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ABSTRACT

Baker, James Richard. Ph.D., Purdue University, May 1975.
GEOMETRIC ANALYSIS AND RESTITUTION OF 'DIGITAL MULTISPECTRAL SCANNER

^,
	 DATA ARRAYS. Mayor Professor: Edward M. Mikhail.

^t

	

	

This thesis contains the results of an investigation performed

in order to define causes of geometric defects within digital multi-

spectral scanner (MSS) data arrays, to analyze the nature of the

resulting geometric errors, and to investigate restitution methods

to correct or reduce such geometric errors.

The thesis includes a review of digital multispectral scanning

systems, including the recording and digital form for computer

aided analysis. Causes of geometric errors within the data arrays

are presented, and previous investigations of geometric aspects of

remote sensing systems are reviewed.

The introduction of geometric transformation relationships

for scanned data, from which collinearity equations for MSS may be

derived, serves as the basis of parametric methods of analysis and

restitution of NSS digital, data arrays. The linearization of these

collinearity equations is presented, including consideration of

the functional assumptions made in order to model the stochastic

changes in the exterior orientation of the sensor down the flight

line.

Jf ^-	 :1
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} Parametric algorithms for analysis and restitution based upon

the above analytical treatment which were considered are: the

direct use of MSS collinearity equations, and the use of piecawise	 y

polynomials based upon the linearized collinearity equations. i

In addition, nonparametric algorithms for restitution are introduced,

as an alternative to the parametric algorithms.

k
A proposed system for the geometric analysis and restitution

of MSS digital data arrays is introduced. This procedure was used
1

to test the methods of analysis and restitution, utilizing actual

r

	

	
MSS dati'A arrays from two aircraft flights. The results of these

tests indicate that the collinearity equations can yield acceptable

results when, utilized for the analysis and restitution of such

arrays. The investigation indicates that the piecewise polynomial

algorithms are in general inferior to other methods of restitution.

r

	

	The nonparametric algorithms show great promise for the restitution

of these arrays since the resulting accuracy of restitution is

comparable to or better than that using collinearity, and they posses;

definite advantages in computational efficiency. The arithmetic

mean algorithm appears to perhaps represent a particularly efficient

nonparametric algorithm for restitution of MSS digital data, at

least for the arrays tested.

}
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INTRODUCTION

This introduction serves to define the problem to be investigated.

The objectives of the research are presented, and the scope of the

investigation is defined. An outline of the thesis is included as

an aid to the reader.

Statement of the Problem

t	 Computer aided analysis of digitally recorded multispectral

Escanner (MS) data arrays with the aid of high speed digital computers

has made great progress recently. However, the digital data arrays 	 -"
i

which serve as the basis for these investigations are subject to

geometric distortions, which are presently ignored or subordinated

to the interpretation aspects. Consequently, the research problem

of this thesis is to investigate the geometric distortions present
a

within digital bSS arrays, and to formulate procedures for reducing

the geometric errors present within the data.

Research Objectives

5

I Based upon the problem statement above, the following research

objectives were fo niaulated.

1.) To systematically review the methods of recording MSS data,

generating digital MSS data arrays, and performing computer

_r
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2

aided analysis, in order to define the context within which

the geometric aspects of these data are considered.

2.) To define the geometric distortions present within the

data arrays.

3) To analyze the transformation equations of MSS data recording

I	

and derive from them functional forms for investigating
I

geometric errors within these data and algorithms for re-
Ik

I

	 ducing these errors.

4.) To introduce nonparametric methods not based upon these

transformation relationships as an alternate method of

reducing geometric error within the arrays.

5.) To identify the problems associated with these methods

when working with digital rather than continuously recorded

information and to present methods to deal with these problems.

6.) To test the analysis methods of 3. and 4. above on real

NSS digital data arrays.

Scope of the Investigation

To satisfy the research objectives above, the investigation

is limited to evaluation of MSS digital data arrays obtained by

airborne multispectral scanners. However many of the concepts and

procedures presented will be applicable to data gathered from space -

1

	

	

craft. The investigation Baas limited to actual data arrays presently

existing. No simulation of data was attempted. The investigation

includes both theoretical modeling and numerical analysis by computer

as an integral part of the research.

`u
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Outline of the Thesis

The thesis is organized in such a manner as to provide a logical

sequence, in general progressing from the more theoretical aspects

of analysis to the more practical applications utilizing the relation-

ships introduced. In Chapter 1 a brief introduction to the field

of remote sensing, the most widely used remote sensing systems, and

basic radiometric concepts common to many of them is given. The

physical configuration of the multispectral scanner and the processing

of the iI11orvi56t ion gathered by the scanner into digital data arrays
i
1

a3  pre^;nted. Techniques of computer aided analysis utilizing the

digital arrays thus generated are introduced. Also included in this

chapter are derivations of the basic sources and types of geometric

errors which have been included in the arrays. The chapter concludes
t

with a review of previous investigations of the geometric aspects

of remote sensing systems.

1	 Chapter 2 begins with the introduction of a general remote

sensing transformation, including both radiometric and geometric

information. The geometric portion of this transformation is derived

in its most general form for the MSS system. From this basic geo-

metric transformation, the collinearity equations for multispectral

scanners are derived. The procedure for linearizing these equations

by Taylor's series for performing resection by least squares is

presented. This linearization includes the dynamic effects of time

varying orientation parameters.
i

In Chapter 3 restitution methods for MSS data arrays are discussed

i
The purpose of these restitution methods is to process the data to
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4

form arrays which are essent.ally orthographic: projections. First,
4

simple resampling algorithms are presented which are useful as

pre-processing steps. The direct use of MSS collinearity equations

as a restitution method is next presented. The use of polynomial

forms for restitution is given, and a discussion follows of some of

the prvblams associated with using piecewise polynomials and the

collinearity equations. A completely different approach to restitution

of MSS digital data arrays is then introduced, that of nonparametric

y 
methods. The basic forms for these nonparametric restitution al-

gorithms are presented along with the major advantages and disad-

vantages of each. The chapter next deals with the unique problems

associated with transforming digital data arrays into the desired

form. The chapter concludes with a discussion of the problems

associated with determining elevations within digital data arrays

which have been obtained from singly scanned areas.

Chapter 4 deals with the testing of the above methods of analysis

and restitution on actual MSS data arrays. Two flight lines of data

were obtained and analyzed using each of tae above methods. The

results are statistically analyzed and compared.

The thesis concludes in Chapter 5 by summarizing the research

effort,_ stating the conclusions drawn from the investigations performed,

and enumerating recommendations for further research in this area.

y
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i
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1. THE MULTISPECTRAL SCANNING (MSS) SYSTEM

.'kr
This chapter is intended to provide the background material

required for an understanding of the investigation. 	 A brief intro-

duction to the discipline of remote sensing, and a brief survey of

remote sensing systems is provided. 	 The basic radiometric concepts
r	 .R

r required for an understanding of recording data by multispectral	 a

scanners is described, and the physical configuration of the scanner
F

is presented.	 The digital aspects of multispectral scanning (MSS)

systems are presented, including a brief introduction to the field

` of machine aided interpretation utilizing digitally recorded data.
r

The basic geometric distortions inherent in the digital arrays are

presented in order to obtain an appreciation of geometric defects

within the data.	 The chapter concludes with a review of previous

investigations in geometric analysis of remote sensing systems.

1.1 Introductory Remarks

The term "remote sensing" may be applied to virtually any

activity in which information is gathered without physical contact.

f
As generally used, however, the term is usually applied to those

systems which yield data about the.Earth'S surface and its resources

from a considerable distance.	 References [1] through [4] contain

. definitions of remote sensing systems by persons prominent in this

i
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field.	 The definition from [41 is one of the most descriptive:

"Remote sensing denotes the joint effects of employing modern sensors,

data processing equipment, information theory and processing method-

ology, communications theory and devices, space and airborne vehicles,
rFr

and large systems theory and practice for the purpose of carrying out

aerial or space surveys of the Earth's surface." 	 It may be seen

from this definition that the existing disciplines of photogrammetry,

radargrammetry, hologrammetry, and many other activities can be

considered as divisions within remote sensing.

Remote sensing systems may be classified according to many

different criteria [5]: 	 geometric properties, stationary or moving

platform, image forming or non image forming,, and passive or active

with respect to the source of a carrier field such as electromagnetic A

I

energy, sound, or gravity.	 Figure 1.1 depicts the various classifi-

cation schemes, ending with examples of sensors which fall into the

various categories.

An active-passive differentiation between sensor types depends

upon whether the sensor generates its own energy source for the

carrier field (active) or relies upon an external source for the

carrier field (passive). 	 Both active and passive systems may have
r _g

;` image forming capabilities. 	 Classification as regards geometry
-

would include area recording (e.g. frame camera), line recording

t^ (e.g. panoramic and continuous strip cameras), or point recording

L (e.g. optical mechanical scanners).	 References [6], [7], and [8] f

contain other classification schemes or tabular data concerning the

properties of remote sensors.

t

e„
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Figure 1.1. Remote Sensing Systems
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The subject of this fnvestigation, the multispectral scanner,

is a passive system operating from a moving platform (either aircraft

or spacecraft) with potential image formation and records in a point

by point mode. The term "point" is used here to mean a small but

finite area representing the system's resolution element as will

be explained in detail later in this chapter. Scanning modes for

NSS systems may be linear about a near vertical axis, linear about

an axis tilted wi •,h respect to vertical, or conical about an axis

which may be vertical or tilted. This investigation will be limited

to the case of linear scanning about a near vertical axis in a

direction normal to that of the motion of the platform.

The carrier field for the NSS system is composed of electro-

m etic wa a	 F'	 1 2	 t +11 t	f +11 I t

I

agn_	 v s. figure	 presen s e spec rum o 	 e e ec ro-	 -

magnetic fields. The human eye is sensitive to the visible portion

of the spectrum, between the wavelengths of 0.4 to 0.7 micrometers..

The entire band between 0.3 and 15 micrometers is referred to as

the optical portion of the electromagnetic spectrum, since electro-

magnetic waves may be refracted and focused using lenses and prisms

in this region. It is within this range that most passive remote

sensing systems operate. The region of the spectrum between 0.3

and 1.0 micrometers is called the photographic region where photo

'	 {	 graphic emulsions may be used to record data. Wavelengths below 	 x

0.4 micrometers are in the ultraviolet region of the spectrum, and

,i
that portion above 0.7 micrometers is the infrared portion. The

region between 0.7 and 3 micrometers is referred to as the reflective

i
G,
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infrared region, and the region from 3 to 15 micrometers is called

the emissive region, since energy in these wavelengths is dominated

by emission from a body as a result of thermal activity at temperatures

of approximately 300° K, rather than being reflected.

For the subsequent discussion of basic radiometric relationships,

the termô wer is used to denote the time rate of energy emanating

from an object, or incident upon some sensor. Radiation power would

then denote the time rate of energy due to reflected and/or emitted

electromagnetic energy. Radiance may be defined as the radiation

power per unit area directed into a unit solid angle from an object.

Irradiance is used to denote the radiant power per unit area incident

upon an object or sensor. Reflectance is a unitless quantity between

zero and one and represents the portion of energy incident upon an

object which is reflected from it.

The source of the energy incident upon the sensor's detectors

is reflected and emitted radiant energy from the scene being sensed.

All energy coming to Earth from the sun is either reflected, scattered.

or absorbed and subsequently emitted by objects on Earth. The total

radiance from an object is composed of two components, reflected

radiance and emitted radiance. In general, it may be stated that

the reflected radiance forms a dominant portion of the total radiance

from an object at shorter wavelengths of the electromagnetic spectrum,

while the emissive radiance becomes greater at longer wavelengths [9, 4].

Figure 1.3 depicts in schematic form the interaction between the

radiant energy emanating from the sun and a ground scene. In this

figure, E denotes emitted radiation, and R denotes reflected radiation.

1

f,.
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at the Earth's Surface [1]
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The spectral radiance, in watts/sq. cm-steradian-micrometer

from a scene in the reflectance region may be given as [91

Lx = 1 Ex p COS03 	(1.1)

IT

in which Ex is the solar irradiance in watts/sq. cm incident on the

object at a wavelength a, 8 s the sun angle and p the reflectance

of the scene, a unitless quantity. Figure 1.4 shows a plot of ra-

diance versus wavelength for typical agricultural scene, in the

reflectance region, having wavelengths between 0.3 and 3.0 micro-

meters [91. The figure shows the reflected radiance as it would

be recorded near ground level. For this plot, p is assumed equal

to 0.1, a reasonable assumption for vegetation in the visible portion

of the electromagnetic spectrum or for soils in the near infrared

portion of the spectrum.

In the emissive region of the spectrum, the radiance from an

object may be represented by Planck's Lew,

LX	 (1.19 x 104)e
a [exp 1 338/XT -i

in which T represents the absolute temperature of the object in

degrees' Kelvin, and a represents the emissivity, a unitless coefficient

which is unity at all wavelengths for objects called blackbodies.

Objects are called gray bodies if their emissivity is a constant

between zero and one. Most objects however, are neither black bodies

nor gray bodies, and the emittance may be a complicated function

(1.2)

r
„^	 a

5
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of wavelength. Figure 1.5 shows a plot of spectral radiance for

a typical black body, emittance equal 1., at an absolute temperature

of ?00° K.

The combination of two curves from the reflectance and emittance

regions, then, would represent the total spectral. response of the

object. Figure 1.6 shows a simplified example in which the agri-

cultural scene represented in the reflective region by Figure 1.4,

is assumed to behave as a black body in the emissive region, represented

in Figure 1.5. It is this plot which represents the "spectral

signature" of an object, and it is the di...'erence between such

signatures for different objects which allows the differentiation

between objects using the multispectral approach of remote sensing.

The summation of the preceding plots will yield the magnitude

of radiance emanating from an object. In order to evaluate the

energy, or power (time rate of energy) incident at the sensor, how-

ever, the transmission through the atmosphere must also be considered.

The atmosphere will attenuate and modify energy very significantly

by molecular absorption for many spectral wavelengths. There are,

however, spectral intervals at which the atmoshpere is reasonably

"transparent" to electromagnetic radiation. These transparent spectral

regions are called "windows", and sensing from a remote location

requires that these spectral intervals be utilized. Figure 1.7

presents a graph of the transmission of the atmosphere for the

wavelengths of the optical portion of the spectrum. The plot does

not include the effects of atmospheric scattering. Table 1.1 sum-

marizes some of the more important atmospheric windows which have

s
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{ been utilized in MSS remote sensing systems.	 The most often used

windows in remote sensing are numbers 1; 2, 3, 4, 5, 6, and 9 [11).

Table 1.1

Atmospheric Windows [111
d

1

Window No.	 Wavelength Limits

1	 .40 to	 .72 um
i

s
2	 .72 to	 .94 um

S.:k

3	 .94 to	 1.13 um 99

4	 1.13 to	 1.38 um

5	 1.38 to	 1.90 um )

6	 1.90 to	 2.70 um

7	 2.70 to	 4.30 um

8	 4.30 to	 6.00 71m

9	 6.00 to 15.00 um

a
10	 15.00 to 25.00 um

:a
If the atmospheric transmission is known for a spectral wave-

length interval A to (X + &X), the resultant power flow into the

sensor may be given by [91

P	 Ta LX A 02 (AX)	 (1._3)

in which P is the power in watts, 
T 
	 the transmission of the atmos-

phere, and S the resolution angle of the system, defined as the

angle from the sensor within which the electromagnetic energy is

` received at any instant, and A is the effective area of the receiving

(.

i

optics,
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With these preliminary remarks in mind, attention is now directed

to the multispectral scanner itself. In the following section a 	 3,

discussion is given of the manner in which these radiometric proper-

ties of matter may be utilized to record analogue data using the

multispectral scanner, and how these analogue records may be processed

to produce digital data arrays for analysis.

1.2 Digital Multispectral Scanning System

In this section, the steps taken to record the electromagnetic

energy using a multispectral scanner will be discussed. The processing

steps which take the data from electromagnetic waves, to analogue

records from the MSS, and from these analogue records to digital

data arrays will be discussed. The final form of data, the digital

array is the form which is utilized at the Laboratory for Applications

of Remote Sensing (LARS) to perform automated interpretation, and

it was this data format which was used to investigate the geometric

properties of the digital MSS system.

1.2.1 The Multispectral Scanner

Figure 1.8 depicts the scanning and data collection system

for a typical multi-spectral scanning system. The system depicted

is an aircraft system, in which a rotating mirror or prism scans

the terrain in narrow strips or lines oriented normal to the direction

of flight. Forward motion of the aircraft provides continuous

coverage by assuring an advance for each line, allowing for some

overlap between successive strips The system utilized at LARS
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Figure 1.8. A Multispectral Scanner [11
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to generate basic data for digital processing is discussed

further.

The electromagnetic energy incident upon the mirror or prism

is optically focused upon a separating prism or diffraction grating

which separates the incident energy into differenr6 wavelength bands.

Each band is directed to an appropriate detector, and the signal

generated is recorded on magnetic tape as an analogue signal, each

spectral band representing a data "channel". The data is recorded

on 14 track one inch magnetic tape as a series of continuous signals.

The first track of tape contains a synchronizing signal to note the

beginning and end of each scanner revolution. Also on this track

is a signal from a roll stabilization gyro, which indicates the true

roll of the aircraft during each scan line period. The remaining

13 tracks are data channels, which record calibration sources both

internal and external to the aircraft, as well as recording the

radiance from the ground scene of interest. Therefore, up to

13 channels in 13 spectral bands may be recorded simultaneously.

The optical system shown in Figure 1.8 is of the converging optics

type coupled with a rotating mirror-prism. Other optical configura-

tions are available utilizing an oblique mirror or wedge, and

converging optics [10, 111. If digital analysis or MSS data is desired,

these tapes are subject to digitization in an analogue to digital

sampling procedure.
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1.2.2 Advantages of Multispectral Recording

The MS sensing system has several advantages over more con-

ventional sensors such as photography. The data are recorded in

a quantitative manner suitable for processing into numerical data.

The recording and processing can be calibrated, resulting in high

repeatability of decisions based upon statistical procedures.

The possibility of detailed numerical analysis allows the discrimination

of subtle differences within the data resulting in a high probability

of isolating classes of interest through automated interpretation

and classification. A class may be thought of as any physical divi-

sion of interest to the investigator, which is believed to be spectrally

separable from other classes. Examples of classes are what, corn,

oats, and other crops which may be appropriate in an agricultural

experiment utilizing airborne sensors. Another example of classes

would be bare soil, green vegetation, and water, which may be appro-

priate for an investigation of a rural environment using spacecraft

gathered data. Urban, suburban, and rural may define classes of

interest for,studies of urban areas using spacecraft data.

An illustrative example is cited 'by Holter [41, in which a

comparison of the information available on black and white film,

color film, and the multispectral system is made. For this example

it is assumed that the eleatromagnFtic spectrum is divided into

12 wavelength bands, and each band is assumed to have 10 levels of

intensity, or density. Black andwhite photography senses

instantaneously all of the bands in the photographic region of

the electromagnetic spectrum. The maximum density would occur when

yyY

1y

i



the maximum intensity is present in each band, and there will be

10 x 12, or 120 density values discernible below this value. Each

of these values, however may occur from a different combination

of bands, and the band combination causing this density cannot be

discerned. Color film may be thought of as recording in 3 bands,

representing the 3 emulsions used. If each emulsion is assumed

sensitive to one third of the 12 spectral bands, then each emulsion

could discern 40 densities, and the discernible number of states

rises to approximately 6.4 x 104. A multispectral sensor,'on the

other hand, senses each band separately, and stores the data separately,

so that the total number of states available from the multispectral

sensor data which could be recognized is 1012.

Although meaningful interpretation can and has been done by

conventional interpretation methods utilizing multispectral images

in order to make efficient use of all of the data available in this

form, human decision making becomes too slow by several orders of

magnitude. Further, the human interpreter finds it impossible to

simultaneously discern differences in spectral tones, as displayed

upon images, for more than a few (3) spectral bands. Such data may

be analyzed with automated systems of interpretation, utilizing

digital or analogue computing equipment. If the digital approach

is chosen, the analogue flight record must be converted into data

forms compatible with the digital computer, such as digital data 	
-fi

tapes. If such a form is generated, and appropriate digital decision

3
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aigoriznms are written, tnen computer aiaea analysis may oe

performed with speed and accuracy, and quantitative results

obtained.

1.2.3 'generating Digital Data Arrays

In order to iecilize digital data handling and interpretation

of NHS data, a system for converting the analogue record to digital

data format mwst be implemented. One such system, flown by the

Environmental Research Institute of Michigan (ERIM) relies upon

a roll gyro signal to establish the roll of the aircraft for each

scan line. Figure 1.9 (adapted from (12]) depicts the manner in

which the roll of the aircraft is monitored in flight and later

utilized in analogue-digital (A-D) conversion to generate roll com-

pensated data. As the scanning prism rotates, a magnet attached

i

to the shaft passes a coil at the same point for each revolution.

j	 Referring to Figure 1.9a, as the magnet passes the coil, it generates
i

r
a synchronizing pulse which is placed on the analogue record (Fig-

ure 1.9b), and simultaneously triggers a constant slope electronic

ramp signal generator. When the signal generated is equal to that

of the output signal from the roll gyro (Figure 1.9c), indicating

the position of the aircraft roll with respect to nadir, a roll pulse

is generated with respect to the synchronizing pulse upon the analogue

record. Thus the magnitude of roll is recorded upon the analogue

record for each scan line. These synchronizing and roll pulses are

recorded upon the first track 4of the analogue recording tape within
;f

the aircraft.

V,

^. ik
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As the scan continues pass: the aircraft aperture, the spectral

radiance is recorded across the ground scene on the remaining tracks

of the tape for up to 13 data channels. As the rotation is continued,

the sensor receives reference signals (from a light source, heat

plates for the emissive regions of the infrared. spectrum, and the

sun). These reference values are used subsequently as calibration

data. Figure 1.9b depicts the first track and two typical data

channels.

Digital sampling is then done in the laboratory using analogue

to digital (A-D) conversion equipment. The size of a data sample,

and hence the angular interval of a digitized element in the along-

scan direction is determined from the angular scan rate of the rotating

prism, by selecting an appropriate sampling rate in the A-D converter.

As an exaxW le, consider a data set in which the scene was scanned

at a rate of 3000 revolutions per minute. The resulting period

of rotation for the scanning prism, tr , is then 1/50 sec., and

is represented on the analogue record by the distance between sucessive

synchronizing pulses, as shown in Figure 1.9b. If a nominal desired

angular sanr^pling interval y, is desired, the number of samples between

synchronizing pulses may be computed and a time interval of sampling

ompute d, which may be dialed into the A-D converter.

For a nominal angular sample interval, or instantaneous field

of view, of y = 6 milliradians, the number of samples between syn-

chronizing pulses (representing one revolution, or 2 7 radians)

may be computed as

n = 2 7 = 1048 ,samples,
.006
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or, in terms of time interval of sampling in the A-D converter,

At = .006 (.02) = 1.9 x 10 -5 sec.
2 m

In practice, the time interval of sampling is limited to stepped

values, and hence the actual sampling resolution will be slightly

different from the nominal value.

After- the time interval for sampling is known, the actual

sampling is done with respect to the roll pulse. Beginning at the

roll pulse position, the analogue record for each channel is instan-

taneously sampled at the time intervals calculated, as r-:hown in

Figure 1.9b. Since the sampling begins at the roll pulse position

for each scan line, any sample, say sample number 100, on each scan

line is recorded on the digital tape such that it represents the

same angle with respect to the nadir, resulting in roll stabilized

data. The analogue data for each channel at every sample point

is quantified on a scale ranging from 0 to 255, in order that it

may be represented on the digital data tape (or in the digital computer)

by a single byte (8 bits). A detailed explanation of the method

in which the resulting data are stored on computer compatible tapes

is given in reference [12].

For each resolution element, there is a position in a matrix

representing the scan line number in one dimension, and the element

number within that line in the other dimension. Associated with

that position are several spectral values equal in number to the

spectral bands, or channels, of the system. The data, then, may



28

be considered as a three dimensional matrix of spectral values of

size i x J x n, where i is the number of scan lines in the flight,

.i

	

	
is the number of elements within each scan line, and n is the number

of data channels recorded. Subsequent automated classification

and interpretation schemes then consider an n-dimensional vector

for each element in the i x j positional array, as the data form.

h	 In the following section, the use of the data arrays thus gen-
ry°'"

erated to form images is discussed. The use of computer aided analysis

algorithms operating on the data within these arrays is also presented.

The development and application of these computer aided analysis

and classification procedures constitutes the major portion of the

current research and development tasks performed at LARS.

1.3 Computer Aided Analysis Using Uigital PASS Arrays

In the preceding section, the generation of digital NSS data

arrays was discussed. In this section, the use of these arrays

to extract meaningful information concerning resources at or near

the Earth's surface will be presented.

1.3.1 Displays of MSS Data Arrays

Whether the arrays generated are to be utilized for interpretive

purposes or toinvestigate geometry, it is convenient to be able

to 'display the information vis`aally. The task of machine aided

interpretation utilizes the arrays directly, after preliminary

decisions are made from displays of the data. An alternate method

of considering the data format, which is of more interest from the
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photogra=etric aspect, is to consider the data as an image. 	 Under

ideal conditions, the image formed by a display of the digitized

spectral values may be seen to consist of two types of projections

as will be discussed in a later section of this chapter. 	 In the

direction of flight, the data is recorded in a line-by-line fashion,

resulting in an essentially orthographic projection. 	 In the direction

perpendicular to the direction of flight, the image is a perspective

projection about the effective perspective center of the scanner.

If a display of this image is desired, the information stored A

on magnetic tape, must be processed to form a gra y scale matrix.

In the LARS system, the data analyst determines the number of gray

scale levels desired ( usually 10 to 12), and histograms are calculated

t.
for all spectral values within the area of interest.

These histograms are tL-ien divided into a number of bins equal A

to the number of gray scales desired. 	 The abscissa is divided such

that the same number of data array elements fall , into each bin.
t

Each interval along the x axis is then assigned a symbol or gray

scale level.	 When the array is subsequently displayed, the result

is that every symbol will occur with the same frequency within the

display.	 The result is equally active gray scale levels over the

image.	 Display of the image may be accomplished in two ways.

The data tapes may be used to drive the scanning raster upon a

television monitor, with the gray scale levels determining

the voltage of the raster signal. 	 This form of display utilizes the

LARS Digital Video Display Unit, shown in Figure 1.10 [131, and

henceforth referred to as the digital display unit. 	 An alternate
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display form is a gray scale printout utilizing the line printer

of the computer. Different gray scale values are represented by

alphanumeric characters available on the line printer. Figure 1.11 [13]

illustrates these two methods of display. The digital display unit

is well suited to the display of gray tone imagery and allows great

flexibility, through the use of an attached light pen, for purposes

of interpretation. The line printer image form is useful for geometric

studies, since it readily allows for the isolation of single element

positions.

1.3.2 Computer Aided Analysis

As mentioned previously, the abundance of data generated by

MSS systems require that interpretation be automated as fully as

possible, to make maximum use of the unique properties of the multi-

spectral approach. Computer aided analysis in this context,

will denote the assignment of each element in the data array into

one of a finite number of pre-assigned "classes" of interest, according

to some decision rule. Different algorithms for this purpose abound

in literature (14 through 19]. A brief introduction to the method

used at LARS will be presented in this section. The method is based

upon statistical pattern recognition techniques.

Figure 1.12 [14] depicts in a block diagram a general pattern

recognition system. The receptor or sensor in this case would be

the multispectral scanning apparatus. Data from this sensor may be

represented as an n-dimensional vector for each element in the posi-

tional array, where n would be the number of spectral channels used.
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The purpose of the feature extractor is to generate a feature space

vector containing maximal information for discrimination purposes.

As an example which has been used in the LARS system, the data analyst

selects the desired dimension of the feature space vectors to be

used. The analyst may elect to perform classifications using four

of the channels when originally a total of twelve channels were

recorded. A statistical quantity called "divergence" between class

s
	 pairs is computed for all possible groups of four channels included

within the original twelve channels. This divergence is a measure

of the spectral separability of the classes based upon each group

of four channels. Based upon this quantity, one group of four

channels would be selected to perform the classification. Usually

the four channel combination chosen will be the set which has the

greatest average divergence between pairs, although other selection

criteria may be used. The net result of the feature extractor as

used at LARS is to select some subset of dimension m from the original

n channels of the measurement space vector (m s n). The feature

extractor could, however, be a more complicated transformation.

The measurement space vector would be

sl

S2

S	 =

sn
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.{	 and the feature space vector for analysis would be

{
Sa l
S  2

	

w	 ^

S' —	 (1.5)
1

	

r	 ^	 ^

	

:	 1

	

M'	 }	 S
m

!i

	

is	 y

The decision maker is of course an important step in the

classifying procedure, since it assigns each point in the data array

to some particular class based upon a decision rule formulated from

calculations made upon the feature space vector.
i

	t'	 Each element and its associated m-dimensional vector represents

	

s	 a point in an m-dimensional feature space, and it is the location
u

of points within this space which serves as a basis for classification.

Figures 1.13 and 1.14 represent a two dimensional example, in which

	

r	
two wave length bands, k l , and a2 are the feature space coordinates.

Figure 1.13 (course notes, EE 595, Purdue University) shows typical

spectra of soil and vegetation. The spectra are assumed to be

f
sampled as noted on the figure at wavelengths Xl and a2 . The points

h.
in the two dimensional feature space (al , a2 ) are then plotted in

f;
a two dimensional feature space as shown in Figure 1.14.

f,Natural phenomena, however, such a.h° :radiated and reflected
;i

electromagnetic energy from which spectral data are derived exhibit
-k

some inherent randomness. Spectra from two separate re-presentatives

s

rs
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of the same class would not be identical, and therefore the (Al. A2)

measurements would not fall at the same point in the feature space.

Instead, samples from different elements tend to fall in areas	 r

or "clouds" within the feature space. For example, Figure 1.15

depicts many observations from 3 classes plotted in the feature

space. The decision making function of the classifier divides the

feature space into a number of regions (the basis of which will be

discussed subsequently) each representing a class of interest.

The decision making algorithm examines each new data point to determine

into which region it will fall, and classifies the point accordingly.

The classification problem then, becomes one of defining decision

surfaces separating the appropriate regions, as shown in Figure 1.15.

For the two dimensional feature space shown, the decision surfaces

become lines. Iii order that the classifier may designate the decision

surfaces before classification of unknown data points takes place,
	 { 

3

definition of these surfaces is done based upon "training samples",

which may be generated from twe different approaches, the data bank

approach and the extrapolation approach [1].

In the data bank approach, an attempt is made to gather as

many samples of spectral signatures as possible, in as many classes

as may be useful to the data analyst. For any given problem a subset

of classes present in thescene scanned would be chosen and decision

surfaces calculated between these classes. Each incoming data

point would then be placed into one of the regions defined by these

classes. This method would have the advantage of requiring a minimum

of a priori knowledge of the data to be classified, and the same
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data bank of spectral signatures could be used to classify any number

of new data sets.

This method has serious drawbacks, however, since the data

bank of spectral signatures would have to be very large, and would

have to include signatures gathered under many different conditions

in order to account for natural statistical variations, such as

temporal (time) variations, sun angle variations, variations in

the atmosphere, seasonal variations, etc.

Using the extrapolation approach, however, these problems

are circumvented to some extent. The training samples for this

method are samples of known classification, drawn as a subset of

the data to be classified, assuring that the training samples were

gathered under the same conditions as the data to be classified.

Decision boundaries are determined from these training samples, and

the entire set of data is then classified accordingly. Thus, the

classification is based upon an extrapolation of a few known points

within the data set itself.

The method has the advantage that much less calibration is

required of the sensor. However, it does require the acquisition

of some a rp iori knowledge of the scene being scanned. This knowledge

may be gained from ground observations in populated or accessible

areas, limited photographic missions in inaccessible areas, or a

combination of the two. It is this method which is primarily utilized

at LARS.

The actual assignment of decision surfaces is the subject of

continuing investigations. As a simple example, the centroid of each

sr
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class may be calculated, and the surface equidistant between centroids

of adjacent classes used as the decision surface. In this case,

the decision surfaces shown in Figure 1.15 would become straight

line segments. At LARS, the decision surfaces are calculated-to

minimize the average expected loss of classification accuracy, as

based upon some assumed loss function. The data in the spectral

channels is assumed Gaussian in its randomness, and the resulting

classification system is a. maximum likelihood decision rule.

If the feature space is divided into regions as just described,

every incoming point must be assigned to one of the designated

classes. In virtually any, scene, however, there are elements which

do not belong reasonably to any of the finite number of classes

designated. To avoid these gross nisclassification errors, the

concept of thresholding is used. If the probability of an element

belonging to any of the designated classes is smaller than some

preassigned threshold probability, then that element is assigned

to none of the classes of interest but instead is placed in a null class

which will represent "all others".

If training sample areas are difficult to delineate, another

procedure called clustering, or unsupervised classification, may

be used to supplement the above procedure. In using clustering,

the analyst decides upon some number of groups into which he desires

that the spectral data be divided. The clustering algorithm then

performs this division, dividing the data into this number of groups,

choosing those groups which are most separable based upon the spectral

values stored in the data arrays. These groups are called "clusters".

^	 3
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After these groups have been isolated, however, the data analyse;:

must determine whether each cluster represents a class in the physical

sense, whether each cluster represents a single class or a combination

of classes, and whether the classes isolated are of interest.

The above brief summary of data classification has used as

an example the system utilized at LARS. The system is based upon

spectral separability of data elements. It s3 ..t.,l be noted that

other information may also be used for interpretation, such as spatial

information, temporal (time) information, polarization, and combinations

of these.

To date, all of the algorithms and procedures described have

used as the basic data source the arrays directly as they have come

from the A-D conversion. No attempt has been made to analyze the

geometry of the data arrays. This analysis is desirable in order

to be able to extract from digital MSS data arrays not only the

interpretive information of "what" is included in the information,

but also the metric information of "where" and the quantitative

information of "how much". In the next section an introduction to

the geometric distortions present in the data arrays will be given,

to aid in understanding the types of geometric deformations to which

the data arrays are subject.

I

1.4 Geometric Distortions in MSS Imagery

Investigations concerning PASS digital data arrays have previously

dealt primarily with the automated interpretation phases of analysis

through pattern recognition using statistical concepts. Geometry

of the image has been either neglected entirely or subordinated to
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r
the interpretation analysis. The MSS data, however, is subject

to geometric distortions, which may be serious if it is desired

r to analyze the data to extract metric as well as qualitative information.

It would be desirable to be able to obtain metric information from

the data arrays. ' Positional information may then be associated

with each properly classified element, and reliable information

:.	 concerning areas may be obtained. 	
s

1.4.1 Ideal Geometry
3	

Figures 1.16 and 1.17 illustrate geometry of a multispectral
^	 L1

scanner under ideal conditions. The case illustrated represents

the recording of the j-th element in an arbitrary scan line, i.

In this case the following assumptions are made:

1.) The aircraft is flying perfectly straight, at a constant
H'

k	 elevation above datum, and at a constant ground speed.

2.) The aircraft is subject to no angular exterior orientation

perturbations. That is, there is assumed to be no roll (w),

5	 ^^

t

pitch ((p) , or yaw (k) of the aircraft.

