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FOREWORD

111ng handbook was generated-under Task No. 4

This thermal network moede
pdvanced SINDA Thermal Analyzer

of=NASA Contract NAS 9-10435 entitied
Development.”. : -
Under the-total contract, three_tasks were devated to docmnéntatiunr '

Task No. 1 for development of ~+the User's Manual, TRW Report-Ho. 14690-H001-

RO-00, April 1971, Task No. 2_for development_of the Program Manual, TRMW

Report No. 14690-H002-R0-00, June 1871, and.Task No. 4_for development of-

ymal Network Modetiing Handboek contained herein, -

d to the User's Manual and Program Manuai which describe the '
complete usage and content of the SINDA Computer Program, a complete °
manuscript describing. all the complexities of Thermal Mathematical Mode11ling
was far beyond the scope and budgetary alloeations of this task. Hence,
this document was intended-to serve as an initial building block fer a

_ future cnmprehensivg document. Using this guideline a three-fold purpose
was estzblished: (1) te acquaint the new user with the terminology and
concepts used in thermal mathematical modeliing, (2) to present the more
experienced and occasional user with quiek formulaé and methods for solving
everyday: problems, coupledwith study cases which lend insfght into the

relationships that.exist among _the-various solution technigées and param-
eters, and (3) te begin- to _catalogue in an orderly- fashion_the. common
formulae which_in the future may be applied to automated conveysatioral

1anguage techniques.
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NOMENCLATURE
A = Area
C—= Thermal Capacitance
€p = Specific-heat
D = Diameter
DH = Hydraulic d"rameter-
E° = Voltage
F..= Radiation conﬂgumtion (form} factor .

=  Thewmal conductance .

Convective heat transfer coeféicient
= Length or running length

= Current.

= Thermal condugtivity

" Mass flow rate

= Arbitrary exponert.

=  Number of iterations

S LD DA T W
|

= ' Heat rate

= Radius
R..—= Resistance
t = Time
T = Temperature

T Surrounding media or free stream temperature
| Velocity __
U = Free stream velocity
¥ = Volume
W «—Flow-rate
ws_= Sampling frequency-
we = Maximun frequency. cemﬂanent
x = Arbitrary distonce-

ix
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NOMENCEATURE (Concluded)

AT = -Temperature difference
& = Script—F (grey bedy from factor)

=___Thermal. diffusivity :

= (Coeffieient of Volumetric-expansion

= Density _

= Stephan-Boltzmann constant-

= StabiTity factor

Emittance

= Angle

= Radiatien linearization factor

= (Convergence criterion_(relaxation criterion) .
- = Damping factor

no:ycpn-lqomn
]

Symbels, subscripts and units not spectfically mentioned in the
Nomenclature are explained at the point of usage-within the text.




-Properly applied, the -body of concepts.__gr{nci'ples and techniques—applicable. _ ___ _ 3

" eter representation of a_themal system requires,in additiom to the basic

model .,

1.0 INTRODUCTION

1.1 Thermal Math Modeling-as a Cognitive Process

A brief introduction to the rudimentary techniques of thermal medeling
coupled.with a simple understanding ef the various basic heat transfer }
mechanisms are-the prerequisites far a beginning _thermal math modeter. 4 :

1

to: thermal.math medeling constitutes a valid engineering-tool which.can be . ,
applied. to the solutfon of real.engineering problems. A good lumped param- 4

principles- and techniques, an-elusive mixture of experience: (with real
systems, both physieal -and model) and Engineering Judgement to transfer the
end product into an accurate, versatile and cost effective thermal math .

Generally, the problems encountered in developing a therinal.math model.
reduce to an overall object of aehigving the greatest accuracy for the- least
cost. Cost Tactors are rather well défined, and fall inte two classes:

(1) the cost of developing the medel, and (2} the cost of using the model._
Bevelepment costs can be based almost solely en the actual engineering man-
power required te do the_job within.the constraints of time. and budget.
However, the potential costs involved in using a model are often not as
obvious_nor as- Linear. For exampie, niest thermal math-models will b ..n2
lyzed on 2 computer which is highly prieritized. . I such an environment;
a—relatively small increase in required processor time, _perhaps—from 5...
minutes—to 15 minutes, often resuits in a reduced job priority and a corres-
ponding slowdown in turnarousd time, perhaps from one day to one- week.

The- problem of achieving accuracy in a math medel, while subjeet to
cosi constraints, varies greatly from one thermal math niodel to anether.
General accuracy requirements may be-as straight forward as "temperature
accuracy shall be-compatible with- thermocoupte A/D converter quantizatfon
error,” or ®.,, thémostat hysteresis." On the other hand, accuracy levels




might be indirectly indicated by-requiring that a model must "be sufficient-
Ty detailed to pewmjt meaningful parametric analyses with respect to insu-
lation thickness variations in increments of 1/4 inch.” Clearly, there.is

_going to be a-great.deal of Enginezring Judgement involved in developing a

model. that 1s "sufficiently detailed" to be "meaningful."

Succeeding sections of this report will present many of the_basic
principles and. technigues. fnvolved.in thermal math modeling, Experience,
of-course,—can. only be acquired from hands-on familiarity with real themalr
systems. and_participation in the modeling and analysis--thereof:. Engineering
Judgement -can probably-be described more accurately as. the result of ab-
stracting from- the-body of unique familiar information, a .geuweral under<
standing which can be extended to guide the-investigatica and comprehension
of new.and unfamiliar areas. As.such, Engineering -Judgement cannot be
presented in a table, or a ﬁ1guré. or even .an entire_book. However, it is
possible to present a coHection and discussion of examples of thermal math
modeling which will serve, not as a source of practical erperience, but as
a bedy of unique and famiHar information from which the reader may abstract
as_much Engineering Judgement as he is able. Such a coTlection s included
in_the latter half of this report. |

-1
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2.0 THERMAL MATHEMATICAL MOBELING

2.1.. Network Soiution

Two systems are safd to be analogous when.they both have similar- equa-
tions and boundary conditions; and the.equations describing tae behavior of-
one system can be transformed: into the equations for the-oth:r by simply
changing symbols of.-the variables. Thermal and electrieal r.ystems are- two
such analogous systems as shown- in table 2-1. __

“Electri-al
Sys tem
Potential T - E-
Flow ) I
Fesistance R R
, Conductance G '-% i
~ Capacitance & o
| Ohm's Law- | 0= GT X 1= %'

Table 2-1, Theimal-Electrical Syster: Analogy

The analogy between thermal_and electrical systems allows the engineer
to-utilize the widely known basic laws_such as Ohn's Law and Kirchhoff's
Laws used-for balancing networks. Numerical techinigues used te solve the
partial differential equations describing such systems have been conveniently
adapted to computer solutions, thus—enabling th:: engineer te readily cospute
temperature distétbutions and gradiants- ef complex—physical thermal networks.

Thermal- anaiyzér comiputer programs—have-bien devéloped which require
the-user to define & thermal—network of the:-5)stenr-analogous to an eléc-
trical Eircult. The network eomponents dre {iput into the computer and
pre-brogrumed routines perferm the transien! or steady state-sgtutions.
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This section_discusses the development of a thermal_network }md the
numerical techniques for solving- this network.

"2.2.. Mode¥ing Elements
2.2.1 Nodes

2211 cohcegts»_ o

In_order ta«.levelop_a thermal retwork:and. apply nuner.icai techniques—__
to. H:s saiutfnn,. it—ts_necessary- to.subdivide the thermal” system into-a’

- numbey oi.ﬁnﬂ;e..subﬂlume; called-nodes.—The thermal properties of each.. _ :
nede are.considered.to be-concentrated. at_the: central nodal point of.each. . ...

subvolumie. Each node_represents two _thermal network elements,.a tempera-

ture (potential) and & capacttance (thesmal mass) as shown in Figure 2.1.

, [ T [
B '*‘ S (it
o
i ,)_____.. oLy A
i =
_ D - P F T2463 (node 2) -
2 T
- F = e .
i . . S - . - Tasls {node 3)

P

F-’igure 2-1, Noda'l ization _

The temperature, :E._assigned—ta a'node. mp:nesen'es-the- awemge mass -
temperature-6f the subymme - The: capaeitanee, €,. ass#gned_eu—a node {5 —
coemputed fiom—the~ mgmphysica%_properﬂes of the subvomne—mateﬂ?al—
ealuated at the tenperature ofZthe node and is asmeé-tu be coucentmted
at the noda& center-of the subvolume. - Becausa a- node‘rvepmsents a-il(lnping

RN . paraméters te—a-single point in-spaces the teuperasura distribuidon -

thtough-the subvolume—implied-by- the noda—-l—temenatu\-e-‘ls Hnear—as shown—=-

N f_-"—'"-'""‘lm-—l_’wure-'z.ZC'-'and@-not 2 step function as 1—11u§%¥a-ted—"r'n;P‘l'gur‘e-2;2h=,-+-

. & -
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STEP FUNCTION ‘ ,
ACTUAL EACH NODE AT LUMPED PARAMETER

DISTRIBUTION _ UNIFORM TEMPERATURE SPATIAL POINT MASS
[ e R e 1’ ] e e e

(a) o (b) (c)

figure 2.2, Temperature Distributions

In a homogeneous material, the temperature at a point other than the
nodal point may be approximated by intarpolation between adjacent nodal
points where the- temperatures are known.

