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1.0 INTRODUCTION

A Honeycomb Thermal Shield is an economical, simple, and reliable

alternative to existing thermal shielding methods for reducing the radiated

heat-loss from elements which will not allow obstructions in the field of view.

The device is simply open-face honeycomb of the type used throughout

the aerospace industry for structural panels. The Honeycomb Thermal

Shield uses only the core of the honeycomb panel, however, so it has little

structural stiffness and is transparent through the cells (see Figure 1).

It is located in close proximity to, but conductively decoupled from, the

element to be shielded (the radiative source) with the axis of the

T Ihoneycomb cells parallel to the view direction of the source. The source

radiates into a 2n steradian field occupied by the shield. The view field
4

will be transparent along the axis of the honeycomb but will be increasingly

obscured as the off-normal view angle increases. The angular dependence

is a function of the cell height to width ratio (see Appendix D). A 	 y'

source with a narrow field of view will allow a shield with deep cells

(large height to width ratio), and will efficiently trap the radiated
w.	 a:

energy.

A shielding method which has been used previously required the	 I

radiating element-to be covered with one or more layers of a low emittance,

thin film such as aluminized mylar 	 For many applications, such as shielding

of high energy X-ray detectors, these low emittance films are satisfactory,

k

	

	 since the X-rays of interest easily penetrate the film. They are not

useful, however, with optical elcments or low energy X-ray ;detectors since

they are opaque to the signals of interest.

.i A development of the energy equationsand characteristic system parameters

r
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for the Honeycomb ,Thermal Shield are found. in, Section 3.. Section 4

describes a finite-difference model for analysis, and Section 5 presents the
to

results of the finite-difference analysis.

2.0	 SUMMARY

}' The Honeycomb Thermal Shield is effective in reducing the radiated

` energy loss from narrow field-of-view, high sensitivity detectors. 	 For

spacecraft applications, the designer may use the shield in one of two modes

=G to achieve the overall system design goals.

k The first mode requires the shield be conductively isolated from all

sinks.	 This configuration offers the maximum reduction in heat loss from the
 y

system.	 For a spacecraft application,	 the terminology might be detector/

: radiative source, spacecraft/system, space/radative sink.	 The energy which

i the shield radiates to space is supplied by the detector, and none is

'r supplied by the spacecraft. 	 The analysis of an isolated single cell describes

' shield performance in this mode.

The second mode requires the shield to be conductively coupled to the

spacecraft.	 The heat loss from the detector is reduced, but at the expense

of increased loss from the spacecraft.	 The total heat loss to space is

' greater than would be expected for the isolated shield.	 Heat transfer in

this mode is described in the 'analysis dealing with an isolated row of cells.

{

`j
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3.0	 ANALYSIS

wThe transfer of energy through a honeycomb shield assembly, Figure 1, A	 I

,j comprised of many honeycomb cells with perimeter cells coupled to a thermal

i' sink is a complex	 rop	 p	 ce_ss which does not lend itself to either intuitive

estimates or closed form analytical solutions. 5

To reduce the problem to manageable proportions, an analysis will first

be-developed for a single, isolated, honeycomb cell, Figure	 2, then will s

be expanded to include an isolated row of cells with conductive coupling
3

Y =1 to a thermal sink, Figures 4 and	 5.	 The single cell analysis is useful
It

i
in developing the characteristic system parameters and in describing the

z

energy transfer through a conductively isolated shield assembly. 	 The f

isolated-row model characterizes the performance of a shield which is

conductively coupled to a sink.

3.1	 Isolated Cell Analysis

Hottel (reference 1) describes the net interchange between equal-area,

parallel surfaces, with one a source and one a sink each at a uniform

temperature and connected by radiatively adiabatic walls, but neglects

t
axial- conduction.

Usiskin and Siegel (reference 2) characterize 	 the transfer of

energy through a cylindrical enclosure with a specified wall heat flux,
t	 t _

but again axial conduction through the enclosure wall is neglec?.ed. 	 In

c
fact, none of the treatments listed in the referencesspecifically address

_

the transfer through honeycomb elements.

! The energy equation for a single isolated cell provides a simplified

H
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mathematical model which can be normalized to yield the dimensionless

system parameters. The single tell has design significance as well as

mathematical significance since shield performance for several

"	 situations can be described by this simple system. The model can be

use:d,for instance, for conductively isolated shields _having negligible

lateral thermal gradients compared with the axial (through the cell)

gradient. It is also applicable to the design of very large shields

which are conductively coupled to a sink,but whose innermost cells are

receiving no laterally conducted energy. These applications are discussed

in detail in section 6.

