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Introduction

A considerable amount of interest has recently developed
in the correction of spatial image distortions for registration
of multitemporal remote sensor imagery [1,2,3]. The problem
arises in the case where a scene is imaged at two or more times
under varying sensor states. It is desired that the multiple
images be geometrically registered so that when converted to
digital form they can be analyzed as a multidimensional image
vector using computey techniques.

One technique for registering two images is to find corrxes-
ponding points in the two images and use these point pairs to
distort one image to match the other, This problem has two
characteristics which make specification of the correction function
difficult, The first is the fact that the distortion of one
image with respect to another is highly sensor dependent. Certain
sensors introduce a great deal of random spatial distortion while
others are highly stable. An exvample of a distortion producing
sensor is the multispectral line scanner carried by a low altitude

aircraft. Pitch, yaw, and translational movements of the aircraft
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introduce corresponding distortions in the imagery. A highly
stable sensor example is a multispectral scanner or camera carried
in satellite orbit about the earth. Only slight distortions

are introduced in instruments of this type.

The second key problem is that identification of matching
points or checkpoints, as they will be called, is highly data or
scene dependent. Matching points cannot be found at regular
intervals either visually or by correlation by using scene context.
Road intersections or correlated scene features tend to be found
alt random over an area. In images gathered at widely separated
epochs the scene may have undergone such drastic change that very
few matching points can be found. This problem does not exist if
tick marks or reseau grids, as they are properly called, are imaged
in coincidence with the scene. This is possible for image forming
sensors such as cameras or vidicons but not for scanners.

The problem addressed in this paper is that of determining
the optimum two dimensional approximation function for image
distortions when the data or checkpoints are unequally spaced.
Although the distortion function is a two dimensional function
of two dimensions, it can be separated into two independent one

dimensional functions of two dimensions.

The general statement of the problem is;

Findg:

Ax(x,y) Fx(C,prx:Y)

(1)

]

. Ay (x,v) FY(CrPter)




such that the distortion functions Ax'Ay are as "close" as
possible to the t.sue distortions of the subjuct image, Defini-
tion »f the functional form and a meaning of "close" are two
problems of equal importance. In the above:

Ax Y(x,y) are the estimated distortion values in two
L4

dimensions
Fx,y are the approximating functions
c checkpoints
1% parameters defining F

A formal statement of the problem requires assumption of some
functional form for the true distortion over the two dimensional
space f({x,y) considered and some form for the error p. Then
the problem can be stated:
Let f(x,y) be a real valued continuous function of two
variables on a set R, and let F{A,x,y) be a real valued
approximating function depending continuously on %,y< R
and on parameter A. Given the error function p, determine

the parameters A* < Q such that

p[F(a*,x,y), £(x,y)] < o[F(A,x), £(x)] {2)
for all A € Q, whereQ is the set of all possible parameter sets.
The choice of an approrimating function is difficult since
no explicit method exists for making such a choice. Only the
general stztement that the more complex the variations in the func-
tion are the more coumplex the approximating function must be can

be made with certainty. The choice of error function is also



equally undefined. The choice of error measure is often based
on generally favorable characteristice of certain well known
functions. The error or distance function is commonly called
a norm and a common class of norms which will be considered
herelis called the Lp norm. The Lp norm of the function f£(x)

is denoted by Lp(f) and is defined by:

10 = | 1f<x)lpdx|l/p

a

p>1 (3)
Then the best ap.roximation to f(xj is obtained when the

Lp distance function is minimized:
b

P
min f 'F(A,x,y) - £f{x,y)| ax (4)
a

The solution A* for p = P, will in general be different
for p = P, and the nature of the approximation varies sharply

as p is varied. Some well known cases are for p = 1 which is

the minimum sum of the absolute value norm and p 2 the least
squares norm. A third widely used norm is called the Tchebycheff
norm which is simply the maximum error. An optimum approxim.tion
in the Tchebycheff noxrm minimizes the maximum error. The Lz or
least squares norm is generally preferred above all others
because of itgs desirable heavier weighting of large errors more

than small errors and because of its differentiability and its

relationship to sexies of orthogonal functions. The Lz norm will



be used in the work described here.