The error introduced by dividing a system into finite size nedes rather

than_volumes dx3 where_dx approaches zero is dependent en numerous consid-
erations: Materdal thermal.preperties, boundary_conditions, node size,
node center placement, and time.increment-of tronsient caleculations. The_
techniques for proper nodalization—to minimize- the error will be discussed
in-alater section.. " ‘ ’

2.2.1.2 Node Types

To this point-only_nodes-which represent subvolumes with a finite
thermal mass (capacitance) have beert discussed. In many +nstances, two
other types of nodes are required to define a thermal netwerk. They are
nodes having a zero-éapacitance or an—infinite capacitance. Thermal”

- analyzers siuch- as SINDA usually glve the threé types of nodes particular

names as follows:

L N

-t




Node Type Name
Einite Capacitance .. Dt ffusion
Zero. Capacitance Arithmetic
Infinite Capacitance Boundary

The..di ffusfon node has a finite. ca'paci tance. and is.used to repre=

loss_of potential_.euergy whieh..depends...on the capacitance value, the net.
heat. flow into the node, and the time over.which the heat 1s_flowing.
Mathematically, a diffusion node is defined by the expression:i— ___

2. - Eﬁ =0—

The arithmetic node (zem capacitance}‘ is a physically unreal quantity,
however, its effective use with numerical solutiens can often be helpful in
interpreting results in such applications as surface temperatures, bondline ,
temperatures, and node coupling temperatures, It also finds use in repre- {
senting theymal system elements which have-small ecapacitance values in ,
comparisen te the large majority of the other-riodes #n the system which
results in cemputer run time reduction with minor changss in overall
 accuracy. Examples of these could be small compenepts such as bolts,
films, orfillets; gaseous.contents of small ducts or-tubes; and low mass %
insulations. Arithmetic nodes should be few in nuber when contrasted to ]
the tétal number of-nodes in._the network. The temperature of an arithmetic.. .. . . |
node responds. instantaneously to_its. surroundings. _Amgmaiical‘ly, an:
" arithmetic nede is defined by the expression:

):Q =0

The boundary node {infinite—capacitanee) i used to represent eonstant«
temperature-sources within a thermal natwork., Comwon uses-are:- deep
space sink temperature, recovery temperature;, lunar surface temperature.
in addition; a-boundary- néde may-be-iused to represent thermal system com-
ponents such as the bulk ‘propellant ina Targe™ tank which has -8 very-.
large- thermal mass (capacicanee): Mathematically a-boundary node fs
defined as:

T % Constant



2.2.1.3 Method of-Nodalization

The placement of diffusion node centers and-the.choice of node. shapes

is dependent on several factors: (1) the points where temperatures are .
desired, (2) the-expected temperature distribution, (3) physical reasonable-. P
ness, and (4)_the ease of compyutation. The-actual size of the node is :

~ dependent on other-considerations: (1) accuracy desired, (2) structural -
design, (3). computer storage_capabilities; and-(4) computer time required. 1
Each_factor, however, embodies other-eonsiderations.. For example, to
anticipate the expected temperature distributien one must draw heavily on
Engineering Judgepent-as to the effects. of the-expected boundary conditions . = . =
and.associated material properties.

In gener:&i, the shape of a diffusion nede is chosen to be-a siuple
geometric figure whose areas and volume can be easily calculated. Irregular-
ly shaped structural members may- be approximated by simple shapes by em-
ploying assunptiens that are consistent with the desived results. Node ;
centers are assumed to be located at the.mass centroids of the nodes. In
some cases, nodal divisions are decided first, with the node center locatiens
being thusly defined as a consequence, In these cases, nodal .boundaries
will usually lie along structural boundaries, and structural members will be
divided {n_a symmetric and equal-fashfon. In other cases, cutput require-
ments wiTl dictate the locations of node centers, with the nodal boundaries
assigned-as a consequence... These two approaches are {1lustrated-in Figure 2-3,
In the- first case, Figuee 2-3(a) it is desired.to prepare a g,ener_al model
of=the_s t¥ucture, but. in the second case, Figure—z-a(b-) it is désirad to-
model the response of the two thermocouples located on the bond line between
the two members. ‘
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{a)_General Node-Boundartas (b) Node. Genters at Thermocoupte Locations.

Figure 2-3. Alternate Nodalization Methods

The: above exampie. alludes te a general.desirabiTity for rectangulariy
shaped nodes. . This is true. for the simple reason that it is easy to.com-
pute the areas and volumes required for the input caltculatfons. .Such
simple nodal shapes are in keeping with current engineering practice.

By contrast,Dusinberre.(reference 1) suggested that-nodaitzation be..péf-
_ formed in such a manney that the paths of Heat flow assumed a triangular
. pattern, as shown in Figure 2-4(a). The only drawback to this theoreti-
o cally sound approach is that it remafns for the engineer to compute the

volumes of the frregular polygonal nodes which are the consequence of such
- a tact, as shown in Figure 2-4(b),

+ A .‘:. ?J!

‘a. 0 ;o X \Qi;q' ‘

el e} '=| N
g. 1 @ *

- (a} Trtanguler Heat . ') Node Shapes Resulting (¢} Stiple Rectangular - . .
Flow Paths from (a) - Nodalizstion—— w

Figure 2-4, Poiygonal Nodalization ¥s Reetangutar NodaTization o
Note how much simpler 1& the-rectangular nodelizatiun approach indiceted in . |
Figure 2-#{e). As might be expected, to-achieve- the Same simpliicity of : -
N calculation, éircular structures are-nodalized in ple-shaped wedges,- annu- I
Tar rings, or a combimatien of the two, a§ shown in Figure 2-5, )




Figure-2-5, Nodalization of Circular-Elements-

constant iemp,emture fn.nne,_.,twa. or*three-dimens:lonal.models, respec-—_.
tively. The—physical- location.of-a boundary node is determined solely by
the conduction paths connected to tt- A.single boundary node may be used
to model all boundaries which are at the same temperature. This point is
i1lustrated in Figure 2-6 which shows_that the tndicated boundary node-will
suffice as a model of the entire, constant temperature édge of the structure

(in this ease, at 100°F).

.
~ wo *F Buunduy. Nodt

Figune 2-6, Sample Boundary Node

Avd thmetd cnodes have=a numher-of uses_which any consequences- of. the-
fact: —ﬂrat-such-ndd&&__serve- as-an engimering.model "of the proverbial "wafer—
0f thickness_dx, where: dx_approaches zere"._ A-typical appiication: lies-
tn the-modeltng- of_ex%eﬂor sm&faces_-aof’.neantry vehicies whieh are—
often_subjested-to severe, rapidﬂs changtng,- boundary condilions. —In the
physieal system,_ the-surface—temperature remafns very elose-to radiatton
equitibrfum with- the surface-heating rate-4ndicating thatithés—systemmn-be
&ccmtely—s*l-mulated by the-use of-a -surface ar—ithmaiie node. This appli-
catfen #5 1llustrated=in Figure 2-7.
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radiatton raduﬂon

_ diffusion —th——
nodes )
dx \\lritlumic_
' _ node.
- ' diffusion .. ...
T node

Figure 2-7, Use of Arithmetic Nodes—to Model. Surfaces

The case where heat flows- from a surface by conduction is usually one
in which two structures are bonded together and a bondline temperature is-

sought. When the- structhres are homogeneous,-& bondline temperature may be -

established by simple Tinear interpolation between-the nearest node centers.
when the materials are dissimilar, 1t 13 more appropriate to use an arith-
meti¢ node at the bondline, leaving to the compuizr the process of per—
forming a éonductance weighted_average of the sdjoining diffusion node -
temperature which, in essence, is_the resultToffinding-the steady state
(heat in = heat out) temperature for an arithmetic node.

Arithmetic nodes m. a'so be_used advantageously in—place-of-di ffusion
nodes_whieh have a capagitance- that 1 small when- compared to the great
majority of: nodes in-the system. This -often-occurs when modeHng a smalli—
quantity of-gas fn a tube-or-other enclosure, or-when modeling small struc=
tural parts, such as—wires, bolts, fillets, films; and sheels, where
detalted temparatures are desfred (whick precludes lumping sueh—{tems aTong
with—larger nearby nodes). The correct use of arfthmeticnodes tn these
cases generally vesults in a considerabi ® savmg_ef conputer time when the
model s processed:
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2,2.1.4 Computational Methods - Nodes

In develeping_ a thermal network, computations- with respect to nedes—
are generally Timited to calculating the capacitance of diffusion nodes.
The following formula is used:

C=p ¥« L
where:
¢ = thermal capacitance - BTU/F
- p = density --LB/FTS

V.. =_ valume - FT3
(:p.j - specific heat - BTUAB-£

The specific heat (Cp)_ and the density (p) of materfals may vary with
temperature, The necesstty to utilize temperature dependent. properiies for
an analysis depemds on the degree with which_the properties vary and the
temperature range over which the capacitance -of the material will be calcu-
lated. Mpst thermal analyzers can accommodate temperature varying thermal
properties,

The use of arithmetic nodes may also require some¢ computations. Ree
placement of small capacitance diffusion ncdes with an arithmetic node must.
be preceded by computations te. verify that the capacitange-conductor-effects
are such that the nede-in question wiil_essentially reach steady state
temperatures during the time step requived by the larger nodes. The-use of
an ari thmetic node-to predict _surface tempevatures. where surface-radiation:
or-very high heating rates—are involved- requires—careful_analysis te insure—
the- stability of-the arithmetic-node._Stabiiity-ert terfa- and solutfon
technfques are-discussed- in-section 2& Erom-this sa_ctfén, it-con be-seen
thatsclution-techniques using- Hnearized “lastpass® temperature values-
may require—the use of analyzer_contvol constants to restriet~the maximum
node temperatiure change or” computation- time step. The-engineer must further
be eautioned agatnst using-coup¥ed. arithmetdéc nodes without-a complete-
understanding. of the implication3 and: requirved-analiizer-coartrol constants
used-tu tnsure a val¥d Solution,

I
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2.2.2  Conductors
2.2.2.1. _Loncepts

Conductors._are the-thermal math modeldng netwovrk elements which arve
used to represent the heat flow paths_through which.energy is transferved. .
from_one-node-to_another node. FEigure 2-8 illustrates the element node

temperatures. (T)s capacitances (C) and conductors LG) which. comprise a
thermai network. ...

