General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.
Final Report Contract NAS8-30878

Project Title
ADAPTIVE STATISTICAL PATTERN CLASSIFIERS FOR REMOTELY SENSED DATA

Principal Investigator: R.C. Gonzalez
Co-Investigators: M.O. Pace
H.S. Raulston

Technical Report TR-EE/CS-75-10

June, 1975
ABSTRACT

A new technique for the adaptive estimation of non-stationary statistics necessary for Bayesian classification is developed. The basic approach to the adaptive estimation procedure consists of two steps: (1) an optimal stochastic approximation of the parameters of interest and (2) a projection of the parameters in time or position. A divergence criterion is developed to monitor algorithm performance. Comparative results of adaptive and non-adaptive classifier tests are presented for simulated four dimensional spectral scan data.

This work was supported by NASA contract NAS8-30878.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II. ESTIMATION ALGORITHMS</td>
<td>5</td>
</tr>
<tr>
<td>Step 1</td>
<td>5</td>
</tr>
<tr>
<td>Step 2</td>
<td>5</td>
</tr>
<tr>
<td>Step 3</td>
<td>5</td>
</tr>
<tr>
<td>Step 4</td>
<td>5</td>
</tr>
<tr>
<td>III. A DIVERGENCE CRITERION</td>
<td>19</td>
</tr>
<tr>
<td>IV. ADAPTIVE RECOGNITION AND BOUNDARY DEFINITION PROGRAM</td>
<td>23</td>
</tr>
<tr>
<td>V. RESULTS</td>
<td>29</td>
</tr>
<tr>
<td>VI. CONCLUDING OBSERVATIONS</td>
<td>60</td>
</tr>
<tr>
<td>LIST OF REFERENCES</td>
<td>62</td>
</tr>
<tr>
<td>APPENDICES</td>
<td>64</td>
</tr>
<tr>
<td>A. COVARIANCE ESTIMATION</td>
<td>65</td>
</tr>
<tr>
<td>B. CONFIDENCE INTERVAL DERIVATION</td>
<td>67</td>
</tr>
<tr>
<td>C. COMPILED FORTRAN IV PROGRAM LISTING OF ADAPTIVE BAYES CLASSIFIER INCORPORATING MODIFIED CF ALGORITHM AND CONFIDENCE INTERVAL DIVERGENCE CRITERION</td>
<td>69</td>
</tr>
<tr>
<td>D. COMPILED FORTRAN IV PROGRAM LISTING OF ADAPTIVE BAYES CLASSIFIER INCORPORATING SECOND DEGREE PF ALGORITHM</td>
<td>90</td>
</tr>
<tr>
<td>VITA</td>
<td>109</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Performance of CF (Chien and Fu) algorithm</td>
<td>14</td>
</tr>
<tr>
<td>2. Performance of PF (polynomial fit) algorithm</td>
<td>15</td>
</tr>
<tr>
<td>3. Performance of estimator operating as a least mean square error curve fit</td>
<td>16</td>
</tr>
<tr>
<td>4. A general flowchart of classification and boundary definition program operation</td>
<td>25</td>
</tr>
<tr>
<td>5. True spatial class boundary</td>
<td>30</td>
</tr>
<tr>
<td>6. Variation of class one mean with position for data sets 1, 2, 4, and 5</td>
<td>31</td>
</tr>
<tr>
<td>7. Variation of class one mean with position for data set 3</td>
<td>33</td>
</tr>
<tr>
<td>8. Spatial boundaries resulting from the application of an ordinary Bayes classifier (BAYES1) to data set 1</td>
<td>38</td>
</tr>
<tr>
<td>9. Spatial boundaries resulting from the application of an adaptive Bayes classifier (BAYES2) using the CF algorithm to data set 1</td>
<td>38</td>
</tr>
<tr>
<td>10. Spatial boundaries resulting from the application of an adaptive Bayes classifier (BAYES3) using the modified CF algorithm to data set 1</td>
<td>39</td>
</tr>
<tr>
<td>11. Spatial boundaries resulting from the application of an adaptive Bayes classifier (BAYES4) using the modified CF algorithm and the divergence criterion to data set 1</td>
<td>39</td>
</tr>
<tr>
<td>12. Spatial boundaries resulting from the application of an adaptive Bayes classifier (BAYES5) using the PF algorithm to data set 1</td>
<td>40</td>
</tr>
<tr>
<td>13. Spatial boundaries resulting from the application of an adaptive Bayes classifier (BAYES6) using the modified CF algorithm and recursive covariance estimation to data set 1</td>
<td>40</td>
</tr>
<tr>
<td>14. Spatial boundaries resulting from the application of an adaptive Bayes classifier (BAYES7) using the modified CF algorithm, divergence criterion, and recursive covariance estimation to data set 1</td>
<td>41</td>
</tr>
</tbody>
</table>
FIGURE

15. Spatial boundaries resulting from the application of an adaptive Bayes classifier (BAYES8) using the PF algorithm and recursive covariance estimation to data set 1 ... 41

16. Spatial boundaries resulting from the application of an ordinary Bayes classifier (BAYES1) to data set 2 42

17. Spatial boundaries resulting from the application of an adaptive Bayes classifier (BAYES2) using the CF algorithm to data set 2 ... 42

18. Spatial boundaries resulting from the application of an adaptive Bayes classifier (BAYES3) using the modified CF algorithm to data set 2 ... 43

19. Spatial boundaries resulting from the application of an adaptive Bayes classifier (BAYES4) using the modified CF algorithm and the divergence criterion to data set 2 .. 43

20. Spatial boundaries resulting from the application of an adaptive Bayes classifier (BAYES5) using the PF algorithm to data set 2 ... 44

21. Spatial boundaries resulting from the application of an adaptive Bayes classifier (BAYES6) using the modified CF algorithm and recursive covariance estimation to data set 2 ... 44

22. Spatial boundaries resulting from the application of an adaptive Bayes classifier (BAYES7) using the modified CF algorithm, divergence criterion, and recursive covariance estimation to data set 2 ... 45

23. Spatial boundaries resulting from the application of an adaptive Bayes classifier (BAYES8) using the PF algorithm and recursive covariance estimation to data set 2 ... 45

24. Spatial boundaries resulting from the application of an ordinary Bayes classifier (BAYES1) to data set 3 46

25. Spatial boundaries resulting from the application of an adaptive Bayes classifier (BAYES2) using the CF algorithm to data set 3 ... 46

26. Spatial boundaries resulting from the application of an adaptive Bayes classifier (BAYES3) using the modified CF algorithm to data set 3 ... 47
FIGURE PAGE

27. Spatial boundaries resulting from the application of an adaptive Bayes classifier (BAYES4) using the modified CF algorithm and the divergence criterion to data set 3 .. 47

28. Spatial boundaries resulting from the application of an adaptive Bayes classifier (BAYES5) using the PF algorithm to data set 3 .. 48

29. Spatial boundaries resulting from an application of an adaptive Bayes classifier (BAYES6) using the modified CF algorithm and recursive covariance estimation to data set 3 .. 48

30. Spatial boundaries resulting from the application of an adaptive Bayes classifier (BAYES7) using the modified CF algorithm, divergence criterion, and recursive covariance estimation to data set 3 .. 49

31. Spatial boundaries resulting from the application of an adaptive Bayes classifier (BAYES8) using the PF algorithm and recursive covariance estimation to data set 3 .. 49

32. Spatial boundaries resulting from the application of an ordinary Bayes classifier (BAYES1) to data set 4 50

33. Spatial boundaries resulting from the application of an adaptive Bayes classifier (BAYES2) using the CF algorithm to data set 4 .. 50

34. Spatial boundaries resulting from the application of an adaptive Bayes classifier (BAYES3) using the modified CF algorithm to data set 4 .. 51

35. Spatial boundaries resulting from the application of an adaptive Bayes classifier (BAYES4) using the modified CF algorithm and the divergence criterion to data set 4 . . 51

36. Spatial boundaries resulting from the application of an adaptive Bayes classifier (BAYES5) using the PF algorithm to data set 4 .. 52

37. Spatial boundaries resulting from the application of an adaptive Bayes classifier (BAYES6) using the modified CF algorithm and recursive covariance estimation to data set 4 .. 52
<table>
<thead>
<tr>
<th>FIGURE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>38. Spatial boundaries resulting from the application of an adaptive Bayes classifier (BAYES7) using the modified CF algorithm, divergence criterion, and recursive covariance estimation to data set 4</td>
<td>53</td>
</tr>
<tr>
<td>39. Spatial boundaries resulting from the application of an adaptive Bayes classifier (BAYES8) using the PF algorithm and recursive covariance estimation to data set 4</td>
<td>53</td>
</tr>
<tr>
<td>40. Spatial boundaries resulting from the application of an ordinary Bayes classifier (BAYES1) to data set 5</td>
<td>54</td>
</tr>
<tr>
<td>41. Spatial boundaries resulting from the application of an adaptive Bayes classifier (BAYES2) using the CF algorithm to data set 5</td>
<td>54</td>
</tr>
<tr>
<td>42. Spatial boundaries resulting from the application of an adaptive Bayes classifier (BAYES3) using the modified CF algorithm to data set 5</td>
<td>55</td>
</tr>
<tr>
<td>43. Spatial boundaries resulting from the application of an adaptive Bayes classifier (BAYES4) using the modified CF algorithm and the divergence criterion to data set 5</td>
<td>55</td>
</tr>
<tr>
<td>44. Spatial boundaries resulting from the application of an adaptive Bayes classifier (BAYES5) using the PF algorithm to data set 5</td>
<td>56</td>
</tr>
<tr>
<td>45. Spatial boundaries resulting from the application of an adaptive Bayes classifier (BAYES6) using the modified CF algorithm and recursive covariance estimation to data set 5</td>
<td>56</td>
</tr>
<tr>
<td>46. Spatial boundaries resulting from the application of an adaptive Bayes classifier (BAYES7) using the modified CF algorithm, divergence criterion, and recursive covariance estimation to data set 5</td>
<td>57</td>
</tr>
<tr>
<td>47. Spatial boundaries resulting from the application of an adaptive Bayes classifier (BAYES8) using the PF algorithm and recursive covariance estimation to data set 5</td>
<td>57</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

\(\theta_n \) = true value of distribution parameter at time (position) \(n \).

