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A GENERALIZED TENSOR FORMULATION O F  

ATMOSPHERE AND SEAS DYNAMICS 

Lee M. Avis, Richard E. Turner, 
and Thomas H. Rees 

Langley Research Center 

SUMMARY 

A new generalized mathematical model has been developed which is applicable to 
simulation of the dynamics and transport of both the atmosphere and seas. Considerable 
conceptual and computational simplification is achieved by requiring the nearly horizontal 
bottom coordinate surface to follow the land-to-air interface and the sea-floor -to-water 
interface. The model allows general vertical motion of the other quasi-horizontal coordi­
nate surfaces; thus, external gravity waves can be simulated by letting the top coordinate 
surface ride with a top free surface. Also, the freedom of motion of the internal quasi-
horizontal surfaces provides a potential fo r  tracking meteorological fronts and inversion 
layers in the atmosphere and refractive layers  in the seas with resolutions superior to 
those realizable by simulation models having fixed coordinate lines, for  equal "horizontal" 
grid spacing and an equal number of "horizontal" surfaces. 

The standard subgrid mixing theory used by meteorologists is reformulated in t e rms  
of a strain-rate tensor for  both three-dimensional and hydrostatic quasi-two-dimensional 
dynamics. The tensor reformulation departs significantly from the standard theory in 
allowing, as a solution under adiabatic conditions, rigid-body rotation of the atmosphere. 

INTRODUCTION 

There are many advantages in developing computer models of the Earth's atmos­
phere o r  seas in coordinate systems allowing generally specified vertical motion of the 
coordinate gridpoints. In the atmospheric troposphere, coordinate gridpoints can be 
moved vertically to follow the motions of sharp temperature gradients occurring in 
frontal systems to obtain improved resolution of the frontal system. In regions where 
low-pressure cells penetrate into the stratosphere, the coordinate gridpoints can be 
moved vertically to follow the zone separating the turbulent troposphere from the 
thermally inverted stratosphere and thereby reduce false numerical diffusion between the 
two regions. The seas also have a time-dependent vertical structure that can be well 
represented by coordinate systems allowing vertical motion of the coordinate gridpoints. 



In coastal regions where fresh-water r ive r s  empty into the seas, strong vertical 
density stratifications occur and cause time-varying changes in the flow fields. Spurious 
numerical diffusion through such strong vertical density gradients can be reduced by 
moving gridpoints vertically to follow the density gradients. In the case of coastal-zone 
tidal waves, tidal currents can be simulated in conjunction with moving the upper level 
gridpoints vertically to follow the water's free surface. Vertical density stratifications 
occur along the common boundaries of adjacent oceans (the Arctic and Atlantic Oceans, 
f o r  example), and the open seas are generally stratified because they are top heated. 

The National Aeronautics and Space Administration is presently involved in 
developing computer models of the Earth 's  atmosphere and seas to aid in determining 
satellite sensor requirements and to aid in the interpretation of remotely sensed data in 
connection with environmental pollution problems. Since pollution occurs over a wide 
range of distance scales in the atmosphere and seas, a mathematical model of geophysical 
circulation allowing vertical motion of coordinate gridpoints and having validity over a 
wide range of scales is needed for  the development of circulation models. 

The literature shows that a number of successful attempts have been made to model 
the atmosphere and seas. References 1 to 4 are descriptions of global atmospheric 
models; reference 2 also describes a global seas model. A survey of small-scale models 
is given in reference 5. 

Generally, atmospheric-circulation models have been in existence longer than ocean-
circulation models and, consequently, have reached a higher level of sophistication. The 
atmospheric models given in references 2 and 4 use the "sigma coordinate" method where 
vertical motion of the gridpoints is used to keep constant mass  ratios in the model vertical 
layers.. Such a model cannot be converted easily to track surfaces of constant tempera­
ture, for  example, and even though the "sigma coordinate" method allows vertical motion 
of the gridpoints, it cannot be considered a flexible technique. 

The coordinate system and equations of motion of seas models (e.g., see ref. 2) 
generally differ considerably from the coordinate system and equations of motion of 
atmospheric-circulation models (e.g., see refs. 2 and 4). This fact probably increases 
the difficulty of communication between atmospheric and ocean researchers .  

In this report an attempt is made to develop the equations of motion in a coordinate 
system that allows generally specified vertical motion of the gridpoints. The resulting 
equations of motion are cast  in t e r m s  of dependent variables which represent either 
atmospheric or  ocean circulation. Computer models developed from such a formulation 
need differ only in respect to the physics to be included in each model. Consequently, 
the terminology gap between atmospheric and oceanic researchers  is bridged. 
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Present-day understanding of mixing processes is poor, and it is anticipated that 
turbulent mixing theories will become considerably more sophisticated, especially for  
pollution transport. Tensor calculus (having been developed from principles of invariance) 
is a good candidate fo r  the description of better mixing theories and is employed in this 
report. 
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SYMBOLS 

determinant of the quasi-horizontal metric tensor 

determinant of the metric tensor 

Coriolis and centripetal acceleration along dxi 

heat capacity per  mole a t  constant volume 

elements in the subgrid diffusion model, defined by equations (D9) 

internal energy per unit mass  

acceleration due to gravity 

gravity component along dxi 

covariant and contravariant elements of the metric tensor, respectively 

physical height above reference level of parametric (grid) lines 

horizontal kinematic viscosity 

Von Karman constant 

vertical kinematic eddy viscosity for  momentum 

physical components of the deviatoric strain-rate tensor 
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Ui 

Ui' 

mixed tensor components of the deviatoric strain-rate tensor 

mixed tensor components of the strain-rate tensor 

unit vector normal to dS, positive outward 

hydrostatic pressure 

general quantity which assumes the role of the dependent variables 

heating rate in the thermodynamic equation (E5) 

water-vapor mass  fraction (specific humidity) 

universal gas constant 

Earth's radius 

a rea  

quasi-source term for  transport equation (for a scalar Q, 

s(fiPQ)= S ' ( 6 P Q ) )  

source term fo r  transport equation 

physical vertical velocity of coordinate gridpoints relative to rotating Earth 

contravariant components of gridpoint velocities relative to rotating Earth 

temperature, OK 

general contravariant and covariant vectors, respectively 

time, sec 


physical components of velocity vector relative to rotating Earth 


physical components of turbulent velocity vector relative to rotating Earth 
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V i  
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covariant tensor component of velocity vector relative to rotating Earth 

physical components of fluid velocity relative to coordinate f rame of reference 

contravariant form of Vi 

depth of atmosphere or seas in transformed coordinates 

coordinate variables for reference coordinate system, where x1 and x 2 

lie along the real Earth surface and x3 is perpendicular to the rea l  
Earth surf ace 

physical coordinate in direction of x1 

indices restricted to the horizontal surface 

ratio of heat capacity at constant pressure to heat capacity at  constant volume 

coordinate increment 

physical height of Earth's terrain f rom a given reference level 

characteristic 6 on a grid interval 

mixed tensor components of Kronecker delta 

e r r o r  fraction in the square of a line element 

generalized density defined by p 

coordinate volume element, dx1 dx2 dx3 

variable of integration 

density of air o r  water 

Earth's spin rate 

mean molecular weight 
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Operators: 

space-time average over a coordinate volume v and time increment A7,

L l  ( ) d x 1 d x 2 d x 3 d t
AT Av 

denotes turbulent par t  of ( ) 

square of ( ) 