T G T

Figure 2-8, Thermal Network Elements
2.2.2.2 Types of Condugtors

The three- pmeess,es by which heat flows from aregiomof higher
temperatune to 2 region_of lower temperature arefanduction._convection‘
and .radia¥ion. Conduction 5 _the process by whicn_heat flows within-a

_ medium.-or between diffenent—medium An_directphysical contact. The energy

is™ t¢ansnﬁtted~b¥ molecular-conmunfeation. Figure 2-9 4llustrates con-
duction conductors. _

eovm— = ngne 259, __Conducﬂ:on-l:onductef:

COnveetinn i$ the process of energy_transport by cmnbfned'-&ct#on of heat
eonductwn,menergy storage, and:mixing motion. Heat wiil flow by cﬁnduc‘tfon
from a—surface- to adjacent partfcles of fTuid; then the fiufd particles w11
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Move to a region of Tower temperature where they will mix with, and transfer
a part of their energy to, other fluid particles. The energy is actually

stored in_the flutd particles and is carried as a resuit of thefr m-ss _
mottor. Figure 2-10 illustrates the-convection conductor. .. ]

——

Figure 2-10. Convection Conductor

Conductors which represent condustion or convectien paths are re-
ferred to as linear conductors because the heat flow rate is a function of
the temperature difference between nodal temperatures to the first power.

»[) | . G=6 (7§ - TJ)

Radiation is the process by which heat £lows between two bodies when
the bodies are separated in space. Energy is transferred through electro-.
magnetic wave phenomeéna. Radiation conductors _ave-termed non-1inear be-
cause the heat flow between two-surfaces by radiation is a function ef the
difference of the fourth powers of the surface- temperatures. '

Q=6 (T4% - T4 | «

Figure 2-11 illustrates the.raifation conducter,

13
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Figure 2—11. Radiation Conductor

Fluid flow thevmal systems may also be simulated by thermal modeling.

Energy stored in the thermal mass (capacitance) of a fluid lump (node) is
transferred from one poiat to another by the movement of the fluid mass..
This type of conductor is generally referred to as a mass flow conductor
and 1s i1ustrated in Figure 2-12, The mass flow conductor is aiso
linear

6'6(T1 - T3)

ANANI

Fluid

Figuré 2-12. Mass Flow Conductors
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2.2.2.3 Computational Methods - Conduction Conductors

Conductton conduetors are coemputed frem the equation:

whever
G = _themmal conductance - BTY/HR-%F.
k = thermal conductivity = BTU/HR-FT=°F
A = cross sectional area through whieh heat. flows - ET2
L = length_between acjofning nodes = FT

The thermal conductivity (k) of materials may viry with temperature
or other influencing factors within the system; the cross-sectionzl area
through which the heat flows (A) and length between node centers (L) are
determined_by the size and shape of the adjoining-nodes. As with the
capacitance caltulations, the necessity te use temperature dependent-
properties depends on the degree with whieh the conductivity changes over
the température rénge 2xpected during the_analysi:.

272.2,3.1 Rectangular Nodes

The length, L, of the heat fiow pnttt.. used f& conduction conductance -

calculations for rectangular nodes is the distance between node- centers,
and the area, A, to be used is the cross~sectional arez perpendicular to_the
1ine joining the nede centers. The conventien-is depicted in Figure 2-13.

/4 —
_ [
[ ] .
. ;
1 ? "'|_|_ %, = A
i . - p
node 1 nade 2 A
l-——l -

Figure 2-13. Simple Conductor- Representing a Heat
Frow Path through Material =




2.2.2.3.2 Circular Sections

For conductdors_between nodes which are circular sections, the con-

ventions showh in Figure-2-14 should be used:
_ a

A _ed
E...In‘lrgﬁgr

where:

8 -~ radians

d-F

o = consistefit units with ry
rj - consistent units with ry

Figure 2-14, Area and Length Equivalents for
Circular Section Nodes

2.2.2.3.3 Parallel Conductors

Twe orMpara]le%_ conduction paths between nedes may be summned to

create one-conductor value by the follewing equation:

GT_S_G'I + GZ"' .- Gn

This may be-helpful in computing an_equivalent cenductor between two nodes

as i1tustrated {n Figure 2.15.

: G =Gy + 62
Figure 2,15, Parallel Conductor Flow Paths

16
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2.2,2.3.4 Series Gonductors

Two or more series. conduction paths between nodzs may b2 combined to ,

create one conductor value by the following equation:

1 1 L1 1
= .'e-'+ E-"’F ek . GT—-—=1 ], ; ]
Gt & & et

This may be helpful-in compgting'_ttxe.conductors'-bemeen--tua,,dissimtlar .

shaped or dissimilar material nodes—as shown in Figure 2.16.

kA
6 = L
I'.]A
ok
2
st—Lﬁz—
2.

T 6

i 1_' )
1 TR,

5 f -
Fiqure 2.15. Series- Conduetor Paths -

17

e - Pl "N SO A

Oy —




- - 2:2.2.4 Computational Methods -—Convection. Conductors

L& | Conection conductors. are computed. from the &xpressiom:

| | G = hA

. wheretr— - _

' ' G.= _tharmal.conductance = BTU/HR=°F

h =~conu'ecti ve-hea transfer_coe_ﬁﬂcfent_ BTU&IR—FT?-"F'

= . A in contact with the fluid. However, h is a compl fcated functton of
.-l fluid flow, the thermal properties of the Fluid medium, and the geometry
- " of the system. -

L Stnce the convective prosess of heat transfer is.so closely linked to
© fluid motfon, 1t {s first required to.establish whether the fluid flow 1s

' laminar or turbulent._.In laminar-flow the £luid moves in layers and the
flufd particles follow a smooth and continueus path. Heat ts transferred
enly by molecularconduction within the fluid as-well as at the intevface
between the fluld and the surface. In.turbulent-flow the path of the flutd
particles is irrvegular; and’ although-the general. ‘trend_oF the motion- ts in
S B one direction, eddies or mixing currents exist: In addition—to the con=

' duction- mechanism being-mnodified, increased heat transfer occurs in turbu-
: lent flow when.energy i$ caMed_by f'luiﬂ.pmkieles_acmss flew streamlines
—r " and mixes with other particles of thefluid.

In addition_to.knowing-whether the fluld metion ¢ Yaminar or turbu-
| lent; ft-4s necessary to know the priscess-—by which the motion wes induced.
= When_the heat £lows between the- fiuid: and-$he-surface as a result of fluid
o motion caused-by differences- in-t3uld density resulting from temperature
gradients in the-fluidy the heat teansfer mechanfsmis called free or
o netural- eo___nyect-ion. When the motion ts caused by some external agency,--such
as a pumpoe-blower, the heat teansfer mechanfsm- is calted—forced-convention,

It
s
1

L]

\
L]
w
Hy
[l

1

G-is—the prodm?&f the..ayemge unit-thermal convective conductance —————
h (convective heat transfer or £ilm coeffi cient) and the nodat surface area _ . ...
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The following table 11lustrates typical-values of average hsat
transfer coefficients encountered in engineering practice,

»

o , Convective Heal Transfer Coefficient_
Convective Medium 5 h - BTU/HR-FT2-°F |
Air, Free.Convection ' 1-5—-
Air,_ Forced Convection : ) 5-50
011, Farced Convection | 10-300-
Water, Forced Convection '50~2000

_ Water, Boiling 500-105000 -

- Steam, Condensing_ | -1000-20,000

Table 2-2. Order of Magnitude of Convegtive Heat Transfer Coefficients

, Equations for the computation of convective heat transfer coefficiénts
will be divided into three categories: natural cenveetion, forced convection
in tubes or ducts, and forced convection over exterior surfaces. The equa-
tions presented for the calculation ef cofivective film coefficients are

the most generally used exprésstons. Others are available and are appli cable
for many specific thermal probiems or analyse.. I should be remembered

that the predicted values for h are only approximate. The accuracy of the
heat-transfer coefficient caleutated from any available eguation or graph

may be no better than 30 percent,.
2.2.2.4.1 Combined Natural and Foreed Convection

In_cases where both natural and forced convection are combined, it.is
left to the enyineer to decide which heat—transfer phenomena is significant
and utiltze the proper equations to compute the ffective film coefficient
(h). The following determinationsshoald be helpfuy

1) celeulats the Grashof mumber (8r)
92 g g (T = TQ)VL3

T

&r-=

where:
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Gr = Grashof number --dimensfonless
g =-gravity constant - 4.17x108 FT/HR?

g = coeffictent of volumetric.expansiaon
@ fiim-temperature - 1/°R

T"= temperature of the body_ surface-- °F
T = temperature of the surrounding medium - °F
L.= length_of flow path --F1"

p = fluld. viscosi-ty_-—L‘B/HR-El‘ _

2) Calculate the Reyno'lds number.(Re)

u

where: .
Re = Reynolds number - dimensionless

U= fluid velocity - FT/HR
p = ftuid density - LB/FT®
L = tength of frow path - FT
H -1

fluid viscosity - LB/HR-FT .

3} 1If Gr< 0,225 Re?  the effect.of-natural convection on the_
average heat transfer coefficfentfor
pm_ﬁos:ced convection 1s less than 5%

4) If Gr-> 10.0 Re? forced: convection. has negligib'le ef.feci:_
on_natural” convection_

5) In the region where beth free and forced convection effects are
of the same order—of magnitude, heat transfer is increased by
‘buoyancy effects. acting {n: the direction of flow and-decredsed-
when acting in the opposite direction. .

6) 1In cases where it is. doubtful whether- forced ¢r free convegtion
flow applies, the heat- transfer coefficient—is generally calcu-
Tated by using forced and- free-convection reiitions- separately
and the Targey one—is used. The-aecuracy-of this wmile of thumb
{s estimatedto be about—25%,

)
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2.2.2.4‘.‘2. Natural Convection Equatiens

Natural convection occurs whén fluid is set in motion as a result of
density differences due ta.temperature variations in the fluid. A . great
deal of material has been published on heat transfer coefficients, resylt-
ing in many techniques with a wide.variety of . results, leaving the.
"occasional user—of the-infurmation easily confused. Presented herein ._ . ... ... ..
is. a wide variety of applications condensed.into-a.sman number of groups-.
The initial data.was obtained-from the 0il and Gas Journal, Equations.. .. o3
used are the. ona2s which.appear to_have the. widest: gcceptance for-the . . _ . . ..
particular set—of conditions_ jnvolved.. .. -

Correlations 6f natural conveetion heat transfer usually take .
- the form:-

= K (e Pr)"

[ ‘ where:
B | h.= heat transfer coefficient
K = an empirical corstant
Pr = Prandtl number
Gr = Grashof number
n = an empirical exponent —

To apply the above equations—to an actual prob'lem solution, the
following steps should be performed: : .