The form of the approximating function remains as the
key problem in the study. The functions investigated in
this study are from two classes: 1. Polynomials, and 2.
Spline Functions. A large body of information exists on
polynomial approximations and the work reported here is
based largely on Ralston [4] and Rice [5]. Spline functions
or piecewise continuous polynomials have rcceived relatively
little attention until the early 1960's and the work here is
based primarily on Rice [6] and deBoor [7]. Polynomials are
studied first and are used to define image distortion over the
entire two~dimensional image space. As distortions became
more severe the order of the approximating polynomial becomes
high and solution problems become severe. Spline functions
are investigated secondly to determine if lowcy: order polynomials
fitted together can approximate a higher oxde: :«iistortion with
less computational difficulty. Theory for the c¢ne dimensional
case is first developed and then the two-dimensioncl theory is
developed, Algorithms for generating approximating functions are
described and application of the techniques to description
of image distortion in aircraft multispectral scanner imagery
is described. Comparison of results and recommendations are

presented in conclusion.
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One-Dimensional Polynomial Approximation

Approximation of a function defined by a discrete set
of points {fi,i-l,...,n} defined at points Xy using a set of
polynomials of largest order m {¢j(x)|j=0,...,m} is expressed

as:

m
F(hA,x)= jio aj¢j (x) (5)

The least squares approximation to {f;} is defined by
the set of coefficients A* such that

n
EA-iél(fi-F(A,x))’ iz a minimum. ()

The error can be minimized in the La norm using differentia-
tion since the L, norm has the desireable property of being
analytically differentiable., Taking the derivative of €,
with respect to each coefficieni: and settin~ the result to

zero gives:

n m
£ - . - . + , J =
aaA e =2 3E £y -yEg a4éy (xl) ¢y (x;)=0 (7)
32y

A uﬁique solution A* is guaranteed since the L, norm is a
stricfly convex function of A. This expression creates

what is known as the normal equations for the least squares
approximation. Another advantage of the L, norm is that the
resulting normal equations are linear in the parameter space
A whereas higher order norms result in quadratic, cubic, etc.

equations in A, The equations can bhe expressed as:




m
n = g
jEO gjkaj Pk k Olnoum ( )
where: n -
and n
= Bl
Pe= 18519 (xy) (8b)
In matrix form notation this formulation is expressed as:
G*{gij}"{¢j (xi)} (9)

(gi. denotes the elements of G not Iy in equation 8a)
Then the summation for I5% in terms of the matrix G is G'G [s8l.

The summation for Pk is expressad as GTf, where f is a
column vector {fi}. Then the expression for the ay becomes:

Glea=GT £ (10)

Where A is a column vector of the desired coefficients

{aj}. The solution for A is obtained by sclving the above
matr.x equation for A

a=(67G) Gf (1)
The elements of G are the basis functions¢j(xi)evaluated at
the ordinates {xi} and are independent of f. The elements

of G are, however, highly dependent on the form of ¢, If

.3 then the exponent of the abscissa

¢j(xi) is ~hosen to be Xy

grows as the square of the order of the approximation. The
matrix Felle becomes highly ill~conditioned for values of m

larger than 5 or 6 and this makes invers.’ . on difficult due to
round-off error in the computational process. To illustrate
this, assume all values of x% lie in the interval 0-l. The
3

terms in GTG are for Qj!x



o

n [
+k -
95~ 1k1%] (12)
which is approximately n times a Riemann sum

1 _j+k . -
gi.=nfox? "dx= n j,k=0,.0.,m {(13)
jk 0 + + r [ ’

Whichk in matrix form is

nH where:

i booes 2]

H

H=

*ofee

o —

[ m+ 2mt)
The matrix H is the principal minor of the infinite Hilbert

matrix and is a classical example of an ill-conditioned
matrix. An ill-conditoned matrix is one which when its
largest value is 1 has an inverse with very large values.
Thus use of the basis functions ¢j=xj should be restricted
to approximations of low orde:x.

Note that the elements of GTG are Ccross or inner products
of the space of baesis functions., If the ‘j are chosen such

that n

$.(x )¢, (x,) =m0 £ #k and (14)
1k, #5(xp) 8, (x; - fg:g_k“

then the off diagonal elements of GTG are zero and the
matrix is easily invertible. Polynomials with this property
are called orthogonal and are of extreme importance in the

theory of approximation. Furthermore if
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n
1B, 45 06y (xy)mi  for =k (13)
The ¢j are called orthonormal and the matrix G.G becomes
the identity matrix and the inversion probiem vanishes. The
approximation problem becomes
IA=G £ (16)
which is a simple matrix multiplication. The elements of
A are n
aj‘igxfiq’j Gy )
A problem arises in that for finite point sets the nrtho-
norinal polynomials depend on the number and spacing of the
points X;. For cases where the points are equally spaced
the polynomials can be defined parametrically in the number
of points n and the order of the polynomial m. These poly-
nomials are known as the Gram polynomials and can be found
tabulated and their derivation is unnecessary. If, however,
the points are unequally spaced as is the case for the
checkpoints defining the image distortion, the Gram poly-
nomials cannot be used. In this case, a recursive formula
must be us~! -0 generate the polynomials. It can be shown
by induction (see Ref 4, Page 241) that the following

relationship generates the orthogonal polynomials:

by ()= (X-C )6, (X)=d 0, ) (%) o



Where:
Po(x)nl

P_, (x)=0
and Cj, dj are to be determined. The coefficients are

Ay z‘g. (9 (%4)] 2{£E¢k—l(xi) )
and n n

Cper™ 4E, Xyl (x )15/ F [Ry (%))
These polynomials are orthogonal but not normal, thus a
normalizing factor is required to compute the coefficients

for the approximating function.