3.) Each scan line is assumed to be instantaneously recorded.
a

Under these conditions the resulting image is recorded as an ortho-

graphic projection in the direction of flight ( X), and as a perspective

projection in the direction normal to the direction of flight (Y).

In Figure 1.16,, S represents the angular resolution of the

beam in the down strip or X direction and will be the same as the

physical resolution of the scanner. The angle y represents the

effective angular resolution in the along-scan or Y direction and
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is determined during the analogue to digital conversion. 	 This represents

I
the effective instantaneous field of view (IFOV) of the sensor.

The total angle scanned, called the total field of view (TFOV) is 2a.

The effective aperture of the sensor is represented by the 0 by y
X

solid angle. j

4- Figure 1.17a depicts the down strip or X direction. 	 For this

direction the Xj coordinate for the object point j is a function

#{ of time down the strip and may be written

Ti

X	 Xc	 Xo + f	 V(t)dt	 (1.6)

To
,.

in which Xc is the X coordinate of the scanner at the instant of
.

{ imaging point j on scan line i, X^ for point J, T i is the time

epoch at the instant of recording point j and is the same for all

points on scan line i under the assumption that the scan line is

-st instantaneously recorded, X o is the X position of the first scan

tr recorded and V is the aircraft velocity which is assumed constant

for the ideal case. 	 If the scanning rate is adjusted such that an

overlap '(overscan) will occur between scans at the nominal aircraft

velocity, then the average advance for each scan line will be (1-S)dX,

i
` where S is some overlap factor, and dX is the scan width on the

fi
datum given by (see Figure 1.17)

dX	 Zcs	 (1.7)



dx = ca
	

(1.8)

in which c is an effective sensor constant, analogous to the record-

l

r
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In this expression Zc represents the altitude of the aircraft above

datum when recording scan line i. Further, the image element size

in the down strip direction is given by

ing barrel radius (camera focal length) in panoramic photography.

{

	 Noting from Figure 1.17a that
	 I

1

V dt = (1-S)dX
	

(1.9)

and solving Equation (1.8) for a, the following expression results

from substitution of the expression for 0 into Equation (1.7).

x

Xj = Xc = Xo + f (1-S) s dx'	 (1.10)

o	 c

For To = 0, the image strip coordinate is equal to zero, and at

time t = Ti , x' = x, the image x coordinate of point J.

€:

	

	
Applying the ideal assumptions mentioned above, in which aircraft

velocity and flying height above datum are assumed constant down

the flight line, the expression becomes 	
i

X^	 =	 Xc	 = Xo + (1-S) Z,' x	 (1.11)
C

In reality, of course, the aircraft velocity and flying height

may be a function of time, and hence of the image x coordinates.

Y:
If a polynomial form for these quantities is assumed, then a polynomial

form of one degree higher will result for Xj after integration of

TM..	 .. x......, 	 ^.	 .,..e ,....	 w.^FGr'.4a.1..4ef5lx3	 cee.•'auacr^e.
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Equation (1.10). If a harmonic form is assumed, then a harmonic

form will remain after integration.

In Figure 1.17b is shown the recording geometa7 in the direction

perpendicular to the direction of flight. For this case, the ground

coordinate `Yi is given by

Y  = Yc + Y'^
or	 (1.12)

Y^ = Yc + (Zc - Z) tanej	
t

in which Yj is the ground coordinate of point J, Y c is the Y

coordinate of the sensor at the instant of recording 3, Z is the
3

elevation of the terrain (assumed level) in which Z j in Figure 1,17b

has beer. replaced by the constant elevation Z. The angle 8 3 is the

scan angle at the instant of recording given by
{

e3 = y 3 /c	 (1.13)

and yj is the image position normal to the flight line axis and

would be represented in digital recording by the column position

with respect to the scan line center.

1.4.2 Variations from Ideal Geometry

This idealized geometry is obviously not realized in practice,

since the ideal positions as given by the projection Equations (l.11,

1.12) are perturbed by the following geometric factors.

l,) The effects of changing ground resolution element size

`	 at different scan angles, and effecti-c y recording on a
I

cylindrical rather than plane surface, which causes a

panoramic appearance.. These are termed "scan angle effects".

y

i	
3
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2.) The effect of neglecting relief difference of object points

above or below the assumed datum surface. This will be

called "topographic effect".

3.) Removing the assumption of ideal flight conditions leads

to "sensor exterior orientation effects".

4.) Relaxing the assumption that each scan line is instantaneously
1

recorded, but in fact, requires some finite recording time,

leads to "scan time effects".

1.4.2.1 Scan Angle Effects. Although each element along the

scan in the image is displayed with equal width, significant dis-

tortions occur along each scan due to a changing ground size of

resolutions elements. From Figure 1.16, the element size in the

direction of flight, or X direction, is given by

eX3 	 S(Zc - Z^) sec8 i 	(1.14)
i

In the direction perpendicular to the direction of flight,

or alonF3-scan direction, the ground coordinate of the point j is

given by

G

Y j = Yc + (Zc 	Zj) tan6 j 	(1.15)

If the sampling angle, y, (see Figure 1.16) is sufficiently small,

as is usually the case, then it can be considered as a differential

change in the scan angle 6 3 , that is

y	 d8
	

(1.16)

7
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Differentiating Equation (1.15) with respect to 8 j , the resulting

expression is

dYi = NC - Zj ) sec2 8j d6
or

	

	 (1.17)
ey i = Y(Zc - Zj ) sec2ei

Figures 1.18 and 1.19 show plots of the ground resolution element i

size as a percentage of flying height above terrain in the X and Y

directions, respectively. These plots show various values of the

angular resolution. Most aircraft data handled by the LARS system

is digitized in the Y = 3-6 mrad range in the Y direction. The

angular resolution of the ERIM M-7 scanner, from which most present

LARS aircraft digital data is derived is on the order of 2-3 mrad,

representing a. The scan angle limits of the ERTS scanner is on

the order of 5.75 0 either side of nadir.

As an example consider a typical aircraft flight as utilized

by LARS, with nominal flying height above terrain of 5000 ft. (1.52 km),

digitization parameter y = 6 mrad, P = 2.5 mrad. Then the ground

size of a resolution element would vary from 12.5 ft. x 30 ft.

(3.81 m •x 9.14 m) at nadir to 17.7 ft. x 60 ft. (5.39 m x18.29 m)

at a scan angle of 45 0 .	 As may be seen from Figures 1.18 and 1.19,

the ground resolution element size increases very, rapidly, particularly

in the Y direction, for scan angles in excess of 45 °, which would

result in great image distortions. Therefore, most aircraft scannert,

data is collected within the range of a <+ 400 .	 For small scan

angles (e.g. ERTS, in which a < 60 ) the effect is not as serious

;: as for larger angles.

4
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In addition to the distorting effect of changing ground reso-

lution element size, there exists in each scan line a panoramic

image displacement. This displacement is due to the fact that the

data are effectively imaged upon a cylindrical surface, rather than

a plane. From Figure 1.17b, this displacement may be seen to be

the difference between some hypothetical image position, denoted a',

and the actual image position a. The resultant image displacement

is given by

dy = Oa' - Oa = c(tan6 i - 6J )
	

(1.18)

Figure 1.20 shows graphically the magnitude of this displacement

relative to the effective principal distance,.c, for varying scan

angles. It should be noted that this displacement increases very

rapidly for scan angles in excess of 450.

1.4.2.2 Topographic Effect. The neglect of terrain variation

is not uncommon in the interpretive treatment of multispectral

scanner data arrays. The resulting displacement may become appreciable

at large scan angles. Referring to Figure 1.17b, if point A is

imaged and assumed to be on some datum surface, while in fact it

lies at some elevation Z  above datum, the effect is to image the

point as if its Y position was at A' on the :datum. The effective

ground displacement due to neglecting topography may be given by

6Y 	 Zi tanei
	

(1.19)

in which Z  is the element elevation relative to datum, and 6Y 

is the resulting Y displacement at ground scale. The proper image
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position for this element would then be at a", if the element is

to retain its proper Y position, after reduction to the datum surface.

This error, BYj , will vary from zero at nadir to a value equal to

Z  at a 45" scan angle and would increase rapidly for scan angles

greater than 450 . In order to alleviate this error, some method

must be chosen to assign elevations to every element with an acceptable

accuracy. This problem will be dealt with in greater detail in

a later section. At this point it should be mentioned, however,

that if multiple coverage of ground areas are available, for example

from side lapping flight lines, the possibility exists to obtain

these element elevations directly from the imagery, by forming inter-

sections. However, if only singly scanned data are available, then

some source external to the data arrays must be used to provide

these element heights.

1.4.2.3 Exterior Orientation Effects. In addition to scan

angle and topographic effects, a major source of error is that of

sensor exterior orientation variations during scanning. In actuality,

of course, an aircraft cannot be controlled such that its elevation

and velocity remain constant, nor can it be constrained to lie

on a perfectly straight flight path. In addition, an aircraft

cannot be stabilized such that roll, pitch, and yaw are held negligible.

Many scanning systems, however, are roll stabilized, such as the

ERIM M-7 scanner which supplies the present bulk of aircraft data

to LARS. For these systems, the w term may be approximated by zero.

Figures 1.21 and 1.22 illustrate the resulting deformations

which occur when the perfect orientation assumptions of Section 1.4.1

t



56

are not realized. Figure 1.21 illustrates the effect of two of

the angular orientation elements and one of the positional elements.

In Figure 1.21a, the effect of pitch (^) variations down the strip

is to cause the scanner to "gallop" in the X direction, alternately

increasing and decreasing the nominal scan overlap value, S, described

in Section 1.4.1. The effect of a change in flying altitude is

to cause a spread of the sensed ground element in the direction

normal to flight as may be seen from Figure 1.21b.

The yaw (K) variation is due to the rotation of the scanner

about a near vertical axis as it flies the strip. For example,

in Figure 1.21c, assume a road is exactly perpendicular to the

flight direction, but is imaged when the aircraft has a yaw. Then

when the imagery is displayed, each line is displayed horizontally,

?{	 and the x coordinates along the road will be displaced such that
E
a.

f;	 the road will no longer appear perpendicular to the flight line axis.

Figure 1.22 (20) shows the resultant ground coverage of a scanner

under various perturbations in sensor e"erior orientation elements.

From Figure 1.22, an important aspect of scanned imagery becomes

apparent. Because only two-dimensional information is available
x

from the imagery, it becomes impossible to separate the effects of

each orientation element variation. For example, considering 1.22a,

a constant aircraft pitch in scanning several successive lines is

impossible to distinguish from the effect which would be recorded

if a constant X shift of the coordinate system was done. From
r.

1.22i, it is not possible to distinguish between a linear rate of

aircraft pitch, and a linear rate of change of aircraft velocity.

A

1
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4,
Thus, it would be unreasonable to expect the recovery of all orientation

parameters from the imagery, especially if only singly scanned imagery

`r`

is available.	 Kratky [21] also points out this inseparability of
h I

'
orientation elements based upon scanner imagery.

ro	 a

4

The variation in these elements of sensor exterior orientation

down the flight line are in general stochastic in nature, or random

time functions.	 The cumulative effect of these, however, may be

considered deterministic or analytical, particularly for short sections

of the flight line [22].	 It may be possible then to approximate

these variations within a short section using such functions as
is

polynomials or harmonics [21, 22, 231.
G

„r Ideally, the mathematical functions expressing the behavior

of exterior orientation elements should be in terms of time. 	 However,
rf

F

time may not be recorded with sufficient accuracy to be relied upon

for such analysis.	 Alternatively, if the concept of a constant

effective speed of "film" -travel (v) is utilized, then the x coor-

dinate of the imagery may replace time in these functions. When
5
z

the data is in the form of digital arrays, x may further be replaced
a

by the scan line number as the independent variable,

,I

h	 x = v(T - To )	 (1.20)

t = x	 (1.21)
v

where t = T - To.

y	
_.



Yc = ao + al x + a2 x2	 (1.23)

would be
i

r .;

in which

ti

6o'

As an example, if Y c is assumed to be approximated by a second

order polynomial in time within a section of a flight line

Yc = at  + a'1 t + a12 t2
	

(1.22)

then the resulting polynomial form in terms of the image x coordinate

ao = a o

al = a' 1/v	 (1.24)

a2 = a'2 /v2

Derenyi and Konecny [22, 24, 251 investigated the effect of

differential changes in each of the exterior orientation elements

on the ground coordinates. The equations utilized were based upon

Hallert's differential formulas [26] modified for scanned imagery.

The resulting form of the equations is

dXj = (Zc - Z j ) tanei dK + (Ze - Zj )# + dXc
(1.25)

dYj = tane i dZc - (Zc - Zj)(l + tan2ej )dw + dYc 

For the present investigation, ground displacements were calculated
s

	

	 _
for representative values of the orientation element differential

changes for various combinations of flying height and scan angle.

Figures 1.23, 1.24, 1.25, and 1.26 illustrate the ground displacements

due to some of the terms in Equations 1.25. Figure 1.23 depicts

s
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Xi = Xc + Y_ tr V
2 '7r c

(1.26)

1

t:

65

the X ground displacement relative to flying height above terrain

dui to a differential change in yaw (dK). Figure 1.24 depicts the

absolute: displacement at ground scale for various values of flying

height due to a small change in pitch (do). Figure 1.25 illustrates

the resulting Y coordinate change as a function of scan angle, 8,

for various values of differential changes in flying height (dZc).

Figure 1.26 gives the Y displacement relative to flying height as

a function of scan angle, due to changes in the roll angle (dw).

1.4.2.4 Scan Time Effect. If the assumption that each scan

line is recorded instantaneously is relaxed, then the data would

be recorded as shown in Figure 1.27, assuming aircraft velocity, V,

to be constant during the very short time span of a single scan.

The Xi coordinate of any point may then be written as

Y

iI

in which yj is the along-scan image distance to point 3, or the

column number for digitally recorded arrays. The t r term is, as

before, the period of revolution of the scanning mirror, and c is

the sensor constant (see Figures 1.16, 1.17).

The period of revolution, tr, is a well defined term for most

scanning systems. However, the aircraft velocity V, is a function

of time and some difficulty may be encountered in accurately monitoring

this velocity. It is possible, however, to include this scan time
3

effect into the K term of :sensor exterior orientation as observed

from Figure 1.27.-
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1.^, Review of Previous Investigations

The imagery generated by an optical-mechanical scanner contains

many of the features of imagery generated by more conventional strip

and panoramic photography. Consequently, many of the geometric

characteristic.> of the panoramic and strip imageries serve as a basis

for analysis of scanned imageries, and the review will begin with

a discussion of these more conventional sensing systems. This will

be followed by a chronological review of previously published investi-

gations of the geometric aspects of nonconventional sensors. These

sensors include radar sensors such as Plan Position Indicator (PPI)

and Side Looking .Airborne Radar (SLAB), infrared line scanning systems

(IRLS), and multispectral scanning systems (MSS). The last portion

of the review deals with the recent advent of remote sensing from

spacecraft, and the geometric peculiarities of such systems, par-

ticularly the simplifying assumptions which are possible due to the

relatively high stability of such sensing platforms. Particular

attention will be paid to the Earth Resources Technology Satellite

(ERTS), which contains an MSS system. The inclusion of this sensing

system led directly to several fruitful investigations of scanner

geometry.

In the late 19th century an Italian named Porro developed a

camera employing the panoramic principlc. The instrument, fitted

with a telescope and level, recorded photographs on a strip of

sensitized paper held against the surface of an upright cylinder.

Only fairly recently, however, have intensive efforts been directed

toward the design, development, testing, and routine application
x

ti



68

of panoramic cameras to aerial photography [27]. Continuous strip

photography was first used in 1932, and was initially intended for

low altitude, nigh speed reconnaissance.

Early papers by Katz [28, 29] presented methods by which object

heights could be extracted from continuous strip imagery using

parallax measurements made on the photograph. Wohl and Stickle [30]

in 1959 derived data concerning traffic velocities and volumes based

upon the geometry of the continuous strip camera. In an article

published in 1962, Elms [31] proposed the possibility of using the

convergent strip camera system as a mapping tool. In that article,

the requisite equations for determination of ground elevations and

distances were derived under the assumption of the aircraft flying

straight and level. The effects of errors due to insufficient

image motion compensation, aircraft velocity and position variations,

and aircraft angular orientation variations were investigated and

their effect upon the original equations was presented. The conclusion

which Elms reached was that mapping was possible using imagery from

a strip camera, although the use of conventional plotting systems

as they then existed was precluded.

Ockert [32], in an article published in 1960, compared the

frame and strip cameras for potential use in satellites. The con-

clusions he reached were that the frame camera, due to its highly

refined and perfected geometry was preferable to the strip camera,

with its complex geometry. The problem of time dependent orientation

parameters was recognized, with its attendant difficulties in performing

radial and space trian gulation based upon strip imagery.

T:
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j In a paper published in 1961 (33] Abraham developed projection

x

z	 a

equations for frame, strip, and panoramic cameras, and used these

equations to perform variance propagation investigations in an attempt

to quantitatively evaluate the accuracies obtainable from the three

camera types. After first formulating the projection equations

of the frame camera, Abraham developed transformations for the pan-

oramic and strip imageries to reduce measured coordinate values in

these systems to equivalent frame camera coordinates. These trans-

formations were introduced into the original projection equations

to form projection equations for the panoramic and strip cameras.

Variance propagation was carried out for a test case and numerical

values computed. The results indicated that expected ground coordinate

standard errors were about 100 greater for X coordinates obtained

from panoramic images than those from frame photography, and about

150 greater for Y coordinates. The strip camera yielded expected

errors about 14% in X and 230 in Y over those of the frame camera.

A two article series (34, 35] authored by Itek Laboratories

and published in Photogrammetric Engineering in 1961-62 did much

to acquaint the photogrammetric community with the advantages,

disadvantages and geometric peculiarities of the various panoramic

cameras. The first article, published in Dec. 1961, dealt with the

advantages of the panoramic camera (high resolution coupled with

wide angle coverage), its disadvantages (longer cycling times resulting

'.	 in unsuitability for low altitude, high speed aerial photography),
I

and the two basic physical configurations possible in panoramic

camera (direst scanning or rotating prism). The second of the
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articles dealt with the geometric properties of the images produced

by panoramic photography. In particular, effects of cylindrical

imaging (previously discussed in Section 1. 1 .2.1), the scan (sweep)

positional effect due to camera motion during exposure, and the

effect of image motion compensation were discussed.

Kawachi [36] in 1965 presented :image displacement equations

for image motion due to angular orientation instabilities of frame 	
s

and panoramic cameras. Kawachi also presented plots of rates of

change for the roll, pitch and yaw orientation elements for a typical

reconnaissance aircraft. These plots indicated the stochastic nature

of the orientation elements.

Gullicksen [371 in 1967 advocated the use of strip photography

as a map substitute in order to eliminate the mosaicing necessary

with frame photography. Equations for planimetric errors which

resulted from the direct use of'a strip photograph as a map substitute

were presented, and a numerical example was computed.

An article by Gill [381 in 1964 presented parallax equations

for convergent panoramic photographs, and related these to a rele:V^ve

orientation procedure by analytic means, The photographs were

relatively oriented in segments or parts, in order that the method

could be used in an analytic,al plotter with limited format size.

A test grid was simulated and the procedure tested using the AP-II

analytical plotter, with the results indicating the feasibility

of analytic relative orientation of panoramic photography.

Hovey [391 in 1965, reiterated the advantages of panoramic

photography, reviewed the image displacements inherent in the imagery,

4'

4
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and advocated, greater use of panoramic imagery by the photogrammetric

community.

Skiff (4o] in 1967 published an article treating strip and

panoramic photographs analytically. The article used tensor notation

throughout. Cullinearity equations were presentee for frame, strip

and panoramic photography, and the basic equations necessary for

triangulation using two photos were obtained. Skiff included the

concept of time varying orientation parameters, and assumed a linear

time function for aircraft positional elements for the strip case,

and a uniform angular velocity for the panoramic sweep. Derivatives

of the resulting equations were presented for subsequent linearization.

In concluding, Skiff suggested the use of a constant orientation

assumption over a portion of the imagery.	 Y

In a, very important paper [41] published in 1967, Case formulated

analytic expressions for projection and collinearity equations

associated with panoramic and strip photography. The basic principle

advocated in this paper is the reduction of image coordinates from

strip or panoramic photography to coordinates on an "equivalent

frame photograph", through simple transforming equations. The re-

sulting image coordinates, it was believed, could then be treated

using existing programs for space resection, relative orientation,

and block adjustment. This formulation differed from that of the

earlier work of Abraham [33] dealing with the same concept, in that

a unified matrix approach was utilized, rather than deriving each

case separately from the geometry of the projection. Derenyi [22]

points out that Case advocated the use of a constant orientation
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i
assumption for short sections of the imagery.	 This paper used

j° standard matrix notation and a photogrammetric approach, and served

as a basis for further analytical formulations of the less conventional

k

I
sensors, such as SLAR and optical-mechanical scanners.

t A panoramic rectifier described by Wright [42] effectively

projected a panoramic negative from a cylindrical surface having as

its radius the principal distance of the imaging camera onto a tangent

plane, forming a rectified image which would eliminate scan angle

î effects.	 Problems in lens design for this rectifier were presented
I	

.k

in this paper.

1
Masry [23] in 1969 published an article treating convergent

I

stereo strip photography in a rigorous analytical manner. 	 The neces-

sary coplanarity condition for relative orientation was presented,

and it was noted that all exterior orientation elements of the strip

camera were dynamic in nature, that is, stochastic functions of

time.	 Masry proceeded to make the assumption that the angular or-

ientation elements of roll, pitch, and yaw were constant during any

short period, or piece of imagery. 	 The positional elements of

relative orientation Xc , Yc , Zc were assumed to have some general

polynomial form for both sides of the stereo strip photography,

resulting in a polynomial form for the base elements of relative

orientation Bx , By , B Z .	 Relative orientation was presented by

dividing the strip into sections of a length approximately equal

to the image length covered by the parallax angle. 	 Corresponding

sections were relatively oriented using a successive procedure in

which the orientation elements of the section dust relatively oriented,
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on one side of the film, were used as the elements of orientation

for the opposite section on the other side of the film, since they

were simultaneously recorded.

Masry then presented projection equations to form model coordinates

if orientation parameters were assumed known, and test cases were

run on both simulated and real imagery. Problems occurring were

due primarily to the instability of the solution for orientation

parameters and resulting model coordinates, caused mainly by small

parallax angles in the convergent strip camera. Model coordinate

errors were found to be largest in the Y direction (perpendicular

to flight direction). Masry concluded that if monitoring of orientation

elements were done, the model coordinate stability would naturally

be greatly enhanced.

In 1971 Derenyi [22] completed a thesis relating to relative

orientation of strip imagery. The dynamic nature of the imagery

caused by continuously changing orientation parameters was recognized

and described. Two basic schemes of relative orientation were pre-

sented to cope with this problem.

In the first of these, called the line-by-line method, two

corresponding lines perpendicular to the flight direction were rel-

atively oriented, and this procedure was repeated down the strip

to form a series of line models. Intermediate values were obtained

by interpolation by harmonics or polynomials. Since only three orien-

tation parameters were recoverable by relatively orienting a line

pair, an investigation_ was conducted into the effect of the omission

of two orientation parameters upon the remaining three. The results,

1
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as indicated by both theoretical error propagation studies and tests

on real and simulated imagery, indicated that serious errors would

be introduced unless the omitted parameters were monitored or sta-

bilized to the same precision expected from the relative orientation
%, I

itself.

In the second method investigated, termed the section-by-section

w
	 method, portions of the strip were treated as a unit for the relative

orientation procedure. In this method, some assumptions concerning
S.

k'.

	

	 the behavior of the exterior orientation elements over the section

are necessary. Two assumptions were investigated in detail. In

the first of these, the constant orientation 4,^4sumption, the aircraft

orientation parameters were assumed to remain fixed for each section

pair to be relatively oriented. Error propagation studies by Derenyi

indicated this method could result in serious errors due to the low

attainable precision of the # term. Since Derenyi's analysis dealt

primarily with convergent stereo systems, this low precision, coupled

with a small parallax angle of convergence, would result in large

expected errors of model point elevations formed by subsequent inter-

sections. This problem could be alleviated by larger parallax

angles, but if this is done, then longer sections are required,

resulting in a loss of validity of the constant orientation assumption.

An analysis was also carried out to assess the effect of this error,

i.e. the assumption of constant orientation when, in fact, orientation

is dynamic in nature. It was found that large errors in d^ and dK

result from relatively small non-uniformities in orientation.

A further manifestation of the constant orientation assumption within
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a section is also apparent. At section boundaries down the strip,

discontinuities in orientation parameters, and hence, model coor-

dinates, will appear.

As an attempt to partially overcome these problems, a changing

orientation assumption, to be approximated by linear orientation

changes within a section, was also investigated. It was found that

significant improvement in accuracies resulted from this more realistic

assumption, and the discontinuities at section bolo iaries disappeared.
i

As a further attempt to strengthen relative orientation procedures,

Derenyi suggested a "triple channel recording" system, in which

a convergent stereoscopic system would include not only fore and

aft looking sensors, but also an additional vertical one. By this

method, the three lines recorded could be treated much as lines

from a single frame in a frame camera, and many of the techniques

of frame photography could be employed. It was felt that use of

this scheme would allow greater parallax angles, and hence help

alieviate the low precision attainable in the 0 term, and subsequent

model point elevations.

Derenyi also analyzed the sidelapping flight line configuration.

As mentioned in Section 1.4.2.3, the inability to separate analytically

between some orientation elements results in the possibility of

recovering only two orientation elements, and then only by using the

line-by-line approach. Derenyi draws the conclusion that this flight

configuration was therefore unsuitable for relative orientation.

It should be mentioned, however, that this means relative orientation

in the strict photogrammetric sense, in which it is desired to recover

4
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five orientation elements. While this is clearly impossible using

sidelapping flight lines, it may be possible, after some type of

relative or absolute orientation has been done, to obtain model

elevations by intersection.

In fact, Leberl [61 in 1972 studied the propagation of error

from orientation parameters to model coordinates for optical-mechanical

scanners. His results indicated that, with regard to error propagation,

the sidelapping of flight lines was the optimum scheme in order to

	

.`	 minimize cofactors of the Z model coordinate, or elevations.

A recent use of panoramic photography of general interest was

reported by Alderman [431, in which a convergent panoramic photography

system was used in establishing control on the lunar surface. Oper-

ating from the Apollo 15 Scientific Instrument Module, an optical

	

,A	 bar camera was used to generate overlapping panoramic photography.

The resulting imagery was used to generate models by the process

of relative orientation utilizing the constraints imposed by the

tt
orbit of the spacecraft. These were subsequently assembled into

;h

a strip using the method of Schut [441. Subsequent transformation

of the assembled strip to control points was then carried out.

A linear rate of change for exterior orientation elements was assumed

to accomodate the dynamic nature of the imagery..
1

With the advent of the concept of "remote sensing" in the general

sense, beginning in the early 1960's, the photogrammet,ic community

has been faced with problems of an unusual and challenging nature.

The unconventional sensor types advocated for use, such as SLAR

and MSS, although having unique data gathering capabilities sus?+

s;

i
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as all weather operation and image forming capabilities outside

the visible range of the spectrum, suffer from problems of reduced

resolution and image distortion due to the dynamic mode of image

formation.

The use of radar as a remote sensing system has been progressing

for some time, beginning with the Plan Position. Indicator (PPI)

first developed around 1940, with Side Looking Airborne Radar (SLAR)

coming into existance around the mid 1950's. Leberl [451 presents

a detailed history and literature review on radar remote sensing

systems.

Suits [461 reported in 1960 on the nature of infrared radiation

as a source of imagery. Recording systems based upon both cameras

and scanner-detector configurations were presented. Colwell [471

in 1963 published an article which did much to acquaint the photo-

grammetric community with the basic matter-energy relationships

necessary for image formation by remote sensing. Leonardo [481

in 1964 published a further article dealing with general advantages

and problems associated with remote sensing systems.

In an early paper, Harris and Woodbridge [491 presented the

basic configuration for a thermal scanning system and the concepts

of spectral radiance in the emissive region of the spectrum, as

well as atmospheric transmission.

Suits [501 in 1966 advocated that security restrictions on

infrared scanning devices be lifted, in order that the scientific

community as a whole might benefit from this relatively new data

gathering system. Suits reported on an anticipated reduction in

z
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1

!• the classification of instruments, thus alerting the photogrammetric

profession to its availability.
q

1
Other sources of general information on remote sensing and

remote sensing systems may be found in references [4, 10, 11, 27,

51, 521, as well as the series of LARS annual reports 153-561,i

and the proceedings of symposia held at the University of Michigan [571•

In the mid 1960 1 s, the airborne multispectral scanner was used

at the Willow Run Laboratory of the University of Michigan (now

k
Environmental Research Institute of Michigan). 	 Since 1966 Purdue

University's Laboratory for Applications of Remote Sensing has been
k{

formulating and developing a digital system of MSS data handling to

perform automated interpretation based upon spectral differentiation

by statistical and pattern recognition techniques [53, 54, 55, 561.

Recent papers by Wilson [581 and Lapides [59] have emphasized the

utility of multispectral scanners and enumerated their unique advan-
;s

tages, as well as limitations associated with the data available

from them.	 Carnes [601 reported on advances in auxiliarly equipment

associated with such scanning systems.
a-

Until recently, much effort has been spent on investigations

S

into the radiometric and interpretative aspects of data gathering,

data handling, and automated interpretation. 	 The geometric aspects

of the data arrays generated were ignored or sublimated to the more

pressing problems of research into and development of the radiometric

and interpretive aspects noted above. As the analysA:s of non-metric

`	 facets progressed, however, the problems of geometric factors in these

scanning systems became more apparent and work in k;his area was begun.

y,^
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In a series of two papers [24, 25 1 Derenyi and Konecny first

applied a photogrammetric approach to the optical-mechanical scanning

.aystem. These papers dealt with the basic recording system, the

scan angle effects of varying resolution size and panoramic displace-

ment mentioned in Section 1.4.2.1, and the dynamic nature of scale

factors involved in a scanning system. The study of exterior orien-

tation effects was based upon a modification of Hallert's differential

formulas,. The effect of errors in determination of angular resolution

size was also assessed. In the second of the papers, the authors

presented a projection equation in matrix form which considered the

dynamic nature of the imagery, accounting for the movement of the

projection center during recording.

Konecny, in a series of papers, 17, 61, 62, 631 summarized the

basic projective relationships associated with various remote sensing

systems. These papers dealt with methods of approximate relative

orientation and rectification of imageries recorded with dynamic

systems and discussed accuracies which may be expected utilizing

these systems. The latest paper [7; provides an excellent summary

of most of the work done on geometry of nc -conventional remote

sensors to date.

A paper by Taylor (64] provides useful insight into rectification

procedures for infrared line scanning sensors. Rectification equations

are derived from basic projection equations by first assuming a

perfect, orientation case, and analyzing image displacements after

subsequent perturbations in roll (w) , pitch ( ^) , and yaw ( K) .
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A series of papers [6, 45, 65, 66, 67, -681 written by Leberl

treat geometric aspects of the two most popular non-conventional

remote sensors, side looking air borne radar (SLAB) and the optical-

mechanical scanner. Leberl was primarily interested in SLAR imagery,

and his work cu1ndnated in a doctoral thesis [451 which is particularly

notable for two reasons. The first of these is the extensive bibli-

ography included on radar in general, and in particular, SLAR.
S

The second notable point in this work, is the introduction of inter-

polative techniques for the rectification or restitution of SLAR

imagery. Using stochastic concepts, these interpolative techniques

present a viable alternative to the projection equations for image

rectification or restitution. These techniques may prove to be
e

quite useful for the rectification of digital 14SS data arrays, since

they appear well suited to this digital data handling format (parti-

cularly when scanned terrain is relatively flat).

A paper by Markarian, et. e.l. [69] in 1971 presented a scheme

of utilizing general polynomials fcr rectification of digitized

imagery. The concept of treating the data as an uncorrected inpizt

array used to generate a rectified output c.rray was utilized, and

the principal of digitally "stepping" on the output array and placing

grey scale values from computed positions in the distorted input

f array was advocated. Further, it was recommended that the "nearest

neighbor" be used as the gray scale value from the input array,

rather than to attempt interpolation of gray scale values.

Increasing interest in these geometric aspects of remote sensing

systems is evidenced by the increase in literature in this area

A
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very recently. Masry and Gibbons [70] reported. on the use of the

analytical plotter for rectification of scanned infrared imagery.

Rectification of planimetry using the LR-2 line drawing rectifier,

as reported by Forrest [71] handles either SLAB or scanned imagery.

In a paper by Bosman, et. al., [72] a programming system called

KARIN is described for planimetric mapping from single or overlapping

strips of remote sensing data such as SLAR or infrared line scanner

(IRLS). Graham [73] and Yoritomo L741 described restitution schemes

for radar imagery at this same meeting.

In the early 1970's the use of satellites and spacecraft as

remote sensing platforms was realized. The culmination of this long

awaited event came about with the launching of the EFTS-1 satellite

on July 23, 1972, which contained both return beam vidicon (RBV)
i

and multispectral scanner (MSS) imaging systems. Because of this

event, considerable effort was expended prior to, and immediately

after, the launch on geometric problems associated with the MSS.

The Skylab manned orbiting Earth resources laboratory contains

photographic and PISS imaging systems. The Skylab 143S is of the

conical scanning type.

General information on the imaging of the Earth's surface from

space, and the ERTS-i and Skylab systems and their sensors in par-

ticular may be found in references L75, 76, 77,_ 78, 79, 80, 81,

82, 831• In a very revealing paper, Forrest [75] explains the unique

advantages of using satellite imagery, particularly from scanners,

for cartographic use. Consideration was given to the scanner geometry

and resolution, and the use of ground control points extracted from
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existing maps was advocated to resect for sensor orientation elements

for the precision required for mapping beyond that obtainable from

satellite ephemeris data. Forrest points out the greater stability

of orientation in spacecraft over that of airborne sensors. The

conclusion was drawn that mapping from space images economically

compares very favorably with that of conventional techniques, and

this cost may be spread among users of the imagery outside of those

with cartographic interests.

In two recent papers [81, 821, Doyle summarizes the types of

sensors which have to date been used from spacecraft, and describes

some of their uses, Processing of the data and imagery generated

is also discussed.

The geometric problems associated with imaging with spacecraft

mounted sensors have been addressed by several investigators.

Although, as previously mentioned, spacecraft orientation insta-

bilities are generally less pronounced in these systems than with

airborne systems, these investigations yield valuable insight into

possible analysis methods for airborne systems.

Colvocoresses (84) as early as 1970 published an article dealing

with ,geometric errors to be expected in ERTS imagery. He analyzed

image displacements for 5 possible sources: Earth curvature, at-

mospheric refraction, camera obliquity (or exterior orientation

angular elements), terrain relief, and map projection error. The

effect of atmospheric refraction was found to be negligible, and

that due to terrain relief would be minimal except in extreme cases.

Other errors were easily modeled except for the obliquity error.

C
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Colvocoresses advocated not processing images in an element by element

4 manner except for special purposes.

A series of papers by Kratky (21, 85, 86, 87) addressed these
k J

r problems from the photogrammetric viewpoint. 	 Of particular interest
I

for this investigation is the formulation of functional forms to

account for orientation instabilities of the scanning system.

