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ABSTRACT

A new technique for the adaptive estimation of non-stationary
statistics necessary for Bayesian classification 1s developed. The
basic approach to the adaptive estimation procedure consists of two
steps: (1) an optimal stochastic approximation of the parameters of
interest and (2) a projection of the parameters in time or position.
A divergence criterion is developed to monitor algorithm performance.
Comparative results of adaptive and non-adaptive classifier tests are
presented for simulated four dimensional spectral scan data.
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CHAPTER I
INTRODUCTION

A Bayes classifier for M pattern classes is essentially a
mechanization of M discriminant functions of the patterns x. These

functions ~re of the form

d;(x) = p(x/wy) pluy) (1)

where p(g/u1) is the probability density function of the patterns of
class o and p(ui) is the a priond probability of this class, that is
the probability of occurrence of class wy e The maximum discriminant
functicn will correspond to the minimum conditional risk. In other
words, the Bayes classifier will minimize total expected loss, where
loss represents classification error [1].

In order to make a decision on a particular pattern x, the
classifier computes d,(x), dz(ﬁ), vevs dy(x), and assigns x to
class vy if dj(i) has the largest value. Ties are resolved arbi-
trarily. Because the Bayes classifier has found such wide acceptance
in pattern recognition, this classifier will serve as the basis for

an adaptive recognition system capable of adjusting itself to a

changing environment.




The structure of a Bayes classifier is determined primarily by
the conditional densities D(é/wi). 0f the various density functions
that have been investigated, none has received more attention than
the multivariate normal density. Although this attention is due
largely to its analytical tractability, the multivariate normal density
is also an appropriate model for an important situation: the case
where the feature vectors x for a given class ws represent a single
typical or prototype vector Uss mildly corrupted by zero mean sampling
and measurement noise [2,3].

For M pattern classes the general multivariate normal density

functions may be written as

P(i/‘”-i) = 2 )n’lg}c l'|/2 QXP[']/Z(L'.U_-')‘C--](X‘_U,i)] (2)
' i

(I PO S

dimensionality of x

=2
n

where
!1 = [[2”_] (3)
and

C, = E[(g;y4)(5~y1)’] . (4)
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For class wy the Bayes decision function which minimizes probability
of classifier error is found to be d,(x) = P(x/wy)p(wy). Due to the
exponential form of the normal density function. it is more convenient
to work with the natural logarithm of this decision function [1].

The decision function may therefore be written as

dy(x) = Ln p(x/wg)p(u;) = Ln p(x/u;) + Ln pluy) (5)

1=1,2, ...,. M

Cropping the term n/2 Ln(2n) because it is common to all M decision

functions being compared yields

d,(x) = Ln plsg) = 1/2Ln[C; | = 1/20(xuy) €7 (e )] (7)

1=1,2, .... M.

An examin=tion of Equation (7) reveals that the changing
environment to which the system must adapt is composed of the partic-
ular class mean vectors u, and covariance matrices Gy In the context
of a classification, to adapt means to provide the classifier optimal
current estimates of parameters necessary for the classification.

The parameters may vary with time or position.

In this thesis various stochastic approximation techniques are

presented for adaptive estimation. A criterion is also suggested

which may be used to detect the divergence of estimates of means.



The ability of these algorithms to accurately estimate the varying
mean c¢f a normal density has been tested by computer simulation.

These algorithms have been incorporated into a Bayes classifier
to make it adaptive. Comparisons of the various adaptive classifiers,
incorporating different estimation algorithms, to the ordinary (non-
adaptive) Bayes classifier have been made revealing the desirability
of adaptive recognition capability.

A practical application which has been implemented in tms
work is real-time classification and physical class boundary definition
of synthetic multispectral scan data. These boundaries are those
between classes in a truth table, and should not be confused with
Bayes decision surfaces in pattern space.

The classifier developed here is to serve 25 a model or proto-
type; therefore, only the two class recognition problem has been
considered. Extension to the more general multiclass case involves
no more difficulty than would be invelved ith an ordinary Bayes
classifier, once the stochastic approximation procedures are under-
stood.

The data used in testing the classifiers was generated con the
IBM 360/65 computer system [4]. Algorithm checkout and classifier
testing have been performed on the IEM 360/65 and the PDP 11/40
computer systems. Result: of classification and subsequent boundary
definition have been displayed via the Data Disk videv system in

conjunction with the PDP 11/40 computer.



