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Ii.troduction

A considerable amount of interest has recently developed

in the correction of spatial image distortions for registration

of multitemporal remote sensor imagery [1,2,37. The problem

arises in the case where a scene is imaged at two or more times

under varying sensor states. It is desired that the multiple

images be geometrically registered so that when converted- to

digital form they can be analyzed as a multidimensional image

vector using computer techniques.

One technique for registering two images is to find corres-

ponding points in the two images and use these point pairs to

distort one image to match the other. This problem has two

characteristics which make specification of the correction function

difficult. The first is the fact that the distortion of one

image with respect to another is highly sensor dependent. Certain

sensors introduce a great deal of random spatial distortion while

others are highly stable. An example of a distortion producing

sensor is the multispectral line scanner carried by a low altitude

aircraft. Pitch, yaw, and translational movements of the aircraft

r
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introduce corresponding distortions in the imagery. A highly

stable sensor example is a multispectral scanner or camera carried

in satellite orbit about the earth. Only slight distortions

are introduced in instruments of this type.

The second key problem is that identification of matching

points or checkpoints, as they will be called, is highly data or

scene dependent. Matching points cannot be found at regular

intervals either visually or by correlation by using scene context.

Road intersections or correlated scene features tend to be found

at random over an area. In images gathered at widely separated

epochs the scene may have undergone such drastic change that very

few matching points can be found. This problem does not exist if

tick marks or reseau grids,as they are properly called, are imaged F

in coincidence with the scene. This is possible for image forming

sensors such as cameras or vidicons but not for scanners.

The problem addressed in this paper is that of determining

the optimum two dimensional approximation function for image

distortions when the data or checkpoints are unequally spaced.

Although the distortion function is a two dimensional function

of two dimensions, it can be separated into two independent one

dimensional functions of two dimensions.

The general statement of the problem is;

Find:

A (x.Y) = Fx(c,P,x.Y)
(7?

Ay ( x , y ) = Fy(c,P.x.y)

AN

It
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such that the distortion functions Ax , Ay are as "close" as

possible to the t,-ue distortions of the subject image. Defini-

tion of the functional form and a meaning of "close" are two

problems of equal importance. In the above:

Axly (x,y) are the estimated distortion values in two

dimensions

Fxry	 are the approximating functions

c	 checkpoints

P	 parameters defining F

A formal statement of the problem requires assumption of some

functional form for the true distortion over the two dimensional

space f(x,y) considered and some form for the error p . Then

the problem can be stated:

Let f(x,y) be a real valued continuous function of two

variables on a set R, and let F(A,x,y) be a real valued

approximating function depending continuously on x,yt R

and on parameter A. Given the error function p, determine

tkre parameters A* ei^ Q such that

p [F (A* r x , y ) r f (x ,Y) ) < p [F (A ,x) , f (x ) )	 (2)

for all A Q,where Q is the set of all possible parameter sets.

The choice of an approximating function is difficult since

no explicit method exists for making such a choice. Only the

general statement that the more complex the variations in the func-

tion are the more complex the approximating function must be can

be made with certainty. The choice of error function is also
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equally undefined. The choice of error measure is often based

on generally favorable characteristics of certain well known

functions. The error or distance function is commonly called

a norm and a common class of norms which will be considered

here is called the L  norm. The L  norm of the function f(x)

is denoted by Lp (f) and is defined by:

Lp (f) = I 
b 

lf(x)l
P

 dxI
1/P
	p a 1	 (j)

a

Then the best ap proximation to f(x) is obtained when the

L distance function is minimized:
p	 b

min	 IF(A.x.y) - f (x rY)l p dx	 (4)A
a

The solution A* for p = p  will in general be different

for p = p
x 
and the nature of the approximation varies sharply

as p is varied. Some well known cases are for p = 1 which is

the minimum sum of the absolute value norm and p = 2 the least

squares norm. A third widely used norm is called the Tchebycheff

norm which is simply the maximum error. An optimum approxim..tion

in the Tchebycheff norm minimizes the maximum error. The L 2 or

least squares norm is generally preferred above all others

because of its desirable heavier weighting of large errors more

than small errors and because of its differentiability and its

relationship to series of orthogonal functions. The L 2 norm will

1^	 '
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be used in the work described here.

The form of the approximating function remains as the

key problem in the study. The functions investigated in

this study are from two classes: 1. Polynomials, and 2.

Spline Functions. A large body of information exists on

polynomial approximations and the work reported here is

based largely on Ralston [4] and Rice [5]. Spline functions

or piecewise continuous polynomials have received relatively

little attention until the early 1960's and the work here is

based primarily on Rice [6] and deBoor [7]. Polynomials are

studied first and are used to define image distortion over the

entire two-dimensional image space. As distortions became

more severe the order of the approximating polynomial becomes

high and solution problems become severe. Spline functions

are investigated secondly to determine if lows:,; _rder polynomials

fitted together can approximate a higher orde e''stortion with

less computational difficulty. Theory for the cne dimensional

case is first developed and then the two-dimensional theory is

developed. Algorithms for generating approximating functions are

described and application of the techniques to description

of image distortion in aircraft multispectral scanner imagery

is described. Comparison of results and recommendations are

presented in conclusion.
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one-Dimensional Polynomial Approximation

Approximation of a function defined by a discrete set

of points (f i lin l, ... on) defined at points x i using a set of

polynomials of largest order m (4 j (x)Ij-O, ... ,m) is expressed

as:	 m

F (A, x)- j EO a j oj (x)	 (S)

The least squares approximation to (f i ) is 4efined by

the set of coefficients A* such that
n

eAdij l (fi-F(A,x)) 2 is a minimum.	 (u)

The error can be minimized in the L i norm using differentia-

tion since the L2 norm has the desireable property of being

analytically differentiable. Taking the derivative of ea

with respect to each coefficient and setting the result to

zero gives:
n	 m

a^ A s -2 iE l (fi -j 0 aj 0 j (xI)ok (xi ) = o	 (7)

k

A unique solution A* is guaranteed since the L 2 norm is a

strictly convex function of A. This expression creates

what is known as the normal equations for the least squares

approximation. %nother advantage of the L 2 norm is that the

resulting normal equations are linear in the parameter space

A whereas higher order norms result in quadratic, cubic, etc.

equations in A. The equations can be expressed as:

i



m
JE O gjkaj"k	 ka 0, ... m	 (8)

where:	 n

gj k-il I O j (xi ) Ok (xi) j,k=0,...,m	 (ea)

and	 npk i1fi0k(xi)	 (81;)
In matrix form notation this formulation is expressed as:

G-(gij)- {Oj(xi)) 	 (9)

(g! denotes the elements of G not g in equation 8a)
Then the summation for gjk in terms of the matrix G is GTG [8].