After presenting the basic projection and collinearity equations f

for 'he scanned imagery, the use of two alternate functional forms

to approximate orientation variations with time is investigated.

These are polynomial and harmonic functions. 	 Kratky presents the

equations in matrix form for resection to solve for the parameters

ii. of these functions, including explicit presentation of the coefficient

matrix and constant vector for each of the functional forms considered,.

when substituted into the linearized collinearity equations. 	 Because

of the smaller and smoother orientation behavior of spacecraft systems j

over airborne systems, it was possible to incorporate small angle

approximations into the analysis, yielding simplified equation forms.

` Kratky also poi,-h.) out the inability to distinguish between the

x.
correlated orientation elements ^ and Xc , the pitch and sensor X

position, using singly scanned imagery. 	 Thus, it is indicated,

resection for all orientation parameters is impossible. 	 However,

the remaining parameters may compensate for these neglected elements,

and result in acceptable image positions after subsequent projection.

The geometric processing of ERTS imagery in the United States

has been ,discussed by several investi6ators,[20, 88, 891.	 Forrest [20]

describes the bulk image processing scheme (currently called "system

y

t
,

. m.
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corrections"), as well as the more refined precision processing

("scene corrections") used on selected imagery as requested by the

user. The bunt image processor transforms the scanned imagery to

a central perspective projection. The purpose of this transformation

is to generate a series of "frames" from sections of the imagery

as they would appear if recorded by a frame camera. The element

corrections are fully calculated for intersections of a nine by nine

grid. These displacement values calculated incorporate corrections

for Earth rotation, as well as roll, pitch, and yaw values, which

are taken from satellite data. Image positions between these 9 by

9 array points are assigned by linear interpolation.

The precision processed (scene corrected) images are generated

as a subset of the above bulk processed (system corrected) imagery,

incorporating more sophisticated techniques for geometric improvement.

The use of ground control points extracted from existing maps, and

identifiable on the imagery are used to refine image position cor-

rections. Forrest points out several advantages in the use of ground

control points.

,1.) The use of control points allows for obtaining the positional

accuracy desired in the precision processed imagery.

2.) Failure of the attitude sensor (the sensing unit which

monitors the angular orientation elements of the spacecraft

sensor) will not jeopardize 'the possibility of geometric

improvement of the imagery.
j

S

a
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3•) The direct determination of sensor orientation elements

by resection from these points serves as a check on the

attitude sensor, and serves to refine the orientation element

values used in the bulk processing.

4.) The use of redundant control points, and least squares

adjustment techniques allow the estimation of obtainable

accuracies for orientation elements and indicate the positional

accuracies of the control points used.

The resection equations used to correct the PASS imagery in

precision processing solve for eight parameters. These parameters

reflect the image displacements caused primarily by errors in pitch,

roll, and yaw, and by rates of change of these orientation elements.

Once again, due to the small, smooth nature of the spacecraft orien-

tation variations, the use of polynomial functional forms may be

used to represent these image displacements. The equations used are

Ax = ao + [l + (x/H s ) 2 1 + alx + a2y + a3xy
(1.27)

Ay = bo + [1 + ( y/HS) 2 1 + blx + b2y + b3xy

in which Ax and Ay represent image shrifts from the x and y positions

recorded on the bulk processed imagery, Hs is the spacecraft altitude

at image scale, and ai , bi are the eight parameters to be solved

for in the spatial resection. It should be noted that terrain

relief is neglected in these equations.- ICratky [21] points out that

the effect of terrain relief is less than the ground resolution

size of an element unless terrain elevation differences on the order

of 2600 ft. (800 m) are encountered within a single frame. Such

y

r
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relief differences do exist in some ERTS frames, and the planimetric

accuracy in such frames will suffer accordingly.

Since digital data handling techniques for MSS data have become

operational at LADS and elsewhere, it is desirable to investigate

the geometry of such imagery in greater detail. The geometry of the

scanning system will be analyzed in this investigation, with particular

emphasis to be placed upon techniques which are suited to the digital

data handling approach. Existing published literature in this area

has dealt with data from spacecraft platforms, in which simplifying

assumptions may be made, or for digitized frame photography. The

investigation in this thesis will attempt to deal with the more

general problem of gathering MSS data from an airborne platform,

for which the simplif ying assumptions based upon platform stability

do not in general hold. This combination of a general geometric

analysis, valid for both airborne and spaceborne systems, coupled

with the digital data analysis, it is felt, will provide a much

needed work not present in existing literature. The chapter immediately

succeeding this will therefore deal with the general geometric

problems associated with the MSS scanning system, in order that the

relationships obtained may be utilized for the analysis of specific

areas of interest in MSS digital data systems.

s
3



2.	 GEOMETRIC AITALYSIS OF MSS DATA ARRAYS FROM SINGLY SCANNED AREAS

i
2.1 Remote Sensing as a Transformation

1,
r	 .«

According to Mikhail and Baker (5], remote sensing may be thought 	 S

of as a mapping of multidimensional object space onto another space,

s the sensor space, having the same or fewer dimensions. 	 Such a mapping

' may be effected through a transformation taking a multidimensionalt

object space vector into multidimensional sensor space vector to-

s be stored for subsequent retrieval and analysis. 	 This may be termed
w

a the "remote sensing transformation". 	 The dimensions of each vector	 3

will depend upon the degree of simplification of the physical phenomena

involved, and the characteristics of the sensor employed. 	 Examples

t
of information content which may be included in the object space	 {

vector are [5]:	 spectral radiance from each resolution element in 	 i

a
a particular wavelength band, polarization of the radiant energy with

respect to the object space coordinate system, and coherence, both

spatial and temporal, of the radiant waves.	 Components of the sensor
i
t! space vector may include:	 spectral irradiance incident on the sensor

' in each wavelength band considered, the direction of polarization

(if retained) with respect to the sensor coordinate system, the

f- degree to which coherence is attenuated, and frequency and phase

^r

_f

shifts of the carrier or force field if active sensing systems are

utilized.

y
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i An important characteristic of sensors with image forming

r

capabilities is that geometric image positions can be generated from

the sensor space vector record stored. 	 In most non-mapping systems

to date	 this geometric image position is not considered the primary

^..j goal of the recording. 	 However, the fact that it can be recovered

affords a unique opportunity to the interpre Llive data analyst and r

t
photogrammetrist.	 This leads to a unified data analysis concept

k
"'

«y
in which analysis of both the non-metric data for interpretation

.^ as well as the metric record inherent in the data becomes possible.

As indicated in Chapter 1 in the review of previous investigations,
a

r

a two step sequential procedure has been used for some scanning A

systems (notably spacecraft systems) in which scanned data has been :+

processed for geometric restitution, with the resulting data then

utilized for automated interpretation. 	 However, the possibility of

simultaneous digital analysis of both the interpretive and geometric

aspects has not beenp	 greatly exploited to date.	 With the more j
a

traditional photographic sensors, the nature of the methods used for

both interpretation and photogrammetry has largely precluded this

unifying concept.	 The photo interpreterfy' g	 p	 p 	 has used methods of visual

inspection, relying on visual "keys" to arrive at decisions. 	 The

photogrammetrist has relied heavily upon accurate reconstruction of

i	 d the geometry of the photograph to extract positional and metric

information about the object space.	 An examination of the object

`t and sensor space vectors for black and white frame photography may

j perhaps explain why these traditional fields of interpretation and

i photogrammetry remain separated. 	 For each point imaged in the
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photograph, the object space and sensor space vectors may be thought

of as each having two parts. The first part will contain the non-metric
i

information which may be sensed and recorded (such as spectral

i information, polarization, etc.), the second portion will contain

geometric information. Consequently, the object space vector for

each point may take the form:

S1

spectral radiance from

n wavelength bands within
r

the photographic region
S
n

X
point position in object

Y

LJ space
Z

where consideration is given only to spectral values for the non-

metric portion. The resulting sensor space vector is of the form

film density recorded
D

for the point

x	 point position in

Y	 image space

These vectors are related through some physical-geometric transfor-

mation which transforms the (n + 3) dimensional vector for a point

in object space into a,3-dimensional vector in the sensor. space..

The physical transformation takes the n spectral values emanating

from the point into a single density value D. The geometric portion

 11-1

l
t
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r

of the transformation takes the object space position (X, Y, Z)

into the two-dimensional image position (x, y). The parameters

associated with this geometric transformation are well known in

photogrammetry, and consist of sensor position (X c , Yc , Z c ), sensor

attitude (W, q, 0., and internal sensor characteristics (x o , yo , f,

particularly for frame photography).

The problem with this transformation in general, which led to

the traditional separation of the fields of photo interpretation

and photogrammetry, lies in the suitability of each part of the

transformation for :numeric analysis. Traditionally, the interpreter

does not look only at a single point density value, but notes the

density, texture, size, shape, shadow, tone, color, and pattern of

objects before concluding their nature [90]. Recent attempts at

automating this procedure, in which photographic densities are

quantified and computations performed upon them are actually attempts

to simulate these visual "keys".

The geometric portion of the transformation, however, lends

itself quite well to both analog as well as analytical treatments.

This characteristic has spawned the practices of photogrammetry.

However, with the advent of the unconventional sensors, par-

ticularly the multispectral scanners, the extensive volume of the

data severely curtails the role of direct human interpretation.

Furthermore, the availability of the acquired data in digital form

makes it possible to apply efficient computational decision making

techniques and automated interpretation, as ,briefly described in

Section 1.3. For the MSS system, considering only spectral information

Y

T:
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{

	 for the non-metric portions of the vectors, the total object space

	

j	 vector would be of -the farm

S1

spectral radiance reflected

and emmitted in n wavelength

bands

S 

X

element position in object
Y

space
Z

T	 time

and the form of the resulting sensor space vector would be

	

i	

S'1

	

4	 ^

spectral irradiance recorded

in m channels (m < n)

	

f	
S' m

x	 element position in image

y	 space

For the M;S transformation, the nature of the sensor makes it

necessary to regard time as part of the object space vector, and the

dynamic nature of the sensing process is reflected in the way in

which the transformation parameters of the geometric portion are

handled.

Because the sensor is recording continuously during the. aircraft

flight, the sensor position (Xc, Yc, Zd as well as attitude (w, 0, K)
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become continuous stochastic functions of time.	 Other parameters

t of transformation for the geometric portion are c, a sensor internal

-; constant analagous to the principal distance of panoramic recording,

and v, a rate of imaging recording surface advance (see Section 1.4.2).

Because of the dynamic nature of the sensing process, geometric anal-

ysis becomes more involved and less precise. 	 However, the .main

advantage of the system is the retention of the several spectral

irradiance numbers for each element, which allows measurement and

y
computation for interpretive purposes.

In summary then, the MSS sensor allows the retention of sufficient

information to make feasible a simultaneous analysis of both the

physical (non-metric) characteristics as well as the metric (geometric)

aspects of the data recorded. 	 This simultaneous analysis may be

brought about by combining the autowated classification techniques

discussed briefly in Section 1.3 with the geometric analysis methods

,i
to be discussed in this thesis.	 Therefore, the opportunity is avail-

s
' able for considering a unification of the activities of both inter-

pretation and photogrammetry.

This has not as yet been effected, however, for two primary

reasons:

l.) Historically, interpretation and photogrammetry have been

considered separately.	 It was thus only natural to continue

' this trend even after these new sensors became available.
1

Fk
Also, there exists a shortage of personnel who are adequately

trained in both interpretive (particularly automated inter-

pretation) and photogrammetric techniques.
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2.) The concept of combining the two computationally oriented

s^ fields of automated interpretation and photogrammetry, while

logical, is quite a complex problem. Perhaps correctly,

researchers to date have concentrated on one or the other

aspect, in order to simplify the problems confronted and

gain new knowlege.
a
^,,,> 

1	 The work done in automated interpretation has largely ignored the

geometric aspects of the data vectors. As more sophisticated classi-

fication algorithms became available, however, and as progress

was made in automated interpretation, it has become apparent that

the geometric aspects are gaining in importance. It is now becoming

the task of the data analyst to raise not only the question of
I

"what" ( interpretation) but also of "where" and "how much" (geometry).

This problem is well illustrated by the operational ERTS system,

in which it was felt that, even for bulk (system corrected) images,

some geometric analysis and preprocessing was necessary to efficiently
}F

t^

4	 utilize the data. It is therefore the objective of the work reported

k	 on herein to analyze in detail the geometric aspects of MSS digital
l^
j{	 data arrays in an attempt to provide answers to these queries.
h

4 '	 The subsequent section will introduce the basic transformation

i
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2.2 The MSS Geometric Transformation

Figure 2.1 represents the recording of one channel of data

during the scanning process of the MSS, in which the data array

is considered as an image. Each array position would then have an

associated "picture element" or "pixel". The two dimensional matrix

of numbers would then be equivalent to the size of the imagery record.

i

	

	 The line number i would represent a single scan, and within each

scan the value j would represent the element position. With these

comments in mind, Figure 1.17 may be thought of as the recording

of the J-th element along the i-th scan line. Each picture element

is recorded at a particular instant of time, thus making time an

important variable. Following are the basic variables for subsequent

analysis. Many of these variables have been previously introduced,

but are included here for ease of reference.

To

	

	the epoch, or time instant, of beginning of

recording (at zero x*-coordinate)

t 	 time period for one revolution of the scanner

Tij	 time instant of recording point j on scan

line i

ej	 instantaneous scan angle with respect to

a scanning axis passing through the effective

perspective center and the scan line center

2 a	 Total scan angle (a on either side of scanning

axis)

ic
	 constant representing a "principal distance"

or the equivalent of the radius of a cylindrical

recording drum

I
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v speed representing "film" advance in case

of pictorial recording, or its equivalent when

recording in other modes (magnetic tape,

etc.) , taken as a constant

(x*, y*) iJ cartesian coordinates of point Pij (either

image or its equivalent in digital recording)

as shown in Figure 2.1

yJ distance along scan line i from scan line

center to Pij

j (t) instantaneous orientation matrix at Ti j

(taking object system to sensor system)

Xi distance along the image center line from the

beginning of the recording, represented in

digital recording by the scan line number

k I	, ki scale factors between object and sensor spaces

for point, j on scan line i, (k^ = k' i /cos bj).

k' i is the actual scale factor of panoramic

recording.	 Referring to Figure 1.17b, this

t	 ;.

f:

scale factor would be represented by the
I

ratio of lengths Ca and CA. k i is the scale

factor for the equivalent frame photograph.

(Xc, Yc, Zc)	 instantaneous position of exposure station

at Tip

(X, Y, Z)^	 object coordinates of any point j on scan

line i

e a/.---
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Using the above variables, several useful relationships may be derived.

If, as is usually the case, the period of revolution of the scanner

(tr) is a well defined quantity, then the time of imaging each element

within the array may be determined from its array position by the

relationship

T,O = To + (i--1)tr + (a_	 g )	 tr 	(2.1)
2n

in which the substitution e^ = yi /c has been made.
l
i

The x* cartesian coordinate of the point may then be determined

by introducing v defined above:

x*ij = v(Tij - To )	 (2.2)

If the relationship of Equation (2.1) is introduced into this ex-

pression, the result becomes

x*i^ = v	 (i-i)t r + a + e) t r 	(2.3)
2n 	 ]

The y* cartesian coordinate may be determined using the Pythagorean

Theorem from Figure 2.1.

"	 Y*2i^ = Y2 j -- C_ve t^^ 2	 (2.4)

L
It may be seen from Figure 1.l'Th that in the y direction,

imaging tapes place from about a perspective center having object

space coordinates (Xc , Yc , Zc ) at the instant of imaging point Pj.

i,

k

a

1
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The vector between the perspective center and a point in the object

space coordinate system may then be written

3

X {	

x 

j A	 = Y^ - Yc (2,5)

ti
I	 ,

z3 - 
zc

1

w]

9

An image space coordinate system may be defined by a right hand'

system in which the xy plane is tangent to the effective panoramic ?

cylinder at the scan line center with the y axis in the direction

of a scan line.	 The z image axis would be perpendicular to the xy

plane and complete the right hand system.	 The vector above mtW.	 then

be written in this coordinate system as

X^ - Xc^

A - Nli^(t) Y^ - Yc (2.6)

I
z^ - zc

f In the image system, the vector from the perspective center to

F	 i

the image position may be written

G

a	 = c sin 9
J (2.7)

—C COs 8^L
The vector A would be represented in Figure 1.17b as the l,ne segment

CA, and vector a would be represented by line segment Fa-.
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Assuming no systematic effects, these vectors must be collinear.

}
If vector a of (2.7) is multiplied by the proper scale factor, the

resulting vector will be equal to that from Equation (2.6), leading

to:

0	 X^ - Xc

1	 c,sin e^	 Mi^(t)	 Y	 Yc	 (2.9)
k'

	

-c cos e^	 Z^ - Z 

Combination of the expressions of (2.2) &ad (2.8) with k' ij = kij cos e 

results in the following four dimensional metric MSS transformation

for rectilinear scanning:

x*ij
	 Tij - To

0	 v	
X	

Xj
	

c (2.9)
^.	

c/ki tan e^	 0	 Mi (t)	 Y^ - Yc

-c/k^	 Z^ - Zc

This general transformation may then be used in subsequent analyses

to investigate the geometric characteristics of digital MSS data

arrays.

When digital arrays are displayed, all elements in a single

'	 scan line i are displayed with a constant strip coordinate xi.
a

The data may then be analyzed as if all points in a single scan

line were imaged instantaneously with some residual yaw, as explained

in Section 1.4.2.4. The instant of recording would be assumed equal

for all points j in a scan line i, i.e. x*ii
	i	 a
= x and T.j	 i= T in
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the first equation of (2.9). 	 The image coordinates which would be

° measured from a digital array display would be the i, j array element 1

positions, or xi , yj if the array is considered as an image.

:t It may be shown that the projection equations presented in V

Section 1.4.1, which were generated from the basic geometry of scan-

=j ning under ideal conditions, may also be derived from this general
c

transformation if appropriate assumptions are made. 	 For example,

l the first equation of (2.9) yields directly the transformation from

time to image x coordinate as given previously in Equation (1.20)

i;i4e; the assumption of ideal orientation, the matrix M. (t)

becomes identity.	 If this substitution is made, the second equation

of (2.9) yields directly the relationship of Equation (l.11).
t

II
Also under this assumption, if the last equation is solved for

i

-c/kij , and the result is substituted into the third equation, the

resulting expression will be identical to Equation (1.12).

r The general transformation of Equation (2.9) may also be used

I{4 to investigate the effect of small perturbations in orientation

i

.elements from the idealized case. 	 Considering a single scan line,

using 83 = yj /c and introducing

h^ = c/k^	 (2.10)
r,

the three dimensional geometric MSS transformation, after inversion,
ij

1 x^ may be written as

k,

.Al

1t
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Xj - Xc 	0

y  - Yc	 =	 M	 hi tan 6^	 (2.11)

Z^ - Z c	 -hi

and rearranging,

X^	
X 
	 0

Y^	 Yc	 +	 Mt,	 hi tan e^	 (2.12)

Z
j
	 Z	 _ -hj

In order to investigate the effects of small changes in the

orientation parameters Xc , Yc , Zc , w, ^, K, on the coordinates of

an object point the total differential of (2.12) must be evaluated.

In order to evaluate the total differential, the partial derivatives

of the equation set must be evaluated for each of the six orientation

elements. Considering the sequential set of angles (w, ^, K),

according to Lucas (91]

Ar

fi

0	 0

am

1w

'1
0	 -1 0

0 sin w -cos w

8M^ =	 m -sin w 0 0

ao 0Cos w 0
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-0	 1	 0,
am	 -1	 0	 0 Mj

	

,t	
aK 0	 0	 0	 (2.13)

	r	
j l	

It is also necessary to evaluate the differential of the equations

	

R	 with respect to the parameter h , as it contains the scale factor
3

k^ which is a variable for each point.
j

Proceeding with the evaluation

of this total differential: s

r
di	 di 0

C dY	 =	 dY +	 Mti tan 0 1 	
dh

dzdz L -1.
i

0	 0 0 0

+	 0	 0 -1	 Mtn hi tan 9 3 	dw

0	 1 0 -hi

(2.14)
F

E,
0	 -sin w	 cos w	 0

+	 sin w 0	 0 Mt^	 h^ tan 6^	 #

-cos w 0	 0 -hj

0 -1	 0 0

+	 Mt j	 1 0	 0 1.,	 tan 9^	 dK

w, 0 0	 0 -h^

^
2

It is now assumed that the changes in angular orientation elements	 z

;I.

C

take place from a perfect orientation position of w =	 = K = 0.
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Then M^ = I, for which h^ _ Z c - Z^ as may be seen from the last

equation of (2.11) under this ideal orientation assumption, and the

resulting equations become

dX	 dX	 0	 0

dY	 =	 dY	 +	 tan 6^ dh^ +	 h^	 dw

dZ	 dZ c	 -1	 h3 tan 6j

(2.15)
-hi 	-hi tan 61

+	 0 d^	 +	 0	 dK

0	 0

It should be noted here that Equation (2.15) represents a projection

from two-dimensional space in the sensor to three dimensional object

space. It is not possible from single imagery to determine all three

coordinates (X, Y, Z) i , because the unknown scale factor k i is

implicit in h J . Therefore, in order to derive the two possible

coordinates it will be assumed that Z is constant, for all J. Since

Z is assumed constant, dZ 3 = 0, and the last of the equations in

(2.15) may be written explicitly as

0 dZO - dh3 + h^ tan 6^ dw

Then

dh^ = dZc + hJ tan 8^ dw

3
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Substituting this expression into the first and second equations

of (2.15) results in

ax	 = dXc - h	 d^ - h^ tan a	 dK

(2.16)

dY^ = dY c + tan e 3 dZC + hj(1 + tan2 e^) dw

Equations (2.16) may be seen to be termwise identical to those

of Equations (1„25) in which h 	 = Zc - Z.	 The contradiction in
i

signs for the dw, #, and dK terms is due to the fact that Equations I
4

(1.25) were written as a special case of Hallert's original projection
a

equations.	 Hallert, in his derivation [261, defiY;nd the positive

sense of rotation for the angular elements in the opposite sense

from that customarily used in the United States, and applied here. Al

2.3 collinearity Equations for MSS

The collinearity condition introduced in Section 2.2 serves
s

as the basis for collinearity equations. 	 The collinearity equations

for frame photography have been used extensively in the past as the

basis of analytical photogrammetry [93, 941•	 Similar equations

for scanned imagery may be derived using Equations (2.9). 	 Considering

a single picture element the i, j subscripts may be dropped and the

geometric portion of Equations (2.9) may be written as

mll	 m12	 m13	 X - Xc

c/k tan = m21	 m22	 m23 Y - Y^ (2.17)

-c/kJ
	 LP31	 m32	

m3	 Z - Zc
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Performing the matrix multiplication, dividing the first two

equations by the third, and rearranging yields

't Ay,.

b

w:

a
y.

mll(X - Xc ) + m12 (Y - Yd+ m13(Z - Zc)
0 =

m31 X- Xc ) + m32(y Yd + m33(Z - Zc
(2.18)

m21(X Xc ) + m22 (Y +- Yd
+ m23(Z - Zc)

0=tan8+
m31 X-Xc +m32Y•-Yc. +m33Z-Zc

An alternate form may be derived using the transpose of (2.17),

0= (Xc - X) + ( z - Zc) m21 tan 6 -m31

m23 tan 6 - m33
(2.19)

0= (Yc-Y)+(z-zc) M22 tan 6-m32

m23 tan e - m33

If, in these equations, an ideal orientation assumption is made

in which M is taken equal to I then Equations (2.19) reduce to the

same results given in Equations (1.11) and (1.12) in Section 1.4.1.

If six orientation elements were assumed unknown for each

scan, it would be impossible to have a solution and derive metric

information from MSS data arrays. Therefore., some type of functional

behavior (polynomials, harmonics, etc.) must be _assumed for those

orientation elements. Once decided upon, object space control may

be used to determine the coefficients of these functions (resection),

then Equations (2.19) may be used to determine other object points

(intersection). In practice, both operations are performed simul-

taneously.
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2.4 Linearization of MSS Collinearity Equations

The equations represented by (2.18) and (2.19) are nonlinear

in nature. In order to investigate image and object point coordinate

deformations, and to perform space resection utilizing the method

a !:	 of least squares, it is desirable to generate linear approximations

for them. The usual technique applied in photogrammetry utilizes

a Taylor's series expansion about some approximations for the variables

}s
	 involved. The resulting linearized equations, as customarily written

in adjustments, will be of the form

.4

'i,f

	F 	 =	 A	 V	 +	 B	 A	 +	 F°	 0 (2.20)

	

2,1	 2,2	 2,1	 2,q	 q,l	 2,1	 2,1

in which A represents the Jacobian matrix of the functions with respect

to observed quantities, and V the vector of observational residuals.

The B matrix in Equation (2.20) is the Jacobian of the functions

with respect to the parameters of the transformation, and A! represents

corrections to approximations for thipse parameters. The F c' vector

in Equation (2.20) represents the numerical values of the functions

evaluated at initial observation values and parameter approximations.

The final estimates of the observations are gii-^:n by

L	 =	 L° +	 V	 (2.21)
2,1	 2,1	 2,1

ly



107

in which L° is a vector of a priori values of the observations.

For the problem under consideration,

x
L	 =

2,1
(2.22)

in which the image space coordinates for each point will be considered

as observations. The final parameter estimates are

X	 =	 X°	 +	 A	 (2.23)
q,l	 q,l	 q,l

in which X° is a vector of approximations and q is the total

number of parameters. Of these q total parameters, 3 will represent

the object space coordinates (X, Y, Z), and the remaining p = q - 3

parameters will represent those parameters necessary to the functions

used to model the six exterior orientation elements.

Concider, first the linearization of the collinearity equations

as given in Equations (2.18). The functions may be written in the

short form
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where

UX	 -	 hc

_	 _V^	 M	 Y	 Y	 (2.25)
c3,3LWJ Z_Z

The elements of exterior orientation are functions of time (and

r hence x) , and may be written in functional form as 	 t

w; Y 	 Yc (PY' x)

Zc	
-	

Z c
 (Pz' x)

( 2.26)
W	 =	 w (PW , x)

_	 (	 x)

K	 c	 K (P	
x)

r where PX , PY , PZ , ^, P , P* are vectors of the specific parameters

in each of the given functions.	 If polynomial forms are assumed

i
for these functions, these vectors, will contain the polynomial

coefficients of the functions. 	 For example, if it is assumed that

} the aircraft altitude Zc is represented by the second order polynomial

3 ,. 2Zc	 =	 POZ	 +	 p1Z x	 +	 P2Z xr

then the
EZ
	vector would be of order three and of the form

r Pis POLJ
..i

PZ	 -	 p1Z

3,1	 2

E-
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The linearized form of equations ( 2.24) may be written in matrix

notation as

F	 = FO	 +	 Al Sy	 +	 B	 +	 Bo^^Q^	 =	 0 (2.27)
2,1 2,1	 2,1	 2,3 3,1	 27,	 6,1	 2,1

11 ^

in which
r

a
Xt	 - (dX $Y SZ] (2.28)
3,1

At =	 WC SYc 6ZC 6W S^ 6K] (2.29)

and Al , B and Bo are Jacobian matrices of the collinearity equations

w	 .; with respect to y, the (X, Y, Z) coordinates, and the exterior

orient, 'Ltion elements respectively. 	 The functional dependency of

the Do vector is now introduced, in linearized form;

axc	 =	 CX	
AX	 +	 dX dxl,r	 r,l

AY c	 =	 Cy	 AY	 +	 dy 6x
l,s	 s,l!

aZc	 =	 CZ	 °Z	 +	 dL 8x
l,t	 t,l

(2.30)
aW	 =	 CW	 p W 	+	 dW ax

1,f	 f',1

b	 _	 +	 do dx
l,g	 g,l

dK	 _	 CK	
AK	 dK 8X

l,h	 h,l s

^i



in which the C terms are Jacobian matrices of the functions assumed

with respect to the parameters, the ^ vectors are corrections to

the functional parameters, and the d terms are derivatives with

respect to the observed quantity x. Using (2.30), equation (2.27)

becomes

rX	 1 fnX
	

f

CY 	DY

F = F° + Al d.y + B A + B

A

(2.31)

dX

dy

110

+ BO ax	 = 0

dK

or
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R To get (2.32) in the conventional form of (2.20) then

.k

` A t D)	
Al[2 6,1	 2,1]1 2,2

B= (B	 C)	 B  B
2,p+3 [2	 Zp	 2,31 [?,P 21131

- yt	 - (6x 6V)
1,2

:^- et	 = °tx °--Y
	 *t

—°—, 
—°-^ —° -K ax ax	 sz

Cl,rl,q zl,s	 l,t	 l,f ^,, l,g	 l,h
°t 	 Ot

where p = r + s + t + f + g + h = the total number of parameters

in functions of the exterior orientation elements.

In order to evaluate the matrices in Equation ( 2 .32), the

following relationship for a quotient of two functions, may be utilized

r _ HaG-G2H
j

-
-	 3	 8

[ap - H ap^
(2.33)

8p
H^ H	

H

Where p is any independent parameter.

I
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Utilizing this relationship the Jacobian matrices may be evaluated:

aF	 aF	 aF	 aF	 aF	 aF
awl 	ail 	 aKlaxe	 ayl	 azl

B
o =

276
aF	 aF	 aF	 aF	 aF	 aF—^ —^ —2	 —2	 2 =^3
aXC 	aYC 	aZC 	 aw	 a^	 aK

U	
U	 U	 I	 :^

[-m11 + W m31 ]	 [-ml2 + W m32 ]	 [ ml3 + W m33]	 I

= W i	 (2.31)
t

[-m	 + v m	 ]	 [-m	 + v m	 ]	 [-m	 + V m	 ]21	 W	 31	 22	 W	 32	 23	 W	 33
I

i

{

I	 ) 

—m 	
(Y

—Y M
—Zd) m13(Y—Yc)—U/W{m32(Z—Zc
	 33	 cI[m12(Z

" (Z-Z ) -m	 (Y-Y )-V/W{m	 (Z-Z ) ?n	 (Y-Y ([m
22	 23	 32	 33c	 c	 c	 C

)}3

i

s.
I j W cos K —U/W (U cos K —V sin K)]	 [V]

Ij W sin K —V/W (U cos K —V sin K)]	 [—U]

3F
ay 1

0

2,1 =
_
— 2 (2.35)

DF,2

L aY J
1 sec (Y/c)
c

r

}
t

r
a

.3S	 v^'iT^%	 -	 -.em.:Mtkr.;fil iaf^s:,•",cam=^ 	 +aYa,1^	 .,.'l.. ea^.ii.	 -	 ti^..:.L:".,:.t:=..>^	 _	 _ru.	 rk.r wa..-.. ..	 .......	 ._.. .,
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aF1
	 aFl	 DF1

aX 	 BY	 aZ

F .^

..	 _
B

2,3

8F2
x Lax	 a zvY

(2.36) 

( mil	 Um	 ) ( M12	 Um	 )-W 31	
_W	

32 ( m13	 Um	 )W 331
+ W

(m21 ' V m31) (M22 - V m32) (M23 - W m33)

W	 W

The C, D matrices will depend upon the functional forms assumed,

to model the elements of exterior orientation. 	 As an example, if a

second order polynomials are assumed for these functions, then

1	 x	 x2 0	 0	 0 0

0	 0	 0	 1	 x	 x2 0

(2.37)
C	

_

t 6,18

0	 0	 0	 1 x	 x2

P1X + 2P2X x

p1Y + 2p2Yc

' (2. 38)
D

lK + 2P2K x

:

y
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-"4! Finally, the F° matrix may be written as

U°

W°
F°	 _ (2-39) 

2,1

tan (y°/c) + V°
4

Wc
t

..-p=	 ,
in  which the 101 indicates the evaluation at the original observa-

tions and parameter approximations.

h
An alternate linearized form may be obtained from Equation (2.19):

W t (2.4o)

WT

i

j' in which the auxiliaries U', V', W' are defined as

t	 ,^
E U, 0

V' =	 Mt tan (y/c)
3,3

For this case, the linearized equations may be written in the same
^i

form as Equation (2.32), and the Jacobian matrices may be evaluated

as

t:	 ,I
i

1

Al

7N

A



P

F1	aF1 aF1	aF1 3F1 aF1
Xc	aYc azc	aw a¢ 8K

E
o
6

aF2axc BY azc	 aw a^ aK

1	 0 -ul - U'V'(Z - Z )cW t wiz
0	 1 —v_'	 — ri + V 21 (z — Z^)

W ► L	 Wi 2 f

(2.41)

I Z	 Z_c (- V' sinw + W' cosw + U 12 cosw)
f	 Wr W1

f

; Z - Z„(U' sinw + V'U' cosw)
i	 W' W

tan + U' ml ) z - Z„3	 ^.f Tj1 W,

f	
tan(Y/c)(- +

W^ m
13 ) Z_= ^c

8y1 M21 - W' m23

(Z - Z.) sec2 (Y/c) (2.42)
2 ,1 cW'

m22 - W^ m23
y



And the C, D matrices would be as previou,

vector is

(Xco - Xo) + (Zo - Zoc
Fl o

aly defined. The Flo

U^o

W 10	 (2.44)
V10
Wlo

These linearized collinearity equations may also be used to derive

the differential displacement equations (2.16). 	 (see Appendix A).

It has been the purpose of this chapter to provide the deriva-

C tion of the most general forms of analytic expressions which may

be used to analyze the geometric aspects of MSS data recording.

In the following chapter these general expressions will be used to gen-

erate algorithms for the purpose of restituting MSS data arrays.
sF

In addition, alternate restitution methods based upon stochastic

y concepts rather than the known geometric relationships will be
^! 1

` introduced.

i

j'
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3. RESTITUTION OF MSS DATA ARRAYS FROM SINGLY SCANNED AREAS

The term "restitution", as used in this investigation, indicates

^i
	 the processing of MSS data arrays in an attempt to generate within

a	

the spectral arrays, element positions which will represent a plan-

imetric orthographic projection. If a display of the arrays is

done after such processing, the resulting image would appear as

a map substitute, much like the more conventional orthophoto.

The term "rectification" has also been used by other investigators

to denote this process..

In this chapter, methods of restitution for MSS digital data

arrays are presented, and the advantages and disadvantages of each

method enumerated. In all of the discussion presented, it is assumed

that only data from singly scanned areas are available. In the first

section, procedures utilizing resampling algorithms are presented.

These algorithms are useful as an initial step in order to simplify

subsequent, more refined procedures. The second section deals

with parametric methods using collinearity equations and polynomials

which are derived from the linearized form of collinearity equations.

Alternative methods based upon stochastic rather than deterministic

concepts are presented insection three. These methods are denoted

as nonparametric methods. Section four contains a discussion of

the problem of assigning element elevations. These elevations may
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be utilized in the parametric methods of restitution. Finally,

special techniques useful for restitution of NFS digital data, as

opposed to continuously recorded data, are presented in section

five.

3.1 Resampling Algori chin

Under the assumption of ideal orientation of the sensor, the

data generated by the MS in the direction of flight, or X direction,

represents an orthographic projection with no further processing.