CHAPTER II
ESTIMATION ALGORITHMS

A typical sequence of events for classifying and subsequently
estimating class statistics at the next time, assuming current

estimates have been made, is as follows.

Step 1. The current data sample Yy is classified into a

particular class using current estimates of parameters for all classes.

Step 2. «» ‘refined" estimate of the parameters of the class

chosen in Step 1 is computed by stochastic approximation as

This step is omitted for all other classes for lack of data Yn.

Step 3. A "projected" estimate of Byl Xn*, may be made by
transforming Xn according to the way the algorithm assumes 6 is
changing with n. If the change is due to time, this step is made for f
all classes; if the change is due to position (i.e., as when clas-
sifying pixels of a multispectral scan frame) within the current class
being scanned, this ctep is performed only for that class chosen in

Step 1 above.

Step 4. Increment n by 1 and return to Step 1.




Several notable contributions have been made to the problem of
estimating the pezrameters for a classifier where the class statistics
vary with time or space.] One such adaptive estimator gave larger
weight to more recent samples, as specified by an empirically
determined exponential weighting parameter; the consequent "limited
memory" made the resultant average more up-to-date [5]. Intuitively
the resulting estimates of parameters would be better than an
unweighted average. Another adaptive estimation algorithm "projected"
the current estimate to the next step by adding an amount of a certain
form of anticipated change to the last estimate, and then combining
it with the next data sample in a weighted average with weights
chosen to minimize the mean square error [6]. This algorithm will
subsequently be referred to as the CF algorithm, after the authors.
The algorithm developed in this work consists of "refine" and "project”
steps [7]. This algorithm differs from the previous one in the
sense that the former (1) makes projections suitable for more complex
variations with time, and (2) is arranged to operate as part of a
Bayes classifier. It will be seen that in both these algorithms the
"refine" step of combining previous estimate and new data is in the
form of a stochastic approximation formulation shown previously in
Step 2 of the typical sequence of events for adaptive classification.

The CF algorithm is essentially a two step algorithm designed

to optimally estimate present values of interest rather than to project

]Time will henceforth denote true time or space (positional
index), unless otherwise specified.



an estimate for future use. The two CF steps are defined as follows:

M Xy =0+ e-1x (8)
() xn B x*n-l * Yn-l(Yn'x*n-l) (9)

*
wkere X ) represents a projected parameter estimate, Xn represents

the previous estimate of the parameter, 6_, and Y, is the current data

n
sample. is a sequence of positive numbers satisfying the

conditions of Dvoretzky [8]

L i} v i} 2
metn1 =0 L ovpg=e Iy n-1 <% (10)
n=1 n=1

and chosen to minimize the mean square error of the estimates. Because
this algorithm is similar to the form required by an adaptive Bayes
classifier, the incorporation of the technique in a classifier is
justifiable. In contrast to the empirically derived algorithm
discussed previously, this procedure produces optimal estimates.
Examination of equation (8) reveals that this technique assumes
the estimated parameter to be time varying in a linear or nearly
linear fashion, with zero initial value. The algorithm lacks com-
pensation for an initial non-zero offset or bias of the parameter

value.



A modification to the algorithm consisted of subtracting the
initial parameter value from the classified sample, applying the CF
algorithm to the result, and adding back the initial value to the
algorithm estimate. In effect the modificetion allowed the algorithm
to project estimates as if the initial value were zero.

The algorithm developed here produces true distribution param-

eter estimates for the class of interest at the next classification
time. A "refine" step is made, then a "project" step is also made to
the next time, because once the data has been classified, the classifier
will require an estimate of the future parametier value, not the present.
An cptimum compromise between the present parameter estimate X*n_],
made at the previous step n-1, and the present data sample Yn is
made by the stochastic approximation in the "refine" step. The
"project" operation then provides the classifier an estimate of the
mean for the time when it is actually needed by the classifier.
An input, unbiased by variation, is also provided for the next
stochastic approximation by the "project" step. Therefore, the
"project" operation should remove (in a statistical sense) the
estimation bias,

A name considered appropriate for the algorithm is "polynomial
fit," hereafter to be referred to as the PF algorithm. The particular
algorithm presented was derived to make nonlinear estimates of degree
two; however, PF actually represents a class of algorithms derivable
for any finit~ degree. The second degree PF algorithm can be specified

as follows.