m

F(.A_,x.)= jgo aj¢j (X) {18)

n
aj- % i£1 fi¢j(xi)
i

And the normalizing factor Y; is
n

Yi= E, (¢j(xi;)’
These are in fact the diagonal elements of the matrix cla.
If the order of the approximating polynomial is low {4 or 5)
the non-orthogonal normal equation method is probably
preferable since considerable labor is involved in getting
the ¢j‘ For higher order functions the orthogonal poly-

nomial method will be necessary. The two-dimensional poly-
nomial case will be discussed next and then spline functions

will be introduced.
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Two Dimensional Polynomial Approximation

Two dimensional approximation is a direct extension of
the one dimensional case for the L2 norm. The chief problem
lies in the size of the problem in that the number of terms
increases as the square of the order of the approximation.

The two dimensional image distortions Ax and Ay must
be estimated for every element in the picture from a limited
number of unequally spaced points at which the distortion is
known. The functional approximation problem is solved here
by computing a least squares polynomial approximation to
the given points using the normal equations. Given are a
set of displacement values distributed over the two dimen-
sional image space. Let fx(xi,yi), fy(xi,yi), i=l,...n be
the true image displacements at the point Xg0¥ye The displace-
ment over the entire image is to be approximated by a polynomial

function based on the n nieasured values:
m m
Bx(x,y)= 4Eq kEo2yk?yk (Xr¥?
{19)
m m
B tx,y)= Lo Zobyybgy (x,)

For approximations of low order the nonorthogonal

monomial basis function x7 can be used and the normal



-2

equations solved for the desired coefficients. The
imating functions in this case become:

2
Ax(x,y)= ag0tR1g X T gy * AnpX oo

m m k
" jE0 xdody*

by (x,y)= byg + byg X + boyy + by x?

= jgo kgobjkxjyk
where: Ax,y are the approximated values
{a,b} are parameters to be determined
The elements of the equation matrix G become:
949= xiy: i=l,...n
=1, 000y (mtl)2
3j=0,...,m
k=0,...,m
And the normal equations are again generated by

GT

T
GA=G fx
T T
G GBeG £
Y
where: A,B are column vectors of the desired

coefficients ajk' bjk

fx,fy are column vectors of the image

distortions in the x and y directions.

apprivi-.

(20)

(21)
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The solution for the coefficients of the

functions are

A= (GG)IT

B= (GT¢) " tcTE

Y
The ordering of the powers of x and y in
the elimination of certain terms are two

in procedure. The coefficient vector is

of terms
aoo aol [ BN I 3 aom
ATe | 210 211
amo cew amm |

The subscript notation is chosen so that

least sgquares

the polynomial and
items of variation

actually a matrix

the first subscript

is the power of the x term and the second is the power of y.

And the set of polynomials is also a matrix which in the

case of ¢j(x)-xj is

"1 ox %2 ... &

Yy xy x2y2 - xmy2
= 2
Yy

_ym cos Xy

and the approximating function is expressed as

Ax(x,y)= & (x,y)eA
Ay(x,y)= $(x,y)8B

{23)
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Where the ) indicates the matrix dot product: i

m m
z .E s okl s 3 & -
A@B =4L, 4&, 2j4:Pj4+ The normal equations are

solved in the same way as for the single dimensional case

except two coeffici3nt sets are obtained, one for Ax and

the other for Ay. E

Two Dimensional Orthogonal Polynomial Approximations

The generation of two dimensional orthogonal polynomials
is again a straight-forward extension of the development E
for the one dimensional case. For the case of unequally “
spaced points, a recursive relationship can be used to generate
the polynomials. Polynomial ¢j can be obtained as a function .

of lower order polynomials: t

54, (Xo¥)= (xby=dy, Vo (x,¥)=Byd,  (x,y) (24)

where Ql(x,y)=0 and ¢°(x,y)=l

we require that

n
i£l¢j (xiryi)bk_'_l (xiyyi)=0 for §=0,1,...,k (25)
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Substituting the recursive expression into this requirement
for j=k ¢ives:

n n
iit ¢j(xi'yi)xi¢k(xi'yi)‘-‘g ¢j(xivyi)y ¢k(xi;yi)

n _ n
-ak+xi£l ¢j(xilyi)¢k(xiryi)"8k 151 ¢j{xi'yi)¢k-1(xi'yi)=o
for 3=0,1,...k (26)

A double summation over (xi,yj) is not used because each
coordinate pair is unique due to the random distribution
of x, and Yy thus the single summation takes into account
all possible points in the two dimensional space.