Further processing would be required, however, in the direction

perpendicular to flight, along each scan line, to remove the scan

angle effects and topographic relief displacement. This may be ac-

complished using resampling algorithms which operate on a single

scan line at a title. The purpose of such algorithms are to digitally

resample each data array line such that each element in the resampled

line contains spectral values representing ground elements having

equal dimensions in the Y direction on a datum. After applying

such algorithms, the resulting arrays may still be in error due

to the following:

1.) The use of such processing is based upon the assumption

of perfect orientation, and the effects of changes with

respect to time in the orientation elements Xc , Yc' 7c'

W, ^, K are neglected, which may result in appreciable

image position errors.

2..) A lack of perfect synchronization between the aircraft

velocity and angular scanning velocity, as well as the

_-



r

w

1.1.9
	 r

^	 n

j
a

i

i

i	 f

9

difference between the angular resolution size in the

x and y directions (S and *y, see Figure 1.16), results

in a differential scale in the x and y directions after

processing.

Nevertheless, these resampling algorithms have several advantages:

1.) They are computationally efficient. The processing of one

scan line at a time requires only a small image point

buffer within the computer, and the computing time for

such algorithms is relatively small.,

2.) The algorithms result in the correction of image displacements

due to panoramic recording. The arrays resulting after

processing "look better" upon display, and may thus be

useful for interpretation and identification of control

points.

3.) These algorithms may be useful as an initial step in process-

ing. Subsequent more refined algorithms for further geo-

metric processing may therefore be simplified. For example,

the piecewise polynomial to be discussed in Section 3.2.2

will contain fewer terms if the arrays are first processed

in this manner. Some of the nonparametric techniques to

be discussed in Section 3.3 require that the arrays be

first transformed to a trend surface, and the resampling

algorithms accomplish this.

This section is devoted to the derivation of resampling algorithms.

The derivations consider two cases, the first of which deals with
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the correction of scan angle effects only, under the assumption

that the object space: points have a constant elevation, and the

second deals with a generalization to include topographic relief

displacements.

3.1.1 Resampling to Correct Seen Angle Effects [951

The purpose of this algorithm is to resample the data so that,

after resampling, every sample element in the data array represents

an element with equal dimension in the Y, or along scan, direction.

That is, every scan line after resampling contains the same number

of elements as before resampling, but object space elements are

equally spaced along the datum. The algorithm developed by Phillips

[951 at LARS is presented here.

Figures 3.1a and 3.1b represent the geometry of this resampling

procedure, with 3.1b being an enlarged view in the vicinity of the

sensor. Referring to these figures, the following parameters may

be defined:

h - flying height above datum defined as before by h = (Z` - Z),

where Z is the elevation (assumed constant) of the datum

surface

W - length of the scar, line in object space

N - total number of samples per scan, constrained to remain

the same before and after resampling

n - number of samples to right of nadir (if symmetric scanning

is employed, as is usual, then n N/2 and nY = a)

j	 sample number after resampling

I

f

r
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i	 Figure 3.1. Resampling to Correct Scan Angle Effects
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S t - spectral value to be placed in the J-th position by

resampling

U^ - sample number in the same line in the array before resampling

corresponding to the J-th resampled position, to be

solved for by the resampling algorithm

L^ - integer portion of U 

C^ - fractional portion of U^

SLj - spectral value stored in position L i in the array before

resampling

di - distance along datum from beginning point of sampling

to position ,j in the resampled array

The variables @, y, a, and sensor constant c are as described

in Section 1.4.

With the above variables, several relationships may be written.

The scan line length is given by

W = h tan(ny ) + h tan(NY - ny )
	

(3.1)

After resampling, every sample along the datum has the same dimension
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This distance may also be written in terms of sample angle (y) as

d  = h tan(ny) + h tan(Ujy - ny)	 (3,4)

Equating the right hand sides of (3.3) and (3.4), and solving for

U  yields

rW .^.,	 1
IUj = ny + tan' 1 hN 2	 tan ny J	 (3.5)

i Y

If Equation (3.1) is substituted into (3.5), the final expression is

1	 ( 2^-1)
Ui = n + Y tan-1 [(tan ny + tan(Ny - ny)) 2N - tan nY1	 (3.6)

fi

Figures 3.2 and 3.3 depict this relationship in graphical form.

r	 Figure 3.2 shows a plot of U  versus j for a real data case, with

y a 6 mrad, and N = 222. Figure 3.3 represents the image displacement

U^ - j versus J. The slight lack of symmetry in this example is

due to the fact that, for this particular flight, n ^ N/2.

If the quantities S' 1 , S 1 2 ,	 . S'j, .	 S111 (see Figure 3.1a)

represent the spectral values to be stored after resampling, a

linear interpolation scheme may be used to assign the S' i values.

I£ the quantity U^ computed above is considered to be composed of

an integer part L^ and a fractional part C^ such that

Ui	 Li + Ci	 (3-7)

_,
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then the S' i values may be interpolated from the spectral values

originally stored in the array before resampling. The spectral

value assigned to the J-th position would then be

S t 	= SL + C
i (SL +l - SLR )	 (3.8)

Alternatively, if a nearest neighbor approximation is to be

used, as advocated by Markarian, et. al. [65], the resulting function

would be

SL	 Cj -` 0. 5
S' J 	(3.9)

SL3+1	
C^ > 0.5

Resampling in this manner results in the removal of the pan-

oramic distortion within the data arrays. This processing differs

from the usual reduction of panoramic image coordinates to a plane

t'equivalent frame photograph" position as presented by Case [hil.

The effective plane photograph position by Case would by y' j = c tan 6j,

in which the panoramic image position is projected to a plane tangent

s

s	 _

to the cylindrical recording surface. The result of resampling

#.
is to project the panoramic image onto a plane at some effective

principal distance c'. The case under consideration is illustrated

in Figure 3•1b, for the symmetric case (n = N/2). Since the total

number of samples is constrained to remain the same, and each sample

will be displayed with the same dimension before and after resampling,

the distance Ob before resampling and 0'b' after resampling must

be the same. This is equivalent to imaging on a plane, indicated

-s

1 "	 _. _.	 .
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'by the dashed line in Figure 3.1b, lying at some equivalent principal

distance from the perspective center and given by

C
c' = ka	 ( 3.10)

where k a is a function of the number of samples alon g the line

and the angular resolution (Y).

From Figure 3.1b

0'b° = Ob

hence

(c /k a) t ana = ca	 ( 3.11)

for symmetric scanning of a on either side of the scanning axis.

The above equation may be solved for ka

tana
ka =	 a	 (3.12)

and subsequent image positions on the resampling plane are given by

Y' = c' tan(UiY - a) = c' tan6 1	(3.13)

A simplified example may be illustrative.- Consider the case

of symmetric scanning, in which n = N/2 and nY = a. For this case,

the resampling algorithm may be written

1
	
P_1

Ui= n + Y tan_1 	 N	 tan nY - tan ny
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or

2	 1-1 [NU	 =	 n+Y tantan 	 -tan 
j

5 f!r 3

If it is assumed for this simplified example that the total number `r

of samples per line is eight (N = 8), and that the angular sampling,'

x; interval (Y) is 0.1 radian, then the total scanning angle on either:,

k, side of the scanning axis (a) will be 0.4 radian.	 Referring to
t,,

Figure 3.1b, to determine the spectral values to be placed in the

third sample position in the resampled line Q = 3),

x^ U3	 =	 4 + 0.1 tan 1 C	 8	 tan 0. 4 	tan 0.4]

i

or

U3	 _	 2.26

This represents the sample position along the line in the uncorrected

array which would be used to assign spectral values to the j = 3

sample position in the resampled array. 	 If the linear interpolation

method is used, then

L3 	 =	 2

` C3 	 0.26

and the spectral value assigned would be given by

S' 3	=	 S2 + 0.260 3 - S2)

r

3

3i

I

uc. :_	 _ _	 ._ _.. _-: 	 _.^v..u...^_a.tv.ar.v •.r•,^.•,...a:,:^r_:._. ^..:r„ :..	 ,r.2a,w,.	 -....,_
y

._^
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If, on the other hand, the nearest neighbor method is applied,

then the spectral value assigned to this resampled position for

each channel would be given by

S' 3 = S2

3.1.2 Resampling to Include Topographic Displacement [96]

The algorithm given by Equation (3.6) is valid only for the

case in which element elevations are assumed constant, i.e. Z  = `L

for all J. A generalization of this algorithm was developed by

Trinder [96] and corrects simultaneously for scan angle effects

and image displacement due to terrain relief. The result to follow

is a slight modification to that algorithm.

Figure 3.4 shows the geometry of this resampling. The illustra-

tion is similar to that of Figure 3.1a except that the actual topo-

graphic surface has replaced the assumed flat plane representing

the terrain. It is assumed that an elevation value, Zh, is

available for each element in the uncorrected array. With this

assumption, the variables given in the preceding derivation are

used except that a flying height above terrain may now be defined

for each element as

hLj = Zc - ZI j

s=



i
1

w
0

L.

hN



The derivation proceeds in a manner similar to that given for

'	 the preceding case, and the resulting algorithm may be given by

(See Appendix B)
x

^, t	 11 ^2,1 - 1
Ui = n + Y tan

_
 1

	

	 2N	 hN t an(Ny - ny)hLj 
(3.14)

ff

	 r'

A

+ 2N tan(ny) - hl tan(ny)]

The spectral values may be assigned after resampling using

either of the two methods cited in the preceding section, i.e.,

by linear interpolation of spectral values from the uncorrected

arrays, or by a nearest neighbor approximation.

a

3.2 Parametric Methods of Restitution

In this section, methods of restitution based upon the MSS

collinearity equations and piecewise polynomials are discussed.

These methods are called "parametric methods", since an attempt 	 a

is made in them to estimate scanning parameters. In both of these

methods, an attempt is made to estimate the parameters of functions

assumed to represent the behaviour of the scanner orientation elements.	 1

3.x.1 Restitution by MSS Collinearity Equations

Probably the most logical mathematical technique to generate

l	 restituted arrays of singly scanned data is the direct use of the

MSS collinearity equations as given in Equations (2.19)• These

equations represent most closely the actual physical situation as

it occurs during recording. After the assumption of appropriate

functions to represent the behavior of the exterior orientation

x__
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elements, a solution may be obtained using sufficient object space

-' control points to apply least squares. 	 For this purpose, the ex•-
`l j	 ! 5

' f panded linearized form of the collinearity equations, as presented j

in Equation (2.32), may be utilized. 	 An iterative technique employing
ti

successive relinearizations about updated estimates from each

preceding iteration is utilized. 	 The final result is the determination

of other points at any desired scale, as a restituted array for
^. s

e
_7

each channel representing a single wavelength band.	 The method
r

is subject to several limiting factors.

f 1.) Functional forms, such as polynomials or harmonics, repre-

senting exterior orientation variations must be assumed.

If the actual stochastic variation of these elements is

not reasonably approximated by these functional forms,

9
i

serious errors may result.	 To partially overcome this t

F
"x

difficulty the flight line may be divided into sections,

each having a separate set of coefficients.

2.) If the flight line is treated in sections, it is necessary

to introduce constraining conditions at the section inter-

faces.	 This insures obtaining the same results for each

- element along an interface from either side of the inter-
p

face.	 kThus the least squares solution must consider

tnc problem of parameter constraints.) 	 Tnis problem isti

k addressed in more detail in Section 3.2.3.i

"	 3.) Some exteidor orientation elements are highly correlated,{

and therefore recovery of all such elements may not be 	 ^ u1	
4

tit	 ^.

^._



133

possible using singly scanned data arrays. A previous

example demonstrated this correlation for the ^ and X
c

terms. Under the conditions of flat terrain it is not

possible, using singly scanned arrays, to differentiate

between the effect of a S^ change and a SX c change. This

result was verified in real data tests using arrays obtaiiied

over terrain having relief differences of up to 300 feet (90 m).

Referring to Figure 1.21a as a first approximation, the

change in X object space coordinate may be given as

SX = ( Zc - Z)^

But the effect of this change may not be distinguished

from the effect of a 6X  change. Thus, if functional forms

are assumed for the Xc , Zc terms, the ^ term may not be

recovered. Konecny [7] and Derenyi [22] note this problem

and suggest that recording of selected exterior orientation

parameters to sufficient accuracy represents a possible,

although expensive, solution. Kratky [21] notes the problem

as well, but suggests that acceptable restitution of the

image may be accomplished even though absolute values of

the elements will be in doubt

i
	

4.) If topographic relief displacement is to be compensated

for during_ restitution, some method of assigning an elevation

to each delta array element must be devised. Since only

singly scanned data arrays are being considered, the source

_	
J
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of such elevation information must be external to the data

arrays themselves, such as existing topographic maps.

The problem is further complicated in that these element

elevations must be assigned prior to processing for resti-

t, tution, i.e., they must be assigned to the uncorrected

arrays with acceptable accuracy. This problem is dealt

with in Section 3.4.

	

In summary, although the direct use of the PISS collinearity	 s

equations is accompanied by some problems which must be considered,

x
	 these equations represent the best obtainable mathematical model

for scanned imagery, and must be considered as the basic restitution

method on which other approximations are based. In the next section,

the use of polynomials derived from the linearized collinearity

equations is investigated as a restitution method.

3.2.2 Use of Piecewise Polynomials

Since the recovery of absolute orientation parameters, based

upon the MSS collinearity equations and availability of control,

is not possible for each individual scan line, the use of such

collinearity equations requires an approximation. It may be reason-

ably argued therefore that a restitution based upon another math-

ematical model could result in final element positions having posi-

tional accuracies approaching those obtainable using collinearity.

One such possibility is the use of piecewise polynomials. Using

appropriate simplifying assumptions, these polynomials may be derived
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directly from the more rigorous collinearity equations and thus

represent a logical step in a search for an alternative mathematical

model.

Two cases may be derived. In the first case, it is assumed

that the data are panoramically recorded. In the second case, the

data are assumed to be resampled such that they are effectively

recorded upon a planar surface (i.e. an attempt has been made at

,^:liminating the panoramic effect).

3.2.2.1 Polynomials for Panoramic Recording. For this case,

Equations (2.16) may be utilized directly. The object space coor-

dinates are given by combining the ideal positions from Equations

(1.11) and (1.12), and the differential changes from Equations (2.16).

If h = Zc Z, and both Zc and Z are assumed constant, then h is

a constant, and the transformation from the two dimensional image

space into an object space which has been approximated as two di-

mensional may be written

t

^	
1

a

S

X _ Xc + 6Xc -h6¢-htan a 6K	
(3.15)

Y	 Yc + 6Yc + h tan e + tan a 6Zc + h(1 + tan 2 06w

_	 Any number-of polynomial forms may be defined, depending upon

the functions selected to represent the variation of exterior

'	 orientation elements within a section. As a first example the

assumption is made that the change in each orientation element

(i.e., 6Xc , 6Yc , etc.) varies as a linear function of x within

each section, or

y
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6xc = AX + BX x

SYC = Ay + B
Y 

x

SZC = AZ + B 
z 
x	

A

(3.16)
6w = Aw + B w x

Sc¢	 A 0 + B x

6K	 AK + B 
K 

x

These relationships may be substituted directly into Equations

(3.15) with the results, after regrouping, of

X = (XC + AX - hA^) + (BX - hB )x - hAK tang hBKX tane

Y = (YC + Ay + hAu) ) + ( By + hB, ) x + (h + AZ)tanO

+ B 
z x tan@ + hA. tan2e + hB x tan2e	

A

If the first two terms of the series expansion are taken for

tanO ( tanO = 8 + 1 e3), and using 0 = y/c (c is the effective
3

panoramic recording radius), the resulting polynomials are

X = Al + Ax + A3Y + (A 3 /3c2)y3 + A4.V + (A4/3c 2 
)XY3

(3-17)
Y = B, + B 2x + B3y + (B 

3 
/ 3c 2)y3 + B Oy + ( B 4 

/3c2).xy3 

• B 
5 
y2 + ( 2B 5 

/3c2)y4 + (B 5 /9c 4 
)y 6 + B 6.Xy2

• (2B6/3c2 ) Xy4 + (B 
6 /9C 4 

)XY 
6
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AWN

in which
t

Al = Xc + AX - h4
F

A2 = BX - hB^

A3 = -hAK/c

A4 	 -hBK /c

B1 	= Y 	 + AY + hAW

B2	 = B^. + hBW

B3	 = (h + AZ)/c

B4	 = BZ/c

B5 	= hAW/c2

B6	 = hBW/c2

The last six terms of the second equation of (3.17) will be zero

if the system is roll stabilized (i.e. w = 0). Dote that the original

12 parameters of Equations (3.16) have been consolidated to only

10 parameters, since the parameters for the 6X c and 6^ terms always

appear together, and therefore cannot be distinguished using singly

scanned imagery of flat terrain. These parameters are A i (i = 1, k)

and B^ (3 = 1, 6) .

If the exterior orientation variations within a section are

assumed as second order polynomials of the form

6 X = AX + BXx + CXx2
K

6Yc 	= AY + BYx + Cy x2

6Zc = AZ + Be + CZx2 3
(3.18)

6w _	 AW + B,x + Cwx2

60	 = A^ + Box + Cox2

6K	 = AK + BKX + CKX2
3

I

:^

s

}

a
IS

,._.w	 ,,.......	 '.+,xxar*cx-aes+.na,vxr,^.m	 .°+^.-raasrc^r--^^	 _
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and these relationships are substituted directly into ( 3.15), the

resulting polynomials are

X = Al + A2x + A3x2 + A4y + (A4/3c`)y3 + A5xy

+ (A5/3c2 )xy3 + A6x2Y + (A6/3c2)x2y3
(3.19)

Y = Bi + B2x + B3x2 + B4y + (B4/3c2 )y 3 + B5xy	 w J

+,(B5/3c2 )xy3 + B6x2y + (B6/3c2 )x2y3 + BTy2
S

• (2BT/3c2 )Y4 + ( BT/9c
4 ) y6+ B8xy2 + ( 2B8/3c2)xY4

• (B8/9c4 )xy6 + B9x2y2 + ( 2B9/3c2 ) x2y4 + (B9/9c4)x2y6

in Which

A = Xc +AX -hAf Bi	 = Yc+AY+hAw

A2	= B 	 - hB^ B2	 = BY + hBw

A3 = CX - hC 0 B3	 = Cy + hCw

A4	 = -hAK/c B4	 = (h + A,) /c

A5	= -hBK /c B5, = BZ/c

A6 = -hCK/c B6	 = CZ/c

B7	= hAw/c2

B8	 = hBw/c2

B9	= hCw/c2

The last nine terms of the second equation of (3.19) will be zero

if the system is roll stabilized ( w = 0), since these coefficients

are dependent upon w only. The original 18 parameters in

Equations (3.18) have been reduced to only 15 in ( 3.19) because
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f

of the inability to separate parameters for 6X c and 6¢ using singly

scanned data from flat terrain. The parameters are Ai ( i = 1, 6)

and Bj * (j = 1, 9)•

In both of these examples it has been assumed that all orien-

tation elements were modeled using the same order polynomial.

This need not necessarily be the case, since different order poly-

	

nomials may be used. (e.g. X c = AX + BXx r Cx.c2 + DXx3,	 6

Y  = AY + Byx + CYxl , Z. = AZ + BZx, 6K -~ AK ) .

These polynomials represent a transformation from a 2 dimensional

image space into a 2 dimensional object space. The object space

is actually 3 dimensional, and the assumption has been made that

h is constant in order to perform this transformation. This assumption

may be relaxed if Z coordinates have been assigned to the data arrays

prior to processing. In this case, h is no longer a fixed constant,

but instead, h = Zc - Z may be used in Equations (3.15), where

Z denotes the elevation assigned to each point, and Z c is the constant

nominal flying altitude taken from the flight log. For linear func-

tions, the polynomials when Z is included take the form

tz

	

	 X= Al + A2x + A3y + (A3/3c2 )Y 3 + Axy + (A/3cl)3

- Z[- A5 - A 6 + (A3/Zc)y + (A3/3cLZc)y3

+ (A4/Zc)xY + (A4/3czZc) xy3]
(3.20)

Y	 Bl + B2x + B3y + (B3/3cz )Y 3 + B4xy + (B4/3c1)xY3

+ BSY2 + (2B5/3c z )Y4 + (B5/9c 4 )Y6 + B 16xy

+ (2B6/3c2 )xy4 + (B6 
/9C4)176 — Z[(B 5 c1 /Zc) + (B5/Zc)y2

+ (2B5/3c2ZC)y4 + (B5/9C4ZC)yb + (B6Cz /ZC)x + (B6 /Zc)xyl

+ (2B6/3ezZc)xyy4 + (B6/9C4Zc)Xyb + (1/c)Y + (1/3c 3)y3]
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in which

Al = Xc + AX - ZcA^ Bl =	 Yc + Ay + ZoA^

A2 =	 BX - ZeB^ B2 =	 By + ZcBto

J	 A3 =	 -Z cAK/c B3 =	 (Zc + AZ)/c

Ah, _	 -ZcBK/c B4 =	 BZ/c

A5 =	 A^ B5 =	 ZcAW/cz

A6 -	 B^ B6	 = ZcBw/c2

The B 5 , B6 coefficients will become zero if the system is roll

stabilized (w = 0) and the corresponding terms in Equations (3.20)

will drop from the second expression. Similar expressions, with

a corresponding increase in -the number of terms within the polynomials

may be derived under the assumption of second order polynomial

variations for exterior orientation elements within sections.

Again polynomials of different order could be assumed for the dif-

ferent orientation elements.

Other investigators, notably Kratky [21], have considered the

possibility of approximating the behaviour of orientation elements

within a section by harmonic functions. In this case, functions

may be written for exterior orientation elements of the form

t 6X 
C

; =	 Ax sin CXx + BX cos CXX

s dyc °	 AY sin Cyx + By cos Cyx

6Zc =	 AZ sin CZx + BZ cos CZ 
(3.21)

6w =	 AW sin Cox + Bw cos C',X
a

N'
A^ sin Cox + N cos C a.

r
aK =	 AK sin CKX + BK COs CKX

3

{

1

.•T
Y ..

_..	 -^
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These expressions mr.;; be substituted into Equations (3.1;), which

results in a complicated harmonic equation set. 	 Kratky, in a

subsequent communication with this investigator, indicated that

1
use of these harmonics was troublesome. 	 It was found that, unless

very close estimates of the parameters in these functions were known,

it was difficult to obtain convergence for the parameters using

least squares.

i

3.2.2.2 Poolynomials for Equivalent Rectilinear Recording. 	 The

polynomials in Section 3.2.2.1 may be simplified if resampling is

` first done using the resampling algorithms presented in Section 3.1. a

5

The resulting data arrays will represent the data form as if the y

arrays: had been recorded on a planar surface at an effective principal

r distance of c', as presented in Section 3.1.1. 	 The algorithm of

Equation (3.6) is first considered, in which the j term would nor- a

Y respond to the y' parameter of Equation ( 3.13), and U 	 would

represent the corresponding position in the arrays before resampling

and hence define the scanning angle 6. 	 Since the y' and a values

are taken with respect to the scan line center,

f

e	 =	 (U^ - n)Y	 (3.22)

k W
y ^	 _	 N Q - n - 1/2)	 (3.23)

IS

l

If the assumption is made that symmetric scanning is employed, in

which n = N12, and that resampling takes place upon a planar surface
Jlt

l
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t
( ,a at an effective principal distance of c' = c /ka as shown in Figure.

4

3.1b, the scan line length is given by
x

W =	 20 tan ny (3.24)
1

f	 J

t The resampling algorithm for symmetric scanning is given by

r(2j	 1)	 ^
r'

U3	 =	 n + 1/y tan-1 L	 N	 tan ny - tan ny

k s

Substituting this expression for U3 into Equation (3.22) yields

.i

6	 =	 tan-1 N	 tan ny -tan ny (3.25)

7
Solving Equation ( 3.23) for j and substituting the result into ( 3.25),

µ
yields

u CC-w- + tan ny - tan ny]9	 =	 tan-1

or

e = tan-1 0	 tan ny)	 (3.26)

Taking the tangent of both sides of (3.26) and substituting the

expression for W from ( 3.2 1+) results in

tan8	 =	 c' (3.27)
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If (3.27) is used in Equations (3.15) the resulting differential

equations become

iA
s	 1.
	 X = X c + SXc - hS^ - (h/c')y' SK	

(3.28)
Y = Yc + 6Y  + (h/c')y ' + (y' /c')Szc + h[l + (y'/c')2]aw

Assuming h is constant, in order to accomplish a transformation

from two dimensional image space into a two dimensional object space,

and that linear functions are used for the orientation element

variations, as given in (3.16), the resulting polynomials for this

case are

X = Al + A2 x + A3 y' + A4 xy'
( 3.29)

Y	 = Bl + B2 x + B3 y 	 + B4 xy' + B5 y' 2 + B6 xy' 2

in which

Al =	 Xc +AX -hA^ B1 =	 Yc+Ay +hAW

A2 =	 BX - hB B2 =	 By+hBW

A3 =	 -h AK/c' B3 =	 (h + AZ )	 /c'

A4 =	 -h BK/c' B4 =	 BZ/c'

B5 = h AW/c^ 2

B6 = h BW/cv2

`

	

	 If the scanner used is roll stabilized, the last two terms of the

second equation of (3.29) well disappear._ As mentioned 'before, the

parameters associated with the 6^ and SX c functions always appear

together combined in the Al , A2 polynomial coefficients, and hence

the effects of the SXc and S^ terms are not separable, resulting
1

da :..®	 v...e m^ v..v ^.	
. r .. r u _ ^ ...	 p s a	

-	
ss^n++.a++w'	 'FtiltY::KVa.RSMC+IWWR-m^'lWin^^4 +^F, 'flT.f	 . nv'A93A"^+̂ .. '. ^ ! %

e8.[av+fis rw yx-,atwlex _.su e7fo^rr .. GYtiv.rERie..c.(.b"Ct.ue 	 -n



in the reduction of the original 12 parameters to 10 for flat terrain.

These parameters are A i (i = 1, 4) and B  (j = 1, 6).

Note that the formulation of polynomials utilizing the resampling

algorithm does not reduce the number of parameters. The parameters

within these polynomials are dependent only upon the functions assumed

for the elements of exterior orientation, and hence are unaffected

by resampling. The effect of resampling is to reduce the number

of terms within the polynomials by making unnecessary an expansion

to approximate the trigonometric function within Equation (3.15).

Assuming second order polynomials to represent orientation

variations within sections as given in Equations (3.18) results in

X = Al + A2 x + A3 x2 + A4 y' + A5 xy' + A6 x 2 y I

X = B1 + B2 x + B3 x2 + B4 Y' + B5 Xy' + B6 x2y'

+ B7 y'2 + B8 Xy ,2 + 
B9 

x2y'2

(3.30)

in which

Al = Xc +AX-hA0 	 Bl = Xc+Ay+hAW

A2	 BX -hB	 B2 = BY+hBW

A3 = CX - h C^	 B3 = Cy + h CW

A4 	 -h AK/c'	 B _ (h + AZ)/c'
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Similar to the presentation in Section 3.2-2.1, the effects of

topography may be included within these polynomials by relaxing the

assumption of constant h and including the element elevations assigned

(h = Zc - Z) for each element. Under the assumption that orientation

element variations are linear, the resulting polynomials become

X	 Al + A2 x + A3 y' + A4 xy l Z[- A5 A6 x

+ (A 
3 
lZdy' + (A4/Zc)xyll

(3-31)
Y	 Bi + B 2 x + B 3 y ' + B 4 xyl + B 5 

 
yt2 + B 6 xy?2

ZC(B5 c'2/Zc) + (B
5 /Z,)y t2 + (B6 c' 2/Z dx

(B6/Zc )Xy t2 + (1/c , )Y l l+ 

in which

Al =	 Xc + AX - Zc A B1 =	 YC + Ay + Zc AW

A2
=	

BX - Zc B B2
=	

By + Zc B W

A3 =	 - Zc 'Pic/c' B3 =	 (Zc + AZ ) /c'

A4 =	 - Zc BK /c B4 =	 BZ/c'

As =	 A^ B5 =	 Zc AW/c 1 2

A6 =	 B 0 B6
=	 Zc BW/cT2

and the B 5 , B6 coefficients will become zero if the system is roll

stabilized (w = 0).

If second order variations in orientation elements are assumed,

is
	 the resulting polynomial functions become

X	 Al + A2 x + A3 x2 + A4 y	 + A x2y

	

+ P 5	 6

Z[-, A 7 - A8 x Ag x2 + (A4/Zc )y l + (A 5 /Zdxy,

+ ( A6/Zc 
)x2y,]

xx A
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Y = B1 +B2 x+B3 x2 +B4 y' +B5 Xyr +B6x2y ► + B7yr2

+ B8 Xy ► 2 + B9 x2y ► 2 - 
Z[(B7 

c ► 2 /Zc ) + (B7/ZC)y'2

+ (Bg c' 2 /ZC )x + (B8/Zc )xy ► 2 + (B9 ci2/Zc)x2

+ (B9/Zc) x2yi2 + (1/c')y ► ]	 (3.32)

in which

f
Al = Xc + AX - Zc A^	 B1 = Yc + AY + Zc AW

A2 = B  - Zc B¢	 B2 = BY + Zc BW
}

A3 = C  - Zc C0	 B 3 = C  + Zc CW

A = - Z	 /c'	 B4 	 (Zc + A )/c'^	 ^.	 c ^c	 4	 AZ )1c'

	

 = - Zc BK/c 	 B5 = BZ/c'

A6 = - Z c CK/C'	 B6 = CZ/c'

A7	 AO	 B7	 zc AW/ct2

Ag = B^	 B8 = Zc BW/c ► 2

A9 = C	 B9 = Z c CW/ci2

and the B7 , B8 , B9 coefficients become zero if W = 0.

3.2.3 Constraints at Section Boundaries

It has been stated previously that if a restitution is to be

attempted using the collinearity or polynomial models, it is desirable

to treat the flight line in sections. Dividing -the flight line into

sections allows the use of simpler functional assumptions for the

exterior orientation elements to approximate their actual stochastic

behavior with acceptable accuracy. If the entire flight line is

p
treated as one unit, the functional behaviour assumed for the exterior

orientation elements must be correspondingly more complex to yield

comparable results. On the other hand, if the flight line is treated

MOM =0
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in sections, control points within each section may be used to determine

functional parameters which are valid only within that section.

This is desirable in an element by element restitution, since fewer

terms must be evaluated within the computer for each element than

if more complicated functional forms were assumed in treating the

entire flight line as a unit.

Treatment of the flight line in sections, however, introduces

some problems.	 If each section is treated entirely independently,

i

with an independent set of parameters, then restituted X, Y coordinate

discontinuities will occur at the section boundaries.	 To avoid

these discontinuities, introduction of constraints at section boundaries

is necessary.

In using collinearity equations or polynomials, the arrays

are segmented along lines of constant x coordinate, i.e., constant

data array line number.	 The joining conditions consist of the
^	 x

requirement that restituted positions along the line have the same

values after transformation by either of the two possible collinearity

or polynomial functions.	 Other constraints may also be considered

in which, not only positions, but derivatives of first, second,

or greater order may also be constrained to be equal along these

section borders and thus a smoothing of the imagery across section

boundaries may be introduced.	 These, however, are unduly complex

ti
and for this investigation, only the simplest case of constraints

on coordinate position along the interface are considered.	 This

problem may be efficiently treated if the concept of parameter con-
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straints is applied at the time of estimating the parameters by

{	 least squares. In this case the linearized model may be written

A V + B A + B A +F° = 0

1	 C A + G° = 0	 (3.33)

in which linearized constraint equations are used to augment the
	 r

original linearized condition equations.

`i	 p	 If, for example, the polynomial forms given by Equations (3.20)

are considered as a mathematical model, the constraint equations

along the interface between one section, u, and the succeeding section,

t	
v = u + 1 may be determined as follows.

Considering the first equation of (3.20) and equating X coordinates

from sections u and v yields

{A1 + A
2 x + A3 y + (A3/3c2 ) y3 + A4 xy + (A4/3c2)xy3

- Z[- A5 - A6 x + (A3 /Zd y + (A3/3c2Zc)y3

+ (A4/Z c ) xy + (A4/3c2Zc)xy3]}
	

i

{A1 + A2 x + A3 y + (A3/3c2 ) y3 + A4 xy + (A4/3c2)xy3
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Equating the constant terms and the coefficients of the y and

i
Z terms respectively yields

y
(Al + A2 x) u 	=	 ( A1 + A2 x)v

( A3 + A4 x)u 	=	 ( A3 + A4 x) y 	(3.34)

(A5 + A6 x)u 	=	 (A5 + A6 x)v

Y.i

Equating the coefficients of y 3 , yZ, and y3Z yields the following

jP	 Y

additional equations.

[(A/3c2 ) + (A4/3c2 )x]u 	=	 [(A3 /3C2 ) + (A4/3c2)x]v
3

(A 3/Z 	 + (A4/Zc)]u 	=	 [(A3/Z e ) + (A4/Zc)x]v	 (3.35)

f (A3/3c2Zc) + (A4/3e 2Zc)x]u	 =	 [(A3/3c2Zc) + (A4/3c2Zc)x]v

Since the c and Z c terms are treated as known constants for each

flight line, it may be seen that Equations 3.35 are redundant since

each of them can be reduced to the second equation of (3.34).

The remaining condition equations at each section boundary

may be determined using the second equation of '(3.20), and enforcing

the constraint condition of equal Y coordinate along the boundary.
^h

The condition equations which result by equating the constant terms,

• the coefficients of y, and the coefficients of y2 in this constraint

are as follows.

(BZ + B2 x) u 	 =	 (B1 + B2 x)v

(B3"+ B4 x)u	 =	 (B3 + B4 x)v	 (3.36)

(BS + B6 x) u	=	 (B5 + B6 x)v
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3	 The additional constraint equations which may 	 formed by equatingy 

Y" y4 f y6 f Z O Zy2 , Zy4 , Zy and Zy 3 coefficients, respectively,

are

C(B3/3c2 ) + (B4/3c2 )x]u = [(83/3c2 ) + (B4/3c2 )x]v 	l

((2B
5 /3C

2 ) + (2B6/3c2 )x]u = [(2B5/3c2 ) + (2B6/3c2 )x]v	 r
,

[(B 5 /9C4) + (B6/9c4 )x]u = [B 5 /9c
4 ) + (B6/9c4)x]v

[(B5 c2 /Zc ) + (B6c2/Zc)x]u = [( B5c2 /Zc ) + (B6c2 /Zc)xly	
x

y°	 F{	
[(B5/Zc) + (B6/Z ` )x]u = [(B5/Zc) + (B6/Zc)Xly	 (3.37)

[(2B / 3c2z) + (2B /3c2Z )x]	 _ [(2B /3c2Z) + ( 2B /3c2Z )X]5	 c	 6	 c u	 5	 c	 6	 c v

t(B5/9c4Zc) 'F (B6/9c4Zc)x]u = [(B5/9c`^Zc) + (B6/9c4Zc)x]v

1/c	 1/c

1/3c3 = 1/3c3

k
All of these equations are either identities, or may be reduced to

one of the equations of (3.36) and are thus not independent. The

xr

	

	 final set of six independent equations necessary to enforce the

constraint condition at section boundaries when utilizing the method
}

of piecewise polynomials maw be written by combining Equations (3.34)

and (3.36) as follows

(Al + A2 x)u _	 (A1 + A2 X)v

(A3 + A4 x)u =	 (A3 + A4 x)v

(A5 +A6 x)u (A5 +A6x)v
(3,38)

(B1 + B2 x)u _	 ( B1 + B2 x)y

($3 + B4 x) u =	 (B 3 + B4 x) V

(B5 + 86 x)u

_	
(B5 + B6 x)y

r

i

y
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The x image coordinate value in •^hese equations represents

the constant image x value at the boundary. Thus these equations

contain only parameters and may be linearized and used to augment

the linearized condition equations during the process of least squares

adjustment. If higher order polynomials are assumed for the elements

of exterior orientation, the number of constraint equations will

remain the same. However, each constraint will contain higher order 	 x

terms in x.

