
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 



August 1975

REVISION OF GEODETIC PARAMETERS

E. M. Gaposchkin and M. R. Williamson

(?I ASA-CF-143311)	 FFV15ION OF GPOLETIC	 N75-30696
VAPAPFTEFS (Smithsonian Astrophysical
observatory)	 2h E: HC b3. 75	 CSCL 08N

Unclas
G3/46 33052

A

Smithsonian Institution

Astrophysical Observatory
Cambridge, Massacnusetts 02138 cl

AUQ
s..	 I

i,Q,FLE

4

IF



REVISION OF GEODETIC PARAMETERS

E. M. Gaposchkin and M. R. Williamson

ABSTRACT

Laser data from nine satellites and 12 stations are combined with surface-

gravity data to of	 in spoerical harmonics representing the geopotential com-

plete through degree ind order 18. This laser-data-only solution provides a

reasonable improvement to the gravity field.

INTRODUCTION

'mithsonian Astrophysical Observatory has published gravity-field solutions

utilizing both satellite-tracking and terrestrial gravity data (see, e.g.,

Gaposchkin, 1974), which were based primarily on precision-reduced camera data

and on then-available surface-gravity data. Now, however, -ie have better data,

and new types of data will soon be available. she work reported here i s the

beginning of a general revision and extension of our knowledge of the geopoten-

tial.	 In this first iteration, we will experiment with new data ('aser ranges),

verify new methods of data reduction, and prepare for new types of data (altim-

eter and satellite-to-satellite tracking data). We seek here to improve our

knowledge of the gravity field so that better satellite orbits, consistent

with surface-gravity data, can be calculated. This is done by using laser data

only, whose accuracy (approximately 1 m) is far greater than the ephemeris

accuracy (approximately 10 m). The situation has changed since 1971, when the

bulk of the data used were 4-aresec camera data. Furthermore, substantial re-

,isions have been made in the treatment of orbit perturbations, and all these
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advances indicate a new attempt at improved geopotential coefficients.

OBJZCTIVES

This computation has several objectives, the primary one being to use

laser data only in a determination of the earth's gravity field, with the aim

of computing satellite orbits to an accuracy comparable with that of the laser

data. We can obtain a realistic gravity field consistent with surface-gravity

data. A secondary objective is to study the consequences of using data that

provide no ties to an inertial reference frame, as was the case with camera

data. For our third objective, we will investigate the effects of one satellite

on another in the solution; that is, we can optimize a solution for one

satellite by using only data from that satellite. The question

then becomes: How much does adding data from a second satellite degrade the

orbit computed for the first? Of course, improved orbits and a more accurate

geoid are necessary for analyzing satellite altimetry data for geodetic and

oceanographic purposes.

REFINEMENTS AND TECHNIQUES

Improvements in perturbation calculations have been numerous. The inclination

function for tesseral harmonics, as formulated by Kaula, computationally loses

accuracy for high-degree coefficients. It has been replaced by a mathematical-

ly equivalent formula derived from group theory (Gaposc' l kin, 1973). The inter-

action terms between J 2 and resonant harmonics have also been improved. Lunar

and solar perturbations and body tides and ocean tides have been computed to the

necessary accuracy (K07ai, 1973). Perturbations arising from the noninertialness

of the coordinate system have been corrected and improved (Kinoshita, 1975a,b),
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and those due to direct solar radiation pressure (Aksnes, 19'5), albedo

pressure (Lautman, 1975a,b), and infrared radiation (Laut , ian, 1975c) have all

been included and tested (Gaposchkin et al., 1975).

The compilation of surface-gravity data used in Ga r.oschkin (1974) ras since

been augmented (Williamson and Gaposchkin, 1975). The surface-gravity data are

summarized in Table 1, and the distribution of these data is shown in Figure 1.

Table 2 compares the 1 0 x 1 0 gravity anomalies from the Defense Mapping Agency

Aerospace Center (DMAAC, 1973) with other available compilations.

Three coordinated programs have provided laser tracking data in sufficient

density to be used for a gravity-field determination: the International

Satellite Geodesy Experiment (ISAGEX) held in 1971, the Earth Physics Satellite

Observation Campaign (EPSOC) in 1972-1973, and the Geos 3 campaign in 1975.

lhere has been a steady improvement in the volume, reliability, and accuracy of

the data. One of the objectives of the ISAGEX program was to obtain data for

determining the gravity field, and a number of orbital arcs are suitable for this

purpose. The EPSOC program was directed to the study of long-period effects and

polar motion. Some arcs from EPSOC are also used for determining the tesseral

harmonics.	 Finally, during the current Geos 3 prograrr routine data are being

obtained and included in the analysis. Table 3 lists the participating stations

for each campaign that are used in the analysis reported here. The distribution

of the stations is shown in Figure 2.