A schematic representation of a honeycomb cell is shown in Figure 2.

Surfaces Al and A2 are isothermal, diffuse, black sinks, and it is the net

radiative energy transfer between these sinks which is of importance to

this analysis.

The interior surface of the honeycomb cell is diffuse and gray, and

the exterior is insulated.

Energy transfer is by conduction through the cell wall and by

radiation between all elements within the enclosure.

All specified properties are assumed constant, and the system is

operating at steady state.

3.2 The Energy Equation for anIsolated. Cell

The following analysis parallels related presentations in references

2- and 5. Terms appearing in the following equations are defined in

Appendix A.

The transfer of energy through atypical element, dAi , of the

isolated cell is described by the equation:



,m
5

W

dQrad)net + dQcond ) net - U
	 EQ 1

where: dQrad)net 
is the net energy into the element by radiation'

dQcond)net is the net energy into the element by conduction

Since gradients in the x-direction are assumed small, the conduction term

accounts only for transfer in the y-direction.

Expanding the conduction term:

= dQcond)y ay ['ktd ddQcond)net	 er dy Jdy	 EQ f

t

i dAi = (dx) (dy ) EQ 3

f { 2^(^)

dQcond) y = -kt 
dd	

dAi EQ 4

E ^;

A similar expansion of the radiation term yields:

a i dQ)	 - I B(Y) - H(y)] dArad net	 i
EQ 5

' where:	 B(y) = eoT 4 (y) - pH(Y) EQ 6

r

k p= 1- e EQ 7

H (Y) = aT4Fy + aT2Fy +
Yea 	t

^o eoT4 (a ) K( a —) d (a )-1	 -2
f EQ 8

I	 I	 If(H/a)
+	 eCT4(a )K(^)d(a )

(yea)

and:	 F	 is the configuration factor 'between element A. and area A
1Y-1 1

F	 is the configuration factor between element A. and area A

^1 ! uration factor between elementK Y n is the configuration(a)	 g A	 andA.
i

element A.
J

i
for n' < y

K(n a) is the configuration factor between element Ai and element A3

for n' > Y.

The boundary conditions are:
r
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d	
0	 aty=0

da) 0 aty - H
Y

The above integro-differential equation can be solved by numerical

techniques. First, however, the equations will be normalized to determine

"	 the characteristic dimensionless parameters, then a finite difference

model will be developed.

3.3 Normalizing of Equations
.w

=^r	
Performing a strict normalization of the equations for a honeycomb

cell is tedious because of the complex nature of the configuration factor

kernel terms. The normalization of equations for a cylinder, Figure 3,

is less complex, but yields the same dimensionless groups. Therefore in

the normalization below, the H(y) terms are correct only for a cylinder,

but the resultant dimensionless groups are correct for a honeycomb cell

also.

The angle factors F and K have been presented in reference 2 as

(Y) 2 + (1)

Y-1

	

	 Y 2 
2 1/ 2 (a)	 EQ 9

{(a) + 1}

(a ) 2 + T
Fy-2	 2	 1/2 - (a)	

EQ 10
{( _ a ) +1}

E	 ((^n, )3I	 2 1(	 n^ )I

`t	 K(^a ) _ 1
	 n 2	 3/2	 EQ 11

N	

`

K( a )	 1 -	
nr- 2	 3/2	

EQ 12
{ (--) + 1 }

nefini--Ig the normalization variables as:

r

s. 	 --	
v..dW xo-t..n'tezaaa.^u^ i tee_:_

{

i

i



T (—)	 (q)
f	 T-	

a	
Y	 n	 R (Y)	 B_(y)6y	 Tl ,	 9n	 Tl	 .	 Y H '	 n H '	 aT1 '

f	 O
i(Y) 	

H

!	
and summing equations 1 through 1 2 .:

d2 8	 H2QT13

d	 _	 kt	 IS(Y) - T (Y) J	 EQ 13	 i

'	 1

RT'

(Y) = e Dy 4 - P IF (Y)	 EQ 14

i
^a)2Y2 + ( 2)	 _ H	 T2 4 (a)2(1 - Y)2 + '2) _ H

^`Z) =	 H	 2	 1/2	
(a)Y + {T)	 H 2 .	 2	 1/2	 (a) (1 - Y)

G`	 { (a) Y + 1}	 1	 { (a) 11-Y) + 1} ..

tl	 . f"-a)Y 4 -n' H	 1 4 rt'-y H+ 
e o

 9nK( a—)(a)dn + e H 6 0K( a )(-a)dn	 EQ 15

F	
(a)Y

f

f
(H) 3 (Y-n) 3 +3 (1) (Y-^)