1), Calcutate the product of -the: Prandtl and Grashof nuibers

p? 8 Cp g AT L3

T

Gr-Pr =

where:
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k = thermal-conductivity
@ film temperature - BTU/FT2-HR-°F-FT

= density @ film temperature - LB/FT3

o
]

coefficient of volumetvric expansion.
@ f11m_temperature -- 1/°R

. § =-gravily constant - 4,17x108 FT/HRZ
“C,y = specific-heat @_film temperature - BRUAB-°F

L
n

u= viscosity__@..ﬁ'lm temperature - L_B?FTeH.R
L = height-or length of surface - FT.
AT = temperature difference between the wall and and—fluid - °F

T + T
Film temperature = _Wall - fluld _ o

2) If 10% < Gr Py < 10° assume flow 1S laminar and go to Step 3.
If Gr Pr ~ 10° assume flow 1s turbulent and go to Step 4.

3) Laminar Flew

1
h=cy & (or pry’/"
where:

h = heat—transfercoeffictent ~ BTU/FT2-HRaoF
k = thermal conductivity at-fim temperature - BYU/FT-HR-°F
L= height or length of surface - FT

Gr Pr = Product of Grashof and Prandt] numbers.
from above- - dimensionless

€1 is dependent or the geametry of the system and can
be determined- from Figure-2.717 '

Fiim temperature =  ‘wall :Tﬂm’d . °of

o iy
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4} TurbWlent Flow
‘ /3
h=CL g (GePr)
where:

h.=- heat-transfer coefficient ~ BTU/FT2uHR-CF
k = thermal. conductivity. at: film temperature = BTUSFT-HR-F . ..
L =-hefght ar-length.of-surface— FT

Gr Pr = Product-of Grashof-and. £randt} numbers.
from- above - dimensionless

C1 ts dependent on the geometry ef. the system and can
be determined from-Figure-2-18

Tl

AT :
Film tempsrature = wall ~_ fluid _ .,

23
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2.2.2.4.3 Forced Convection In Tubes and Ducts

To_apply the empirical relationships for forced convection heat
transfer coefficlents in tubes-and ducts, the faltowing steps should be
z performed. Comments on thermephysical property determination and
entrance effects are included at the end of-the section. . .

1) Calculate the hydraulic diameter; Dy, which is defined as:

. By = 4 flow cr%ss-sect%onﬂ area
. : wetted perimeter

The hydraulic diameter- for some commen shaped tubes or ducts is:

Round: Dy = D, where D is the diameter of the tube
Square: DH = |- where L s the length of a side
2ab-

- |- - Rectangle: Oy = ¢ , where a and b are the lengths
- - o ath * of the sides

—
Elliptical: Dy = abV a2 + b2 , where a and b are major and

minor axes

- Annylar: Oy = Do - 0y, where Dg is the-outer tube diameter
D is the_inner tube diameter

- 2)  Compute the Reynolds number, Re; from thefollewing equation:
-‘- Re = y—-ﬂ&g

where!
Dy = hydeaulic diameter, defined above - FT

I

U = velocity - FI/HR
-7 ' p ® density—- LBAFT?3
u & viscosity - EB/FT-HR

3)- If Re < 2100 the flow can be- considemd—%aminar, go to stép*4
If Re > 10,000 the—flow—can be cons'ldered turbulent, go- o step 5

1f 2100 < Re > 10,000 the fYow can bé considerad transitional,
go- to- Step 6

"
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4) Laminar Fltow . _ .
N\ 1/3
h = 1.86 k(Re Pr—
A DHZ L .

A =,_3_.66% is a minimum for lamfnar flow in long.tubes . =

for very short tubes

(%I-I <—.006 Re)_ =

:

. Re Prk 1 2.654 |

h =i 'In[l ( 67 '5)]'
-\ (Re e Dyl )

where:

h = convective heat transfer-coefficient - BTU/FT2-HR-°F

Re = Reynolds number from step-2 - dimensionless
Oy = hyd“rauﬁc.@‘l ameter ~ from-step 1 - FT
l_=-tube or duct: Tength_~ FT
B - Atuhe_..ot..duct."dif‘amter - FT-.
Pr = Prandtl number & c{i . dimensioniess
Cp = specific heat - BTUAB-"F—
kK = thermal conductivity - BIU/FT=HR‘-3'FU

w= viscosity - LBAFT-HR:

T
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5) Turbulent Flow

K o o8 _ .33
h= 0.023-rHRe. Py

where: . '
h = heat transfer—coefficient.— BTU/FT2-HR-°F

k = thermal conductivity --8TU/FT=HR-2E
Dy_=- hydraulic-diameter.=- from step-1 --FT
Re = Reynolds number - from step 2-- dimensionless

Com
Pr-= Prandti_number = —E—— - dimensioniess
Cp- =—gpecific heat - BTU/LB-°F
u = viscosity - LB/FT-HR

6) Transition Flow

/3fve \°
h=C CpUpPr (Fs—)

1y

where:
h = heat transfer coefficient - BTU/FT2-HR-°F
Cp = spacific heat - BTU/LB-°F
U = velocity - FT/HR
o = density - LB/FT®

H
Pr = Prandtl number = -E—- - dimensionless

4 = viseosity evaluated at the average f£ilm
temperature —LB/FT-HR

— up = viscosity evaluated at the. bulk fluid
temperature - LB/FT-HR

ug = vizcosity evaluated_ at: the surface temperature -
L8/ FT-HR.

} k = thermal conductivity - BTU/FT-HR-°F ..

¢j = a function of Re and canm te- determined from
Figure 2=19. .
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FORCED CONVECTION TRANSITION FLOW IN TOBES AND DUCTS
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Figure 2-19. Empirical Constant for-Forced Convection
Transitian Flow in Tubes and Bucts

Thevmophysical Properties

Because_the film coefficient (h) is a function of the thermophysical
properties of the fluid, it 1s important to account for-any significant
variation in the properties as a result of the temperature of thé fluld. For
liquids, generally only the temperature dependence of the viscosity (n) is of
major impartance, Fer gases, the other properties density (p), conduetivity
(k) and speeific heat {Gp) usually vary significantly. It is recommended that
a1l of the properties except Cp be evaluated at the average filn temperature
of the fluid T¢ defined as:

T » 0.5 (T + Tp) where Tg = surface temperature-
Ty = fldid bulk temperature

Cp should be- evaluated at the fiuid bulk tenperature.
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A1l of the above eguations, with the exception of the one for.com-
puting h for laminar flow in very short tubes, ignore entrance effects on
the film coefficient. The importance of entrance effects depends on the
fluid flow condition and the length (L)/hydraulic diameter (M) of the
tube or duct. Entrance effects are appreciabie where:

. ; L "
For Taminar flew < 50
Oy
For turbulent flow %T <10 .
H

In general, entrance effects increase the effective film coefficient,
The local heat transfer coefficient (h,) divided by the free stream
heat transfer coefficient {h) approaches 1 as {'-j- increases. If the detafl
of an analysis requires the consideration of entrance-effects on the con-
vection coefficient, literary research may be helpful in finding an equa-
tion approximating the effect.. An example of entrance effect correction
js as Follows: consider turbulent flow in short circular tubes where
(2 < L/D < 60), the effective film coefficient can be approximated by:

o7
he = h+ h(2) where 2 < LMD < 20
E t

he = h+ h(2) where 20 < L/D < 60
where:-
he = effective film coefficient corrected for

entrance effects - same units as h

turbulent film coefficient calculated from step 5

-
]

tube diameter - units eensistent with L

=
]

tube length - units censistent with D

r
n

— i
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2.2.2.4.4 Forced Convection Over Flat Plates

‘Emperical relationships for forced convec*ion over the exterior surface
of 4 flat plate are given for both_the entire length (L) of:-the plate and at
any intermediate length (x). Equations for both-locations are given-in step-.
wise fashient ‘

1} Calculate-the Reynolds number Re

Re, = J=.0 X:
X o M
Re, = HE..P._‘;

where:.
U. = free stream velecity - FT/HR

p = fluid density - LB/FIZ3'

p = fluid viscosity = LB/I_-'I'-_-I-IR

x = intermediate plate length - FT
L = total plate length - FL.....

2) Tf Re < 5x105 flow. 1s laminar; 40 to-step 3
1fRe > SxT_GS flow 1s turbulent,_go to step-4
3} Lamlnar heat transfer coefficient (h)... |
' ' 1/2 . 1/3

Evaluated at x, h = .332 -'f; Re, ' Pr

Average value for plate with Tength L,

) { /13
K= .66 {} Re‘_l’2 pr

where:
h = convective Meat transfer coafFictent - BTU/HR=FT2-°F
k = thermal conductivity - BTU/HR=FT-°F

K]

E——
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x = intemediate plate length - FT
L = totai ptate length —FT '
Pr = Prandil nunber' = —k—— dimensionless
u = viscosity -»LB/J-T-HR '
4) Turbulent~heat transfer coefﬁctent (h)
&ﬂmmmatmhﬂﬂﬂwa Rey ot/
Average value for plate with length L,

h = 0.036 £ Re, " 8 pe!?

where:

Reynol-dS' number f rom_step 1 - dimensionless. . -

h = convective heat transfer coefficient - BTU/HR-FT2-°F

k = thermal conductivity - BTU/HR-FT-°F
% = intermediate plate length - FT
L = tota} plate iength - FT

Re =—Reynelds number 'F'Eom step-1 - dimensionless

w . u | 7
Pr-= Prandt) number = —E——- dimensionliess
u & viscosity - LB/ET-HR
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2.2.2.4.5 Forced Convection Over Cylinders |
Empirical retationships for flow over cylinders are given for the

stagnation point, forward portion of the ¢ylinder, and for laminar flow-over

the total—cylindey.

