H_i^{(n)} - \frac{1}{2} \, H_i^{(n-1)} \right) + O(\Delta t^3) \\
\end{align*}
\] (3.19)

where \(H_i \) is defined by (2.29). Note that this is an explicit scheme.

3.6 Pressure Field Solution

To study this problem in detail, let us rewrite (2.29) as

\[
\frac{\partial \vec{u}_i}{\partial t} - h_i = - \frac{\partial P}{\partial x_i}
\] (3.20a)

Again, continuity is

\[
\frac{\partial \vec{u}_i}{\partial x_i} = 0
\] (3.20b)

Taking the divergence of (3.20a)

\[
\nabla^2 P = \frac{\partial}{\partial x_i} h_i - \frac{\partial}{\partial t} \frac{\partial \vec{u}_i}{\partial x_i}
\]

\[
= g_i
\] (3.21)

The usual computational procedure involves choosing the pressure field at the current time step such that continuity is satisfied at the next time step, i.e. so that the new flow field will be divergence free. This must be done very carefully. Let's look at three possibilities. These take advantage of Fourier transformation, for it is known that fast Fourier transforms provide an excellent way to solve the Poisson equation, at least in a rectangular domain.

(a) Method 1

The Fourier transform of (3.21) is

\[
-k^2 \hat{P} = \hat{g}_i
\] (3.22)

where \(\hat{g}_i \) is the difference approximation to \(g_i \) and \(k^2 = k_x^2 + k_y^2 + k_z^2 \). \(k_x, k_y, \) and \(k_z \) are wave numbers in \(x-, y-, \) and \(z- \) directions. By inverse
transformation, \(P \) can be obtained. However, as will be shown shortly, this method does not give a next velocity field that is divergence-free in grid space. Hence this approach is unsatisfactory.

(b) **Method 2**

A second approach is to use the difference form of (3.21),

\[
\frac{\delta^2}{\delta x^2} + \frac{\delta^2}{\delta y^2} + \frac{\delta^2}{\delta z^2} \; P = \tilde{\delta}_1
\]

(3.23)

Then \(P \) can be obtained by Fourier transforming (3.23),

\[
-\mathbf{k}_1 \mathbf{k}_1 \; \hat{P} = \hat{\delta}_1
\]

(3.24)

As will be shown shortly, the pressure from this does not give a divergence-free field in grid space at the next time step. Hence, this method, which was used by Jain (1967), is also unsatisfactory.

(c) **Method 3**

The finite difference forms of (3.20a) and (3.20b) are

\[
\frac{\delta \tilde{u}_{\mathbf{i}}}{\delta t} - \tilde{h}_{\mathbf{i}} = -\frac{\delta}{\delta x_{\mathbf{i}}} \; P
\]

(3.25a)

\[
\mathbf{D} \tilde{u}_{\mathbf{i}} = 0
\]

(3.25b)

where \(\tilde{h}_{\mathbf{i}} \) is difference approximation to \(h_{\mathbf{i}} \). If we apply the \(\mathbf{D} \) operator to (3.25a),

\[
\mathbf{D} \mathbf{G} \; P = \frac{\delta}{\delta t} \; (\mathbf{D} \tilde{u}_{\mathbf{i}}) + \mathbf{D} \tilde{h}_{\mathbf{i}} = \delta'_{\mathbf{i}}
\]

(3.26)

Then, taking the Fourier transform of (3.26), and using (3.13),

\[
-\mathbf{k}'_1 \mathbf{k}'_1 \; \hat{P} = \hat{\delta}'_{\mathbf{i}}
\]

(3.27)

Now let's compare the three methods. The Fourier transform of (3.25a) is
\[
\frac{\delta \hat{u}_1}{\delta t} - \hat{h}_1 = -i k_1 \hat{p} \quad (3.28)
\]

To satisfy continuity in grid space, we want to have
\[
\frac{\delta}{\delta t} \frac{\delta \hat{u}_1}{\delta x_1} = 0
\]
for a flow that has $\bar{D}u_1 = 0$ to start. From (3.5), this is equivalent to $k'_{1} \hat{u}_1 = 0$ at the first and next time steps. Using (3.21), and substituting \hat{P} in (3.28) by \hat{P} from (3.22), (3.24) or (3.27) and operating with D on the resulting equations, one obtains,

for method 1:
\[
\frac{\delta}{\delta t} (k'_{1} \hat{u}_1) = \left(\hat{h}_1 - \frac{k'_{1} k'_{1}}{k^2} \hat{h}_j \right) k'_{1} \neq 0 \quad (3.29)
\]

for method 2:
\[
\frac{\delta}{\delta t} (k'_{1} \hat{u}_1) = \left(\hat{h}_1 - \frac{k'_{1} k'_{1}}{k^2} \hat{h}_j \right) k'_{1} \neq 0 \quad (3.30)
\]

for method 3:
\[
\frac{\delta}{\delta t} (k'_{1} \hat{u}_1) = \left(\hat{h}_1 - \frac{k'_{1} k'_{1}}{k^2} \hat{h}_j \right) k'_{1} \equiv 0 \quad (3.31)
\]

The error introduced by method 1 and method 2 can be seen clearly by observing the magnitude of the ratio k'^2/k^2 or k'^2/k^2 as illustrated in Fig. 3.2. Method 3 satisfies continuity at the next time step in grid space, and hence is chosen for pressure field solution here.

3.7 Summary of Difference Equations

Momentum equation:
\[
\frac{\delta \bar{u}_1}{\delta t} = - \frac{\delta}{\delta x_j} \left\{ \bar{u}_1 \bar{u}_j + \frac{A^2}{24} \frac{\delta^2}{\delta x_k \delta x_k} (\bar{u}_1 \bar{u}_j) - 2 \nu \bar{S}_{ij} \right\} - \frac{\delta \bar{P}}{\delta x_1} \]
\[
= \hat{h}_1 - \frac{\delta \bar{P}}{\delta x_1} \quad (3.32)
\]
Poisson equation for P:

$$\text{DG}(P) = D(h_i)$$ \hspace{1cm} (3.33)

where

$$P = \frac{\rho}{\rho} + \frac{1}{3} R_{ii}$$

$$\tilde{S}_{ij} = \frac{1}{2} \left(\frac{\delta \tilde{u}_i}{\delta x_j} + \frac{\delta \tilde{u}_j}{\delta x_i} \right)$$

$$\nu_T = (c_S \Delta_A)^2 (2S_{ij} S_{ij})^{1/2} : \text{Smagorinsky model}$$

$$= (c_v \Delta_A)^2 (\omega_i \omega_i)^{1/2} : \text{Vorticity model}$$

$$\omega_i = \epsilon_{ijk} \frac{\delta \tilde{u}_j}{\delta x_k}$$

c_S, c_v = constant
4.1 Problem Description

Perhaps the most basic problem in turbulence is the decay of incompressible homogeneous isotropic turbulence. It is with this primitive turbulent flow that our study began. This flow was used to determine the value of the residual stress model constant (C_s or C_v), for use in subsequent calculations of other flows. It also provided a basic testing ground for the computational methods being developed in this program.

The experimental grid turbulence data of Comte-Bellot and Corrsin (1971) were used as the "target" for these predictions. Such experiments closely approximate homogeneous isotropic turbulence, when viewed in a coordinate frame translating at the mean flow velocity.

4.2 The Benchmark Experiment

The pertinent information from Comte-Bellot and Corrsin's (1971) experiments will be reviewed now. The wind tunnel test section, which has a slight secondary contraction to isotropize the turbulence, is sketched in Fig. 4.1. The turbulence was generated by a biplane square rod grid with mesh size, M, of 5.08 cm. The free-stream air speed, U_o, was 10 m/sec, giving grid mesh Reynolds number $U_o M / \nu$ of 34,000. The streamwise ($<u^2>$) and transverse ($<v^2>$, $<w^2>$) turbulent energy components remained nearly equal to each other during the decay along the test section. These were closely fit by

\[
\frac{U_o^2}{<u^2>} = 21 \left(\frac{U_o t}{M} - 3.5 \right)^{1.25}
\]

(4.1a)

\[
\frac{U_o^2}{<v^2>} \approx \frac{U_o^2}{<w^2>} \approx 20 \left(\frac{U_o t}{M} - 3.5 \right)^{1.25}
\]

(4.1b)

Correlations, energy spectra and other quantities were measured using
hot wire anemometry at $U_0 t/M = 42, 98$ and 171. The Reynolds number based on the Taylor microscale, $R_\lambda = \sqrt{\langle u'^2 \rangle \lambda / \nu}$, was $71.6, 65.3$ and 60.7 at these points.

4.3 Mesh Size Selection

The choice of the computational mesh size requires consideration of the turbulence spectrum (Fig. 4.3). The smallest scales that can be resolved have wave number π/Δ, where Δ is the mesh width. If there are N points in one direction, the largest scales that will be represented in the computation have wave number $2\pi/(N\Delta)$. N and Δ must be chosen such that the computation captures as much of the turbulence energy as possible. It is also desirable that the computation extend to the so-called inertial subrange (Tennekes and Lumley 1972).

The mesh systems used were as follows:

16^3 mesh

$\Delta = 1.5$ cm, $N = 16$, $\Delta t = 6.25 \times 10^{-3}$ sec

32^3 mesh

$\Delta = 1.0$ cm, $N = 32$, $\Delta t = 6.25 \times 10^{-3}$ sec

The model constants were first evaluated using the 16^3 mesh; the 32^3 calculation then verified that the constants are independent of mesh size.

The corresponding Courant numbers were:

$$Nc \equiv \sqrt{q^3 / 3} \frac{\Delta t}{\Delta x}, \quad q^2 = \langle u'^2 \rangle + \langle v'^2 \rangle + \langle w'^2 \rangle$$

16^3 mesh

$Nc \leq 0.06$

32^3 mesh

$Nc \leq 0.1$
4.4 Initial Conditions

We want to prescribe an initial profile that has the proper energy content and spectrum, and is isotropic. A technique for generating a random field that meets these conditions, and also satisfies continuity, was developed for this purpose. Since the computation will treat the filtered field, we matched the initial filtered spectrum and not the initial measured spectrum.

We generated initial filtered field, \(\bar{u}_i(x) \), by first establishing its discrete Fourier transform, \(\hat{u}_i(k_n) \),

\[
\bar{u}(x) = \sum_{n=-N/2}^{N/2-1} \sum_{n_1}^{N_1} \hat{u}(k_n)e^{ik \cdot x}
\]

Here \(k_n \) is the wave number vector defined by \((k_n)_i = \frac{2\pi}{N \Delta} n_i \), where \(n_i \) is an integer ranging from \(-1/2N\) to \(1/2N-1\) for an \(N^3 \) mesh system. Note that the maximum wave number is \(k_{\text{max}} = \pi/\Delta \). If \(\bar{u} \) is discretized at \(N \) points, then the Fourier transform \(u \) can only be evaluated at \(N \) discrete wave numbers, and that is why the summation must have non-symmetric limits.

The commonly used fast Fourier transform requires \(N \) to be \(2^m \), where \(m \) is an integer (see Cochran et al. 1967). Physically \(N \) has to be large enough so that wave-number spectra can be treated as smooth functions. As will be shown later, \(16^3 \) or \(32^3 \) mesh systems gave fairly smooth three-dimensional energy spectra.

Now, we can approximate the spectrum function, \(\phi_{ij} \), of the filtered field (see Tennekes and Lumley 1972) as,

\[
\phi_{ij}(k_n) = \langle \hat{u}_i(k_n) \hat{u}_j^*(k_n) \rangle
\]

where \(\langle \rangle \) denotes an average over an ensemble of experiments or, alternatively, over a spherical shell in \(k \)-space with radius \(k_n \) (see Section 4.6).
The filtered 3-D energy spectrum, \(\overline{E} \), is given by

\[
\overline{E}(k) = 2\pi k^2 \phi_i(k) \tag{4.4}
\]

\(E(k)dk \) is the energy content of a differentially thick spherical shell in wave-number space. Using (4.3), \(\overline{E}(k) \) is approximated by

\[
\overline{E}(k) \approx 2\pi k^2 \left< \hat{u}_i(k_n) \hat{u}_i^*(k_n) \right> \tag{4.5}
\]

To establish the initial field we need to fix the Fourier amplitudes \(\hat{u}_i(k_n) \). Equation (4.5) was used to fix \(\hat{u}_i(k_n) \hat{u}_i^*(k_n) \) for each \(k \).

The vector components \(u_i \) were chosen by a technique described below.

To get \(\hat{u}_i \) to satisfy continuity in grid space, the real and imaginary parts of the transformed velocity vector, \(\hat{u} \), must be perpendicular to the modified wave-number vector, \(\hat{k'} \) (see Equation (3.5)). In the actual computation, we have \(N^3 \) points in \(k \)-space, and, for any \(k \), \(k' \) can be obtained by (3.4). Then, \(\hat{u} \) has to be selected on a perpendicular plane to \(k' \) in \(k \)-space.

To ensure statistical isotropy, the real and imaginary parts of \(\hat{u} \) must be chosen randomly. First we picked a unit vector \(\hat{A} \), perpendicular to \(\hat{k'} \), by turning a random angle, \(\phi \), from a reference frame (Fig. 4.2). Here \(\phi \) was selected with uniform probability over the interval 0 to \(2\pi \). We then repeated to get a second random unit vector \(\hat{B} \), also perpendicular to \(\hat{k'} \). The real part of \(\hat{u} \) was made proportional to the vector \(\hat{A} \) and the imaginary to \(\hat{B} \), and hence continuity was satisfied. We still needed to fix the relative magnitudes of the real and imaginary parts of \(\hat{u}(k) \), which we did by a random choice of an angle, \(\theta \). Then we defined \(a \) and \(b \) by

\[
a = \cos \theta, \quad b = \sin \theta \tag{4.6}
\]

Finally, we set

\[
\hat{u}_j(k_n) = \left| \hat{u}_k(k_n) \hat{u}_k^*(k_n) \right|^{1/2} (aA_j + ibB_j) \tag{4.7}
\]
Now, by inverse transforming \(\hat{u}_1 \), we obtained \(\tilde{u}_1 \), which must be real and will be real if the Fourier transform satisfies

\[
\hat{u}(-k_n) = \hat{u}(k_n)
\]

(4.8)

In essence, the imaginary contribution for each negative \(k_n \) exactly cancels the imaginary contribution of the same positive \(k_n \). Hence, we only needed to generate \(\hat{u}_1 \) by (4.7) for the upper half of the \(k \)-space, i.e. for \(0 \leq n \leq \frac{N}{2} - 1 \). However, this won't fix \(\hat{u} \) for \(n_1 = -\frac{N}{2} \).