partial derivative of ( ) with respect to x3 

covariant derivative of ( ) with respect to xj 

co-moving time derivative of ( ) 

partial derivative of ( ) with respect to t 

Christoffel symbols of the second kind 

ANALYSIS 

Introductory Remarks 

A simple, generally valid mathematical model f o r  simulating atmospheric and 
oceanic dynamics and pollution transport was developed with a general, time-varying 
vertical grid structure. A review of the literature (e.g., refs. 1 to 4,6, and 7) indicated 
that no known existing published model with generally prescribed time-varying vertical 
grid structure had been applied to both atmospheric and oceanic circulation. Reference 1 
describes an atmospheric-circulation model wherein the vertical coordinate is the fixed 
physical distance from sea level. References 2, 3, and 4 describe atmospheric-circulation 
models in the "sigma coordinateffwherein the ratio of pressure to surface pressure is 
used as the vertical coordinate. The "sigma coordinate" technique allows vertical motion 
of the gridpoints; unfortunately, the vertical motion cannot be prescribed generally. Ref ­
erence 6 describes a coordinate system wherein general vertical motion of the gridpoints 
is allowed; however, the resulting transport equations contain elements from two coordi­
nate systems and may present difficulties when modeling subgrid transport. The strong-
point of the approach given in reference 6 is that it is not limited by the small slope 
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approximation for  the horizontal coordinate surfaces. Reference 7 describes the "sigma 
coordinate" approach in detail. None of the references gave formulations intended to 
cover both atmospheric and oceanic circulation. 

Some notable features of the new mathematical model are as follows: 

(1) Combining density and the vertical scale factor to form a generalized density 
so that the atmosphere and seas have the same motion equations 

(2) Distortion of the quasi-horizontal bottom coordinate surface to follow the real 
Earth terrain and provision for  general vertical motion of the other quasi-
horizontal coordinate surfaces 

(3) Projection of gravity onto the quasi-horizontal coordinate surfaces 
(The gravity force is derived from the gravity potential specified along 
the quasi -horizontal parametric lines .) 

(4)The representation of the intuitive subgrid diffusion (see ref. 3) as a true tensor, 
which corrects  a deficiency in the subgrid diffusion formulation in allowing 
rigid-body rotation of the atmosphere under adiabatic conditions 

(5) The extension of the atmospheric top to zero pressure as in the "sigma 
coordinate" approach (ref. 7), which has the ratio of pressure to surface 
pressure as the vertical coordinate (see also ref. 6) 

(6) The use of generalized density rather than pressure as a dependent variable 

The development of the mathematical model in tensor notation is accomplished in 
appendixes A to F. A brief outline of the development sequence in the appendixes which 
wi l l  serve to give them continuity is given as follows: 

In appendix A, the transport equations for  momentum and a general motion integral 
are derived from conservation integrals in which the volume elements are allowed to vary 
with time: that is, the coordinate points are allowed to move in some arbitrari ly speci­
fied manner. As a direct  result, the motion equations can simulate any conceivable mix­
ture of Eulerian and Lagrangian viewpoints. 

In appendix Bydifferential distances for real Earth topography are shown to be 
quadratically dependent on the slope of the real Earth surface. Thus, fo r  small surface 
slopes the geometry is, to second order,  unchanged by mountains and sea bottoms, and, 
to the order of the square of the slope of the real Earth geometry, the equations of motion 
for  geophysical circulation depend on the real Earth topography only through the external 
forces, such as gravity. 

In appendix Cyone transport equation, valid fo r  all motion integrals, including sub-
grid transport t e rms  and appropriate source terms,  is given. 
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In appendix D, the subgrid transport treatment of Washington and Kasahara (ref. 1) 
is converted into tensor notation f o r  full three-dimensional turbulence transport and is 
then simplified to the usual two-dimensional stratified turbulence transport. The tensor 
elements of the strain-rate tensor differ from the strain-rate matrix of reference 1 with 
the result that the tensor treatment of subgrid momentum transport allows rigid-body 
rotation of the atmosphere under adiabatic conditions. An alternate tensor treatment of 
subgrid momentum transport, also allowing adiabatic rigid-body rotation, is reported in 
reference 8. 

In appendix E, a tensor mathematical model fo r  full three-dimensional dynamics 
with full three-dimensional Reynolds transport in physical components, as opposed to 
tensor components, is presented. 

Finally, in appendix F, the usual hydrostatic assumption is applied to the momentum 
equations. (See ref. 1, for  example.) As a direct  result of the hydrostatic assumption, 
one can calculate pressure from the known density field. The hydrostatic assumption 
causes the atmosphere and oceans to be similar except in respect to computation of the 
vertical velocities. 

In the nearly incompressible oceans, the vertical velocity v3 may be computed 
from the mass-conservation equation, and because (see ref. 9) work of compression is 
safely ignored in the internal-energy balance, one need not compute the divergence of the 
velocity uj. 

Dynamic simulations of the atmosphere generally include work of compression in 
the internal-energy balance. If one chooses pressure rather than density as the dependent 
variable to be simulated, then the internal-energy constraint is automatically satisfied; 
however, then one must be careful to conserve mass.  In the present report, density is 
chosen over pressure as the dependent variable and, consequently, mass  is automatically 
conserved, whereas the internal-energy constraint is satisfied only if one computes the 
vertical velocity from a conservative form of the internal-energy equation. 

Conservation Equations fo r  the Atmosphere and Seas 

Over a wide range of scales, the atmosphere and seas approximately satisfy the 
hydrostatic assumption, for  which condition the atmosphere and seas have a common set 
of conservation equations fo r  mass,  momentum, and energy. The atmosphere has water 
vapor as an additional variable, whereas the seas have salt. 

The coordinate system chosen to present the conservation equations is an 
approximately orthogonal coordinate set wherein the coordinate surfaces defined by 
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x3 = Constant are nearly spherical, with the x3 = 0 coordinate surface following the 
real Earth terrain. All other "horizontal" parametric surfaces are allowed to be posi­
tioned quite generally, or even to be in motion, but with the restriction that the slopes of 
all "horizontal" coordinate surfaces are not very much greater  than the maximum slope 
of the real Earth terrain. The x1 coordinate is the co-latitude angle, the 9 coordi­
nate is the longitude angle, and the x3 coordinate direction is locally perpendicular to 
the quasi-horizontal coordinate surfaces. 

In appendix B, it is shown that the differential geometry of the chosen coordinate 
system is sufficiently represented by the approximate metric tensor 

g22 = (r sin 

g33 = 833( X I ,  x2, x3, t) 

where r is the Earth 's  radius; and, thus, the determinate of the quasi-horizontal metric 
tensor becomes 

From appendix E, one has  a common set  of conservation equations for the atmos­
phere and seas  wherein the real  density p is combined with the vertical scale factor6 to form a generalized density c = p&. 

The resultant mass-conservation equation in te rms  of physical velocities Vi is, 
from equation (E2), 

The momentum equation along the 'd parametric ,line is, from equations (E19) 
and (E21), 
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The momentum equation along the x2 parametric line is, from equations (E22) and (E24), 

where the Greek indices take on the values 1 and 2 and, from reference 1, 

-= -2wu2 cos x1
( a C ) l

fi 
-= 2wu1 cos x1 


\Igzz 
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and, it should be noted, where the centrifugal term proportional to ( w ) ~has been con­
sidered to be a part  of the gravity term, which is the usual practice. 