The summation for Pk is expressed as G Tf, where f is a

column vector {fi). Then the expression for the a  becomes:

GTGA-GTf	 (10)

Where A is a column vector of the desired coefficients

{a j ). The solution for A is obtained by solving the above

matrix equation for A

A-(GTG) GTf
	 (11)

The elements of G are the basis functionsO i (x i )evaluated at

the ordinates (xi ) and are independent of f. The elements

of G are, however, highly dependent on the form of 4. If

0 j (x i ) is _hosen to be xi7 then the exponent of the abscissa

grows as the square of the order of the approximation. The

matrix G T G becomes highly ill-conditioned for values of m

larger than 5 or 6 and this makes invers.%on difficult due to

round-off error in the computational process. To illustrate

this, assume all values of x^

terms in G T G are for Oj-xj:

lie in the interval 0-1. The



,

n

gjk= iLlxi
+k

which is approximately n times a Riemann sum

gjk=nl 1xj+kdx-	 n	 j,k=0, ... ,m	 (13)
+ +

Which in matrix form is: nH where:

1 i 3 ••••	 1
mm+iH^ i T T

m+i	 2m+1

The matrix H is the principal minor of the infinite Hilbert

matrix and is a classical example of an ill-conditioned

matrix. An ill-conditoned matrix is one which when its

largest value. is 1 has an inverse with very large values.

Thus use of the basis functions m j=xj should be restricted

to approximations of low order.

Note that the elements of G T G are cross or inner products

of the space of basis functions. If the 1 j are chosen such

that	 n
O j (xi )#k ( xi )	 0	 for j#k and	 (14)

0 for j =k
then the off diagonal elements of G T G are zero and the

matrix is easily invertible. Polynomials with this property

are called orthogonal and are of extreme importance in the

theory of approximation. Furthermore if

(1:')

lb	 '`.
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n
ii l 4 ( xi ) 4k (xi ) W 	 for j =k	 (15)

The Oj are called orthonormal and the matrix G TG becomes
the identity matrix and the inversion problem vanishes. The

approximation problem becomes

IA-GTf	 (1G)

which is a simple matrix multiplication. The elements of 	 i

A are	 n
arix , f i 4 j (xi)

A problem arises in that for finite point sets the ortho-
J

normal polynomials depend on the number and spacing of the

points xi . For cases where the points are equally spaced

the polynomials can be defined parametrically in the number

of points n and the order of the polynomial M. These poly-

nomials are known as the Gram polynomials and can be found

tabulated and their derivation is unnecessary. If, however,

the points are unequally spaced as is the case for the

checkpoints defining the image distortion, the Gram poly-

nomials cannot be used. In this case, a recursive formula

must be usr,_Q `.o generate the polynomials. It can be shown

by induction (see Ref 4, Page 241) that the following

relationship generates the orthogonal polynomials:

O j+l (x)-(x-c j +1 )0 j (x)-dj o j-1 (x)	 (17)
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Where:
P0(x) =1

P-1(x)-0

and Gj , d  are to be determined. The coefficients are

n	 n
d}= 411[ok(xi)12 4E,#k-1(xi)1=

and	 n	 n

Ck+lm il l xi[4k(xi)]Z/ial[Pk(xi)12

These polynomials are orthogonal but not normal, thus a

normalizing factor i y required to compute the coefficients

for the approximating function.

m

	

F(A,x) = j lo a j ¢ j (x)	 (18>

--	 n
a j= 1 ili fi0j(xi)

Yi

And the normalizing factor Y i is
n

Y i= il l (Oi(xi))Z

These are in fact the diagonal elements of the matrix GTG.

If the order of the approximating polynomial is low (4 or 5)

the non-orthogonal normal equation method is probably

preferable since considerable labor is involved in getting

the 0 j . For higher order functions the orthogonal poly-

nomial method will be necessary. The two-dimensional poly-

nomial case will be discussed next and then spline functions

will be introduced.

t	 ,,
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Two Dimensional Polynomial Approximation

Two dimensional approximation is a direct extension of

the one dimensional case for the Lnorm. 	 The chief problem
2

lies in the size of the problem in that the number of terms

increases as the square of the order of the approximation.

The two dimensional image distortions Ax and Ay must

be estimated for every element in the picture from a limited

number of unequally spaced points at which the distortion is

known.	 The functional approximation problem is solved here

by computing a least squares polynomial approximation to

It the given points using the normal equations. 	 Given are a

set of displacement values distributed over the two dimen-

sional image space.	 Let f (Xifyi)r f (xi,yi), iml,...n bex	 y

the true image displacements at the point xi,Yi-	
The displace-

ment over the entire image is to be approximated by a polynomial

function based on the n measured values:

m M

Ax(xty)= jEO k= Oa j0jk(x'y)

119)
m m

A V(X,Y)= j10 k!ObjkOjk(xIy)

For approximations of low order the nonorthogonal

monomial basis function x 3 can be used and the normal
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equations solved for the desired coefficients. The apprr.-?

imating functions in this case become:

Ax(x,y)= a00+a10 x + a0ly + a20x2...

m	 m	 k	
(°1 U7. j L O kjoajkXjy

Ay(x,y)= b00 + b 10 x + b Oly + b20X2

m m
jE0 kEObjkxjyk

where: Ax,y are the approximated values

(a,b) are parameters to be determined

The elements of the equation matrix G become:

9W xiyi	 i=1 .... n

j=0,...,m

k=0,...,m

And the normal equations are again generated by

GTGA=GTfx

GTGB-GTfy	
C21)

where: A,B are column vectors of the desired

coefficients a jk , bjk

fx ,f y are column vectors of the image

distortions in the x and y directions.
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The solution for the coefficients of the least squares

functions are

A (GTG)-1GTf x	 ('12)

BW (GTG)

-1CTfY

The ordering of the powers of x and y in the polynomial and

the elimination of certain terms are two items of variation

in procedure. The coefficient vector is actually a matrix

of terms

a00 a01 ... a0m

AT= alo all

amo ...	 amm
The subscript notation is chosen so that the

is the power of the x term and the second is

And the set of polynomials is also a matrix

case of j (x)=x3 is

1	 x	 x2 ...	 xm

y xy x 22 ... xmy2

2
y

ym ...	 xmym

and the approximating function is expressed

Ax(x,y)- 0(x,y) ®A
i

Ay(x,y)= O(x,y)9B



i

Where the (g) indicates the matrix dot product:

m m
A Qx B= i E ^ jz i aij . bij . The normal equations are

solved in the same way as for the single dimensional cabe

except two coeffic;int sets are obtained, one for Ax and

the other for Ay.

"I	 Two Dimensional orthogonal Polynomial Approximations

The generation of two dimensional orthogonal polynomials

is again a straight- forward extension of the development

for the one dimensional case. For the case of unequally

spaced points, a recursive relationship can be used to generate

the polynomials. Polynomial ^j can be obtained as a function

of lower order. polynomials:

O j+1 (x,Y) = (x+y-dJ + 1 )0 i(X ,Y) -B j 0 j - I (x ,Y)	 (24)

where I I (x,y) =0 and 0 (x,y)=1

we require that

n
il l j (xi , yi ) tk+l ( xi , 1' i ) =0 for j=0,1,...,k	 (25)
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Substituting the recursive expression into this requirement

for j-k gives:

n	 n
ill Yxi , yi )xi# k (xi ,yi ) • 	01(xi,Yi)Y ^k(xi,Yi)

n	 n
-ak+Iim: #j(xiryi"k(xi.yi)-Rk ii, Oj(xi,Yi"k-1(xi,Yi)=0

for j=0,1,...k	 (26)

A double summation over (xi ,y j ) is not used because each

coordinate pair is unique due to the random distribution

of x i and yi thus the single summation takes into account

all possible points in the two dimensional space.

For j=0,l, ... k-2 in equation 26 the rightmost two terms

are zero because the orthogonality condition holds for poly-

"	 nomials up to the one being generated.

The first two summations with x i and yi in the

summands are polynomials of degree not greater than k-1 and

can be expressed as a linear combination of the 0i (x,y) and

thus these terms will be zero also. For the case j=k-1 the

third term is still zero but the fourth is non-zzro. The

first two terms are non-zero because the order of

xiok-l(xi,Yi) is k and product summation with 0 k (x,y) will

be non-zero. Thus a condition for 0 is created:

n	 n
Sk it Ok_,(xityi)xiOk(xi,yi)+i!iOk-,(xi,Yi)Yiok(xi,Yi)

	

1=i(Ok- i(xi .Y i )]I
	

(27)
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For j=k the fourth term is zero and the third term is non-

zero. This gives an expression for a:

n	 n
a k+1 iii1i(Ok(xi,yi)]2+ i£lyi[Ok(xi,yi)]2

n

iliE#k (xi ,yi)]=

Thus a, can be found which generates a sequence of ortho-

gonal polynomials. Given that 
41= 

Of 00 = 1

ml(x,y)=(x+Y-al).

It is required that

n
iE 1 m 0 (x ,Y)^ (x,Y)=0

n
or i&l(xi+yi-al)=0

n
Thus al-1 iEl(xi+yi)n

From this 40 and ^ l are orthogonal and 4 x 
is generated from

these two polynomials known to be orthogonal thus the

assumptions used in deriving a and $ will hold. The

generation of the approximating function from the O j is

identical to the case for one dimension.
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m
Ax( x, y ) = jj paj0j(x,Y)

m
AY(x,Y) = jEobj#j(x,y)

where:	 n	 //n
a j=il l xio j (xi ,yi ^/iE l Q+ j (xi ,yi ) , similarly for bj

Use of Tensor Products for Two Dimensional Approximations

For a coordinate system in which the independent

coordinates of the given data form a Cartesian product set

X(3 Y the following tensor product of functions is defined:

The tensor product of two sets of functions

{¢i li= 1,$,...,p} and {* i li= 1,2....q} is the set

{*i T j 1l:i=p, 1=j=q}, This product is stated as

{^i } ® {y,j},

The linear approximating function formed by such a

product is:

M.	 m
F(A,x,y)= izl jZ, aibjmi(x)4'j(Y)	 (30)

Where: A represents the coefficients a,b

m is the order of the function

It can be shown that if the functions { ^i^i=l,...,m}

form an orthonormal set then the tensor product is an

orthonormal set. Then the best L approximation (least
z

squares) can be found by solving the normal equations using

the tensor product form of function.
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The tensor product approach eliminates the need for

constructing the two dimensional orthogonal polynomials which

becomes an extremely cumbersome task. The tensor approach is

csed in the spline function method to be discussed next. The

spline functions contain as a subset the polynomial function

approach discussed above; thus, the following sections cover

both cases and represent the major thrust of this report.

Spline Function Approximation

The one and two-dimensional approximating functions dis-

cussed up to this point are assumed to be valid over the entire

region of interest with adequate accuracy. For cases in which

the order of the distortion is low and the area covered is

limited, the single function approach is adequate. When the

image distortions become severe and the area to be represented

increases the order of the functions required becomes imprac-

tically high. Use of two-dimensional functio^%s of fourth, fifth

or higher order is undesirable for computational reasons and

because the number of control points required becomes excessive.