\(y_n \) = data sample classified into a particular class at time (position) \(n \).

\(X_n \) = "refined" estimate of \(\theta_n \) made after classification number \(n \)
 provides new data sample.

\(X^*_n \) = "projected" estimate of \(\theta_{n+1} \) made at preceding time (position) \(n \).

\(e_n^2 \) = mean square error \((X^*_n - \theta_{n+1})^2 \).

\(Y_{n-1} \) = weight used in stochastic approximation to specify weighted
 average of past estimate and present data (chosen to minimize
 mean-square error, \(e_n^2 \)).

\(E_n^2 \) = mean square error \((X_n - \theta_n)^2 \).

\(N(u, \sigma^2) \) denotes normal distribution of mean \(u \) and variance \(\sigma^2 \).
CHAPTER I

INTRODUCTION

A Bayes classifier for M pattern classes is essentially a mechanization of M discriminant functions of the patterns \(x \). These functions are of the form

\[
d_i(x) = p(x/\omega_i) p(\omega_i)
\]

\[i = 1, 2, ..., M \]

where \(p(x/\omega_i) \) is the probability density function of the patterns of class \(\omega_i \) and \(p(\omega_i) \) is the a priori probability of this class, that is the probability of occurrence of class \(\omega_i \). The maximum discriminant function will correspond to the minimum conditional risk. In other words, the Bayes classifier will minimize total expected loss, where loss represents classification error [1].

In order to make a decision on a particular pattern \(x \), the classifier computes \(d_1(x) \), \(d_2(x) \), ..., \(d_M(x) \), and assigns \(x \) to class \(\omega_j \) if \(d_j(x) \) has the largest value. Ties are resolved arbitrarily. Because the Bayes classifier has found such wide acceptance in pattern recognition, this classifier will serve as the basis for an adaptive recognition system capable of adjusting itself to a changing environment.
The structure of a Bayes classifier is determined primarily by the conditional densities \(p(x/\omega_i) \). Of the various density functions that have been investigated, none has received more attention than the multivariate normal density. Although this attention is due largely to its analytical tractability, the multivariate normal density is also an appropriate model for an important situation: the case where the feature vectors \(x \) for a given class \(\omega_i \) represent a single typical or prototype vector \(u_i \), mildly corrupted by zero mean sampling and measurement noise [2,3].

For \(M \) pattern classes the general multivariate normal density functions may be written as

\[
p(x/\omega_i) = \frac{1}{(2\pi)^{n/2}|C_i|^{1/2}} \exp\left[-\frac{1}{2}(x-u_i)^\top C_i^{-1}(x-u_i)\right]
\]

\(i = 1, 2, \ldots, M \)

\(n = \) dimensionality of \(x \)

where

\[
u_i = E[x]
\]

and

\[
C_i = E[(x-u_i)(x-u_i)^\top].
\]
For class \(\omega_i \) the Bayes decision function which minimizes probability of classifier error is found to be \(d_i(x) = p(x/\omega_i)p(\omega_i) \). Due to the exponential form of the normal density function, it is more convenient to work with the natural logarithm of this decision function [1]. The decision function may therefore be written as

\[
\begin{align*}
d_i(x) = \ln p(x/\omega_i)p(\omega_i) &= \ln p(x/\omega_i) + \ln p(\omega_i) \\
i &= 1, 2, \ldots, M.
\end{align*}
\]

Dropping the term \(n/2 \ln(2\pi) \) because it is common to all \(M \) decision functions being compared yields

\[
\begin{align*}
d_i(x) &= \ln p(\omega_i) - \frac{1}{2} \ln |C_i| - \frac{1}{2} [(x-u_i)'C_i^{-1}(x-u_i)] \\
i &= 1, 2, \ldots, M.
\end{align*}
\]

An examination of Equation (7) reveals that the changing environment to which the system must adapt is composed of the particular class mean vectors \(u_i \) and covariance matrices \(C_i \). In the context of a classification, to adapt means to provide the classifier optimal current estimates of parameters necessary for the classification. The parameters may vary with time or position.

In this thesis various stochastic approximation techniques are presented for adaptive estimation. A criterion is also suggested which may be used to detect the divergence of estimates of means.
The ability of these algorithms to accurately estimate the varying mean of a normal density has been tested by computer simulation.

These algorithms have been incorporated into a Bayes classifier to make it adaptive. Comparisons of the various adaptive classifiers, incorporating different estimation algorithms, to the ordinary (non-adaptive) Bayes classifier have been made revealing the desirability of adaptive recognition capability.

A practical application which has been implemented in this work is real-time classification and physical class boundary definition of synthetic multispectral scan data. These boundaries are those between classes in a truth table, and should not be confused with Bayes decision surfaces in pattern space.

The classifier developed here is to serve as a model or prototype; therefore, only the two class recognition problem has been considered. Extension to the more general multiclass case involves no more difficulty than would be involved with an ordinary Bayes classifier, once the stochastic approximation procedures are understood.

The data used in testing the classifiers was generated on the IBM 360/65 computer system [4]. Algorithm checkout and classifier testing have been performed on the IBM 360/65 and the PDP 11/40 computer systems. Results of classification and subsequent boundary definition have been displayed via the Data Disk video system in conjunction with the PDP 11/40 computer.
CHAPTER II

ESTIMATION ALGORITHMS

A typical sequence of events for classifying and subsequently estimating class statistics at the next time, assuming current estimates have been made, is as follows.

Step 1. The current data sample \(Y_n \) is classified into a particular class using current estimates of parameters for all classes.

Step 2. A "refined" estimate of the parameters of the class chosen in Step 1 is computed by stochastic approximation as

\[
\theta_n = X_n = X_{n-1} + \gamma_{n-1}(Y_n - \bar{X}_{n-1}).
\]

This step is omitted for all other classes for lack of data \(Y_n \).

Step 3. A "projected" estimate of \(\theta_{n+1}, X_n^* \), may be made by transforming \(X_n \) according to the way the algorithm assumes \(\theta \) is changing with \(n \). If the change is due to time, this step is made for all classes; if the change is due to position (i.e., as when classifying pixels of a multispectral scan frame) within the current class being scanned, this step is performed only for that class chosen in Step 1 above.

Step 4. Increment \(n \) by 1 and return to Step 1.
Several notable contributions have been made to the problem of estimating the parameters for a classifier where the class statistics vary with time or space. One such adaptive estimator gave larger weight to more recent samples, as specified by an empirically determined exponential weighting parameter; the consequent "limited memory" made the resultant average more up-to-date [5]. Intuitively the resulting estimates of parameters would be better than an unweighted average. Another adaptive estimation algorithm "projected" the current estimate to the next step by adding an amount of a certain form of anticipated change to the last estimate, and then combining it with the next data sample in a weighted average with weights chosen to minimize the mean square error [6]. This algorithm will subsequently be referred to as the CF algorithm, after the authors.

The algorithm developed in this work consists of "refine" and "project" steps [7]. This algorithm differs from the previous one in the sense that the former (1) makes projections suitable for more complex variations with time, and (2) is arranged to operate as part of a Bayes classifier. It will be seen that in both these algorithms the "refine" step of combining previous estimate and new data is in the form of a stochastic approximation formulation shown previously in Step 2 of the typical sequence of events for adaptive classification.

The CF algorithm is essentially a two step algorithm designed to optimally estimate present values of interest rather than to project

\footnote{Time will henceforth denote true time or space (positional index), unless otherwise specified.}
an estimate for future use. The two CF steps are defined as follows:

\[
(1) \quad X_{n-1}^* = \left[1 + (n-1)^{-1}\right] X_{n-1}
\]

\[
(2) \quad X_n = X_{n-1}^* + \gamma_{n-1}(Y_n - X_{n-1}^*)
\]

where \(X_{n-1}^*\) represents a projected parameter estimate, \(X_n\) represents the previous estimate of the parameter, \(\gamma_n\), and \(Y_n\) is the current data sample. \(\gamma_{n-1}\) is a sequence of positive numbers satisfying the conditions of Dvoretzky [8] and chosen to minimize the mean square error of the estimates. Because this algorithm is similar to the form required by an adaptive Bayes classifier, the incorporation of the technique in a classifier is justifiable. In contrast to the empirically derived algorithm discussed previously, this procedure produces optimal estimates.