The internal-energy conservation equation is, from equation (E5), 

The final conservation equation for atmcmpheric water o r  ocean salt, or  for an arbi t rary 
pollutant, is, from equation (E6), 

where -1 (6(Tq) is the source term for water vapor resulting from evaporation con­

densation. 
6 

For the seas, the source te rm would reflect salt dissociation precipitation; 
for  pollution, the source te rm would represent scavenging and chemical reactions. 

Subgrid Cor relations 

The subgrid mixing model is the tensor representation of an intuitive subgrid model 
developed by Smagorinsky and described in reference 3. Simply put, subgrid waves, or 
waves unresolvable on the grid spacing, have a sizable effect on the development of circu­
lation patterns. It is implicit in Smagorinsky's model that these subgrid waves act like 
diffusion and tend to drive property gradients to zero and, therefore, represent the irre­
versible nature of circulating fluids. The horizontal subgrid action is similar to wind-
or current-driven turbulence, whereas the vertical subgrid action is similar to thermally 
driven turbulence. 
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The horizontal subgrid mixing, then, is taken to be a function of the strain-rate 
tensor, which is a measure of the mechanical st irring of the fluid by the resolvable waves. 

The vertical mixing in the atmosphere (being driven by small-scale convective over­
turning, as, for  example, by cumulus convection) is taken to be a function of the thermal 
lapse rate. (See ref. 1.) The vertical mixing the oceans (which is top heated and, there­
fore, generally stable thermally) is modeled more like mechanical turbulence in refer­
ence 9 by specifying a very low eddy viscosity in the deep ocean and specifying relatively 
high eddy viscosity in the surface wind-driven currents  where mechanical st irring is 
strong. 

The subgrid mixing model begins with the deviatoric strain-rate tensor which is a 
measure of the stirring of the fluid. The deviatoric strain-rate tensor Z i

. j  
f rom appen­

dix D is, for the quasi-two-dimensional case, 

i:l = klsin x ~ ) , ~- u2,2 - 2 cos x u1]/6 
i:2 = sin x l E l , 2  + (.zsin x ~ ) , ~- 2 cos x1 u2I/d g ~ ~  

A2 A 1  
Q.2= -Q.1 
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Horizontal Subgrid Mixing 

The strain-rate tensor is related to the subgrid horizontal-velocity correlation 
tensor as in reference 3 by 

where f,
aP 

represents the physical components of the strain-rate tensor Za and isP 
computed by 

One simple interpretation of equation (8) is that velocity gradients in the fluid (measured 
by cap)cause a potential f o r  momentum to be transferred by means of the velocity 

correlation (Ua'U3'), and KH is simply a constant of proportionality. The horizontal 
subgrid mixing for a scalar Q, as in reference 1, is 

K~ aQ 
Pa'&'> = -E= 

where gradients in Q cause a potential for Q to be transferred and, again, KH is the 
constant of proportionality. 

The kinematic eddy viscosity is related to the strain-rate tensor for  mechanical 
st irring by 

where K, is the Von Karman constant and A is the grid spacing. Equation (11) also 

has's simple interpretation. Mechanical st irring (measured by d-) causes the 

eddy viscosity, whereas fi(KO A) is a constant of proportionality which allows one to 
tune his subgrid mixing model to best simulate the rea l  world. Equation (11) implies 
that, for  simulation cases  where A approaches zero, all important mixing processes  
can be resolved on the grid. 
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Vertical Subgrid Mixing 

In the case of vertical transport, the actual mixing process is generally thermally 
driven in the atmosphere. Reference 1 gives a parameterized description of the vertical 
kinematic eddy viscosity KV, which is dependent on the temperature lapse rate. In the 
oceans, Cox (ref. 9) has two values of KV. In the deep ocean where mechanical stirring 
is low, a small value of KV is used; whereas fo r  the upper ocean in the wind-driven 
currents  where mechanical stirring is strong, a large value of KV is used. 

The deviatoric strain-rate tensor is related to the subgrid velocity correlations 
corresponding to vertical mixing of the horizontal momentum, as in reference 1, by 

(Ua'U3') = -KVia3 

where, again, 

and equation (12) has  the same interpretation as equation (10). The vertical subgrid 
mixing for  a scalar Q, as in reference 1, is 

Vertical-Velocity Computations 

The prime unknown remaining to be specified is the vertical velocity. In hydro­
static models such as those given herein, the vertical velocity cannot be computed from 
the vertical-momentum equation. 

Seas. - In ocean-circulation models the work of compression P ujl j  is customarily- F 
neglected in the internal-energy conservation statement given in equation (5) which 
implies that 
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Clearly, at the bottom (x3 = 0), the vertical velocity U3 vanishes, and so 

where [ is a variable of integration. The vertical velocity U3 is not required to solve 
the ocean-circulation equations (as approximated herein); however, values of U3 might 
be a desired output of the simulation. One has the freedom to assign V3 or  S3 for 
input to the transport equations, and for computing g. 

An additional approximation is employed, the Boussine sq approximation, which states 
that density variations are negligible except when multiplied by the acceleration of gravity. 

Atmosphere. - In atmospheric simulations, the work of compression is usually con­
sidered in the internal-energy equation, and so computation of U3 is required f o r  solu­
tion of the equation fo r  atmospheric models; however, when U3 has been computed, one 
still has the freedom to assign values of either V3 or  S 3  and, consequently, move the 
vertical position of the horizontal coordinate surfaces to any desired position. 

Several thoughts which should be considered before the vertical-velocity computa­
tional sequence is developed are given as follows: 

(1) The pressure can be computed from the density profile by utilizing the hydro­
static assumption. 

(2) The internal energy can be computed from pressure and density from the equa­
tion of state. 

(3) Since internal energy can be computed independent of equation (5), and since 
equation (5) must be satisfied fo r  consistency of internal energy, then equation (5) should 
be used to compute U3. 

(4) The physical velocity component V3 can then be chosen arbitrarily to give any 
desired vertical coordinate spacing; o r  any desired vertical distribution of < can be 

x 3  
chosen equally well provided lo < dx3 is properly conserved, because this integral is 

the total m a s s  per unit c ros s  section of area along the nearly vertical x3 coordinate 
line. With these thoughts in mind, one can proceed generally to specify V3 and then 
compute ac /a t  and U3; o r  one can specify ag/at  and then compute V3 and U3 
equally well. In either case, the boundary conditions on V3 at the bottom (x3 = 0) and 
the top (x3 = X3) fo r  a conservative-mass system are 

~ ~ ( 0 )= v, (x~)= o 
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In illustration of these considerations, V3 is chosen, subject to the boundary con­
ditions given in equation (17). Next, a{/at is computed f rom the mass-conservation 
equation (1). The final task is to compute U3 f rom equation (5). In order  to solve 

a
equation (5) for U3, one must know (<E) and -(<E).a t  

The computation of ({E) begins with the hydrostatic assumption where 

Then; f rom the equation of state, 

and since 

E = -CVT-
0 

equations (19) and (20) combine to give 

Consequently, the hydrostatic approximation allows one to convert equation (5) f rom (<E) 
description to P dependence, and thereby simplify the solution, because P and aP/at  
can be computed from simple density integrals. The right-hand side of equation (5), 
being already in its proper form, can be denoted by -1 $( fi<E); then, substitute equa­

6 
tion (21) into the left-hand side of equation (5) and get 

The next step is to get an expression f o r  aP/at f rom equations (1)and (18) which 
results in 
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The first t e r m  in equation (22) expands to 

Then, from equation (El l ) ,  

aS3
L(&) = ,,3a t  

Next, substitute equations (23) and (25) into equation (24) and get 

aFinally, substitute equation (26) into equation (22), expand --(pV3) to 
ax3 

= v  +P-aV3 
ax3 ax3 

set 

aP - -g< 
ax3 

and 

v3 + s3= u3 

and then get 

17 




Equation (27) now involves U3 as the only unknown; thus, replace the right-hand side of 

equation (5) for 1
6 

Equation (28) is then integrated to get U3 by use of the boundary condition, U3 = 0 
at x3 = 0. Equation (28) w a s  derived from the conservation equation for  internal energy; 
i t  is a form of the Richardson equation in reference 1. 