If the collinearity equations are utilized the necessary con-

straints may be written quite simply by enforcing the conditions

that, along the boundary between 'sections, the values of the exterior

orientation elements must be the same whether computed using the

parameters from section u or those associated with section v.

Xcu = Xcv

Ycu	 Ycv

Z	 Zcu =
	

cv	
(3.39)

Wu = WV

Ou = Ov

Ku = Kv
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3

}

	

	 For example, if linear variations are assumed for these elements

within each section, the necessary constraint equations are

(AX + BX x) u = (AX + BX x) v
a

(Ay + By x) u = (Ay + By x)v

(AZ + BZ x)u 
= ( AZ + BZ x)v

(Aw + Bw X)u = ( AW + Bw X)v

(A^ + BO x)u = (AO + B^ X)v

'	 (AK + B  x) u = (AK + B  x)v

It is noted that the number of equations is the same as in the

piecewise polynomial formulation, since the piecewise polynomials
P	 ,

simply represent a different parameterization based upon a linearized

form of the same collinearity equations.
1

3.3 Nonparametric Techniques

The preceding parametric methods of restitution attempt to

1

	

	 estimate the coefficients of polynomials used to approximate the

stochastic variation of scanner exterior orientation elements.

Completely different techniques for restitution of remote sensing

imagery have been applied by Leberl [45, 681, which may be termed

r	 "nonparametric" or "stochastic". The methods outlined by Leberl

are in turn based upon earlier work by Pinkwart [97] and Schatz [98].

'

	

	 In this case, the difference in coordinate values in the x and y

directions between uncorrected and restituted arrays is assumed to

be a realization of a two dimensional stochastic field and attempts

are made to obtain estimates for these differences by nonparametric

A.
A

,T
1'
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interpolative methods. No effort is made with these methods to

estimate parameters associated with orientation. An estimate is

made of the correlated portion of these coordinate differences,

under the assumption that the mathematical model governing these

correlated effects (often improperly called "systematic" effects)

is not known.

The use of these methods assumes that a data array is a realization

of a stationary random function, i.e., a random fune .ion for which

the associated probability distribution functions remain unchanged

with a shift along the independent variable axis or axes. Further,

the property of ergodicity is assumed for the data array, which

allows the use of values at different points in a field from only

one of its realizations instead of many values at one point, which

would require many realizations of the random field. References [109)

and [114] may be consulted for a detailed discussion of stationary

random functions and ergodicity.

In addition, for certain of the nonparametric techniques to be

discussed, particularly the linear ones, it is desirable to assume

that the data array is isotropic. That is, that the correlated x

and y mismatches between uncorrected and restituted data arrays

are independent of coordinate direction, and dependent only upon

distance between points. Thus, the field is assumed to be point

symmetric. This assumption is definitely not valid for uncorrected

MSS digital data arrays, and preprocessing is necessary in order

to make this assumption applicable.

I

i
:y„y
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3.3.1 Arithmetic Mean [45, 981

In this method, estimates of mismatch in the x and y directions

are computed for each data array element based upon a known vector

of such differences for a contro l. point set. The control point

i

	 vector of differences is defined as
'i

sxi - xi - Xi

syi = yi — Yi

j for i = 1,...n control points, where xi , yi represent the uncorrected

image coordinate values for the i-th control point, taken from a

gray scale display of the array, and Xi , Yi are the corresponding

object space coordinates of the same control point, after a conformal

similarity transformation to the image coordinate system. Estimates

of the x, y differences for an arbitrary element within the array
h

are defined by a simple weighted arithmetic mean of the form

9

d

t

s

1 ^

I

y

i
i

n

E wi sxi
sx

n
E wi

i=1
(3.41)

n
E wi syi

sy = i=1
n
E wi

i=1

in which the wi terms are weighting factors assumed to be dependent

only upon the distance within the array between the element in

9
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question and the control point being considered. Empirical weighting

functions are then assumed (45, 981 of the form

f	 '
	

wi = dim

or
	

( 3.42)

1
wi = 1 + dim

di =	 x - xi +(y - yi

is the distance considered. The choice of the power m to be used

is relatively arbitrary, depending upon the desired amount of cor-

relation between widely separated points. If it is desired that
A

correlation between points decrease rapidly, a choice of m = 3

is suitable, in that correlation will drop off rapidly with distance,

and only a nominal amount of computation is required.
y

If this technique is applied directly using uncorrected data arrays

and object space control which has been scaled to the image, the

results will be acceptable in the x direction, but serious errors

will remain in the y coordinate direction. The reasons for this are

two-fold.

1.) The arithmetic mean is a linear algorithm, both in x and

y. While linearity of the data arrays can be well approximated

over limited areas in the x direction, the recording of

the data arrays in the y direction is panoramic in nature

and hence non-linear.

1,
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2.) Due to the nature of scanning, the y direction in most

instances will not have the same scale within the data

arrays as in the x direction. (Scales in the x and y direc-

tion will be the same only if the B and  sample angles

are the same, and the period of rotation of the scanning

prism is perfectly coordinated with the aircraft velocity.)

Thus the data arrays, or images have differential scale

values in the x and y directions.

In order to effectively utilize the method of the arithmetic

mean, then, it is desirable to pre-process the data arrays in a

simple manner to circumvent the problems outlined above. To handle

the first problem, each element y coordinate, or column number,

would be processed using the resampling algorithm of Equation (3.13),

in order to remove panoramic displacements. To resolve the second

problem, these resulting column values would then be scaled to the

object space control Y values, to remove differential scale.

Thus, the processing of the data arrays by arithmetic mean

would more realistically be defined by

$xi	 xi - Xi
(3.43)

s'yi = y I i Yi

in which y' i represents the image y coordinate values after pre-

processing.

I;
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3.3.2 Moving Averages [45, 981

The method of moving averages represents a generalization
r`

which allows greater flexability in the point mismatch estimate

computations than does the arithmetic mean. In using the method,

the x, y mismatches are to be estimated using polynomials or other

Iypes of functions. The most commonly used examples are the linear

(affine) case

s  = ao + al x + a2 y
(3.44)

s  = bo+bl x+b2y

or the second order polynomial case

sx = ao +alx +a2y+a3xy+a4x2+a5y2
( 3.45)

sy = bo+b1 x + b2 y + b3 xy + b4 x2 +b5 y2

The ai , bi coefficients of these functions are computed by

weighted least squares utilizing the n reference points at which
a

the x, y mismatches are known. The weight for each reference point

is assigned as a function of the distance from the element where

the estimate is being computed to the control (reference) point,

such as the expressions of (3.42). For each point to be interpolated,

anew set of the ai , bi coefficients must be computed asing

weighted least squares.

As an example, consider the affine case of Equations (3.44)-.

Condition equations would be written for the control points where

x
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x, y mismatch values are Down. Considering the interpolation for

the x coordinate, linear condition equations may be written of the

form

1 xl yl	 sxl
ao

VX	 1 x2 y2	 _ sx2	 r
nil +
	

al r

a2
1 xn yn	 sxn

a

and the parameters (ao , al , a2 ) may be determined by weighted least

squares using the method of indirect observations (V + B A = F°).

The weight matrix may be taken as

wl

w2

W = Wx = Wes,
n,n

wn

An identical analysis and least squares solution technique may be

used for the y coordinates to solve for the (b o , bl , b2 ) parameters.

Having obtained ai , bi , Equation (3.44) is then used to compute

sx, sy . The entire procedure is repeated for every point to be

M1	 interpolated.

Note that as each x, y position is interpolated, the d i terms

l '

	

	 of Equation (3.42) will vary,ary, hence the wi terms will also vary.

Therefore, a different coefficient set (ai , bi ) must be evaluated

for every point during a restitution, and the method may become

computationally time consuming.

f: x
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An advantage of the method lies in the fact that it will

ordinarily require no pre-processing of the data arrays, as is nec-

essary when using the arithmetic mean. The "systematic" effects

of panoramic displacement and differential x, y scales are adequately

incorporated within the estimating expressions. Such processing

however, may allow the use of simpler functional forms to model the

displacements in lieu of more complicated functions.

It may be shown that the arithmetic mean method of the preceding

Section (3.3.1) is a special case of the method of moving averages.

In this instance, only the constant terms are used to estimate the

mismatch at the point being interpolated, or

	

sx	
(3.46)

s  = bo

For this case, the linear condition equations become for the x

coordinate

1	 sX1

VXg +	 ,l	 sx
n,l	 '	 a	 =	 '

r	 o	 r

t	 1

1	 s

from which, using the same diagonal weight matrix EX above., the

parameter estimate becomes

x
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x

9

r

s

s

a

r

n
E W. sxi

ao = i=1
n
E wi

i=1

Performing the same for y, leads to results identical to those of

Equation (3.41)•

3.3.3 Meshwise Linear Transformation [45, 981

For this method, the control point set is first connected into

a mesh. A commonly used mesh consists of a set of contiguous tri-

angles. For each element to be transformed, this set of triangles

is searched to determine the one in which, the element being considered

lies. Once this is determined, the transformation is accomplished

by a linear affine transformation of the form given in (3.44),

in which the coefficients are determined uniquely from the three

control points forming the triangle in which the element is found

to lie. Three equation pairs of the form of (3.44) are written

at the triangle vertices where coordinate displacements are known,

and these are solved uniquely for the 6 coefficients (ai , bi ) required.

The method requires no pre-processing of the data, as the affine

transformation allows for differential scale values in the x and y

direction, and accomodates the panoramic effect by defining "secant

planes" in the y direction. The method is computationally efficient

in that only three points in the neighborhood of the element being

transformed are used tn uninuel_v define the ecieffieiAnts_ vtili-inn
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f

identical results along the boundary between adjacent triangles

.w when utilizing the parameters associated with either triangle.

A variation of this method is termed overdetermined meshwise

1 linear transformation. 	 In this case, the control point field is

used to define quadrangles, rather than a triangular mesh. 	 For

each quadrangle it is possible to define four possible triangles

,.. - using three of the four possible points each time. 	 Any element
x'

within a quadrarfgld will fall in two of these four triangles.

The transformation r,:at.Uned above may be performed on the element
x

x. for each of these two triangles, and the final estimates of mismatch

will be taken as the average of these two, or may be determined by

the method of least squares.
#,:

The method, however, suffers from serious drawbacks. 	 The

foremost of these is that it may not allow the transformation of
f

^,

{ all elements within the data array.	 In order that all elements

within the data arrayay may fall in one of the triangular meshes defined

by the control points, it is necessary that, as a minimum, four

of the control points fall at the extreme corners of the flight

line.	 A control point, however, must be identifiable both on a

map sheet (if maps are being used for planimetric object space

control) and on a display of the data arrays. 	 Clearly it is impos-

sible that such points would fall at the flight line corners for

every data array. 	 Thus, the definable mesh using identifiable

control points will not cover all of the flight line. 	 This would

make it necessary, if using a meshwise linear transformation;, to

define some element transformations by extrapolation utilizing the

 WAN 
0OR l
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parameters of Equation (3.44), which in turn are based upon only

3 control points. Such extrapolation is dangerous and may lead to

gross errors, depending on the distance from the nearest control.

A lesser, but still serious disadvantage of the method lies

in the amount of human intervention necessary. The restitution

of MSS digital data arrays, by whatever method, must be basically 	 r

a computer oriented procedure to be compatible with automated inter-

pretation when the two fields are finally combined. The necessity

of defining triangular meshes by hand, which is necessary when using

meshwise linear transformation, largely defeats the automated aspects

so desirable in such arrays.

3.3•4 Linear Least Squar •.a Interpolation and Filtering

Probably the most sophisticated of the nonparametric methods

is that of linear least squares interpolation and filtering.

The reader is referred to [99] for a detailed explanation of the

method by Kraus and Mikhail. Basically, the method defines the x

and y mismatch estimates in terms of observed mismatch values at

the n control points and covariance matrices, written in the form

sx I	 ct	 C-1	 k
= 2,2n	 2n,2n	 2n,1	 (3.4T)

sv
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k = s + r (3.48)

:k
^	 a

.A

4

The C matrix is the autocovariance matrix for the n control points

used,

and the c matrix is the cross-covariance matrix of the element being

transformed with respect to the control points,

c	 nc^ n,.L
2n,2	 =	 ( 3.50)

ncy n,1Y

The elements of both of these matrices are computed from

covariance functions which are determined by a r^ iori knowledge,

or may be obtained from the control point data if a general form

is assumed for the function, as described by Kraus and Mikhail (991•

If an isotropic field is assumed, then distances between points

may be taken as the independent variable for generating the covariance

functions. If this assumption is to be approximately valid, the

data arrays must be pre-processed as described in Section 3.3.1,

using the resampling algorithm of Equation (3-I3)to reduce panoramic

distortion, and scaled in the y direction.

A more serious assumption associated with the method is station

arity. The method is predicated upon the fact that the random function

Cxx	 C11q
C n,n	 n,n

2n,2n	 = ( 3.49)
C	 Cyy

n,n	 n,n
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being considered for the field is stationary. If a non-stationary
;

process is modeled as if it were stationary, then the computed sample

covariance will not fit reasonably to an allowable covariance function

form. One of the characteristics for an auto-covariance function

sk	
associated with a stationary process is that its largest magnitude

is at the origin. Thus, if sample auto-covariance values computed
	 r

from the control point data increase in magnitude with increasing
s

distance, this is evidence that the process is not stationary, and

that one of the basic assumptions of the method of linear least

squares interpolation is not being fulfilled.

If this result is found within MSS data after pre-processing,

it is possible to apply linear least squares only if stationarity

is assumed for the stochastic field within a limited region about

the point being interpolated. Therefore sample covariance points

may be calculated only within a limited region, and allowable covar-

iance functional forms fit to these points. The net result of this

technique is that reference points beyond some critical radius about

the point being interpolated are assumed to have insignificant cor-

relation with the point, and thus do not contribute appreciably

to the filtering and interpolation process.

The theory of linear least squares interpolation and prediction

i ,

	

	 has been used with success in geodesy, and its application in this

field has been documented by Moritz [100, 101]. In the latter paper,

Moritz presents a generalization of the concept, in which correlation

among points to be interpolated is considered. Leberl 1451, however,

,h	 r
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,,
points out that work by Wolf (102] has shown that the inclusion

apt of correlation between points to be interpolated leads to an over-

constrained situation, and thus the independent interpolation of

i
points as represented by Equation (3.47) represents the most feasible

method of applying linear least squares.

3.4 Assignment of Element Elevations

Element elevations must he pre-assigned to the uncorrected

` data arrays if the resampling algorithm -of Section 3.1.2 is to be

used, or if analysis or restitution is to be attempted using Collin-

` earity (Section 3.2.1) or the more general polynomials (Section 3.2.2).

E.,
The purpose of this section is to investigate methods by which this

may be accomplished, and the problems associated with such methods.

Element elevations may be derived from the NHS data itself

E only if the object space has been scanned more than once, as will

be the case if overlapping strips of data are available. 	 Most

R present data pertain to singly scanned areas, as were the data avail-

able for this investigation. Therefore, elevations must be obtained

from sources external to the MSS data. Possible sources for these

#	 data are existing topographic maps, such as the 1:24000 scale topographic

maps of the U. S. Geological Survey which were utilized for this

investigation. For compatibility with the MSS digital data, height in-

formation must be processed into a digital terrain model (DTM).

The DTM is a numeric representation of a topographic surface, in

which elevations are given at discrete, closely spaced, X-Y point

positions over the area being considered.

G
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The DTM may be of two types.

1.) Random, in which the planimetric point positions at which

elevation values are known have a more or less random

pattern over the area considered. This type of DTM would

result, for example, if the digitization of a contour map

was carried out by following selected contours, sampling

X-Y point positions at intervals along each contour.

2.) Uniform pattern, such as a grid, in which the DTM is

represented by closely spaced planimetric point positions

arranged in a regular grid over the area. This type of

DTM would result, for example, if the contour map were

digitized by taking profiles at equally spaced intervals

over the area. Then point elevations would be sampled
sx°_t	

at egwilly spaced intervals along each profile.

In some cases, the DTM may be constructed from the random contour

following method, and pre-processed into the patterned form.
M

r

t
3
	 3.4.1 Accuracy Restrictions

At this point a method must be found to reliably assign an

appropriate elevation to every data array element. A seeming paradox

exists, since the DTM is essentially in an orthographic system,

having been generated from map data. At the time when element ele-

vations must be assigned, the MSS data arrays have all of the image

displacements and distortions due to scan angle, topographic, and

exterior orientation effects. However, the two data sets must be

superimposed such that "acceptably accurate" element elevations

may be obtained for the MSS data from the DTM. For purposes of

t

i
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x ' this investigation, elevations were assumed to be "acceptably

accurate" if the planimetric error due to height assignment would
^i

be less than a single resolution element.

The solution to the problem of superimposing the two data sets

lies in the nature of the MSS arrays themselves.	 Since the data

arrays can resolve only to the value, ey, given in Equation (1.17),

it is only necessary to assign element elevations with an accuracy
S

_ yielding a planimetric error of a magnitude equal to or less than

r

ey, after subsequent processing. 	 Recalling ( 1.17), the resolution
S

in Y is

eye	 =	 Y( Z
c - Z^) sec2e

Ct,

Using Equation ( 1.19), the allowable height assignment tolerance

Ze , is obtained as

Ze 	=	 eye /t an e

=	 Y(7c - Zi ) sec2 e/tan e

(3.51.)
=	 Y(Zc - Zs)/sin 8 cos 8

t ! 2Y(Zc - Zj)/sin 28

Figure 3.5 shows graphically the magnitude of this allowable

height assignment tolerance for various values of angular resolution,

Y.	 Using Equation (3.51) at nadir, the allowable tolerance is infinite

since a change in elevation has no effect on the image y position.

The value of Ze decreases to a minimum at 45 0 , where planimetric

displacement becomes equal to height assignment tolerance.	 The

+'ctYSL#Ll,[ID4.ar'ss.L,:. Y.es._ sssi-	 ......	 _	
_	

_
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allowable value then increases for scan angles beyond 45°, since

the ground size of a resolution element increases rapidly beyond

this point. Such high values of scanning angle are rarely used
f	

in practice at the present time.

To superimpose the two data sets within this tolerance, it is 	

rnecessary to find a transformation which will yield a height assignment

error of less than that given by Equation (3.51). To do this,

ground slopes must be considered. In Figure 3.6, the term 6Y represents

the planimetric displacement in Y resulting from some transformation

used to superimpose the MSS data upon the DTM for height assignment

purposes. The e  value is the size of the element at the given

scan angle 6. The resulting elevation tolerance is given by

Ze = a(6Y)
	

(3.52)

in which a is the ground slope in the vicinity. If the expression

for allowable height assignment tolerance (eY/tan 8) from Equation

(3.51) is substituted for Z e into this expression and the resulting

equation is solved for 6Y, then

6Y =

	

	 eY	
(3.53)

X tan 6

1 5 s> 
which represents the allowable planimetric tolerance which may be

acceptable in an approximate transformation for height assignment

purposes, and still result in less than a one resolution element

planimetric error after subsequent processing, utilizing for example
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f

x

the methods of Section 3.2. In reality, ground slopes rarel y exceed

0.5 and scan angles (e) normally do not exceed 400 . Thus a trans-

formation yielding errors on the order of 3 resolution elements

m be	 ' t f th'	 t	 f h htt Th'ey	 appropA a or is s ep o eig assignmen . 	 is value

is necessary only near the flight line edges, and even larger toler-

ances would be acceptable near the flight line center.

A simple transformation which may be used for this step in

the processing is the well known affine transformation. If this

transformation is utilized within sections down the flight strips,

the resulting planimetric error is found to be within acceptable

limits. No constraints are necessary at section 'boundaries, since

the transformation is used only internally within a program to

approximately fit the data arrays to selected control points within

the DTM. Coordinates of the control points required for this trans-

formation may be taken from the same map source used to generate

the DTM. The transformation is used only to assign element elevations,

and no actual horizontal restitution of the MSS array positions

would be done at this time. The more sophisticated approaches given

in Section 3.2 would be utilized for t1ie actual transformation of

elements into a restituted array.

3.4.2 Contour-Scan Intersections

This method of element elevation assignment seems to be the

simplest conceptual procedure if the DTM available is of the random

type generated by the contour following procedure. The DTM data,

if stored according to contours, may be used directly in the form

t

C

I

RW
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A

generated by the digitizing equipment. For this type of DTM, as

mentioned previously, contours may be sampled in a digitizer at

random intervals along their length.

	

'	 Each scan line may be transformed according to the affine 	 i
a

transformation described in Section 3.4.1. The parameters of this

affine transformation are estimated using the method of least squares,

	

C̀ 	 based upon ground control points. At this stage, the contours and

the transformed scan lines will be superimpos.rd approximately in

a near-orthographic system. For each scan line thus transformed,

all contours in the vicinity are searched digitally until an

intersection of the contour said the scan line is detected. At this

point, that position along the scan line is assigned the elevation
a

of the contour. The tracing of the contour is then continued to	 s

determine if any further intersections occur with this same scan

4
r line. All contours in the area are traced in this manner until

all intersections are found for this scan line. The intersection

points are then re-sorted so that they are in order along the scan,

and elements which are intermediate between intersection points

are assigned elevations by linear interpolation between these known

elevations. This process is repeated until every scan in the flight

line has been processed. The resulting element elevations are stored

s	 on the original MSS data tape as an extra channel of data, in the

same format as that given in Section 1.2.3.

The advantages of the method are:	 -`

1.) Relatively efficient computation: Only straight line

equations are used throughout for finding contour-scarf
4
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intersection points and for interpolating element elevations

between these intersections.

2.) Small storage requirements: At any time, the computer

is required to store only the positional data for a single

scan line and a single contour.

The major disadvantage of the method is the determination of

the element elevations near the beginning and end of each scan.

Contour-scan intersections will obviously occur exactly at the scan

line ends only by chance, and with virtually zero probability.

Thus, some method must be devised for assigning those elevations

near scan line ends before the first intersection point and beyond

the last. Extrapolation may be dangerous. An attempt must be made
rf]^

to interpolate these end points between contours, and a complex

decision procedure is necessary to determine the contour pair between

which an end point lies.

3.4.3 Polyconic and Polynomial Surface Approximations

A different approach to the problem of element elevation

assignment is to attempt to adequately model by analytic expressions

the topographic surface in the region of each element, based upon

some subset of the digitized sample points. One example of a mathe-

matical modeling technique is the multiquadric analysis advocated

by Hardy [103, 104]. The latter reference contains an excellent

summary and introduction to the method.

1 .	 .
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n
E	 Ckfq(xk, Yk, x, Y)J	 =	 z	 (3.54)

t`

k=1

in which xk , yk , (k=1,...n) are the coordinates of the sample points be

being considered in the vicinity of the element position x, y after

its approximate transformation by the affine transformation, and

z is the estimated element elevation associated with the point.

The Ck terms are coefficients to be multiplied by each of the quadric

surface equations assumed.	 The Ck coefficients are estimated only

once, and retain the same value over the section being considered

regardless of the (x, y) location of the point being interpolated.

The z elevation is a function of x and y resulting from a summation

4.
of a series of quadric surfaces having axes of symmetry at the xk,

yk sample points.	 According to Hardy, the most often utilized forms

14 the quadric surfaces chosen are those of a cone, in which

^t

t	 y.

a
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The general form of the mathematical model which Hardy advocates

I

q(xk , yk, x, Y) = [(xk - x)2 + (yk - Y) 2 ] 1/2	 (3.55)

of a hyperboloid, in which,

q(xk , yk x, Y) = [(xk - x)2 + (yk y ) 2 + C) 1 /2	(3.56)
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and an inverse hyperboloid, in which
m

'f	
x	

q(xk, Y^ ' x, Y) = I(xk - x) 2 + (Yk - Y) 2 + C] -1/2	 (3.58)

Thus, when given a set of n sample points such as would be

generated, for example, in contour digitization, at every sample 	 i f

point an equation could be written of the form

1

l
E	 Ck l q(xk , Yk, xm, Ym)] = zm	 (3.59)

k=1

in which m is the sample point being considered. There would be

n such equations generated, assuming it is desired to have a quadric

axis at each sample point. Using the matrix notation of Hardy,

A	 C	 =	 Z
	

(3.60)
n,n n,l	 n,l

the coefficient vector desired, C, could be solved for by

C	 =	 A-1	 Z	 ( 3.61)
n,l	 n,n n,l

and elevations for elements could then be calculated from

^f
	

Equation (3.54).

The system has many advantages, one of which is that it allows

nonlinear modeling of the topography, which is obviously not possible

with the linear interpolation scheme of the contour-scan intersection

(

	

	 method. It also allows the computation of element elevations near

scan line ends with more reliability than with contour-scan

intersections.
t

r	 ^

h
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However, if a large data set of points is available in the

k DTM, then the matrix A in Equations ( 3.60) and (3.61) will become

very large. The computing time necessary to solve ( 3.60) for the

coefficients will be quite large, and the time necessary to compute
I

each ,element elevation will also become excessive, as the summation

F^

	

	

of n polynomials to be evaluated must be performed. In cases of this

nature, Leberl [451 suggests using a relatively small subset of the

Y	 total sample points available, such that
	 s

dk :5

where d defines some convenient "circle of influence" for each element,

and dk is the distance from the element being considered to each

sample point.

dk = 3(xk - x) + (yk - y

Another possible compromise to cut computing time would be to use

a larger subset of the sample points (and hence larger A and C

matrices), but evaluate the multiquadric function of Equation (3.54)

only at selected element locations along each scan line, for example,

every fifth element. Then points Intermediate between these could

be assigned elevations by linear interpolation.

k	 A recent paper by Jancaitis and Junkins [1051 presents a

polynomial procedure for modeling the topographic surface, with new

polynomial coefficients being computed as the vicinity being considered;

is varied. In this method, the area is divided into a number of

(f
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Z = E Cii xl yj
i,j

(3.62)
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small square areas to form a lattice. Within each square, the topo-

graphic surface is to be represented by a polynomial of the form

in which the coefficient subscripts correspond uniquely to the ex-

ponents i, ,j of the x, y arguments.

The coefficients of this polynomial, which ordinarily is

chosen to contain 12 terms, are determined by matching the estimated

elevations and slopes in the x and y directions of the four corner

points for each square incremental area, thus enforcing continuity

in elevation and slope at the boundaries between adjacent squares.

W' These estimated elevations and slopes at each corner or lattice

point are obtained by fitting a plane at each lattice point to some

I	 ;
r

subset of the samplep	 points determined during digitization, in the

immediate vicinity of the lattice point.

After the preliminary affine transformation of each eletn:ent ,

these transformed coordinates are utilized directly in Equation

(3.62) to obtain an estimate of the elevation for that element.

3.4.4 Other Interpolative Methods

The methods of Section 3.3 may also be utilized to estimate
i

elevations of elements within the MSS data arrays. 	 In this case,

the interpolation becomes a one-dimensional case, in which the



dk :5

iD

J L

P
_

w
178

r ^

The methods which may be applied may be taken directly from

Section 3.3.	 For the arithmetic mean, for example, the estimate
n -

< 4' for elevation of an element would be given by
k `.

r

'

n
E w	 zk k

^; z	 =	 k=1

l
n
E wk

^k=1

k

•""` in which the zk values are the elevations at the sample points of
^

r ` the DTM, z is the estimated elevation of the point being considered, •`

and, the weighting factor wk for each sample point may be evaluated 3

by either +

__wk	 1	 or	 wk	 1}
d k
	

1 + dmk

in which

' dk	 =	 (x - xk )2 + (y - yk)2

where x, y is the approximate orthographic element position after

the affine transformation, and xk, yk is the digitized position of

the point at which zk has been sampled.

The DTM will generally contain a very great number of sample

points. To obtain reasonable computing times it will normally 	 :a

15

	

	
be required that only points within some circle of influence will

be considered, such that



^T
e.

179

f

The same procedure as that outlined in Section 3.3.2 may be

used for a moving average interpolation, which will allow a non-

linear interpolation. The estimate will, of course, be only a one

dimensional estimate in z. The use of the meshwise linear transfor-

mation is hardly practical for estimation of element elevations,

in that it requires the determination of a unique set of contiguous

triangular meshes in order to implement the method. With the very,

large data set of points generated in digitizing the DTM, the number

of triangles becomes excessive.

The use of linear least squares interpolation to estimate element

elevations requires first the reduction to a reference, or trend

surface. Leberl [45] points out that meaningful correlations between

terrain points exist even over sizeable distances (30 km1. He

recommends the use of the method of moving averages to first estimate

the trend surface, and subsequent utilization of the linear least

squares , in an attempt to refine the element elevation estimate.

Since, as was shown in Section 3.4.1, the final positional accuracy is

relatively insensitive to small errors in element elevations, it

is doubtful that the increase in element elevation accuracy is worth

the increased computing time necessary to implement the method

of linear least squares interpolation.

All of the above discussion has been concerned with general

mathematical models which may be used for analysis or restitution

of MSS data. In the following section, the Unique problems associated

with restituting MSS data stored in digital form are discussed.
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3.5 Direct and Inverse Restitution Techniques

The restitution equations described in Sections 3.2 and 3.3

were based upon the premise that a transformation was being used

from the uncorrected data array (or image) into the orthographic

object space. These equation forms and relationships are most con-

venient if estimation of the parameters of imaging is being attempted,

and may be used with efficiency for restituting conventional recording

media, such as photographic imaging. The use of such relationships

may be termed a "direct" approach to restitution, since projective

relationships are used to project directly from uncorrected x, y

image positions to restituted X, Y positions (by analogue or analytical

means).

Because of the nature of digital MSS data, however, further

considerations are necessary in attempting to apply this approach

to such a digital data form. The digital data is stored in a line

by line fashion, and within each line, spectral value locations are

limited to integer positions, both in the uncorrected image array,

and the restituted output array resulting from such processing.

If the direct technique were used, then restitution would be

accomplished by measuring x, y uncorrected image coordinates and

projecting to restituted X, Y positions using, for example, the

i

s

collinearity equations of (2.19) or one of the piecew."Lse polynomial

formulations. This leads to two problems.

1.) The resulting X, Y position pairs will be randomly generated.

This means that a large number of the coordinate pairs

4.

A
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must be stored in an output buffer. A continuous sorting

must be implemented to arrange these pairs into positions

f	
along array lines to be stored in a restituted output

array.

2.) Unique X, Y pairs may not be generated for output. The

X, Y pairs thus generated must be in integer form in order

to occupy locations within the output array. The same

integer position within the output array may result from

two or more x, y positions in the uncorrected input array,

5	 and thus result in a multiplicity of spectral combinations
fi

which could be assigned to it. Further, there will be

positions within the output array which would have no

spectral values assigned because for some X, Y output array

t,;vr

	

	 positions, there may be no x, y pair which would map into

these positions through the projective expressions, since

the X, Y values are limited to integer values. Spectral

values for such "holes" may be assigned by interpolating'

spectral values from surrounding output buffer positions.

The advantage of this method is that use of the direct projective

restituting relationships (collinearity or polynomial) requires

no iterative procedure. The element elevation values assigned are
i

I	 associated with the x, y uncorrected image positions. Hence, for

each element to be projected, x, y and object space Z coordinates

I	 i
	 are known, along with the parameters of projection. The X, Y

restituted position may be calculated with a single application

of the restituting relationships

J

i
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An alternate restitution technique is to "step" along positions

in the restituted output array as the independent variables (X, Y)

as advocated by Markarian, et. al. [691, and compute the associated

x, y position for each restituted array position. 	 The sp(sctra,l

1 values in this position are then assigned to the restituted array

t
position.	 For purposes of this discussion, such an approach will

' 1
be called the "inverse" restitution technique.

This procedure circumvents the storage and sorting of an output

buffer within the computer, and assures that each point within the

output array will have assigned to it a spectral value for each

G
t

channel.

However, this approach also has two major drawbacks associated

with the data processing.

1.) Since X, Y values are assigned as the independent variables,

then x, y uncorrected array positions are randomly generated,

thus necessitating the storage of a large number of these

.;	 values in a buffer during restitution. 	 After the computation

of the x, y position for each associated X, Y output location,

this buffer must be searched for the nearest integer array

position to the desired x, y image position, and the associated

spectral values stored in the restituted output array

position.	 This input buffer, however, is somewhat easier

,V to handle than an output buffer, since it is in array form,

containing integer array positions in a line by line arrange-``

meat. 3

t:

l	 `
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2.) Perhaps more serious is the requirement of an iterative

computational procedure. This may not apply for those

based upon the greatest simplifying assumptions, such as

the assumption of flat terrain and constant or linearly

varying exterior orientation elements. The following

analysis explains the procedure.

For this purpose, the inverse form of the NSS collinearity

equations ( 2.18) are considered. Capitalizing on the fact that the

left hand side of the first equation of (2.18) is zero, these

equations may be written as (dropping the 3 subscripts)

0 = mll ( X - Xc) + m12 (Y - Yc) + m13(Z - Zc)
(3.63)

tan(y/c)	 - fm27 ( X - Xc) + m22 (Y - Yc) + m23 ( Z - Zc)]

m3i.X Xc + ai32 (Y Yc + "33( Z - Zc

Note that in the first equation of (3.63), the only variables are

X, Y, Z, and x, which is included in the functions assumed for ex-

terior orientation elements. Assuming for the present that Z has

a constant value (perfectly flat terrain) then if X, Y are treated

1as independent variables, and if the parameters associated with

the Xc, Y c , Zc positional orientation elements and the w, c, K

{ angular orientation elements are known from a previous space resection,

then the first equation of (3.63) may be solved for x. This solution

may be direct if fairly simple functional forms have been assumed

for orientation elements, or iterative if more complex funrztonal

forms have been assumed. The value obtained for x may be substituted

directly into the second equation of (3.63) to then solve for the

y image coordinate.



If for this case the ass>>mption of constant Z is relaxed, an

iterative technique is required.	 If element elevations have been

^A.̂ gn	 y	 processing is begun, then theassigned to the data arras before 	 g	 g	 y ,^

are associated with the x, y uncorrected image positions not the

f	 f!
X, Y coordinate values used as the independent variables. 	 An iterative

t

technique would then be employed in which a Z value would be estimated

(perhaps as an average elevation) and equations ( 3 .63) would be

solved for new x, y values.	 The element elevation stored in thisT

location would then be taken as an updated value of Z, and new

5	 a x, y values computed.	 This process would be repeated until no
a

meaningful difference in the x, y values is noted. 	 This is the

technique to be utilized if a restitution based directly upon col-
{

ii linearity is to be employed.