Examination of equation (8) reveals that this technique assumes the estimated parameter to be time varying in a linear or nearly linear fashion, with zero initial value. The algorithm lacks compensation for an initial non-zero offset or bias of the parameter value.
A modification to the algorithm consisted of subtracting the initial parameter value from the classified sample, applying the CF algorithm to the result, and adding back the initial value to the algorithm estimate. In effect the modification allowed the algorithm to project estimates as if the initial value were zero.

The algorithm developed here produces true distribution parameter estimates for the class of interest at the next classification time. A "refine" step is made, then a "project" step is also made to the next time, because once the data has been classified, the classifier will require an estimate of the future parameter value, not the present. An optimum compromise between the present parameter estimate X_{n-1}^* made at the previous step $n-1$, and the present data sample Y_n is made by the stochastic approximation in the "refine" step. The "project" operation then provides the classifier an estimate of the mean for the time when it is actually needed by the classifier. An input, unbiased by variation, is also provided for the next stochastic approximation by the "project" step. Therefore, the "project" operation should remove (in a statistical sense) the estimation bias.

A name considered appropriate for the algorithm is "polynomial fit," hereafter to be referred to as the PF algorithm. The particular algorithm presented was derived to make nonlinear estimates of degree two; however, PF actually represents a class of algorithms derivable for any finite degree. The second degree PF algorithm can be specified as follows.
The refine step (Step 2 of typical classification sequence) is denoted

\[X_n = X_{n-1} + \gamma_{n-1} (Y_n - X_{n-1}) = \theta_n \]

(11)

and the project step (Step 3 of typical classification sequence)

\[X_n^* = X_n + \hat{S} = \theta_{n+1} \]

(12)

where

\[\theta_n \equiv \text{true value at step } n \]

and

\[\hat{S} = \{[i(i+1) - j(j+1)] Y_n - [i(i+1) - j(j+1)] Y_{n-1}] / ij(i-j) \]

\[= \theta_{n+1} - \theta_n \]

(13)

and

\[\gamma_{n-1} = \frac{\epsilon_n^2 - K_n \sigma_n^2}{\epsilon_n^2 + \sigma_n^2} \]

(14)
and the estimate of mean square error for use in the calculation of \(\gamma_n \) is

\[
\frac{e_{n+1}^2}{2} = (x_n^* - \theta_{n+1})^2
\]

\[
= \frac{e_n^2}{2} \frac{2}{c_n^2} (K_1 + 1)^2 + (K_2^2 + K_3^2) c_n^2
\]

(15)

the required terms for error calculation being

\[
K_2 = -\frac{1+1}{(1-j)}
\]

(16)

and

\[
K_3 = \frac{1+1}{3(1-j)}
\]

(17)

with \(K_1 \) defined as the sum of these two or

\[
K_1 = K_2 + K_3
\]

(18)

Here the variance of the density function from which samples \(Y_n \) are drawn is represented as \(c_n^2 \).

Another form of the PF algorithm has been developed using previously projected estimates rather than previous data samples to
fit the polynomial assumed in derivation. This form of second degree algorithm may be specified as follows.

The refine and project steps are specified exactly as in equations (11) and (12) except with

$$S = \{i(i+1) - j(j+1)\} X_n - [i(i+1)] X_{n+j} + [j(j+1)] X_{n-i}/ij(i-j)$$

(19)

and

$$\gamma_n = \frac{\bar{e}_n^2}{\bar{e}_n^2 + \sigma_n^2}$$

(20)

and the estimate of mean square error for use in the calculation of γ_n is

$$\bar{e}_{n+1} = (1+K_1)^2 \bar{e}_n + K_2^2 \bar{E}_{n-j} + K_3^2 \bar{E}_{n-i}$$

(21)

where

$$\bar{E}_n^2 = (X_n - \theta_n)^2$$

$$= (1-\gamma_{n-1})^2 \bar{e}_n^2 + \gamma_{n-1} \sigma_n^2$$

(22)
and the required constants for error calculation being

\[K_2 = \frac{(i+1)}{j(j-1)} \] \hspace{1cm} (23)

and

\[K_3 = -\frac{(j+1)}{i(i-1)} \] \hspace{1cm} (24)

and with \(K_1 \) again defined as the sum of these two or

\[K_1 \equiv K_2 + K_3 \] \hspace{1cm} (25)

The "project" operation of equation (12) takes a form suitable for the manner in which the mean is assumed to vary with time while in the CF algorithm, "projection" is accomplished as \(X_n^* = (1+1/n) X_n \). \(\hat{S} \) of equation (12) is an estimate of anticipated change on the next time interval based on the assumption that the true value varies as a second degree function of time, which is in turn estimated by the values of \(Y_n \), \(Y_{n-1} \), and \(Y_{n-j} \), or \(X_n \), \(X_{n-1} \), and \(X_{n-j} \). Equations (13) or (20) give the optimum weight \(\gamma_{n-1} \) to minimize \(e_{n+1}^2 \) for the two forms of the algorithm. The classifier then uses \(X_n^* \) as the best available value for \(a_{n+1} \) for the next classification, at step \(n+1 \).

Tests of both forms of the second degree PF algorithm revealed that each made equally reliable projections. A disadvantage of the
second form is that approximately twice as much memory is required in order to accommodate all previous estimates of the necessary error term $E_i^2, i = 1, 2, \ldots, n$.

The ability of the CF and PF algorithms to "track" the varying mean of a Gaussian density has been tested by computer simulation. The data $\{Y_n\}$ were drawn from a unit-variance, one dimensional Gaussian density with mean $9(n-50)^2/2500 + 1$ for $n = 1$ to 100, and the algorithms produced up-to-date estimates of this mean. Ten statistically independent runs were made for $1 \leq n \leq 100$; the CF algorithm performance is shown in Figure 1, while the second degree PF algorithm performance is shown in Figure 2. For the sake of comparison the performance shown in Figure 3 is that resulting from a least mean square error fit of a second degree curve to the set $\{Y_k\}, K = 1, 2, \ldots, 100$.

Both the PF and CF algorithms have been applied to the problem of adapting to changing mean vectors and covariance matrices of normal class signatures. In order to adapt to changing covariance matrices, the problem addressed was that of estimating elements of the correlation matrices separately from the elements of the mean vectors and then combining these to form the particular covariance matrices [9]. A problem initially encountered using both algorithms was that of maintaining a positive-semidefinite covariance matrix.

Based on the assumption that covariance terms vary at a slower rate than mean vector components, satisfactory estimates of the covariance matrices of M classes may be obtained by updating the j^{th} class covariance matrix when P samples have been classified as members of that class in the following manner.
Figure 1. Performance of CF (Chien and Fu) algorithm.
Figure 2. Performance of PF (polynomial fit) algorithm.
Figure 3. Performance of estimator operating as a least mean square error curve fit.
Step 1 involves specifying the initial covariance matrices for \(M\) classes \(C_i, i = 1, 2, \ldots, M\), a zero matrix \(\phi_i, i = 1, 2, \ldots, M\) of equal dimensionality to the \(C\) matrices, and a counter \(N_i, i = 1, 2, \ldots, M\). Each counter should be initialized to zero.

In step 2 specify the number of samples \(P\) (where \(P > \) dimensionality of pattern vectors) to be used in producing new estimates of the covariance matrix of each class.

At step 3 classify a pattern using the covariance estimate \(C_i, i = 1, 2, \ldots, M\) for the classification.

During step 4, if the pattern was classified into class \(j\), update \(\phi_j\) according to the relation

\[
\phi_j(N_j+1) = \frac{1}{N_j+1} [N_j \phi_j(N_j) + N_j m_j(N_j) m_j^\prime(N_j)]
\]

\[
+ \frac{1}{(N_j+1)^2} (N_j m_j(N_j))
\]

\[
+ \frac{1}{(N_j+1)} + (N_j m_j(N_j) + \gamma(N_j+1))
\]

(26)

where \(m_j\) represents a mean estimate.

Step 5, increment the counter \(N_j\) by one.

Step 6, if \(N_j\) is less than \(P\), go to step 3, otherwise, go to step 7.

At step 7, replace \(C_j\) by \(\phi_j\). Reset \(\phi_j\) to the zero matrix and rezero the counter \(N_j\). Go to step 3.
P is chosen greater than the pattern dimensionality in order to insure that the estimate of the covariance will possess an inverse given that the samples are drawn from a normal population [1]. Justification of equation (26) is given in Appendix A.
CHAPTER III

A DIVERGENCE CRITERION

A problem associated with the CF algorithm and also the PF class of algorithms is that their derivations assume the parameters to be estimated vary as some finite degree function. A PF algorithm of very high degree, and hence great flexibility is cumbersome to derive and to run; likewise, computer execution time increases as the degree of algorithm complexity is increased. If the parameter being estimated changes with time in a way more complex than assumed by the algorithm, the predictions of stochastic approximation techniques may diverge. Although the "weak memory" inherent in stochastic approximation will compensate somewhat for this problem, it would be desirable to more strongly limit the memory by restarting the algorithm at the point of divergence, resulting in a piecewise implementation of an estimator. A technique for detecting divergence and restarting the particular stochastic approximation algorithm in the area of divergence is necessary. This restart capability should be provided external to the function of the particular stochastic approximation technique being implemented. In other words, what is needed is a "monitor" for the operation of the algorithm.