Currently, nine satellites in orbit are equipped with cube-corner reflectors

suitable for laser ranging; these satellites are usoful for a Gravity-field de-

termination, especially as their distribution in inclination and height is

reasonably good. Table 4 list:' their orbital characteristics and the number of

arcs used, and the distribution of satell-;tes is given in Figure 3.

3
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Satellite orbits are usually computed for between 8 and 16 days, the in-

terval depending primarily on the availability of data. Also, each arc covers

at least one oscillation of the resonant period. Table 5 gives the resonant

periods for the satellites, while Table 6 lists the constants used to calculate

the satellite orbits.

SOLUTIONS

The normal equations for surface-gravity data have been compute) complete

from degree 2 through 18. The combination solution included a number of harmon-

ics of higher degree that are resonant with one or more of the satellite orbits.

To this set of surface-gravity normal equations was added a set of normal equa-

tions, satellite by satellite. The system was solved after adding one satellite

(Geos 1), and the result has been compared with all the satellites and with

surface gravity. For the satellite comparison, one arc from Pach satellite

was selected: generally, the arc with the most data. The orbit was recalcula-

ted with the revised gravity field, and the orbital fit in terms of o 0 was used

as the criterion. In all combinations, the satellite data were used at their

a priori weight. The surface gravity was given se , eral weights, and all solutions

were tested in order to determine the optimum weight for the combination.

The weight finally adopted is

< A 

> nA 

mgal	 114

where n is the number of I° x I° squares in each 5 0 x 5° mean, A is the area

of the anomaly, and <A>  is the average area. This weight is twice that used in

the 1973 Smithsonian Standard Earth (1I_L^ (SE III) (Gaposchkin, 1973). 	 The

ISAGEX laser data were given a 5-m weight, and all other laser data, a 2-m weight.

These combination solutions are sv.nmarized in Tab' 	 7. The orbit for a satellite

not used in the solution is really very poor, generally because of relatively small

changes in a few coefficients resonant with the gravity field. We note that
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Peole, which has no resonance, degrades marginally. The surface gravity

<(eg t - egs ) z > is only relative. A large part of those residuals is information

in the higher harmonics. The best fit is obtained with only one satellite;

however, when satellite data are added, the degradation is not large considering

the overall accuracy of surface-gravity data.

Generally, adding satellite data also degrades the satellite orbit fit, but

not very much. This overall improvement is considered quite satisfactory for

one iteration of a very complex nonlinear process. All satellite orbits improved

by at least 1 m 2 in the orbital fit.	 In percentage terms, Geos 1, BE-C, Geos 2,

Starlette, Peole, and Geos 3 each improved in orbital fit by 1 1.9, 22.:, 43.9,

69.2, 26.2, and 13.6%, respectively, for an average 32% imnrovement!

The final adopted 52-arc solution (SE IVA) can be compared with the surface-gravity

data in more detail. Assuming they are statistically independent, the following

quantities defined by Kaula (1966) can be computed and use. to compare a geopo-

tential model (y s ) with observed values of surface Sravity (qt):

(g2	 The mean value of g2, where gt is the mean free-air

gravity anomaly based on surface gravity, indicating the
amount of information contained in the surface-gravity

anomalies.

(gs )	 The mean value of g 2 , where gs is the mean free-air

gravity anomaly computed from the geopotential model,
indicating the amount of information in the computed

gravity anomalies.

( t°s)	 An estimate of g h — i.e., the tnie value of the c ontrihuticn

to the gravity anomaly of the geopotential model and the
amount of information common to both g  and gs.

((gt - 9S) 
2 	 The mean-square difference of g  and gs.

E ( f 2 )	 The mean-square error in the geopotential model.
S

E (c p	 The mean-square error of the observed gra-,ity.

E (6g 2 )	 The mean square of the error of omission — that is, the

difference between true grn.vity and g h ; this term is then

the model error.

Ilk
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If the geopotential model were perfect, then <gs -. 
= `gh', which in turn

would equal •:g t g s > if 9  were free from error and known everywhere. Then,

ES would be zero even though gs would not contain all the information necessary

to describe the total field. The information not contained in the model field —

i.e., the error of omission, 6g - then consists of the higler order coefficients.

The quantity <(g t - g s ) Z > is a measure of the agreement between the two estimates

g t and g s and is equal to

Another estimate of g h can be obtained from the gravimetric estimates of

degree variance oR (Kaula, 1966):

it

E ( g h ) D -	
2F + I Cri

where n o is the number of coefficients of degree A included in g h , and

2	 2	 2((	 _ 1

ni

We also have

2	 2
F (E S ) ( ^ S) - (gs 9t)

and

E(Et) = (t;t)/(n)

.., I	 Theca values are given in Table 8 for SE III and for this solution.

