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SEA SURFACE DETERMINATION
FROM SPACE

THE GSFC GEOID

F. O. Vonbun
J. McGoogan

J. Marsh
F. Lerch

ABSTRACT

This paper deals with a new area of radio oceanography, namely, with
the determination of the sea surface/geoid and its relative variation.
Results of the altimeter experiment on Skylab to test the Goddard
Space Flight Center (GSFC) geoid are discussed. The spaceborne
altimeter on Skylab revealed for the first time that the sea surface
of the world's oceans can be "measured" with an accuracy in the
meter range. Surface variations are discussed as they relate to those
"computed" from satellite orbital dynamics and ground based gravity
data obtained from the Defense Mapping Agency--Aerospace Center,
and other organizations. The recent GSFC geoid has been constructed
from about 400, 000 satellite tracking data (range, range rate, angles)
and about 20, 000 ground gravity observations. One of the last experi-
ments on Skylab was to measure and/or test this geoid over almost
one orbit. It was found that the computed water surface deviates
between 5 to 20 m from the measured one. Further outlined are the
influence of orbital errors on the sea surface and numerical examples
are given based upon real tracking data. Theoretical orbital error
analyses cannot shine any new light on these problems because the
error values involved are in the meter range and the reliability of
theoretical error analyses diminishes at these rather small values.
Orbital height error estimates have been computed for geodetic type
satellites and are found to be in the order of 0.2 to 5 meters. Such
errors are generally larger for the Skylab due to its relatively low
orbit, large area, venting and the fact that only conventional Unified
S-Band slats (range and range rate) were available for orbit computa-
tions. However, for the single revolution used in the analyses,
orbit error amounted to only a few meters. Furthermore, orbit
errors tend to be long wavelength type errors (2000 km and longer)
thus short wavelength oceanographic features, i.e. , seamounts,
trenches are clearly visible in the Skylab altimeter data.
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I. INTRODUCTION

The geold is the equipotential surface that a uniform and static ocean would
conform to under the influence of only the Earth's (atmosphere included) gravi-
tational and rotational forces, excluding all other external forces (e. g. luni-
solar and planetary gravitation, ourrents, and circulations, wind stresses,
atmospheric pressure changes, and variations in density, temperature and
salinity.) The real sea surface deviates from the geoid due to variations in
sea water temperature and density (salinity) together with Coriolis forces
acting on moving water masses and other forces. These "deviations" have
been referred to as the "sea surface topography" [ Mather, 19731 and can
reach values of up to 2 meters or more. Fbr example, a study by Stommel
11965 1  indicates the possible existence of a quasi-stationary variation of the
sea surface of up to 11/2 m between the latitudes of the Also, there is a
rise of about 11/2 m in the water surface over 70 to 100 km due to the Gulf
Stream to quote another example.

Sea surface variations of this magnitude will be detectable in the future assum-
ing a further improvement to commensurate accuracies of the geoid, the
earth's gravity field and our orbit determination capability. It is clear that
satellite altimetry, if accurate to about 2 to 10 cm can significantly contribute
to an explanation of the discrepancies which exist, for instance, between
equipotential surfaces of the Earth's gravity field as obtained from geodetic
leveling and the determination of the mean sea level using tide gauges. At the
present time there is controversy on whether the discrepancies between meas-
urements of equipotential surfaces obtained from geodetic leveling and mean
sea level are real or not. Systematic errors (e.g. , consistent sunshine from
the equatorial regions biasing leveling, or variations from currents) could
account for the discrepancies [Apel, 1975, personal communication 1. Satel-
lite altimetry also provides an independent means of decoupling the non-tidal
gravitational forces from the others acting on the ocean surface [Mather, 19731.

In addition, a complete new met of precision satellite tracking data will be
obtained in the form of height measurements by an altimeter spacecraft. This
means a ten to thirty fold increase in the number of tracking observations,
which will improve considerably our knowledge of the Earth's gravity fluid.
In principle, there is no difference between ranging data obtained from a
ground based tracking system and that from an altimeter. Such experiments
were first conducted during the SKYLAB mission in 1973-1974.

NASA launched an altimeter equipped spacecraft, namely, GEOS-C (tow GEOS-
3) [ Vonbun, 19711 in April 1975 and more sophisticated oceanographic space-
craft, namely, SEASAT-A is planned for a 1978 launch. These latter two
spacecraft are part of NASA's Earth and Ocean Physics Program - EOPAP

2
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[ NASA, 1971; Vonbun, 19721. A major part of this effort will be directed to
the study of the sea surface topography as well as the surface wind fields and
ocean waves, their direction and height.