Consider the problem of the estimation of the unknown mean of some distribution \(Y \sim N(\theta(n), \sigma^2) \), where the mean \(\theta(n) \) varies with time. To assume that this function \(\theta(n) \) might be approximated by segments would not be unreasonable. The quantity \(X_n \) will be considered
the approximation to $\theta(n)$ made by a stochastic approximation algorithm. Associated with each time interval is a random variable Y with variance σ^2. The n^{th} sample value of Y shall be referred to as y_n. If the particular stochastic approximation algorithm accurately estimates $\theta(n)$ based on y_n in some region, it is then possible to define a new, time invariant random variable $Z \sim N(u_z, \sigma^2)$, where the samples z_n are given by

$$z_n = y_n - x_n.$$

(27)

However, if x_n is an accurate estimate of $\theta(n)$, it is clear that u_z will be zero. A statistical inference built around the notion of a "confidence interval" for a known statistic of the distribution function Z may now be made [10,11]. Let the average value of Z be calculated by the algorithm

$$\bar{z} = \frac{1}{n} \sum_{i=1}^{n} (y_i - x_i).$$

(28)

It can be shown that

$$\Pr\left[-\frac{3\sigma}{\sqrt{n}} < \bar{z} < \frac{3\sigma}{\sqrt{n}} \right] = 1$$

(29)

(see Appendix B). Therefore, the statistic \bar{z}, which is nothing more than the average of the difference of the random sample patterns and
the corresponding estimates of their means, may serve as an indication of divergence.

The restart "monitor" may thus be implemented as follows. If the "confidence interval" condition

\[|\bar{z}| < \frac{3\sigma}{\sqrt{n}} \] \hspace{1cm} (30)

is violated, the algorithm should be restarted at that point (\(n\) should be reset to one).

The interval in which \(\bar{z}\) must lie is reduced in proportion to \(1/\sqrt{n}\). The maximum rate at which a stochastic approximation of a quantity may converge to the true value is in proportion to \(1/n\), the harmonic sequence, and still satisfy equation (10) of Chapter II [8]. If the \(\gamma\) sequence of equations (9) and (11) approaches the harmonic sequence in the limiting case, it would also be desirable to reduce the confidence interval around \(\bar{z}\) in proportion to \(1/n\). However, were the interval around \(\bar{z}\) reduced in proportion to \(1/n\), the probability of divergence would no longer remain approximately equal to one, nor would it remain constant for each value of \(n\).

The effect of the divergence criterion developed above is to increase the sensitivity to divergence as much as possible while maintaining a constant probability of successfully detecting divergence. In particular this technique has the advantage that it may be used to monitor any estimation algorithm, no matter what degree of complexity was assumed in algorithm derivation.
One point of interest concerns the variance of Z. Since accurate estimation forms the basis for the confidence interval concept, inaccurate estimation will result in the variance associated with Z being larger than \(\sigma^2 \). The resulting divergence criterion may be stricter than anticipated. This problem may be circumvented by making the criterion more lax (for example, by increasing the interval length around \(\bar{Z} \) to \(\pm 4\sigma/\sqrt{n} \)).

An alternative method for testing for divergence would be to make use of the estimates of mean square error \(\hat{e}_n^2 \) made by the algorithms as discussed in Chapter II. If \(\sqrt{\hat{e}_n^2} \) could be considered a measure of the error between \(x_n \) and the true value \(\theta(n) \) and \(\sigma \) a measure of the error between \(y_n \) and the true value \(\theta(n) \) then \(x_n \) and \(y_n \) should differ at most by \(\sqrt{\hat{e}_n^2} + \sigma \). An algorithm restart, with \(n \) reset to one, could be made at the point where

\[
K |x_n - y_n| > \sqrt{\hat{e}_n^2} + \sigma
\]

with \(K \) a constant factor (for example, \(K = 2 \)).

Another possible variation on this idea might be to use both the original divergence criterion (confidence interval) together with this latter relation in combination.
CHAPTER IV

ADAPTIVE RECOGNITION AND BOUNDARY DEFINITION PROGRAM

An adaptive Bayes classifier is realized by incorporating within the ordinary Bayesian classification program estimation operations which optimally estimate statistics for the next classification time. An application suggested was that the adaptive classifier might be useful in locating or defining spatial boundaries (not to be confused with the Bayes decision surface or boundary) between data classes. A physical example would be the definition of the shoreline between a body of water and a land mass; varying means would then correspond to spectral shifts of scan data caused by transition from deep water to shallow water near the shoreline. As a test, different data sets have been generated, each having two equally likely data classes. These data sets are composed of patterns synthetically produced to simulate a 128 x 128 pixel frame of four dimensional Gaussian spectral scan data.

Adaptive classification and boundary definition programs have been developed which treat each of the 128 individual horizontal rows as a separate, independent classifier test. These programs utilize the CF and the second degree PF algorithms to adapt to changing class mean vectors. Updated estimates of the covariance matrix for each class are made using the recursive estimation technique discussed in Chapter II.
A general flow chart of program operation is shown in Figure 4. Program initialization is accomplished by specifying an appropriate disk file of input data for classification, specifying a disk file to contain output boundary results for video display, specifying initial estimates of the mean vectors and covariance matrices of the two classes, and inputting a decision variable. The process of classification and subsequent boundary definition then begins.

A 128 pattern row of data is read into memory from the input disk file, each pattern of which is four dimensional. Patterns are classified by a Bayesian classification subroutine. The classifier returns the variable ICLASS as a one or a two to indicate that the pattern has been assigned to class one or class two.

In order to determine whether or not a boundary between the two classes has been crossed in a row test, a stack, whose length is assigned by the specification of the decision variable at initialization, is used. ICLASS associated with the first classified pattern of a row is stored and also pushed onto the stack. The value of ICLASS associated with each successive classified pattern is pushed onto the stack. Only when the stack is full may a decision be made as to whether or not a boundary has been crossed. At that time, and subsequent times, each element of the stack is examined; if more than half of the members of the stack have values equal to that of the ICLASS of the first classified pattern of the row, the boundary definition algorithm decides no boundary has been crossed. If more than half of the members of the stack differ from the ICLASS of the
Figure 4. A general flowchart of classification and boundary definition program operation.
Figure 4. (continued)
first classified pattern of the row, the algorithm decides a boundary has been crossed and the value stored for the ICLASS of the first classified pattern of the row is replaced by the ICLASS of the new class which has been encountered. The appropriate boundary address is stored and the same process continues for the remainder of the row.

After classifying each pattern and performing the boundary test, the divergence criterion of Chapter III may be employed to determine whether or not the estimates of particular mean vector components have diverged. Divergence of a mean vector component requires a restart of the estimation algorithm for that component in the area of divergence.

As each pattern is classified, class statistics for the appropriate class must be projected ahead for the next classification by either the CF or the PF algorithms and the recursive form for the covariance estimation. Upon completion of a 128 pattern row test, boundary information is written into the disk output file, the next row of input data is read, and the process is begun on the unclassified row.

This procedure is repeated until classification and subsequent boundary definition of all 128 rows is accomplished. Upon completion, all input and output disk files are closed and program execution terminates.

Appendices C and D each contain a compiled Fortran IV program listing of two different version of an adaptive Bayes classifier. The numbers at the leftmost side of the listings correspond to the internal
sequence or statement numbers supplied by the Digital Equipment Corporation RT-11 Operating System FORTRAN Compiler. These statement numbers will be used in reference to particular statements.

The first version of the classifier (Appendix C) incorporates the modified CF algorithm to adaptively estimate class mean vectors, the confidence interval divergence criterion to test for divergence of mean estimates, and the recursive form of covariance estimation. In order to adapt to class mean vectors only and check for their divergence, the statement corresponding to line 117 of the main program should be deleted. To adapt to mean vectors only and neglect the possibility of their divergence, statements corresponding to line numbers 62 through 115 as well as line 117 of the main program should be deleted. To implement the unmodified CF algorithm to adapt mean vectors only, statements corresponding to lines 6, 7, 12, 16, 17, and 22 of SUBROUTINE PROJECT and lines 62 through 115 and also line 117 of the main program should be deleted. An ordinary Bayes classifier (non-adaptive) may be implemented by deletion of lines 62 through 117 of the main program.

The second version of the classifier (Appendix D) incorporates the second degree PF algorithm to adaptively estimate class mean vectors and the recursive form of covariance estimation. In order to adapt to class mean vectors only, the statement corresponding to line 65 should be deleted. To implement an ordinary (non-adaptive) Bayes classifier, the statements corresponding to lines 64 and 65 may be deleted.
CHAPTER V

RESULTS

Five data sets have been synthesized to simulate five 128 x 128 pixel multispectral scan data frames [4]. These data sets are each composed of two classes of four dimensional Gaussian data. A photograph depicting the true spatial boundary between the two classes is shown in Figure 5. The area to the left of this wedge shaped boundary is referred to as class one; similarly, the area to the right of the boundary is class two. The shortest and longest rows of data for each class are 32 and 96 patterns.