The refine step (Step 2 of typical classification sequence) is
denoted

X = X na1 * i (Yn'x g1t o (1)

and the project step (Step 3 of typical classification sequence)

X, =X +S=0 (12)

where
8, = true value at step n
and
S = ([I(+) - JEMI ¥, = THEMD ¥ o+ TGN Y /30-3)

n
D

n+1 = ®n (13)

and

e - Ko 2
_n 17n
Yn-1 " (14)
e + 2
n  “n
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and the estimate of mean square error for use in the calculation of

is

= 2
ntl © (xn - °n+1)

e
- n n 2 S B 2
= ::EF-——-7; (K]+1) + (K2 +K3 ) °n (15)
e
n

N
K2 = = 3G-37 (16)
and
_ it
s = 337 =

with K] defined as the sum of these two or

K] z K2 + K3 . (18)

Here the variance of the density function from which samples Yn are
drawn is represented as cnz
Another form of the PF algorithm has been developed using

previously projected estimates rather than previous data samples to



1

fit the polynomial assumed in derivation. This form of second degree

algorithm may be specified as follows.

The refine and project steps are specified exactly as in

equations (11) and (12) except with

§ = ([i(1+1) - 3T Xy = LMD X+ TN X Hi30-3)

(19)
and
—7
€n
Yn-1 R sewe (20)
" 2 + o 2
n n

and the estimate of mean square error for use in the calculation of

is
where
En2 s (Xn—en)2
- (]"’n-lz)z ;;? * Yn-12 c’n2 (22)
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and the required constants for error calculation being

K = Tt (23)

and

Ry ™ ﬁ{%} (24)

and with K1 again defined as the sum of these two or

K] s K2 + K3 . (25)

The "project" operation of equation (12) takes a form suitable
for the manner in which the mean is assumed to vary with time while in
the CF algorithm, "projection" is accomplished as Xn* = (141/n) xn.

S of equation (12) is an estimate of anticipated change on the next
time interval based on the assumption that the true value varies as a
second degree function of time, which is in turn estimated by the

values of Y , Y ., and Y ., or X, X ;. and X _;. Equations (13)

n-1i
or (20) give the optimum weight v, _; to minimize en+]z for the two
forms of the algorithm. The classifier then uses Xn* as the best
available value for 041 for the next classification, at step n+l.
Tests of both forms of the second degree PF algorithm revealed

that each made equally reliable projections. A disadvantage of the
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second form is that approximately twice as much memory 1s required in
order to accomodate all previous estimates of the necessary error
term E;?, 1 =1, 25 «oas D&

The ability of the CF and PF algorithms to "track" the varying
mean of a Gaussian density has been tested by computer simulation.

The data {Y } were drawn from a unit-variance, one dimensional Gaussian
density with mean 9(n-50)2/2500 +1 forn=1 to 100, and the algo-
rithms produced up-to-date estimates of this mean. Ten statistically
independent runs were made for 1 < n < 100; the CF algorithm performance
is shown in Figure 1, while the second degree PF algorithm performance
{s shown in Figure 2. For the sake of comparison the performance

shown in Figure 3 is that resulting from a least mean square error fit
of a second degree curve to the set (YK}, K= 1, 2, .00y 100,

Both the PF and CF algorithms have been applied to the problem
of adapting to changing m2an vectors and covariance matrices of normal
class signatures. In order to adapt to changing covariance matrices,
the problem addressed was that of estimating elements of the cor-
relation matrices separately from the elements of the mean vectors and
then combining these to form the particular covariance matrices [9].

A problem initially encountered using both algorithms was that of
maintaining a positive-semidefinite covariance matrix.

Based on the assumption that covariance terms vary at a slower
rate than mean vector components, satisfactory estimates of the
covariance matrices of M classes may be obtained by updating the jth

class covariance matrix when P samples have been classified as members

of that class in the f2llowing manner.
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Figure 1. Performance of CF (Chien and
Fu) algorithm.
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General Units

15

e True Mean

sAlgorithm Estimate of Mean

o Experimentally Observed RMS Error
e RMS Error Anticipated by Algorithm
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Figure 2. Performance of PF (polynomial
fit) algorithm.
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Figure 3. Performance of estimator operating
as a least mean square error curve fit.
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Step 1 involves specifying the initial covariance matrices for
M classes C1. 1=1,2, ..., M, a zero matrix by 120, 2 «oos Mof
equal dimensionality to the C matrices, and a counter N1, i=1,2, ...
M. Each counter should be initialized to zero.