K(an)1- I H 2	 2 2I 3/z 	 EQ16
{(a) (Y -n) + 11

a

i
(H) 3 (n=Y ) 31 + 31 cH) (n-Y)

K(n—^) 1 - a	 2 a	 EQ 17

	

a	
{(a)2(n_Y)2 + 

1}3/2	 s

^j

The normalized boundary conditions are:

de
--Y 0 at Y = 0

d8
.--y =0 atY=1dY

1	 Inspection of equations 13 through 17 identifies four dimensionless

i	 parameters:

r
1) E>

T,

2) (-2)

a
Tl

y

f	 '
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3)	 (a)
' 2	 3

4)	 ^H ktl
^'

r

The first three of these might have been selected on intuition, but

the meaning of the fourth might be less obvious. Defining the conductive

and radiative transfer at element A	 with unit emissivity as:
i

k(tAx) (T i - T^ )

Qcond	 Ay

Qrad =
o(Ax • Ay) (Ti4 - T^ 4 )	 d a(Ax•Ay) [4Ti 3 (Ti - T^) J

and taking the ratio:

rot Qrad	 4a(Ax-Ay)T13(T1 - T^)AY

s Qcond	 ktAx(Ti - T^) . then
a'

y!
	 Qrad	 4QAy2Ti3

k	
-	 3tt

$	 Qcond	
kt

Since H is the characteristic dimension in the y-direction, this may be

reexpressed as

(=) 4rad = Nc 
HkT3

Qcond

I

The, term Nc will hereinafter be referred to as the thermal coupling

parameter.

3.4 Energy Equation for a Row of Cells

Lateral aswell as axial conduction must be accounted for in the

energy equation for a row of cells since the first cell in the row is

*A binomial expansion of (1 m—' )4
1
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conductively coupled to a sink at temperature T o . Referring to Figure 4

conduction in the z-direction is assumed small as is the conduction from

the last cell of the row. This is a reasonable assumption if the row

element under consideration is in a field having a weak gradient across

each cell (see Figure 6).

The energy equation for an element Ai is:

dQcond ) net + dQrad) net - 0
	 EQ 18

Expanding the conduction term:

_ d	 dT (x)	 d

	

dQc.ond) net dx[-ktdy 
dx ]dx + dy[ -kt;dx dT ()a-yY-]dy	 EQ 19

	

dAi = dx • dy	 EQ 20

Similarly for the radiation term:

3	 d4rad)net	 [ H
(x,Y) - H(x,y)]dAi	EQ 21

{

	

	 Making a further assumption that gradients within any one cell are small

in the x-direction for purposes of calculating the radiative coupling,

Equation 21 for a cell row will be identical to the development of Equation

5 for an isolated cell.

The boundary conditions are:

T(x) To at x=0; dT(x) = 0 at x--s; da- y ) = 0 at y=0; d (-)  = 0 at y=H.
dx

Normalizing variables are

_ T(x)	 = T(y)	 _ T(n'/a) ,	 = x	 _	 n'6x - To	
6y	

To	
9n	

To	 ' % a ' Y H ' n H

oT 1	 1

Substituting into equations 18 through 21;

H)2
 d2Ox d2 e 	 T1 H2UT 3

(a  X +	 _ (T ) { kt ] [,O (Y) - T (Y) ]	 EQ 22

o
,i 4
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a

$(Y) = Cey 4 - pT(Y)	 EQ 23

(a) 2y2 + (2)	 H	 T.	 (1)2 (1 - Y) 2 + 1)
'Y (Y) 	 1'	 2 4 a	 ^2	 H

{ (a) 2y2 + 1}1/2	
(a) . + (Tl ) { 

-a)2 (1 _ Y) 2 + 1} 1/2 - (a) (1 - Y)

a;

a

r

T	 (a)y	 1

E (T ) 4	 B 4K (---^ ) (H) do + e (T—°) 4	 A 4 K (n	 y) (H) do EQ 241	 n	
a	 a	

1	 H n	 a	 a

o	 (a) Y

K (^--n-)	 1 - 
I (a) 3 (Y -n) 31 + z! (a) (Y 	 -n) I

a	 {(a)2(Y _n)2 + 1}3/2	 EQ 25

K( n----^) = 1 _ I (a) 3 ( ►1 -Y) 3I	 2 ^a) (n -Y)'
a	

{(i)	 _y)2 + 1)3/2
	 EQ 26
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4.0 FINITE ELEMENT MODEL

4.1 Single Cell

The finite element model for a single cell is shown in Figure 7. The

enclosure has six nodes: four are elements of a honeycomb cell and

the remaining two the radiative sink and source. Axial conductance

between nodes three through six is:

_L . (k) (6a t)
Ca - Ra	 (H/4)

Honeycomb node area is:

A 6aH
4

and source area Al  = A 2 = W 
2 

sin 60*.