. 5

————— .
Flow..._._

—————(—
—————
\Stignatinn Point

Figure 2-20, Flcw—@#er Cyiinders .
)
Stagnation Point

wheﬁe:-
h = ecnvective heat transfer-coefficient - BTU/FT#-HR=2F

k—= thermal cohdhctivitv-« BTU/FT-HR-°F
s = free stream velocity = FT/HR

D = Eylinder dtameter = FT

p = density - LB/FT3

w = viscosity - LB/FT-HR

. € u _ .
Ul = is & function of P = —-— 4nd &an be- approximated
from Figure 2=21% : :

M
ear

G = specific fiea¥~ BTU/LB=°F-
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i Figure 2-21. Emptrical Constant for Cylinder

R o Stagnation Point

:  Forward portion of ¢ylinder-where (0°< 9 < 80°) (see- Figure 2-20)
e (el e [ |

~ _ R h = convective heat transfer -coefficient “ BTU/FTZ-HR-°F _
T k = trermal conductivity = BTUAT-HR-F

o D = cylinder diameter—~ FT

- Us » free stream velocity - FIFHR

p.= density - LB/ FT2

_:_ ue viscosﬂy LB/FI'-HR- o

, Pr = Prandtl nmbe#u-E-— - dimensioirless

'_ 1 | Cp » spectfic heat - BTU/LB-°F

:_-; ' e = angle measured §fom the stugnation point - degreea
___“ - "

'
o




Average fila coefficient for laminar flow over a ¢ylinder

‘ n
=cK{UsD p
for a gas h _cu —y )

& y k Ucn D n ,‘31
for & Tiquid h = 1.1 cﬁ('T"E') -

where:. ..

h =_convective heat transfer-coefficient: - BTU/FT2-HR-*F
k = thermal conductivity - BTU/ST-HR-°F

D = cylinder diameter --FI=
Ue = free stream véloéity - FTZHR

p = density - LB/FT3

p = viscosity - LB/FT-HR |

Pr - Prandt} number - :‘:ka ~ dimensionless

Cp = specific heat - BTU/LB-°F

C = empirical constant dotermined from Tadle 2-3
as a function of Reynolds number (ie) = U. p D/y

n = empirical exponent determined from Table 2-3
as a function of Reynolds number {Re) = Uw.p D/u

Rey - c L
- ——
0.4-4 0891 0.330
4-a9 0.821 0.385
40-4,000 0.615 0.466
4,600-40,000 . 0.174 0.618
49,000-400,000 L 0.023¢ 0.805

Table 2-3. Empirical Cinstants for Laminar Flow Over a Gyi,inﬂer-

Turbulence induced in the atr uistream of the cylinder may intréase h by

as much as 50 pereent.
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2.2.2.4.6 Forced Convection Over Spheves

Empirical relationships for average value heat transfer coefficients
for flow.over spheres. are-given for gasses and 1iquid as outlined in the
fallowing steps: | Lo

1) Calculate Reynolds number Re =U. a P/

where: _ :
Ue.= free stream velogity —FT/HB ... ... .
o & density - LB/FT?
D =_sphere diameter-- FT .
u = viscosity - LB/FT-HR

2) For a gas whena_(T-? Re < 25) use step 3
For a gas where (258 < Re < 100,000) use step 4
For a 1iquid where (1 < Re < 2,000) use step 5

3) Gas where 1 < Re < 28

. 2.2 , .48
h = 6p Ue pe (——+ )
P Re™ * pglss

where!
Cp = specific heat - BIU/LB-°E
Us = free-stream- velocity - EI/HR-

. pe = free stream density - LBAFT3
Re = Reynolds number from step 1 - d1mens1orness

4) Gas where 26 < Re < 100,000

' ; L8
N 9.37.5.(__;&._.> _

h = convective heat transfer coefficient - BTU/FTZ:HR-°F

R BERL

] ’
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= ' where:

ST h = convective heat transfer coefficient - BTU/FT2--HR-°F
= Ik k = thermal conductivity - BIU/FT-HR-°F

L i D = sphere diameter - FT

e U= = free stream.velocity —FT/HR _

. pw = Tree stream density - LB/FT3
S : _ - u = vistosity --LB/FT-HR

| 5) Liquid.where 1 < Re < 2000
j:‘ -:: 7 | 7 . ' 05
S ho= 450 [0.97 + 0.6 (Yet= D) ]
;—, where: _
- h = convective heat transfer coefficient - BTU/FT2-HR-°F .

5 - . k = thermal conductivity - BTU/FT-HR-°F

A i
_ Pr = Prandtl? number = EP - dimenstonless

Cp = specific heat - BTU/LB-°F

u = viscosity - LB/FT-HR

D = sphere diameter - FT |

Us, = free stream. velocity - FT/HR
= pw = free sfream.density - LB/ET3
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2.2.2.5 Computational Methods - Radfation Condustors

Most_thermal analyzer computer-programs linearize the radiation temm
prior te performing the heat balance at each time step. This operation
simply amounts to factoring (T4" - Tj*) into the follawing compgnents
(T4% + Ty Tg? + T42 Ty~ I55)(Ty = T3), the term (Ty3 + T4 T42 +.

T42 Tj + T33) is evaluated by the computer each time pass using the ,
current-values of.T{ and Tj. This_quantity is then multiplied by the .in-
put_value-of the-radiation conductor.-thus .reducing the radiation equation
~ to. a Tinear-form.. .The thermal engineer need only"be_.conc'emed with the ...
input value of the radiation coenductor which takes the following form:

G =oe Fj_§ Aj for radtation to a black bedy
G-= eﬂ;_j A; for radiation between grey surfaces

where:
G = input_value for adiation conductors -lgTU/HRu'?R"
¢ = Stephan-Boltzmann constant = ,1713x10° - BTU/HR-FT2-°R%
e = emittance - dimensionless

" Fi.g = geometric. configuration factor from surface 1 to
surface j-- dimensionless

Ay = area of surface § - FI? :
. 3" grey body radiation factor - dimensionless

The emittance, ¢, is a measure of how-well a body cai radiate energy as

- compared with a black body. Emittancé {s the vatio of the total-emissive
pewer-of-a real surface at temperature T te the total emissive power of a-
blaek surface at the same temperature. The emittaneces of various surfaces
are-a function of the material, surface conditien, and temperature of a
body. The-surface of a body, and therefore the-emittance, may be altered-
by polishing, roughing, patnting, etc: The values of ¢ for mest commen
materials and surface conditions have beun measured at vartéus tempera-
tures and are presented in tables or graphs in many reference manuals.

It {5 left to the engineer to detemmine the value of emittence to 5e used
and-whether thé varfation o6f ¢ with temperature is signiffcint over the
temperatdre range expected for the surface,
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The geometric shape (configuration) factor from surface i to sur-
face j, Fi-j, is the fraction of tbtal radiated energy from-surface i
which is directly incident on surface j, assuming surface 1 to be emitting
energy_diffusely, Fj.i would be the fraction of total radiant.energy
from surface j which is—intercepted by surface.i. The configuration
factors for finite regions of diffuse -areas are related by:

AsFyog = AsFyeg

The configuration factor;rfi_d. is a function. of-the ggometry of.the system
only. Several -7 . iter pregrams have been developed_to compute the shape
factors between surfaces with complex geemetrfes; however, ferm factors
between some surfaces with simple geometries cam be hand. computed.

Figures 2.22 through 2.38 present cenfiguration factors for various
simple geometries. The use of these Figures and_configuration factor
aTgebra will allow theé engineer to determine formm factors for many simple
radiation problems.

The following examples of configuration factor afgebra‘shou1d;be
helpful:

MFla2 g, AN
MFr.a ™ Pt Afg
MaFrz-ae = Mfiae * Aofoas
MeFrzage = MFig * Mifrg * Afag * Ao
A1F1_4 -.A3F3‘3 (symmetrically posiiioned}
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) This configuration is a plane point source di; and a plane rectangle 4p
o parallel to the plune of da;. The normai to ddy pas$es. through one—cor=

n ner of Ag. Tnc curves for this configuration are given above wherd Fpp
1s plotted as u function of = and y, with & = a/c and y = b/e.
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This configurettn 13 & spherfcal point source dAz and a piane rectangle
Ag; the point srurce $s loCated- al ofe corrier of a rectangle that hei- one
cottion side with A?._ The planeS of the tWG rectanglés intersiict 8t en sn-
gle 3.  The configuration factor Pyz 4s plotted atove as a function of
@ and y, where = = B/o and y = a/0.
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Figure 2-22 (Continued)
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This configuration 1s a plane poirit source ddz and & plane rectangle 4g, in
which theé plaries of daj arid Az fntersect at afi anglé ¢(0° < 4 < 180°).  The
configuvation-factor valués are givan 1n the curvas platted sheve feEr Various
Yalues OF 9, 7, aNA L, Where ¥ = a/b and £ = o/b, When ¢ = 0°, Fig = 0 for
N<Landos§ for¥ >L; when ¢4 = 180°, F13 = 0 for a11 values of N and L.




Figure 2-22 (Continued)

Fu=s+om8)

This configuratfon is & plen» point source daz and any trfinite-plane-4g,
with the planes of da; and Az intersectiny at an angle e, The configuration
factor values may be calculated from th> above equation.