Moreover, if \(\hat{u} \) is not zero, the velocity field will have an imaginary part (see (4.2)). If instead we wrote (4.2) as

\[
\tilde{u}_1(x) = \sum_{-N/2}^{N/2} \sum \sum \hat{u}_1(k_n) e^{i k_n \cdot x}
\]

then \(\tilde{u}_1 \) would be real. However, then we could not take advantage of the FFT routine to invert \(\hat{u}_1 \). As a practical solution to this dilemma we set \(\hat{u}_j \) equal to zero for the wave numbers corresponding to \(n_1 = -1/2N \). Then (4.2) is essentially the same as

\[
\tilde{u}(x) = \sum_{-\frac{N}{2} - 1}^{\frac{N}{2} - 1} \sum \sum \hat{u}(k_n) e^{i k_n \cdot x}
\]

and \(\tilde{u}_1 \) will be real, and an FFT routine may be used. The resulting energy spectrum was therefore slightly low at the highest wave number. However, the effect of this discrepancy was insignificant and became invisible after a few time steps in the computation.

We remark that the field generated by this procedure is quite isotropic. However, as will be shown it has zero skewness, whereas real turbulence has a non-zero skewness. As will be seen, this condition corrected itself in only a few time steps.
4.5 Boundary Conditions

The computational problem can only extend over a part of the experimental region. To get around this difficulty we have used "periodic" boundary conditions, which are of course not really correct. However, if the computational grid system extends over a distance large compared to the scale of the energy-containing motions, the periodic boundary conditions should not introduce appreciable error. The periodic boundary conditions have a great advantage in dealing with the Poisson equation for the pressure by fast Fourier transform (FFT) methods.

4.6 Extraction of Statistical Information from the Computation

The statistical quantities of interest are averages over ensembles of experiments. Since we made only one computational realization in each case, the statistical quantities had to be inferred from appropriate ergodic hypotheses.

In physical space the ensemble average < > was replaced by an average over the flow field. This was done by taking a mean value over N³ mesh points, i.e.

\[
<f(x)> = \frac{1}{N^3} \sum_{k,l,m=1}^{N} \sum f(k,l,m)
\]

(4.9)

The differencing schemes described in Chapter III were used to calculate these quantities.

In wave number space, the ensemble average was replaced by an average over a shell in k-space ("shell average"). Since we have only N³ discrete points in k-space, the < > average was made by taking a mean value over the points between the two shells with radius (k-1/2Δk) and (k+1/2Δk).

To get the filtered spectrum, \(\tilde{E}(k) \), the transformed velocity, \(\tilde{\mathbf{u}} \), was obtained by FFT (see 4.2). Then, \(<\tilde{u}_1(k)\tilde{u}_1^*(k)> \) was calculated by shell-averaging. The choice of the band width, \(\Delta k \), is somewhat arbitrary and was set to be 0.1 cm⁻¹ here. Then, from (4.5),
where N_k is the number of points between the two shells with radius $(k-1/2\Delta k)$ and $(k+1/2\Delta k)$. The resulting spectra, evaluated at 0.1 cm$^{-1}$ wave-number intervals, were smooth enough to be represented by continuous curves as shown by solid lines in Fig. 4.4, 4.5, and 4.7. The filtered spectrum, $\bar{E}(k)$, was then compared to the filtered experimental spectrum, which we obtained using (2.23).

4.7 Selection of the Averaging Scale

Considerable thought was given to the choice of the averaging scale Δ_A. Our failures are as important as our successes, and both will now be discussed.

Consider first the computation with $\Delta_A = 0$. This zero averaging length is equivalent to the unfiltered calculations used in laminar flow, and implies that we are trying to resolve the complete spectrum by a finite difference method. The Leonard term in this case is equal to zero, i.e. $u_i^* u_j = u_i u_j$.

The unfiltered initial energy spectrum is plotted in Fig. 4.3. The amounts of unfiltered energy for the 16^3 mesh and 32^3 mesh systems are also shown. Figure 4.4 shows the computation for a value of C_s that gives the proper rate of energy decay. Note that for $k > 1/2k_{max}$ the spectrum is distorted considerably at $tU_o/M = 86.5$ and become worse as time increases.

In an instantaneously fluctuating field, higher derivatives are not small and the convergence of the Taylor series is expected to be slow. Use of $\Delta_A = 0$ and the consequent exclusion of the Leonard term caused much distortion of the spectrum, i.e. aliasing error. Indeed, the finite difference method with N mesh points in one direction can only resolve the unfiltered field up to $k = \pi/(2\Delta) = k_{max}/2$, which is a half the maximum wave number in one direction (see Orszag 1969, Orszag and
Israeli 1974). Judging from Fig. 4.4, in a computation without filtering the non-linear interactions transfer too much energy from large to small scales. This excess up-scale energy transfer could be somewhat reduced by using a larger coefficient in the residual stress model. However, this brings an unreasonably high energy decay rate. We conclude that one should never use $\Delta_A = 0$ in a turbulence simulation; filtering is essential.

Let's look next at what happens when the averaging scale Δ_A is equal to the mesh scale Δ. Figure 4.5 shows a computation with a value of C_s that gives the proper energy decay. Note that the errors in the predictions of the filtered spectrum are significant at high wave numbers.

Consider now the computations with $\Delta_A = 2\Delta$, shown in Fig. 4.6, run for values of C_s and C_v that give the proper energy decay. The predictions of the filtered spectrum for both residual stress models are remarkably accurate, even in the coarse 16^3 calculation!

To investigate the effect of the Leonard term separately from the filtering, an additional calculation with $\Delta_A = 2\Delta$ was run with the vorticity model, excluding the Leonard terms (Fig. 4.7). The prediction is poor on high wave number side. Evidently the Leonard terms assists in removal of energy from high wave numbers. We conclude that good results will be obtained with $\Delta_A = 2\Delta$, and that the Leonard terms must be included.

4.8 Selection of C_s and C_v

An analytical way of determining the residual stress model constants, C_s or C_v, is not known. Lilly (1966) estimated $C_s = 0.2$ using several ad-hoc assumptions. Later workers (Deardorff 1971, Fox and Deardorff 1972) calibrated this constant to get the best computational results. In these cases, the required C_s was between 0.10 and 0.22.

In the present study a series of 16^3 mesh calculations were run with different values of each constant, and values selected that gave the best prediction for the filtered rate of energy decay as judged by consideration of the slope of the curve (Fig. 4.10). The constants obtained were as
Figure 4.9 shows the sensitivity of the predicted filtered energy decay to C_s. Figure 4.10 shows the excellent agreement of the energy history with the data for the final constants.

Figure 4.11 shows the energy decay rate from the 32^3 calculation with these same constants. The spectral results are shown in Fig. 4.8. The excellent agreement with data confirms that the model constants do not vary with the mesh size, at least in the range covered.

In comparing Fig. 4.10 and 4.11, it must be remembered that these are the filtered energies, which are different in these two mesh systems. Because of the discrete Fourier approximation, not all the turbulent energy is captured (see Fig. 4.3). Filtering improves the situation, because less energy is omitted from the filtered field at high wave number. However, the energy in the discrete approximation to the filtered field was still less than that in the filtered experimental field. To facilitate selection of the constants, the filtered experimental history was shifted as shown in Fig. 4.10 and 4.11.

4.9 Energetics of the Filtered Field

Multiplying (2.28) by $\bar{u_i}$, and taking an ensemble average, and assuming homogeneity, one finds

$$\frac{dq^2}{dt} = -\varepsilon = -(\varepsilon_R + \varepsilon_L) \quad (4.11a)$$

where $q^2 = <\bar{u_i} \bar{u_i}>$.

The dissipation ε is seen to have two parts, a part representing transfer to the residual field.

*The three digits are not meant to imply accuracy. We actually ran with

$$(2C_s)^2 = 0.17 \quad , \quad (2C_v)^2 = 0.26$$
\[\varepsilon_R = - \langle \bar{u}_i \frac{\partial}{\partial x_j} (2\nu_T \bar{S}_{ij}) \rangle \]
(4.11b)

and a Leonard term part,

\[\varepsilon_L = + \langle \bar{u}_i \frac{\partial}{\partial x_j} \frac{\Delta^2}{24} \bar{v}^2 - \bar{u}_i \bar{u}_j \rangle \]
(4.11c)

To see the relative contributions of the Leonard term and the residual scale motions to the energy decay rate, \(\varepsilon_L/\varepsilon_o \) and \(\varepsilon_R/\varepsilon_o \) are shown in Fig. 4.14. Here \(\varepsilon_o \) is the sum of \(\varepsilon_L \) and \(\varepsilon_R \) at \((U_0 t/M - 3.5) = 42 \) where the computation started. \(\varepsilon_L \) is much smaller than Leonard estimated (1973). As shown by Leonard (1975), \(\varepsilon_L \) takes energy mostly from the large wave number side thus preventing the damming up of energy in the smaller eddies.

4.10 Other Aspects

No significant difference is observed between Smagorinsky and vorticity models. However, some differences are expected in future applications to unbounded flow problems with turbulent and non-turbulent regions.

The skewness, which is a measure of vorticity production in the energy cascade process, is shown in Fig. 4.12 and 4.13. Since the initial field is randomly generated, the skewness is zero initially, but quickly adjusts to essentially a constant value. For the \(16^3 \) calculation the value is clearly too low (the experimental skewness is about -0.4). For the \(32^3 \) calculation the skewness seems slightly high.

We have emphasized the need for a fourth order differencing scheme, and wonder why others have been able to do so well with second order schemes. The reason may be that the second order difference form of the advection term implicitly includes Leonard-like second order truncation terms and thus the Leonard term is partially taken care of by the truncation. If a fourth order scheme is to be used, the Leonard terms should be included explicitly. We have seen that they are important, particularly at the high wave numbers. We conclude that, for a grid calculation of the type run here, the best results will be given by the fourth-order difference scheme that incorporates the Leonard terms.
A question arose as to the behavior of the vorticity under the difference scheme used here. A two-dimensional irrotational flow was input, \(\nabla T \) was set equal to zero, and two time steps were taken. The vorticity remained exactly zero, indicating that, at least in a two-dimensional flow, the differencing scheme will not produce unwanted vorticity. This aspect of the computation should receive further study in the future.

4.11 Computational Details

The calculations described above were executed on the CDC 7600 at Lawrence Berkeley Laboratory, using programs written in FORTRAN (Appendix II). The total storage requirements (octal) for 60 bit words were as follows:

16\(^3 \) calculation
Large Core Memory: 230,360
Field Length (Small Core) required to load: 121,200

32\(^3 \) calculation
Large Core Memory: 1,100,234
Field Length (Small Core) required to load: 121,200

The computer time per computational step was approximately as follows:

16\(^3 \) calculation: CPU time \(\approx \) 3 sec
32\(^3 \) calculation: CPU time \(\approx \) 20 sec

The calculation program was carefully checked before these production runs. To check each term in the difference equation (3.32) and (3.33), we imposed systematically artificial flow fields. For the terms involving first derivatives of velocities such as \(\overline{s}_{ij}, \overline{w}_i, \nabla T, \frac{\delta}{\delta x_i} (\overline{u}_i \overline{u}_j) \) and \(\nabla T \), the following linear velocity field was used:

\[
\begin{align*}
\overline{u} &= x + 2y + 3z \\
\overline{v} &= 4x + 5y + 6z \\
\overline{w} &= 7x + 8y + 9z
\end{align*}
\]
Then the computed results were compared to the exact values. For the terms with second derivatives, the following quadratic expressions were used:

\[
\begin{align*}
\bar{u} & = x^2 + 2y^2 + 3z^2 \\
\bar{v} & = 4x^2 + 5y^2 + 6z^2 \\
\bar{w} & = 7x^2 + 8y^2 + 9z^2
\end{align*}
\]

Then, at randomly picked mesh points, the computer results for the advection terms, the Leonard terms, \(\bar{\mathbf{R}_1} \), and \(\mathbf{D}(\bar{\mathbf{R}}_1) \) were compared to the exact values obtained analytically.

For the Poisson solver, a sinusoidal pressure field was used to generate \(\mathbf{D}(\bar{\mathbf{p}}) \), then the computer results were checked against the imposed pressure field. The initial field was generated as described in Section 4.4 and two time steps were advanced. The subsequent results provided a testing ground for time stepping, the maintenance of a divergence-free velocity field, the overall sequence of computing, and input, output, tape handling, and data reduction routines.

The computer program is given in Appendix II.
CHAPTER V
DISTORTION OF HOMOGENEOUS TURBULENCE BY
IRROTATIONAL PLANE STRAIN

5.1 Problem Description
Shear may be viewed as a combination of pure strain and rotation. Therefore, a basic problem is that of homogeneous turbulence acted upon by an imposed uniform homogeneous irrotational strain. Tucker and Reynolds (1968) approximated such a flow experimentally by passing grid-generated turbulence through a passage designed to produce uniform strain in a coordinate system translating with the mean flow velocity. This experimental flow approximates the problem of box turbulence with a constant rate of strain, shown in Fig. 5.1b.

In this chapter we discuss the computation of an idealized homogeneous flow with irrotational pure strain, comparable to the Tucker-Reynolds laterally strained flow. In addition, we treat the return to isotropy following the removal of strain, which roughly corresponds to the experiment in the uniform channel downstream of the straining section.

Tucker and Reynolds did not measure the energy spectrum and hence we cannot make an exact comparison with their data. However, for a qualitative comparison, the initial turbulent intensities in the computation were set to be equal to the experimental values at the beginning of the strained section. Two cases were run. The first case was run with approximately the same initial anisotropy as the experiments. However, there are problems in that the anisotropic field so generated had improper shearing stresses. Therefore, a second calculation was made with an initially isotropic field, and this flow has been used to study the effects of pure strain on homogeneous turbulence.

The initial field for the computation was based on an energy spectrum similar to that used in Chapter IV. However, the Tucker-Reynolds initial energy level was much higher than the energy in the grid flow studied in Chapter IV. To adjust the energy, the amplitude of the Fourier coefficients were multiplied by a constant. The initial one-dimensional energy spectra are shown in Figs. 5.11 and 5.12 by solid curves.
The strain-rate used in the calculation was different from that of the Tucker-Reynolds experiments. In an initial calculation their strain rate was used, but the energy-decay rate in the relaxation section did not match their experiments. The difference was attributed to differences between their (unmeasured) spectrum and that used to start the calculation. We first computed the energy-decay rate in the absence of strain as shown by the solid lines in Fig. 5.5 and 5.8. Then, the strain-rate was determined to get the same total strain as in the Tucker-Reynolds experiments at a point in the flow that would have the same energy in the absence of strain. The final calculations were performed using this strain rate. Therefore, the calculation should be regarded as a "Tucker-Reynolds-like" flow, and not as a simulation of their flow.