Nineteen radiation configuration factors (F) are required, to describe

the transfer between the six nodes. Feingold (Reference 3)

determined the factor F 
12 

for honeycomb, cells for thirty-two different

values of (a/H) from 0.05 to 20.0. Using these values and configuration

factor algebra, it is possible to calculateall interchange factors. The

tabulated values from Feingold are included in Appendix D along with the

algebraic equations used to calculate all of the F-factor terms. For

those values of(a/H) not tabulated, the analysis relied on a linear

interpolation between adjacent points. Further, the analysis was restricted

to those values between 0.05 and 20.0.

A finite difference computer program, developed at the University

of Wisconsin, allows the user to provide two subroutines, one for

inputting and/or calculating data to be read in, and one for calculating

and/or formatting output data which might not be included in the standard

program format. The following system parameters are read in along with

Table Dl.*



r l	 ^y
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w

1)	 W
2)	 H

3);	 k
4) 	 t

5)	 e
w 6)	 T

7)	 T2

All other required parameters such as estimated temperatures for nodes 3

throttgh 6, areas, configuration' factors, and conductive couplings are

calculated within the program.

4.2	 Cell Row Model

The model for a cell row is illustrated in Figure 	 8.	 A significant

increase in the number of nodes and interchange coupling factors is now

possible.	 For instance, a 15 cell model has 91 nodes-, 285 radiation
a

interchange factors, and 136 conduction interchange factors. 	 The

w factors RA and A are as defined for the single cell.	 The lateral

conductance is:} H
(k) (4)(t)(2)_

Rl	 4a

^
I

for .cell rows as shown in Figure 	 5, and. R

(k) (H) (t) (2)
4 __

R2	 2a	
2Rl

?! for cell rows as shown in Figure 	 4.

f The following 'system parameters are read in along with Table Dl:

s

^s

1)	 W

2)	 H
3)	 k4)	

t

5)	 e

6)	 N (number of honeycomb cells)
7)	 To
8)	 T2

t^
9)	 Tl
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f	
From these, all other required parameters are calculated within INPUT,

^t
{

5.0 RESULTS AND CONCLUSIONS

5.1 Single Cell

Figures 9 and 10 illustrate the variation of shielding efficiency; n,

t

as a function of the cell parameters L and N c. The efficiency is defined

such that as the net energy transfer from Al to A2 decreases, n increases.

Several general characteristics can be observed following a cursory

examination of the graphs. First of all, ri is relatively independent of

N for L less than 2. Also, the variation of n is small in all cases for

Nc greater than 50.

A significant finding not graphically illustrated is that n

is independent of the fourth power temperature difference:

T
(T14	 T 24)	 T

1
4 (1	 [?)'+^

'T 1

Dependence might have been expected since the temperature ratio (T2/T1)

appeared as a characteristic dimensionless parameter in the energy equation.

A possible physical interpretation of thin result is that the

honeycomb reduces the emissivity of the--radiating source, and that the

effective emissivity, e eff , is independent of the environment:

T

eeff	 1	 n # f(T2)
1	

^
I

Higher efficiencies resulting from strong axial gradients are noted

n 	 for L greater than 2 and for increasing N c. For cells of low'`axial

thermal conductance (large N c), the radiated energy from Al is absorbed

predominantly at the base of the cell 
(Tbase^ 

and is reradiated at a lower

temperature (T top ). It is the absorption at T
base 

and reradiation at

e
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Ttop < base
T	 which increases the shielding efficiency from 0.5 to 0.72 for

t L-8 and e=l.

1

For e l = e 2 1

reexpressed as:

,At (T l4 - T24)

	

Qrad	 A + A - 2A F	 A

	

2	 l A 2 A (Fl j 2 + (_ - 1) + Al (e - 1)
2	 1 12	 1	 2 2

Qrad2
Al - A2 and n = 1 - aA	 , this can be

1 T - T(1 	 2)

The intersection of all efficiency curves with the vertical axis can

be predicted by simply using the three-body radiation equation. The third

surface, the honeycomb cell, is insulated, isothermal, reradiating and

black. The energy equation is:

n=2(1-F12 )	 EQ27

The values of F12 of Table D1 and Equation 27 will predict the shielding

efficiency for any black, high-conductance honeycomb shield.