For j=0,1,...k-2in eguation 26 the righktmost two terms
are zero because the orthogonality condition holds for poly-
nomials up to the one bheing generated.

The first two summations with x; and y; in the
summands are polynomials of degree not greater than k-1 and
can be expressed as a linear combination of the ¢j(x,y) and
thus these terms will be zero also. For the case j=k-1 the
third term is still zero but the fourth is non-zero. The
first two terms are non-zero because the order of
xi¢k_l(xi,yi) is k and product summation with ¢k(x,y) will

be non-zero. Thus a condition for g is created:

n n
Bk= i& ¢k_,(Xiryi)xi¢k(xi.yi)+i£1¢k_l(xi:Yi)Yi¢k(xi:Yi)

n 2
RN CMINCIN 70 (27
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For j=k the fourth term is zero and the third term is non-
zero. This gives an expression for a:

n n
Gk+1= i£l¥i[¢k(xi'yi>]z+ iélyi[¢k(xi'yi)]z

n
2
Thus a, can be found which generates a sequence of ortho-

gonal polynomials. Given that Qla 0, ¢0 = 1

$1 (x,y)=(x+y-aq}.
It is required that
n
i‘£l¢0 (fo)¢l (x,y}=0
n
or igl(xi+yi-ul)=0

n
Thus al=% iél (xi"yi)

From this ¢0 and ¢1 are orthogonal and ¢2 is generated from
these two polynomials known to be orthogonal thus the
assumptions used in deriving a and B will hold. The
generation of the approximating function from the ¢j is

identical to the case for one dimension.
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m
AX(x,y)= jﬁoaj¢j(x,y)

AY (x,y)= zob ¢ (x,y)

where: n
5=y i&, %495 (xiay i=1¢ (x;0¥y)s8imilarly for by

Use of Tensor Products for Two Dimensional Approximations

For a coordinate system in which the independent
coordinates of the given datz form a Cartesian product set
X(® Y the following tensor product of functions is defined:

The tensor product of two sets of functions

{¢i|i= 1,2,...,p} and {¢i|i= 1,2,...q} is the set
{¢i¥j|lsi§p, 1532q}. This product is stated as
{¢;1 0 Wj}-

The linear approximating function formed by such a

product is:

l‘l’l m
FA,x,y)= ;I SF a;bog, (x)Y,(y) (30)

Where: A represents the coefficients a,b
m is the order of the function
It can be shown that if the functions {¢i]i=1,...,m}
form an orthonormal set then the tensor product is an
orthonormal set. Then the best Lz approximation (least
squares) can be found by solving the normal equations using

the tensor product form of function.
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The tensor product approach eliminates the need for
constructing the two dimensional orthogonal polynomials which
becomes an extremely cumbersome task. The tensor approach is
vsed in the spline function method to be discussed next. The
spline functions contain as a subset the polynomial function
approach discussed above; thus, the following sections cover

both cases and represent the major thrust of this rxeport.

Spline Function Approximation

The one and two-dimensional approximating functions dis-
cussed up to this point are assumed to be valid over the entire
region of interest with adequate accuracy. For cases in which
the order of the distortion is low and the area covered is
limited, the single function approach is adequate. When the
image distortions become severe and the area to be represented
increases the order of the functions regquired becomes imprac-
tically high. Use of two-dimensional functious of fourth, fifth
or higher order is undesirable for computational reasons and
because the number of control points required becomes excessive.

The bi-quadiatic function is of the form:

2 2 2 2 2 2
= + + + +
Ax (x,y) a°+alx+azx+aaxy+a~x ay +axy a xy +a xy (31)

and requires nine coefficients. The bi-cubic function requires
16 coefficients. Representation of higher order curves or sur-

faces can be achieved through use of lower order polynomials
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joined together in a piecewise continuous manner. Such approx-
imations are called spline functions [6] and constitute a class
of extremely useful and successful functions which were first
considered from a mathematical viewpoint by Schoenberg in
1946 [9] and research on these functions has increased steadily
since. The great value of the piecewise polynomial approach is
that complex disjointed functions arising from real, physical
situations can be approximated rather conveniently. The random
variations in multispectral scanner image geometry are generally
unrelated from one place to another. Whereas for polynomials
and most other mathematical functions their behavior in a small
region determines their behavior everywhere. Piecewise contin-
uous (spline) functions do not have this problem and for cubic
or higher order polynomial splines the splines are smooth curves
in the physical world.