5.2 Governing Equations

To handle the imposed mean strain, we express the local velocity and pressure field as*

\[u_i(x,t) = U_i(x) + u''_i(x,t) \]
\[p(x,t) = P(x) + p''(x,t) \]

where

\[U_i = (U,V,0) = (\Gamma x, -\Gamma y, 0) \]
\[P = -\frac{1}{2} \rho \Gamma^2 (x^2 + y^2) \]

\(\Gamma \) is the constant strain-rate. With this decomposition, the Navier-Stokes equations for incompressible flow become

\[\frac{\partial}{\partial t} (U_i + u''_i) + \frac{\partial}{\partial x_j} \left\{ (U_i + u''_i)(U_j + u''_j) \right\} \]
\[= -\frac{1}{\rho} \frac{\partial}{\partial x_i} (P + p'') + \frac{\partial}{\partial x_j} \left\{ \nu \frac{\partial}{\partial x_j} (U_i + u''_i) \right\} \]

*Note that we place the strain in the \(x_1-x_2 \) plane, while Tucker and Reynolds placed it in the \(x_1-x_3 \) plane.
Now, using the definition (5.2), and noting that \(\partial^2 U_i/\partial x_k \partial x_l = 0 \),
this reduces to

\[
\frac{\partial}{\partial x_1} (U_i + u''_i) = 0 \tag{5.3b}
\]

Now, we express each variable quantity, \(f'' \), as

\[
f'' = \overline{f} + f' \tag{5.5a}
\]

where

\[
\overline{f}(x) = \int G(x-x') f''(x') \, dx' \tag{5.5b}
\]

Note that \(\overline{f} \) is now the filtered \(f'' \) field. The \(U_i u''_i \) term in (5.4a)
is filtered using the method described in chapter II, giving

\[
\overline{U_i u''_i}(x_0) = \int G(x,x_0) \left[U_i(x_0) + U_i(x_0) \right]
\]

\[
\left[\frac{\partial u''_i(x_0)}{\partial x_k} (x_k-x_0) + \frac{\partial^2 u''_i(x_0)}{\partial x_k \partial x_l} (x_k-x_0)(x_l-x_0) \right]
\]

\[
+ \ldots u''_i \right] dx \]

\[
= U_i \overline{u} + \frac{\Delta^2}{24} V^2 U_i \overline{u} + O(\Delta^4) \tag{5.6}
\]
The model for the residual stress, R_{ij}, is taken as

$$R_{ij} = \frac{1}{3} R_{kk} \delta_{ij} - \nu_T 2 S_{ij}$$ \hfill (5.8)

where now S_{ij} is the total strain-rate,

$$S_{ij} = \frac{1}{2} \left\{ \frac{\partial}{\partial x_j} (U_i + U_i) + \frac{\partial}{\partial x_i} (U_j + U_j) \right\}$$ \hfill (5.9a)

Since we expect the strain-rate to be dominated by small scales, the eddy viscosity, ν_T, was evaluated using the vorticity model,

$$\nu_T = (C_v A_k)^2 (\overline{\omega_i \omega_i})^{1/2}$$ \hfill (5.9b)

$$\overline{\omega} = \text{curl} \overline{u}$$ \hfill (5.9c)

Since the imposed flow is irrotational, ν_T is based on the total RMS vorticity.

Then, filtering (5.4), and again neglecting the viscous term, the following equations are obtained (compare (2.28)).

$$\frac{\partial \overline{u_i}}{\partial t} = - \frac{1}{\partial x_j} \left\{ \overline{u_i u_j} + \frac{\Delta^2}{24} \nu^2 (\overline{u_i u_j}) - 2 \nu_T (S_{ij} + \frac{\partial}{\partial x_i}) \right\}$$

$$- \frac{\partial P}{\partial x_i} + F_i$$ \hfill (5.10a)

$$\frac{\partial \overline{u_i}}{\partial x_i} = 0$$ \hfill (5.10b)

where

$$P = \frac{\overline{p}}{\rho} + \frac{1}{3} R_{ii}$$ \hfill (5.11a)

and

$$\mathcal{A}_{ij} = \frac{1}{2} \left(\frac{\partial U_i}{\partial x_j} + \frac{\partial U_j}{\partial x_i} \right)$$ \hfill (5.11b)
F_i are the terms through which the major effects of the mean strain come in. These are

$$F_i = \frac{3}{\partial x_j} \left[u_i u_j + u_j u_i + \frac{\Delta A}{24} \nabla^2 \left(u_i u_j + u_j u_i \right) \right]$$ \hspace{1cm} (5.11c)

Note the appearance of a Leonard correction term.

For the computation, the difference form of (5.10) is used,

$$\frac{\delta u_i}{\delta t} = - \frac{\delta}{\delta x_j} \left\{ \frac{\Delta A}{24} \frac{\delta^2}{\delta x_k \delta x_k} u_i u_j - 2v_T (S_{ij} + \delta_{ij}) \right\}$$

$$- G(P) + \tilde{F}_i$$ \hspace{1cm} (5.12)

where \tilde{F}_i is the difference form of F_i and

$$S_{ij} = \frac{1}{2} \left(\frac{\delta u_i}{\delta x_j} + \frac{\delta u_j}{\delta x_i} \right)$$ \hspace{1cm} (5.13)

The exact expressions for δ_{ij} were used. As before, the Poisson equation for P is obtained by operating with D on (5.10a),

$$DG(P) = D(h_i) + D(\tilde{F}_i) - \frac{\delta}{\delta t} D(u_i)$$ \hspace{1cm} (5.14)

where

$$h_i = - \frac{\delta}{\delta x_j} \left\{ u_i u_j + \frac{\Delta A}{24} \frac{\delta^2}{\delta x_k \delta x_k} u_i u_j - 2v_T (S_{ij} + \delta_{ij}) \right\}$$ \hspace{1cm} (5.15)

The space differencing and the time advancing schemes are the same as those explained in Chapter III. Periodic boundary conditions in all three directions were imposed, and the same solution procedure as described in Chapter IV was applied.

5.3 Anisotropic Initial Condition

Anisotropy in grid generated turbulence is not negligible in many experiments (e.g. Grant and Nisbet 1957), Uberoi (1963), Tucker and Reynolds (1968)). Therefore, to make the initial condition reasonably
close to the experiments, it was felt desirable to generate an initial
field with anisotropy. A method for this will now be described.

Suppose that the \(u \) and \(v \) components of turbulence energy are
equal while the \(w \) component is different,

\[
\langle u^2 \rangle = \langle v^2 \rangle \tag{5.16a}
\]

\[
\langle w^2 \rangle = (1+R) \langle u^2 \rangle \tag{5.16b}
\]

where \(\langle \rangle \) denotes an average over an ensemble of experiments. For
the Tucker-Reynolds experiments, \(w \) is in the mean flow direction and
\(R = 0.45 \). Now let us decompose \(w \) into its isotropic part, \(w_I \), and
anisotropic part, \(w_A \), such that

\[
\langle u^2 \rangle - \langle v^2 \rangle = \langle w^2 \rangle \tag{5.17a}
\]

\[
w = w_T + w \tag{5.17b}
\]

If we assume that the isotropic part can be generated by the method in
Chapter IV, then, for continuity to be satisfied,

\[
D (w_A) = 0 \tag{5.18}
\]

This is a crude assumption. However, unless we know more about the
initial turbulence structure, this is perhaps the best we can do. Now
(5.18) in Fourier transformed space can be written as,

\[
\hat{\nabla}^2 w_A k_3 = 0 \tag{5.19}
\]

where \(\hat{\nabla} \) denotes a Fourier transform and \(k_3 \) is defined by (3.4).
Therefore, \(\hat{w} \) can have a non-zero values only when \(k_3 = 0 \). Then,
following the same procedure discussed in Section 4.4, we get
\[
\hat{w}_A(k_1, k_2, 0) = \left(\frac{R}{3R} \hat{q}^2 \right)^{1/2} (a+ib) \tag{5.20}
\]

where

\[
\hat{q}^2 = \hat{u}^* \hat{u}^* + \hat{v}^* \hat{v}^* + \hat{w}_I \hat{w}_I + \hat{w}_A \hat{w}_A
\]

and \(a = \cos \theta\), and \(b = \sin \theta\) are obtained from a random angle, \(\theta\), with uniform probability from 0 to \(2\pi\).

The initial condition for the first run was generated by this procedure and, for an input \(R\) of 0.45, the generated field emerged with \(R = 0.43\). This field had shearing stresses not present in the actual flow, and so the second run was made using an isotropic initial field generated by the method described in Chapter IV. Further studies in Section 5.5 and 5.6 are based on the second run. Both runs are reported for completeness.

5.4 Results

The results of the following two cases are presented.

(1) Anisotropic initial field

\[
\frac{\mathbb{<}\omega^2>}{\mathbb{<}u^2>} = \frac{\mathbb{<}\omega^2>}{\mathbb{<}v^2>} = 1.43
\]

(2) Isotropic initial field

\[
\mathbb{<}u^2> = \mathbb{<}v^2> = \mathbb{<}\omega^2>
\]

For both cases, the mean stream speed was taken as \(w_o = 240\) in/sec, \(\Gamma = 1.457/\sec\), \(\Delta = 0.59\) in and \(\Delta t = 5.36 \times 10^{-3}\) sec. This corresponds to a Courant number \(\sqrt{q^2/3 + u_{\text{max}}^2} \Delta t/\Delta \leq 0.15\). The \(16^3\) mesh system was run using the vorticity model, with \(C_v = 0.206\) as obtained from the isotropic decay studies.
For convenience of reader, three of the Tucker-Reynolds measurements for the turbulent intensities, $\frac{\langle u_1^2 \rangle}{\langle w_0^2 \rangle}$, the turbulent energy ratios, $\frac{\langle u_1^2 \rangle}{\langle \nu \rangle}$, and the structural parameter, $K_1 = \frac{\langle \nu^2 \rangle - \langle u^2 \rangle}{\langle \nu^2 \rangle + \langle u^2 \rangle}$, are replotted in Figs. 5.2, 5.3 and 5.4. For the case 1, the same quantities are plotted in Figs. 5.5, 5.6 and 5.7. Here, for comparison, the time in computed results, t, are converted into the downstream distance, Z, by $Z = \frac{W_0}{t}$. The behavior of these are comparable to Tucker and Reynolds results. However, when the strain is turned off, the rate of return to isotropy is much slower than in the experiments. It is interesting that this is consistent with the feelings of some workers that the return to isotropy in the Tucker-Reynolds flow is too rapid (Reynolds 1975), perhaps because of defects in the experimental simulation of homogeneity. The same quantities for case 2 are shown in Figs. 5.8, 5.9 and 5.10.

One-dimensional energy spectra were obtained in a similar manner to that described in Chapter IV (see Tennekes and Lumley (1972)). The only difference is that the shell average in Chapter IV is replaced by a plane average in wave-number space, i.e.

$$\overline{E}_{11}(k_1) = \frac{1}{N^2} \sum_{k_2} \sum_{k_3} \hat{u}(k_n) \hat{u}^*(k_n)$$

(5.21)

Here, the notations are the same as before. These spectra were computed at three different times or downstream locations (Figs. 5.11 and 5.12). At zeroth time step, $\overline{E}_{11}(k_1)$, $\overline{E}_{22}(k_2)$, and $\overline{E}_{33}(k_3)$ are almost identical, as they should be. By the end of the straining period (75th time step), E_{11} and E_{22} have become quite different. E_{11} is flatter on the large eddy side while both small-scale spectra are nearly the same. Over the last period, in which there is no strain, the spectra approached one another very slowly, as seen by the spectra at the 125th time step.

The calculations were run on a CDC 7600, and required approximately 7 minutes for each case. Storage requirements were similar to those for isotropic decay.
5.5 Energetics of the Filtered Field

Multiplying (5.10) by \(\overline{u_i u_k} \), taking the ensemble average, and assuming homogeneity, one finds (compare (4.11))

\[
\frac{\partial q^2}{\partial t} = \mathcal{P} + \mathcal{P}_L - \varepsilon_R - \varepsilon_L
\]

(5.22)

where

\[
q^2 = \langle u_1 u_1 \rangle
\]

(5.23a)

\[
\mathcal{P} = -\langle u_i u_j \rangle \frac{\partial u_j}{\partial x_i}
\]

(5.23b)

\[
\mathcal{P}_L = -\frac{\Delta^2}{24} \left\{ \langle u_1 \frac{\partial}{\partial x_i} \rangle \nabla^2 \langle u_1 u_j \rangle \rangle + \langle u_1 \frac{\partial}{\partial x_i} \rangle \nabla^2 \langle u_j u_1 \rangle \rangle \right\}
\]

(5.23c)

\(\varepsilon_R \) and \(\varepsilon_L \) are the dissipation terms discussed in Section 4.9. \(\mathcal{P} \) and \(\mathcal{P}_L \) are the production terms. Note the appearance of a Leonard production term, \(\mathcal{P}_L \), that comes from the non-linear interaction between the mean strain and the filtered field.

The computed behavior of these terms is shown in Fig. 5.13. Note that \(\mathcal{P}_L \) contributes significantly, particularly where the anisotropy is large near the end of straining period.

5.6 Assessment of Turbulence Closure Models

Turbulence computation of the conventionally averaged (ensemble or space) quantities has been based on some ad hoc closure models with a number of adjustable constants. As pointed out by Reynolds (1974a,b), more systematic approaches are desirable for generalized turbulence models. Even though laboratory experiments provide actual quantities, experiments are limited because important properties like the pressure-strain correlations are difficult to measure directly. On the other hand, computer-generated experiments provide a vast amount of data on the flow field, and hence the numerical experiments can be used to study the closure models. We have attempted to study the pressure-strain terms and other statistical quantities using the present computation. Even
though the $16\times16\times16$ mesh calculation gives good results for the energy components, as will be shown shortly we cannot use the computer generated field to compute the pressure-strain term directly, at least not in the present calculation.

The exact Reynolds stress equations for homogeneous flow without mean deformation are

$$\frac{dR_{ij}}{dt} = T_{ij} - D_{ij}$$ \hspace{1cm} (5.24)

where

$$T_{ij} = \langle p \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \rangle$$

$$D_{ij} = 2\nu \langle \frac{\partial u_i}{\partial x_k} \frac{\partial u_j}{\partial x_k} \rangle$$

Here u_i denotes the turbulent components of velocity and p is the turbulent pressure divided by the fluid density.

The pressure-strain term T_{ij} is responsible for the return to isotropy following removal of strain. The modeling of T_{ij} has been the subject of much discussion. Since no direct measurement of this term is known, we tried to estimate this term using the present computation in the return-to-isotropy portion of the computation.

The computed pressure-strain term, $(T_{ij})_c$, was obtained from

$$\langle T_{ij} \rangle_c = \langle p \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \rangle$$ \hspace{1cm} (5.25)

Here $\langle \rangle$ denotes an average over the flow field. The fourth order central differencing scheme was used for the $\delta/\delta x_j$ terms.