Hottel (Reference 1, Section 3.12) presents a method for estimating n

for cylinders which can be used with reasonable judgment' to predict n

for honeycomb cells of large Nc .	 Figure 11 is reproduced from Hottel

for reference purposes [ TI l -	 s l , s 2 ) Rl .

).: It is possible to predict the effect of adding one non-conducting shield

to a second non-conducting shield with the simple two body radiation equation.

a (T 14 - T24')

} Qrad2 1 - el 	1	 e2 1

+	 +e2A2 A1F12elAl

For Al	 A2 , F1 2 = 1, el _ 1 - nl, and e2 _ 1 - n 2, this equation reduces to:

Q rad2 1
oA1tT1	- T2 )	 1 eff	 n	 n2+	 + 1;

[1-
nl 	 1

2
1

- ^ .^. '3',bFt54i:^	 a x n-rss .	 rsa_u!-R._	 a '..	 t.	 _ a...= r._.aax-sr.u. 	 ^.xt*_ez.	 + m-l^fsie-st c 	 ,`e-am^_1r 	 'Y^ra	 _	 ._t 	 _._xea	 .. amain	 _	 "£	 •u-0c	 nt Asa	 rmax	 u 	 tee. •c_	 -t 	 '4 	 ?t	 _2-	 41`l^
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Rearranging:

•1-	
1

"eff	 n	 rn	
EQ28

1[1 _ nl n2+1]

For example, to find the effective efficiency, neff' for a two shield

stack each with L = 4 and Nc = 100, it is necessary to know only the efficiency

of each shield:

nl n2 = 0.636

1
neff a 1
	 0.636 + 0.636 + 1

1 -- 0.636	 1 - 0.636

neff 0.778

This result is within 7% of the predicted value for L = 8. It is possible

to predict the efficiency for any value of L between 0.5 and 8 and for

k

^	 large Nc to an estimated accuracy of better than 10%.

A comparison of Figures 9 and 10 indicates that decreasing the bulk

surface emissivity of the honeycomb has a significant impact on n only for

f	 small N and large L.c

5.2 Isolated Row of Cells

The results for an isolated row of cells are illustrated in Figures 12

	

i }	 through 18.

	1R	 The efficiency must be considered from two different points of view

for cell rows. First of all there is the apparent shielding efficiency

as viewed from surface A l (the source)

i ,	 t

ij

ii

;x

x	 I
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Qradl
nl 	1 - QA.T EQ'29

t° As the energy loss from surface 1 decreases, the efficiency increases!

Second is the apparent radiating efficiency,as viewed from A2 (the sink):

Qrad2
•f n2	 1 - QA 

1 

^
1

EQ 30

 Again,as the transfer to surface 2 decreases, the efficiency increa ses.I

	

. ;	 ses .
i

	

'	 For the single isolated cell, nl is identically equal to-n 2' but

this is not true for the cell row since energy is conductively added:
I

4rad2 _ Qradl +Qcond-
,a	 }

where: 
Qcond 

is the energy conducted from the mounting surface at To.
F	 -

	

s	 31
Qcond = Qrad2 - Qradl	

E Q

f	 .^

.	 Combining Equations 29, 30, and 31: 	 a`

Qcond Qsink aA1T 14 (r1 1 	n2)

Qsink
vÂl' = n1 - n2

{

Clearly, as nl approaches n2 the cell response approaches that of an

	

al	 isolated cell.

k It must be pointed out that a low radiating, efficiency (n 2) may be a

x, design goal. If, for instance, the goal is to minimize the energy loss from

the source (Al) trading off a larger heat loss from the conductive sink,

k	 then a conductively coupled shield of low N c and n2 is desirable.

	

f	 -

Figures 12 and 13 show,as expected, a strong variation of n with

distance from the conductive sink for the specified cell parameters.

i
A highly conductive shield with a small number of cells of large L radiates

as a blackbody at T	 As more and more cells are added, the influence of

	

, 	 o
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_	
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lateral conductance decreases, and the innermo t cells perfo.m closely; asi

an isolated cell. 	 The lateral conductance for the situation illustrated

/ in Figure	 4 is two timesmes as large as that for Figure 	 5, and the

corresponding	 decrease in efficiency is apparent. 	 Note the slope is

near zero for the last cell for all situations due to the imposed boundary

` condition on that cell.

Figures 14 and 15 show again the variation of p, but this time for an L

of 4.	 The results for 5 and 10 cells coincide with the 15 cell graph (i.e.
u,

one graph can be used for any number of cells).	 For L less than 4, there is

'. very weak dependence of n on cell position, and an isolated cell assumption

is reasonable for all cells of the row.