A brief recapitulation of the chosen approach to computing the vertical velocity is 
given as follows: First ,  V3, the vertical fluid velocity relative to the coordinate system, 
is specified (consistent with the boundary conditions of eq. (17)). Second, a</a t  is com­
puted from equation (1). Third, U3 is computed from equation (28). When V3 is 
chosen arbitrari ly,  6will usually be t ime dependent, the variation of which can now 
be computed from equation (25) by 

There are many other valid approaches for  specifying the vertical structure of an atmos­
pheric model, but the important point to be made is that one can choose the vertical struc­
dure in any desired manner. Equation (28) is the general link by which the vertical struc­
ture is made to evolve with internal energy properly conserved. 

General Solution Considerations 

The solution to a given circulation problem is typically straightforward in concept. 
The conservation equations describe the time evolution of the chosen dependent variables 
by means of dynamic equations driven by the dependent variables and subgrid correlations 
between the dependent variables. In the present model, approximations have been made 
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on the t e rms  containing real world terrain to gain simplicity in the governing equations 
while incurring only insignificant e r ro r s .  The results indicate that the rea l  world is, 
for  practical grid spacings, equivalent to a spherical world where the gravity vector is 
oblique to the spherical surface. The resulting model allows one to specify general ver ­
tical grid s t ructures  for the model as a function of time. The model w a s  developed 
specifically to simulate both atmosphere and seas motions. 

CONCLUDING REMARKS 

A generally valid, but simple, mathematical model suitable for simulating atmos­
pheric and oceanic dynamic motions and pollution transport is presented. The mathe­
matical model w a s  formulated in general tensor notation, and in the conservation equa­
tions, the density p and vertical scale factor 6 have been grouped together to 
form a generalized density variable 5 suitable for oceanic or atmospheric simulation. 

For simplifying computations the quasi-horizontal bottom coordinate surface has been 

deformed to follow real Earth terrain, whereas the top coordinate surface moves verti­ 


cally with the oceanic o r  atmospheric f r e e  surface. The intermediate coordinate surfaces 

a r e  allowed to move as freely as one desires.  Thus, external gravity waves can be rep­

resented by the top coordinate surface, and meteorological fronts and inversion layers  in 

the atmosphere and refractive layers  in the seas  can be represented with enhanced reso­ 


lution by the internal quasi-horizontal coordinate surf aces. The action of subgrid mixing 

has been represented as true tensor quantities, which corrects  a deficiency in the intuitive 

subgrid mixing formulation in that rigid-body rotation. of the atmosphere under adiabatic 

conditions is an allowed solution. 


Langley Research Center 

National Aeronautics and Space Administration 

Hampton, Va. 23665 

April 1, 1975 
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APPENDIX A 

GENERAL TRANSPORT EQUATIONS IN COORDINATE SYSTEMS 

WITH TIME-DEPENDENT METRIC TENSORS 

In this appendix, the conservation equations fo r  continuous media are derived in 
tensor notation. The control volume is allowed to move relative to the rotating Earth. 
The resulting general transport equations are applicable to any conservable quantity of a 
circulation system. 

Since the control volume may be in motion with respect to the Earth, the Earth rela­
tive velocities ui are related to the control-volume relative velocities vi by 

ui = vi + si 

where si denotes the velocity of the control volume relative to the rotating Earth. 

Consider a conservable intensive quantity Q inside a small coordinate volume v. 
The total storage rate of Q inside v is given by 

where p is the density of the fluid in v and a is the determinant of the metric tensor. 
The outward f lux  of Q ac ross  the surface S of v is given by the surface integral 

where n
j 

is the unit vector normal to dS positive outward. By the generalized Gauss' 
theorem of reference 10, the flux of (pQ) ac ross  S is equal to the integrated divergence 
of (pQvj) in v; that is, 

Conservation of Q requires that the storage rate plus the transport rate equal the rate 
of creation of Q in v, or 
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where S' is the creation ra te  of p Q 6  in dv. If the requirement that the control 
volume be constant in the coordinate space (but not in the physical space) is imposed, then 
the time differentiation of the first t e rm in equation (A5) can be carr ied inside the volume 
integral. Since the resultant equation must hold for an arbi t rary v, the integration can 
be dropped to give 

at  (a".-)+ (PQvj), jfi= S ' ( p Q 6 )  

Equation (A6) may be rewritten as 

2- ( p Q 6 )  + 2-(pQv") = S ' ( p Q 6 )
a t  ax j  

Equation (A7) is the general transport equation for  a conservable intensive sca la r  quan­
tity Q. 

The derivation of the conservation equation fo r  tensors (Zk:  :) yields additional 

te rms .  In the present report, such t e rms  are grouped with the source te rm to form a 

pseudosource te rm ,$ (&Z; ' ') . Thus, a common form for  all conservation equations. . .  
is obtained, which is 

The derivation of the conservation equation fo r  momentum is presented in the fol­
lowing discussion. Newton's second law for  the infinitesimal control volume dv, if con­
sidering only the force of the pressure gradient and gravity and neglecting viscous forces, 
is 

where (ac)i is the Coriolis and centripetal acceleration arising from the Earth's rota­
tion and dui/dt is the comoving t ime derivation of U i ,  which, from reference 11, may 
be expanded in t e rms  of the velocity relative to the control volume s1= u1 - v1 as 

d? au.1-
dt -a t  + VjUi l j  - J . U .I1 J 
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Thus, equation (A9) can be rewritten as 

Equation (Al l )  can be rewritten in conservative form by the following procedure. 
First, in equation (A6), Q is set to unity. The resulting equation is the mass-
conservation equation 

Next, equation (A12) is multiplied by ui and added to equation (Al l )  to yield the conser­
vative form: 

= fiLP,i + gip - ~ ( a ~ ) ~+ 

Equation (A13) can then be rewritten in the form of equation (A8) by the following-

procedure. First ,  the term (puivj), is expanded by identities to yield 

If the following te rms  a r e  collected in the pseudosource term 

then the momentum-conservation equation (A13) takes the desired form 

which is an alternate form of momentum conservation expressed in equation (A13). 
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Since equation (Al6) holds for the infinitesimal volume dv, it can be integrated 
over a finite volume v. The result must still hold, although the resulting equation does 
not represent a true tensor. In numerical analysis, the solution to a given problem is 
often obtained by breaking the problem space into finite volumes. Equation (A5) for 
scalar transport, for  example, might be solved by such a technique. The numerical 
approximation of equation (A5) causes some information (fine structure) about the state 
of the system to be lost o r  ignored. Unfortunately, the fine structure can have a signifi­
cant role in the solution. These intuitive ideas can be symbolized by the relationship 

where (Q) is the average value of Q taken over the gridcell volume and time step, 
and, thus, Q' is the difference between an instantaneous point value of Q and the aver­
age of Q over the four-dimensional space-time gridcell "volume." A model employing 
a discrete space-time grid represents the field of Q by estimating (Q) . Although the 
space-time gridcell average of subgrid variations Q' vanishes (as can be seen by 
applying the operator ( ) to eq. (A17)), subgrid variations must still be accounted for 
in estimating (Q) ,as shown in the following example. 