For comparison T_{ij} was obtained a second way. Using $D_{ij} = 2/3 \varepsilon$ (see Reynolds (1974b), (1975)), T_{ij} was obtained from the computed R_{ij} history as

$$\langle T_{ij} \rangle_R = \frac{d}{dt} \langle \overline{u_i u_j} \rangle + \frac{2}{3} \varepsilon \delta_{ij}$$ \hspace{1cm} (5.26)
\(\varepsilon \) was estimated from the energy equation, which in the absence of strain is

\[
\varepsilon = - \frac{d <u_i u_i/2>}{dt}
\]

(5.27)

\(\varepsilon \) agreed well with \(\varepsilon_R + \varepsilon_L \), computed directly. The time derivatives were approximated by a second order central differencing formula.

Finally, we predicted \(T_{ij} \) by Rotta's (1951) model for \(T_{ij} \) in the absence of mean strain,

\[
(T_{ij})_m = -A_o \varepsilon b_{ij}
\]

(5.28)

where \(A_o \) is a constant and

\[
b_{ij} = \frac{<u_i u_j>}{q^2} - \frac{\delta_{ij}}{3}
\]

We used \(A_o = 2.5 \), as suggested by Reynolds (1975).

These three results are shown in Fig. 5.14. It appears that \((T_{ij})_c \) is quantitatively poor. This is attributed to the coarseness of the \(16^3 \) mesh. We conclude that \(T_{ij} \) undoubtedly contains some Leonard-like terms, and this must account for the difference between \((T_{ij})_c \) and \((T_{ij})_R \). While \(T_{ij} \) can be estimated from the \(R_{ij} \) equation à la (5.26), it cannot be computed directly from the calculated field with such a coarse grid. A repeat of this work using a \(32^3 \) grid is recommended. This should be accompanied by a careful analysis of the Leonard terms arising in the \(R_{ij} \) equations.
CHAPTER VI
CONCLUSIONS AND RECOMMENDATIONS

In this thesis we have developed the basic approach to computation of three-dimensional time-dependent turbulent flows. We have seen that, with a modest 16x16x16 mesh and a residual scale stress model, many interesting features of experimental flows can be computed. Work remains to be done in the development of better approaches for using this type of computation to assess turbulence model equations, and to extend the procedure to other flows.

It would be informative to study the effect of the initial spectrum on the rate of return to isotropy. This might be done by removing the strain at different points along the straining portion of the Tucker-Reynolds flow, allowing isotropy to be restored from points with different spectra.

In extending the method to other interesting flows, problems to be resolved include the handling of non-periodic boundary conditions, solid boundaries, and free boundaries connecting the region of computation to irrotational flow outside.

One useful problem to study would be the case of homogeneous turbulence near a wall, without mean shear, for which some experimental data exist (Uzkan and Reynolds (1967)), and would be the diffusion of turbulence into a non-turbulent region, again without shear. It is recommended that experience with these simple problems be gained before a more complex flow is attempted.

When one moves on to handle flows like jets, wakes, and mixing regions, it should be possible to take advantage of the fact that the flow outside of the superlayer is irrotational, and to use the exact solution for unsteady irrotational flow to extend the calculation to infinity out beyond the mesh. Care must be taken that the numerical scheme does not produce vorticity in an irrotational flow; the diffusion of vorticity by \(\nabla_T \) will also have to be handled in a way that prevents its diffusion into the irrotational external field.
Eventually it may be possible to treat practical flows, such as boundary layers, wakes, combustion, etc.; by these methods. But much more effort should first be devoted to fully understanding the nuances of the residual scale models, grid-schemes, differencing schemes, filters, etc. that are the bases for this type of numerical simulation.
Fig. 2.1. Gaussian Filter

\[G_i = \sqrt{\frac{6}{\pi}} \frac{1}{\Delta} \exp\left(-6\left(x_i - x_i'\right)^2/\Delta^2\right) \]
Fig. 2.2. Filtered Energy Spectra, \(\bar{E}(k, t) \)

\[\frac{tU_0}{M} = 42 \]

\[\frac{tU_0}{M} = 98 \]

\[k = 5/3 \]

\(\Delta_A = 2\Delta \) (see Eqn. 2.23)

49
Fig. 3.1. Comparison of Modified Wave Numbers
(see Eqn. 3.4 and 3.7)
Fig. 3.2. Comparison of Div(Grad) Operator

\[k_1^2 = \text{exact} \]
\[\tilde{k}_1^2 = \text{fourth order (see Eqn. 3.15)} \]
\[k_1^{1,2} = \text{fourth order (see Eqn. 3.12)} \]
\[N = 16 \]
Fig. 4.1. Sketch of Wind Tunnel Test Section for a Generation of Isotropic Flow.
Fig. 4.2. Determination of A or B Vector
Fig. 4.3. Unfiltered Initial Energy Spectrum
(Data by G. Comte-Bellot and S. Corrsin 1971)
Fig. 4.4. Evolution of Energy Spectra
16x16x16 Mesh: Smagorinsky Model:

\[\Delta_A = 0; \quad \Delta = 1.5 \text{ cm} \]
Fig. 4.5. Filtered Energy Spectra
16x16x16 Mesh: Smagorinsky Model:

\[\Delta_A = \Delta \quad ; \quad \Delta = 1.5 \text{ cm} \]
Fig. 4.6. Filtered Energy Spectra — A Comparison of Smagorinsky and Vorticity Model
16x16x16 Mesh: $\Delta_A = 2\Delta$; $\Delta = 1.5$ cm
Fig. 4.7. Filtered Energy Spectra—Effect of Leonard Term
16x16x16 Mesh: Vorticity Model:

$$\Delta_a = 2\Delta; \Delta = 1.5 \text{ cm}$$
Fig. 4.8. Filtered Energy Spectra
32x32x32 Mesh: Smagorinsky Model:

\[\Delta_A = 2\Delta \quad ; \quad \Delta = 1.0 \text{ cm} \]
Fig. 4.9. Sensitivity of Filtered Mean Square Velocity Decay Rate to Smagorinsky Model Constant, C_s

16x16x16 Mesh: $\Delta_A = 2\Delta$; $\Delta = 1.5$ cm
Fig. 4.10. Decay of Mean Square Filtered Velocity
16x16x16 Mesh: $\Delta_A = 2\Delta$; $\Delta = 1.5$ cm

$\frac{3U_0^2}{\langle \bar{u}_i \bar{u}_i \rangle}$

$\frac{tU_0}{M} - 3.5$

$\langle \bar{u}_i \bar{u}_i \rangle$

< >: Average Over all Space
Fig. 4.11. Decay of Mean Square Filtered Velocity.
32x32x32 Mesh: Smagorinsky Model:

\[\frac{3U_0^2}{\left< \bar{u}_i \bar{u}_j \right>} \]

\[\frac{tU_0}{M} - 3.5 \]

\[\Delta_A = 2\Delta ; \Delta = 1.0 \text{ cm} \]
Fig. 4.13 Comparison of Skewness, S. (see Fig. 4.12 for Definition of S): Smagorinsky Model:

$$\Delta_\Lambda = 2\Delta$$

$16 \times 16 \times 16$ MESH

$32 \times 32 \times 32$ MESH
Fig. 4.14. Components of Dissipation.

16x16x16 Mesh: $\Delta_A = 2\Delta$; $\Delta = 1.5$ cm

Vorticity Model.

$\epsilon_o = \epsilon_R + \epsilon_L$ at $\left(U_0 t/M - 3.5 \right) = 42$
Fig. 5.1a. Schematic of Wind Tunnel Producing Constant Rate of Strain in x-y Plane

\[W_0 = 240 \text{ in/sec} \]

Fig. 5.1b. Equivalent Representation of the Plane Strain in a Box \(\Gamma = 1.457 \)
Fig. 5.2. Tucker-Reynolds Flow.
Turbulent Intensities. The solid lines are for decaying turbulence in the absence of strain.
Z = Downstream distance from the beginning of strained section.
Fig. 5.3. Tucker-Reynolds Flow
Turbulent Energy Ratios
Fig. 5.4. Tucker-Reynolds Flow
Change in Structural Parameter, K_l

$$K_l = \frac{\langle v^2 \rangle - \langle u^2 \rangle}{\langle v^2 \rangle + \langle u^2 \rangle}$$
Fig. 5.5. Simulation of the Tucker-Reynolds Flow Turbulent Intensities. The solid lines are for decaying turbulence in the absence of strain. (Anisotropic Initial Condition)

$$Z = W_0 t$$
Fig. 5.6. Simulation of the Tucker-Reynolds Flow Turbulent Energy Ratios under the Plane Strain and the Return to Isotropy in Parallel Flow. (Anisotropic Initial Condition)
Fig. 5.7. Simulation of the Tucker-Reynolds Flow Change in Structural Parameter. (Anisotropic Initial Condition)
Fig. 5.8. Simulation of the Tucker-Reynolds Flow Turbulent Intensities. The solid lines are for decaying turbulence in the absence of strain. (Isotropic Initial Condition)

\[Z = W_0 t \]
Fig. 5.9. Simulation of the Tucker-Reynolds Flow Turbulent Energy Ratios Under the Plane Strain and the Return to Isotropy in Parallel Flow. (Isotropic Initial Condition)
Fig. 5.10. Simulation of the Tucker-Reynolds Flow
Change in Structural Parameter, K_1
(Isotropic Initial Condition)
Fig. 5.11a. One-Dimensional Energy Spectra
(Isotropic Initial Condition)
Fig. 5.1lb. One-Dimensional Energy Spectra
Fig. 5.1lc. One-Dimensional Energy Spectra
Fig. 5.12a. One-Dimensional Energy Spectra at Three Different Downstream Locations (Isotropic Initial Condition)
Fig. 5.12b. One-Dimensional Energy Spectra
Fig. 5.12c. One-Dimensional Energy Spectra
Fig. 5.13. Filtered Energy Balance
Each Term is Normalized by \(W_0 \) and Computational Box Size \(L = N\Delta \)
(see Eqns. 5.22 and 5.23)
Fig. 5.14. Comparison of the Pressure-Strain Correlations Normalized by \(W^o \) and Computational Box Size, \(L = N\Delta \) (see Eqns. 5.27, 5.28 and 5.29)
APPENDIX I

ON THE FOURTH ORDER CONSERVATIVE SPACE DIFFERENCING SCHEME

To explain the difference formula used here in detail, consider the following equations.

\[\frac{\partial u_i}{\partial t} + \frac{\partial}{\partial x_j} (u_i u_j) = 0 \] \hspace{1cm} (A.1)

\[\frac{\partial u_i}{\partial x_i} = 0 \] \hspace{1cm} (A.2)

\[u_i \cdot (A.1) \]

\[u_i \frac{\partial u_i}{\partial t} + u_i \frac{\partial}{\partial x_j} u_i u_j = 0 \] \hspace{1cm} (A.3)

\[\frac{\partial}{\partial t} \left(\frac{u_i u_i}{2} \right) + \frac{1}{2} \frac{\partial}{\partial x_j} u_i u_i + \frac{u_i u_i}{2} \frac{\partial u_i}{\partial x_j} = 0 \] \hspace{1cm} (A.4)

Integrating (A.4) over all space

\[\frac{d}{dt} \int_V \frac{u_i u_i}{2} \, dv = -\int_V \frac{u_i u_i}{2} \frac{\partial u_i}{\partial x_j} \, dv \] \hspace{1cm} (A.5)

If \(\text{div} \, u = 0 \),

\[\frac{d}{dt} \int_V \frac{u_i u_i}{2} \, dv = 0 \] \hspace{1cm} (A.6)

Now look at difference form of (A.3)

\[\frac{\delta}{\delta t} \frac{u_i u_i}{2} = -u_i \frac{\delta}{\delta x_j} u_i u_j \] \hspace{1cm} (A.7)

Summing over all mesh points

\[\sum \frac{\delta}{\delta t} \frac{u_i u_i}{2} = -\sum u_i \frac{\delta}{\delta x_j} u_i u_j \] \hspace{1cm} (A.8)
The RHS of (A.8) has to be zero as in (A.6). Therefore $\delta u_i u_j / \delta x_j$ must be devised such that RHS summation of (A.8) goes to zero thus conserving the total kinetic energy. The difference formula for $\delta u_i u_j / \delta x_j$ depends on the type of mesh and the number of neighboring points used.

The following is a fourth order energy conserving scheme using five points in one direction. Following usual convention

$$f^* = \frac{1}{\Delta} \left[f_i \left(x + \frac{\Delta}{2} \right) + f_i \left(x - \frac{\Delta}{2} \right) \right]$$

$$f_x = \frac{1}{\Delta} \left[f_i \left(x + \frac{\Delta}{2} \right) - f_i \left(x - \frac{\Delta}{2} \right) \right]$$

(A.9)

Note that

$$\frac{\partial f}{\partial x} = \frac{f_i - f_i-1}{\Delta} + O(\Delta^2) = \frac{f_i+1 - f_i-1}{2\Delta} + O(\Delta^2)$$

(A.10)

$$\frac{\partial f}{\partial x} = \frac{4}{3} \frac{f_i - f_{i-1}}{\Delta} - \frac{1}{3} \frac{f_i - f_{i+1}}{\Delta} + O(\Delta^4)$$

Now fourth order momentum and energy conserving form of (A.1) and (A.2) are

$$\frac{\partial u_1}{\partial t} + \frac{4}{3} \left(u_i^2 x_j x_j \right) x_j - \frac{1}{3} \left(u_i^2 x_j x_j x_j \right) x_j = 0$$

(A.11)

$$(\frac{4}{3} \left(u_i^2 x_j x_j \right) x_j - \frac{1}{3} \left(u_i^2 x_j x_j x_j \right) x_j = 0$$

(A.12)

To show that these are indeed energy conserving, work with the expanded form of (A.11).
\[
\frac{\delta u_\ell}{\delta t} + \left\{ \frac{4}{3} (u_\ell u)_x x - \frac{1}{3} (u_\ell^2 x - 2x)_{2x} \right\} \\
+ \left\{ \frac{4}{3} (u_\ell^2 y - y) y - \frac{1}{3} (u_\ell^2 y - y)_{2y} \right\} \\
+ \left\{ \frac{4}{3} (u_\ell^2 z - z) z - \frac{1}{3} (u_\ell^2 z - z)_{2z} \right\} = 0 \quad (A.13)
\]

where \(u_\ell \) is either \(u, v \) or \(w \). \(u_\ell \times (A.13) \) gives the energy equation. Then sum over all mesh points.

\[
\sum u_\ell \frac{\delta u_\ell}{\delta t} = -\sum \left[u_\ell \left\{ \frac{4}{3} (u_\ell u)_{xx} x + u_\ell u_{xx} + u (u_\ell^2)_{2x} \right\} \\
+ \left\{ v \text{ and } w \text{ - component} \right\} \right] \\
= -\sum \left[u_\ell \left\{ \frac{4}{3} \left((u_\ell u)_{xx} x + u_\ell u_{xx} + u (u_\ell^2)_{2x} \right) \\
- \frac{1}{3} \left((u_\ell u)_{xx} x + u_\ell u_{xx} + u (u_\ell^2)_{2x} \right) \right\} \\
+ \cdots \right] \\
= -\sum \frac{u_\ell}{2} \left[\frac{4}{3} \left\{ (u_\ell u)_{xx} x + u (u_\ell^2)_{2x} \right\} \\
- \frac{1}{3} \left\{ (u_\ell u)_{xx} x + u (u_\ell^2)_{2x} \right\} \right] \\
+ v, w, - \text{ component} \\
-\sum \frac{u_\ell v_\ell}{2} \left\{ \left[\frac{4}{3} u_\ell u_{xx} - \frac{1}{3} u_{2xx} \right] + \left[\frac{4}{3} v_\ell v_{yy} - \frac{1}{3} v_{2yy} \right] \\
+ \left[\frac{4}{3} w_\ell w_{zz} - \frac{1}{3} w_{2zz} \right] \right\} \quad (A.14)
\]
The first summation on RHS of (A.14) is zero for periodic boundary condition. Therefore (A.14) becomes

\[\sum u_k \frac{\delta u_k}{\delta t} = -\sum \frac{u_k u_k}{2} \left\{ \text{div } u \text{ in 4th order; (A.12)} \right\} \]
(A.15)

So if the numerical divergence of velocity is zero, the RHS of (A.15) is zero and (A.11) is indeed energy conserving.