Figures 16 and 17 illustrate the variation of efficiency as a function

t	 a of number of cells and Nfor (T o/T1) = 1 and	 e = 1.
C

t
Finally Figure 18 shows the efficiency trend for various ratios (Tl/To).

For all cases, T1	 298.15°K.
k

1

•l

i

i
y

i

Li

y1

s
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6.0 DESIGN EXAMPLES

Two sample problems will illustrate the usefulness of the graphs for

an application having two different design goals.

	

r 'I	 6.1 Sample Problem Number One

r Assume a sensitive detector with a large aperture is to be launched

as part of a small satellite. The goal is to reduce both the total heat

loss from the spacecraft and to minimize the heat loss from the detector.

Based on a determination of the input signal attenuation (reduction of

field of view) due to shielding, the cell L-ratio must be 4 or less.

The detector temperature is to be maintained at 25°C and its black aperture

will be continuously directed toward deep space.

To reduce both total energy loss and detector loss, the shield must be

thermally isolated fromthe spacecraft. This will allow the shield to

become as cold as possible, thus radiating the minimum energy. In addition

the N value should be maximized to take advantage of axial cell gradients.
C	 a

Making a preliminary selection of a 1/2 inch deep by 1/4 inch wide

aluminum cell with 0.0007 inch wall thickness:

	

j	 H = 0.5; W -.25; k = 90 BTU/(hrft °F); t 	 0.0007 inch; and L	 3.5
;f

	

NH2oT13
	 (0.5) 2 (5.67 x 10- 12 )( 29 15)3

c	 ktc	 (90)(0.0007)(0.68 x 10-z)

where c is a conversion factor making the ratio dimensionless

N_ = 0.09

	

'`	
x	 The efficiency, n, for a black shield is 0.5 as noted on Figure 9, and for

e = .6 from Figure 10 is 0.54. Using n 0.5;-

,i
Qrad	 Qrad

	

l	 2
A	 = A
	

= (1 - n) [a(Ti 4 - T24 ) ]'
1	 1

j



Qrad
 2 a (0.5)(5.67 x 10-12)(298.15)4

Al

i
r
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j

Qadl

r	
2.2 x 10-2.watts/cm2

1

or:

Qrad1 Qrad1 __ 2.2 x 10
-2

cell	 Al	 W1 sin 60°

Qradl
cell = 6.3 x 10 -2 watts/cell

It is now simply a matter of counting the number of cells in the shield and

multiplying by 0.0632 watts/cell.

Had a plasticized-paper honeycomb been selected with:

H = 0.5 inch; W = 0.25 inch; t = .005 inch; k = 0.1 BTU/hr ft O F; then

L	 3.5 N	 11; and n ru .54 for c = 1.0; n-% .58 for c 	 0.6.

A relatively small improvement over the aluminum shield. 	 However,

by changing the cell selection slightly to:

H 1.0 inch; W = 0.5 inch; t	 0.005 inch; k = 0.1 BTU/hr ft O F; then

L' = 3.5; Nc = 44; and n W 0.64 for 0.6 < c < 1.	 The cell energy loss is

i. then:
9

Qradl
= 1.6 x 10 2 watts/cm2j

i

A
1

Qradl

-
= 1.1 x 10-2 watts/cellI' cell
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The three cases considered are summarized below:

CASE DESCRIPTION EFFICIENCY
E = LO	 e - Q.6

1 Aluminum honeycomb, 1/2 x 1/4 cells 0.50	 0.54

2 Plasticized paper honeycomb, 1/2 x 1/4 cells 0.54	 0.58

3 Plasticized paper honeycomb, 1 x 1/2 cells 0.64	 0,64

_6.2 Sample Problem Number Two

Assume again a_sensitive detector with a large aperture is to

be launched as part of a spacecraft and the detector requires thermal

shielding. The design goal is to minimize the heat loss from the detector.

Conducted thermal energy of less than 15 watts may be drawn from the

spacecraft and reradiated from the shield to space. The detector aperture

is a square, twelve inches on a side. The cell aspect ratio (L) must be

8 or less. Both the detector and spacecraft frame are expected to operate

at 25°C.

To illustrate the method, assume Nc l for a 1.125 inch high by.— -^--

0.25 inch width cell having e 1.

Then: H	 1.125; W = '0.25; L = 7.8; Nc 	1.0; E = 1.0; (To/T1) = 1.0.

Referring to design graphs 12 and 13, at a distance of 15 cells from the

sink at To the efficiency is closely that of an isolated cell.

Lines of equal efficiency _(similar to isotherms) are plotted in Figure 19.