II. THE "MEASURED" SEA SURFACE

,C The last Skylab mission, SL-4 flown from November 1973 until early February
1974, gave a real opportunity to "measure" or partially test the GSFC GEM-6
Detailed Geoid (ocean surface) over part of one orbit. Previous to this, geoid
comparisons were performed only among different models (Goddard Space
Flight Center, Smithsonian Astrophysical Observatory and Ohio State Univer-
sity). Height variations between the different geoidal models as large as 20 m
were observed together with longitudinal and latitudinal shifts of 500 to 1000 km
of certain long wavelength features. As will be explained later, orbital error
problems as well as the overall system accuracy do not permit the detection of
ocean surface variations in the one meter region at th;e time. However, this
first altimeter data is quite valuable in that it provides the first independent
data for comparisons with geoids in ocean areas derived with surface and
satellite gravity data.

A. THE GODDARD SPACE FLIGHT CENTER GEOID

During the past few years, a rather extensive effort was undertaken at
Goddard to improve the knowledge of the Earth's gravitational field. At
present there exist six gravitational field models at GSFC. These are
designated as Goddard Earth Models GEM 1 through GEM 6. The odd
numbers designate gravity fields purely derived from spacecraft tracking
data (Optical, Doppler, Radar, Range and Range Rate, Lasers) and the
even numbered ones are based upon a combination of satellite tracking
data and ground based gravity measurements. Of specific +a-. ?-rest for
this discussion is the recent Goddard Earth Model GEM-i' 	 uh, et al.,
19741 which is based upon a combination of about 400, 000 i ­Olion track-
ing data of 27 satellites and 1654 5 ` equal area mean gravity anomalies.
This model is complete to degree and order 16 with some additional terms
up to degree 22. Marsh and Vincent [19741 have developed a model of a
rattier detailed gravimetric geoid using this GEM-6 gravity field as a
base (.Figure 1). They have computed a detailed gravimetric geoid by com-
bining the GEM-6 with surface gravity data. About 24, 000 1 0 x f mean
free air gravity anomaly values obtained from the Defense Mapping Agency/
Aerospace Center were used in the computation. This gravity collecti(M
was further augmented with data from the National Oceanic and Atmospheric
Administration (NOAA) and many other sources. The accuracy of this
geoid (approximately the mean sea surface) is on the order of 3 to 5 meters
over moat of the northern ocean areas and 20 to 15 meters in areas of the

n
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southern hemisphere where usually no surface gravity data arc, availa ble
I Marsh quid Vincent, 1974 I.

B. TIIF: SKYLA13 "TEST" OF TIW GEOID

In the past, there was really no economic way to test a global geoid via
metric measurements. Skylab, carrying for the first time an orbiting;
active radar altimeter, made such an experiment possible. Toward the
end of Skylab 1V the astronauts turned on the radar altimeter over almost
a full orbit as shown in 1-1 ure 1. P16r are 2 depicts both the computed sea

GMT-TIME SEC

(40
9* 28

May 1914
FYgure 2. Skylab 4 Altimeter Geoid

surface and the ieasured one. The computed sea surface refers to the
departures of the gravimetric geoid from a reference ellipsoid (ae =
6:178142 m, 1/, = 298.25). The r. m. s. deviation between the computed
and measured sea surface is 8 m. These differences reflect the effects
of three main error sources: 1) orbit errors; 2) errors in the gravimetric
geoid; and 3) errors in the altimeter system. Orbit determination for
SKYLAB is certainly not the easiest one to perform to a high degree of
accuracy. Relatively laL •ge drag and maneuvering (control rocket firing)
make a precision determination of the orbit impossible as compared to
other more "geodetic" type: spacecraft [Vonhun, 1970 [. Orbit errors are
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estimated to be in the meter range for this particular cave, due to the
intensive tracking by the Unified S-Band System and the fact that the are
h %. h was restricted to a single revolution. Thus, the differences are
primarily due to the latter two error sources. The good agreement shown
in Figure 2 is significant proof of the value of a radar altimeter for sea
surface determination.

A closer examination shows that radar runs 202 and 203 deviate as much as
10 to 15 m from the computed geoid or sea surface in this case. This
rather large deviation is primarily attributed to error in the gravimetric
geoid in this w as. Unless one considers deviations smaller than 1.5 to
2 m one does not need to make specific reference to the sea surface topog-
rapby as mentioned earlier. Further tidal effects and atmospheric condi-
tions are not taken into account for the same reason. These factors will
however play an important role in the future when overall accuracies will
reach the one meter level. It should be borne in mind that this is the first
test of satellite altimetey.

Even though Figure 2 shows the overall picture, some details seem to be
significant. For instance, the Marianas Trench is clearly visible on
altimeter run #212 even on this global scale.

C. TRENCHES AND SEAMOUNTS

Looking somewhat closer, one can distinguish such features as ocean
trenches and seamounts as was shown by McGoogan [18741. Figure 3
depicts the Puerto Rican Trench and Figure 4, the Marianas Trench
(#212) in a very clear fashion. Note that the Goddard geoid does not
follow these short wave length features. This was never anticipated since
the smallest wavelength of the GEM-6 model is in the order of 2500 km or
approximately 22 1/2 degrees on the earth surface. As can be seen, the
altimeter geoid is about 30 m displaced from the GEM-6 geoid. This is
due to a combination of orbital height errors, long wavelength errors In
the GEM-6 geoid and errors in the altimeter system and has nothing to do
with the trench determination itself. As a matter of fact, this demon-
strates quite clearly that orbital altimetry is a very powerful tool for
studying details of the sea surface variations independent of the orbital
constraints and/or errors.