Individual rows of data were generated a row at a time from left to right. Data sets one and two were both generated with all four class one mean components varying according to the relation

\[
\frac{5}{1024} (N-32)^2 + 5
\]

from the left edge of the frame to the boundary (N is simply the position index having an initial value of zero at the left edge of the frame and incremented by one at each position to the right). A plot of this relation versus N is shown in Figure 6. Class two data was generated for the remainder of each row. Class two of data set one was generated having the constant mean vector

29
Figure 5. True spatial class boundary.
Figure 6. Variation of class one mean with position for data sets 1, 2, 4, and 5.
while the mean vector associated with class two of data set two is

\[
\begin{bmatrix}
1.5 \\
1.5 \\
1.5 \\
1.5
\end{bmatrix}
\]

The covariance matrices of both classes of data sets one and two are

\[
\begin{bmatrix}
1 & .5 & .5 & .5 \\
.5 & 1 & .5 & .5 \\
.5 & .5 & 1 & .5 \\
.5 & .5 & .5 & 1
\end{bmatrix}
\]

Data set three was generated with the four class one mean components varying according to the relation

\[
7.5 + 2.5 \cos (.1047N)
\]

from the left edge of the frame to the boundary (N again denotes a positional index). A plot of this relation is shown in Figure 7.
Figure 7. Variation of class one mean with position for data set 3.
Class two data have been generated for the remainder of each row having the constant mean vector

\[
\begin{bmatrix}
0 \\
0 \\
0 \\
0 \\
\end{bmatrix}
\]

The covariance of both class one and two of data set three is the same as was specified for data sets one and two.

Data sets four and five were generated having class one and two means specified in exactly the same manner as data set one. In addition, however, each term of the covariance matrix of the class one data was changed in a linear manner according to the equation

\[
c_{ij}(N) = c_{ij}(0) + m N
\]

\[
i = 1, \ldots, 4
\]

\[
j = 1, \ldots, 4
\]

where \(m\) is simply a slope factor. In other words a linear scalar function of position is added to each term of the initial covariance. For data sets four and five the initial class one covariance was
Covariance matrix elements of class one, data set four were varied with a slope \(m \) of 0.02 while like elements of data set five changed with a slope of 0.2. Covariance matrices for class two of data sets four and five were both specified as

\[
C(0) = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}.
\]

Eight different classification and boundary definition programs have been applied to the problem of striking the boundary separating the two classes in each of the five data sets. Each program requires initial estimates of the mean vectors and covariance matrices of the two classes. Because the estimation algorithms predict well, initial mean vector estimates may be made by training over a small area. The effect is to hold sample scatter to a minimum while providing reasonable estimates of the mean.

The first program, referred to as BAYES1, implements an ordinary, non-adaptive Bayes classifier. The initial estimates of class mean vectors and covariance matrices are incorporated throughout classifi-
cation of a complete data set and the resulting data file containing boundary information may be displayed by the DATA-DISK video system.

The second program, BAYES2, employs the CF algorithm in its original form to adaptively estimate mean vectors for a Bayes classifier. Boundary data is subsequently deduced and stored for display.

Program number three, BAYES3, utilizes the modified CF algorithm discussed in Chapter II to produce up-to-date estimates of changing mean vectors for a Bayes classifier.

BAYES4 incorporates not only the modified CF algorithm, but also the confidence interval divergence criterion introduced in Chapter III to adaptively estimate class mean vectors for the classifier.

BAYES5 implements the second degree PF algorithm to adaptively project estimates of class mean vectors for a Bayesian classifier. BAYES6, BAYES7, and BAYES8 take the same form as BAYES3, BAYES4, and BAYES5, respectively, with the exception that BAYES6 through BAYES8 also employ the recursive covariance estimation technique.

Table I provides a cross-reference summary relating Figures 8 through 47 to the particular data sets and programs. Each figure is also individually identified by the program name and data set number used. These figures are photographs of boundaries defined by the various programs for each data set.

A comparison of the results obtained applying the various programs to the different data sets reveals that the ability to adapt to changing mean vectors is essential to successful classification. False boundaries have been generated in each case where the non-
TABLE I

A CROSS-REFERENCE OF FIGURES DEPICTING RESULTS OBTAINED UPON APPLICATION OF THE CLASSIFICATION AND BOUNDARY DEFINITION PROGRAMS TO THE VARIOUS DATA SETS

<table>
<thead>
<tr>
<th>PROGRAM</th>
<th>DATA SETS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>BAYES1</td>
<td>Figure 8</td>
</tr>
<tr>
<td>BAYES2</td>
<td>Figure 9</td>
</tr>
<tr>
<td>BAYES3</td>
<td>Figure 10</td>
</tr>
<tr>
<td>BAYES4</td>
<td>Figure 11</td>
</tr>
<tr>
<td>BAYES5</td>
<td>Figure 12</td>
</tr>
<tr>
<td>BAYES6</td>
<td>Figure 13</td>
</tr>
<tr>
<td>BAYES7</td>
<td>Figure 14</td>
</tr>
<tr>
<td>BAYES8</td>
<td>Figure 15</td>
</tr>
</tbody>
</table>
Figure 8. Spatial boundaries resulting from the application of an ordinary Bayes classifier (BAYES1) to data set 1. Note the false boundaries.

Figure 9. Spatial boundaries resulting from the application of an adaptive Bayes classifier (BAYES2) using the CF algorithm to data set 1. Note the false boundaries.
Figure 10. Spatial boundaries resulting from the application of an adaptive Bayes classifier (BAYES3) using the modified CF algorithm to data set 1.

Figure 11. Spatial boundaries resulting from the application of an adaptive Bayes classifier (BAYES4) using the modified CF algorithm and the divergence criterion to data set 1.
Figure 12. Spatial boundaries resulting from the application of an adaptive Bayes classifier (BAYES5) using the PF algorithm to data set 1.

Figure 13. Spatial boundaries resulting from the application of an adaptive Bayes classifier (BAYES6) using the modified CF algorithm and recursive covariance estimation to data set 1.
Figure 14. Spatial boundaries resulting from the application of an adaptive Bayes classifier (BAYES7) using the modified CF algorithm, divergence criterion, and recursive covariance estimation to data set 1.

Figure 15. Spatial boundaries resulting from the application of an adaptive Bayes classifier (BAYES8) using the PF algorithm and recursive covariance estimation to data set 1.
Figure 16. Spatial boundaries resulting from the application of an ordinary Bayes classifier (BAYES1) to data set 2. Note the false boundaries.

Figure 17. Spatial boundaries resulting from the application of an adaptive Bayes classifier (BAYES2) using the CF algorithm to data set 2. Note the false boundaries.
Figure 18. Spatial boundaries resulting from the application of an adaptive Bayes classifier (BAYES3) using the modified CF algorithm to data set 2.

Figure 19. Spatial boundaries resulting from the application of an adaptive Bayes classifier (BAYES4) using the modified CF algorithm and the divergence criterion to data set 2.
Figure 20. Spatial boundaries resulting from the application of an adaptive Bayes classifier (BAYES5) using the PF algorithm to data set 2.

Figure 21. Spatial boundaries resulting from the application of an adaptive Bayes classifier (BAYES6) using the modified CF algorithm and recursive covariance estimation to data set 2.
Figure 22. Spatial boundaries resulting from the application of an adaptive Bayes classifier (BAYES7) using the modified CF algorithm, divergence criterion, and recursive covariance estimation to data set 2.

Figure 23. Spatial boundaries resulting from the application of an adaptive Bayes classifier (BAYES8) using the PF algorithm and recursive covariance estimation to data set 2.
Figure 24. Spatial boundaries resulting from the application of an ordinary Bayes classifier (BAYES1) to data set 3. Note the false boundaries.

Figure 25. Spatial boundaries resulting from the application of an adaptive Bayes classifier (BAYES2) using the CF algorithm to data set 3. Note the false boundaries.
Figure 26. Spatial boundaries resulting from the application of an adaptive Bayes classifier (BAYES3) using the modified CF algorithm to data set 3.

Figure 27. Spatial boundaries resulting from the application of an adaptive Bayes classifier (BAYES4) using the modified CF algorithm and the divergence criterion to data set 3.
Figure 28. Spatial boundaries resulting from the application of an adaptive Bayes classifier (BAYES5) using the PF algorithm to data set 3.

Figure 29. Spatial boundaries resulting from the application of an adaptive Bayes classifier (BAYES6) using the modified CF algorithm and recursive covariance estimation to data set 3.
Figure 30. Spatial boundaries resulting from the application of an adaptive Bayes classifier (BAYES7) using the modified CF algorithm, divergence criterion, and recursive covariance estimation to data set 3.

Figure 31. Spatial boundaries resulting from the application of an adaptive Bayes classifier (BAYES8) using the PF algorithm and recursive covariance estimation to data set 3.
Figure 32. Spatial boundaries resulting from the application of an ordinary Bayes classifier (BAYES1) to data set 4. Note the false boundaries.

Figure 33. Spatial boundaries resulting from the application of an adaptive Bayes classifier (BAYES2) using the CF algorithm to data set 4. Note the false boundaries.
Figure 34. Spatial boundaries resulting from the application of an adaptive Bayes classifier (BAYES3) using the modified CF algorithm to data set 4.

Figure 35. Spatial boundaries resulting from the application of an adaptive Bayes classifier (BAYES4) using the modified CF algorithm and the divergence criterion to data set 4.
Figure 36. Spatial boundaries resulting from the application of an adaptive Bayes classifier (BAYES5) using the PF algorithm to data set 4.