In step 2 specify the number of samples P (where P > dimen-
sicnality of pattern vectors) to be used in producing new estimates of
the covariance matrix of each class.

At st:p 3 classify a pattern using the covariance estimate Ci,
i=1,2, ..., Mfor the classification.

During step 4, if the patlern was classified into class j,

update ¢J according to the relation
= ] -
¢1(N1+]) NFT [N1 ¢1(N1) + N‘l m'i (N.') m1 (N1)

3 1
+ Y(N1.+1) Y (N1+1) - . +1)2 (N1 mi(Ni)

i

£ Y(NA)T + (N my(N,) + v(Ni+1)’ (26)

i

where m, represents a mean estimate.

Step 5, increment the counter NJ by one.

Step 6, if NJ is less than P, go to step 3, ctherwise, go to
step 7.

At step 7, replace Cj by ¢j' Reset °j to the zero matrix and

rezero the counter NJ. Go to step 3.
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P 1s chosen greater than the pattern dimensionality in order to
fnsure that the estimate of the covariance will possess an inverse
given that the samples are drawn from a rormal population [1].

Justification of equation (26) is given in Appendix A.



CHAPTER III
A DIVERGENCE CRITERION

A problem associated with the CF algorithm and also the PF
class of algorithms is that their derivations assume the parameters to
be estimateu vary as some finite degree function. A PF algorithm of
very high degree, and hence great flexibility is cumbersome to derive
and to run; likewise, computer execution time increases as the degree
of algorithm complexity is increased. If the parameter being estimated
changes with time in a way more complex than assumed by the algorithm,
the predictions of stochastic approximation techniques may diverge.
Although the "weak memory" inherent in stochastic approximation will
compensate somewhat for this problem, it would be desirable to more
strongly 1imit the memory by restarting the algorithm at the point of
divergence, resulting in a piecewise implementation of an estimator.

A technique for detecting divergence and restarting the particular
stochastic approximation algorithm in the area of divergence is
necessary. This restart capability should be provided external to
the function of the particular stochastic approximation technique
being implemented. In other words, what is needed is a "monitor" for
the operation of the algorithm. '

Consider the problem of the estimation of the unknown mean of
some distribution Y ~ N(e(n), 02), where the mean 6(n) varies with
time. To assume that this function 6(n) might be approximated by

segments would not be unreasonable. The quantity Xn will be considered

19
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the approximation to o(n) made by a stochastic approximation algo-
rithm. Associated with each time interval is a random variable Y

with variance 02. The nth

sample value of Y shall be referred to as
Yy If the particular stochastic approximation algorithm accurately
estimates e(n) based on ¥ in some region, it is then possible to
define a new, time invariant random variable Z ~ N(uz, 02), where the
samples z, are given by

zZ =y =X . (27)

However, if X is an accurate estimate of 8(n), it is clear that u,
will be zero. A statistical inference built around the notion of a
"confidence interval" for a known statistic of the distribution

function Z may now be made [10,11]. Let the average value of Z be

calculated by the algorithm

n
— 1 i
z=o § (Y-X) . (28)
i=1
}
It can be shown that
Pr[ 3o 73090 (29)
n /n

(see Appendix B). Therefore, the statistic z, which is nothing more

than the average of the differerce of the random sample patterns and
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the corresponding estimates of their means, may serve as an indication
of divergence.

The restart "monitor" may thus be implemented as follows. If

the "confidence interval" condition

HEL: (30)

/n

is violated, the algorithm should be restarted at that point (n
should be reset to one).

The interval in which z must 1ie is reduced in proportion to
1//n. The maximum rate at which a stochastic approximation of a
quantity may converge to the true value is in proportion to 1/n, the
harmonic sequence, and still satisfy equation (10) of Chapter II [8].
If the y sequence of equations (9) and (11) approaches the harmonic
sequence in the limiting case, it would also be desirable to reduce
the confidence interval around z in proporation to 1/n. However, were
the interval around z reduced in proporation to 1/n, the probability
of divergence would no longer remain approximately equal to one, nor
would it remain constant for each value of n.