Applying the operator ( ) to equation (A6) and substituting the generic expres­
sion (A17) for  Q, vj, Qlj, and vJ yields

l j  

where subgrid variations of p and 6 are neglected. By definition of the 
operator ( ) , (Q) is constant for general Q throughout the space-time gridcell; 
thus, equation (A18) becomes 
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Applying the operator ( ) to equation (A17) yields 

Thus, 

(a')= 0 

with the result that equation (A19) reduces to 

The operator ( ) is an integral operator; therefore, f o r  general Q, 

(QIj) = (Q>lj (A22a) 

(by neglecting variations in the Christoffel symbols of the second kind over a space-time 
gridcell). Similarly, by use of equation (Al?), 

(Qij)' = Qij -(Qlj) 
(A22b) 
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and 

( ~ ' 1 , ~= (Q - (a)), = Q , ~- (Q), 

or, by use of equation (A22a), 

(Q'), j = Q(j -(Qlj) 

Thus, by use of equation (A22b), 

(A22c) 

Applying equations (A22a) and (A22c) to equation (A21) yields 

($(mG)) + 6((P) (Q) (vj)) l j  

The f i r s t  right-hand te rm of equation (A23) can be interpreted as the contribution to the 
flux of Q into the unit coordinate volume of the statistical correlation of the space-time 
fluctuations of Q and VI. The modeling of this te rm is described in appendix D. 

Setting Q = ui in equation (A23) and expressing the source te rm S' by equa­
tion (A13) yields the space-time averaged form of the momentum-conservation equation; 
thus, 

= -G((P> (UiQ)), t ( C I P l i  + giP - P(ac)i + PSliUJ) 

* '  * '  * ?
where SI = uJ - vJ is neglected and vj' is replaced by uj'. 
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For convenience, in equations applied to a discretized space-time grid, the aver­
aging brackets () enclosing unprimed quantities are deleted, which should cause no 
misinterpretation because only averaged quantities are available to the finite difference 
treatment. 
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AN APPROXIMATE METRIC TENSOR FOR NEARLY 

SPHERICAL POLAR COORDINATE SYSTEMS 

The coordinate system adopted is a variant of the standard co-latitude-longitude­
radial system. At the land-to-air interface and the sea-floor-to-water interface, x1 is 
the co-latitude angle, x2 is the longitude angle, and x3 is defined as zero. That is, 
the x3 = 0 surface follows the land and sea-bottom terrain. The x3 coordinate lines 
(which are the loci of constant x1 and x2) a r e  locally normal to the x3 = 0 surface, 
and, in general, the x3 coordinate lines a r e  locally normal to a surface of constant x3 . 
The loci of constant co-latitude and longitude, on the other hand, are radial, and so x1 

and x2 generally deviate somewhat f rom the local co-latitude and longitude for non­
zero x3. The following sketch is a simplified (two-dimensional) illustration of the 
coordinate system: 

I Co-latitude, longitude constant 
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Let the local radial deviation of the x3 = 0 surface from a true spherical surface 
be denoted by 6(x1,x2). Then, for  a displacement d x a ,  the f i rs t -order  change in ele­
vation (measured from a true sphere) of the x3 = 0 surface is given by 

d6=-dx1+-dx a6 2a6 
ax1 ax2 

The differential a r c  length squared for  dx3 = 0 is given by 

2 2 
(ds)2 = ( r  dxl> + (r sin x1 dx2) + (d6)2 

L 

+ 2 (5) dxl dx2(5) 
The x3 coordinate line is normal to the local Earth 's  surface; thus, for  general dx3, 

+ 2 ( $ ) ( 2 )  dxl  dx2 + g33(dx3) 

The symmetric covariant metric tensor, defined by 

. .  
(ds)2 = g.. dx' dx3

13 

becomes, at the Earth's surface, 

sin x1)2 + 0 

0 

L 

28 



APPENDIX B 

Similarly, the metr ic  tensor can be written for  positions not necessarily on the Earth's 
surface in t e rms  of spatial derivatives of the altitude h above the ideal spherical Earth, 
where h reduces to 6 at the Earth's surface. Thus, 

P 

+ ($)j 0 

0 

t o  0 g33 

The formulation of the metr ic  tensor by use of equation (B3) allows the llhorizontall' 
coordinate lines to be positioned or moved vertically without restriction. 

The square of the line element (which completely determines the differential 
geometry) becomes 

dx'dx'=[ir)' + (2)j + k r  sinx') 2 + (%)jdx2 dx2 

ax 

Collecting t e rms  in ah/axcY gives 

(ds)2 = (r)2 dx1 dx1 + (r  sin x') 2 dx2 dx2 + g33 dx3 dx3 

ax 

where the first three right-hand te rms  a r e  the square of the spherical polar line element, 
and the last right-hand term is the square of the height increment along the surface of 
constant x3. Thus, if the square of the horizontal increment (the first two right-hand 
t e rms  in eq. (B4))is much larger  than the square of the height increment along the surface 
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of constant x3, then the square of the line element is approximated by the square of the 
spherical polar line element, and the metr ic  tensor reduces to the spherical polar metr ic  
tensor 

0 0 

2 
( r  sin x') 

for 

The condition (B6) for the approximation of the metr ic  tensor by equation (B5) is not very 
restrictive because, in a discrete grid model, the slope te rms  ah/axa! a r e  character­
istic of a coordinate cell, rather than of a single point. For example, if is the maxi­
mum change in mean elevation at the x3 = 0 surface from one coordinate cell to an 
adjacent cell, then the condition (B6) fo r  equation (B5)to hold (at the x3 = 0 surface) 
becomes 

where Ax' and Ax2 are the cell horizontal coordinate dimensions in radians. Thus, 
the smaller  the grid physical increments, r Ax' arld r sin x1 Ax2, the more restrictive 
conditions (B7) become. More generally, if E is the maximum change in mean elevation 
of a constant x3 surface f rom one coordinate cell to an adjacent cell, then the condi­
tion (B6) for equation (B5) to hold becomes . 