A one-dimensional spline function is defined by a set of

points called knots €i:

a§g°<gl<... <gk<gk+l=b
over the interval la,b] and a set of polynomials of degree n
valid between the knots and having n-1 continuous derivatives

at the knots. One representation as presentéd by Rice [6] of

splines is of the form:

k n
S{A,Z,x)= I ai(x—l-;i)+ +N(x) (3

i=1
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Where:
o (x-£)" x28
(x-£)," =
0 x<g
n(x) = Polynomial of degree n with coefficients
ai,i=k+l, ees k+n+l
A = Parameter Vector (al,az, e ak+n+1)
=1 = Set of knots (en,gl, e €k+l)

Ma~, other forms of representation exist for splines; however,
tar: resulting functions are the same. Splines of greater than
third order are generally not used, the advantage of the spline
approach being tha£ high order polynomials can be avoided. A
first order spline would be a sequence of linear or ramp func-
tiong joined together at the knots forming the familiar piece-
wise linear functions. A second order spiine would be a set of
quadratic polynomials connected at the knots and having contin-
uous first derivatives at the knots. Similarly, a third order
spline would have cubic polynomials joined at the knots and
having continuous first and second derivatives.

A more common representation for splines is:

n

S(a,5,x) = Ic (xf )7 £ SxZg (33)
j=0 i i-1 i-1 i

ey _* =
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which illustrates the piecewise polynomial nature more explic-
itly. Also, when n is odd the splines can be uniquely repre-
sented in terms of the values and derivatives at the knots.
Thus, for linear and cubic splines, the approximation can be
completely specified by the values:

als (a,=,x) -

ij = . i=1, ese 'k'>1’j=0'1' QQ-T'

v
de

x-Ei

The 1lst and 3rd (odd) order splines turn out to be extremely
convenient choices since for even functions the number of
derivatives needed to be specified at the left and right knot
is not equal and the spline cannot be uniquely specified by
knot point values and derivatives. Furthermore, since the linear
splines have n-1=0 continuous derivatives at the knots the
spline function has jumps in slope at the knots and do not form
"smooth" curves. Thus, the cuhic spline becomes the natural or
preferred order for spline approximating functions. The cubic
spline in one dimension is of the form:

BIA,E,x)= Cy 4C, 5 (X=8, ) WCy 4 (x-E; )P40, 4 (x-€ 1)

for Ei_lsxsﬁi (34)

Note that four coefficients are required for each polynomial



which can thus be specified by four knot point values: i

Vil o7 BAES ) Vi, 0" BA/E.Ly)
dS(A,E,X) dS(A,E,x)
- r -
i-1 e gi

It can also be shown [10] that the entire cubic spline function
is uniquely specified by only the function values at the knots

and derivatives only at the end point knots.

Two Dimensional Spline Functions

The discussion of splines thus far has been in the context
of one-dimensi mal functions. Second and higher dimensional "
splines are more complex analogs of the one dimensional case.
The two-dimensional case will be discussed in terms of cubic,
or more precisely, bi-cubic polynomials since they have the
same advantages that the one~dimensional cubic splines have.
It can also be proven that specification of 16 corner values
and derivatives uniquely specifies the spline function polynomials.
The two dimensional splines are defined on a rectangular grid
in a two-dimensional plane., Let the divisions between the
rectangles or knots on the X axis be defined by the set (g}

and the knots on the ¥ axis by the set [ui]. Then the 2-dimen- R
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sional spline polynomials are of the form:

3 3
ij m n
AX(x,y) = L T a - (x=§,_4) (y-u,_,) (35)
YP =0 neo MR i-17 Wy ?

For Ei_lsxssil‘ uj,_l‘y‘ilj igl;o-o'K, j=1'|'.'L

For each polynomial there are 16 defining coefficients. A
spline grid is depicted in Figure 1l for K=3 and L=3. The 16
corner conditions on each rectangle that specify the cubic
polynomial follovt Let the spline function be represented as

S{x,y): then the corner values for rectangle (Ei_l,uj_l),

(Ei;uj,l). (gi-l'“jf' (Ei!uj) are:

: S(Ei-l'”j-l) S(Eivui_l) S(Ei_l.uj) S(Ei.uj)
ag (x,y) 9S8 (x,Y) 95 (x,y) 35 (x,y)
9% x=6£:_1 ax x=g . ax x=E; 4 x x=£,
y=My_3 youg_y y=Hy y=uy
3s(x,y) 3S({x,y) 98 (x,Yy) 95(x,vy)
9y x=Ei-1 By [x=f; oy |x=E;_y Y  x=f;
Y=Hp_1 Y=Uj_1 Y=Uj Y=uj
3S(x,y) 39S (x,y) 38 (x,y) IS (x,y)
. X3y x=Ei_1 axXay xc&;i X3y x=£i Xay x=£i