If a polynomial approximation is to be used for an eleme;,zt

by element transformation using this inverse technique, the problem
f,

aI becomes more complex. 	 It is, in general, not possible to write

a linearized transformation equation which maybe solved explicitly

for x, y image coordinates if X, Y object space coordinates are

designated as independent variables, since the orientation elements

of scanning are given as functions of the x image coordinates.

If an element by element restitution is to be attempted by the

inverse technique utilizing polynomial approximations, it is

suggested that the polynomials of Section 3.2.2 be utilized in

an iterative manner.

T

_	 _..	 .-
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This choice between the direct and inverse methods of final

j

transformation of elements is necessary only with the direct col-

linearity and polynomial formulations. The resampling algorithms

of Section 3.1 are already in the inverse form, in which the resti-

tuted array position, J, is used as the independent variable, and

the corresponding position, U i , in the original uncorrected array

is computed in order to assign spectral values within the restituted

array.

The inverse technique _J.s easily incorporated within the non-

parametric methods. These techniques are not based upon analytic

forms of modeling the transformation, but are based upon stochastic

concepts in which an attempt is made to estimate the correlated

components of a stochastic field without defining an analytic form.

The mismatch estimates resulting from these methods may be applied

to the X, Y positions to estimate the x, y uncorrected image position

in order to assign spectral values.

In summary, if direct restitution is attempted using projective

collinearity or polynomial forms, one is confronted with problems

of output buffer storage and sorting in generating restituted arrays,

and the problem of assigning spectral values to the X, Y restituted

position for which there are no associated x, y image positions

based upon the direct projective relationships. On the other hand,-

if inverse relationships are used, the storage and sorting procedures

are simplified, but the actual transformation calculations require

an iterative procedure. For this investigation, no attempt was

made to assess the relative efficiency of the direct approach with
x;

r
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186

respect to the inverse technique. The restitutions performed in

this study utilized the inverse approach, in order that modifications

of software routines already available , at LARS could be used. It

is left to future investigation to examine the direct technique.

q.

Y	

r

3.6 Concluding Remarks

l
This chapter has served to introduce possible methods of

restitution for singly scanned MSS digital data arrays, and some

of the problems associated with such restitution methods. The

resampling algorithms first presented are useful in many cases as

a f rst step in the restitution process. The pre-processing of the

data using these algorithms is useful in simplifying subsequent

parametric algorithms, or in approximating isotropy for some of the

nonparametric methods.

The parametric methods of restitution utilizing MSS collinearity

equations or piecewise polynomials represent perhaps the most

intuitively obvious methods of restitution, since they are based

directly upon the known relationships of the MSS transformation.

If these methods are to be used to obtain the best possible accuracy,

then Z coordinate information must be introduced into the data

arrays from some source.

The nonparametric methods included represent an entirely dif-

ferent approach to the problem of restitution. These algorithms

assume that no analytical form is known for a mathematical model.

An attempt is made to estimate the correlated effects within the

data arrays, based upon stochastic concepts.

3

y

m.
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The unique nature of the digital data form requires that special

1 ' data handling techniques be utilized for an efficient element by

1
l( element restitution.	 A choice is necessary between a direct approach

x utilizing the direct projective relationships relating the image

and object space element locations, and an inverse approach based

upon the imaging form of these relationships. 	 The direct approach 5

has the drawbacks of requiring the storage of a random output buffer
A,

coupled with sorting and interpolation requirements, but has the
s

" advantage that the direct projective relationships may be used and

require only a single application for each element being transformed.

The inverse approach results in simpler storage and searching proce-

dures, but requires an iterative procedure for the element by element
Tj

calculations required in the restitution.
k

r

i
In the following chapter an operational procedure is presented

to collect many of the concepts discussed previously into a logical

sequence for analysis and restitution of digital data arrays. 	 This

procedure is used to test the methods of restitution on existing

MSS digital data arrays, and the accuracies obtained from these methods

are compared.

s

i
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j	 4. NUMERICAL RESULTS

4.1 The Data Arrays

The methods of analysis and restitution presented in the pre-

ceding chapter were tested on two flight line arrays of actual data

a available at LABS.	 Both were flown during the corn blight watch

experiment administered by LARS during the summer of 1971 [106, 1071.

The University of Michigan scanner was used at a nominal altitude

of 5000 ft. (1524 m) above sea level.and digitization performed with 	 1

ms`s
a nominal angular resolution of 6 milliradians.

The first of these flights, number 208, was located in north-

western Indiana near the city of Lafayette.	 Figure 4.1 depicts

a grey scale display of this array from the line printer.	 The display

is of channel 6, which represents the spectral band between the

wavelengths of 0.58 and 0.65 micrometers.	 Figure 4.2 portrays this

same flight line, also from channel 6, as an image taken from the

digital display monitor.	 These images are at an approximate scale

i of 1:58000.	 This array contains 1591 lines and 222 columns, and

represents a ground area approximately eight miles (13 km) long

and one mile (1.6 km) wide. 	 Since it was desired to utilize existing

U. S. Geological Survey maps as a source of specific point positions,

as well as terrain elevations, it was necessary to locate array

positions on the line printer display which wer+ also identifiable

Y;
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on the map sheet.	 This flight line was well suited for this purpose.

Terrain variation within the flight line was quite small, on the o;*der

t
of 50 ft. (15 m), ranging from an elevation of approximately 700 ft.

(213 m) to approximately 750 ft. (229 m) above mean sea level.

A large proportion of the area within the flight line was under 1

` cultivation, with no forest cover. 	 The area contained numerous

fence, road, and stream intersections which could be easily located

on both the line printer display and the map sheet. 	 These array

E

a

positions were determinable on the line printer display to within

one or two resolution elements. 	 After extracting these array positions,

the corresponding points were marked on the map sheet for later

coordinate digitization.

All points thus located on both the digital array and the map

sheet are referred to in this section as reference points.	 From

this set of reference points, a subset of control points was chosen.

These control points served as the basic data source from which

parameter estimates or nonparametric algorithms were calculated

in the analysis methods to be discussed.	 The points in the remaining

subset of reference points are referred to as check points, and

are used to assess the accuracy obtained in the subsequent analysis

methods.	 A. total of one hundred such reference points were located

within the flight line.	 Of these, thirty nine were used as the

actual control points to determine the parameters for the various

analysis methods, and sixty one were withheld as check points to

investigate the results which were obtained.	 A mistake in digitizing

i
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one of the check points was subsequently discovered, and the tests

performed used only sixty check points.

The second flight line chosen, flight number 218, is located

in west central Indiana near the city of Bloomington. Figure 4.3

shows a line printer display of this flight line, and Figure 4.4

depicts the same flight line from the digital display monitor.

As before, the images shown are for channel 6 representing the

spectral wavelength band from 0.58 to 0.65 micrometers. These images

are at an approximate scale of 1:54000. This array contains 1439

lines and 222 columns, and represents a ground area approximately

seven m.les (11 km) in length, with a width of approximately one

mile (1.6 km). Total terrain elevation variation within the flight

line is on the order of 300 ft. (91 m), ranging from a low elevation

of approximately 550 ft. (167 m) to a high of about 850 ft. (259 m)

above mean sea level. Most of the area is wooded such that a tree

canopy obscures much of the ground. The area contains fewer roads

and fences than the flight line previously discussed, with far

fewer recognizable intersections and easily identifiable array

positions. For these reasons greater difficulty was encountered

in reliably locating reference points within the array. Thirty

three points were finally assigned over the entire flight line,

of which twenty four were utilized ea control to determine th,-,

parameters of the analysis, and nine were withheld as test points.

However, because of discovery of a mistake in digitization of one

of the control points, a set of only 32 was used (23 control, 9

check) in performing the tests of analysis methods discussed below.

-	 s.
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Uncertainties of3'or 4 resolution elements were not unusual in

assigning array positions to these 32 points.

In order to illustrate the geometric distortions inherent in

data arrays obtained by multispectral scanners, planimetry was traced

from the map sheets for both flight lines for comparison purposes.

Figure 4.5 shows some of the planimetric features of flight 208

near the top of the flight line, and Figure 4.6 portrays planimetry

from f.L ght 218, near the bottom of the flight line. In these

figures, a heavy solid line is used to denote roads, a lighter solid

line is used to represent streams or ditches, and a light broken

line represents fences. A comparison of these figures with those

of Figures 4.2 and 4.4 will illustrate the deformations in the imagery

which are perceivable to the human eye. The most readily apparent

deformation is that due to the scan angle effects, and the different

scales in the x and y directions. For example, the triangular area

(arrow A in Figures 4.2 and 4.5) near the top of flight 208 formed

by the intersecting roads and the stream cutting across them has

been visibly deformed, showing a widening at the top and a resultant

lessening of the inclination with which the stream cuts across the

flight line in this area. Another good example of these deformations

is found near the bottom of flight 208. Here an interstate highway

cuts diagonally across the flight line (arrow B, Figure 4.2).

!	 Careful visual study reveals rage deformation displacing the originally
G

G

straight alignment of the roadway into a curved alignment. Also

apparent, particularly on the display for flight 208 (Figure 4.2),

is the perturbation due to changes in Yc , the sensor Y position,
E

S
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as evidenced by the departure of the central roadway from the straight

alignment shown on the map sheet. Upon close inspection of the

display for flight 208 (Figure 4.2), the effects of scan time and/or

K rotation down the flight line, is evidenced by the rotation of

the cross roads and field boundaries. Scan angle deformation is
t

also apparent in flight 218, near the river bend area. The river

bend itself shows a visible spread due to these effects (arrow A,

Figures 4.4 and 4.6). Also the road running diagonally across the

flight line above the river upon close inspection shows a reduction

in the inclination (arrow B, Figures 4.4 and 4.6).

4.2 Flow Chart for MSS Digital Data Analysis

Figure 4.7 illustrates the system for analysis of digital

ASS data arrays which was used in this investigation. The flow

chart shown displays a method of integrating the principles and

mathematical techniques discussed in the previous chapter into a

coherent and organized system for the analysis and restitution of

digitally recorded multispectral scanner arrays. Referring to

Figure 4.7, -the first step in the procedure, after the desired control

points have been chosen, is the digitization of map data for the

control point coordinates, and contour information for subsequent

assignment of element elevations. For this investigation, the

digitization was carried out on a LARR-V c artesian coordinate

digitizer at Purdue University. In the following, the coordinate

axes of the digitizing equipment will be denoted U-V to differentiate

them from the object space X-Y system, or the image x-y system.

1

ad	 _.
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In Figure 4.8 is shown the operation of this digitization equipment.

The material from which U-V coordinate values are to be digitized

(in this case, the map sheet) is fastened upon a large flat bed.

Points are located by the operator with a cursor operating along

perpendicular U-V axes. The U-V coordinates under the cursor are

instantaneously displayed upon a console shown in Figure 4.8 directly

behind the operator. The U-V coordinate values of a point may be

automatically recorded upon punched cards using the keypunch shown

in the lower right foreground of Figure 4.8. This keypunch is

interfaced with the digitizer, and the operator activates a relay

when he is over a point for which he wants the U-V coordinate value

recorded on cards.

For this investigation, the following steps were followed in

the digitization of the map information.

1.) The map sheet was fastened upon the flat bed. An attempt

was made to approximately align the direction of the flight

line with the U axis of the digitizer.

2.) Universal Transverse Mercator (UTM) grid marks on the

map edges were digitized, first along tie map edge aligning

more nearly to the digitizer U axis, then along the other

edge. These 1000 m (3281 ft.) intervals could then be

used to define an absolute scale to transform data arrays

to ground system coordinates after the analysis and/or

restitution has been accomplished.

3.) All reference point U-V coordinates were digitized in the

order of their numbering.
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k.) Contour information was digitized. The method used was

the contour following mode, in which selected contours

were followed and U-V coordinates were digitized at random

sample intervals along each contour. These values were

recorded directly upon punched cards. Each card was formatted

to record first a count index, representing the total

number of contour points recorded previously for the contour

being followed. Next, the elevation of 'the contour was

recorded, followed. by 8 values of U-V coordinates of 8

of the sample points digitized along the contour. Using

this format, a total of about 1000 cards resulted for

flight 208, and approximately 3000 cards were required

for the more rugged terrain of flight 218.

After digitization of the map data, this information was trans-

formed from the U-V digitizer system into a cartesian coordinate

system at the image, or array scale. The transformation used to

generate these scaled control and contour X-Y points was the well

known conformal similarity transformation. The equations of the

transformation are of the form

X = X(U cos + V sin ) + Xo
{4.1}

Y = a(-U sin + V cos 	 + Yo

in which Xo, Y o are translations, 0 is the rotation between the

two systems, and A is a scale factor. These four parameters were

determined using least squares techniques, to bring the digitized

map data to the same approximate scale and orientation as the digital
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data arrays. All coordinates of the digitized map data were then

ii

transformed using Equation (4.1), and all subsequent steps were

performed at image scale. Table 4.1 shows the values of the reference

point positions for flight 208 after their transformation to image

scale, and the line-column array positions for the corresponding

points within the data array. Table 4.2 shows the reference point

coordinates for flight 218. After these preliminary steps, the

elements of the arrays, were transformed to the scaled control values

using an affine transformation, and elevations were assigned to each

element. Geometric analysis and restitution was then performed

using the methods described in Sections 3.1 - 3.3. These steps

in the flow chart are explained in more detail in the following

sections.

4.3 Results of Elevation Assignment Algorithms

In Section 3.4, several possible methods of assigning elevations

to elements within the data arrays were presented. Two of the

possible methods were tested in this investigation. For flight 208,

having flat terrain and hence relatively few digitized contour

points, both the contour-scab and arithmetic mean nonparametric

methods were attempted. For flight 218, having more rugged terrain

and many more digitized contour points, only the contour-scan inter-

section method was done, for reasons which will be discussed sub-

sequently.

k	 As pointed out in Section 3.4.1, the affine transformation was
ti

used within the element elevation assignment program, to approximately

s,
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Table 4.1

Reference Point Coordinates for Flight 208

i Control Points

`	 Point Transformed
Number Map Position Array Position

X Y Line Col
W (Y)	 .

3 209.3 47.1 215 26
{`	 !	 7 210.8 164.6 208 187

8 352.9 47.0 356 29
11 442.1 47.6 447 27
13 559.6 47.9 564 26
15 593.9 105.9 595 104
17 677.4 lo6.o 679 103
18 612.3 194.2 611 218
20 793.6 lo6.7 798 105
22 903.7 49.6 909 27
24 908.8 164.9 907 186
25 964.6 106.7 965 106
28 1024.1- 164.2 1024 185
29 13.36.1 51.4 1139 31
30 1141.1 164.9 1138 187
31 1253.6 50.8 1254 30
34 1316.1 166.7 1310 189
38 1490.6 167.1 1479 194
40 34.7 104.6 30 97
43 57.9 192.6 45 215
44 91.8 46.9 93 21
47 152.2 104.9 153 105
54 325.4 104,8 324 107
55 325.7 164.0 321 188
63 443.3 104.6 447 104
64 444.o 193.9 443 218
66 499.o 105.2 502 103
68 502.3 193.6 501 218
71 624.1 46.7 630 26
72 727.7 164.9 726 186
74 734.5 47.4 741 27
75 846.8 48.6 854 27
77 850.9 164.3_ 852 187
83 10,48.5 106.4 1051 105
89 1308.3 108.3 1305 107
92 1428.6 21.1 1426 1
94 1488.9 110.1 1482 116
97 1571.7 48.0 1568 33

100 1571.4 166.8 1565 195
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Table 4. 1, cont .

t
Check Points

Point Transformed
Plumber Map Position Array Position

` X Y Line Col
W (Y)

1 92.5 105.2 90 102
2 179.7 47.1 185 26
4 209.7 75.0 212 62
5 210.5 105.4 212 105
6 92.9 132.6 88 141
9 353•7 69.1 355 64

10 354.5 105.3 355 106'
12 443.6 165.2 443 186
14 560.4 105.8 564 104
16 677.1 47.3 681 26
19 792.4 48.4 801 28	

}

21 795.2 164.2 795 185
23 905.8 106.6 908 105
26 1022.0 106.4 1024 lob
27 1023.3 136.o 1024 148
32 1311.9 50.5 1310 30
33 1314.0 108.3 1309 107

f z 35 1370.7 50.2 1370 27
36 1486.9 50.9 1484 33
37 1492.6 50.4 1490 33

39 .149o.2' 138.3 1482 157

41 35.9 162.9 28 179
42 63.5 75.5 62 58
45 122.2 77.0 122 64
46 123.0 104.8 121 105
48 152.6 134.0 149 148
49 180.5 74.9 184 62

t 50 181.3 lo4.9 182 1o6

51 210.4 134.2 210 148
52 268.7 164.3 263 189

I 53 325.0 46,9 326 29
56 384.9 164.6 384 188
57 404.6 46.7 410 27

58 397.2 164.6 396 187
E,

59 412.9 47.1 418 27
6o 412.9 75.0 418 62

z 61 414.o 164.7 415 187
62 442.5 75.0 447 6o

;a
65 453.9 104.7 457 104
67 500.7 134.8 503 146

69 530.8 105.3 535 104
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Table 4. 1, cont.

Check Points

Point Transformed
Number Map Position Array Position

X Y Line Col

W (Y)

73 764.5 105.4 764 104
76 848.8 106.0 851 105
78 879.2 134.8 880 148
79 879.6 164.4 879 186

e>.; 80 936.3 106.2 936 106
81 1020.3 78.5 1025 64
82 1029.6 78.6 1032 65
84 1110.7 135.7 1110 149
85 1137.8 77.9 1138 65
86 1194.9 49.8 1198 29
87 1197.4 107.6 1198 107
88 1256.1 112.6 1253 117
90 1315.3 136.6 1310 150
91 1344.4 136.7 1339 150
93 1429.4 49.9 1425 31
95 1545.5 78.8 1541 71
96 1546.4 110.2 1538 120a.g

1571.6 78.9 1566 74
`' 99 1571.5 110.2 3.566 120
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Table 4.2 a

Reference Point Coordinates for Flight 218

Control Points

Point Transformed
Number Map Position Array Position

rjX Y Line Col
W (Y)

1 5.4 88.5 9 91
3 115.7 166.7 117 178
4 132.6 86.3 137 86
6 269.5 124.0 265 130
7 313.7 138.7 310 1469 441.3 51.6 445 36

11 483.8 183.8 485 190
12 492,9 127.8 495 128
13 529.3 93.8 532 85
14 588.1 37.2 589 26 -
16 69o.0 42.2 695 26
17 688.0 103.7 692 100
19 871.2 124.2 877 124
20 928.1 212.1 922 219
22 993.3 130.1 994 136
23 999.5 61.5.	 -1001 52
24 1101.7 122.9 1099 131
2 1116.1 16.2 1122 12
28 1174.9 126.7 1171 134
29 1324.6 33.8 1325 24
30 1296.5 206.2 1289 213
32 1407.4 66.6 14o9. 57
33 1362.0 177.7 1358 189

Check Points

2 66.1 113.0 63 117
5 257.6 108.1 256 109
8 436.8 172.8 437 182

10 446.6 76.5 449 65
15 627.5 99.4 627 94
18 747.7 120.7 748 121
21 985.8 133.9 980 142
27 1121.3 106.8 1120 110
31 1367.5 64.5 1372 56 <r

Note: Control point 26 was omitted after a mistake in digitization
for this point was discovered.

_
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transform the data arrays into the conformal system of the scaled

control points. Parameters for this transformation were determined

by least squares methods utilizing as input the scaled control pant

coordinates and the data array positions for the control points,

as given in Tables 4.1 and 4.2. The flight lines were divided into

sections, and an independent determination of the affine parameters

was determined within each flight line section for the affine equa-

tions of the form

S

X = Ao+Alx+A2y	
(4.2)

Y = Bo+B1x+B2 y

Table 4.3 portrays the results of this least squares fit for flight

208. In this instance, the flight line was divided into five sections.

Table 4.4 depicts the results of the analysis for flight 218, in

which the flight line was segmented into four sections. The resulting

standard deviations and variances are given in terms of array

elements. The average ground size of such an element for the arrays

tested is about 40 ft. diameter. This unit is often called a remote

sensing unit, and is abbreviated rsu. Therefore, the statistical

quantities given in such units reflect the accuracies of analysis

methods in terms of the resolving power of the system, rather than

absolute distances.

The pooled variance in these tables was computed as the summation

for all sections divided by the summation of the degrees of freedom

for all sections.
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Table 4.3

Statistics from Affine Transformation for Flight 208
4 ` J'

Section Number 1 2	 3 4 5 Pooled*

Degrees of Freedom 14 14	 12 12 16 68

A posteriori Estimate of
Variance (rsuZ ) 3.71 2.14	 2.84 0.38 1., 81 2.20

A posteriori Estimate of
Standard Deviation ( rsu) 1.93 1.46	 1.69 o.61 1.34 1..48

Y

Table 4.4
I.

Statistics from Affine Transformation for Flight 218

Section Number 1 2	 3 4 Pooled'
I

Degrees of Freedom 8 12	 12 16 48

A posteriori Estimate of
Variance	 rsu2 ) 5.91 7.18	 10.35 12.26 9.45

A posteriori Estimate of
Standard Deviation (rsu) 2.43 2.68	 3.22 3.50 3.07

k
E (d.o.f.)i (ail)

* pooled a2	= i=1 where k is number of sections •-
k
E (d.o.f.)i

i=1

4.

^b	
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f
The parameters thus generated were used within the element

elevation ,assignment program 'to approximately fit the data arrays

to the scaled control points. To test the suitability of this

transformation, the analysis described in Sect-Ion 3.4.1 must be per-

formed. Ground slopes within flight 208 were very small, rarely

exceeding 0.1, and the resultant allowable error for the affine

transformation from Equation (3.53) is on the order of 12 resolution el-

ements, even near the strip edges where the total scan angle approaches

38.50 . Clearly, the a posteriori reference standard deviations

obtained from the adjustment yield values well within this limit.

For flight line 218, ground slopes were much steeper, approaching

0.5 in some places within the flight line. Assuming the worst case,

in which the maximum slope of 0.5 occurs at the maximum scan angle

of 38.5 °, the allowable error is 2.5 resolution elements. The

resultant a posteriori pooled reference standard deviation, for this

flight line was 3.07 resolution elements. This means that after element

elevations were assigned, and subsequent analysis was done, some

of the residual error within flight line 218 would possibly be

due to topographic relief effects because of errors in assignment

of element elevations. These values however, represent the worst

case. Over most of the flight line, allowable planimetric error

would be larger than the 2.5 resolution elements given, and resulting

relief displacement errors would be reduced. For scan angles less

than 26.50 for example, the allowable planimetric error would be

greater than k resolution elements.

a

4	 a
5

A

_

A-'
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^ In Figures 4.9 and 4.10 are showng	 typical profiles from each

' of the two flight lines from which an indication of the reliability

r	 f

of the height assignment algorithms may be gained. 	 In Figure 4.9

j is depicted a typical profile across the flight line for data array

line 763 of flight 208. 	 In this figure, the solid line represents

a reference ground profile taken from the map sheet. 	 The circle-

,._ dash combination represents the profile obtained by the contour-

scan intersection method of element elevation assignment, and the

dashed line represents the profile resulting from element elevation
e

assignment using the arithmetic mean method. 	 It should be noted

that the elevations from the map are also subject to some error.

The National Map Accuracy Standards for vertical map information

state that 90% of the elevations interpolated from map contours

shall be correct within 1/2 contour interval. 	 For the relatively

flat terrain in this flight line, the contour interval was 5 ft.

(1.52 m) resulting in a 90% error of 2.5 ft. (0.76 m) and an approximate

standard deviation of only 1.5 ft. (0.46 m) due to the map. 	 It may

3	 be seen in Figure 4.9 that the profile from the map in almost all

cases differs from that obtained by either of the elevation assignment

methods by less than ten feet (3.05 m). 	 In Figure 4.10, a similar

`^• portrayal of a typical scan line for flight 218 is shown.	 For this1

flight line, the map contour interval was 10 ft. (3.05 m) and elevation

errors for points taken from the map were therefore 5 ft. (1.52 m)

i
at the 90% level, for an approximate standard deviation of 3 ft.

(0.92 m).	 Mismatches of up to 40 ft. (12.2 `m) between the map profile

t

s

Y	 7
i

r

3
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and that obtained by element elevation assignment are seen to exist

for short sections along the scan line. As will be shown subsequently,

the allowable elevation assignment error for these flight lines

is on the order of 60 feet. Thus, the maximum elevation assignment

errors for these sample profiles (10 feet and 40 feet for flights

208 and 218, respectively) would result in planimetric errors of less

than one resolution element,

A statistical test was performed to evaluate the sufficiency

of the element elevations assigned. For this test, the elevations

assigned to the reference point array locations by the element

elevation assignment programs were compared with elevations for the

corresponding points taken from the map sheet. The differences

between elevations assigned from the programs and those taken from

the map sheet were used as the data upon which to perform the statis-

tical analyses. Table 4.5 gives the data generated for the control

points of flight 208. In each case, the column noted as "Diffe'rence"

shows the value obtained by subtracting the value taken from the

map sheet from that assigned by the elevation assignment algorithm

noted. Table 4.6 gives the same information for flight 218.

In order to evaluate the results of a statistical analysis,

it is important to state the objectives and the desired results

of such an analysis. First, it would be desired that the mean of

the elevation differences be statistically near zero, in order that

it may be stated that, on the average, the height assignment al-

gorithms are assigning correct elevations. In addition it is desired

that the variance, and the resulting standard deviation, be such

11^"
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Table 4.5, cont -

A. B . C. D.
Control Elevation Elevation Assigned Elevation
Point from Map, by Contour-Scan,	 Difference, Assigned by
Nwaber in ft.	 (m) in ft.	 (m) B-A in ft. (m) Arithmetic

Mean, in ft. (m)

66 T30 (222-5) T30 (222-5) 0 (0) T30 (222-5)
68 T25 (221.0) T30 (222-5) 5 (1-5) T25 (221.0)
Tl T31 (222.8) T30 (222-5) -1 (-0.3) T30 (22265)
T2 T23 (220-4) T30 (222-5) T (2.1) 726 (221-3)
74 731 (222-8) 725 (221.0) -5 (-1-5) 730 (222-5)
75 729 (222.2) 725 (221.0) -4 (-1.2) 728 (221.9)
77 T2- (221.6) 725 (221.0) -2 (-0.6) 725 (221.0)
83 730 (222-5)* 725 (221.0) -5 (-1-5) 730 (222-5)
89 732 (223-1) 730 (222-5) -2 (-o.6) 730 (222-5)
92 74o (225.6)* 74o (225.6) 0 (0) 74o (225.6)
94 741 (225-9) 74o (225.6) -1 (-0-3) 74o (225.6)
97 729 (222.2) 735 (224.o) 6 (1.8) 731 (222.8)

100 731 (222.8)* 736 (224-3) 5 (1-5) 731 (222.8)

* These values were noted on the map as spot elevations.
''Other values were obtained by interpolating between contours
on the map.

Resulting Statistics

Data Set C Data Set E

Degrees of freedom 38 38

Mean, in ft. (m) +0-56 (+-17) -0-15 (-o.4)

Variance 20-73 12-77

E.

Difference,
D-A in ft. (m)

0 (0)
0 (0)

-1 (-0-3)
3 (-0-9)

-1 (-0-3)
-1 (-0-3)
-2 (-o.6)
0 (0)
2 0.4)
0 (0)
1 (0-3)
2 0.6)
0 (0)

r1a
I-j
Cr\
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Table 4.6

Elevation Information for Flight 218

4 A. B. C.
Control Elevation Elevation Assigned
Point from Map, by Contour-Scan, Difference
Number in ft.	 (m) in ft.	 (m) B-A in ft. (m)

1 595 (181.4) 599 (182.6) 4 (1.2) r
3 559 (170.4) 625 (190.5) 66 (20.1)

4 587 (178.9) 609	 (1. 5.6) 22 (6.7)
i 6 615 (187.4) 599 (182.6) -16 (-4.9)
^-- 7 580 (176.8) 599 (182.6) 19 (5.8)

s

9 705 (214.9)* 699 (213.1) -6 (-1.8)
' 11 561 (171.0)* 574 (175.0) 13 (4.0)

12 587 (178.9) 599 (182.6) 12 (3.7)

j 13 673 (205.1)* 663 (202.1) -10 (-3.0)
;r 14 593 (180.7)* 614 (187.1) 21 (6.4)

E 16 715 (217.9) 690 (210.3) -25 (-7.6)
17 725 (221.0) 687 (209.4) -38 (-11.6)

19 759 (231.3) 748 (228.0) -11 ( -3.4)
20 660 (201.2) 649 (197 .8) -11 (-3 .4)
22 650 (198.1) 649 (197.8) -1 (-0.3) j

23 581 (177.1) 599 (182.6) 18 (5.5)
24
25

580
543

(176.8)
(i65.5)

574 (174.9)
550 (167.6)

-6
7

(-1.8)
(2.1)

28 633 (192.9) 625 (190.5) -8 (-2.4)
29 725 (221.0) 717 (218.5) -8 (-2.4)

30 632 (199.6) 550 (167.6) -82 (-25.0)
32 552 (168.2) 576 (175.6) 24 (7.3)
33 613 (186.8)* 549 (167.3) -64 (-19.5)

* These values were noted on the map as spot elevations. Other
values were obtained by interpolating between contours on the map.

I Resulting Statistics

Data Set C

Degrees of freedom	 22

Mean, in ft.	 (m)	 -3.48 (-1.06)

Variance 924.1

4

i
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that the great majority of the data array positions would be within

the allowable height assignment error as derived in Section 3.4.1.
4

Referring to Figure 3.5 and Equation (3.51), it may be seen that
f

the minimum value of this allowable error would occur near the flight
l
i line edge, at a scan angle of 38.60 .	 At this scan angle, with a

flying height of 5000 f4.	 1.52 km), they' g	 g	 (	 ground size of a resolution^

element in the Y direction is approximately 50 ft. (14.9 m) and the

resulting allowable height assignment error is approximately 61 ft.

(18.8 m).	 At a scan angle of 200 , the resulting ground size of a

resolution element is 34 ft. (10. 1 m) and the resulting allowable

height assignment error is 93 ft. (28.5 m). 	 Thus, it may be seen j

} that 60 ft. would represent a conservative value, the square of which ^.

yields a variance against which to test the results from the height

assignment algorithms.
t

A complete statistical analysis of flight 208 was not performed.

A cursory inspection of the differences between the assigned element

elevations and those from the map sheet (data sets C and E, Table 4.5)

reveals that no value in the data even approaches the minimum accep-

table value of 60 feet. 	 Hence for this flight line the elevations

may be assumed to be assigned with suitable accuracy, using either

the contour-scan or arithmetic mean method. 	 Due to its computational

efficiency, the contour--scan method was utilized in subsequent analysis

and restitution computations when element elevations were required.

k:
For flight 218, the data from which statistical quantities

ti

were computed for testing were the differences between the elevations



a

219

assigned and those taken from the map (data set C, Table 4.6).

As a first step, the data were tested for normality, in order that

subsequent tests upon the mean and the variance would be valid.

The Shapiro-Wilk test for small samples was used [108]. In this

test a statistic, denoted w, is computed and compared with tabular

values published in that reference in order to test the hypothesis	 t

that the data are normally distributed against the alternative

that the data are not normally distributed. When the computed w
	 s

from the data is below the appropriate tabulated value, then non-
	 ^a

normality of the data is indicated. The value of w calculated from

the data of flight 218 was 0.925. The value of w is computed as

b2
w = S. S.

in which s.s. represents the sum of squares of the data values.

The quantity b is calculated by first ordering the data in ascending

order (dl , d2 , .	 do where dl is the smallest value and do the

largest data value). If n is an even integer, then a parameter k

is defined such that n = 2k and b is computed with

t,
1

k
b - E an-i+l (dn-i+l - ai)

i=1

where the a values are coefficients tabulated in the reference.

If n is an odd integer then the central data value is omitted from

the set and k is defined such that n = 2k + 1 and the expression

for b becomes

b = an(dn - d)+	 +a, (d+2-M1	 +2 k

---_— ..



where the value of dk+l, the sem ple median, does not enter the com-

putation of b. The tabular values for the appropriate data sample

size (23) is 0.914 for an a level of 0.05 and 0.928 for an a level

of 0.10. The hypothesis that the data are normal may then be accepted

at an a level of 0.05.

Next, the mean value of these data was computed and tested.

The null hypothesis formulated was that the mean was equal to zero,

versus the alternate hypothesis of a non-zero mean. The hypothesis

was tested at an a level of 0.05. A t statistic was calculated

from the data and found to be -0.549. The tabulated value for

t.975,22 was foumd to be 2.07 1 . Thus, for a two-sided test, the

null hypothesis would be rejected only if the t value calculated

was greater than 2.074 or less than -2.074, and the hypothesis of

zero mean was accepted.

The final test was performed upon the variance. This represents

an important step, since it is here that the adequacy of the height

assignment is determined. For this step, the sample variance of

92+.1 calculated from the data was compared with the allowable height

assignment variance assumed as 3600 (from the allowable height as-

signment error of 60 feet). It was assumed that the degrees of freedom

associated with the allowable height assignment error is infinite.

The null hypothesis was formulated that the variance calculated from

'	 the data was less than or equal to 3600, versus the alternative

that this variance is larger than 3600. The hypothesis may then

be tested using a x2 statistic, or an F statistic having infinite

degrees of freedom in the denominator. A X2 statistic was calculated

h
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from the data and found to be 5.65. The test was performed at an a

level of 0.05, for which the tabulated value of X2 .95,22 was found

to be 33.9• The null hypothesis would be rejected only if the X2

value calculated from the data was greater than the value tabulated,

and the hypothesis was accepted.

The net result of this test is -that the elevation data assigned

to the element array positions may reasonably be assumed to lie

within 60 ft. of the true value. The resulting planimetric error

due to elevation assignment errors will then be less than one res-

olution element. With this knowledge, attention is directed in the

next section to the problem of testing the various methods of analysis

and restitution previously presented.

4.4 Comparison of Analysis Methods

The purpose of this section is to systematically test the analysis

and restitution methods presented in Chapter 3, when operating upon

the actual data arrays chosen. For each method, the assumptions

made for each analysis will be presented, numerical data resulting

from the analysis will be given, and meaningful differences in the

results under different assumptions will be pointed out.

4.4.1 Collinearity Equations

In testing this method a two step procedure was carried out

in which control points from the map cmd the corresponding array

positions were used to estimate parameters of the exterior orientation,

followed by computation of coordinates of check points withheld

from the adjustment. This results in two useful statistics.
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1.) The a posteriori reference variance which is computed from

the adjustment itself.
t

2.) A "positional check variance", based upon the variances

in the X and Y directions computed from the check points.

	

1 1	 For this purpose the square of the circular standard error as defined

	

,k	 in [113] was used. A conservative estimate for this value c, is

given in this reference as c = 0.5(a x + (Jy). These quantities

were assigned n - 1 degrees of freedom, where n is the number of

{
checkpoints, and were statistical) tested for significantp	 y 	 differences,

in order to ascertain which of the assumed functional forms produced

better results.