The effect of the divergence criterion developed above is to
increase the sensitivity to divergence as much as possible while
maintaining a constant probability of successfully detecting
divergence. In particular this technique has the advantage that it
may be used to monitor any estimation algorithm, no matter what

degree of complexity was assumed in algorithm derivation.



22

One point of interest concerns the variance of Z. Since accurate
estimation forms the basis for the confidence interval concept, in-
accurate estimation will result in the variance associated with Z
being larger than c2. The resulting divergence criterion may be
stricter than anticipated. This problem may be circumvented by making
the criterion more lax (for example, by increasing the interval
length around z to +40/vn ).

An alternative method for testing for divergence would be to
make use of the estimates of mean square error ;;? made by the algo-
rithms as discussed in Chapter II. If //Zzircou1d be considered a
measure of the error between X and the true value 6(n) and o a
measure of the error between y, and the true value 8(n) then X and ¥
should differ at most by /4;7?-+ o. An algorithm restart, with n reset

to one, could be made at the point where

Klx, - ynl > /en2 +o

with K a constant factor (for example, K = 2). .
Another possible variation on this idea might be to use both

the original divergence criterion (confidence interval) together

with this latter relation in combination.




CHAPTER IV

ADAPTIVE RECOGNITION AND BOUNDARY
DEFINITION PROGRAM

An adaptive Bayes classifier is realized by incorporating within
the ordinary Bayesian classification program estimation operations
which optimally estimate statistics for the next classification time.
An application suggested was that the adaptive classifier might be
useful in locating or defining spatial boundaries (not to be confused
with the Bayes decision surface or boundary) between data classes. A
physical example would be the definition of the shoreline between a
body of water and a land mass; varying means would then correspond to
spectral shifts of scan data caused by transition from deep water to
shallow water near the shoreline. As a test, different data sets have
been generated, each having two equaliy likely data classes. These
data sets are composed of patterns synthetically produced to simulate
a 128 x 128 pixel frame of four dimensional Gaussian spectral scan
data.

Adaptive classification and boundary definition programs have
been developed which treat each of the 128 individual horizontal rows
as a separate, independent classifier test. These programs utilize
the CF and the second degree PF algorithms to adapt to changing class
mean vectors. Updated estimates of the covariance matrix for each
class are made using the recursive estimation technique discussed in

Chapter II.

23
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A general flow chart of program operaticn is shown in Figure 4.
Program initialization 1s accomplished by specifying an appropriate
disk file of input data for classification, specifying a disk file to
contain output boundary results for video display, specifying initial
estimates of the mean vectors and covariance matrices of the two
classes, and inputting a decision variable. The process of classifi-
cation and subsequent boundary definition then begins.

A 128 pattern row of data is read into memory from the input
disk file, each pattern of which is four dimensional. Patterns are
classified by a Bayesian classification subroutine. The classifier
returns the variable ICLASS as a one or a two to indicate that the
pattern has been assigned to class one or class two.

In order to determine whether or not a boundary between the two
classes has been crossed in a rov test, a stack, whose length is
assigned by the specification of the decision variable at initilization,
is used. ICLASS associated with the first classified pattern of a
row is stored and also pushed onto the stack. The value of ICLASS
associated with each successive classified pattern is pushed onto the
stack. Only when the stack is full may a decision be made as to
whether or not a boundary has been crossed. At that time, and sub-
sequent times, each element of the stack is examined; if more than
half of the members of the stack have values equal to that of the
ICLASS of the first classified pattern of the row, the boundary
definition algorithm decides no boundary has been crossed. If more

than half of the members of the stack differ from the ICLASS of the



Figure 4.
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first classified pattern of the iow, the algorithm decides a boundary
has been crossed and the value stored for the ICLASS of the first
classified pattern of the row is replaced by the ICLASS of the new
class which has been encountered. The appropriate boundary address
is stored and the same process continues for the remainder of the
row.

After classifying each pattern and performing the boundary test,
the divergence criterion of Chapter III may be employed to determine
whether or not the estimates of particular mean vector components have
diverged. Divergence of a mean vector component requires a restart of
the estimation algorithm for that component in the area of divergence.

As each pattern is classified, class statistics for the ap-
propriate class must be projected ahead for the next classification by
either the CF or the PF algorithms and the recursive form for the
covariance estimation. Upon completion of a 128 pattern row test,
boundary informatiun is written into the disk output file, the next
row of input data is read, and the process is begun on the unclassified
row.