The accuracy of the LHS depends on the time advancing scheme and, as mentioned earlier, the Adams-Bashforth predictor method introduces very weak instability on computational mode. To show that (A.11) and (A.12) are really fourth order accurate, work with a typical term:

\[
\frac{4}{3} (v^2 u^2)_{x} - \frac{1}{3} (v^2 u^2)_{2x}
\]

\[
= \frac{1}{3} \left\{ (vu)(k+1) - (vu)(k-1) + u(k)(v(k+1) - v(k-1)) \right\} - \frac{1}{24} \left\{ (vu)(k+2) - (vu)(k-2) + u(k)(v(k+2) - v(k-2)) \right\}
\]

Substitute RHS by Taylor expansion as usual. After some algebra, it can be shown that

\[
\frac{4}{3} (v^2 u^2)_{x} - \frac{1}{3} (v^2 u^2)_{2x}
= \frac{3}{2} (vu) (v^2 u^2)_{x} + \frac{1}{60} \left\{ (vu) v + v^2 + u v \right\} + \ldots \]
(A.16)

Therefore it is indeed a fourth order scheme. An extension to higher order differencing scheme can be done on the same basic idea. Overall fourth order accuracy is obtained for advective term by using second order energy conserving scheme for the Leonard term.

For convenience, fourth and second order advection term is recapitulated below.
Fourth order energy conserving scheme:

\[
\frac{\partial}{\partial x_j} u_i u_j = \frac{\partial}{\partial x} (u_i u) + \frac{\partial}{\partial y} (u_i v) + \frac{\partial}{\partial z} (u_i w)
\]

\[
= \left\{ \frac{4}{3} (u_i^2 x - x) x - \frac{1}{3} u_i^2 x^2 \right\}
\]

\[
+ \left\{ \frac{4}{3} (u_i^2 y - y) y - \frac{1}{3} u_i^2 y^2 \right\}
\]

\[
+ \left\{ \frac{4}{3} (u_i^2 z - z) z - \frac{1}{3} u_i^2 z^2 \right\}
\]

\[
+ 0(\Delta^4)
\]

\[
= \left\{ \frac{1}{3\Delta} \left[(u_i u)_{k+1} - (u_i u)_{k-1} + u \left((u_i)_{k+1} - (u_i)_{k-1} \right) \right] - \frac{1}{24\Delta} \left[(u_i u)_{k+2} - (u_i u)_{k-2} \right] \right\}
\]

\[
+ \left\{ \frac{1}{3\Delta} \left[(u_i v)_{l+1} - (u_i v)_{l-1} + v \left((u_i)_{l+1} - (u_i)_{l-1} \right) \right] - \frac{1}{24\Delta} \left[(u_i v)_{l+2} - (u_i v)_{l-2} \right] \right\}
\]

\[
+ \left\{ \frac{1}{3\Delta} \left[(u_i w)_{m+1} - (u_i w)_{m-1} + w \left((u_i)_{m+1} - (u_i)_{m-1} \right) \right] - \frac{1}{24\Delta} \left[(u_i w)_{m+2} - (u_i w)_{m-2} \right] \right\}
\]

\[
+ 0(\Delta^4)
\]

(A.17)
Second order scheme:

\[
\frac{\partial}{\partial x_j} (u_i u_j) = \frac{\partial}{\partial x} u_i u + \frac{\partial}{\partial y} u_i v + \frac{\partial}{\partial z} u_i w
\]

\[
= (\bar{u}_i^x u_x^x) + (\bar{u}_i^y v_y^y) + (\bar{u}_i^z w_z^z) + O(\Delta^2)
\]

\[
= \frac{1}{4\Delta} \left\{ (u_i u)_{(k+1)} - (u_i u)_{(k-1)} + u \left((u_i)_{(k+1)} - (u_i)_{(k-1)} \right) + u_i \left(u_{(k+1)} - u_{(k-1)} \right) + (u_i v)_{(\ell+1)} - (u_i v)_{(\ell-1)} + v \left((u_i)_{(\ell+1)} - (u_i)_{(\ell-1)} \right) + u_i \left(v_{(\ell+1)} - v_{(\ell-1)} \right) + (u_i w)_{(m+1)} - (u_i w)_{(m-1)} + w \left((u_i)_{(m+1)} - (u_i)_{(m-1)} \right) + u_i \left(w_{(m+1)} - w_{(m-1)} \right) \right\} + O(\Delta^2)
\]

(A.18)

The subscript is shown whenever it is different from \((k, \ell, m)\), i.e.

\[u_{(k+1)} = u_{(k+1, \ell, m)}\]
APPENDIX II
FLOW CHARTS AND PROGRAM

Overall Flow Chart

START

INITIATION
(SUBROUTINES INICON & START)

CALCULATE EDDY VISCOSITY
(SUBROUTINE VISCS & VISCV)

CALCULATE \(\tilde{\eta}_4 \) (EQUATION 3.32)
(SUBROUTINE VELOC)

CALCULATE RHS OF POISSON EQUATION
FOR PRESSURE
(MAIN, SUBROUTINE DIVGCE)

PRESSURE FIELD SOLUTION
(SUBROUTINE PRESS, FFTX, FFTY AND FFTZ)

ADVANCE ONE TIME STEP BY
ADAMS-BASHFORTH METHOD
(MAIN)

DATA REDUCTION AND PRINT OUT

NO

TERMINATE ?

YES

WRITE DATA ON TAPE FOR CONTINUATION

STOP
Flow Chart for INICON

READ INPUT

INITIAL PROBLEM?

YES

READ IN FILTERED EXPERIMENTAL SPECTRUM

DETERMINE AMPLITUDE OF THE VELOCITY FLUCTUATION (EQUATION 4.5)

DETERMINE A, B, a AND b (EQUATION 4.7)

DETERMINE VELOCITY AT CONJUGATE POINTS (EQUATION 4.8)

INVERSE TRANSFORM THE VELOCITY FIELD (SUBROUTINES FFTX, FFTY, AND FFTZ)

α

READ IN DATA FROM TAPE FOR CONTINUATION

PRINT OUT THE VELOCITY FIELD AND ENERGY
```
*DECK MAIN

PROGRAM MAIN (INPUT, OUTPUT, TAPF0, TAPF1)

C*****************************************
C THIS CONTROLS THE OVERALL SEQUENCE OF COMPUTATION*
C THE COMPUTATION IS PERFORMED MOSTLY IN THE SMALL CORE BY TRANSFERRING*
C DATA FROM THE LARGE CORE MEMORY, AT THE END OF EACH TIME STEP THE*
C STATISTICAL QUANTITIES ARE PRINTED OUT, AT THE END OF THE COMPUTA-
C TION VELOCITIES AND THE RIGHT HAND SIDE OF MOMENTUM EQUATIONS ARE*
C STORED FOR CONTINUATION.
C*****************************************

INTEGER TIME, ZO, Z1, Z2, ZP1, ZP2, Z, ZA01, ZLESS1, ZSAVE, PLANE

1. 1, START, TEND

REAL K, KLEN, NAVG
LARGE PM(16,16,16), tPM(16,16,16), F(16,16,16), E(16,16,16),
1. 0(16,16,16), 02(16,16,16), QDIM(16,16,16), HT(192)
LARGE QHM(16,16,16), VM(16,16,16), WM(16,16,16), GU(16,16,16)
1. , GVI(16,16,16), VM(16,16,16), QHT(16,16,16), PI(16,16,16)
. , GVI(16,16,16), GVI(16,16,16), GAI(16,16,16)
DIMENSION V(16,16,16), VM(16,16,16), WM(16,16,16), PI(16,16,16)
1. , VM(16,16,16), VM(16,16,16), VM(16,16,16), VM(16,16,16)
1. , VM(16,16,16), VM(16,16,16), VM(16,16,16)

COMMON DATA1, V, N
COMMON DATA2, P
COMMON DATA3, SIG, K
COMMON DATA4, DUMMY
COMMON DATA5, LEN1, INK, TMI
COMMON DATA6, ERT, F1
COMMON DATA7, WAVE, FFT
COMMON DATA8, MAX, MIN, LMAX, WM, NAVG, NLEN, NSPEC

COEFF1 = 1/(44 + DELTA**2)
COEFF2 = DELTA**0.5
COEFF3 = DELTA
COEFF4 = DELTA**3
COEFF5 = DELTA
COEFF6 = DELTA**2
COEFF7 = DELTA**3
COEFF8 = DELTA
ALPHA = 1/11, BETA = DELTA

WRITE (1, TITLE) NFILTZ
WRITE (1, TITLE) UNITS = 1, TITLE = 'PLATE'
GAMMA = GAMMA**2
GAMMA = GAMMA**2
COEFFGAMMA = COEFF
```

ORIGINAL PAGE IS
OF POOR QUALITY

92
COMPUTATION STARTS

DO 300 TIMES=START,TEND
10 CONTINUE

COMPUTE Eddy VISCOSITY "F".

2 1
ZM1=1
ZMV2
ZP1=S

FIRST TRANSFER DATA FROM LCM TO SCM FOR THE PLANES LMLMAX AND L

SMALLIN (U(I1,L1,1),V(I1,L1,1),256)
SMALLIN (V(I1,L1,1),W(I1,L1,1),256)
SMALLIN (W(I1,L1,1),U(I1,L1,1),256)
SMALLIN (U(I2,L1,2),V(I2,L1,2),256)
SMALLIN (V(I2,L1,2),W(I2,L1,2),256)
SMALLIN (W(I2,L1,2),U(I2,L1,2),256)
DO 700 LI=MLMAX

LP1=L+1
IF (LP1.EQ.LMAX) LP1=1

TRANSFER VELOCITIES FOR THE PLANES L+1

SMALLIN (U(I1,ZP1,1),V(I1,ZP1,1),256)
SMALLIN (V(I1,ZP1,1),W(I1,ZP1,1),256)
SMALLIN (W(I1,ZP1,1),U(I1,ZP1,1),256)

THEN WE CAN COMPUTE EDDY VISCOSITY AT THE PLANES

GO TO (20,25) MODFL

20 CALL VISCS(Z0,7M1,ZP1,1,COEF2)
GO TO 30
25 CALL VISCV(Z0,7M1,ZP1,7,COEF2)
30 CONTINUE

THE EDDY VISCOSITY ON THE PLANES IS TRANSFERRED TO E IN LCM

SMALLOUT (K(1,1,2),E(1,1,1),256)
7SAVE=ZMV1
ZMV1=ZMV
ZMV2=ZMV1
ZMV1=ZMV2

700 CONTINUE

COMPUTE W(I), THEN STORE THEM IN GU, GV & GW

ZP2=S
ZP1=S
ZP3=S
ZP2=S

SMALLIN (U(I1,L1,1),W(I1,L1,1),512)
SMALLIN (V(I1,L1,1),W(I1,L1,1),512)
SMALLIN (W(I1,L1,1),W(I1,L1,1),512)
SMALLIN (U(I1,L1,3),W(I1,L1,3),768)
SMALLIN (V(I1,L1,3),W(I1,L1,3),768)
SMALLIN (W(I1,L1,3),W(I1,L1,3),768)
SMALLIN (K(I1,L1,2),E(I1,L1,2),256)
SMALLIN (E(I1,L1,2),F(I1,L1,2),512)
ZLESS1=1
7=2
7ACR1=3

ORIGINAL PAGE IS
OF POOR QUALITY
DO 700 PLANE=1, LMAX
CALL VELOC (20, ZM1, ZP1, ZP2, ZLLESS1, ZADD1, RETA, COEF4, COEF7)
CALL OUT (G1(1,1), PLANE, 256)
CALL OUT (G1(1,2), PLANE, 256)
CALL OUT (G1(1,3), PLANE, 256)
CALL OUT (SIG1(1,1), PLANE, 256)
CALL OUT (SIG1(1,2), PLANE, 256)
CALL OUT (SIG1(1,3), PLANE, 256)
CALL OUT (G1(1,4), PLANE, 256)
CALL OUT (G1(1,5), PLANE, 256)
CALL OUT (G1(1,6), PLANE, 256)
CALL OUT (G1(1,7), PLANE, 256)
CALL OUT (G1(1,8), PLANE, 256)
OSAVE=ZLESS1
ZLESS1=Z
ZADD1=Z
SAVE=Z
SAVE=Z
SAVE=Z
SAVE=Z
SAVE=Z
IF (LGT, LMAX) LOLL=LMAX
SAVE=Z
702=ZM1
703=ZP1
704=ZP2
705=ZSAVE
IF (LGT, LMAX) LOLL=LMAX
SAVE=Z
706 CONTINUE
C——-NOW GI, CV, GZ ARE COMPUTED AND DIV U IS STORED IN G
C COMPUTE DIV(GU), THEN GET G
707=ZM1
708=ZP1
709=ZP2
710=ZSAVE
IF (LGT, LMAX) LOLL=LMAX
SAVE=Z
711 CONTINUE
C——-DGU) IS STORED IN PM

ORIGINAL PAGE IS OF POOR QUALITY
DO 760 L=1,LMAX
DO 750 J=1,JMAX
DO 760 I=1,IMAX
P1(I,J,L)=COEF4*(G(L,J,I)+PM(I,J,L))
760 CONTINUE
C-----------NOW G IS TEMPORARILY STORED IN P1
C-----------COMPUTE G1