Generally, it is desirable and computationally efficient to maintain a uniform horizontal 
spatial resolution of all variables. The usual method of achieving uniform horizontal 
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spatial resolution is to filter spatially all variables in the horizontal at half-wavelengths 
shorter than the maximum horizontal grid physical increments. An effect of the spatial 
(low-pass) filter is to make conditions (B8) much easier to satisfy than would be the case 
without filtering, especially near the poles, where sin x1 is small. Consider a complex 
Fourier expansion of h around the Earth along a parallel: 

W m -i-2a r sin x1 2x 
h = 1 hn = 2 An(t)e 'n 

n=O n=O 

where Xn is the physical wavelength associated with the nth Fourier te rm and An(t) is 
a complex function of time. For simplicity, a perfect low-pass filter is assumed which 
truncates the series of equation (B9)such that h, = 0 f o r  An < 2 r  Ax2 (twice the grid 
physical increment at the equator). The filtered h, h', becomes 

m m x 
h1 = 2 hn = 1An(t)e 

-i-
'n 
277 r sin x1 2  

n=O n=O 

where Xm is the smallest Xn greater  than o r  equal to 2 r  Ax2 . The maximum change 
1
in ]hll over a grid increment ]Ah'! is realized if 6h and all other 

An(t) = 0, where 6h = (Maximum h) - (Minimum h). Thus, 

o r  

lAhtl 5 	-1 16h a sin xl( 
2 

Replacing E in conditions (B8) by lAhl I yields the new condition 

(Ah')2 << (r sin xl) (Ax2) 

or, by use of equation (Bl l ) ,  
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2 2 
E(6h)2  << (r)2(Ax2)
4 

The first inequality in conditions (B8) is retained: 

Therefore, the inequalities (B12) and (B13) are sufficient conditions for  equation (B5) fo r  
the metric tensor to hold when Fourier series t e r m s  for h of physical half-wavelenths 
shorter than the east-west equatorial physical grid increment are .deleted. If Ax' = Ax2, 
which is the usual case, then condition (B12) implies condition (B13), because I6h) 2 IKI. 

Consider the extreme case where 6h = 8 kilometers, which is certainly sufficient 
for  representing, by surfaces of constant x3, terrain and sea-bottom topography, meteo­
rological fronts, and refractive layers in the seas. If the left-hand side of inequality (B12) 
is required to be 1 percent of the right-hand side, then the minimum grid increment Ax2 
consistent with inequality (B12) is 

&$=I* (10) radians = --(10) radians
2 r  2 6400 

o r  

= 57.3 E 8 (100) = 1.12O 
2 6400 

which corresponds to a very fine grid. 

If condition (B12) is written in equation form, then 

2 2 

�4  4 
(6h)2 = (r)2(Ax2) 

where the e r r o r  fraction in the square of the line element is E 4 << 1; then, the maxi­
mum (6hl is 

2 
l6hl (kilometers) = Ax (degrees) = fi71.4 Ax2 (degrees)

1.12 
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TRANSPORT EQUATIONS FOR GEOPHYSICAL 

CIRCULATION PROBLEMS 

In appendix B and approximate metric tensor was presented f o r  nearly spherical 
polar coordinate systems. In this appendix the simplications resulting from that metric 
tensor are applied to the transport equations developed in appendix A. 

In principle., the met.ric tensor allows equations which are identical fo r  all coordi­
nate systems. The physical assumptions and solution techniques used by the analyst 
reduce the generality of the governing transport equations to special cases, and thereby 
introduce real differences into the transport equations f o r  geophysical circulation prob­
lems. The specialization to atmospheric- and oceanic-circulation problems will be 
made so that one set  of transport equations can describe both systems. 

The prime difference, f o r  modeling purposes, between the oceans and atmosphere 
lies in the different density characteristics. The atmosphere is compressible, whereas 
the oceans are essentially incompressible. However, if external gravity waves in the 
oceans are considered, then f rom the viewpoint of mass  in a given fraction of a vertical 
column, the oceans and atmosphere are similar. Consider, then, a new variable < to 
replace p so that the similarity of the fluid bodies is emphasized. A good candidate 

for is the grouping p 6 because p and 6usually appear together in the 
transport equations, and < (generalized density) has similar behavior in the atmosphere 
and oceans. 

From equation (B3), the determinate of the metric tensor is 
I 

where A is the determinate of the metric tensor for  the quasi-horizontal coordinates. 

Applying the definition = p G and equation (Cl) to equations (A12), (A23), and (A24) 
yields 
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and 

Equations (C2) and (C3)may be rewritten, respectively, as 

"(fi e) + a d  (firvj) = 0at 

and 

- 1  ' t
where vJ was replaced by uJ as in equation (A24). Expanding 

and 

in equation (C4)by identities similar to the procedure leading to equation (A14) yields 
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where 

By inspection of equations (C6), (C7), and (C8), it is evident that equations (C5) 

and (C7) can be obtained by replacing Q in equation (C6) with 1 and ui, respectively, 

and by computing $(acui) by equation (C8). Thus, it is allowable to speak of one 
transport equation (eq. (C6)) for all conservable quantities in the atmosphere or ocean. 

From equation (B5), an approximation to the metric tensor is 

-
0 0 

2 
( r  sin x1) 0 

lo 0 g33-

Thus, the determinant of the metric tensor is, approximately, 

a --[(r) 2 sin xiJ 2 g33 

and the determinate of the metric tensor for the quasi-horizontal coordinates is, 
approximately, 

2 
A sin x 9  
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The fu l l  set of Christoffel symbols of the second kind are, by symmetry in the lower 
indices, 

In reference 10, page 67, it is shown that, fo r  dx3 locally normal to the surface of 
constant x3, 

1 ag33 
{ 3 3 J  =2g33ax'Y 

For the metric tensor given by equation (C9), agpyPx3 = 0 and gay = 0 fo r  Q! # y, 

and gaa= l/gaQ!; thus, equation (C12) becomes 
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{P3J = O  

{ P a $  = O  

1 ag33 
{ 3 3 J  = 2g33ax" 

1 ag33 
{ 3 @ 4  =-2g,,= 

1 ag33 
{333) =2g33,,3 

Thus, for the metr ic  tensor given by equation (C9), the nonvanishing Christoffel symbols 
a re  contained in the set  

{33@} { 3 @ 4  

The first subset in set (C14), {@@ 2 expands to 

by use of the relationships 

g@J= 0 ( j  f 4 

g@@= -1 
g@@ 
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Of the derivatives of the metr ic  elements in equation (C15), only ag22/Bxl does not 

vanish (in general) by use  of equation (C9); thus, f rom equations (C9) and (C15), the non­

vanishing { p  aJ are 

ag22 = -sin x1 cos x 
{2 12) = 

(-s) 

{$J = (2"3 =--=1 ag22 cot x 
'I 

2g22 ax1 l i  

Then, the nonvanishing Christoffel symbols f rom equations (C13) and (C17) are 

{21J = - s i n x  1 c o s x1 

{$J = {221) = cot x1 

1 Q33 
{33a} = {a3J =2g33ax(y 

1 ag33 
( 3 5 )  =-2ga,axa' 

1 ag33 
{ 3 3 3  =2g33,,3 

2From equation (B4)for the square of the line element (ds) , 

The spherical polar system is obtained (from eq. (B4))by setting ah/axa = 0, for  which 
case the surfaces of constant x3 a r e  concentric spheres. The vertical distance between 
any two such surfaces is, therefore, constant; hence, &/ax3 is constant over a surface 
of constant x3, and, thus, 
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or 

for a spherical polar system. By use of equations (C18), the nonvanishing Christoffel 
symbols reduce to 

(2'J = - s i n x  1 cosx1 

{12J ={221) = c o t x 1  

11 
1 ag33 

(333) =g35ax3 

for a spherical polar system. 