Keep in mind the number of cells per inch is:

high conductance direction (cells/inch) = W X
25 _ 4

low conductance direction (cells/inch) 	 1	 =	 1 	 2,31
1-. 73 W	 (1.73) (.25)

The total shield area is 144 square inches and the cell area is '0.054 square

inches.

The area within the inner ellipse of Figure 19 is radiating as an
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isolated cell of n1 = n2 = 0.50. For larger ellipses, assume a linear

interpolation between "isotherm" values (This obviously can be improved by

weighting the difference closer to the lower values of n2).

If we designate the area of the inner ellipse as AEO 
and the area

between each succeeding ellipse as AE1 
AE2 , etc.:

AEO s 4 (Ro h0)

a

.0

k - minor diameter
0

ho - major diameter

AEO,	
4 

(4-5)	 (4.5)

AEO = 15.9 in 2 n2) 0 = 0,50 nl) 0 _ .50

AE1 20.0 in2 n2)1	 0.44 n1)1	 57

AE2
26.2 in 2 n2)2 = 0.37 nl)2 = .61

AE3 24.1 in2 n2) 3 = 
0.29 T11) 3 = . 71

AE4 = 47.8 in2 n2) 4 = 0.12 n1) 4 = 079

ATOT = 144.0 in2

n2 TOT
S

1	 E AEO n2 ) 0ATOT + AEln2 )1 + AE2 i12 ) 2 + AE3n2 ) 3 + AE4 0 4

n2)TOT = 0.30

F
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w

..9

Q 1^►k
v- T	 n

l - n2 0:64 - 0 . 30 0.34
1 1

Qsink - (0.34)(5.67 x 10-12)(144)(2.54)1(298.15)4

Qsink	
(0.34)(41.63)

Qsink a 14.15 watts

Qrad
2 
= aA1T14 (1 - q 2) = QA1T14 (1 - 0.3)

Qrad2 = 29.14 watts

Qrad, = QAIT14 (1 nl) = QA1Tl4 ( 1 - .64)

= 14.99 wattsQrad, 

S ummarizin2:

1)	 Loss with no shield = 41.63 watts

2)	 Loss from shielded detector.= 14.99 watts

Loss from spacecraft = 14.15 watts

Total loss to space = 29.14 watts

I

a
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7.0 APPENDICES

t	 ^

a, Appendix A: Nomenclature

Appendix B: Figures

Appendix C References

1

Appendix D: Clear View Calculation
#	 ji

`j Appendix E: Configuration Factor Calculation
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APPENDIX A

NOMENCLATURE,

a	 honeycomb dimension per Figure 2; also cylinder diameter per Figure 3

A	 honeycomb node area in finite difference model

A	 area of element i for radiation

A	 radiative source area of honeycomb or cylinder

A2 	 radiative sink area of honeycomb or cylinder

B(y) combined radiative flux (emitted plus reflected) leaving surface
Ai at location y

F	 configuration factor

H	 honeycomb cell height; also cylinder height

H(y) incident radiative flux on surface A 2.
k	 thermal conductivity of honeycomb wall

L ratio of H/a

N number of cells in an isolated row

N
c

thermal coupling parameter kt

Qcond heat transferred by conduction

Qrad also QRAD ( l); net heat transfer from Al j

Qrad also QRAD ( 2).; net heat transfer from A2
2

Qsink net heat transfer from sink at To

R axial conductive resistance between honeycomb nodes41

RL lateral conductive resistance between honeycomb nodes

R1 RL for low conductance cell direction

R2 RL for high conductance cell direction

s length of cell row

t honeycomb cell wall thickness

To temperature of conductive sink

T temperature of radiative source

^.7
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T2 temperature of radiative sink
a

,f

T (x) honeycomb temperature at location x

k

T(y) honeycomb temperature__ at location y

W honeycomb width across flats

X dimension along coordinate x

X dimensionless coordinate, x/a
r

y dimension along coordinate y, y/H

Y dimensionless coordinate

e surface emissivity

p surface reflectivity = 1 - e

a Stefan-Boltzman constant

l n shielding efficiency; also dimensionless dummy integration variable ,;
. in energy equation (n I /H) a

n' dummy integration variable

f6x dimensionless temperature at coordinate X

8y dimensionless temperature at coordinate Y

9n dimensionless temperature at coordinate nH/a
F

f
i

S(Y) dimensionless flux B(y)/QT14

t	
, T(Y) dimensionless flux H(y)/aT

7

t'



27

APPENDIX B
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H	
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L	 4

3	 W1H

Q PZA^D ( 1)
1

NODE NO.	 DESCRIPTION

radiative source

2	 radiative sink

3 thru 6	 honeycomb elements

NOTES:

1. All nodes radiatively coupled

2. Nodes 3 thrlu 6 conductively coupled, diffuse surfaces

3. Nodes 1 and 2 diffuse, black sources

4. Energy transfer by radiation and conduction only

Figure 7. Single Cell Finite Element Model
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Radiative sink nodes

a

3	 5	 7	 2n+1

. SRL
_- 2n+5	 2n+9	 2n+13	 — — — —	 6n+1

R	
I	 H	

I
I

SRL + RL
	

+	
J +	

- - -

AR

2n 4	 2n 8	 2n 12

.SR 	 RL C	 R

2n+7	 2n+11 —- - - - -

.3:^`RL
	 2n+6	 RL2n+10	

g
L 

2	 4	 6	 2n

{
3

conductive sink 	 radiative source nodes

NOTES: 1. No radiative coupling between cells

2. Radiation resistance paths not shown

l`	 3. RL is lateral conductive resistance 	 4'

4. R is axial conductive resistancea

Figure g. Isolated Row Finite Element Model
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APPENDIX D

CLEAR VIEW CALCULATION

The equivalent field of view of a detector shielded by a Honeycomb

1
j	 Thermal Shield can be approximated by:

Tr
3

^eqv Ddetector 6 es

where:	

W

detector - g + H)2 - Solid angle in steradians

g	 [W2 + H2]1/2

i	 9D = tan-' I (R) for the detector collimator

9 s tan-1 (H) for the Honeycomb Thermal Shield

E.

^i

i

E

aL	 z
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APPENDIX E

F!.	 ANGLE FACTOR CALCULATION

t^	 For two cell areas, determine F4-5 if
I

j F1-2' F1-3' 
and F2-3 are known.

I	 j

1

4) 2 14

51 3 15

Honeycomb cell

f
cross section

- -	 - 
^..	

QF4
-5	 1	 F4

-1	 F4
-4	 F4

-3	 E	 1

G	 4'

Calculate F1-4:

Fl-4	
1 - F1-2

A1F1-4	 A4F4--1	

A

,rs	 Then

A	 A1	 1
F4- 1	 (A4)F1-4	 (X4)[1	

F
l- 2^	 EQ 2

Calculate F

F
4-4	 1	

F
4-1	 F4-2

 

_	
—	 —	 a

p

but F	 = F
4-1	 4-2

A
then	 F	 1-2F	 =1-2( 1)[1-F^	 j	 EQ3

4-4	 4-1	 A4	 1-2

Calculate F4_3:

_-F
3-4	 F3-2	 F3-1

I	 A3F3-4	 A4F4-3

-

rE	
F	

- 

(A 
) F

(A3) [F
	

- F
	 EQ 4

f l	 4-3	 A4	 3-4	 A4	 3-2	 3-1

Combining Equations 1 through 4:

A

F4-5 = (X
4
1)[1 - 

2F1-2 + Fl-3]
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The configuration factor between two neighboring cell elements is easily

expressed in terms of values appearing in Table El.

, Y Continuing the procedure to determine the factors for cell elements
A

' separated by a third element:
1

-	 --  -
ffi S I ' 2 5

FS-7 
s (
t) IFl-2 - 2F1- 3 + F1-4^ 60 3 6

I5 __ -.--
7I 17

Finally, for a separation of two elements: 1
-

6I - I 6f

2

F '_ --_

7F6-9	 (A1) [Fl-3 - 
2F

1-4 + F1-5 7^-- - 3 - -^
n

6
p^8, 018

- 

_ ..
9 I95

i

The values of F1_2 used in Equation 1 are tabulated in Reference 3 and

listed below:

I

i'
I

1
^L) F1-2.

j 0.05 0.002056
w 0.10 0.00 81.34

0.20 0.031042
4 0.30 0.065003

0.40 0.105661
0.50 0.149277
0.60 0.193186
0.70 0.235742
0.80 0.276046
0.90 0.313693
1.00 0.346850
1.50 0.485958
2.00 0.578372'
2.50 0.643424
3.00 0.691350

_ 4.00 0.756932
5.00 0.799577

:

4
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(L ) F1_2

.6.00 0.82.9491
7.00 0.851625
8.00 0.868664
9.00 0.882186
10.00 0.893177
11.00 0.902289
12 .00 0.909965
13.00 0.916521
14.00 0.922184
15.00 0.927126
16.00 0.931476
17.00 0.935336
18.00 0.938783
19.00 0.941880
20.00 0.944679

Configuration factor between base elements
of a honeycomb cell (Reference 3).

TABLE El

l

^ r

4 ^:
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