ZM2=1
ZM1=2
Z02=3
ZP1=4
ZP2=5
SMALL1(U(1,1,1),GU1(1,1,LMAX+1),512)
SMALL1(W(1,1,1),GW1(1,1,LMAX+1),512)
SMALL1(U(1,1,1),GU1(1,1,LMAX+1),768)
SMALL1(V(1,1,1),GV1(1,1,LMAX+1),768)
SMALL1(U(1,1,1),GU1(1,1,LMAX+1),768)
DO 1770 PL*HEX$1,LMAX
CALL DIVG6(70,7M,2,Z1,7P1,7P2,COEF7)
SMALLUT(DUMMY(1,1,6),G(1,1,PLANE),256)
730010=7M2
7302=ZM1
ZM1=Z02
Z02=ZP1
ZP1=ZP2
ZP2=0
L=PLANE+3
TF(L,GT,LMAX) L=1,LMAX
SMALL1(U(1,1,2Z2),GU1(1,1,1),256)
SMALL1(V(1,1,2Z2),GV1(1,1,1),256)
SMALL1(U(1,1,2Z2),G-1(1,1,1),256)
1770 CONTINUE
C-----------GET PRESS (COEF3,COEF11,COEF71)
C-----------NOW STORE P1 TO P1 FROM PM AND SHIFT G FROM P1 TO G1
DO 1860 L=1,LMAX
SMALL1(DUMMY(1,1,1),P1(1,1,L),256)
SMALL1(DUMMY(1,1,2),PM(1,1,L),256)
SMALL1(DUMMY(1,1,1),G(1,1,L),256)
SMALL1(DUMMY(1,1,2),P1(1,1,L),256)
1860 CONTINUE
C
PRINT 903
DO 460 L=1,1A
PRINT 900, L
PRINT 902, (EI,1,10,L),IM1,16
460 CONTINUE
PRINT 917
DO 401 J=1,1A
PRINT 918,J
PRINT 902, (EI,1,10,J),IM1,16
401 CONTINUE
C
CALL PRESS(COEF3,COEF11,COEF71)
C-----------STORE U,V,W,P AT FIVE STEP INTERVAL
TF((STORE,EQ,5)) GO TO 110
1:STORE=STORE+1
GO TO 420
110 NTIME=NTIME+I
WHITE(N) NTIME,UM,VM,WH,PM,P1
FND FILE 9

ORIGINAL PAGE IS
OF POOR QUALITY
CONTINUE

C---- TURBULENT ENERGY
TKE=0.
TKE0=0.
TKE=0.
DO 230 L=1,LMAX
SUM(L)=0.
SUM(L,N(L))=0.
CONTINUE

230 CONTINUE

THI=THI+DIV
THV=THV+DIV
THW=THW+DIV
SUM=0.
SUM0=0.
SUM=0.
DO 240 L=1,LMAX
SUM=SUM+SUM(L,L)
CONTINUE

240 CONTINUE

C
CONF=1.5
PRINT 910
PRINT 909
THI=THI+TKV+THW
PRINT 909,TKE,TKE0,TKEK,TKV,TKW,TSUM
RTIME=RTIME+DST
DST=DIFF*RTIME
SFAC=EXP(-0.0524263*DST)
PRINT 915,RTIME,DST,SPATIO
TKDIV1=1./TSUM
THI=THI+TKV
THW=THW+TKW
THV=THV+TKDIV
THW=THW+TKDIV
THK=THK+TKDIV
THI=THI*(TKV+THI)/(TKV+THI+THW)
PRINT 909,THI,THV,THW,THK
UT=U0+TIME1*UTMOG
V0=V0+TIME1*V0MOG
W0=V0+TIME1*W0MOG
UO*=U0+6./TKV
V0*=V0+6./TKW
W0*=W0+6./TKH
PRINT 911,UT,UT0,V0,V00,W0,W00
UDD=K1*TKH
VDD=K2*TKH
WDD=K3*TKH
PRINT 01A,UT,VT,WT,UDD,VDD,WDD
C---- DISSIPATION TERMS; LEONARD, SGS, TOTAL.

ORIGINAL PAGE IS
OF POOR QUALITY
DO 241 L=1,LMAX
DO 241 J=1,JMAX
DO 241 I=1,IMAX
DO 241 L=1,LMAX
DO 241 J=1,JMAX
DO 241 I=1,IMAX
DLEN=DLEN+1(I,J,L)
NSGS=NSGS+2(I,J,L)
241 CONTINUE
DO TO DLEN+NSGS
PRINT 913, DLEN, NSGS, DINT

C== CHECK
SK3=0,
SK2=0,
ON 240 I=1,IMAX
IM2=I+2
IP1=I+1
IP2=I+2
IF (I.LT.2) GO TO 251
GO TO (251,252,1)
251 IM1=LMAX
IP2=LMAX+1
GO TO 256
252 IM2=LMAX
GO TO 256
253 I=IMAX+1
IF (I.LT.1) GO TO 256
T2=IMAX+1
GO TO (255,254,12)
255 IP2=1
GO TO 256
254 IP1=1
IP2=2
256 CONTINUE
DO 240 J=1,JMAX
DO 240 L=1,LMAX
DNUM=UM(TM2,J,L)-UM(TM1,J,L)+UM(IP1,J,L)-UM(IP2,J,L)
SK3=5K3+DNUM**3
SK2=5K2+DNUM**2
260 CONTINUE
SK3=SK3/TOIV
SK2=(SK2/TOIV)**1.5
SK*SK2
PRINT 913, SK
PRINT 913, 92
GO TO (270,280) NFILT
270 NFILT=2
GO TO 281
270 NFILT=1
281 CONTINUE
PRINT 90A
PRINT 905
PD 410 L=1,NHALF
PRINT 907,L
PRINT 907,
PRINT 907, (UM(I,T,L), I=1,NHALF)
PRINT 907, (VM(I,T,L), I=1,NHALF)
PRINT 907, (WM(I,T,L), I=1,NHALF)
PRINT 907, (PM(I,L,I), I=1,3)
410 CONTINUE
PRINT 902, USUM, VSUM, SUM
300 CONTINUE
WRITE (9) TIME, UM, VM, WM, PM, PI, RI, RV, RW
END FILE 9

ORIGINAL PAGE IS
OF POOR QUALITY
C-----DELTA - MESH SIZE
C-----TIME STEP
C-----MODEL CONSTANT
C-----AVG. DELTA (AVERAGING)/DELTA(MESH)
C-----ANISOTROPIC IN EQUATION (5.16a)
C-----CURVATURE STRAIN RATE
C-----MODEL #1 FOR SHAGORINSKY MODEL
C-----MODEL #2 FOR VORTICITY MODEL
READ 7,3,NSTART,TMAX,LMAX,MX,LX,MINX,STEP,END,NMODEL
READ 5,DELTA,THETA,THETA1,THETA2,THETAN,NATOM
NATOM=INT(NATOM/2)
NATOM=SORT(TEMP)
CC=1
TFAC=MAX(IMAX,1)
FAC=ROOT(TFAC)
COEF1=1.0/(1.0+DELTA**2)
COEF2=DELTA**0.5
COEF3=1.0/20.0
COEF4=1.0/(6.0+DELTA**3)
COEF5=1.0/(12.0+DELTA)
COEF6=COEF7*2.0
COEF7=2.0/(3.0+TF)
COEF8=0.314827535898
COEF9=3.1415926535898/2.0
ALPHA=DT/(4.0+DELTA)
CONST=COEF10/DELTA
CONST=CONST**2
COEF1=COEF12+FAC*CONST
COEF12=COEF12+FAC
PL1=COEF10
PL2=PL1+2
CALL START (COEF3,COEF11,DELTA)
GO TO (1,1000,5000), NSTART
1 COEF=1.0
CONT=1
GO TO 2
2 CONTINUE
C-----ENERGY SPECTRUM DATA
C-----1 INTERVAL 1 TO 1.0 THEN IS INTERVAL UP TO 6.0
C-----EN1 IS THE ENERGY SPECTRUM FOR THE ISOTROPIC PART, EN1 IS FOR THE
C ANISOTROPIC PART.
DO 5,EN1=1,124,4
 EN=EN+7
 READ 4, (EN(M),N=1,47)
3 CONTINUE
DO 503,EN1=1,20,4
 EN=EN+7
 READ 4, (EN(M),N=1,47)
503 CONTINUE
0 FORMAT (15E10.4)
DO 5 EN=1,LMAX
DO 5 J=1,LMAX
DO 5 I=1,1MAX
VR(I,J,L)=0.
WK(I,J,L)=0.
UI(I,J,L)=0.
VI(I,J,L)=0.
RU(I,J,L)=0.
LV(I,J,L)=0.
RN(I,J,L)=0.
5 CONTINUE
DO 80 L=1,NHALF
IF
IF NL=1
NL=NL+2
DO 30 J=1,NH1
INDEX=J/R
J=J+1
L=JMAX
L=L/2+1
GO TO 20
INDEX=1/R
INDEX=JMAX
NL=NL+2
NL=NL+2
IF (NSR .LT. 0.1) GO TO 20
WAVK=NOSOR(NSH)
NO1=NVAV
NL=NL+2
IF (NL .LT. 0.1) CONTINUE
IF (NL .EQ. NHALF) CONTINUE
C GET FOURIER AMPLITUDE OF THE INITIAL FIELD AD DESCRIBED IN SEC 4.4
7 X=CONSTAV
NIXAV=1.
GO TO (310,315,315,315,315,315,315,315)
310 NEX=0.1
YEX=0.1
ZEX=1.
FNR=NF(NH)+FNR*YEX+10.
FA=FA(NH)+FA*YEX+10.
GO TO 320
315 Y=1.+Y2.
YEX=1.+0.5*Y
ZEX=1.
FNR=NF(NH)+FNR*YEX+2.
FA=FA(NH)+FA*YEX+2.
320 NSE=M+F154*(F154)**2.
FA=FA(NH)+FA*YEX+2.
NOSOR(N3)
CSA=E15*150*(F154)**2
CHASOR(N3)
C CHANGE WAVE NUMBER VECTOR TO SATISFY NUMERICAL DIV FREE
C P1,P2, AND P3 ARE THE MODIFIED WAVE NUMBER
GO TO (330,340) NCONT
330 CONTINUE
ARC=PI1+PI
ANG=PI2+PI

ORIGINAL PAGE IS OF POOR QUALITY
\[P1 = (R_1 + \sin({\text{ARG1}}) - \sin({\text{ARG2}})) \times \text{COEF72} \]
\[\text{ARG1} = PI1 + \text{EN2} \]
\[\text{ARG2} = PI2 + \text{EN2} \]
\[P2 = (R_1 + \sin({\text{ARG1}}) - \sin({\text{ARG2}})) \times \text{COEF72} \]
\[\text{ARG1} = PI1 + \text{EN3} \]
\[\text{ARG2} = PI2 + \text{EN3} \]
\[P3 = (R_1 + \sin({\text{ARG1}}) - \sin({\text{ARG2}})) \times \text{COEF72} \]
\[\text{PI1} = P1 + 2 \]
\[\text{PI2} = P2 + 2 \]
\[\text{PI3} = P3 + 2 \]
\[\text{R1} = \text{R1} + \text{R2} + \text{R3} \]
\[\text{R1} = \text{R1} + \text{R2} + \text{R3} \]
\[\text{GO TO (335,340) CONT} \]

335 CONTINUE
\[\text{PI1} = \text{PI1} + \text{R1} \]
\[\text{PI2} = \text{PI2} + \text{R2} \]
\[\text{PI1} = \text{PI1} + \text{R1} \]
C GET A & B VECTOR
C FIRST CHOOSE RANDOM PHI
340 CONTINUE
\[\text{YY} = \text{GENY} (\text{Y}) \]
\[\text{PH} = \text{YY} \times \text{COEF12} \]
\[\text{CPhi} = \cos (\text{PH}) \]
\[\text{SPhi} = \sin (\text{PH}) \]
\[\text{GO TO (A,11) CONT} \]
A CONTINUE
\[\text{A1} = -2 \times \text{CPhi} + 1 \times \text{R3} \div \text{PH} \times \text{SPhi} \times \text{R1} \div \text{PH} \]
\[\text{A2} = \text{PI1} \times \text{CPhi} + 2 \times \text{R3} \div \text{PH} \times \text{SPhi} \times \text{R1} \div \text{PH} \]
\[\text{A3} = \text{R1} \times \text{R3} \div \text{PH} \times \text{SPhi} \]
C CALL RANDOM PHI
\[\text{YY} = \text{GENY} (\text{Y}) \]
\[\text{PH} = \text{YY} \times \text{COEF12} \]
\[\text{CPhi} = \cos (\text{PH}) \]
\[\text{SPhi} = \sin (\text{PH}) \]
\[\text{H1} = -2 \times \text{CPhi} + 1 \times \text{R3} \div \text{PH} \times \text{SPhi} \times \text{R1} \div \text{PH} \]
\[\text{A2} = \text{PI1} \times \text{CPhi} + 2 \times \text{R3} \div \text{PH} \times \text{SPhi} \times \text{R1} \div \text{PH} \]
\[\text{A3} = \text{R1} \times \text{R3} \div \text{PH} \times \text{SPhi} \]
GO TO 12
11 CONTINUE
\[\text{INDEX} = (\text{YY} + 0.25) \times 4 \]
\[\text{PH1} = 0.785398 \times (2 \times \text{INDEX} = 1) \]
\[\text{A1} = \sin (\text{PH1}) \]
\[\text{A2} = \cos (\text{PH1}) \]
\[\text{A3} = 0 \]
\[\text{YP} = \text{GEV} (\text{Y}) \]
\[\text{INDEX} = (\text{YP} + 0.25) \times 4 \]
\[\text{PH1} = 0.785398 \times (2 \times \text{INDEX} = 1) \]
\[\text{A1} = \sin (\text{PH1}) \]
\[\text{A2} = \cos (\text{PH1}) \]
\[\text{A3} = 0 \]
\[\text{CONT} \]
12 CONTINUE
C DETERMINE & AND B IN EQUATION (4,6)
C RANDOM THETA
\[\text{YP} = \text{GENY} (\text{Y}) \]
\[\text{THETA} = \text{YP} \times \text{COEF12} \]
\[\text{CTheta} = \cos (\text{THETA}) \]
\[\text{CTheta} = \sin (\text{THETA}) \]
\[\text{J1} = 11, \text{JJ} = 11, \text{LL} = 11 \times \text{A}\times 1 \]
\[\text{VR} = 11, \text{JJ} = 11, \text{LL} = 11 \times \text{A}\times 2 \]
\[\text{K1} = 11, \text{JJ} = 11, \text{LL} = 11 \times \text{A}\times 3 \]
\[\text{L1} = 11, \text{JJ} = 11, \text{LL} = 11 \times \text{A}\times 4 \]
VI(I,J,J,L) = ANCHOR
VT(I,J,J,L) = ANCHOR
IF (K3 .NE. 0) GO TO 20
VSIGN = ASR(43)/A3
VSIGN = ASR(43)/A3
WR = X*ANCHOR
WR = X*ANCHOR
WR = X*ANCHOR
VI(I,J,J,L) = TR(VI(I,J,J,L) + ANCHOR*SIGN)
VI(I,J,J,L) = TR(VI(I,J,J,L) + ANCHOR*SIGN)
CONTINUE
CON...
SMALLIN (FI(1,1), VU(1,1,L), 256)
CALL FFTY (SIGN)
CALL FFTY (SIGN, CC)
SMALLOUT (FR(1,1), VU(1,1,L), 256)
SMALLOUT (FI(1,1), VI(1,1,L), 256)
SMALLIN (FU(1,1), VU(1,1,L), 256)
SMALLIN (FI(1,1), VI(1,1,L), 256)
CALL FFTY (SIGN)
CALL FFTY (SIGN, CC)
SMALLOUT (FR(1,1), VU(1,1,L), 256)
SMALLOUT (FI(1,1), VI(1,1,L), 256)
50 CONTINUE
C Z TRANSFORM
SMALLIN (F(1,1,1) , T(1,1,1) , 4096)
SMALLIN (M(1,1,1), T(1,1,1), 4096)
CALL FFT7 (SIGN, M, H)
SMALLOUT (FH(1,1,1), M(1,1,1), 4096)
SMALLOUT (HM(1,1,1), T(1,1,1), 4096)
SMALLIN (HM(1,1,1), VU(1,1,1), 4096)
SMALLIN (HM(1,1,1), VI(1,1,1), 4096)
CALL FFT7 (SIGN, M, H)
SMALLOUT (HM(1,1,1), VU(1,1,1), 4096)
SMALLOUT (HM(1,1,1), VI(1,1,1), 4096)
CALL C77 (SIGN, M, H)
SMALLOUT (HM(1,1,1), T(1,1,1), 4096)
SMALLOUT (HM(1,1,1), T(1,1,1), 4096)
C---- THE INITIAL FIELD WAS READ GENERATED. THE FOLLOWING IS TO PRINT
C PUT INFORMATION ON THE GENERATED FIELD
C VELOCITIES ARE STORED TO UH, VR AND WH
C---- TURBULENT ENERGY CHECK
TKU=0,
TKV=0,
TKW=0,
TKI=0,
NO 95 L=1, LMAX
NO 95 J=1, JMAX
NO 95 I=1, IMAX
TKU=TKU+IP(I,J,L)**2
TKV=TKV+VH(I,J,L)**2
TKW=TKW+WH(I,J,L)**2
95 CONTINUE
TDIV=1./4096
TKU=TKU*TDIV
TKV=TKV*TDIV
TKW=TKW*TDIV
TKS1=TKU*TKV*TKW
TKU=TKU/TKS1
TKV=TKV/TKS1
TKW=TKW/TKS1
PRINT 70A
PRINT 700, DT, DELTA, LMAX
PRINT 702, TKU, TKV, TKW, TKS1
PRINT 703, TKU, TKV, TKW
PRINT 70A