The Christoffel symbols a r e  used herein only in expressing covariant derivatives 
of contravariant vectors and covariant vectors; the conditions under which the spheri­
cal polar Christoffel symbols of equations (C21) can replace the nonvanishing set  of 
Christoffel symbols of equations (C18) a r e  examined in the following discussion by com­
paring t e rms  in the covariant derivatives of vectors. The nonvanishing set of Christoffel 

symbols of equations (C18) reduces to the spherical polar set  if (3 .> and {3 3> , 
o r  equivalently 8g33/axa, can be neglected. From equations (C18), 

1 ag33 (C22)
{ 3 3 J  =%ax" 

1 ag33 
( 3 9  =-<ax" 

From equation (C19), 
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or  

Thus, 

By use of equations (C22) and (C23), 

The line element ds, f rom equation (B4), is 

2 
dx l  dxl + (r s in  x l )  dx2 dx2 + g33 dx3 dx3 

Thus, 
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and 

or, by use of equation (B3) for  the metric tensor 

Thus, equations (C25) and (C26) become, respectively, 

Consider the covariant derivatives of a general contravariant vector Ti and of the 
corresponding covariant vector Ti where 

which is equivalent to 
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Also, 

which is equivalent to 

From equations (C18), (C35), and (C37), 

Thus, T"
I P  

and T"lP do not depend on {3 .> o r  {3 y3)  and are the same as in 

spherical polar coordinates. 

From equations (C35) and (C18), 

- a T " + T 3 ( 3 a 4
ax3 
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or,  f rom equation (C34), 

T3 

TY3 = e 
ax3 

Multiplying equation (C42) by ,/G/hGyields 

where ?i and dEi are the physical components of Tj (or Tj) and dxj, respectively, 
and the approximate metric tensor given by equation (C9) is assumed so that Ti = &Ti 

= 0.and %(G)The second right-hand te rm in equation (C43) is the contribution of 
ax 

{3 3;thus, in equation (C41) for Ty3, (3 3> can be neglected if the square of the 

physical slope of the constant x3 surface is negligible; or, f rom equa-

T73 = ,,3aTo'+T3{3a3) 

which is also the order  of approximation of the metr ic  tensor by use of equation (Cg), as 
discussed in appendix B. In the remainder of this appendix, the symbol denotes 
approximations accurate to the order  
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From equations (C36)and (C18), 

TYa = aT3 + T3 {3 a} 

or  

where, again, 

with equation (C48)being exact f o r  i = 3. Expanding the second right-hand te rm in 
equation (C46)gives 

- a 
2 3/2 axa! 

by use of equation (C22) for . Therefore, equation (C46)becomes 
{3 

(C49) 


which is equation (C45)for  negligible {3 a} and From equations (C36) 

and (C33), 
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Y 3'} + T 3 { 3 3 J  

or, by using equations (C47), (C48), and (C18), 

a 

Thus, by use of equation (C50), 

aT3T13 = ,,3+3 { 3 3 J  

to the order of (ah/azcu)2;and, furthermore, by use of equations (C51) and (C47), 
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T i 3  E 
a?, 13 	 ­
aE3 

to the order  of (ah/8za!)2. 

In summary, in the computation of the covariant derivatives of contravariant vec­

tors T;j, ag33/axa, {33a!} 9 and {3gcan be neglected with e r r o r s  no greater  

than the order of the square of the physical slope of the constant x3 surface (8h,hEa)2. 

By use of equation (C40), T 
a!P is not dependent on ag33 

Now, in considering T3 la!, Ta,  3, and T313' 

by use of equation (C9)for the approximate metr ic  tensor. Then, by use of equations (C49) 
and (C54), 

According to equations (C38)and (C18), 

- aT3 ( 3 )  
T 3 ~ 0  axa  T3 3 a! 

or, by equation (C48), 

which is equation (C55)for negligible ag33/ax" and {3 a!} . Therefore, equa­

tion (C56)can be written as 
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From equations (C37) and (C18), 

aTcY 
Tal3  = a,3- T3 (."J 

or, by use of equations (C56) and (C58), 

From equation (C38), 

T3,3 = 3- T y  ( 3 y 4  - T3 {333) 

From equations (C54) and (C52), 

or, by use of equation (C48), 

aT3 
T313 E ,,3g33 + T3 (3 

- ,,3- T 3 ( & ) s  
- aT3 ag33 

+ T3 (3 3> 
or, by use of equations (C18), 

aT3 
T313 - T3 {333} 

Thus, 	 f3 3> can be neglected in equation (C60).
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In summary, in the computation of covariant derivatives of contravariant and 

covariant vectors, {3 .> and {3 can be neglected with e r r o r s  no greater  

than the order  of the square of the physical slope of the constant x3 surface (8h/8Ea)2. 

For the nearly spherical polar coordinate system with the exact metr ic  tensor given 
by equation (B3), the nonnegligible Christoffel symbols are 

{212} = -sin x1 cos x1 

{122> = {22J = c 0 t x 1  } 
1 ag33

{333) =%ax3 J 
and 

for  computation of covariant derivatives of contravariant or  covariant vectors. 
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INTERPRETATION O F  THE FINE -STRUCTURE INFORMATION 

AS A SUBGRID MIXING TENSOR 

In appendix A the effects of uncertainties in the state of the fluid on mean fluid 
properties are described. In the present appendix, the effects of mean fluid properties 
on uncertainties in the state of the fluid are modeled. 

The approximation of the transport equations by finite difference equations neglects 
some fine-structure information about the fluid state. In an effort to recover the mutual 
coupling between the uncertain fine-structure fluid properties and the averaged (over a 
space-time gridcell) fluid properties, the pertinent fine-structure properties are 
expressed in t e r m s  of mean fluid properties by means of a tensor formulation of the 
standard subgrid mixing model (ref. 1). The tensor formulation of subgrid mixing cor­
r ec t s  a deficiency in the standard treatment in allowing rigid-body rotation of the atmos­

phere under adiabatic conditions. The subgrid correlation tensor (uj'ui') in equa­

tion (C8) will be approximated from the strain-rate tensor as in reference 3. For the 

global scale circulation, Smagorinsky has modeled the elements of (uj'uil) in the hori­

zontal space. The simplest tensor analogy f o r  Smagorinsky's model is described by 
letting the strain-rate tensor be 

the deviatoric strain-rate tensor be 

and the subgrid-velocity-correlation tensor be 

where K, is the Von Karman constant, A is the coordinate increment, and 
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Consider next the subgrid transport t e rm (uj'Q') ,where the tensor analogy to 

Smagorinsky's model is 

P(Uj'Q') = -p[@( KOA) 3Q, 

The deviatoric strain-rate tensor can now be expanded explicitly. 

From equation (Dl) fo r  the three-dimensional case, -ejk is given by 

I1 ( u l ( 2  + u211) 

(u211 + u112) 2U2)  2 

(u311 + "11 3) (u312 + u213) 

which, from equations ((262) applied to equation (D2), expands to 

A i  4 U1, l  2(u272 "3,3) -;-co t  xl(-"')
Q.1=s r -5  r-r \1811822 822 g33 

-1 

Q.2  = 822 

- 2 sin x1 cos x 


2 1 -1
ie1 .2= 

(sin x1)2 

A 1  '1,3 + (u 3 G  ),1 

= 833 
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( u 3 6 ) , 2  833 

g33 (G) 

A3 4 "3,3 2(TJ1,1 + ".') - -cot xl(-"') (D7i); 
g33' . 3 = 3 \ p - 3  811 G 6 

The hydrostatic assumption neglects unbalanced forces  in the quasi-vertical 
direction x3. In order to specialize equations (D7) and (D3) to the quasi-two-dimensional 
case consistent with the hydrostatic approximation, the following conditions are imposed: 

(1)The quasi-vertical transport of subgrid quasi-vertical momentum p(u3'u3') 
o r  equivalently 233, is neglected. 