/ e ‘

- . Fy3 = =(cos 0 —cos.00)-
. ”m‘/ ’\a , z
Urwe” 14 __

This cﬂfigunuon 18 a plate point source ddz #nd any surfive Ag genierated by

an infinitely Yong tine, movifig parallel to ttself and fo the plafie of daz.

e configuration-factor values may be computed f7om the above equation,
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Figure 2-22 (Continued)

s 7
“208 Hf1
[
S T l (

LV
L |3
\

e
s W

°2-:/

ol 0203 05 1 2 345 10 oo

This configuration 1s a plane point spurce d47 and a plane circular disk
Az. The plane of dip 1s parallel to the plane of Ag; the point source i:
located at a distance rr from the normal to the center of Az. The configu-
ration factor Fyp is plotted sbove for various values of £ and D, where
Ew=pp/d and D = d'py.

=T~

p g[ 1 +R*3 D™ -1]
2L /(U5 R7 4 DYF = aR?

" _
l(D +2 D)

I. = o= | —e—— -
l':‘: Fua 2 \[0_14-4.._ —_

Tids configuration {s a plane point source di; and a plane disk Ap; the
pianes of da; and A2 tntersect at an sngle of §0°, The centers of Az and
44 11 in a plane that 15 perpendiular to the iwo planes. The equation
above ts given 17 teévms of R and P for R » /b &nd D « a/b.
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Figure 2-22 (Continued)
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This configuration 1s a plane pofnt source d4; and 2 right circular cylinder
Ag of length- I. The nommal to d4; passes through the centrr of on@ end of the
cylinder and is perpendicular to the axis of the cylinder. The configuration
factor. is plotted above as a function of D and L where 0 = d/p and L = L/m.
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This configuration consists 6F tio concentric cylinders of radiis » and d
and length 2 with a point sduice dd; on the 1nstde of thé la.ge cylinder at
one end. The coﬁfi?uutién factor P31 15 from the point source dd7 on AI to
A13d1 does ndt include the énds of the ainulus, The curves for thfls configu-
ration are given abova n tefms of Dand L, with D = d/v and L = I/n.
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Figure 2-22 (Concluded)
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This configuration eon;i_s‘ls.oi an infinitely long cylinder A7 and an
e infinite plane Az, mutually parallel. ¥ =m/r and ¥ = n/»,
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length Z, With elefnt dd; on the inside of ths 1drge cylinder, The configure-
: tion factor Fz; s from aky to 4;. This fictor is plotted above as a function-
- of D end I, with D = d/p and L = I/p, :
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. Figure 2-23. Radtant Interchange Configuratfon Factors'
| " LINE SOURCES
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I a function of = and j, where z = 5/0 and y = a/o.
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Figure 2-23 (Coneluded)
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Figure 2-24, Radiant.-.Interchange Configuration Factors'
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This configuration consists of identical, parallel, directly oppdsed rectangles

Ay and Ag. The configurstion-fact or values are platted above—in terms of
Parametdrs = ahd y, where x = b/n and ¥~ alo. ° : i e s e te
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Tadapted from NACA Report No. TN=4836, by D, C. Hamiiton and W. R. Morgan.
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This coﬁfi?ur&ﬂon—éﬁnshts of two rectinglés, A7 and A3, with one common-
edde_amd af in¢luded angle betweeri thé two planes, The configuratidn factor
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3.
The gray-vody shape factor (Seript F) ./1 is the preduct.of the

geometric si:ape’ fac&ar_F i-§ and a factor which allows for the departure of-

the surface from black body conditions. For-radiation enclosures, the

371_1 factors are generally evaluated with a computer program, The input

for the program being the A1 F1 -4 values. for every surfacé of the enclosure

to every other surface and the emittance and area for. each. surface,__smpliffed
equations for. J‘i -4 exist- for two-component-gray enclosures.

Parallel flat plates:. Fie2a = Fouy = L

Fi . el
1-2 (]__ s ])

Concentric cylinders of 1nf1n1£e neight or concentric spheres:
Fi_z =1, F2_1 0

1
Pt A
PXTR
5 -AE €g

Por “non-enclosed" surfaces an effective emittance, e cp, botwean the
surfaces may be used to compute the gray-bedy form factor with the following
equation:

Fies ™ teses Fiog

The effective emittance is.a function_of the-emittances of ther two-
surfaces and the-configuration factors. (E) between tham, .. The exror induced
with use of-e ¢ 1 the result of-neglecting seeondary reflections from
surfaces other than the two for-which the effective emittance was determined.
By_redocing—Hottel's methed for three flat plate surfaces with amissfvities
of €1, €2, and 1, the following equation can be censtructed:

51 fz
L F-T-'-Z—F;Z-'I (v - E}) @ - ft'-‘z)'

Caff

Table 2-4 presents e ce approximations for various Eps €20 and
Fi.2 * Fz 1 vatues, Intermediate values caw be approxXimated by- interpelation.
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2,2,2.6 Compytational Methods - Mass Flow Conductors

The use of a mass_flow.conductor in a thermal network is a convenient
method of accounting for the transfer of energy_from one point to another
due to the actual movement (flow) of. a fluid from one point to another. __
Mass flow conductors are computed from the equation:

G=w Cp ..

wheres. ..
# =-the mass flow rate. of the fluid -_LB/HR
Cp = fluid specific heat —BTU/LB-°

The mass flow rate (w) is related to the fluid velocity by the expression:

w=p AU

where:

A = the cross sectional area through which the
fluid flows - FT2

U= the fluid velocity - FT/HR
p = the fluid density - LB/LFT3

~ The thermophysical properties Cp and p should be evaluated at the bulk .

temperature of the fluid.

The mass .flow conductor which is in additien to any other mode of-
heat transfer simply aceounts for the internal energy term ef a mass
moving from one location te ancther.
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2.2.3 Energy Sources or Sinks

2.,2.3.1 Concepts
Energy sources or sinks, Q, are modeling elements which .allow. the

impression of positive or negative-heating rates on the nodes of a thermal .. . ... ...

network independent of conductor paths to the node. .
2.2.3.2 Types of Heat Sources or Sinks

Common engineering applications.of heat sources.in thermal models -
are:

e Solar and.Planetary Heating
e _Aerodynamic Heating
¢ Avionic Coldplate Heat Loads

® Change of State Latent Energy
o Thermal Control Heaters

Common application for heat sinks are:

¢ Change of State Latent Energy )
¢ Radiator Heat Rejection
e Aerodynamic Cooling

2.2,3.3 (:omputat'lona] Considerations - Sources or Sinks

Heating rates_may be.impressed on diffusion (finite capacitance) or
arithmetic (2ero capacitance) nodes, Most thermsl analyzers provide a
separate entry block. for entering heating or cooling rates. For example,
the SINDA computer- program uses the SGURCE DATA BLOCK for such eatries.
In the usual case, heating rates are not considered when eomputing tho
time steps for transient analysis, and large heating rates on low capaci-
tance rodes may create instability in thie network solution. Also the
tmpresston of large heat sources on arithmetic nodes with radiation (non-
Hinear) conductors attached often Causés large erroneous témperature
osciltations in the arithmetic and adjoining nddes. Both ot these
difficultiés can bé avoided with the use of the program control constants in-
corporated in most thermal network analyzers. Thése control constants are -
the {ime step multiplication factor and the maximum Temperaturs chrange allowed. v )
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2.3 Network Solution

An area which is of utmost. corcérn.to the.engineer is an-explanation s
of the system of equativng which are solved in a typical thermal problem. ‘
At this point it must be completely uhderstood that the physical system is
reduced to a lumped {nodalized) system and that the-choice of the nodali-
zation has a far greater bearing on the problem than_the particular
numerical solution_technique and assumptions_that are usually empleyed in .
the prebtem solution.. Each numerical solution methud_is.bounded by
‘accuracy_constraints—dictated by the particular_set of assumptions: asso-
ciated with the particular problem undergoing solution. _. :

1
. RO
RIS * S DU O

I H

The basic transient heat transfer equation appiied to linear coriduction
= problems is:

we s m e s

L aT 2 52 2 - -
— | . ax®  ay? oz -

PR Y (N SR
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The solution techniques most comfonly _e-;pred ‘stem from a reduction of
Equation {1). It can be easily seen that any nonlinear termis sueh as

radiation must be linearized by some method if the above eguation is to be '
f used. ‘ iy

camaide

For example the radiation term G(T{* - Tj*) can be linearized by

G(Ty - T§) = G(T4* - T4) (2)

where-y is the-linearization faetor. 1lhe calculation of y and the lineari-
zation of the G's- is performed automatically by thermal metwork analyzers -
and will be explained in move detail in the forward differencing section. —

The—precess of nodelization reduces the-volumetric dimensions and- "’!
properties so that equatiod (1) van be cast in the fellowing Form:-. ;

dT, G, 1 (T35T4) - - .
i 13\ '3
a—-t = g . 3 —— (3’)
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Eack term of the summation, si j(T:]'Ti')’ represents the heat rate, 0,
following into node - 1 from node - j, JIntegrating equation (3) yields:

.  tnew |
Ti(tnew! = Ti—..(_f.Ql_‘Q._f_.fi" [ p 8;{TyT;)at (4
S tdldﬁ-__...... e

To actually perform-the—integration indicated in equation. (4) on a. computei'

: : tnew ..
f.e.: ¢ Gilj(Tj-T,i)' | = Q:i = constant ... ..
o j told .