The bi-quadratic function is of the form:

2	 2	 2	 2	 2 2
Ax(x,y)= a o +a l x+a 2 x+a 3 xy+a 4 x +a 3y +a 6x y+a 7 xy +a a x y	 (31)

and requires nine coefficients. The bi-cubic function requires

16 coefficients. Representation of higher order curves or sur-

faces can be achieved through use of lower order polynomials

al
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joined together in a piecewise continuous manner. Such approx-

imations are called spline functions [6] and constitute a class

of extremely useful and successful functions which were first

considered from a mathematical viewpoint by Schoenberg in

1946 [9] and research on these functions has increased steadily

since. The great value of the piecewise polynomial approach is

that complex disjointed functions arising from real, physical

situations can be approximated rather conveniently. The random

variations in multispectral scanner image geometry are generally

unrelated from one place to another. Whereas for polynomials

and most other :mathematical functions their behavior in a small

region determines their behavior everywhere. Piecewi.se contin-

uous (spline) functions do not have this problem and for cubic

or higher order polynomial splines the splines are smooth curves

in the physical world.

A one-dimensional spline function is defined by a set of

points called knots ti:

a<ga<^I<... 
<Ek <Ek+1 b

over the interval [a,b) and a set of polynomials of degree n

valid between the knots and having n-1 continuous derivatives

at the knots. One representation as presented by Rice [6) of

splines is of the form:

k	 n
S ( A . : i x ) = E ai (x-&i ) + +R(x)	 (32)

i=1



1k)

8

-20-

Where:

(x-9)n x>I
(X-C) + 	=

0	 x<t

	II(x) =	 Polynomial of degree n with coefficients

ai ,i=k+1, ... k+n+l

	

A =	 Parameter Vector (a l' a2' " ' ak+n+l)

	

=	 Set of knots (g o ,C if ••• &k+l)

Mara other forms of representation exist for splines; however,

+:u: resulting functions are the same. Splines of greater than

third order are generally not used, the advantage of the spline

approach being that high order polynomials can be avoided. A

first order spline would be a sequence of linear or ramp func-

tions joined together at the knots forming the familiar piece-

wise linear functions. A second order spline would be a set of

quadratic polynomials connected at the knots and having contin-

uous first derivatives at the knots. Similarly, a third order

spline would have cubic polynomials joined at the knots and

having continuous first and second derivatives.

A more common representation for splines is:

	

S ( A r=, x ) = E C	 ( X-C	 )3	 C	 ^X^&	 (33)
j=0 ij	 i-1	 i-1	 i
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which illustrates the piecewise polynomial nature more explic-

itly. Also, when n is odd the splines can be uniquely repre-

sented in terms of the values and derivatives at the knots.

Thus, for linear and cubic splines, the approximation can be

completely specified by the values:

djS(A, °, x)	 n-1V.	 ,kFl,j=0,1, ..
ij	 dx^	 '_T_

x'ci
The 1st and 3rd (odd) order splines turn out to be extremely

convenient choices since for even functions the number of

derivatives needed to be specified at the left and right knot

•	 is not equal and the spline cannot be uniquely specified by

knot point values and derivatives. Furthermore, since the linear

splines have n-1=0 continuous derivatives at the knots the

spline function has jumps in slope at the knots and do not form

"smooth" curves. Thus, the colic spline becomes the natural or

preferred order for spline approximating functions. The cubic

spline in one dimension is of the form:

S(A,Brx)= Cif+Ci2(x-
Ei-1)

+Ci3(x—Ei- 1)2+C14(x-t1-1)3
i

for ^i-l^x^i	
(34)

I

Note that four coefficients are required for each polynomial4	 P Y
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which can thus be specified by four knot point values:

Vi_1 0'-, S(A,a, 4 i-1 )

V	 dS(A,°,X)
i-1,1 -- dx

Xc^i-1

Vi00^ $(A,°-,Ci)

dS(A,E,x)I
Vi 1° -"-'3z'^ x°gi

It can also be show): [10] that the entire cubic spline function

is uniquely specified by only the function values at the knots

and derivatives only at the end point knots.

Two Dimensional Spline Functions

The discussion of splines thus far has been in the context

of one-dimensional functions. Second and higher dimensional

splines are more complex analogs of the one dimensional case.

The two-dimensional case will be discussed in terms of cubic,

or more precisely, bi-cubic polynomials since they have the

same advantages that the one-dimensional cubic splines have.

It can also be proven that specification of 16 corner values

and derivatives uniquely specifies the spline function polynomials.

The two dimensional splines are defined on a rectangular grid

in a two-dimensional plane. Let the divisions between the

rectangles or knots on the X axis be defined by the set (Ci)

and the knots on the Y axis by the set [1r i ]• Then the 2-dimen-

Wj
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sional spline polynomials are of the form:

3
GX(x,Y)	

3
3	 3 ali (x-Ei-1-uj-1)n

m=0 n=0 
mn

For Ei-1^x^Ei,	 uj—lsysuj

For each polynomial there are 16 defining coefficients. A

spline grid is depicted in Figure 1 for K-3 and L =3. The 16

corner conditions on each rectangle that specify the cubic

polynomial follow: Let the spline function be represented as

S(x,y), then the corner values for rectangle (Ei-111Ij-1)'

(E i ,U j - 1 ), (Ei-1,'•s..)', (E i ,u j ) are:

(35)

as(x, )I

x=Ei-1

Y=uj-1

as(x,y) I
By	

x=Ei-1

Y=um-1

as (x, ))-

x=Ei-1

Y=Uj-1

as _(_x,y)
x—fi 	 xagi

ly=11 J-1

as(x )B x=Ea.

Y=uj-1

as (x, )
aaXdy^" x=Ei

Y=i' j-1

as
5
(x, )
"	 x=Ei-1

Y=µj

a s ( x,-Y) -
^Y	 x=Ei-1

Y=U j

as(x, )

v x=Ei

Y=uj

as(x, )as
	 x=E3

Y=uj

as(d̂ x,y>)
x=E3

(Y=uj

y
as (x))(x,y

x=Ei

y=uj
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Fortunately the two dimensional analog of a previosly stated

result holds for the bi-cubic splines. That is that the

polynomials are uniquely determined if only the value of the

function is specified at each of the mesh points and the deriv-

atives are specified only at the outside edges of the grid.