Figure 37. Spatial boundaries resulting from the application of an adaptive Bayes classifier (BAYES6) using the modified CF algorithm and recursive covariance estimation to data set 4.
Figure 38. Spatial boundaries resulting from the application of an adaptive Bayes classifier (BAYES7) using the modified CF algorithm, divergence criterion, and recursive covariance estimation to data set 4.

Figure 39. Spatial boundaries resulting from the application of an adaptive Bayes classifier (BAYES8) using the PF algorithm and recursive covariance estimation to data set 4.
Figure 40. Spatial boundaries resulting from the application of an ordinary Bayes classifier (BAYES1) to data set 5. Note the false boundaries.

Figure 41. Spatial boundaries resulting from the application of an adaptive Bayes classifier (BAYES2) using the CF algorithm to data set 5. Note the false boundaries.
Figure 42. Spatial boundaries resulting from the application of an adaptive Bayes classifier (BAYES3) using the modified CF algorithm to data set 5. Note the false boundaries.

Figure 43. Spatial boundaries resulting from the application of an adaptive Bayes classifier (BAYES4) using the modified CF algorithm and the divergence criterion to data set 5. Note the false boundaries.
Figure 44. Spatial boundaries resulting from the application of an adaptive Bayes classifier (BAYES5) using the PF algorithm to data set 5. Note the false boundaries.

Figure 45. Spatial boundaries resulting from the application of an adaptive Bayes classifier (BAYES6) using the modified CF algorithm and recursive covariance estimation to data set 5. Note the false boundaries.
Figure 46. Spatial boundaries resulting from the application of an adaptive Bayes classifier (BAYES7) using the modified CF algorithm, divergence criterion, and recursive covariance estimation to data set 5. Note the false boundaries.

Figure 47. Spatial boundaries resulting from the application of an adaptive Bayes classifier (BAYES8) using the PF algorithm and recursive covariance estimation to data set 5. Note the false boundaries.
adaptive classifier, BAYES1, has been applied to each data set so as to obscure the form of the true boundary. No improvement in the boundary definition results in using the original form of the CF algorithm, implemented in BAYES2, as the adaptive estimator of mean vectors.

Significant improvement in boundary definition performance results have been achieved by BAYES3 which employs a modified CF algorithm to adaptively estimate class means. The modification (see Chapter II) consists of subtracting the initial value of the mean vector of the classified pattern from the pattern and current mean, applying the CF algorithm to the results, and finally adding to the projected mean estimate made by the CF algorithm the initial mean value.

Still more improvement resulted upon application of BAYES4 which incorporates the modified CF algorithm and also the confidence interval divergence criterion of Chapter III. The effect of employing this criterion was to restart the modified CF algorithm (as if \(n = 1 \) again) if the condition

\[
\left| \frac{1}{n} \sum_{i=1}^{n} (X_i - Y_i) \right| < \frac{3\alpha}{\sqrt{n}}
\]

was violated. Most of the erroneous boundary points appear at points where restarts were made, due to poor initial tracking when the algorithm is first started with little prior training.
Boundary definition resulting from the application of BAYES5 is very satisfactory, especially in the case of data set two where the degree of overlap is large.

In no case were the results obtained using BAYES6, BAYES7, and BAYES8 of equal quality to the results obtained using BAYES3, BAYES4, and BAYES5. Even in the case of data set four in which a class covariance was changing slowly, the programs which ignored the fact that a covariance matrix could be position dependent proved superior.

In data set five the covariance associates with class one grew at such a rapid rate that class one quickly overlapped class two resulting in an impossible situation for each of the eight techniques.
CHAPTER VI

CONCLUDING OBSERVATIONS

PF type algorithms represent an algorithm class that predicts well; a second degree PF algorithm was used as an example in this thesis but algorithms of this class can be derived (with different \hat{S} and γ formulas) for tracking parameters that vary with time as an n^{th} degree polynomial. In order to achieve the best results, the degree of polynomial assumed in algorithm derivation should be of approximately the same order as anticipated variation. A PF type algorithm can also track variations not of the exact form assumed because of the limited memory characteristic of the "refine" step [7]. Another advantage of the PF class of algorithms is that shifts between algorithms of different complexity can be effected in mid-operation since the output of any PF algorithm (the error estimate and projected parameter estimate) along with the next data sample may serve as the input to any other algorithm of the PF form.

Modifications of the CF algorithm have also been found suitable for tracking varying parameters. Although a PF algorithm may produce better estimates than modified versions of the CF algorithm, especially as the degree of class overlap is increased, the additional memory required for storage of past history may in some cases prohibit use of the PF form and warrant utilization of the modified CF algorithm.

Much work has been done in the area of state estimation in controls engineering. Kalman predictors are capable of producing
statistically optimum state estimates when measurements and inputs are stochastic in nature [12,13]. The Kalman predictor has been found similar in nature to estimation algorithms presented in this thesis. An area for future study lies in investigating the possibility of modifying the Kalman predictor to account for changing covariance.
LIST OF REFERENCES
LIST OF REFERENCES

APPENDIX A

COVARIANCE ESTIMATION

Letting \(C(N) \) represent the estimate of the covariance for \(N \) samples,

\[
C(N) = \frac{1}{N} \sum_{j=1}^{N} y_j y_j' - m(N) m'(N)
\]

where the expected value of \(y \) has been approximated by the sample average \(m(N) \) [1].

\[
C(N+1) = \frac{1}{N+1} \sum_{j=1}^{N+1} y_j y_j' - m(N+1) m'(N+1)
\]

\[
= \frac{1}{N+1} \left(\sum_{j=1}^{N} y_j y_j' + y_{N+1} y_{N+1}' - m(N+1) m'(N+1) \right)
\]

\[
= \frac{1}{N+1} \left(N \cdot C(N) + N m(N) m'(N) + y_{N+1} y_{N+1}' \right)
\]

\[
- \frac{1}{(N+1)^2} \left(N m(N) + x_{N+1}(N m(N) + x_{N+1})' \right)
\]
This expression provides a convenient method for estimating or updating the covariance matrix, starting with $C(1) = y_1 y_1^\top - m(1) m(1)$. Since $m(1) = y_1$, $C(1) = 0$, the zero matrix.
APPENDIX B

CONFIDENCE INTERVAL DERIVATION

Consider the statistic

\[\bar{z} = \frac{1}{n} \sum_{i=1}^{n} z_i. \]

If \(\bar{z} \) denotes the mean of a random sample of size \(n \) from a distribution \(Z \sim N(u_z, \sigma^2) \), then \(\bar{z} \sim N(u_z, \sigma^2/n) [10,11] \). Consider the probability that the interval \((u_z - 3\sigma/\sqrt{n}, u_z + 3\sigma/\sqrt{n}) \) includes the point \(\bar{z} \). The event \(u_z - 3\sigma/\sqrt{n} < \bar{z} < u_z + 3\sigma/\sqrt{n} \) occurs when and only when the event \(-3 < \sqrt{n}(u_z - \bar{z})/\sigma < 3 \) occurs, thus these two events have the same probability. However, \(\sqrt{n}(u_z - \bar{z})/\sigma \) is \(N(0,1) \). Accordingly, the probability that the interval \((u_z - 3\sigma/\sqrt{n}, u_z + 3\sigma/\sqrt{n}) \) includes the point \(\bar{z} \) is equal to

\[
\int_{-3}^{3} \frac{1}{\sqrt{2\pi}} e^{-z^2/2} \, dz = 0.998.
\]

This probability in no manner depends upon the values of \(\bar{z} \), \(\sigma^2 \), or the integer \(n \). Consider next, the length of the interval. The length is seen to be \(6\sigma/\sqrt{n} \). Note that this length is unknown until both \(\sigma^2 \) and
n are known; note also that for σ^2 assigned, this length may be made as short as desired by taking n sufficiently large.

For the particular interval considered above, 0.998 was found to be the probability that the interval $(u_z - 3\sigma/\sqrt{n}, u_z + 3\sigma/\sqrt{n})$ contains the statistic \bar{z}. That is,

$$\Pr[u_z - 3\sigma/\sqrt{n} < \bar{z} < u_z + 3\sigma/\sqrt{n}] = 0.998.$$

Since σ is known, each of the variables $u_z - 3\sigma/\sqrt{n}$ and $u_z + 3\sigma/\sqrt{n}$ is a known quantity if u_z is known.
APPENDIX C

COMPILED FORTRAN IV PROGRAM LISTING OF ADAPTIVE BAYES CLASSIFIER INCORPORATING
MODIFIED CF ALGORITHM AND CONFIDENCE INTERVAL DIVERGENCE CRITERION

This program reads a 128 x 128 data point array from a disk file, each point of which may be considered a four dimensional pattern. Each pattern is classified into one of two classes by means of a Bayes classifier. A stochastic approximation technique (CF) is used in the estimation of the mean of the two class signatures. Updated estimates of covariance matrices are made for blocks of classified data. The a priori probabilities associated with the two classes are further assumed to be equivalent. A boundary is defined separating the two classes and is stored in disk memory in proper form for display via the data disk video system.