This procedure is repeated until classification and subsequent )
boundary definition of all 128 rows is accomplished. Upon completion,
all input and output disk files are closed and program execution
terminates.

Appendices C and D each contain a compiled Fortran IV program

11sting of two different version of an adaptive Bayes classifier. The

numbers at the leftmost side of the 1istings correspond to the internal
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sequence or statement numbers supplied by the Digital Equipment
Corporation RT-11 Operating System FORTRAN Compiler. These statement
numbers will be used in reference to particular statements.

The first version of the classifier (Appendix C) incorporates
the modified CF, algorithm to adaptively estimate class mean vectors,
the confidence interval divergence criterion to test for divergence
of mean estimates, and the recursive form of covariance estimation.

In order to adapt to class mean vectors only and check for their
divergence, the statement corresponding to line 117 of the main program
should be deleted. To adapt to mean vectors only and neglect the
possibility of their divergence, statements corresponding to line
numbers 62 through 115 as well as line 117 of the main program should
be deleted. To implement the unmodified CF algorithm to adapt mean
vectors only, statements corresponding to lines 6, 7, 12, 16, 17, and
22 of SUBROUTINE PROJECT and lines 62 through 115 and also line 117
of the main program shouid be deleted. An ordinary Bayes classifier
(non-adaptive) may be implemented by deletion of 1ines 62 through 117
of the main program.

The second version of the classifier (Appendix D) incorporates .
the second degree PF algorithm to adaptively estimate class mean
vectors and the recursive form of covariance estimation. In order to
adapt to class mean vectors only, the statement corresponding to line
65 should be deleted. To implement an ordinary (non-adaptive) Bayes

classifier, th2 statements corresponding to lines 64 and 65 may be

deleted.




CHAPTER V
RESULTS

Five data sets have been synthesized to simulate five 128 x 128
pixel multispectral scan data frames [4]. These data sets are each
composed of two classes of four dimensional Gaussian data. A photo-
graph depicting the true spatial boundary between the two classes is
shown in Figure 5. The arez to the left of this wedge shaped boundary
is referred to as class one; similarly, the area to the right of the
boundary is class two. The shortest and longest rows of data for each
class are 32 and 96 patterns.

Individual rows of data were generated & row at a time from
left to right. Data sets one and two were both generated with all four

class one mean components varying according to the relation

‘IT)%‘E (N-32)2 + 5

from the left edge of the frame to the boundary (N is simply the

position index having an initial value of zero at the left edge of b
the frame and incremented by one at each position to the right). A

plot of this relation versus N is shown in Figure 6. Class two data

was generated for the remainder of each row. Class two of data set

one was generated having the constant mean vector

29
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| x

Figure 5. True spatial class boundary.
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o O O ©

while the mean vector associate with class two of data set two is

'
R R J—
(S BN S o B, B S, |

The covariance matrices of both classes of data sets one and two are

1 .5 .5 5 ]
5 1 &5 (b
5 .b 1 B
5 5 .5 1
Data set three was generated with tha four class one mean com- )

ponents varying according to the relation

7.5 + 2.5 cos (.1047N) .

from the left edge of the frame to the boundary (N agair denotes a

positional index). A plot of this relation is shown in Figure 7.
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Class two data have been generated for the remainder of each row having

the constant mean vector

o O O o

The covariance of both class one and two of data set three is the same
as was specified for data sets one and two.

Data sets four and five were generated having class one and
two means specified in exactly the same manner as data set one. In
addition, however, each term of the covariance matrix of the class one

data was changed in a linear manner according to the equation

Cij(N) = Cij(o) +mN
121, ¢.., 4
j=1, , 4

where m is simply a slope factor. In other words a linear scalar

function of position is added to each term cf the initial covariance.

For data sets four and five the initial class one covariance was
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c(0) =

O O O -
o O - O
o -~ O O
-t D 0O O

Covariance matrix elements of class one, data set four were varied with
a slope m of 0.02 while Tike elements of data set five changed with a
slope of 0.2. Covariance matrices for class two of data sets four and

five were both specified as

o O O —
o O -~ O
Q - O O
- O O O

Eight different classification and boundary definition programs
have been applied to the problem of striking the boundary separating
the two classes in each of the five data sets. Each program requires
initial estimates of the mean vectors and covariance matrices of the
two classes. Because the estimation algorithms predict well, initial
mean vector estimates may be made by training over a small area. The
effect is to hold sample scatter to a minimum while providing
reasonable estimates of the mean.