Specifically, the piecewise bi-cubic function is uniquely

specified by only the following values:

s(^iI Iy	 i=O .... ,L, j=0, .... M ( ( L+1)•(M+1) values)

,aS xx,)
ax	 x=^i	 i=O,L, j=0,1, ... ,M (2M values)

y=1i j

a

B
as (x, )

x=& i	i=0,1, ... L, j-O,M (2L values)

l y=11j

as (X, Y9,
ay	 x=gi	 i-0,L, j =O,M (4 values)

I y=I1 j

This elegant result will not be proven here, but the proof can

be found in the cited report by de Boor (10). For the nine

rectangle mesh depicted in Figure 1 specification of 16 mesh

function values, 16 edge derivatives and four cross corner

derivatives or 36 total quantities completely specify

k:

F,
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Figure 1. Example 4 by 4 mesh for spline function description.
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the nine bi-cubic polynomials forming the spline function. The

representation without the simplification would require the 16

values, 16 X derivatives, 16 Y derivatives, and 16 cross deriv-

atives or 64 values.

Computation of the bi-cubic polynomial coefficients from

the specified mesh point values can be accomplished through

simultaneous equation solution also described in [10]. The

method discussed assumes knowledge of the exact values and

derivatives of the function at the grid nodes. In practice,

these values are not known exactly and generally are a set of

approximately known values and these are often unevenly spaced

over the domain of the function. Thus, the real problem is

computing an approximate two dimensional spline function based

on this data. The least squares spline problem is thus the

problem to be solved.

Least Squares Two-Dimensional Spline Approximation

The least squares solution for the two-dimensional spline

approximation function is most advantageously computed using a

set of orthogonal spline basis functions. Usin q this approach,

once an orthogonal spline basis is obtained the approximation is

easily computed using inner products. If {* i } is a complete

orthonormal spline basis for the set of all spline functions
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over the domain of interest, then

<' i 4 i> = 6 i	 i,j-o, ... N
	

(3G)

Where: 6 ij=1 if i=j and zero otherwise.

The approximating spline function S is computed as

n
S= i E O Cf,^	 V+i	 (37)

If a non-orthogonal basis (o i l is known the orthonormal

basis {^i } can be computed using a procedure similar to the

one described for the one dimensional case. The Gram -Schmidt

orthonormalization procedure is usually used for this purpose.

This procedure is described by the two step iterative formula:

0i = O i- 3 EOOi , VP j > ^ j	 i=0 ,.,.N	 (38)

By this process, the non-orthonormal basis {¢ i } is converted to

the orthonormal spline basis function set {wi} which can be

used directly for evaluating the approximating function co-

efficients. It is pointed out in [7) that in forming the initial

basis {O i l it is advantageous to construct each ¢ i so as to have

one more extremum than O i_ 1 . This tends to generate a "nearly"

orthogonal initial basis which improves the accuracy of the

resulting orthogonal basis.
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The procedure for solving for the least squares bi-cubic

approximating function consists of solving for the orthonormal

spline basis functions for a given set of knots and then eval-

uating the approximating function and the mean squared (L2)

error. The knots can then be moved or increased in number to

attempt to reduce the error. An algorithm for carrying out this

process if presented in [7] for approximation in one independent

variable. Development of a two-dimensional cubic analog for

this process was carried out as part of this project. The

algorithm facilitates geometric correction and registration of

aircraft scanner data and similar data having almost any degree

of distortion.

Two Dimensional Spline Function Approximation Algorithm

The algorithm developed is a generalization to two dimensions

of the algorithm FXDKNT described in [7] by de Boor and Rice.

The tensor product approach is used in generation of the spline

basis functions rather than attempt to compute bi-variate basis

functions. The algorithm was originally written to accomod:te

100 data values to be approximated and up to 26 knots in addition

to the left and right boundary knots, or a total of 28. In the

two dimensional version the number of points was kept at 100 and

the number of Y axis knots made the same as for X or 28. This

greatly expands the size of the program but keeps the same capa-
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bility in the new program on each axis should it be needed. In

practice the number of knots on each axis for scanner imagery

probably will not exceed five or six; however, in other applica-

tions the full power of the algorithm may prove useful.

The tensor product form of basis function generation results

in two sets of orthonormal spline basis functions (*i (x)} and

(Ii j (y )) from which the c:cefficients are obtained for the ortho-

gonal projection of the function to be - approximated onto these

basis functions. The form of the approximating function is thus:

IX IY
AX(x,Y)= E E aij^i(x)uj(Y)

i=1j=1

Where *,u are the spline basis functions

aij	 the coefficients of the approximation

function in the basis Pi(x)ui(y)

IX,IY are the number of X and Y dimension basis

functions in the solution.

The aij are computed as the inner product of the function

to be approximated and tk:e basis functions:

aij= <fx (x,y) 1-i(x)uj(Y)>	 (40)

Where

< > denotes the two dimensional inner product

(39)
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The algorithm proceeds by first computing a single cubic

polynomial approximating function over the entire set of points

to be approximated. Then additional knots are introduced one

by one and additional basis functions are computed. The coor-

dinate of the new basis function is computed and the contribu-

tion of the new term is subtracted from the remaining error in

the approximation.

The polynomial spline functions are computed from the basis

functions and their coordinates by evaluating the value, deriva-

tives in the x,y and cross directions at the corners of each

of the rectangular segments of the domain being covered. These

sixteen values are then used to define a cubic polynomial for

each rectangular region. The sixteen values are then transformed

into the 16 polynomial coefficients. The economizing procedure

discussed previously is not used in the current algorithm. The

resulting approximation is represented by the sixteen coefficients

for each spline region for as many regions as were specified by

the knot set. Thus, a function having four knots in the x

direction and six knots in the y direction, including boundary

knots, would have (4-1)x(6-1)x16 = 240 quantities specifying

the approximating function plus the ten knot values.

The algorithm can be re-executed to add or delete knots to

adjust the overall RMS error in the approximation to a desired

level. An artifice was used in the computation of the two

dimensional inner product to handle the case of randomly located
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data points. The data points are constrained to lie on a

quasi-rectangular grid and the means of the resulting groups

are used as the x and y abscissa values in the inner product.