ORIGINAL PAGE IS
OF POOR QUALITY
115 CONTINUE
PRINT 601
UTOT=0,
VTOT=0,
NTOT=0,
DO 120 L=1,LMAX
PRINT 710,L
USUM=0,
VSUM=0,
WSUM=0,
DO 116 J=1,JMAX
DO 116 I=1,IMAX
USUM=USUM+UR(I,J,L)
VSUM=VSUM+VR(I,J,L)
WSUM=WSUM+WR(I,J,L)
116 CONTINUE
PRINT 702, (UR(I,10,L),I=1,8)
PRINT 702, (VR(I,10,L),I=1,8)
PRINT 702, (WR(I,10,L),I=1,8)
PRINT 702, USUM, VSUM, WSUM
UTOT=UTOT+USUM
VTOT=VTOT+VSUM
WTOT=WTOT+WSUM
120 CONTINUE
PRINT 702,UTOT,VTOT,WTOT
GO TO 130
1000 COF=1.5
PRINT 707
PRINT 708
PRINT 111,11,111,11,L
READ (111) I,J,TIME,VR,AK,PV,UV,UV
TIME=TIME+1
PRINT 709, TIME
PRINT 708
601 FORMAT (Y,10IN,10,1N4)
PRINT 601
DO 125 L=1,LMAX
PRINT 710,L
PRINT 702, (UR(I,10,L),I=1,IMAX)
PRINT 702, (VR(I,10,L),I=1,IMAX)
PRINT 702, (WR(I,10,L),I=1,IMAX)
125 CONTINUE
130 CONTINUE
700 FORMAT (Y,*INITIAL CONDITION, RT=E10.4, DELTA=E10.4, C=E7.4,13, AVERAGING AT T=10
701 FORMAT (Y,*INITIAL CONDITION, RT=E10.4, DELTA=E10.4)
702 FORMAT (Y,R7.4)
703 FORMAT (1013)
704 FORMAT (1E20.14)
705 FORMAT (Y,*CONTINUE) AT TIME STEPS T4, T7, T10
706 FORMAT (X, 15C10)***
707 FORMAT (1M1)
710 FORMAT (Y,*FINAL CONDITION, RT=E10.4, DELTA=E10.4)
711 FORMAT (Y,*INITIAL CONDITION, RT=E10.4, DELTA=E10.4)
GO TO 6000
5000 CONTINUE
COF=1.0
6000 CONTINUE

ORIGINAL PAGE IS OF POOR QUALITY
*DECK PRESS
SUBROUTINE PRESS(CNFK1,CNFK2,CNFK3)
C**
C SOLVE POISSON EQUATION BY FOURIER TRANSFORM METHOD.
C**

LARGE DM(16,16,16), G(16,16,16), R(16,16,16), F(16,16,16), R(16,16,16),
1 D1(16,16,16), D2(16,16,16), F1(16,16,16), F2(16,16,16), F3(16,16,16),
2 D3(16,16,16)

LARGE DM(16,16,16), G(16,16,16), R(16,16,16), F(16,16,16), R(16,16,16),
1 D1(16,16,16), D2(16,16,16), D3(16,16,16), G1(16,16,16), G2(16,16,16),
2 G3(16,16,16)

DIMENSION DM(16,16,16), G(16,16,16), R(16,16,16), F(16,16,16),
1 R(16,16,16), G(16,16,16), D(16,16,16), D(16,16,16),
2 D(16,16,16)

C COMMON/DATA1/GR, GR, TRI
C COMMON/DATA2/FK, F
C COMMON/DATA3/NAVE, FFT
C COMMON/DATA4/INV, J, INV, LMAX, NHALF, NAVG, NLEV, NSPEC

C FORWARD TRANSFORM
C FORWARD TRANSFORM IN EACH PLANE, AFTER TRANSFORM STORE FR & FI TO G & PM.
C
SIGNED 1,
DO 20 L=1,LMAX,
SMALLIN (FR(L,1,1),FI(L,1,1),256)
CALL FFT(SIG1)
CALL FFT(SIG2,CNFK1)
SMALLOUT (FR(L,L),FI(L,L),256)
SMALLOUT (FI(L,L),GI(L,L),256)
20 CONTINUE
SMALLIN (HM(1,1,1),HM(1,1,1),256)
SMALLIN (HM(1,1,1),HM(1,1,1),256)
CALL FFT(SIG,H)
SMALLOUT (HM(1,1,1),HM(1,1,1),256)
SMALLOUT (HM(1,1,1),HM(1,1,1),256)

C GET TRANSFORMED PR AND PI STORRED IN G AND PM
LPI E=HALF+1
DO 210 L=1,LMAX
M=I/9
M=M*16+1
ARG1=CNFK1*(L-M)
ARG2=ARG1+2,
ARG3=ARG1+3,
ARG4=ARG1+4,
WAVE=cos(ARG4)+16.*(cos(ARG1)-cos(ARG3))+64.*(cos(ARG2)=65.
DO 200 J=1,JMAX
M=J/9
M=M*16+1
ARG1=CNFK1*(J-M)
ARG2=ARG1+2,
ARG3=ARG1+3,
ARG4=ARG1+4,
WAVE=cos(ARG4)+16.*(cos(ARG1)-cos(ARG3))+64.*(cos(ARG2)=65.
DO 200 P=1,PMAX
M=P/9
M=M*16+1

106
C-----FILL THE PLATE FOR LAST CORNER POINT

C

C TRANSFER TRANSFORM

DO 300 1 = 1, LMAX
SMALL1: IX (1, 1), PM (1, 1, L), 256
SMALL1: IT (1, 1), G (1, 1, L), 256
CALL FFTY (SIGN, COEF3)
CALL FFTY (SIGN)
SMALLOUT (FM (1, 1), Pu (1, 1, L), 256)
SMALLOUT (IT (1, 1), G (1, 1, L), 256)
300 CONTINUE
SMALL1: HM (1, 1, 1), Pm (1, 1, 1), 4096
SMALL1: H (1, 1, 1), G (1, 1, 1), 4096
CALL FFTZ (SIGN, HA, HM)
SMALLOUT (HM (1, 1, 1), Pm (1, 1, 1), 4096)
SMALLOUT (H (1, 1, 1), G (1, 1, 1), 4096)
PRINT 904
DO 900 1 = 1, 8
PRINT 903, 1
PRINT 901, (PM (1, 1, 1), I = 1, 8)
900 CONTINUE
901 FORMAT (Y, PM (1, 1, 1, 1))
903 FORMAT (Y, XPLANE*, 13)
904 FORMAT (1HO, *PRESSURE AT XPLANE*, RETURN)
END

*DECK VELOC
SUBROUTINE VELOC (ZM, ZP, ZP1, ZP2, Z, Z2, E881, ZA001, RETA, COEF6, 1 COEF7, CT, CEG, GA, GA, SM, GC, GO2, GO, DELTA, GA)

ORIGINAL PAGE IS OF POOR QUALITY
FORTRAN CODE

```fortran
C THIS SUBROUTINE COMPUTES H(i) IN EQUATION (3.32).
C
INTEGER J0, Z, M, ZP1, ZP2, ZLESS, ZADD
REAL V, MLB, NAVG
DIMENSION U(16,16,5), V(16,16,5), W(16,16,5), SIG(16,16,3), X(16,16,3)
WPSM(16,16,5), NUMY(16,16,6)
COMMON/HDAT1/U,V,W
COMMON/HDAT2/P
COMMON/HDAT3/SIG,K
COMMON/HDAT4/NUMY
COMMON/HDAT5/IMAX,JMAX,JMAX,MY,MLB,NAVG,MLN,NSPEC
POIV=1,META
JTEST=JMAX=1
JFST=JMAX=1
DO 210 J=1,JMAX
  JJ=J
  IM1=J-1
  JMAX=J+1
  IF (JJ .GT. JMAX) GO TO 30
  GO TO (10,20), J
10 IM2=JMAX=1
   IM1=JMAX
   GO TO 40
20 JMAX=JMAX
   GO TO 60
30 IF (JJ .LT. JTEST) GO TO 60
   J=JJ=JMAX+2
   GO TO (10,50), J
40 IP2=1
   GO TO 40
50 JP1=1
   JP2=2
60 CONTINUE
   Y=Z=7.5*DELTA
   X=V=DELTA
   YP=Z=DELTA
   GO TO 200
10 IM1=I=1,IMAX
   IM2=I=2
   IM1=I=1
   IP1=I=4
   IP2=I=2
   IF (I .GT. 2) GO TO 90
   GO TO (70,80), 1
70 IM2=I=MAX=1
   IM1=MAX=1
   GO TO 120
80 IM2=I=MAX
   GO TO 120
90 IF (I .LT. JTEST) GO TO 120
   I=I=MAX+2
   GO TO (100,110), 11
100 IP2=1
   GO TO 120
110 JP1=1
   JP2=2
120 CONTINUE
   Y=(Z=7.5)*DELTA
   X=V=DELTA
   YP=Z=DELTA
```

ORIGINAL PAGE IS OF POOR QUALITY
U COMPONENT

ADVECTION TERM = K COMPONENT

\[S_{11}(t, J, Z) = u_{11}(t, J, Z) + u_{11}(t, J, Z) \]

\[S_{12}(t, J, Z) = u_{12}(t, J, Z) + u_{12}(t, J, Z) \]

\[S_{13}(t, J, Z) = u_{13}(t, J, Z) + u_{13}(t, J, Z) \]

\[S_{21}(t, J, Z) = u_{21}(t, J, Z) + u_{21}(t, J, Z) \]

\[S_{22}(t, J, Z) = u_{22}(t, J, Z) + u_{22}(t, J, Z) \]

\[S_{23}(t, J, Z) = u_{23}(t, J, Z) + u_{23}(t, J, Z) \]

\[S_{31}(t, J, Z) = u_{31}(t, J, Z) + u_{31}(t, J, Z) \]

\[S_{32}(t, J, Z) = u_{32}(t, J, Z) + u_{32}(t, J, Z) \]

\[S_{33}(t, J, Z) = u_{33}(t, J, Z) + u_{33}(t, J, Z) \]

\[S_{41}(t, J, Z) = u_{41}(t, J, Z) + u_{41}(t, J, Z) \]

\[S_{42}(t, J, Z) = u_{42}(t, J, Z) + u_{42}(t, J, Z) \]

\[S_{43}(t, J, Z) = u_{43}(t, J, Z) + u_{43}(t, J, Z) \]

\[S_{51}(t, J, Z) = u_{51}(t, J, Z) + u_{51}(t, J, Z) \]

\[S_{52}(t, J, Z) = u_{52}(t, J, Z) + u_{52}(t, J, Z) \]

\[S_{53}(t, J, Z) = u_{53}(t, J, Z) + u_{53}(t, J, Z) \]

\[S_{61}(t, J, Z) = u_{61}(t, J, Z) + u_{61}(t, J, Z) \]

\[S_{62}(t, J, Z) = u_{62}(t, J, Z) + u_{62}(t, J, Z) \]

\[S_{63}(t, J, Z) = u_{63}(t, J, Z) + u_{63}(t, J, Z) \]

\[S_{71}(t, J, Z) = u_{71}(t, J, Z) + u_{71}(t, J, Z) \]

\[S_{72}(t, J, Z) = u_{72}(t, J, Z) + u_{72}(t, J, Z) \]

\[S_{73}(t, J, Z) = u_{73}(t, J, Z) + u_{73}(t, J, Z) \]

\[S_{81}(t, J, Z) = u_{81}(t, J, Z) + u_{81}(t, J, Z) \]

\[S_{82}(t, J, Z) = u_{82}(t, J, Z) + u_{82}(t, J, Z) \]

\[S_{83}(t, J, Z) = u_{83}(t, J, Z) + u_{83}(t, J, Z) \]

\[S_{91}(t, J, Z) = u_{91}(t, J, Z) + u_{91}(t, J, Z) \]

\[S_{92}(t, J, Z) = u_{92}(t, J, Z) + u_{92}(t, J, Z) \]

\[S_{93}(t, J, Z) = u_{93}(t, J, Z) + u_{93}(t, J, Z) \]
C----SUB-Routine SCALE MODEL

SS=K(IP1,J,Z)*SS
ST=K(IP1,J,Z)*SS
SS=K(IP1,J,Z)*SS
SS=K(IP1,J,Z)*SS

S=K(IP1,J,Z)*SS
ST=(K(IP1,J,Z)*SS)

C* EQU S9=K(IP2,J,Z)*SS
S9=K(IP2,J,Z)*SS

S9=K(IP1,J,Z)*SS
S9=(K(IP2,J,Z)*SS)

S9=K(IP1,J,Z)*SS
S9=K(IP2,J,Z)*SS

DIMY((I,J,3)=IF ITA((IP2,RESOLV,SGS,PERAND)
C*G=DF((I,J,3)=ANVECS*RESAND
S9G1(I,J,3)=STG(I,J,3)=RESOLV=(I,J,3)
S9G(I,J,3)=STG(I,J,3)=SGS=(I,J,3)

200 CONTINUE
P10 CONTINUE
RETURN
END

C-----SUB-Routine GIVCF
SUBROUTINE GIVCF((10,11,2,21,222,757))

C* THIS SUBROUTINE CALCULATES THE DEVIANCE OF (U,V,W) FOR THE PLANES 204
C* THEN THE VALUE IS STORRED IN DIMY((I,J,3).