	

µ	 For each flight line, several cases with the following functional

assumptions were performed, and the results from each were compared.
i

,E

Case Cl: For this case, the functional forms for the exterior

orientation parameters *Mere of the form

Xc = AX + BX x

Yc = AY+ByX

Zc = AZ + BZ x

	

i	 (4.3)
K - AK + BK x

ql - 0

W	 0

	

f	 In which the recoverable orientationa elements are assumed as linear

functions of x within a flight line section.
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Case C2: For this case, functional forms are asstmed to be

Xc = AX + B  x + CX X2

	

Yc =	 AY + BY x + Cy x2	 }

Zc	 AZ + BZ x + CZ x2

	

K =	 AK + B  X + CK X2	 r'

- 0
s

W = 0

These polynomials were used to investigate the usefulness of non-

linear variations of orientation elements within a flight line section.

Case C3: For this case, ar. attempt was made to assume polynomial

forms which would correct for non-linear effects

within a section, and retain computational efficiency

for the later element by element transformation of

the arrays. The functional forms assigned here were:

l

Xc = AX + BX x + CX x2

	

Yc 	AY + BY x + Cy x2

Zc = AZ + BZ x
(4.5)

	K 	 AK

@ = 0

W = 0

Using these polynomials, the intent was to model the non-linear

effects within each section using non-linear functions which affect_
x

most directly the element positions, i.e. X c , Yc . The K term is

modeled as a constant within each section in order to avoid the
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re-evaluation of trigonometric functions for each scan line. Note

here that only a linear form was assumed to model the flying altitude.

Experience gained during the investigation showed that the addition

of an x2 term in the polynomial used to model this element produced

negligible improvement over the case using the functional form shown.

Case C4: In this case the following polynomial forms were

assumed:

Xc = Ax + Bx x + Cx x2

Yc = AY + By x + Cy x2

	Z c = AZ + B  x	
(4.6)
	

r
K	 AK + B  x

j
0

w - 0

The purpose here was to test if a significant difference could

be detected by linear modeling of the K term over the computationally

more efficient model in which K is assumed constant for the flight

line (Case C3).

For each of the cases given above, three different procedures

were used. The adjustment and checking was done first treating

the entire flight line as a unit. That is, it was assumed that a

single set of parameters was valid for the entire length of the

flight line. Then the flight line was treated in two sections,

in. which a separate set of parameters was solved for in each section.

For this mode, the flight line was divided into sections each about

half the length of the flight line. As a third case, the flight
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line was segmented into thirds and separate parameter sets computed

for each of the three sections. For the instances in which the flight

line was divided into sections, the constraints of Equation set (3.39)

were enforced at the section boundaries.

A summary of the results for flight 208 is shown in Table 4.7.

For each case, the total number of parameters is given, rAnd the

number of degrees of freedom for the adjustment. The reference

variance resulting from the adjustment is next shown. This reference

variance is a unitless quantity which, when multiplied by the assumed

arp iori variances of the observations will result in a posteriori

estimates of these variances, as indicated by the least squares

adjustment. For flight line 208, the a priori estimates of variance

assumed were 1.0 for the scaled control points from the map, and 2.25

for the corresponding array positions taken from the line printer

display. Table 4.8 shows the corresponding information for flight 218.

For this flight line, the arp iori estimates of variance on the

control points were 1.0 for the scaled X-Y map coordinates and 6.25

for the corresponding x-y array positions.

The units for the standard deviations are in terms of elements

within the data arrays, or remote sensing units (rsu). The estimates

of standard deviation taken for the digitized map control points

were based upon the National Map Accuracy Standards. The standards

state that 90% of all "well defined" points plotted fall within

]	
1/50 in. (0.5 mm) of their true position. Assuming equal errors

in X and Y, the component 90% error estimates would be EX = EY = E1,r2

where EX5 EY are the 90% errors in X and Y, and E is the positional



Table 4.7

Statistics from Colliearity Analysis of Flight 208
(60 Check Points)

Number of Sections

226

" Case Cl:	 Number of Parameters
Degrees of Freedom
Reference Variance

E;.
Check Variance x in rsu-? (d.o.f. = 59)

=• ,`'' Check Variance y in rsu2 (d.o.f. = 59)
Positional Check Variance in rsu2

Case C2:	 Number of Parameters
i Degrees of Freedom

Reference Variance
' Check Variance x in rsu2 (d.o.f. = 59)

^. Check Variance y in rsu2 (d.o , f. = 59)
Positional Check Variance in rsu2

1

8
70
2.58
9.10

4.55
6.63

12
66

1.10
2.48
4.13
3.25

2

16
66
1.14
3.05
4.04

3.53

24

58
0.78
2.27
2.81
2.53

3

24
62
o.96
2.40
3.41
2.88

36
50
0.59
2.03
1.86

1.94

rJ.f

'a

Case C3:	 Number of Parameters 9 18 27
Degrees of Freedom 69 64 59
Reference Variance 1.14 0.86 o.65
Check Variance x in rsu 2 (d.o.f. = 59) 2.63 2.53 2.21
Check Variance y in rsu2 (d.o.f. = 59) 4.05 2.81 1.90
Positional Check Variance in rsu2 3.29 2.67 2.06

>( Case C4:	 Number of Parameters 10 20 30
Degrees of Freedom 68 62 56
Reference Variance
Check Variance x in rsu2 (d.o.f. = 59)

1.10
2 .56

0.81
2.45

0.57
2.08

. Check Variance y in rsu2 (d.o.f,. = 59) 4.06 2.82 1.91
Positional Check Variance in rsu2 3-.27 2.64 1.99
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Table 4.8
5

Statistics from Collinearity Analysis of Flight 218
(9 Check Points Only)

Number of Sections

1 2 3

Case Cl: Number of Parameters 8 16 2h
Degrees of Freedom 38 34 30
Reference Variance 1.39 0.98 0.87 J
Check Variance x in rsu2 (d. o. f . = 8) 7.30 6.59 7.30
Check Variance y in rsu2(d.o.f. = 8) 4.80 3.31 1.89
Positional Check Variance in rsu2 5.98 4.81 4.15 t

Case C2: Number of Parameters 12 24 36
` Degrees of Freedom 34 26 18

Reference Variance 1.08 0.70 0.48
Check Variance x in rsu 2 (d.o.f. = 8) 6.69 15.51 17.86
Check Variance y in rsu2 (d.o.f. = 8) 3.64 1.63 0.94
Positional Check Variance in rsu2 5.04 6.80 6.75

Case C3: Number of Parameters 9 18 27
Degrees of Freedom 37 32 27
Reference Variance 1.04 0.79 0.71
Check Variance x in rsu2 (d.o.f. = 8) 7.55 9.92 8.69
Check Variance y in rsu2 (d.o.f. = 8) 3.78 1.91 1.35
Positional Check Variance in rsu2 5.50 5.13 4.22

Case C4: Number of Parameters 10 20 30
Degrees of Freedom 36 30 24
Reference Variance 1.06 0.78 0.65
Check Variance x in rsu 2 (d.o.f. = 8) 6.74 9.12 9.44
Check Variance y in rsu2 (d.o.f. = 8) 3.78 1.91 1.34
Positional Check Variance in rsu2 5.15 4.84 4.47 1

1
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error given by the accuracy standards. 	 The resulting standard de-

viation estimates in X and Y then become approximately .008 in. (0.2 mm)

each.	 The resulting ground scale distance when these numbers are

divided by the 1:2+000 scale of the U.S.G.S. 7 1/2 minute quadrangle

maps used is about 10 ft. (3.1 m). 	 This is on the order of one

half the ground size of a data array element at nadir. 	 However,

` many of the map points digitized were not "well defined", as described
h

in the accuracy standards.	 A value of 1 rsu was therefore assigned

for the arP iori estimates of standard deviation for map coordinates.

The arp iori standard deviation for corresponding data array positions

^Ei were based upon the difficulty found in assigning these positions

} within the data arrays. 	 'Thus, for flight 208, standard deviation

;. estimate of 1.5 rsu (variance 2.25) was chosen, and for the more
ILU

difficult flight 218, a standard deviation of 2.5 rsu (variance 6.25)

was chosen.

In order to compare the accuracies obtained for the cases tested,

tables of F statistics were computed based upon the a posteriori

reference variances obtained from the adjustments, and the resulting

positional check variances. These F statistics were computed as

ratios of resulting variances between the various cases. Table 4.9

shows the resulting F statistics formed by the quotient of the

a Posteriori reference variances for the various cases tested for

flight 208. As an example the value 2.26 in the second row, first

column of Table 4.9 represents the ratio of the a posteriori reference

variance of 2.58 obtained in Case Cl treating the entire flight line

as a unit, divided by the a posteriori reference variance of 1,.14

:^'e y

1
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Tabulation of F Statistics for Flight 208 Formed from Reference Variances from Collinearity Analysis

Case Cl	 Case C2	 Case C3	 Case C4

Number of Sections

Case Cl

Case C2
m
0.H
4v
a^

cri

`	 Case r,3 0

v

x
z

Case C4

1 2 3 1 2 3 1 2 3 1	 2	 3

1 1.00
2 2.26* 1.00
3 2.69* 1.19 1.00

1 2.34* 1.04 1.14 1.00
2 3.31* 1.46 1.23 1.41 1.00
3 4.37* 1.93* 1.63* 1.86* 1.32 1.00

1 2.26* 1.00 1;.19 1.04 1.46 1.93* 1.00
2 3.00* 1.32 1.12 1.28 1.10 1.46 1.32 1.00
3 3.97* 1.75* 1.48 1.69* 1.20 1.10 1.75* 1.32 1.00

1 2.34* 1.0 4 1.14 1.00 1.41 1.86* 1.04 1.28 1.69* 1.00
2 3.18* 1.41 1.18 1.36 1.04 1.37 1.41 1.06 1.25 1.36	 1.00
3 4.52* 2.00* 1.68* 1.93* 1.37 1.03 2.00* 1.51 1.14 1,93* 1.42	 1.00

NN
NO

9

Denotes values which are statistically significant at an a level of .05.
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obtained for the same functional assumptions (Case Cl) but dividing

the flight line into two approximately equal sections. The asterisk

opposite this value indicates a significant difference between these

variances. Therefore, significant improvement is noted for this

data array if linear assumptions are made for the functions of exterior

orientation and the flight line is divided into two sections over

the case in which linear functions are assumed and the .flight line

is treated as a single unit. Table 4.10 tabulates the F statistics

resulting between cases tested if the positional check variances

are used to form the values. Tables 4.11 and 4.12 show the resulting

F statistics obtained in this manner for flight 218.

Based upon the information in these tables, several facts may

be pointed out.

1.) In general, in order to discern statistically significant

improvement over the linear assumptions of case Cl, a

combination of higher order assumptions was necessary,

coupled with a division of the flight line into three sections.

2.) In general, no significant difference was noted between

Case C2 and Case C3. This suggests that the computationally

efficient model of Case C3 is adequate for non-linear effects.

For the arrays tested then, modeling of Z c and K by second

order functions resulted in no statistical improvement

over modeling Zc as a linear function and K as a constant

value..

3.) No -tatistically significant difference was noted between

Case C3 and Case C4, suggesting that for the arrays tested,

T



Case Cl

1
Case C2 ,°

v
EQ

0
Case C3

f,

c	 j^f	
F

Case C4

1 2 3 1 2 3 1 2-_ 3 1	 2	 3

1 1.00
2 1.88* 1.00
3 2.36* 1.22 1.00

1 2.04* 1.08 1.13 1.00
2 2.62 1.39 1.14 1.28 1.00
3 3.41* 1.81* 1.48 1.67* 1.30 1.00

1 2.06* 1.07 1.15 1.02 1.30 1.70* 1.00
2 2.48* 1.32 1.08 1.22 1.05 1.37 1.23 1.00
3 3.23,* 1.72* 1.40 1.59* 1.23 1.06 1.60* 1 .30 1.00

1 2.03* 1.o8 1.13 1.00 1.29 1.68* 1.01 1.22 1,59* 2.00
2 2.52* 1.34 1.10 1.24 1.04 1.35 1.25 1.01 1.28 1.25	 1.00
3 3.32* 1.77* 1.45 1.63* 1.27 1.03 1.65* 1.34 1.03 1.64* 1.33	 1.00

a

r	 _ .r

a

dppi..

a

Y

Tab.)-e 4.10

Tabulation of F Statistics for Flight 208
Formed from Positional Check Variances from Collinearity Analysis

Case Cl	 Case C2	 Case C3	 Case C4

`.	 Number of Sections



Table 4. 11

Tabulation of F Statistics for Flight 218 Formed from Reference Variances from Collinearity Analysis

Case Cl	 Case C2	 Case C3	 Case C4

Number of Sections

"Case

i

Cl

Case C2 0

to

a-^

Case C3
0

ai
z

Case C4

1	 2 3 1 2 3 1 2 3 1	 2	 3

1 1.00
2 1.42	 1.00
3 1.60	 1..12 1.00

1 1.29	 1.10 1.24 1.o0
2 1.98* 1.40 1.24 1.54 1.00
3 2.89* 2.04 1.81 2.25* 1.46 1.00

1 1. 34	 1.06 1.19 1.04 1. 49 2.17 1.00
2 1.76* 1.24 1.10 1 .37 1.13 1.64 1.32 1.00
3 1.96* 1.38 1.22 1.52 1.01 1.48 1.46 1.11 1.00

1 1.31	 1.08 1.22 1.02 1.51 2.21* 1.02 1.34 1.49 1.00
2 1.78	 1.26 1.11 1.38 i.11 1.62 1.33 1.01 1.10 1.36	 1.00
3 2.14* 1.51 1.34 1.66 1.08 1.35 1.60 1.22 1.09 1.63	 1.20	 1.00

N
WN

* Denotes values which are statistically significant at an a level of .05.

4

^. .:k. .wuu:ri.....:.^..,.a^....,,vea.....^^.....^..e^..,._._.s....:.v.:..^+...>.....i 	 .a.vl^]Ibi...._: s..,1.. :J



Table 4. 12

Case C2 0
.r4
41
U

44
0

Case C3

Case C4

Tabulation of F Statistics for Flight 218
Formed from Positional Check Variances from Collinearity Analysis

Case Cl	 Case C2	 Case C3	 Case C4

Number of Sections
1 2 3 1 2 3 1 2 3 1	 2	 3

1 1.00
2 1.24 1.00
3 1.44 1.16 1.00

1 1.19 1.05 1.22 1.00
2 1.14 1.41 1.64 1.35 1.00
3 1.13 1.40 1.62 1.34 1.01 1.00

1 1.09 1.14 1.32 1.09 1.24 1.23 1.00
2 1.17 1.07 1.24 1.02 1.32 1.31 1.07 1.00
3 1.42 1.14 1.02 1.20 1.61 1.60 1.30 1.22 1.00

1 1.16 1.07 1.24 1.02 1.32 1.31 1.07 1.00 1.22 1.00
2 1.24 1.01 1.17 1.04 1.40 1.39 1.14 1.06 1.15 1.06	 1.00
3 1.34

I
1.08 1.08 1.13 1.52 1.51 1.23 1.15 1.06 1.15	 1.08	 1.00
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assuming K to be a constant throughout the flight line is

practical.

4.) For flight 208, having small terrain elevation differences

and a large number of control points, Tables 4.9 and 4.10

reveal a statistically significant improvement in the three

section breakdown as compared with treating the entire

flight line as a single section regardless of the analytical

model. This suggests that, for flights having sufficient

control and low terrain relief differences, adequate seg-

menting of the flight line should take precedence over the

use of more complicated analytical models.

5.) As shown in Table 4.12, no significant differences between

the various cases were obtained based upon the check variances

for flight 218. This was expected since the degrees of

freedom for these variances was quite small (8).

6.) Examination of Table 4.8 points out a danger associated

with modeling the exterior orientation elements using a

large number of parameters. For t_is flight line (218)

having relatively few control points, it may be seen that

when the higher order assumptions are made to model exterior

orientation elements, combined with. segmenting the flight

line, the positional check variance actually increases over

those cases having fewer parameters. This indicates that

unless many control points are available, the more highly

non-linear interpolations may be misleading and dangerous.

Although these combinations result in lower reference-
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variances from the adjustment, the actual measure of the

validity of the interpolation, the positional check variance,

increases, due mainly to the relatively small degrees of

1
	 freedom.

I

	

	 In summary, the analysis of the data from the two flight lines

tested suggests that linear modeling of exterior orientation elements

r
i

(Case Cl) coupled with segmentation of the flight line represents

a modeling method which avoids the problems discussed in 6. above.

However, the functional forms of Case C3 are recommended. This

combination of polynomials represents a computationally efficient

method of accounting for non-linear behaviour in the data, and suitably

avoids the problems of overparameterization discussed in 5. above.

This case also results in less computation than for Case Cl, since

the trigonometric functions in the collinearity need be evaluated

only once for each flight line section. It should be emphasized

that the conclusions drawn and recommendations made are valid only

for the two flight lines tested. Additional testing of arrays

generated under varying conditions is necessary before firm conclusions

may be drawn for digital MSS arrays in general.

Similar to the collinearity, the piecewise polynomial formulation

represents another "parametric" method suggested for use in resti-
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4.4.2 Piecewise Polynomials

To test the suitability of the use of piecewise polynomials

in analysis and restitution of digital MSS data arrays, the polynomial

forms of Section 3.2.2 were used. The data arrays were not resampled,

but were used directly as they came from the digitizing equipment.

As with the collinearity formulation, each polynomial ,form chosen

was tested as the mathematical model, treating the entire flight

line as one unit, in two approximately equal sections, and in three

approximately equal sections. The constraints of Equations (3.38)

were invoked at section interfaces. The arrays were roll stabilized,

so that w = 0 was assumed, and the effect of ¢ was assumed incorporated

within the Xc variation.

As previously mentioned in Section 3.2.3, the formulation of

piecewise polynomials will yield results identical to the collinearity

equations if the trigonometric series for tan 6 is taken to a sufficient

number of terms, and if the coefficients of the polynomials are

estimated using the same least squares models as was used to estimate

the parameters of the collinearity equations.

As a test of this supposition, the case was investigated in

which the orientation elements were assumed to be approximated by

second order polynomials for the entire length of flight line 218.

This would represent Case C2, with the flight line as a single unit,

k in the previous section. 	 Polynomials were generated similar to

those of (3.20) except that tan a was represented using additional

terms in the series expansion beyond the first two represented in

r

k

r
9
l^
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(3.20). This formulation was programmed using the least squares

model of combined observations and parameters. The arp iori

estimates of variance for the x, y, X, Y observed quantities were

assigned the same values as were assumed for the collinearity

formulation. The coefficients of the polynomials were then estimated

using successive relinearizations in an iterative least squares

solution. Th.e results obtained were a reference variance of 1.08

and a positional check variance of 5.04. These values are identical

to those obtained for the corresponding collinearity analysis, as

may be seen in Table 4.8. In fact, the results were identical in

all respects to those from the collinearity analysis. Thus, if

sufficient terms are taken in expanding tan 6, and if the same rigorous

least squares procedure is used to estimate coefficients, the results

of a piecewise polynomial formulation will be identical to those

using the collinearity equations,

;-

However, the polynomials in Section 3.2.2.1 were derived assuming

only the first two terms in the series expansion of tan 6. Further,

it is customary when utilizing polynomials to solve for the coefficients

by least squares using the method of indirect observations (multiple

regression). This approximation requires no iterative procedure.

The estimates of the polynomial coefficients result from a

single solution of the linearized equations (V + BA = F°) and

the observations are assumed to have identity weight matrix. These

approximations were made for^the same test case from flight 218

and resulted in ,a positional check variance of 5.83 and an

aposteriori reference variance from the adjustment of 7.78.

L	 ...	 .5.. .............wm^..0 m.:s ..v a.i...a..vits.:m...l3t_. • 	.. .. ..:» .u..
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The positional check variance for the more rigorous adjustment was

5.04. The reference variance resulting from the more rigorous

adjustment was 1.08, which when multiplied by the a priori variance

estimate of 6.25 assumed for positions in the data array, yields

a value of 6.75. The differences between these variances from the

more approximate procedure ( 5.83 and 7.78) and the rigorous procedure

(5.04 and 6.75) are not statistically significant at an a level of

=i	 0.05• It may reasonably be assumed then that the approximate procedure
1

is suitable for use with piecewise polynomials. In the subsequent

tests, the approximate polynomials of Section 3.2.2.1 were used,

and coefficients were estimated using the least squares model of

f,	 indirect observations.
i

The polynomial forms chosen to be tested were the following:
G

i	 Case Plc The polynomials for this case were of the form:
r
y

}	 X = Al + A2 x + A3 y + A4 xy + (A3/3c2 ) V 3 + ( A4/3c2 )XY3
^.	 (4.7)

Y = B1 + B2 x + B3 y + B xy + ( B3/3c2 )y + (B4/3c2)xy3

which represents one of the simplest polynomial forms possible.
f	 t.^

In this case orientation element variations are assumed linear,

and the first two terms of the trigonometric series expansion are

used to approximate the .scan angle. Topographic effects are neglected

in this formulation.

G
y

y	 c	 .

r



Case P2: For this case, the polynomials used were:

'.^	 X = Al + A2 x + .A3 y + A4 xy + (A3/3c2) y3 + (A4/3c2)xY3

J	 - Z[(A3/Zc )y + (A3/3c2 Zc )y3 + (A4/Zc )xy + (A4/3c2zc)xy3]
(4.8)

Y = Bl + B2 x + B3 y + B4 xy + (B 3/3c2 )y3 + (B4/3c2)xy3

- Z[(l/c)y + (1/3c3)Y3]-

6

ti

1

I

IF

r

4

r

This formulation represents linear modeling of exterior orientation

variation, but includes the effect of topographic elevations.

It is equivalent to Case Cl of the collinearity formulation, in that

the same assumptions concerning exterior orientation variations were

made.

Case P3: The polynomials

X = Al +A'2 x+A3 x2 +A4y+A5xy+A6x2y

+ (A4/3c2 )y3 + (A5/3c2 )xy 3 + (A6/3c2)x2y3
(4.9)

Y = Bl +B2 x + B 
3 

x2 +B4y+B5 xy+B6 x2y

+ (B4/3c2 )y3 + (B5/3c2 )xy3 + (B6/3c2)x2Y3

were used. This formulation represents the assumption of second

order polynomials for the variations of all of the elements of exterior

orientation, in which terrain elevations are neglected.
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Case P4: The polynomials used for this case are:

y^

k

t

a

j

i

r

t:

i

X = Al + A2 x + A3 x2 + A4 y + A5 xy + A6 x2Y

+ (A4/3c 2 )Y 3 + (A5 /3c2 )xY 3 + (A6/3c2)x2y3

- Z[(A4/Zc)Y + (A4/3c2Zc)Y 3 + (A5/Zc)xY

+ (A5 /3c2zc)xy3 + (A6/Zc)x2y + (A63c2Zc)x2Y3)	

(4.10)
Y = Bl +B2 x+B 3 x2 +B4y+B5 xy+B6 x2Y

+ (B4/3c 2 )y 3 + (B5 /3c2 )xY 3 + (B6/3c2)x2y3

- Z[(1/c)Y + ( 1 /c 3)Y3]

It may be seen from these tabulations that for this flight

over flat terrain, the inclusion of elevation data had virtually

This form of the polynomials assumes second order variations of

orientation elements and attempts to include topographic effects.

It represents the same assumptions concerning exterior orientation

behaviour as were made for the collinearity model in Case C2.

Table 4.13 summarizes the results of the analysis for flight 208.

Table 4.14 depicts a tabulation of F statistics for this flight

line formed from the reference variances from least squares analysis,

and Table 4.15 is a tabulation of F statistics for this flight based

upon check variances computed using check points withheld from the

adjustment.

no effect upon the accuracy_obtRined, as would be expected. For the

lower order polynomials of Caiie P1 and Case P2, statistically significant

improvement was noted in dividing the strip into 2 sections over

that of treating the flight line as a unit, and little further

improvement was noted for these lower: order polynomials in going
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Table 4.13

Statistics from Piecewise Polynomial Analysis of Flight 208
(60 Check Points)

Number of Sections

1 2 3

Case Pl:	 Number of Parameters 8 16 24
Degrees of Freedom 70 66 62
Reference Variance 7.91 3.29 2.87	 A
Check variance x in rsu 2 (d.o.f. = 59) 9.10 3.06 2.42
Check variance y in rsu2 (d.o.f. = 59) 4.54 3.96 3.39
Positional Check Variance in rsu 2 6.62 3.50

4
2.89

Case P2:	 Number of Parameters 8 16 24
Degrees of Freedom 70 66 62
Reference Variance 7.92 3. 29 2.86
Check Variance x in rsu 2 ( d.o.f. = 59) 9.10 3 . 06 2.42
Check Variance y in rsu 2 (d.o.f. = 59) 4.57 4.01 3.41
Positional Check Variance in rsu2 6.64 3.52 2.89

Case P3:	 Number of Parameters 12 24 36	 .
Degrees of Freedom 66 5$ 50
Reference Variance 3.16 2.41 1.82
Check Variance x in rsu 2 (d.o.f. = 59) 2.49 2.28 2.01

5

Check Variance y in rsu 2 (d.o.f. = 59) 4.05 2.84 1.88
Positional Check Variance in rsu2 3.22 2.56 1.95

Case P4:	 Number of Parameters 12 24 36
Degrees of Freedom 66 58 50'
Reference Variance 3.16 2.40 1.83
Check Variance x in rsu2 (d.o.f. = 59) 2.49 2.28 2.01
Check Variance y in rsu 2 (d.o.f. = 59) 4.09 2.86 1.92
Positional Check Variance in rsu2 3.24 .2.57 1.96
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Table 4.14
i

w'

Tabulation of F Statistics for Flight 208
Formed from Reference Variance from Piecewise Polynomial Analysis

. Case Pl Case P2 Case P3 Case P4

. Number	 of Sections

Case Pl

Case P2 .0
;pvw

we
Case P3

14w

z

Case P4

1 2	 3 l	 2	 3 1	 2	 3 1 2	 3

1 1.00
2 2.40* 1.00
3 2.76* 1.1.5 1.00

1 1.00	 2.40* 2.76* 1.00
2 2.4o* 1.00 1.15 2.41* 1.00
3 2.76* 1.15 1.00 2.77* .115 1.00

1 2.50* 1.04 1.10 2.51* 1.04 1.10 1.00
2 3.28* 1.36 1.19 3.29* 1.36 1.18 1.31 1.00
3 4.35* 1.81* 1.57* 4.35* 1.81* 1.57* 1.74* 1.32 1.00

1 2.50* 1.04 1.10 2.51* 1.04 1.10 1.00 1.31 1.74x4 1.00
2 3.30* 1.37 1.20 3.30* 1.37 1.19 1.32 1.00 1.32 1.32 1.00
3 4.32* 1.80* 1.57* 4.33* 1.8o* 156 1.73* 1.32 1.00 1.73* 1.31	 1.00

N

N
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Table 4.15

Tabulation of F Statistics for Flight 208
Formed from Positional Check Variances from Piecewise Polynomial Analysis

Case P1	 Case P2	 Case P3	 Case P4

Number of Sections

Case P1

Case P2 0

a^
EQ

u

4-,
0

Case P3

z
Case P4

1 2 3 1 2 3 1 2 3 1	 2	 3

1 1.00

2 1.89* 1.00
3 2.30+ 1.21 1.00

1 1.00 1.89* 2.30* 1.00
2 1.88* l.ol 1.22 1.88* 1.0o
3 2.29* 1.20 1.01 2 ..30* 1.21 1.00

1 2.05* 1.09 1.11 2.05* 1.09 1.11 1.00
2 2.6o* 1.37 1.13 2.60* 1.38 1.14 1.26 1.00
3 3.41* 1. 8o* 1. 48 3.42* 1 . 81* 1.49 1.65* 1.31 1.00

1 2.o4* 1.08 1.12 2.04* 1.09 1.11 1.01 1.27 1.66* 1.00
2 2.59* 1.36 1.12 2.59* 1.37 1.13 1.25 1.00 1.32 1.26	 1.0o
3 3.37* 1.79* 1.47 3.37* 1.80* 1. 48 1.61+* 1,31 1.00 1.65* 1.31	 1.00

3
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x

from 2 to 3 sections. For the higher order polynomials, it was

in general necessary to segment the flight into 3 sections before

significant improvements could be discriminated over treatment as

a single unit. In most cases, significant improvement was noted

in going from the lower order polynomials of Case Pl and Case P2

to the higher order polynomials of Case P3 and Case P4 for the same
	

i

number of sections.
S

Table 4.16 summarizes the results of the polynomial analysis

for flight 218. Tables 4.17 and 4.18 depict tabulations of F statistics

formed from the reference variances and check variances, respectively.

Although improvements in the reference variances were generally

noted when elevation information was included for this flight over

moderate terrain relief, such improvements were not found to be

statistically significant. Segmenting of the strip had no significant

effect upon the accuracies obtained for the lower order polynomials.

The only generally apparent statistically significant improvement

in the reference variances appears to be in going from the lower

order polynomial cases to the higher order Case P4 combined with

segmenting the flight line into 3 sections. No significant differences

were detected for flight 218 based upon the check variances, as may

be expected due to the small degrees of freedom associated with

these (8). Note, that for this analysis, as with the collinearity

model, the assumption of a large number of parameters could be

dangerous, as indicated by the increase in the check variances.

Thus, although the points included in the adjustment were fit quite
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Table 4.16

Statistics from Piecewise Polynomial Analysis of Flight 218
(9 Check Points Only)

Number of Sections

1 2 3

Case Pl: Number of Parameters 8 16 24
Degrees of Freedom 38 34 30
Reference Variance 10.20 7.94 6.80
Check Variance x in rsu2 (d.o.f. = 8) 7.20 6.61 7.33
Check Variance y in rsu2 (d.o.f. = 8) 5. 67 4.74 1.84
Positional Check Variance in rsu2 6.40 5.64 4.13

Case P2: Number of Parameters 8 16 24
Degrees of Freedom 38 34 30
Reference Variance 9.11 7.02 6.33
Check Variance x in rsu2 (d.o.f. = 8) 7.19 6.58 7.26
Check Variance y in rsu2 (d.o.f. = 8) 4.96 4.72 2. 36
Positional Check Variance in rsu2 6.02 5.61 4.47

Case P3: Number of Parameters 12 24 36
Degrees of Freedom 34 26 18
Reference Variance 8.88 5.52 4.19
Check Variance x in rsu2 (d.o.f. = 8) 6.67 14.96 17.71
Check Variance y in rsu2 (d.o.f. = 8) 4.91 2.02 1.32
Positional Check Variance in rsu 2 5.76 6.99 7.17

Case P4: Number of Parameters 12 24 36
Degrees of Freedom 34 26 18
Reference Variance 7.78 5.07 3.56
Check Variance x in rsu2 (d.o.f. = 8) 6.64 14.88 17.69
Check Variance y in rsu2 (d.o.f. = 8) 5.02 2.13 1.40
Positional Check Variance in rsu2 5.81 7.07 7.26

a



1	 2 3 1 2 3 1 2 3 1	 2	 3

1 1.00
2 1.28	 1.00
3 1.50	 1.17 1.00

1 1.12	 1.14 1.34 1.00
2 1.45	 1.13 1.03 1.30 1.00
3 .1.61	 1.25 1.07 1.44 1.11 1.00

1 1.15	 1.12 1.30 1.03 1.26 1.40 1.00
2 1.85* 1.44 1.23 1.65 1.27 1.15 1.61 1.00
3 2.43* 1.89 1.62 2.17* 1.68 1.51 2.12* 1.32 1.00

1 1.31	 1.02 1.14 1.17 1.11 1.23 1.14 1.41 1.86 1.00
2 2.01* 1.56 1.34 1.80 1.38 1.25 1.75 1.09 1.21 1.53	 1.00
3 2.86* 2.23* 1.91 2.56* 1.97 1.78 2.49* 1.55 1.17 2.18* 1.42	 1.00

N
rn

Case P2 O,H
vmm

Table 4.17

Tabulation of F Statistics for Flight 218
Formed from Reference Variance from Piecewise Polynomial Analysis

Case Pl	 Case P2	 Case P3	 Case P4

Number of Seetinnn

* Denotes values which are statistically significant at an ea level, of .05.

6i



l 2 3 1 2 3 1 2 3 1	 2	 3

1 1.00
2 1.13 1.00
3 1.55 1.37 1.00

1 1.07 1.o6 1.46 l.00
2 1.14 1.01 1.36 1.07 1.00
3 1.43 1.26 1.09 1.35 1.25 1.00

1 1.11 1.02 1.39 1.o4 1.03 1.29 1.00
2 1.09 1.24 1.69 1.16 1.25 1.56 1.21 1.00
3 1.12 1.27 1.74 1.19 1.28 1.6o 1.25 1.02 1.00

1 1.10 1.03 1.41 1.03 1.04 1.30 1.01 1.21 1.24 i.00
2 1.10 1.25 1.71 1.17 1.26 1.58 1.23 1.01 1.02 1.22	 1.00
3 1.13 1.29 1.76 1.21 1.29 1.62 1.26 1.04 1.00 1.25	 1.02	 1.00

Case Pl

R

Case P2 .°
a'
va^to
w0

Case P3

z

Case P4

N

G

t

Table 4.18
k
h

Tabulation of F Statistics for Flight 218
Formed from Positional Check Variances from Piecewise Polynomial Analysis

Case Pl	 Case P2	 Case P3	 Case P4

Number of Sections
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closely as shown by the lower reference variances, the true test

of the fit, as given by the check variances computed from points

withheld from the adjustment, deteriorated.

The value in including Z coordinate elevations is doubtful

for this test array over moderate terrain relief. For this test, no sig-

nificant improvement vas gained in doing so, indicating that terrain

relief effects are relatively small for this array, and such effects

are at least partially compensated for in estimating the parameters

of exterior orientation. However, a test with many more check points

should be carried out before a more concrete assertion can be made

regarding the inclusion of point elevations in the polynomials.

4.4.3 Nonparametric Methods

The four nonparametric methods of MSS digital data array

analysis and restitution which were attempted for testing are:

1. Arithmetic mean

2. Moving average

3. Meshwise linear transformation

4. Linear least squares filtering

The first three of the above represent algorithms which may be

applied to MSS digital data arrays in a fairly straightforward

manner. The linear least squares filtering is highly dependent

upon the validity of assumption of some statistical properties

concerning the data arrays. Considerable difficulty was experienced

in applying this method to the data arrays available for testing.
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Equation (3.13), followed by approximate scaling in the y direction,

in order to approximately equalize scaler in the x and y directions.

A weighting function was then chosen using only separation distance

between points as the independent variable. For the flight lines

tested, the weighting function was assumed to be of the form

1
wi	 di3`	 (4.11)

For the test of the moving average algorithm, no preprocessing

of the data was done. The weighting function of (4.11) was also

used for this method, and the non-linear form of Equation (3.45)

was utilized.

The meshwise linear transformation was also tested on both

flight lines. No preprocessing of the data is required for this

method, and no weighting function need be defined. The control

points were connected into a triangular mesh, and each check point

was transformed according to the unique parameters of an affine

transformation defined by the coordinates of the three control points

forming the triangle within which the check point lies.
F

Attempts were also made to analyze the applicability of the
i
t

linear least squares filtering method as a restitution technique.