A nearest neighbor rule is used to assign function values to

the points at the nodes of the artificial uniform grid. This

enables a simple trapezoidal integration inner product to Le

computed but causes error in the approximation. An iterative

technique is then employed to correct for this error.



;rte.

1
1

i

-32-

Example of Spline Function Approximation

The multispectral aircraft scanner system flown by the

ERIM* organization produces imagery in long strips of nominally

two miles in width at 5 0 000 feet altitude. This data is often

subject to severe distortions due to pitch and yaw variations

in the aircraft attitude and lateral motions due to cross winds

since the scanner is fixed to the frame of the aircraft. The

scanner is roll stabilized so that only pitch and yaw angular

distortions are experienced. Thus, this type of imagery can

be affected by five platform variables: pitch, yaw, and trans-

lational variations in three dimensions. An example of air-

craft motion distortion in the MSS imagery is shown in Figure 2.

More sophisticated scanners are stabilized on the pitch, roll,

and yaw axes; however, this -equires costly gimballing mounts

and costly support control systems. In most scanner imagery

cases, some degree of random distortion will be present and the

spline function techniques are expected to be useful in a wide

range of cases. The extreme flexibility of the spline approx-

imating functions allows the case of using only one function

for the entire image for simple distortion up to the case of

many spline function regions covering the image to be handled

with the same algorithm semi-automatically.

's

* Environmental Research Institute of Michigan
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The multispeetral scanner imagery shown in rigure-	 it

a typical example of ERIM low altitude flight data. The aerial

photograph segment shovn in figure 3 covers the area imaged by

the scanner and represents the desired geometric shape of image

in figure 2. The function re quired to transform the IISS imagery

into the geometric form of the photo is specified by defining

checkpoints or matching points in the image and map. These

points can be obtained by a variety of manual or automatic

methods and for this example they were obtained by measuring

the coordinates in inches on the IISS image and photo using a

coordinate digitizing table. The scale of the image is approx-

imately 1:56300 and the scale of the photo is approrir-ately

the same. The coordinates of the checkpoints digitized from

the imagery and photo are listed in Table 1.

The values from Table i were input to the two dimensional

cubic spline algorithm first for the case of only one block.

This results in a cubic polynomial fit over the entire region

which in this example was for .75 S x < 2.599 and .593 S y <

10.25. The results of the approximation are listed in Table 2

which includes the values to be approximated (the x and y posi-

tion of each conjugate point in the aircraft scanner image),

the approximations, the error and three error statistics. The

root of the mean squared error for the approximation is .063

for the x coordinate and .11 for y. The maximum error was .132

for x and .37 for y.
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Table 1. Coordinates of Matching Points for Aircraft
Scanner Data Correction Example. Purdue
Flight Line 212. Scanner data obtained
r;ugust 17, 1971. Aerial photograph made
from Color SR photograph taken at 60,000
feet by NASA RB-57 in 1971.

	

Point	 Photograph	 Scanner Image

	

No.	 X	 Y	 X	 Y

^I

itf

f

1 1.53 .594 1.06 .75
2 .781 .813 .063 .875
3 2.125 .593 1.875 .813
4 2.438 1.188 2.125 1.375
5 1.563 1.188 1.0 1.031
6 .750 1.188 .031 1.188
7 .969 2.188 .188 2.250
8 1.563 2.250 .875 2.250
9 2.250 2.656 1.875 2.625

10 1.031 4.093 .438 3.938
11 1.562 4.813 1.0 4.063
12 2.125 4.25 1.781 4.094
13 .969 5.375 .25 5.188
14 1.531 5.375 1.031 5.188
15 2.281 5.344 1.969 5.250
16 .968 6.50 .188 6.313
17 1.565 6.50 .938 6.313
18 2.438 6.50 2.0 6.375
19 .938 7.656 .125 7.469
20 1.531 7.688 .813 7.50
21 2.50 7.656 2.063 7.50
22 1.094 10.25 .156 10.031
23 1.625 9.969 .75 9.75
24 2.375 9.938 2.125 9.75
25 2.031 .562 1.75 .781
26 2.0 1.125 1.70 1.312
27 1.875 2.5 1.375 2.47
28 2.125 4.75 1.81 4.65
29 1.781 5.375 1.437 5.218
30 2.125 6.5 1.70 6.375
31 2.125 7.656 1.65 7.5
32 1.875 9.94 1.187 9.75
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'Fable 2a	 Error data for x dimension, approximation
usinq one cubic snline mock:

ROUT MLAN SQUARE ERROR =
AVERAGE ERROR	 =
MAXIMUM ERROR	 =

0.625779E-^'1
C+.524878E-01
U.132832E aC Al 1.78099'0

	
5.374999

APpRUXIMATION
DATA PUINT

1
2
3
4
5
6
7
8
9
n

11
12
13
14
15
16
17
18
19

21
22
23

25

27

29
3",
31
3Z

ANU SCALED ERROR CURVC
APPRUX I M4T I C^4
0.030319?1

-0.066478'5
0.131745'8
0.2262186)
0.260868?5
0.21540171
0.33013814
0.01)02Z141
().94783473
0.91489472
0.86078262
0.'9b592b11
0.974249'6
0.95527613
0.95872116
0.742053ga
1.30416775
1.458518n3
1.147689RI
1.641969A6
1.68718313
1.77307796
1.73779342
1.69654846
1.8156b146
1.77913666
1.904832806
1.903b9225
1.9125824.0
2.1146554'9
2.012C'0867
2.09133911

UFVIATIUN X 1^:L+2
-G.L"'6807b
-12.947815

1.274549
3.821615
7."286840
2.546183

-10.786104
-6.577849
-11.216474
-11.110497

4.178296
-3.407383
-2.575064
8.027655
2.072155

-2.794572
-13.283157

8.351896
-3.93c95C^
-5.bfj2917
-6.2815b7
-3.692150
3.779507
4.654884

-5.931759
-0.186253
3.332901

-6.53U666
-2.541631
-1.034355
1.200867
2.833939

0.74999970 1.18
0.7bC99966 C.81
0.93799961 7.b5
0.967 ,4995b 6.49

0.9689 95 5.37
1.U309'4918 4.09
1.093 ,l998b 10.24
1.52990973 u.59
1.53049918 5.37
1.53099918 7.68
1.56199932 4.81
1.56299973 1.18
1.56299973 2.24
1956499958 6.49
1.62499905 9.96
1.78099918 5.37
1.814()9905 2.49
1.874'49905 9.93
2.00000000 1.12
2.03099918 0.58
2.12499905 4.74
2.12499905 6.49
2.12493905 7.65
2.12499905 0.59
2.12499905 4.24
2.24999905 2.65
2.280'99918 5.34
2.37499905 9.93
2.43799973 1.18
2.43799973 6.49
2.49999905 7.65
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Table 2b Error data for y dimension approximation
using one cubic spline block.