120 IF (G*2,2) GO TO 30
10 TO (10,70),J
11 JP2=JMAX+1
12 JP2=JMAX
GO TO 60
20 JP2=JMAX
GO TO 60
30 IF (J<1,J,1,JTEST) GO TO 60
11 = JMAX+1
GO TO (40,50),J
60 JP2=1
GO TO 60
50 JP1=1

ORIGINAL PAGE IS OF POOR QUALITY


```
60 CONTINUE
   GO TO 200
10 IM1=1
20 IM2=1
30 IF ( GT ) =2 GO TO 90
40 GO TO ( 793, 6F1, 1
70 IM2=3
80 IM1=2
90 GO TO 120
100 IM2=MAX
110 GO TO 120
200 IF ( L T , TEST ) GO TO 120
300 IM1=THAY+2
400 GO TO (100, 110), 1
500 IM2=1
600 GO TO 120
120 CONTINUE
   DIV=IV(I,J,Z0)=TFF(I,J,Z0)+V(I,J,Z0)=TFF(I,J,Z0)
   S=V(I,J,Z0)=S(I,J,Z0)+V(I,J,Z0)=S(I,J,Z0)
   DIV=DIV+H*S
   GO TO (1, 6)=DIV*CONE7
200 CONTINUE
210 CONTINUE
400 RETURN
END
```

```
ADECY START
SUBROUTINE STAU(CONEF, COEFF, DELTA)
C THIS SUBROUTINE INITIATES THE CONSTANTS FOR FFT ROUTINES.
DIMENSTIC TFF(A, 3), TIP (A, 3), G1416, G1(10), WAVE(15), NFFT(3)
COMMON/ DATA, G1, TFF, TIP
COMMON/ TIP, AVE, NFFT
COMMON/ DATA, WAVE, EN, SPEC
DATA XAVF, XAVF
COEFF3=1.16, 1.15, 1.14, 1.13, 1.12, 1.11, 1.10, 1.09, 1.08, 1.07, 1.06, 1.05, 1.04, 1.03, 1.02, 1.01, 1.00, 0.99, 0.98, 0.97, 0.96, 0.95, 0.94, 0.93, 0.92, 0.91, 0.90, 0.89, 0.88, 0.87, 0.86, 0.85, 0.84, 0.83, 0.82, 0.81, 0.80, 0.79, 0.78, 0.77, 0.76, 0.75, 0.74, 0.73, 0.72, 0.71, 0.70, 0.69, 0.68, 0.67, 0.66, 0.65, 0.64, 0.63, 0.62, 0.61, 0.60, 0.59, 0.58, 0.57, 0.56, 0.55, 0.54, 0.53, 0.52, 0.51, 0.50, 0.49, 0.48, 0.47, 0.46, 0.45, 0.44, 0.43, 0.42, 0.41, 0.40, 0.39, 0.38, 0.37, 0.36, 0.35, 0.34, 0.33, 0.32, 0.31, 0.30, 0.29, 0.28, 0.27, 0.26, 0.25, 0.24, 0.23, 0.22, 0.21, 0.20, 0.19, 0.18, 0.17, 0.16, 0.15, 0.14, 0.13, 0.12, 0.11, 0.10
END
```

ORIGINAL PAGE IS OF POOR QUALITY.
DO 50 I=2,4
F=FLAT(I-1)
B=Z.*CDEP1
THF = COS(P) + TMD(I,2)*SIN(P)
50 CONTINUE
HEH = CDEP1
TF(2,3) = C05(P)
TF(2,3) = S14(P)
END

*DECK FFTX
SUBROUTINE FFTX(SIG)
C**
C FAST FOURIER TRANSFORM IN Y-DIRECTION
C**
DIMF:=(EN,F(1,1),F(1,3),TR1(F,3),TR1(F,3),G(14),G(16))
1 IF(SIG/F(1,1).LT.UL,TF,1)
2 CONTINUE
3 CONTINUE
DO 100 J=1,JMAX
FJ=J
DO 20 M=1,3
IEN = 0
INCN = FF(M)
TF=0
5 CONTINUE
TSTART = IP
IEND = TSTART + 1*XCR-1
IEN = 10 J=1,3
IP=1+jACK
GUM2 = F1(IP,IP+1)
GUM3 = F1(IP,IP+1)
GUM4 = F1(IP,IP+1)
GUM5 = GUM3*TF(N,M)*SIGN+GUM4*TF(N,M)*SIGN
GUM6 = GUM5*TF(N,M)*SIGN+GUM4*TF(N,M)*SIGN
FR(IP,IP,IP) = MUM1
FIF(IP,IP) = GUM2
FR(IP,IP) = GUM9
FIP(IP,IP) = GUM9
MUM1 = MUM1
10 CONTINUE
IF (IP,IP,IP,JMAX) G0 TO 5
20 CONTINUE
C
FIFTH IP,3, ETC.
60 DO 70 T=1,JMAX,2
1, IP=1
CPU1=FR(1,J)+FR(IP,JP)
CPU2=FR(1,J)+FI(IP,JP)
CPU3=FR(1,J)+FF(IP,JP)
CPU4=FR(1,J)+FI(IP,JP)
CR(I)=CPU1
CR(I)=CPU2
CR(IP)=CPU3
CR(IP)=CPU4
70 CONTINUE
C LET TRANSFORMED VALUE OVERWRITE
DO 100 I=1,JMAX
IF(I.GE.JMAX) GO TO 100
FP(I,J)=GR(I)
FI(I,J)=GRI(I)
GO TO 70
100 CONTINUE
RETURN
END

SUBROUTINE FFTV(SIGN,COFF1)
C***
C FAST FOURIER TRANSFORM IN Y-DIRECTION
C***
C
C y-TRANSFORM
C DO 200 W=1,JMAX
IP=1
DO 120 W=1,3
SENDIN
INC=FFT(W)
JP=0
105 CONTINUE
ISTART=1+JP
IEND=ISTART+1+JP
=1
DO 110 J=ISTART,IEND
JP=J+INC
CPU1=FR(1,J)+FR(IP,JP)
CPU2=FR(1,J)+FI(IP,JP)
CPU3=FR(1,J)+FF(IP,JP)
CPU4=FR(1,J)+FI(IP,JP)
CR(J)=CPU1
CR(J)=CPU2
CR(IP)=CPU3
CR(IP)=CPU4
110 CONTINUE
IF (JP.LT. JMAX) GO TO 105
120 CONTINUE

ORIGINAL PAGE IS
OF POOR QUALITY
DO 170 J=1,JMAX,2
 JP=J+1
 GDUM1=FR(I,J)+FR(JP,J)
 GDUM2=FI(I,J)+FI(JP,J)
 GDUM3=FR(I,J)-FR(JP,J)
 GDUM4=FI(I,J)-FI(JP,J)
 IF (SIGN(1,J,0.)) GO TO 160
 GR(J)=GDUM1
 CJ(J)=GDUM2
 GR(JP)=GDUM3
 CI(JP)=GDUM4
 GO TO 170
160 CONTINUE
 GDUM1=GDUM1+CEF3
 GDUM2=GDUM2+CEF3
 GDUM3=GDUM3+CEF3
 GDUM4=GDUM4+CEF3
 CONTINUE
C GET ORDERED SET
DO 180 J=1,JMAX
 JT=4*AVE(J)
 FR(I,J)=CR(J)
 FI(I,J)=SI(J)
180 CONTINUE
RETURN
END

*DECK FFTZ
SUBROUTINE FFTZ(DIM,FM,W)
C***
C FAST FOURIER TRANSFORM IN 1-DIRECTION
C***
DIMENSION HM(16),LM(16),AVE(16),FFT(3)
COMMON/LAT45/GR,TR,TRI
COMMON/DATEV/AVE,FFT
COMPUTE VM=AV(HEX,L,MAX,K/HALF,NAV,MT,FN,NSPEC
DO 200 J=1,JMAX
 DO 200 J=1,JMAX
200 CONTINUE
 CONTINUE
 INCR=8*FFT(M)
 LP=0
105 CONTINUE
 ISTART=1+LP
 IEND=ISTART+INCR+1
 K=1
 DO 110 K=1,ISTART,KEND
 LP=LP+1
 NUM1=HM(I,J,L)+HM(I,L,J)
 NUM2=HI(I,J,L)+HI(I,L,J)
 NUM3=HM(I,J,L)-HM(I,L,J)
 NUM4=HI(I,J,L)-HI(I,L,J)
 NUM5=NUM1*TRI(K,L,P)+NUM2*TRI(L,K,P)
 NUM6=NUM3*TRI(K,L,P)+NUM4*TRI(L,K,P)
 NUM7=NUM1*TRI(K,L,P)-NUM2*TRI(L,K,P)
 NUM8=NUM3*TRI(K,L,P)-NUM4*TRI(L,K,P)
 WI(I,J,L)=DUM1
 H(I,J,L)=DUM2
END
C This subroutine calculates the entry viscosity by vorticity model

C**
INTEGER ZO, Z1, ZP1, Z
REAL X, XAVE
DIMENSION U(16, 16, 5), V(16, 16, 5), W(16, 16, 5), SIG(16, 16, 3), X(16, 16, 3)
COMMON /GDATA/ U, V, W
COMMON /GDATA1/ XAVE, XMAX, LMAX, XHALF, NAVG, NLEN, NSPEC

C COEF2 = DELTA * 0.5
DO 210 J = JMAX + 1, 1, -1
 JM = J - 1
 JP1 = JM + 1
 IF (J .EQ. 1) JM = JMAX
 IF (J .EQ. JMAX) JP1 = 1
 NU 200 IM = 1
 IP1 = 1
 IF (JM .LT. 1) IM = 1
 IF (1 .EQ. 1) TM = JMAX
 IF (1 .EQ. IMAX) TM = 1

S1 = (WI(JP1, 70) - V1(JM, 70)) * (1(JJ, J, ZP1) - V1(J1, J, Z1))**2
S2 = (U1(J1, JJ, ZP1) - U1(JJ, JJ, Z0)) * (1(JJ, JJ, ZP1) - 1(JJ, JJ, Z0))**2
S3 = (V1(JP1, JJ, Z0) - V1(JM, JJ, Z0)) * (1(JJ, JJ, ZP1) - (J1, J, Z1))**2
S4 = S1 + S2 + S3

K(J, JJ, Z) = COEF2 * SQRT(S4)

200 CONTINUE
210 CONTINUE
RETURN
END
*DECK VISCS
*SUBROUTINE VISCS(ZA,7,P1,7,CMF2)
C**
C THIS SUBROUTINE CALCULATES THE EMDY VISCOSITY BY SHAGGINSKY MODEL.
C**
IZF = 5, ZW = 5, ZF1 = 2
REAL, DIMENSION (16,16,5), V(16,16,5), SIG(16,16,5), X(16,16,5)
COMMON/DATASET/V, K
COMMON/DATASET/SIG, K
COMMON/DATASET/X, IMAX, IMAJ, IMHAT, MAVE, MF, NEN, NSPER
CCF2 = CDEF, IA = 0, 5
JTEST = IMAX = 1
JTEST = IMAX = 1
GO TO 210 J = 1, JMAX
1 J = J
11 J = J + 1
12 IF (J . GT. 21) GO TO 30
20 GO TO (10,20), J
30 J = JMAX + 1
40 GO TO 60
50 J = JMAX
60 GO TO 20
70 IF (J . LT. JTEST) GO TO 60
80 J = JMAX + 1
90 GO TO (40,50), J1
100 JPF = 1
110 GO TO 60
120 JPF = 2
130 CONTINUE
140 GO TO 200 I = 1, IMAX
150 IF (I . LT. 2) GO TO 90
160 GO TO (70,80), I
170 IF (I . LT. JTEST) GO TO 120
180 I = IMAX + 1
190 GO TO 120
200 IF (I . LT. JTEST) GO TO 120
210 I = IMAX + 1
220 GO TO (100,110), I1
230 IP2 = 1
240 GO TO 120
250 IP2 = 2
260 IP1 = 1
270 CONTINUE
280 IF (IP1,J,70) .EQ. (IP1,J,70)
290 IF (I .GT. IP1,70) .GT. (IP1,70)
300 IF (IP1,J,70) .LE. (IP1,J,ZF1)
\[S_2 = V(T_1, J_1, Z_0) \times V(T_1, J, Z_0) = V(T_1, J_1, Z_0)^2 \]
\[S_3 = U(T_1, J_1, Z_1) \times U(T_1, J, Z_0) = U(T_1, J_1, Z_0)^2 \]
\[S_4 = V(T_1, J_1, Z_1) \times V(T_1, J, Z_0) = V(T_1, J_1, Z_0)^2 \]
\[S_5 = S_1 + S_2 + S_3 + S_4 \]

\[k(R, J, Z) = \text{NEFP} \times \text{SGRT}(S_5) \]

SAMPLE INPUT

```
1.5 0.00025 0.26 2.0 0.0 1000.0 0.0 200.0
65.0 130.0 301.0 384.0 379.0 325.0 250.0 20.0
21.0 183.0 69.0 40.0 22.0 12.0 6.4 9.5
1.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0
65.0 130.0 301.0 384.0 379.0 325.0 250.0 20.0
21.0 183.0 69.0 40.0 22.0 12.0 6.4 9.5
1.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0
```

ORIGINAL PAGE IS OF POOR QUALITY
REFERENCES

Deardorff, J. W., 1971, "On the magnitude of the subgrid scale eddy coefficient," J. Comp. Phys., Vol. 7, p. 120.

Lilly, D. K., 1966, "On the application of the eddy viscosity concept in the inertial sub-range of turbulence," NCAR Manuscript No. 123.

Reynolds, W. C., 1974a, "Recent advances in the computation of turbulent flows," *Advances in Chem. Engrg.*, Vol. 9, (Reprint of Report MD-27, Mechanical Engineering Department, Stanford University.)