(5)

I1f-this was the case, then the second term in equation (4) would reduce to:

tnew | o - :
1 | .9 (tnew - tord) O |
k told '
and equation (4) could be east in the simple: form of:
| 0
T (e at) = Ti(th s = &t (B-
A L

Equation (Z) represents the basie finite-differencing fermulation of the
‘transient-heat transfer equation. AlT Finite differencing methods, be-they
forward, backward, central, explicit or-imp¥ieit, perform the calculation
- indicated-in equation (7). The onty-difference among- the various formula~
ttens 1ies—in the assumption used to evaluate-the-Qf tevmper equation (6),
The §ignificance of this assumption as it relates to the various finite
differencing_formulations will-be dtscussed in folluwifhg seetions.

it would be-most convenient i the integrand wasnot a function of time: .. . . _

)
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2.3.1 Steady State

A thermal System Has reached the ste_h:ly. state when the net heat flow_
rate to each diffusior .nd arithmetic node is zero. From equation-(3),
this yields: C '

Rearranging the terms in equation (8). yields.

by

G, T
1 : .
Fi-= J—Q—J—lz : (9)
g |
The subscripts in equation {9) obscure the-elegance of the stéady state
solution, which can &lso be expressed as: -

T=[611 | (10)

Equation (10) clearly reveals that finding the steady state temperature
vector simply-amosats to finding the eigenvector of [G] for an etgenvalue-
of 1. The only problem is that, for a network with more than a few (say
20) nodes,.the-calculation of the-elgenvector using an expiicit-algori thm,
such as. Gaussian Eliminatien, would take a prohibitive amount—of time.
This, in.addition to the fact that-most of:-the elements of [G) are zero,
suggests that an {terative-technique such as expressed in eguation (1)
would result in a huge reductien-in.requirved computer time.

ey ,, (M)

When 1t ¢ also realized that—eguatierr (16} is only-valld-when the G-matrix .

is absolutely constant &ith-respect to témperature, 1t becomes clear that
equation (11) {5 the only sotutien teéehnique that is universally usabie:
Using this technique, it 15 simple-mattér to update the G mairix (evaluate
temperature varying G's and linearize vadfation G's)-based on the new-guess
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tamperature—veetor ]’_.“'r before_proceeding to the next iteration_ In
addi-tion, equation (11) does_not require that ther-f"‘1 and I_Lvectors.‘he the
same- length, so that 'the_ﬂ“_vector: can be extended to include_a vector of
temperatures which represent the boundary conditions placed on the network.

Two criteria for terminating the-iterative process are generally
provided.. The first—is simply a fixed number, K, which. represents the—
maximum_number: of iterations to be performed. The second is a convergence:
ar, as it is-more_commonly called, a.reiaxatior criterion, &, which is-
defined as:. 3

ﬁ*ﬁ PR (12)

In other words, calculatfons cease when no "significant" improvement from
one iteration to the next is noted (where "significant* is defined in

terms of §).

Strong oscillation in the temperature vector is often ncted when
analyzing a network which is dominated by radiation effects. To hasten
(and in some cases, to-enable) the eonvergence of the solution, a damping
factor,.c , is often applied to equation {11} to yield the more versatile
solutfon téchnique expressed in équation {13).

1. p a1 1! + (1p) T
o < gel) (13)

To summarize, the fully general finite differencing technique for
steady state analysis is an fterative algorithm requiring three paremeters,
N, 5, and 2, for the control of convergenceé. It might be noted here that
arithmetic nodes always receive a steady state selution technique even
when they appear in a-nétwork. which is undergoing a transient analysis.
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2,3.2 Transtent Analysis
2.%:2.1 Forward Differencing

Forward differeneing derives its name from the fact that all tempera-
tures are extrapolated forward in time, t, for the purpose of evaluating the
expressfon in equation (5). This poinit-is i1lustrated in Figure- 2-25,

-.-——-At——l

thd tnew

Figure 2-25. Forward Extrapolation Used in Forward Differencing

Combining equations (5) and (7) undér the above assumption yields the basic
forward differencing equation:

T,(tat) = T, (t) +%1t-§ 64(T;(t) - Ty(8)} (14)

As might be expeected, the temperatures at time-t are used to evaluate any
tomperature varying or radiation conductors: That 13, for exanple, the
1ineartzatton facter, v, is computed as:

y s (T-j"’fﬂ + TXt)) (T;(t) + Ty(sh) ) - (15)

The basic forward extrapslation assumption has twd consequencws:

(a) the resulting solution equation is expiicit, and (b)-the solutien
can be unstable, When-ft is stated thaet an-equation fs cxplicit, it means
that a1 of the unknown§- are on the left hand stde-ane all of the known
quantities are on the right hand-side: - Stice ail &¢ the temperatures.

at time t are kiown, equation (14) defines the tzmperatures at-time




t + 4t, explicitly,. Instepility results from the fact that equation (14)
is, so to.speak, "open-cnded". B8y choosing_a sufficiently large At, the
new_temeratures can be made. _unreasonable.. It has been shewn (reference
3),. however, that if at is restricted to be less.than the stability
factor, t, defined in equation _(16), then the golution normally will be
stable. ... .. T

=l = = CSGMIN : (16)

This 1, commonly called *the CSGMIN," is the smallest time constant. fn_the ...

thermal network. The “CSGMIN" does not include boundary effects. Sharp
gradients coupled with high magnitude heating rates could pnssibly cause
instability.

It is clear, then, that Torward differencing represents.a two-edged
sword. On the one nand, the solutien equation 1§ explicit, which means
that” the volume of—eomputations for each At step will be a minimum. Buf
on the other hand, the size 0f the time step is 1imited to the smallest
time constant-in the ehtire netwerk. However, additional advantages
aecrue from both of these conditions. First, the user need not specify
any convergence criteria such as were required by the steady state tech-
nique, and second, for normal cases the user-need not specify the time step,
at, since this ¢an be conveniently computed by the ¢omputer using a simple
algorithm such as given. in equation (17)

At = 95% + (17)

Another moderating point 60 be considered is that the maximum At
used for a transfent analysis 1s often-not restricted by the nétwork,
but rather by the frequency spectrum of-the boundary cinditions. In
gross teyms, one cannot use a At of one hour to analyze & network sub-
Jected to a beundary condition which varies at thée- rate of 50 cycles per
hour. In firier. terms, Shannon's Sampiing Théorem (reference—4) dictates
that:
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wg > 2w, (18}

or:

max At"<-£1‘z (19)

where m.c._'ls thaJrlg_hestfrequ_ency___component‘.in.the driving signal. Of
course, the limit expressed-in equation (19) is. theoretical in that it

assumes. that.theksystem*_i-s_ahpeﬁect:.low-p_ass filter. This_is true, in_

practice, only at nodal points vather far away from the boundary. Hence,
analyses of_ the temperature_response near rapidly varying boundaries:
will require a At much smaller than the maximum expressed in equation (19).

1t is ro aceident, then, that forward di fferencing formulations enjoy

the widest and most frequent use in engineering practice. _0Other formula-
tions have practical value only when the choice of At is not restricted

by boundary conditions.—
2.3.2.2 Backward Differencing

Backward differencing takes its name from the fact that all tempera-
tures at time tnew are extrapolated backward in time in order to evaluate
the § terms per equation-1-15. This point is {1lustrated in Figure 2-26.

o - L
to'ld tnfu

Figure 2-26, Backward Extrapslation Used in Backward Differaneing

65

Y A T R T P

——

e A TrE




RS~ T

- I ;
- :‘ Using this assumption- to combine equations (5) and (7), and stating the !
s resuit in matrix form yields:
£ ’
T L(ttat) = T () +-at.[6/C] T (teat) (20)
SRR o
j The solution to equation (2) obviously requires that a.matrix inversion _ :
= be performed, but it also requires, strictly, that the G/C matrix be "4
5- temperature invariant. . (Otherwise, the basic assumption would requive /]
%\r that-{G/C] be__evaluated for.] = T{t+at), and, of course, these tempera- 1
g = tures are not yet known.) In practice, then, equation. (20) 1s reworked .1
= F into a form which lends itself to iterative calculations. R 5
B ]
= !
i “ 1 (t) + 5 G lTl‘(t-l-At) -
DA F )
vz :
— ~ Since- T(t+at) appears on both sides of-the equation, this formulation is :
— . termed an mglici t solutien technique. i
i It will.be noted that when At appreaches infinity, equation (21) re- -
oz duces. to the steady state equation discussed in Section 2.3.1: Hence, :
% :_ it can be deduced (and it has been proven in reference 3) that backwawil
= ~ differencing is stable for any at. In addition, backward differeneing is
% : subject to the—same set of iteration termination.criteria, N and é, as were-
T appliad to the steady state solution, Stability for large At,. however, does ]
ﬁi—. not precludé the passibility of an oscillating solution,-so a damping 5
= factor, g, is alse provided to ensure the eventual convergence %o the '1
T sotutdon, 1
_; ". The great advantage of backward dffferencing 1ies in the effective- 1
jﬁ __—— selection of At. During perfods of rapidly varytng boundary conditions; : i
S at may be reduced to as smail a value as desired, and then, during periods .- 1
R of slow)y: drifting boundary conditions, it cen be enlarged to a compatible l %
=1 .|
T SR PR T B
T / R P L T ,‘j;_. L ,,_,,_:,3
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value, without regard for the minimum time constant, 1, of the network.
It also happens that when a large At is appropriate, the number of
iterations necessary to satisfy the relaxation criterion, 6, is rel atively
small. On the other hand, when At is_compressed to less than the CSGMIN
(t), the number-of iterations. per time step will still be large when gom-

- ”.”1‘"“-‘- LPRAS AN .

pared to forward.differencing, i
2.3.3 Summary of Other Techniques %

Numerous other-approaches to formul ating finite. differencing solutions. . ... . 3.
are available-(reference 5), However, all of these.gerarally amount to- f
modifications.or combinations of basic.forward.and backward di fferencing, .. .. .
Central differencing, for example, is_an implicit technique which computes i
the current-iteration temperatures as the arithmetic average of the forward :
and backward differeneing predictions...As ancther example; exponentfal
prediction uses the forward differencing equation but-provides stabiiity
for a1l at by exponentially "derating" the &; terms according to the
ratio of 74 to at,

4
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2.4 Modeling Parametsrs

The solutions_to the-heat transfer equation develeped in the pre-
ceding sections required that continuous variables be quantized. Spstial
variables were quantized through..the-artifices of nodes and conductors,
and time was quantized into "time steps* of size at. By assuming, for the
sake of discussion, that all.nodes are.cubical, with side ax, then this

ax_cin be used as_a general. spatial quantum, and it_can be related to the.. .

time_quantum,. At. . For example, the forward-differencing stability
criterion, T, .(and therefore thc maximum time step) is reTated to ax
as shown.in equation (21):

2
%xu_ =T = Alpax (21)

ome dimensional: m= 2
two dimensional: m= 4
three dimensional: m=6

Since the finite differencing solution approaches the exact solution
as Ax and.At. approach zerp, if is logical to ask if anything imposes a
minimum on these values. The answer is yes: cost and computer core mefmory
space,..Clearly, the latter constraint restricts ax to-an explicit non-
zero minimum.__That is, a small Ax means a large number of nedes and
conductors, and the computer's memory must-contain enough_space to hold
all of the parameters (capacitance, temperature, conductance, ete. ). asso=
ciated with these modeling elements. In additien to using much more—com-
puter time for analyses, a large model also eosts more to develop than a
simall one,

The time step can be chosen as small as desired with a consequent
{hcrease in the computer run time required for analysis. The relatienstifp
between run time and time step size is Tinear for forward differencing
because exactly one "fteration" is required for each time step., For
1rhp11c1t methods , however, the relationstilp i§ not as predictable, Because

!
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the number of_iterations fs controlled by-the convergence criteria, N
and 5. 1In addition, the greater the number of iterations, and the greater
the number of nodes processedduring each fteration, then the greater
will be_the susceptibility of the answers to computer round-off error.