The results of these attempts, however, were disappointing. Suc-

cessful application of the method depends upon the data having

specific statistical properties. The property of ergodicity must

be assumed, which in turn depends upon stationarity of the data. In

addition, isotropy of the two dimensional data field must be assumed (991•

^	 s



The resampling algorithm of Equation (3.13), followed by ap-

proximate y direction scaling was used to preprocess the flight

lines in an attempt to satisfy the isotropic requirement. Sample

covariance points were then computed from the data sets using the

method presented in [99]. Results of these steps for flight 208

are represented by Figure 4.11. From these plots, it is apparent

that the data set cannot be considered to satisfy the statistical

requisites over the entire length of the flight line, since no logical

fit to these sample covariance points may be obts°ned using an allowable

autocovariance functional form. Ya,glom [109] and Bendat and Piersall

(114] enumerate the characteristics of an autocovariance function

as follows:

C(0) > 0

C(-T) = C(T)

C( -Z)	 C(0)

in which C represents the value of the autocovariance function

and T represents the independent variable. The cross-covariance

function need only satisfy the condition CXy(T) = CX,( -T) [114].

It may be seen from the figure that no function having the properties

described above may reasonably be fitted to these points. Similar

results were obtained, for flight 218.

In an attempt to alleviate these problems, covariance functions

were calculated based only upon sample covariance points within

limited regions, limiting the distance to less than 500 elements.

Within these regions it was attempted to fit Gaussian functional_ -

250
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Figure 4.11. Sample Covariance Points for Flight 208
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forms, as suggested by Kraus and Mikhail (99], to sample covariance

points. The Gaussian type covariance function may be written in

the form:

C(d) = C(0) e-kd2	 (4.12)

in which the C(0) and k parameters are estimated by a least squares

fit of the function to the sample covariance points.

After these covariance functions were determined, they were

used to calculate the elements within the C matrix of Equation (3.49),

as well as the c matrix. Each element of the sub-matrices Cx, Cy,

Cxy, Cyx in Equation (3.49) are computed from the appropriate covariance

function. For the present investigation, two cases were considered.

In the first, three separate covariance functions were determined
i

for calculation of the terms in the Cx , Cam,, and Cam, sub-matrices

by a least squares fitting to the sample covariance points. For

this case it was assumed Cam, = C yx . In the second case, it was

assumed that Cxy = Cyx	 0. This represents the case for which

independent interpolation and filtering are done in the x and y

directions.

If interpolation only is to be done, the diagonal elements

of the C matrix will contain values C(0) from the appropriate auto-

covariance functions. However. if estimates of random components
N.

	

'	 r at the reference points are to be filtered, in addition'to interpo-

lation of the s components, the diagonal terms of the C matrix are

replaced by variance terms Vx, Vy computed from the data set.

f
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by

II

n
V.	 =	 E ^2xi

i=1

1

in which 1xi	 =	 Xi - s= for n control points.	 It was this technique ,^

which was attempted in this investigation. 	 Hence, simultaneous
a

interpolation and filtering was attempted. ,f

For the data sets available for testing, however, the results

obtained using this linear least squares procedure were highly

erratic.	 Combinations of covariance functions which appeared to

yield acceptable results on one flight line yielded very large

positional check variances on the other. 	 A preliminary supposition

is that the data sets, even after the preprocessing steps described

above, do not adhere to the requisite statistical properties necessary

for the successful application of the linear least squares algorithm.

Because of this unpredictability of results from the linear

least squares procedure, this technique is not included in the

tabulated results to be presented. 	 In Table 4.19 the resulting

statistics obtained from the processing of the data arrays for flight 208
3

by nonparametric interpolative methods are shown.	 The statistics

shown are ,based upon check variances formed by applying the non-

parametric methods to the check points as based upon the control

points available within the strip. 	 Sixty such check points were

available for flight 208.	 In Table 4.20 a similar tabulation is
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Table 4.19

Statistics from Analysis of Flight 208
o-(	 by Nonparametr.ic Interpolative Methods

(60 Check Points)

f-'I
Arithmetic Mean

;

x	 :, Degrees of Freedom (x and y)
Check Variance, x, in rsu2
Check Variance, y, in rsu2
Positional Check Variance

5	 ww Moving Average

Degrees of Freedom (x and y)
Check Variance, x, in rsu2
Check Variance, y, in rsu2

s Positional Check Variance

Meshwise Linear Transformation

Degrees of Freedom (x and y)
Check Variance, x, in rsu2
Check Variance, y, in rsu2
Positional Check Variance

59
2.44
1.51
1.86

59
1.75
4.16
2.79

59
1.82
5.09
3.26
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Table 4.20

Statistics from Analysis of Flight 218
j by Nonparametric Interpolative Methods

(9 Check Points)

Arithmetic Mean

a Degrees of Freedom (x and y) 8

n Check Variance, x, in rsu2 10.69
Check Variance, y, in rsu2 2.32

! Positional Check Variance 5.76

Moving Average

Degrees of Freedom (x and y) 8
Check Variance, x, in rsu2 7.1+9
Check Variance, y, in rsu2 3.82
Positional Check Variance 5.52

Meshwise Linear Transformation
4

Degrees of Freedom (x and y) 8
Check Variance, x, in rsu2 6.25
Check Variance, y, in rsu2 5.864

Positional Check Variance 6.05

it

I
r

}
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flight line, and the resulting degrees of freedom (8) for the x and

y coordinate values, respectively, is quite small. Table 4.21 is

a tabulation of the F statistics computed from the positional check

variances for flight 208. Of interest here is the fact that the

simplest interpolative method, that of the arithmetic mean, shows

a significant reduction of variance over the meshwise linear transfor-

mation method. No other statistically significant differences were

noted for this flight line. Table 4.22 shows a similar tabulation

for flight 218. As might be expected, no significant differences

between the interpolative methods were detected for the small degrees 	
a

of freedom available. The inference to be drawn from these tables

is that if restitution is to be done for the arrays tested using

a nonparametric method, the choice of the simple arithmetic mean

represents a logical and computationally efficient choice, well

suited to automated restitution as a portion of automated interpretation.

General conclusions should not be drawn, however, based -upon such

limited tests. Further investigations utilizing data arrays generated

under a variety of conditions must be performed before a definitive

statement may be made. 	
Y

4.4.4 Summary of Results

The results of the tests performed on the data arrays chosen

indicate that the nonparatmetric methods, particularly the arithmetic

mean algorithm, represent perhaps the optimum method for restitution

of MSS digital data arrays. For flight 208, each of the check var-

iances from the collinearity and piecewse polynomial analysis were

i"
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Table 4.21

Tabulation of F Statistics for Flight 208
Formed from Positional Check Variances from Nonparametric Methods

Arithmetic	 Moving	 Meshwise
Me an	 Average	 Linear

Transformation
x	 ^	 '

Arithmetic
Mean	 1.00

Meshwise
Linear	 1.75*	 1.17	 1.00
Transformation

Denotes values which are statistically significant at an a level
of .05.

Table 4.22

Tabulation of F Statistics for Flight 218
Formed from Positional Check Variances from Nonparametric Methods

Arithmetic	 Moving	 Meshwise
Mean	 Average	 Linear

Transformation

Arithmetic
Mean	 1.00

Moving
Average	 1.01+

Meshwise
Linear	 1.05
T ` f	 tion

1.00

1.10	 1.00

^.	 rans orma
Y

J,
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compared using the F statistic to that obtained by the arithmetic

mean algorithm. It was found that, for the collinearity analysis,

only the higher order polynomial assumptions, coupled with dividing

the flight line into sections could compare favorably. In all cases

of linear orientation variation assumption the check variances from

the collinearity analysis were significantly higher than that obtained

from the arithmetic mean analysis, at an a level of .05. Similar

results were obtained when a comparison of the results of the poly-

nomial analysis wi'~a that of the nonparametric methods was done.

For flight 203, or:y, the higher order polynomials coupled with

dividing the flight line into three sections could compare favorably

with any of the nonparametric methods. The nonparametric methods

in general produced statistically better results than those from

the lower order polynomials.

For flight 218, a comparison of the check variances obtained

from the collinearity analysis and those from the nonparametric

methods was also done. No statistically significant differences

were found. A comparison of check variances from the polynomial

analysis with those from the nonparametric methods also revealed

no significant differences. These results are noteworthy, because

1

e

z

fic—	 _.

in using the nonparametric methods no attempt was made to account

for displacements due to topography. This would indicate that for

arrays obtained by scanning areas of moderate terrain relief (e.g.

flight 218) that errors due to relief displacement are small compared

to those due to other sources (orientation, scan time, etc.), or

that the nonparametric algorithms at least partially account for }

,y

w-
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the topographic effects or a combination of these factors. There-

fore the nonparametric methods (particularly the relatively simple

arithmetic mean algorithm) were shown to represent an effective

method for use in the restitution of such arrays, at least
	

6

for the arrays tested, although no general conclusions should be

drawn from such limited tests.

4.5 Final Transformation of Flight Lines

A final transformation of the test flight lines was attempted

utilizing the collinearity method of restitution. The method used

was as described in Section 3.5. After estimating the parameters

of the model, the restituted X 3 , Yj coordinate values were assigned

as the independent variables in the transformation equ -ations. An

iterative procedure was utilized in which Zj was first estimated,

the collinearity equation for the coordinates in the direction of

flight was then solved explicitly for x 3 , the uncorrected array

position, and this value was utilized in the second collinearity

equation to solve for yp the along scan array position in the

uncorrected array. These values were used to locate an updated

value for the Z^ term, and the process was repeated until no change 	 .

in the resulting array position was found. The spectral values in
I,	

the x, yj uncorrected array position were then assigned to the
F

^	 X Y^ restit uteri array position after iterative transformation.?t

This procedure was repeated for each data array element. The program

utilized was a modification of Anuta's OVERLA program (110], whichu
n

was originally written to superimpose different arrays of data con-

taining essentially the same ground area.

Y

3

t



Digital displays of the restituted arrays were then generated

to assess qualitatively the results. In Figure 4.12 is shown the

digital display of channel 6 for flight line 208 after restitution,

which may be compared directly to Figure 4.2, the digital display

of the unprocessed array. A careful study of these images reveals

that improvements in the geometric characteristics of the array

have been obtained. The narrowing of the flight line results from

a correction of the scan angle effects and the differential scale	 s

in the x and y directions. The triangular area near the top of the

flight line (arrow A, Figure 4.12) has been visibly restored to a

configuration more closely matching the shape it should have as

illustrated in the map planimetry of Figure 4.5. The alignment of

the interstate highway cutting diagonally across the bottom half

a
of the flight line ( arrow B, Figure 4.12) has been visibly straightened,

as has the alignment of the central roadway running down the flight

line. Gross roads appear more nearly perpendicular to this central

roadway, indicating that the scan time effects and the effects of

aircraft yaw were compensated for.

The restituted array from channel 6 for flight line 218 is

t. shown in Figure 4.13. The river bend (arrow A, Figure 4.13) in

this display is seen to reflect more closely the map planimetry

illustrated in Figure 4.6 than in the unprocessed array of Figure 4.4.
t

The inclination of the roadway (arrow B, Figure 4.13) in this area

also has been restituted into an alignment more closely matching

that shown in Figure 4.6.

k'
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Upper half	 Lower half

Figure 4.12. Digital Display of Processed Array for Flight 208
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Upper half	 Lover half

Figure 4.13. Digital Display of Processed Array for Flight 218
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These displays illustrate the feasibility of algorithms to
i

i	 restitute the originally deformed data arrays into array systems

displayable in an orthographic projection system. These restituted

data arrays may be used to extract metric as well as interpretive

information, and may serve as a basic data source for the existing

automated interpretation algorithms, reflecting more closely the

geometry of they area sensed as it actually appears in the ground

1	 system.
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5• CONCLUSIONS AND RECOMMENDATIONS

The scope of the investigation ras encompassed the analysis

of the geometric aspects of recording multispectral scanner (MSS)

data in a digital manner. An introduction to the digital techniques

of utilizing 14SS data has been presented, and the geometric distortions

present in such arrays were described. The basic transformation

equations for recording MSS data were given and specific expressions

were derived from these for analysis and restitution of the data

arrays. Nonparametric techniques of restitution were also utilized

as an alternative to the parametric methods based upon the trans-

formation relationships. Testing of both methods of analysis and

restitution on actual digital data arrays was attempted. The
f

numerical results obtained were for the case of singly scanned flight

lines only, since no overlapping flight lines were available for
k

testing in this investigation,

5.1 Conclusions

The investigation conducted supports the following conclusions:

l.) Significant geometric distortions are present in unprocessed

14SS digital data arrays, and must be consi dared in order to reliably

t 

obtain reliable metric information for surveys. of resources at
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the Earth's surface. The major causes of these geometric pertur-

e.) terrain relief displacements due to topographic relief

bations present within the arrays are:

a.) changing ground resolution size at different scan angles

and image position displacement due to panoramic recording

differences within the area scanned

c.) perturbations caused by the continuous changes in sensor

exterior orientation elements during recording of the data

d.) effective image displacements due to forward motion of the

sensor during the short time interval required to record

a single scan line.

I

Two types of investigations were carried out for data arrays containing

such geometric displacements. The problem of analysis was considered,

in which it is desired to investigate the causes of the geometric

displacements, and determine the resulting magnitudes and directions

of the errors within the data arrays due to each cause. Subsequently,

the problem of restitution of the data arrays was considered, in

which it is desired to correct the geometric errors within the arrays

using any convenient method, without necessarily isolating and

investigating the individual causes of the errors.

2.) The MSS collinearity equations derived from the geometric

portion of the more general MSS transformation provide a suitable

mathematical model for both analysis and restitution of MS data.

These expressions represent the actual geometric relationships

between ground points and image array positions at the moment of

recording. Therefore they represent the most obvious mathematical

{
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model, and serve as the basis of other approximate methods of analysis

	

`-1	 and restitution.

3•) The collinearity equations may be used with ground control

points to perform space resection in order to obtain estimates for
5F.

the elements of exterior orientation of the sensor during recording

of the data. However there are some severe limitations on such

resections. The most serious is that, since the multispectral scanner

records continuously, each scan line has different exterior orientation

	

'	 elements than any other scan line. To solve for a separate set

of exterior orientation elements for every scan line is impossible.

Therefore, some assumption must be made concerning the variation

of each exterior orientation element as the sensor progresses down

the flight line. If a functional form is assumed for each of these

orientation elements, the parameters of these function„ will be de-

termined by a space resection. If the actual stochastic variations

of the exterior orientation elements are not reasonably approximated

by the functional forms assumed, then the collinearity formulation

and methods based upon the collinearity formulation lose their ad-

vantage, and other methods of analysis may compete favorably with

th4 collinearity formulation as a mathematical model. It was found

in this investigation that the assumption of polynomial functional

_ s	 forms for the orientation elements provided: adequate accuracies 	 q

and reasonable computational efficiency fox , the data. arrays tested.

4.) If space resection is performed utilizing ground control

points based upon the MSS collinearity e quations for a singly scanned

flight line, not all of the elements of exterior orientation for the

e

t
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sensor can be recovered. A constant pitch (0) of the sensor is

not distinguishable from a constant X translation of the sensor

perspective center (Xc ). Likewise, a constant rate of change of

pitch is not distinguishable from a constant aircraft velocity.

Similar dependencies are found if higher order terms are attempted

to simultaneously model the pitch and X translation of the sensor.

Therefore not all of the elements of exterior orientation are re-

coverable.

5.) Significant improvements in the results of restitution

using collinearity equations may be realized by breaking the flight

line into sections. For the flight lines tested, sections of 800

lines or less were used. Control points within each section can

then be used to define independent parameter sets for that section

by space resection. Discontinuities in the restituted array positions

at section boundaries may be avoided by utilizing parameter constraints

during.the least squares estimation of the exterior orientation

parameters. This problem of discontinuities at section boundaries

will be discussed further in a later conclusion.

1I

6.) If restitution of MSS digital data arrays is to be attempted

using the collinearity equations, then terrain height information

may be introduced into the uncorrected data arrays in some manner,

in order that relief displacements may be removed during the restitution

procedure. One possible source of this information (used for this

investigation) is the U.S. Geological Survey 7 1/2 minute quadrangle

topographic map sheets. If these or other topographic map data

are used as a source of elevation information, the data contained
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on the map must be transformed into a digital data format in some

manner. This digitized data must be superimposed upon the uncorrected

digital MSS arrays such that an elevation is assigned to each element

within the IVES digital data array with sufficient accuracy to allow

restitution of the arrays to a precision within the size of the

resolution of the data.

7.) Piecewise polynomial forms for restitution of MSS digital

data arrays may be derived from the collinearity equations. These

polynomials may be formulated to account for various assumptions

concerning exterior orientation element variations, and for relief

displacements within the arrays. These polynomial formulations

require that a series expansion be used to approximate the trigono-

metric functions resulting from scan angle variations. If sufficient

terms are taken in the series approximations, and if the proper

rigorous least squares procedure is used, the results obtained

are identical to the results using the collinearity formulations.

If only a few terms are carried for the series expansion, and a

simpler least squares procedure is used, the results from these

polynomial models are in general, inferior to the results from col-

linearity analysis. The difference, however, was found not to be

statistically significant.

8.) Both the collinearity and piecewise polynomial formulations

were found to be relatively insensitive to moderate errors in assignment

of element elevations to the uncorrected data arrays. The derivation

of an allowable height assignment error formula revealed that an

element elevation error of 1.2% of the flying height above terrain
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would result in an error in position of less than the ground reso-

lution size of an element for arrays digitized at 6 milliradians,

at the extreme case of a scan angle of 45' from the vertical. In

conducting tests on real data having flat and moderate terrain relief,

it was found that the resulting positional error was affected to

a greater degree by the assumption of functional forms for exterior

orientation elements than by the inclusion of element elevation

information within the expressions utilized.

9.) The assignment of elevations to eleme;r.t positions within

the uncorrected arrays to the required accuracy was found to be

relatively insensitive to the approximate planimetric transformation

used to transform the original array positions to the coordinate

system based upon digitized control points. An affine transformation,

applied to sections of the flight line was found adequate for this

purpose. Tests of real data arrays revealed that assignment of

element elevations utilizing the affine transformation resulted

in element elevation errors less than the theoretical allowable

height assignment error.

10.) The assignment of element elevations by digitally searching

for contour-scan line intersections followed by linear interpolation

for elements between these intersection points was found to result

in acceptable values for element elevations for the purposes of

restitution. A more general interpolative technique (arithmetic

mean) was attempted and found to result in much greater computation

time with no significant improvement in accuracy.



^....,,.	
^	 :.	 j..... ^n^.ea^.^.._,,.^.. ...>..- . 	 ... ^._,^,.^.__....__,._.:t_..___.......,^:.^n._^x^,,.^.^^_.r•^-^ 	

.,. _	
'BEM	 .. _	 ..

r^
270

11.) The use of MSS data in digital array form allows for two

alternative transformation procedures for restitution. In the first

instance, the more conventional procedure of utilizing image coordinates,

or, for MSS digital data, array positions as independent variables

is pursued. These are utilized in the restitution functions to

generate restituted arrays having improved geometrical properties.

This method has the advantage that the projective relationships

may be used directly and requires no iterative steps in restitution.

However, the method requires a large output buffer, interpolation

of spectral density data, and may result in multiple assignments

of spectral values to a single element location.

The second possible method utilizes the output array positions

as independent variables and involves a solution of the restitution

equations for the corresponding uncorrected data array positions.

An input buffer is required in this case, and an iterative procedure

is necessary, since elevation data are associated with the uncorrected

array positions.

12.) If discontinuities are to be eliminated at section boundaries,

constraints may be enforced to accomplish this. If the flight line

is divided along lines of constant x image coordinate, the general

constraint to be enforced is that the restituted X, Y position computed

for every element along this boundary must bethe same when computed

using the parameters for the section on either side of the boundary.

This results in six constraint equations whether utilizing the

collinearity or piecewise polynomial formulations.

I
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13.) The nonparametric methods introduced appear to be quite

promising as an alternative to restitution of MSS digital data arrays

using collinearity equations or piecewise polynomials. These non-

parametric interpolative methods have some advantages over the

more conventional methods of restitution which make them appear to

be well suited for application to digital MSS data arrays.

a.) The accuracy of restitution using these nonparametric methods,

as indicated by tests on real data arrays having flat and

moderate terrain relief, was comparable to the restitution

accuracy achieved by the more conventional methods utilizing

collinearity equations or piecewise polynomials.

b.) The problem of assignment of element elevations may be

avoided. The treatment of'the geometric displacements

as a realization of a two dimensional stochastic field

from which trend has been reasonably removed, appears to

have at least partially corrected for relief displacements

within the interpolative algorithms themselves, without

the need for assignment of element elevations for every

data array position.

c.) Some of the nonparametric algorithms, notably the arithmetic

mean algorithm, are quite simple and relatively fast com-

putationally, resulting in efficiency in transforming

large numbers of array point positions.

d.) There is no problem of breaking the flight line into sections,.

and hence no problem of removing discontinuities at section

boundaries. The nonparametric algorithms are continuous

throughout the flight line.
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The primary disadvantage of the nonparametric interpolative

methods is that some of them depend upon certain assiziptions

(isotropy, stationarity, ergodicity) of the stochastic field.

MSS digital data arrays must be preprocessed in some manner to

approximate isotropy. Serious doubts were raised during the inves-

tigation as to whether the digital MSS arrays obtained from aircraft,

may be considered stationary, even over limited areas. For most

of these nonparametric methods, however, the results of restitution

were found to be acceptable even though the assumptions were not

fully realized.

14.) For the arithmetic mean algorithm, it was found that a

simple resampling algorithmi, followed by approximate scaling in the

dive ction normal to flight could be used to acceptably approximate

isotropy.

15•) Of the nonparametric algorithms, the arithmetic mean al-

gorithm appeared to be most promising for the data arrays tested.

The method is simple, fast, and the resulting accuracy of restitution

is comparable or superior to any of the other nonparametric methods

or the parametric methods (collinearity equations and piecewise

polynomials). The lone disadvantage of the method is that it requires

pre-processing of each array position as discussed in conclusion 14.

16.) The moving average interpolative algorithm appears to be

able to compete with that of the arithmetic mean. The ability of

this algorithm to include non linear effects allows for the omission

of pre-processing of the data arrays. However, for each element

calculated during restitution using this method, a unique parameter

E

8
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set must be evaluated by least squares techniques, resulting in an

algorithm which is slower than that of the arithmetic mean, with

no statistically significant improvement in accuracy of the restitution

for the arrays tested.

17.) The meshwise linear transformation does not appear promising

as a nonparamet ric algorithm for restitution of MSS digital data
	

i

(1

	 arrays. The method is predicated upon the fact that each element
G

to be transformed lies within a triangle whose vertices represent

control points which are identifiable both upon a map sheet and

within the uncorrected data arrays. Such a condition cannot be

fulfilled for every data array element within a flight line. A

further disadvantage of -the method is that a lar&^ amount of human

intervention is required, in order to define a unique mesh of con-

tiguous triangles formed from the control points. Therefore the

method does not appear well suited to an automated technique combining

the interpretive and geometric analysisof the data arrays.

18.) The results obtained in attempting to utilize the method

of linear least squares interpolation and filtering were highly

erratic. The method is highly dependent upon the fulfillment of the
i
t

assumptions concerning stationarity, ergodicity, and isotropy of

the stochastic field. The preliminary supposition as of this time
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5.2 Reconmendations

The following suggestions are offered for further research

and development efforts in the field of ISS digital data array

utilization bases upon the experience of this investigation.

l.) An attempt should be made to implement a unified approach

to amalgamate the classically separated activities of interpretation 	 {

and mensuration. The digital method of analysis of MSS data arrays

appears ideally suited to this purpose. The inclusion of the analysis

and restitution methods presented in this thesis with existing

automated interpretation techniques would result in the ability to

extract quantitative information in addition to the qualitative

information presently being generated, thus increasing the information

obtainable from the MSS data concerning Earth resources.

2.) An investigation should be carried out concerning the

applicability of functional forms other than polynomials to approximate

the stochastic variation of exterior orientation parameters within

sections of the flight line. Functional forms such as hE.rmonics,

although difficult to deal with, may result in greater accuracy

of restitution.

3.) An investigation of the actual variation of exterior orientation

elements with time should be carried out. Ideally, this would be

accomplished by fully monitoring all sensor exterior orientation

elements within an accuracy obtainable by resection. However,

this would be quite expensive and is unlikely. Alternatively, the

monitoring or stabilization of one additional exterior orientation

element (in addition to the roll, w) such a.s the pitch	 term could,
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6

be attempted. If this monitoring were combined with a flight over

an area having very dense control, such that a resection for the

remaining parameters could be carried out at very frequent intervals

down the flight line, then a reliable estimate of the actual exterior

orientation elements could be obtained. It would then be possible

to state with more confidence the actual errors resulting from

the omission of one of the exterior orientation elements within a

section.

4.) It would be most useful to generate some experimental data

arrays which include an accurate recording of time. In this way,

the functions assumed for variation of exterior orientation elements

could be formulated directly as time functions, and the suitability

of utilizing the image x coordinate as a measure of time could be

tested.

5.) Analysis and restitution methods should be tested on simulated

data, having known stochastic characteristics. This would allow

for controlled experimentation and reveal insights into the behaviour

of real data arrays.

6.) All of the methods of restitution presented in this investi-

gation should be tested on data arrays generated by flights over

ground areas having more extreme relief differences. Of particular

interest would be the applicability of the nonparametric algorithms

to such data, since the algorithms presented do not consider terrain

elevations.

7.) An investigation of the use of generalized nonparametric algo-

rithms should be pursued, in which Z coordinate information is included.

I

(^	 r

4
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f3.) An investigation should be carried out concerning the

effect upon accuracy of the control point distribution within a

flight line. This should include studies of how the number and

configuration of control points available affects accuracy. Results

may then indicate the minimum number of control points which must by

available in order to produce restituted data arrays of a certain

accuracy requirement, and indicate the optimum configuration of such

control points within the flight line area.

9.;) Attempts should be made to utilize sources of planimetric

control points other than maps. One possibility in this area is

obtaining metric photography of the area as a control source.

Aerial triangulation utilizing such photography could then be performed

to define X-Y-Z ground control point coordinates. If such photography

were available and was digitized, investigations to further improve

accuracies could be carried out. Digital correlation computation

could be investigated as a method of reducing the a priori variance

of assigning array positions to control points. Digital correlators

using digitized metric photography and the MS data arrays should

be developed in order to assign these control point array positions

with greater reliability than is possible using subjective human

decisions.

Another method of control which should be considered is direct

targeting. In this manner, ground control point coordinates could

be determined by direct measurement. This would call for an investi-

gation of suitable target forms for multispectral scanners. Special

targets would have to be designed for multispectral scanners, which

would be discernable in several spectral bends'.

t
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' 10.) A further investigation should be conducted into methods

of assigning elevations to data array positions. 	 The nonparametric

algorithms and mathematical modeling methods should be emphasized

^
r	 j

3
in this investigation, in order to see if better accuracies can

be obtained, particularly for ground areas with extreme relief

s

differences.

11.) Further investigations should be conducted concerning

the applicability of the linear least squares interpolation technique
Y	

^l

' for restitution of MSS digital data arrays. 	 These investigations

should include statistical testing of MSS digital data to ascertain

r whether the properties of stationarity, isotropy, and ergodicity

1 may properly be assumed for such data. 	 If so, further investigations

may be conducted concerning pre-processing algorithms and covariance

functions which may be useful in applying the linear least squares

method to MSS digital data arrays.

{ 12.) A systems analysis should be attempted to try to determine

the most effective restitution method. 	 In this investigation,

" accuracy o..` restitution has been the primary criteria for comparison.

This should be supplemented by an economic analysis to determine
Y:

f
the most efficient of the methods in terms of the total computing

^t

time involved as well as the human intervention necessary.

' 13•) Algorithms should be developed to determine quantitative
g

information during the process of automated interpretation and

restitution.	 Of particular interest would be algorithms to determine

areas on the Earth's surface, ibf ..)rder that a processing system

a.
would result in both classifications and estimations of areas containing

classes of interest.
f:

k
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14.) Investigations should be carried out on the usefulness,

of multi-scanned data arrays, particularly sidelapping flight lines.

It is necessary that some data arrays be generated utilizing data

from sidelapping flight lines, in order to assess the usefulness

of such data. if this data were to become available, it would be

possible to perform tests to determine whether this method could

compete favorably with map contour digitization as a source of element

elevation information, in terms of accuracy and cost.

As with most research efforts, the investigations carried out

point to new problems and possibilities associated with the utiliza-

tion of MSS data arrays. There is certainly no la,--k of possible

research topics to be considered within this relatively young technology.

As further research is carried forth, nev paths of ingairy will

doubtless become. apparent.
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APPENDIX A

DIFFERENTIAL FORMULAS FROM LINEARIZED COLLINEARITY EQUATIONS

If the collinearity equations of (2.19) are linearized using

the procedures of Section 2.4, the resulting linearized form of

the equations is

	

F= F' ° +- BI D dx + At 1 dy + B'	 + Bo C A	 (A.1)

in which the %" Ali C, D Jacobian matrices and F to , A, A

vectors are as defined in Section 2.4. These equations may be

written in the form

Fdx+F 10 + ^' DA' l dy -I^" 6X +B' 3 dZ+BI CA	 (A.2)}	 _	 _	 _ [SY]
in which

B.. F.1	 U, /W
az

1' 3 =	 _	 (A.3)
9_..2	 V' /W'
az

and is obtained by partitioning the B' matrix (B' _ (-I B'3]).

6	 This linearized form of the collinearity equations is useful,

as it may be solved directly for (SX, 6Y) object space differential

Ichanges, Which results in the form

i
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F lo+ IIoD Sx + A`	 Sy + B'	 SZ + BI C d	 (A. 4)

166YXI
	 — 3

j whichbe used to investigate object space 	 lanimetric coordinate^Y	 g	 ^	 P	 p

7 displacements resulting from small changes in the parameters of

is exterior orientation.

i As an example, consider the case of a single scan line for
i

,,,.. which the elements of exterior orientation may be assumed constant,	 s

{ due to the short time interval needed to record a single line. 	 -

For this case

3
X	 =	 X° + SX

(A•5)
Y	 =	 Y° + SY

The term h = Zc - Z is introduced, and the initial approximations
i

3 of (X, Y) may be defined as (using 9 = y/c)
r

a

°Xc

[YX [c° + h tan 8 2,1

and the initial approximations of the angular orientation elements

(w,	 K) may be taken as zero (M = I) . 	 The F lo vector becomes

Xc - Xc
h: F lo 0

Yc - Yc = h tanA° + h tans	 2,1

i
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`	 Evaluating the Jacobian matrices of Equation (A.4),

t

	ro	

0	 0	 0	 -h	 -h tang
B'
2,^ 	 1	 tans	 h(1 + tan2 A)	 0	 0

s

0	 0
	At 1 =	 B'3	 -

	

2,1	 h secZ A	 2,1- Carle

c	
f

F	 '1
D	 -	 0	 C	 =	 I

	

6,1	 6,1	 6,6	 6,6
tj

Substituting these results into Equation (A.4) results in

dX = dXc - Md - h tan66K
(A•7)

t	 dY = h/c sec dy - tan6 dZ + dYc + tan8 dZc + h(1 + tan2e)dw

If it is assumed that terrain elevation (Z) is constant in order
F

to accomplish the transformation of a two dimensional vector then

Z = 0. If it is desired to investigate the effects of changes

of exterior orientation elements only, then the image y coordinate 	 3

is assumed to have no error, so that dy = 0. Making the substitution

sec2 e = 1 + tan2 e, the resulting equations become

	

dX	 dXc - h(SO) - h tane(k)

(A.8)
dY = dYc + tane(dZc ) + h sec2e(6w)

If these results and those of Equations (A.6) are substituted directly

into Equations (A.5), the resulting differential form of these

equations becomes
{
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X = xc + 6XC - h6o - h tane 6K

(A.9)
Y = Y c +htan8 + 6Y c +tan g SZc +h sect 6W

Equations ( A.8) may be seen to be identical in form to these

^ 	 f	 of Equations ( 2.16), demonstrating the validity of the linearized
t

collinearity equations as a general form from wnich specific cases

may be examined.
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APPENDIX B

T0" DERIVRI10K OF RESAWLING ALGORITHM TC IJSL DE mnpnrRAPHI_.  EFFECTS [961

Referring to Figure 3.4, the scan line length is given by
R

y.

{ a W	 =	 hl tan(ny) + hN tan(Ny - ny) (B.1)
a

After resampling, every sample has an equal length in the direction a

along the scan. a
3

A

2

AY	 = W_ (B.2)

N

} From Figure 3.4, the distance dj may be written, in terms of

" sample widths as t
i

dj 	
J(W/N) - 1/2(W/N) (B.3)

Introducing the term h	 = Z	 - ZL , the distance may also be written

in terms of sample angle y as

d
j
	hl tan ny + hL^ tan(Ujy' - ny) (B.4) t:

e
{

Equating the right hand sides of (B.3) and (B.4) and solving for

Uj yields

U
j
	 =	 n + l tan- 1	 W	 2,) - 1	 - h, tan ny(	 -_- -- (B•5)

Y	 NhL \	 2	 hL 5
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If Equation (B.1) is substituted into (B.5), the final resulting

expression is

Uj = n+1tan-1 

1

(2j - 1 hi tan ny+ 2j - 1 hN tan(Ny -ny)

Y	
hL,j ` 2N
	 2N

(B.6)
- hl tanny) ]

The solution of this algorithm requires an iterative approach,

since the value h  is not known until the algorithm has been solved

for Ui . As a first approximation,

Dh
L3 

= h^ - hl	
i

The algorithm is solved, the updated value 
hLi 

is found, and the

algorithm is reapplied for an updated U  value.

As an example, consider a typ..cal aircraft flight in which
	 7

Zc = 5000 ft. (1.52 km), Y = 6 mrad, and symmetric scanning for

which N = 222, n = N/2 = 111. If it further assumed that Z l = Zn =

600 ft (183 m) then h = h = 4400 ft (1 34 km) For this example• 	 1	 N	 ^

the value of U will be computed for ;j = 50, a value which results

in a near maximum displacement (see Figure 3.3) and it is further

assumed that Z50 = 600 ft. (183 m) in the unprocessed array and

that the ground slope (a) in the vicinity is 0.5, a relatively

extreme case. Using these values in Equation (B.6), the first

solution forU
i
 results in
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FM

F	 ^

uj = 111 + 11.006 tan - 1 {(1/4400)[(99/444)(4400) tan(o.666)

+ (99/444)(4400) tan(0.666) - 4400 tan 0.666]}

U  = 42.6

For the next iteration the value of ZL = Z42 is utilized instead

of Z50 . `the size of a ground element in the vicinity for this case

(from Figure 1.19) is approximately 30 ft. (9.1 m), and would result

in a change in elevation over the eight elements of 120 ft. (36.6 m).

If the ground slope is positive then Z42 = 720 ft. (219.5 m)•

Utilizing this updated value in Equation (B.6) results in

U3 = 40.9

a change ofapproximately 1.7 elements. If one further iteration

is carried out using Z Li = Zoo, the value becomes

uj = 4o.7

If the ground slope is negative, then for the second iteration

Z42 = 480 ft. (146 . 3 m). Utilizing this updated value in (B.6)

results in

u3	 41.8

and a further iteration produces negligible change. It was found

during the investigation that a single iteration is sufficient to

refine the resampled position within one array element.

3
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