-24=

Fortunately the two dimensional analog of a previously stated
result holds for the bi-cubic splines. That is that the
polynomials are uniquely determined 1f only the value of the
function is specified at each of the mesh points and the deriv-
atives are specified only at the outside edges of the grid.
Specifically, the piecewise bi-cublc function is uniquely

specified by only the following values:

S(Ei,uj) i=0,...,L, 3=0,...,M ({L+1)(M+1l) values)
98 (x,y)
B x=f,  1=0,L, 3=0,1,...,% (2M values)
Y=uj
3S (x,v)
2y x=£i i=0,1,...L, j=0,M (2L values)
y=uj
s {x,y)
A x=f,  1i=0,L, 3=0,M (4 values)
Y=uj

This elegant result will not be proven here, but the proof can
be found in the cited report by de Boor [10]. For the nine
rectangle mesh depicted in Figure ) specification of 16 mesh
functiqn values, 16 edge derivatives and four cross corner

derivatives or 36 total quantities completely specify



L

vy

i

e
383

¢ "1

Figure 1. Example 4 by 4 mesh for spline function description.
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the nine bi-cubic polynomials forming the spline function. The
representation without the simplification would require the 16
values, 16 X derivatives, 16 Y derivatives, and 16 cross deriv-
atives or 64 values.

Computation of the bi-cubic polynomial ccefficients from
the specif.ed mesh point values can be accomplished through
simultaneous equation solution also described in [10]. The
method discussed assumes knowledge of the exact values and
derivatives of the function at the grid nodes. In practice,
these values are not known exactly and generally are a set of
approximately known values and these are often unevenly spaced
over the domain of the function. Thus, the real problem is
computing an approximate two dimensional spline function based
on this data. The least squares spline problem is thus the

problem to be scolved.

Least Squares Two-Dimensional Spline Approximation

The least squares soluticn for the two-dimensional spline
approximation function is most advantageously computed using a
set of orthogonal spline basis functions. Usinag this approach,
once an orthogonal spline basis is obtained the approximation is
easily computed using inner products. If {wi} is a complete

orthonormal spline basis for the set of all spline functions
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over the domain of interest, then

‘ <'J"irwj>= 61j i,j=0,...N {306)

Where: Gijul if i=j and zero otherwise.

The approximating spline function S is computed as
n
5= iz <frwi> ‘JJi (37)
=0

If a non-~orthogonal basis {¢i} is known the orthonormal
basis {y;} can be computed using a procedure similar to the
one described for the cne dimensional case, The Gram-Schmidt
orthonormalization procedure is usually used for this purpose.

This procedure is described by the two step iterative formula:

<
<
h

dg/ lidg ]

+

i-1
j£0<¢i,wj> '\Uj i=0,...N (38)

o s 1051

= ¢,

1

©
| kY
|

€
-
it

By this process, the non-orthonormal basis {¢i} is converted to
the orthonormal spline basis function set {wi} which can be

used directly for evaluating the approximating function co-
efficients. It is pointed out in {7) that in forming the initial
basis {¢.} it is advantageous to construct each $; 80 as tn have
one more extremum than ¢._;. This tends to generate a "nearly"
orthogonal initial basis which improves the accuracy of the

resulting orthogonal basis.
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The procedure for solving for the least squares bi-cubic
approximating function consists of solving for the orthonormal
spline basis functiong for a given set of knots and then eval-
uating the approximating function and the mean squared (L,)
error. The knots can then be moved or increased in number to
attempt to reduc¢e the error. An algurithm for carrying out this
process if presented in {7] for approximation in one independent
variable. Development of a two-dimensional cubic analog for
this process was carried out as part of this project. The
algorithm facilitates geometric correction and registration of
aircraft scanner data and similar data having almost any degree

of distortion.

Two Dimensgional Spline Function Approximation Algorithm

The algorithm developed is a generalization to two dimensions
of the algorithm FXDKNT described in [7] by de Boor and Rice.
The tensor product approach is used in generation of the spline
basis functions rather than attempt to compute bi-variate basis
functions. The algorithm was originally written to accomod:ite
100 data values to be approximated and up to 26 knots in addition
to the left and right boundary knots, or a total of 28. 1In the
two dimensional version the number of points was kept at 100 and
the number of Y axis knots made the same as for X or 28. This

greatly expands the size of the program but keeps the same capa-
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bility in the new program on each axis should it be needed. 1In
practice the number of knots on each axis for scanner imagery
probably will not exceed five or six; however, in other applica-
tions the full power of the algorithm may prove useful.