	

ROUT MEAN SQUARE ERROR =	 0.110631E 0C,
AVERAGE ERROR	 =	 0.7642610-)1
MAXIMUM ERROR	 0.368560E 0C Al

APPROXIMATIUN AND SCALED CRRUR CURVE
DATA POINT APPROXIMATILN

1 0.14999970 1.18799973 1.32238770
2 0.76099956 0.81299967 0.655112316
3 0.93709961 7.655`49910 7.442(976G
4 0.96799958 6.499949C5 6.372696^)
5 0.96899956 2.18799973 2.182624pi;
6 0.96899956 5.37494905 5.25064754
7 1.03097918 4.09299946 3.88046741
8 1.09349986 10.24999905 10.064C22F6
9 1.52999973 0.593949bu 0.807!,7961

1U 1.53094418 5.37499905 5.002182nl
11 1.530'19918 7.66799871 7.49032Sa3
12 1.56194932 4.81299877 4.43155986
13 1.56299973 1.18794973 1.19262123
14 1.56299973 2.24999905 2.OU444984
15 1.56419956 6.49999905 6.22315973'
16 1.624 97905 9.9689989i 9.769332p9
17 1.18099918 5.3749990., 5.165954Fv
18 1.87499905 2.49999905 2.481965A7
19 1.87494905 9.939x9956 9.74389648
20 2.UOQ00000 1.12499405 1.2,4202843
21 2.03099918 0.56109974 0.79676783
22 2.12499905 4.7499Y9U5 4.675796F1
23 2.12499905 6.49999905 6.378982F4
24 2.12499905 7.6559991:: 7.51420513
25 2.12499905 0.5929997 0.86055421
26 2.12499905 4.24994905 4.196+1144;
27 2.24999905 2.65599916 2.61439323
28 2.28099916 5.34399841 5.16276505)
29 2.37499905 9.93794877 9.734436 ^^4

30 2.43799973 1.18799973 1.35630015
31 2.43799973 6.49999405 6.2575686
32 2.49999905 7.65599916 7.57215841

DEV I Al I U;A is IuL f
L3.4387t1

-21 . 14 I63S
-2.62nI25

^; . `7 8 96 `?
-6.7314,".

6. e 6410
-5.15313h

3.3C22c18
5. 7C' /41I

-1tb.5817?z
-0. 76 1312
36.01599/:
16.L621)1

-`24.554916
-8.`ob3E04

1.`1333.,4

1.1985/5
-v.^1^25t
-1.4970e9
l.s'l6e17
2.57960;9

3983';0
1.42U6tt9
4.1554x5

10.X'1454
-1.,-6L,1 5 t? L
-8. 7233`x4
-1.55t.ir1
-I.869+369

-11.1430"19
7.115111
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fluxt the y dimension was divined of the approximate min-

point by an eidditional knot at y = 5.0 and the spline approx-

•	 imation was computed for the two regions. Two cubic spline

functions were thus computed which join with continuity in

•	 value and first and second derivative at the. line y = 5.0.

The fit was improved to an r.m.s. error of .OA for x but the y

error remained about the same at .105. The maximum error was .088

for x and .287 for y. The two section spline improved results

considerably and produced a smooth curve with no discontinuity it

the knot line. The results are tabulated in Table 3 listing the

same information as Table 2. This is a simple illustrative ex-

ample and no attempt will be made here to optimize the fit to

the aircraft data by varying the position of the knot or adding

more knots. An algorithm which optimizes the positions of the

mots is being developed as a continuation of this work. A

•	 great deal of flexibility is available in the spline approach and

the error could be further reduced by appropriate manipulation

of the knots.

Summary and Conclusions

This report presents a discussion of least squares approx-

imation techniques with two dimensional spline function approx-

imation being the main topic. A one dimensional algorithm

due to de Boor and Rice was described and its extension to two

dimensions is the subject of the work reported here. The algo-

rithm is operational; however, certain problems with the two

dimensional inner product remain to be solved. A technique

was used in the current program in which a nearest neighbor



DEVIATION X 1(°,L+3
d.1923bd

-46.471954
-32.e5U8s,7
51.446136
22.1242 ,1
83.51:13 "eb

-88.Ltd7d63
-45.7b50dr^
31.137466

-^^z. ^a3021 ^,
-4.^iddl:i6
20.39337

-14.673743
3.,j356„4

34.3264:31
2U.366C13

-6G.164444
-0.419617

-25.562286
-42.904846

18.461t,74
15."44464
41.d90b56

-1U.b7474E'
44, t4352^ 0
28.94114/
3.27'96!16

-41.7814047
-26.612274
-31.x_-1825,j
-22.403442
2U.607206

6
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Table 3a Error data for x dimension approximation
using two cubic spline blocks with new y
knot at 5.0.