1	 6
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The information in the surface-gravity data solution <g 2 > has increased
in this new data set. This is reasonable; since the unobserved areas had an

expected value of zero, the fewer observed areas there are, the lower the

variance is. However, the information in the satellite solution <gs> has
decreased, a fact that is confirmed by a decrease in D. Therefore, the infor-

mation in SE III was too high.	 The residual <(g t - gs)2> has remained roughly

the same, while the information in the higher harmonics is estimated to be

l arge;.	 li r e estimate of E(e s ) cannot be good, as these sets of data, g s and

g t , are not independent.

The spherical-harmonic coefficients are listed in Tables 9 and 10. 	 Fiqure 4

is a plot of the mean potential coefficient as a function of degree, and

Figures 5 and 6 show the geoid height and gravity anomalies for this solution.

FUTURE WORK

The obvious next step is to complete another iteration, tiking the solution

to perhaps degree and order 24. To this can be added the normal equations for

zonal harmonics end sets of resonant harmonics. When the orbital accuracy ap-

proaches a few meters, then we must reduce the error in the station coordinates by

solving for them. Finally, of course, the aim is to add altimetry data to this

system of normal equations.

In summary, we find that the improved accuracy that has been apparent from

laser data is becoming realized.

., j	
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Table 1. Surface-gravity data available.

Source No.	 of No.	 of 550 x 550 km v oaks
V x 1" means n 2	 1 n= 25

Gaposchkin	 (1974) 19328 1183 145
Williamson and Gaposchkin

(1975) 31636 1452 485
Maximum number 64800 1690 1690
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Table 2.	 Comparison of	 1° x	 1° mean gravity anomalies with DMAAC (1973).

Source No.	 of points	 Mean difference rms
compared (mgal) (mgal)

Australia	 (Mather, 1970) 1364 1.64 24.16

North Ainerica and North Atlantic

(Talwani	 et al.,	 1972) 3613 -0.18 15.29	 s

Indian Ocean
(Kahle	 and	 Talwani,	 1973) 2226 -1.66 23.09

Worldwide	 (f.CIC,	 1971) 19164 -0.23 16.99

a
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Table 3.	 Lasers stations used in this analysis.

_ ' ISAGEX EPSOC Geos 3
Number Locatiun Agency

7902 Olifantsfontein, S. 	 Africa SAO x x x

7907 Arequipa, Peru SAO x x x

7921 Mt.	 Hopkins,	 Arizona SAO x x x

7928 Natal,	 Brazil SAO x x x

7930 Athens, Greece SAO x x

7050 GSFC NASA x x

7060 Guam NASA x

7061 San	 Diego,	 Calif. NASA x

7080 Quincy,	 Calif. NASA x

7068 Grand Turk	 Island NASA x

7804 San Fernando.	 Spain CNES x

7809 Haute Prov	 France CNES x

b
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Table 4. Suiwiary of dynamical data.

Satellite Inclination Eccentricity Perigee a Number

;gnation Name height (km) of
(km) arcs

7010901 Peole 15° 0.017 635 7070 5
6701401 DID 39 0.053 569 7337 3

6701101 D1C 40 0.052 579 7336 2

6503201 BE-C 41 0.026 941 7311 9

7501001 Starlette 50 0.0207 805 7335 5
6508901 Geos 1 59 0.073 1121 8074 14

7502701 Geos 2 -65 0.0005 840 7222 4

6800201 Geos 3 -75 0.031 1101 7709 8

6406401 BE-B 80 0.012 912 7362 2

Total	 52

1 +',
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Table 5.	 Resonant periods.

Satellite Resonant with Period
order m (days)

7010901 none
6701401 13 9.4

6701101 14 2.6
6503201 13 5.6
7501001 '4 3.2
6508901 12 7.2
7502701 14 3.9
6800201 13 6.3

6406401 14 2.9

4
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Table 6. Constants used in orbit computation.

GM = 3.986013 x 1020 cm 3 sec-2

c = 2.997925 x 10 10 cm sec
-1
 = speed of light

kn = 0.25 =

E2 = 10° =

ae = 6.3781

a=0.32=

Satellite

Love's number

phase lag of tide

40 Min

earth's albedo

A/m

(cm2 g-1)

7010901 0.20
6701401 0.30

6701101 0.30
6503201 0.13

7501001 0.01
6:.08901 0.10
750/01 0.04

6800201 0.06

6406401 0.10
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FIGURE CAPTIONS

Figure 1. Distribution of 1° x 1° mean surface-gravity data.

Figure 2.	 Locations of the observing stations included in SE IV-1.

Figure 3.	 Distribution of perigee heights and inclinations of the satellites

used in SE IV.I.

Figure 4. Mean po-ential coefficient by degree.

Figure 5. SE IV.I geoid height in meters calculated with respect to the best-

fitting ellipsoid, f = 1/298.256.

Figure 6.	 SE IV.1 gravity anomalies in milligals calculated with respect to

the best-fitting ellipsoid, f = 1/298.256.
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