The tensor product form of basis function generation results
in two sets of orthonormal spline basis functions {wi(x)} and
{uj(y)} from which the voe=fficients are obtained for the ortho-
gonal projection of the function to be.approximated onto these
basis functions. The form of the approximating function is thus:

IX 1Y
AX(x,y)= iiljilaijwi(x)uj(y) (39)
Where ¥, u are the spline basis functions
aij the coefficients of the approximation
function in the basis wi(x)ui(y)
IX,1IY are the number of X and Y dimension basis
functions in the solution.
The aij are computed as the inner product of the function

to be approximated and thke basis functions:

a; 5= <E£ 00y} ¥ (x)uyy)> (40)
Where

< > denotes the two dimensional inner product

Lt e T T e el ees e e e Fa e Brns e 5 A N v s e st SR BB e D e Db p e e SR .
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The algorithm proceeds by first computing a single cubic
polynomial approximating function over the entire set of points
to be approximated. Then additional knots are introduced one
by one and additional basis functions are computed. The coor-
dinate nf the new basis function is computed and the contribu-
tion of the new term is subtracted from the remaining error in
the approximation.

The polynomial spline functions are computed from the basis
functions and theirncoordinates by evaluating the valuve, deriva~
tives in the x,y and cross directions at the corners of each
of the rectangular segments of the domain being covered. These
sixteen values are then used to define a cubic polynomial for
each rectangular region. The sixteen values are then transformed
inte the 16 polynomial coefficients. The economizing procedure
discussed previously is not used in the current algorithm. The
resulting approximation is represented by the sixteen coefficients
for each spline region for as many regions as were specified by
the knot set. Thus, a function having four knots in the x
direction and six knots in the y direction, including bLoundary
knots, would have (4-1)x(6-1)x1l6 = 240 quantities specifying
the approximating function plus the ten knot values.

The algorithm can be re~executed to add or delete knots to
adjust the overall RMS error in the approximation to a desired
level. An artifice was used in the computation of the two

dimensional inner product to handle the case of randomly located



data points., The data points are constrained to lie on a
quasi-rectangular grid and the means of the resulting groups
are used as the x and y abscissa values in the inner product.
A nearest neighbor rule is used to assign function values to
the points at the nodes of the artificial uniform grid. This
enables a simple trapezoidal integration inner product to be
computed but causes error in the approximétion. An iterative

technique is then employed to correct for this error.
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Example of Spline Function Approximation

The multispectral aircraft scanner system flown by the
ERIM* organization produces imagery in long strips of nominally
two miles in width at 5,000 feet altitude. This data is often
subject to severe distortions due to pitch and yaw variations
in the aircraft attitude and lateral motions due to cross winds
since the scanner is fixed to the frame of the aircraft. The
scanner is roll stabilized so that only pitch and yaw angular
distortions are experienced. Thus, this type of imagery can
be affected by five platform variables: pitch, yaw, and trans-
lational variations in three dimensions. An example of air-
craft motion distortion in the MSS imagery is shown in Figure 2.
More sophisticated scanners are stabilized on the pitch, roll,
and yaw axes; however, this requires costly gimballing mounts
and costly support control systems. In most scanner imagery
cases, some degree of random distortion wiil be present and the
spline function techniques are expected to be useful in a wide
range of cases. The extreme flexibility of the splipne approx-
imating functions allows the case of using only one function
for the entire image for simple distortion up to the case of
many spline function regions covering the image to be handled

with the same algorithm semi-automatically.

* Environmental Research Institute of Michigan
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Figqure 2. Aircraft Multi-
spectral Scanner imagery
(.58-.65u band) showing
severe geometric distortion
due to crosswinds. LARS
Pun No. 71054100. Area 1is
immediately west of Craw-
fordsville, Indiana.

Date: August 17, 1971.
Altitude: 5,000 ft.
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Figure 3. Aerial photo
of area in Fiacure 2
showing the desired
image geometry.




The multispectral scanner imagery shown in ™iqure 2 is
a typical example of ERIM low altitude flight data. The aesrial
photograph segment shown in Figqure 3 covers the arca imaged by
the scanner and represents the desired geometric shape of imaqe
in Figure 2. The function reguired to transform the MNSE imagery
into the geometric form of the photo is specified by defining
checkpoints or matching points in the image and map. 7hese
points can be obtained by a variety of manual or automatic
methods and for this example they were obtained by measuring
the coordinates in inches on the MES image and photo using a
coordinate digitizing table, The scale of the image is approx-
imately 1:56300 and the scale of the photo is approximately
the same. The coordinates of the checkpoints digitized from
the imagery and photo are listed in Table 1.

The values from Table ! were input to the two dimensional
cubic spline algorithm first for the case of only one block.
This results in a cubiec polvnomial fit over the entire region
which in this example was for .75 ¢ % ¢ 2,594 and .593 £ y ¢
10.25. The results of the approximation are listed in Table 2
which includes the values to be approximated (the x and y posi-
tion of each conjugate point in the aircraft scanner image),
the approximations, the error and three error statistics. The
root of the mean squared error for the approximation is .063
for the x coordinate and .1l for y. The maximum error was .132

for x and .37 for vy.
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Table 1. Coordinates of Matching Points for Aircraft
Scanner Data Correction Example. Purdue
Flight Line 212, Scanner data obtained
august 17, 1971. Aerial photograph made
from Color IR photograph taken at 60,000
feet by NASA RB-57 in 1971l.