Looking at the problem from_the other direction, Ax may also be .chosen :
large enough to include the entire thermal system in.one node. The_time. L
step, however, at Teast for forward differencing, is limited in size to the . _ __:
CSGMIN. This limit.is not imposed on the implicit solution techniques,
although a.damped oscillatory response.may result when at is too large. 5
Since .such. an oscillating response can be critically damped by using the -
damping factor, ¢, there is no definitive equation for_the maximum At
that may be used successfully with implicit solutions. To further compli-
cate this understanding, there is no definitive equation.for the value
of ¢ which will yield the most effective damping, although a. value of 0.5
has been routinely used with good results.

to symiarize, the thermal math-modeler is faced with the task of |
designing a model and selectirg a solution technique which will yield :
good, stable answers for the Teast cost. To do this, the modeler must
choose values for the following parameters:

Ax - node size

At- - time step

N - fteratiens

s --convergence criterion
¢ - damping factor

i theemmt e

e e i e mad i vh Wi

Forward differencing, which does net require N, ¢, or ¢, and which defines :
at least the maximum At, 1s often chosen as the selutfon technique simply |
because it reduces the number of parameters which must be juggled abeut. |
In the hopes of leading to a more logical rationale for selecting model

and solution parameters, a case study using various metheds is presented

in Sectien 3.0.
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3.0 OPERATIONAL PARAMETER RELATIONSHIPS

Perhaps the interrelationship between the- lumped parameter system-
and the- partiéular solution_techniques that are usually emp1oyed-in the
problem solution can be best displayed with examples:

3.1 One-Dimensional Bar of Metal

The first group of-cases-treats. a bar of aluminum as shown in.
Figure 2-1.

12" . -\

1

Figure 3-1. Bar of Metal

A boundary temperature of 1000°F" is applied.-at x = 0 and-a temperature ef
0°F is applied at x = 12.. The length of the_bar radiates to deep spuce_
at -460°F. The bar is initially at 0°F and the transient_response is_
sought at-two peints: x =1 and x = & The following cases were run:
] )
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attempt was made to find an amalytic solution to-the p¥oblem,
The produet of the number of nodes times the number of iterations yields

L Case No.  Solution Method_ # Nodes Ax At N 8 i1
£ 1 Forward 12 o T
e 2 Farward 1218 0.5t
PR B 3 Forward .. 12 1.0 0.1t
(‘ gl 4 ___  Central 12 1.0, .. r 50 1.0 1.0
et 5 Central— ... 12 1.6 3t 50 1.0 1.0.._
6. Central 12 1.0 10z 50..T.0 Lo _
7 Backward 12- 1.0 ® 50 1.0 1.0
8 Backward 12 .. .0 v -850 10_. LO !
9. ... ..  Backward 12 . 1.0 10t 50..1.0 1.0....____ 1}
10 Forward- 3 4.0 T '
11 Forward . 6 2.0 T
12 Forward — 24 0.5 T
i 13 €entral 3 4.0 3 50 1.0 1.0
14 Central 6 2.0 3r & 1.0 1.0
15 Central 24 0.5 3r 5 1.0 1.0
16 Backward 3 4.0 3k 50 1.0 1.0
- 17 Backward 6 20 3r 5 1.0 1.0
18 Backward 24 0.5 3t 50 1.0 1.0
19 Backward 24 0.5 r 5 1.0 1.0
L 20 * Backward 4. 05 t 50 90.85 1.0
Ignoring cases 19 and 20, the bulk of the cases can be divided into two
groups:— (1) time step_variations, and (2} node-size varfations., The results_
are shown in Figures 3-2, 3-3, 3-4, and 3-5. _These figures plot: accuracy vs
i cost in terms of temperature deviation vs node-iterations. Temperature devia-
= tion s stated-in degrees F relative to a stated reference value. This value
A represents—the apparéntcorrect temperature which was arrived at by coree-
T lating the celleetion of data points produced by the various cases. The —.
v - reference temparature i$ not (necessarily) the correct analytie answer. No
o ) a figure that ts closély retatad to the actual computer cost #nvelved—in
% : n
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analyzing a wodeT. Fo~ a given computer, the number of node-iterations
which can be run in a given amount of time is fairly equal regardless of
the solution technique. Actually, the comparison of node-iterations for
- a one-dimensional_model versus node-iterations for a three dimensional
" model 1s. not stiictly reascnable since the latter model will contain more
T conductors per node,.. However, for order-of-magnitude comparisons, node-
{terations represents a simpie and useful measure of cost.

1 Figure 3-2 shows. the results for x = 1 inch and t =-25 seconds. The.
-~ effects of time-step varfations and solution technique on a 12 node model
are shown. As might:be éxpected, it appears that the smaller the time.
step the greater the accuracy and the greater the cost, .Since a host-of -
minfmax hypotheses could be formulated from this figuré, all of which or

; none of which might be true, ne further hypotheses will be stated here.
~ } As indicated in the Introduction, it remains for the reader to abstract from
; ! this figure as much meaningful information as he is able.

- Figure 3-3 is similar to Figure 3-2, except that the effects of node | )
size variations are emphasized. Since the At and & for the implicit routines

were held constant over the various cases, two additienal cases ave plotted

for a smaller atand 6. Again, as might be expected, it appears that the

, sinaller the node size, Ax, and hence, the dreater the number of nedes,

- then the greater the accuracy and the greater the cost. Further conelu-

sions will be-left for the reader to formulate,

5 sk

.

- Figure 3-4 shows the effects of time step variations_and selution
L technique.on the results for x.2.6 inches and t = 100-seconds. It will
“ be-noticed that the temperature dispersion is not as great as for x = 1
- inch and_t-= 26 seeonds._ This is to be expected since the mass of the bar
= from % = 0 to x = 6 serves. as a much more effective low. pass filter,
- which implies greater accuraey for-a given sampling frequeney (i.e. at).

Figure 3-5 is similar to Figure 3-4 except that it highlights the
effects of node size variations. For a given selution technique, 1t was
expected that all points would i1e on a smooth curve. This did not hold

et it

o
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for backward df fferencing with 24 nodes. ..To discover why, two addi tional
cases were run with first, the time step,_ard then the time step and
relaxation criterion_reduced. The results indicate that_the roll-off at
large node-iterations was due to the accumulated relaxation error.
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Figure 3-2,
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Noede Model at t=25 seconds.
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and x=1 inch

Figure 3«3, The Effact of a Variation in Node Size at =25 seconds
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Figure 3-4, The Effect of a Veriation in Size of Time Step for Twelve
Node Model at t=1}0 seconds and x=6 {inches
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Figure 3-5, The Effect of a Variation in Node Size at =100 seconds.and x=6_ inthes .. . _._. _
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3.2 Other One-Dimensional Cases

In the discussion of Section 3.1, dimensions were retained.so that_the ..
reader would have some intuitive understanding of the relative magnitudes
of the various parameters. However, since the basic heat transfer equations
can. be cast in a dimensionless form, the results of Section 3.1 can_be. ..
applied to otheér one-dimensional configurations, as required, o

3.3 Two-Dimensional Plate of Metal

This group of casés treats-a plate of aluminum, nine inches on each
side and_one inch thick. .Boundary conditions are imposed as irnmi..led in
Figure 3-6, and the temperature at the center of the plate, . - 100
seconds, is desired,

ZZ 0 == 2=
——__IR____
_ 0
0
_'/"f'

o = [y .

0

= e
0 ==
Z= 1000 2

Figure 3-6. Boundary Conditions on Twe-Dimensfonal Plate

The results of a variety of analyses of this plateé are presented in
Figure 3-7 and 3-8, The results in Figure 3-7 appéar to be incorrectly
plotted since they appear to eonverge to a point 10 degrees from the
vassumed" answer. However, the results shown in Figure 3-8 cornfimm that
the selution must be eloser to 290°F than 280°F, The difference oecurred
because the model used for the cases displayed in Figure 3-7 coittained
only 36 nodes, and this number was evidently inéuffieient to accurately
represent the character of the heat fl6w in theé plate. This problem did
not arise for the one-dimenéional cases in Section 3.1 because the Meat
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{1

flow, by definition, always followed the conductor-paths exactly. In
selecting finer and finer-meshes for_the two dimensional case, it s
evident_that_the modelled heat flow paths (i,e., the conductors) will lie
closer and.closer to.the actual paths, with a consequent increase in
temperature prediction accuracy.

The prineciples of ’simﬂax:ity and- non-dimensi anal'lana‘lysis...may__,ba_
applied to- the resulis of Section 3.3 for other combinations of material
type_and dimensions. .
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Figure 3-7. The Effect of Variatfon in Time Step for Center of Plate at
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Figure 3-8,

The Effect of Variatidn in Node Size for Center of Plate at
t=100 seconds
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