Variables:

NC - number of classes
IC - class consideration interval
IX - horizontal picture array index
IY - vertical picture array index
ICLASS - either 1 or 2 indicating whether last pattern was classified a member of class one or two
INDEX - an index of the iadata array
ARRAYS:

DATAI - ARRAY TO RECEIVE 128 FOUR DIMENSIONAL DATA POINTS AS INPUT
C1 - ARRAY CONTAINING ESTIMATE OF CLASS ONE COVARIANCE MATRIX
C2 - ARRAY CONTAINING ESTIMATE OF CLASS TWO COVARIANCE MATRIX
C1I - ARRAY CONTAINING INVERSE OF CLASS ONE COVARIANCE MATRIX
C2I - ARRAY CONTAINING INVERSE OF CLASS TWO COVARIANCE MATRIX
U1EST - ARRAY CONTAINING INITIAL ESTIMATE OF CLASS ONE MEAN VECTOR
U2EST - ARRAY CONTAINING INITIAL ESTIMATE OF CLASS TWO MEAN VECTOR
UA - ARRAY CONTAINING AN INTERMEDIATE ESTIMATE OF CLASS ONE MEAN VECTOR
UB - ARRAY CONTAINING AN INTERMEDIATE ESTIMATE OF CLASS TWO MEAN VECTOR
U1 - ARRAY CONTAINING A PROJECTED ESTIMATE OF CLASS ONE MEAN VECTOR
U2 - ARRAY CONTAINING A PROJECTED ESTIMATE OF CLASS TWO MEAN VECTOR
X - ARRAY CONTAINING AN INDIVIDUAL PATTERN VECTOR
U1BAR - ARRAY CONTAINING DIVERGENCE INFORMATION CONCERNING CLASS ONE MEAN ESTIMATES
U2BAR - ARRAY CONTAINING DIVERGENCE INFORMATION CONCERNING CLASS TWO MEAN ESTIMATES
TIME1 - ARRAY CONTAINING TIME INFORMATION FOR USE IN STOCHASTIC APPROXIMATION OF CLASS ONE MEAN VECTOR
TIME2 - ARRAY CONTAINING TIME INFORMATION FOR USE IN STOCHASTIC APPROXIMATION OF CLASS TWO MEAN VECTOR
C1A - ARRAY CONTAINING CONVERGENCE INFORMATION FOR USE IN STOCHASTIC APPROXIMATION OF CLASS ONE MEAN
C1IB - ARRAY CONTAINING CONVERGENCE INFORMATION FOR USE IN STOCHASTIC APPROXIMATION OF CLASS TWO MEAN
IADATA - ARRAY CONTAINING ROW BOUNDARY POSITIONS
ICDATA - A LOGICAL STAR*1 ARRAY USED IN BUILDING A DISK OUTPUT FILE FOR DISPLAY VIA DATA-DISK VIDEO SYSTEM
IODATA - ARRAY CONTAINING TRUE BOUNDARY

SUBROUTINES:
INPUT - READS DATA FROM DISK INPUT FILE
DECRRE - BAYES CLASSIFIER FOR TWO CLASSES
BOUND - SUBROUTINE TO PLACE CLASS BOUNDARY
AVERAGE - COMPUTES AVERAGES USED AS INDICATIONS OF DIVERGENCE OF STOCHASTIC APPROXIMATIONS
INTERVAL - SUBROUTINE TO CALCULATE CONFIDENCE INTERVALS FOR STOCHASTIC APPROXIMATIONS
PROJECT - STOCHASTIC APPROXIMATION SUBROUTINE
PROCov - MAKES ESTIMATES OF COVARIANCE MATRIX
COVAR - COMPUTES COVARIANCE OF DATA SAMPLES IN RECURSIVE FORM
MINV - INVERTS A MATRIX
MPRD - FORMS THE PRODUCT OF TWO MATRICES
OUTPUT - WRITES BOUNDARY DATA TO A DISK FILE FOR DISPLAY PURPOSES

0001 DIMENSION DATA(512),C1(16),C2(16),C11(16),C21(16),
1U1EST(4),U2EST(4),UA(4),UB(4),U1(4),U2(4),X(4),
1U1BAR(4),U2BAR(4),TIME1(4),TIME2(4),CIA(4),CIB(4)
0002 DIMENSION IADATA(128),IODATA(128)
0003 EQUIVALENCE (INT,DUM)
0004 LOGICAL*1 ICDATA(128),DUM(2)
0005 COMMON /DUMB1/DATA
0006 COMMON /DUMB2/ICDATA
0007 DATA IAST/'*'/
0008 DATA IBLNK'/'
0009 WRITE(7,10)
0010 10 FORMAT(' SPECIFY INPUT FILE')
0011 CALL ASSIGN(1,'SYO:ABCDEF.DAT',-14,'RDO', 'NC',1)
0012 DEFINE FILE 1(128,1024,U,II)
0013 WRITE(7,20)
0014 20 FORMAT(' SPECIFY OUTPUT FILE')
0015 CALL ASSIGN(2,'SYO:ABCDEF.DAT',-14,'NEW', 'NC',1)
0016 DEFINE FILE 2(128,64,U,I2)
0017 WRITE(7,25)
0018 25 FORMAT(' SPECIFY CLASS CONSIDERATION INTERVAL')
0019 READ(7,26)IC
0020 26 FORMAT(I3)
0021 WRITE(7,30)
0022 30 FORMAT(' SPECIFY 4X4 EST. OF CLASS 1 COV. MATRIX')
0023 DO 35 NM = 1,4
0024 READS(5,40)(C1(I),I=NM,NM+12,4)
0025 35 CONTINUE
0026 WRITE(7,36)
0027 36 FORMAT(' SPECIFY 4X4 EST. OF CLASS 2 COV. MATRIX')
0028 DO 37 NM = 1,4
0029 READ(5,40)(C2(I),I=NM,NM+12,4)
0030 37 CONTINUE
0031 40 FORMAT(4F10.5)
0032 WRITE(7,50)
0033 50 FORMAT(' SPECIFY EST. OF CLASS 1 MEAN VECTOR')
0034 READ(5,40)(U1EST(I),I=1,4)
0035 WRITE(7,60)
0036 60 FORMAT(' SPECIFY EST. OF CLASS 2 MEAN VECTOR')
0037 READ(5,40)(U2EST(I),I=1,4)
0038 NC=2
0039 CALL PROCOV(C1,C2,C1!,C2I,D1,D2,X,ICLASS,IC,0)
C
C BEGINNING OF BOUNDARY DEFINITION PROCEEDURE FOR THE 128 X 128
C PICTURE

0040 DO 70 IY=1,128
0041 INDEX=1
0042 DO 71 M=1,128
0043 IADATA(M)=129
0044 71 CONTINUE
0045 DO 75 NM=1,4
0046 UA(NM)=UIEST(NM)
0047 UB(NM)=U2EST(NM)
0048 U1(NM)=UIEST(NM)
0049 U2(NM)=U2EST(NM)
0050 TIME1(NM)=0.
0051 TIME2(NM)=0.
0052 75 CONTINUE