Point Photograph Scanner Image
No. X Y X Y
1 1,53 . 594 1.06 .75
2 .781 .813 .063 .875
3 2.125 .593 1.875 .813
4 2,438 1,188 2,125 1,375
5 1.563 1,188 1.0 1.031
6 750 1.188 .031 1.188
7 .969 2.188 .188 2,250
8 1.563 2.250 . 875 2.250
9 2.250 2.656 1.875 2.625
10 1.031 4.093 .438 3.938
1l 1.562 4.813 1.0 4.063
12 2,125 4.25 1,781 4.094
13 969 5.375 .25 5.188
14 1.531 5.375 1.031 5.188
15 2.281 5.344 1.969 5.250
16 .968 6.50 .188 5,313
17 1.565 6.50 . 938 6,313
18 2.438 6.50 2.0 6.375
19 . 938 7.656 .125 7.469
20 1.531 7.688 . 813 7.50
21 2.50 7.656 2.063 7.50
22 1.094 10.25 .156 10.031
23 1.625 9.969 .75 9.75
24 2.375 9,938 2.125 9.75
25 2.031 + 362 1.75 .781
26 2.0 1.125 1.70 1.312
27 1.875 2.5 1,375 2.47
28 2.125 4,75 1.81 4.65
29 1.781 5.375 1.43% 5.218
30 2.125 6.5 1.70 6.375
31 2.125 7.656 1.65 7.5
32 1.875 9.94 1.187 9.75
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Error data for x dimension approximation

using one cubic smline nlock.

Table 2a
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approximation

klock.

Error data for y dimension
using one cubic spline
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Hext the y dimension was divided ot the approximate miug-
point by an additional knot at y = 5.0 and the spline approx-
imation was computed for the two regions. ''wo cubic spline
functions were thus computed which join with continuity in
value and first and second derivative at the line y = §.0,

The f£it was improved to an r.m.s. error of .04 for x but the y
error remained about the same at ,105, The aaximum error was .088
for x and .287 for y. The two section spline improved results
considerably and produced a smooth curve with no discontinuity at
the knot line. The results are tabulated in Table 3 listing the
same information as Table 2. This is a simple illustrative ex-
ample and no attempt will be made here to optimize the fit to

the aircraft data by varying the position of the knot or adding
nore knots. An algorithm which optimizes the positions of the
rnots is being developed as a continuation of this work. A

great deal of flexibility is available in the spline approach and
the error could be further reduced by appropriate manipulation

of the knots.

Summary and Conclusions

This report presents a discussion of least squares approx-
imation techniques with two dimensional spline function approx-
imation being the main topic. A one dimensional algorithm
due to de Boor and Rice was described and its extension to two
dimensions is the subject of the work reported here. The algo-
rithm is operational; however, certain problems with the two
dimensional inner product remain to bhe solved. A technique

was used in the current program in which a nearest neighbor
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Error data for x dimension approximation
using two cubic spline blocks with new y

knot at 5,0.

Table 3a
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nrror data for vy dimension approximation
using two cubic spline blocks with new y

knot at 5.0.

Table 3b
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rule is used to define the wizlues of randomly spaced data

points at the nodes of a uniform grid. This makes comnuting

the integral for the inner product simple but results in error
in the approximation. A rule must be employed when usina this
program in selecting data points over the two dimensional sur-
face so that a quasi-uniform grid is maintained. The points are
then grouped by the program and the mean of the group on the x
or y axes is taken as the respective abscissa. Turther work
needs to be done on this and other problems relating to randomly
spaced points in two dimensioral approximation problems. Suhb~
sequent reports will document the algorithm in detail and address
certain of these problems,

It must be pointed out that the spline function approach to
approximation is only one of a large number of methods each with
their own advantages and disadvantages. Tor the problem of
multidimensional approximation of functions the Weightinag Function
Technigue of Jancaitis and Junkens [1l) bears particular note
and future work will evaluate this and other metheds relative
to the spline function approach,

Finally, it should be noted that the multidimensional approx-
imation techniques have application in many earth reswurces data
processing areas in addition to image geometric distortion
representation. Any case in which randomly located measurements
are made of physical, electromagnetic, socio-economic processes
is a candidate for this type of approximation technique. Speci-

ficallv, the conversion of digitized tornographic contours,
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airborne radiometer, and magnetometer and other geophysical
data to a uniform grid format for computer overlay and image
processing and analysis is the next application goal of the
present work. Progress in these areas will be reported in

suhsequent documents.
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