The first program, referred to as BAYES1, implements an ordinary,
non-adaptive Bayes classifier. The initial estimatec of class mean

vectors and covariance matrices are incorporated throughout classifi-
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cation of a complete data set and the resulting data file containing
boundary information may be displayed by the DATA-DISK video system.

The second program, BAYES2, employs the CF algorithm in its
original form to adaptively estimate mean vectors for a Bayes clas-
sifier. Boundary data is subsequently deduced and stored for display.

Program number three, BAYES3, utilizes the modified CF algorithm
discussed in Chapter II to rrocuice up-to-date estimates of changing
mean vectors for a Bayes class' fier.

BAYES4 incorporates not only the modified CF algorithm, but
also the confidence intc val divergence criterion introduced in
Chapter III to adaptively estimate class mean vectors for the
classifier,

BAYESS implements the second degree PF algorithm to adaptively
project estimates of class mean vectors for a Bayesian classifier.
BAYES6, BAYES7, and BAYES8 take the same form as BAYES3, BAYES4, and
BAYES5, respectively, with the exception that BAYES6 through BAYESE
also employ the recursive covariance estimaticn technique.

Table I provides a cross-reference summary relating Figures 8
through 47 to the particular data sets and programs. Each figure is
also individually identified by the program name and data set number
used. These figures are photographs of boundaries defined by the
various programs for each data set.

A comparison of the results obtained applying the various
programs -to the different data sets reveals that the ability to adapt
to changing mean vectors is essential to successful classification.

False boundaries have been generated in each case where the non-



TABLE I

A CROSS-REFERENCE OF FIGURES DEPICTING RESULTS OBTAINED
UPON APPLICATION OF THE CLASSIFICATICN AND
BOUNDARY DEFINITION PROGRAMS TO THE
VARIOUS DATA SETS

DATA SETS

PROGRAM 1 2 3 - 5

BAYES] Figure 8 Figure 16 Figure 24 Figure 32 Figure 40
BAYES2 Figure 9 Figure 17 Figure 25 Figure 33 Figure 4]
BAYES3 Figure 10 Figure 18 Figure 26 Figure 34 Figure 42
BAYES4 Figure 11  Figure 19 Figure 27 Figure 35 Figure 43
BAYESS Figure 12 Figure 20 Figure 28 Figure 36 Figure 44
BAYES6 Figure 13  Figure 21 Figure 29 Figure 37 Figure 45
BAYES7 Figure 14 Figure 22 Figure 30 Figure 38 Figure 46
BAYES8 Figure 15 Figure 23 Figure 31 Figure 39 Figure 47
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Figure 8, Spatial boundaries resulting from the ap-
plication of an ordinary Bayes classifier (BAYES1)
to data set 1. Note the false boundaries.
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Figure 9. Spatial boundaries resulting from the ap-
plication of an adaptive Bayes classifier (BAYES2)
using the CF algorithm to data set 1. Note the

false boundaries.
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Figure 10. Spatial boundaries resulting from the ap-
plication of an adaptive Baves classifier (BAYES3)
using the modified CF algorithm to data set 1.
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Figure 11. Spatial boundaries resulting from the ap-
plication of an adaptive Bayes classifier (BAYES4)

using the modified CF algorithm and the divergence
criterion to data set 1.
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Figure 12. Spatial boundaries resulting from the ap-
plication of an adaptive Bayes classifier (BAYESS)
using the PF algorithm to data set 1.
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Figure 13. Spatial boundaries resulting from the ap-
plication of an adaptive Bayes classifier (BAYES6)
using the modified CF algorithm and recursive
covariance estimation to data set 1.
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Figure 14. Spatial boundaries resulting from the ap-
plication of an adaptive Bayes classifier (BAYES7)
using the modified CF algorithm, divergence criterion,
and recursive covariance estimation to data set 1.