This holds at least over distances of, say, 200 to 400 km. R can safely
be assumed that the spacecraft orbit will not follow such sudden changes
as these features would require, due to the "attenuation" of the gravity
field errors at spacecraft altitudes. Figure 5 shows the opposite, namely,

41"



. J	 a seamount at the Cape Verde Ish,.nds. A detailed analysis of' the altimeter
footprint noise characteristics and ground track indicated that the altim-
eter was not over land during this particular pw4s. 'Therefore, the
"water hill" shown in the altitude measurement at 15 1i 41"'30' is not due to
a partial sensing of one of the rape Verde Islands. These short wave-
length oceanographic featureF i,iills and valleys) which are clearly observ-

I
	 able in I-igures 3, 4, and 5 are above the radar noise and are a direct

result of the deflections of the local gravity vector. These deflections are
I
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Figure 3. Skylab Altimeter Measurements

caused both by mass variationw (shape of the bottom topography, i. e. ,
subsurface mountain ranges and trenches) and by density variations within
the Earth. With the radar height noise of approximately one meter one
certainly can expect to distinguish even much smaller features than those
shown in these graphs. It is anticipated that many more interesting fea-
tures of the ocean surface will be discovered from GEOS-3 dr*Va.

III. ORBITAL ERRORS AND SEA SURI'ACE TOPOGRAPHY

As mentioned briefly before, if altimetry is to be expected to operate very
accurately (dm-range or batter) on a global basis, the orbit of the altimeter

6
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spacecraft has to be known to within an equivalent error. Additional conditions
such as requiring the water masses of the total oceans to be constant over one
or two days may be necessary so that the sea surface topography can be more
accurately deLt-rmined than the orbital height. A gain of a factor of 3 to 4 may
be possible according to Mather 114751. This could mean that a sea surface
topography error of say 10 cm could be achieved even though the height of the
spacecraft may not be known to 30 to 40 cm. If this can be accomplished it
would certainly be of great help but we should, at the moment, assume a one-
to-one relationship only to be conservative. 'I'hus, the errors in the orbit
have to be reducers considerably if the sea surface topography error goal of 2
to 10 em is to be obtained in the flitu re.

Where do we stand at this time as far as orbital uncertainties are concerned?
Error studies are certainly iTr.portant and are being used in our investigation
but extreme caution should be exercised in their interpretation since it is very
difficult to compare "computed" errors with real ones [Vonbun, 19701. For

•	 the consideration at hand we used actual tracking data and our bust orbit com-
putation model. Figure G shows orbital uncertainties obtained for GEQS-2
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• N_WL-DOPPL` :R DATA:	 MAY 23, 1968
	

MAY 24, 1 ^58

1000 OBSERVATIONS
RADIAL CROSS ALONG RADIAL CROSS ^^^ ^j GI

GRAVITY FIELD
TRACT( TRACK TRACK TRACK

GEM - 1 0.8 2.1 3.1 0.4 0.8 8.5

GEM-6 1.2 1.6 1.^ 1.' 02 3.3

SAO-2 4.8 16.1 21.1 6.8 10.8 16.0

• OPTICAL DATA: 330 OBSERVATIONS

GEM -1 0.1 ?.4 4.0 3.1 5.6 6.5

GtM-6 1.9 3.2 5.1 3.8 2.3 10.1

SAO 2 2.1 13.5 16.1 1.9 1.6 24.0J

(40
900 33

Mlp 1914

Hgure G. Satellite orbital l Tncertainty Estimates (OUE)
or Overlap Differences in Meters for GEOS-II

using both dol)pler and optical trr.cking data with different earth gravity fields.
Using the "overlap method" I Siry and Stewart, 1969; Vonbun, 1970 1 height
uncertainties hAween 0.2 to 4. H meters have actually been obtained. These
values give an indication of the orbital height uncertainties one can expect at
present when a two clay rather stable orbital are is computed using our best
numericai chit computation system and Earth models at GSFC.

IV. CONCLUSIONS

In conclusion, it can be stated that: a) it was possible to measure the sea
surface variations (geoid) along a major part of an orbit; b) the deviations of
the computed and measured geoid agree quite well for this first test; c) details
such as trencheF and scamounts can easily be identified independent of the
orbit errors; (1) the orbital height errors for geodetic type spacecraft at
present arc of the order of meters; e) these errors will oonsideraLly be
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reduced in the next few years, particularly after GEOS -3 data are fully ana-
lysed and thus our present knowledge of the earth ' s gravity field is improved;
and, therefore, f) future altimeter spacecraft such as SEASAT -A should be
able to determine variations of the sea surface of the order of dm.

The authors acknowledge the very helpful written comments of Dr. Johu Apel
on this paper.
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