(2) The quasi-horizontal shear of quasi-vertical velocity is negligible compared-
with the quasi-vertical shear of quasi-horizontal velocity, o r  

Equations (D7) for  ?i
. j  

become 

1 
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-2 1 *1 
Q.1= 2 Q.2  

(sin x1) 

*2 *l 
.2 = -Q .1 

* 3  
.1  

*2 
- 3  

- 3  
.2 = (gP, 

*1The quantities DT and DS from reference 3 are related to Q .1 and it2 by 

Y 

'htl + 2  cosx  

and -1 
.2 + 2  c o s x  

sin x1 I
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In Smagorinsky's subgrid mixing model, the second left-hand t e rms  in equations (D9) 
cause rigid-body rotation stresses, contrary to physical principles. The second scalar 

-i 
of lajis taken in the tangent plane in equation (D3)for the quasi-two-dimensional case. 

Thus, 

For rigid-body rotation west to east, U1 = 0, U2 = c sin xl,and U3 = 0, where 
is a constant. Substitution of these velocities into equations (D7)for  the three-

dimensional case and into equations (DO)for  the quasi-two-dimensional case results in, 

respectively, "j = 0 and ^na. P  = 0; thus, 1 and the subgrid velocity-correlation (or 

Reynolds s t ress )  tensor vanish, by using equations (D3), (D4),and (D10)for both cases. 
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APPENDIX E 

APPLICATION OF TENSOR TRANSPORT EQUATIONS TO 

THREE-DIMENSIONAL MOMENTUM AND SCALAR CONSERVATION 

EQUATIONS IN PHYSICAL COMPONENTS 

In this appendix the tensor transport equations and associated source t e rms  are 
converted into the more familiar physical components. The conversion begins with the 
m a s s  transport equation (C5)which is given as follows: 

p) + "-(Gpvj) = 0 
a t  a d  

Since A is not a function of time and VI can be converted to V.
J 

merely by multipli­

equation (El )  simplifies to 

The next transport equation from appendix C to be considered is the internal-energy 
equation. The first law of thermodynamics states that the increase in internal energy of 
a system results from heat being added directly to the system and/or from work being 
done on the system. If the heat added to a unit of mass  m is G, and the work done 

on m is the pressure-volume work of compression 
P 

uj
lj' 

then the conservation equa­

tion for  internal energy is, from equation (C6), 

where 

and where a includes radiation heating as well as latent heat release from condensation 
of water. 
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The conversion of equations (E3)and (E4) consists of dividing by 6,expanding uj
lj 

ato -l - ( F u j ) ,  and replacing vj and uj by V j / !  and U j / K ,  respectively,
6 ax3 

to get 

where 

For  the atmosphere, the specific humidity conservation equation ALasrainfall as the 

negative of its source te rm (6[q); f rom equation (C6), 

Consider next, the momentum equations (C7) and (C8) 

From equations (C62), the decomposition of the Christoffel symbols into the hori­
zontal and vertical spaces yields 
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where only g33 in {3 33) is a function of time. The t e rm fi<sliuj in equa­

tion (E8) expands to 

+ + u 3  + sP{a3$ u3 + s3 {33i} u3)ax 

= fic(gu3 u36i3)ax1 + ,3 {33J 

because s1 = s2 = 0 everywhere, ( 3 a J  r 0, and {33i} E O  for  i f 3  (by use 

of eqs. (C62)). For the u3 moment& cGmponent, the first Ieft-hand t e rm in equa­
tion (E7) becomes 

which follows from (defining the physical increment dz3 = dx3) 
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where the last step follows from 

(E12) 

Expanding further, by use of equation (ElO), 

3 
ax= f i 3 f i % U 3 )  + f i % ( % U 3 +  s3{333) uJ 

Then, the third momentum equation in physical components is, from equations (E7) to 
(E10) and (E13), 

The second te rm on the left-hand side of equation (E14) expands to give 
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From equation (C63), the first two t e rms  of the second summation on the right-hand side 
of equation (E15) are negligible; thus, f rom equations (C62), 

a 

Thus, the right-hand term in equation (E14) 

q 3 "} c(v3u3) 

can be canceled with the second te rm of the expansion (E15) of the second left-hand 
te rm of equation (E14). Similarly, cancellations can be made for the following term in 
equation (E14): 

and a portion of an expansion (following the format of eq. (E15)) of the right-hand term 

to leave, after division of equation (E14) by -6, 
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Thus, 

For the momentum component along dxl,  \Igll=R is constant. Substituting 


U1 = u l / .  into equations (E7) and (E8) yields, by use of equations (E10) and (C63), 


and 

Equation (E20) can be written more explicitly by using the result of appendix C; 

that is, of (1 p) , only (1 2} = cot x1 is nonzero. Thus, equation (E20) reduces to 

59 




APPENDIX E 

Conversion of the momentum component along dx2 is accomplished in a similar 
manner, except that now extra te rms  are obtained from the partial derivatives in the 

horizontal direction because U2 = u 2 / ! , ! ,  and 6= r sin xl. When the substitution 

for  u2 has been made in equations (E7) and (E8) and the resul ts  converted again to the 
form of equation (E7), there follows, from equations (E10) and (C63), 

and 

+(G>ax 

Equation (E23) can be simplified further by expanding (z a p~ and noticing from 

appendix C that 

(z 13 = -sin x 1 cos x1 

and 

{22J = cot x 1 
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are the nonvanishing terms. When these Christoffel symbols a r e  substituted into equa­

tion (E23), the te rm containing (z l} cancels the last term and the simplified result 
is 

This completes the set of conservation equations governing the motion of a fluid 
with three momentum components. The system allows fo r  the time dependence of a, =which can be computed from $(G) si3 by equation ( E l l )  i f  s3 is 

specified. 
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RELATIONSHIP BETWEEN THREE-DIMENSIONAL MOMENTUM 

EQUATIONS AND HYDROSTATIC MOMENTUM EQUATIONS 

When the full s e t  of transport equations derived in appendix E are integrated on a 
digital computer to simulate the seas o r  atmosphere, the horizontal scale is generally 
much greater  than the vertical scale. Consequently, weather prediction o r  ocean simula­
tion would be prohibitively expensive if approximations were not made to alleviate the 
short time steps associated with integrating the vertical momentum equation. 

The classical method to obtain a long time step is to neglect accelerations along 
the gravity vector, computing pressure by the hydrostatic approximation and then com­
puting vertical velocity f rom the energy equation while conserving internal energy. (See 
ref. 1.) The loss of similarity between the resulting numerical model and the real world 
is associated with buoyant o r  convective overturning. (See ref. 3.)  Consequently (for 
example), a hydrostatic circulation model 'is expected to be a poor vehicle for simulating 
thunderstorms. 

The momentum equation derived in appendix A will be specialized to the hydro­
static approximation in this appendix. The hydrostatic momentum equation can be 
derived from equation (A13) which is revised as follows: 

Equation (A13) has three components which span the physical three-space. The hydro­
static approximation employed herein is that the right-hand (force) term of equation (A13) 
for  the nearly vertical x3-direction is zero. Then, equation (A13) becomes 

The hydrostatic assumption 
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and the condition that the pressure P vanish at the top (x3 = X3) of the atmosphere or 
seas yield 

3 

p = Pg3 d5 


where the gravity-acceleration components gi in equations (F l )  and (F3) are 

The third component of equation (F l )  is no longer needed because the x3 velocities can 
now be computed from the internal-energy conservation equation (E3). 
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