Figure 15. Spatial boundaries resulting from the ap-
plication of an adaptive Bayes classifier (BAYESS)
using the PF algorithm and recursive covariance
estimation to data set 1.
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Figure 16. Spatia. boundaries resulting from the ap-
plication of an ordinary Bayes classifier (BAYEST)
to data set 2. Note the false boundaries.
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Figure 17. Spatial boundaries resulting from the ap-
plication of an adaptive Bayes classifier (BAYES2)
using the CF algorithm to data set 2. Note the
false boundaries.
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Figure 18. Spatial boundaries resulting from the ap-
plication of an adaptive Bayes classifier (BAYES3)
using the modified CF algorithm to data set 2.
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Figure 19. Spatial boundaries resulting from the ap-
plication of an adaptive Bayes classifier (BAYES4)
using the modified CF algorithm and the divergence
criterion to data set 2.
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Figure 20. Spatial boundaries resulting from the ap-
plication of an adaptive Bayes classifier (BAYESS)
using the PF algorithm to data set 2.

i -
° e ® - ‘ -
o Ve - ‘e 'V 0T = e
. -
cmo - ~ - .
.
.o .. /- '; < . .
. —— LA \.. . - ®
v e - re - . .
-v z > >
. o . v - .
e RS
oo e ol S
ol - - S
v .. ’
ve ® -+ 8 .c-- . ./
- - pa— 2 7
- - . . [ =
« * T . 0w B . =
- - ° Se -
— - — ‘. -
.o ~ . = - *»
a s - e
! - ~ - —~
. . ~ - -
-
-
. - ’F-- ® e

Figure 21. Spatial boundaries resiltiny from the ap-
plication of an adaptive Bayes classifier (BAYES6)
using the modified CF algorithm and vecursive
covariance estimation to data set 2.
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Figure 22, Spatial boundaries resulting from the ap-
plication of an adaptive Bayes classi’ier (BAYES7)
using the modified CF algorithm, divergence criterion,
and recursive covariance estimation to data set 2.

Figure 23. Spatial boundaries resulting from the ap-
plication of an adaptive Bayes classifier (BAYESS)
using the PF algorithm and recursive covariance
estimation to data set 2.
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Figure 24. Spatial boundaries resulting trom the ap-
plication of an ordinary Bayes classifier (BAYES1)
to date set 3. Note the false boundaries.

Figure 25. Spatial boundaries resulting from Lhe ap-
plication of an adaptive Bayes classifier (BAYES2)
using the CF algorithm to data set 3. Note the
false boundaries.
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Figure 26. Spatial boundaries resulting from the ap-
plication of an adaptive Bayes classifier (BAYES3)
using the modified CF algorithm to data set 3.
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Figure 27. <tpatial boundaries resulting from the ap-
plication of an adaptive Bayes classifier (BAYES4)
using the modified CF algorithm and the divergence
criterion to data set 3.
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Figure 28. Spatial boundaries resulting from the ap-
plication of an adaptive Bayes classifier (BAYESS)
using the PF algorithm to data set 3.
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Figure 29. Spatial boundaries resulting from the ap-
plication of an adaptive Bayes classifier (BAYESE)
using the inodified CF algorithm and recursive
covariance estimation to data set 3.
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Figure 30. Spatial boundaries resulting from the ap-
plication of an adaptive Bayes classifier (BAYES7)
using the modified CF algorithn, divergence criterion,
and recursive covariance estimation to data set 3.

Figure 31. Spatial boundaries resulting from the ap-
plication of an adaptive B.yes classifier (BAYESS)
using the PF algorithm and recursive covariance
estimation to data set 3.
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Figure 32. Spatial ! undaries resulting from the ap-
plication of an ordinary Bayes classifier (BAYES1)
to data set 4. Note the false boundaries.

Figure 33. Spatial boundaries resulting from the ap-
plication of an adaptive Bayes classifier (BAYES2)
using the CF algorithm to data set 4. Note the
false boundaries.
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Figure 34. Spatial boundaries resulting from the ap-
plication of an adaptive Bayes classifier (BAYES3)
using the modified CF algorithm to data set 4.
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Figure 35., Spatial boundaries resulting from the ap-
plication of an adaptive Bayes classifier (BAYES4)
using the modified CF algorithm and the divergence
criterion to data set 4.
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Figure 36. Spatial boundaries resulting from the ap-
plication of an adaptive Bayes classifier (BAYESS)
using the PF algorithm to data set 4.
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Figure 37. Spatial boundaries resulting from the ap-
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