	

ROOT MC41q SidUARE ERROR =	 0.404584E-01
AVLRAGE 1RRDR	 =	 0.346789E-u1
MAXIMUM ERROR	 =	 C.888879E 'il AT

	
l . C 3Ct4'7v

APPROXIMATION AND	 SCALED ERROR CURVE
DATA POINT APPROXIMATION

1 0.74999970 1.18799973 0.03919234
G 0.78044966 0.81249961 0.01602793
3 0.93794961 7.65599918 0.092749!16
4 0.46799958 6.49999905 0.24594589
5 0.96899956 2.1879'497.6 06210124nd
6 0.96899956 5.3749990:; 0,33351320
7 1:03099918 4.09299946 0.34911141
d 1.09399986 1C.2499996 0.1102347;1
9 1.52999973 0.59399968 1.09113643

LO 1.5309991b 5.37499909 0.97816846
li 1.53099916 7.68799871 0.80351196
12 1.56199932 4.81299877 1.02039311
13 1.56299973 1.18799973 0.9d512b?b
14 1.56299973 2.24949905 0.87809519
15 1.156499958 6.49999905 0.972326^4
16 1.62499905 9.96899891 0.77036572
17 1.78099918 5.3749'990°; 1.37683497
Ld 1.87499905 2.4999990°.i 1.37457943
L9 1.87449905 9.939'49956 1.1614373
20 2.00000000 1.1249490.j 1.657094rU
21 2.030'49918 0.56199974 1.82848072
22 2.12499905 4.7499990 1.82524305
23 2.12499905 6.49999905 1.7478892
24 2.12499905 7.65599916 1.639124P1
25 2.12499905 0.592999/U 1.919934?1
26 2.12494905 4.2499990 1.60994034
27 2.24999905 2.65599916 1.b7827873
28 2.28099918 5.34399891 1.9272.0995
29 2.37499905 9.93799871 1.91138649
30 2.43799973 1.18799973 2.09398079
31 2.43799973 6.49994906 1.97709656
32 2.49999905 7.65599916 2.08360649
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Table 31)

	

	 ;rror data for y dimension approximation
using two cuhi.c spline blocks with new y
knot at 5.0.

	KOrT MLA;j SuUARE FR w Om =	 C.10568HE
AVLRACPE f.mKUR	 s	 0.77933CE-JI
MAXIMUM ERk(IR	 =	 0.287311E :)C AT	 1.53C99-o 5. 37499 )

AtJ PROXIMAlILJN	 ANU	 SGALFU FRKCK CUKVE
W)	 IA	 PUINI APPRIIXINATICN OEVIATI()'-*	X	 iCl•1

1 C. 14 1)')9-4/C :. 1n7`19913 1.254605:4 0,. 66j5) 1
1 0. N( 1)9 066 0	 d129v961 r). 1 36)791 3 - 15.uC'2r45
3 C. y 37')9')61 7.6554'441;; 7.4;(137137 + -1.(.62( 1?
4 C.967099) ►3 6.49999905 6.31d149z1 ,,.'^7 -9b
`) C.9t,A191)56 2.187')9973 2.231491?! -1.75,-163
6 0.46A9991)6 5.37499901 5.231831375 4.')83901
1 I.^- K, 91 )1t3 4.f..)419994u 3.H94292p3 -4.370594
8 1 .:93 149 14t36 1C .2494v9C^) :O.0 315027 2 U.' 5;i3^,4
') 1.52949911 U. ti )39996e 0. .̀73861 1'-4 -17.613754 

1,. 1.53r )9903 5.1149990.) 4.9CC6391 3 -28.7310,49
11 1.53C ) 4918 1.68799871 1.58OC43'4 6. C,IJ4415
12 1. 561'+9931 4. H1294H 11 4.347252p-i 28.425304
1 3 1 .56249973 1. 18799973 1.18217001 1 to 	 i 17164
14 1 .56709973 2.249`)11905 2. 12330 7^. -12.-'19114
15 1.564 )975b 6.499999'J5 6.19944471 - II.1S'34I)I,
16 1.624')9905 9. • )689989. 9. r3657111 - I . 34271 3

1 1 . l8C a )`)1d 5.3.1499905 5. 134 50V)  1 -6. 349419
1H 1.b1499905 [.49999905 2.410624n2 C.,'625611'.) .814'0905 9. 939999503 9.74669813 -0.334012
2-3 2.1 00! 0000 1.12499905 I.?64UI 1 0 4 -2.198748
21 2.f)3f49918 0.56199974 0.847655r. 6.665533
22 2.12491905 4.7499990:) 4.7C2453( l 5.245379
21 2. 124'09405 6.49999905 6,34712471) 2.c 125, 4
24 2.1249990') 7.6559991b 7.5Cl29715 C.129H9)
25 2.12499905 0. 5929 ,0979 0.41552591 1U.25L63(`
26 2.12499905 4.2499440 4.2C5987n3 11.19138;7
11 2.249 )9405 2.6559v')10 2.59380444 - 3. 1 1 3556
213 2.240'49918 5. 3439')891 5. 1b209E) 4 4 - 6. 79025 7
2'l 2.3741)9405 9.93799871 9.73391714 -1.60H1H1
3C 2.43799973 1.18799973 1.34644672 -2.w;5233
31 2.437')9973 6.4999v905 6.21458811 -16.041077
32 ?.49999905 7.65599919 7.571s9ZP)1 1.492256

i

i
I
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rule is used to define the v, d ues of randomly spaced data

points at the nodes of a uniform grid. This makes coni uting

the integral for the inner product simple but results in error

in the approximation. A rule must be employed when using this

program in selectinq data points over the two dimensional sur-

face so that a quasi-uniform grid is maintained. The points are

then grouped by the program and the mean of the group on the x

or y axes is taken as the respective abscissa. rurther -,-cork

needs to be done on this and other problems relating to randoml';

spaced points in two dimensional approximation problems. Sub-

sequent reports will document the algorithm in detail and address

certain of these problems.

It must be pointed out that the spline function approach to

approximation is only one of a large number of methods each %'Ath

their own advantages and disadvantages. For the problem of

multidimensional approximation of functions the Weightin g Function

Technique of Jancaitis and Junkens [11) bears particular note:

and future work will evaluate this and other methods relative

to the spline function approach.

Finally, it should be noted that the multidimensional anpror.-

imation techniques have application in many earth resources data

processing areas in addition to image geometric distortion

representation. Any ease in which randomly located measurements

are made of physical, electromagnetic, socio-economic processes

is a candidate for this type of approximation technique. Speci-

fically, the conversion of digitized to pographic contours,
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airborne radiometer, and magnetometer and other geophysical

data to a uniform grid format for computer overlay and image

processing and analysis is the next application goal of the

present work. Progress in these areas will be reported in

subsequent documents.

I
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