C
C READ A ROW AND PLACE BOUNDARIES WHERE NECESSARY

0053 CALL INPUT(IY)
0054 DO 90 J=1,512,4
0055 IX=(J+3)/4
0056 X(1)=DATAJ(J)
0057 X(2)=DATAJ(J+1)
0058 X(3)=DATAJ(J+2)
0059 X(4)=DATAJ(J+3)
0060 CALL DECIDE(X,C1I,C2I,U1,U2,D1,D2,ICLASS)
0061 CALL BOUND(IADATA,ICLASS,IX,IC,INDEX)
0062 CALL AVERAGE(X,U1,U2,UIBAR,U2BAR,ICLASS,TIME1,TIME2)
0063 CALL INTERVAL(TIME1,TIME2,ICLASS,CIA,CIB)
0064 CI=FLOAT(IC)
0065 IF(ICLASS.EQ.2)GO TO 84
0067 IF(TIME1(1).LE.CI)GO TO 80
0069 IF(ABS(U1BAR(1)).LE.CIA(1))GO TO 80
0071 TIME1(1)=0.
0072 UA(1)=U1(1)
0073 80 IF(TIME1(2).LE.CI)GO TO 81
0075 IF(ABS(U1BAR(2)).LE.CIA(2))GO TO 81
0077 TIME1(2)=0.
0078 UA(2)=U1(2)
0079 81 IF(TIME1(3).LE.CI)GO TO 82
0081 IF(ABS(U1BAR(3)).LE.CIA(3))GO TO 82
0083 TIME1(3)=0.
0084 UA(3)=U1(3)
0085 82 IF(TIME1(4).LE.CI)GO TO 88
0087 IF(ABS(U1BAR(4)).LE.CIA(4))GO TO 88
0089 TIME1(4)=0.
0090 UA(4)=U1(4)
0091 88 GO TO 88
0092 84 IF(TIME2(1).LE.CI)GO TO 85
0094 IF(ABS(U2BAR(1)).LE.CIB(1))GO TO 85
0096 TIME2(1)=0.
0097 UB(1)=U2(1)
0098 85 IF(TIME2(2).LE.CI)GO TO 86
0100 IF(ABS(U2BAR(2)).LE.CIB(2))GO TO 86
0102 TIME2(2)=0.
0103 UB(2)=U2(2)
0104 86 IF(TIME2(3).LE.CI)GO TO 87
0106 IF(ABS(U2BAR(3)).LE.CIB(3))GO TO 87
0108 TIME2(3)=0.
0109 UB(3)=U2(3)
0110 87 IF(TIME2(4).LE.CI)GO TO 88
0112 IF(ABS(U2BAR(4)).LE.CIB(4))GO TO 88
0114 TIME2(4)=0.
0115 UB(4)=U2(4)
0116 88 CALL PROJECT(X,U1,U2,ICLASS,UA,UB,TIME1,TIME2)
0117 CALL PROCOV(C1,C2,C11,C21,D1,D2,X,ICLASS,IC,1)
90 CONTINUE
0119 DO 91 M=1,128
0120 IODATA(M)=IBLNK
0121 91 CONTINUE
0122 M=1
0123 92 IAM=IADATA(M)
0124 IF(IAM.GT.128)GO TO 93
0126 IODATA(IAM)=IAST
0127 M=M+1
0128 GO TO 92
0129 93 CONTINUE
0130 DO 100 I=1,128
0131 IF(IODATA(I).EQ.IBLNK)IODATA(I)=0
0133 IF(IODATA(I).EQ.IAST)IODATA(I)=129
0135 INT=IODATA(I)
0136 ICDATA(I)=DUM(1)
0137 100 CONTINUE
0138 CALL OUTPUT(IY)
0139 70 CONTINUE
0140 WRITE(7,110)
0141 110 FORMAT(' CLASSIFICATION COMPLETE')
0142 ENDFILE 1
0143 ENDFILE 2
0144 STOP
0145 END
SUBROUTINE INPUT (IY)
C THIS SUBROUTINE READS ONE ROW OF FOUR-DIMENSIONAL DATA OF A 128 X 128
C DATA POINT ARRAY FROM A PRESpecified DISK FILE. THE ROW OF DATA
C IS READ INTO THE ARRAY DATAI.
0002 DIMENSION DATAI(512)
0003 COMMON /DUMBI/DATAI
0004 READ(1'IY)DATAI
0005 RETURN
0006 END
SUBROUTINE DECIDF(X,CAI,CBI,UA,UB,DA,DB,ICLASS)
C THIS SUBROUTINE IMPLEMENTS A BAYES CLASSIFIER FOR TWO CLASSES
C OF EQUAL A PRIORI PROBABILITY.
DIMENSION X(4),CAI(16),CBI(16),UA(4),UB(4),
YA(4),YB(4),RA(4),RB(4),A(1),B(1)
DO 10 I=1,4
YA(I)=X(I)-UA(I)
YB(I)=X(I)-UB(I)
10 CONTINUE
CALL MPRD(YA,CAI,RA,1,4,4)
CALL MPRD(YB,CBI,RB,1,4,4)
CALL MPRD(RA,YA,A,1,4,1)
CALL MPRD(RB,YB,B,1,4,1)
F1=-(ALOG(DA)+A(1))
F2=-(ALOG(DB)+B(1))
ICLASS=1
IF(F2.GT.F1)ICLASS=2
RETURN
END
SUBROUTINE BOUND(IDATA,ICCLASS,IX,IC,INDEX)
C THIS SUBROUTINE FORMS A BOUNDARY BETWEEN THE TWO DATA CLASSES.
DIMENSION IDATA(128),ICCLASS
IF(IX.GT.1)GO TO 10
NCLASS=ICCLASS
10 DO 20 N=1,IC-1
ICON(N)=ICON(N+1)
20 CONTINUE
ICON(IC)=ICCLASS
IF(IX.LT.IC)GO TO 30
ICNT1=0
ICNT2=0
DO 40 II=1,IC
IF(ICON(II).EQ.1)ICNT1=ICNT1+1
IF(ICON(II).EQ.2)ICNT2=ICNT2+1
40 CONTINUE
IF(ICNT1.GT.ICNT2)MCLASS=1
IF(ICNT2.GT.ICNT1)MCLASS=2
IF(MCLASS.EQ.NCLASS)GO TO 30
NCLASS=MCLASS
IDATA(INDEX)=IX-IC/2
INDEX=INDEX+1
30 RETURN
END
SUBROUTINE AVERAGE(X,U1,U2,X1BAR,X2BAR,ICLASS,TIMEX,TIMEY)
C THIS SUBROUTINE KEEPS AN INDEPENDENT RUNNING TIME AVERAGE OF THE
C DEVIATION OF THE DATA FROM THE TRUE OR PROJECTED MEAN OF EACH
C CLASS.
DIMENSION X(4),U1(4),U2(4),X1BAR(4),X2BAR(4),TIMEX(4),TIMEY(4)
IF(ICLASS.EQ.2)GO TO 20
DO 10 I=1,4
X1BAR(I)=(1./(TIMEX(I)+1.))*(TIMEX(I)*X1BAR(I)+(X(I)-U1(I)))
10 CONTINUE
GO TO 30
20 DO 30 I=1,4
X2BAR(I)=(1./(TIMEY(I)+1.))*(TIMEY(I)*X2BAR(I)+(X(I)-U2(I)))
30 CONTINUE
RETURN
END
SUBROUTINE INTERVAL(TIMEX,TIMEY,ICLASS,CIA,CIB)

C THIS SUBROUTINE CALCULATES THE CONFIDENCE INTERVAL ASSOCIATED WITH
C EACH COMPONENT OF THE MEAN VECTOR FOR THE CLASS OF INTEREST.
C THE CONFIDENCE INTERVAL IS FOR USE AS AN INDICATION OF DIVERGENCE.

DIMENSION TIMEX(4),TIMEY(4),CIA(4),CIB(4)

IF(ICLASS.EQ.2)GO TO 20
IF(TIMEY(1).EQ.0.)GO TO 10
CIA(1)=3./SQRT(TIMEX(1))
10 IF(TIMEX(2).EQ.0.)GO TO 12
CIA(2)=3./SQRT(TIMEX(2))
12 IF(TIMEX(3).EQ.0.)GO TO 14
CIA(3)=3./SQRT(TIMEX(3))
14 IF(TIMEX(4).EQ.0.)GO TO 40
CIA(4)=3./SQRT(TIMEX(4))
20 IF(TIMEY(1).EQ.0.)GO TO 30
CIB(1)=3./SQRT(TIMEY(1))
30 IF(TIMEY(2).EQ.0.)GO TO 32
CIB(2)=3./SQRT(TIMEY(2))
32 IF(TIMEY(3).EQ.0.)GO TO 34
CIB(3)=3./SQRT(TIMEY(3))
34 IF(TIMEY(4).EQ.0.)GO TO 40
CIB(4)=3./SQRT(TIMEY(4))
40 RETURN
END
SUBROUTINE PROJECT(X,UX,UY,ICLASS,UA,UB,TIMEX,TIMEY)
 C THIS SUBROUTINE PROJECTS EACH COMPONENT OF THE MEAN VECTOR OF THE
 C CLASS OF INTEREST. THE PROJECTION IS MADE USING A STOCHASTIC
 C APPROXIMATION. THE TWO COMPONENTS ARE PROJECTED INDEPENDENTLY OF
 C ONE ANOTHER. (CHIEN AND FU)
 DIMENSION X(4),UX(4),UY(4),UA(4),UB(4),TIMEX(4),TIMEY(4)
 IF(ICLASS.EQ.2)GO TO 20
 DO 10 I=1,4
 UX(I)=UX(I)-UA(I)
 X(I)=X(I)-UA(I)
 USTAR=(1.+1./(TIMEX(I)+1.))*UX(I)
 GAMMA=6.*((TIMEX(I)+2.)/((TIMEX(I)+3.)*(2.*(TIMEY(I)+1.)+3.))
 UX(I)=USTAR+GAMMA*(X(I)-USTAR)
 TIMEX(I)=TIMEX(I)+1.
 10 UX(I)=UX(I)+UA(I)
 11 CONTINUE
 GO TO 30
 20 DO 30 I=1,4
 UY(I)=UY(I)-UB(I)
 X(I)=X(I)-UB(I)
 USTAR=(1.+1./(TIMEY(I)+1.))*UY(I)
 GAMMA=6.*((TIMEY(I)+2.)/((TIMEY(I)+3.)*(2.*(TIMEY(I)+1.)+3.))
 UY(I)=USTAR+GAMMA*(X(I)-USTAR)
 TIMEY(I)=TIMEY(I)+1.
 30 UY(I)=UY(I)+UB(I)
 CONTINUE
 RETURN
END
SUBROUTINE PROCOV(CA,CB,CAINV,CBINV,DA,DB,X,ICLASS,IC,IFLAG)
C THIS SUBROUTINE MAKES A NEW ESTIMATE OF THE COVARIANCE OF A
C CLASS AFTER IC POINTS HAVE BEEN CLASSIFIED INTO THAT PARTICULAR
C CLASS.
DIMENSION CA(16),CB(16),CAINV(16),CBINV(16),
1PHIA(16),PHIB(16),X(4)
IF(IFLAG.GT.0)GO TO 10
ICNTA=1
ICNTB=1
DO 5 I=1,16
CAINV(I)=CA(I)
CBINV(I)=CB(I)
5 CONTINUE
CALL MINV(CAINV,4,DA)
CALL MINV(CBINV,4,DB)
GO TO 50
10 IF(ICLASS.EQ.2)GO TO 30
CALL COVAR(PHIA,X,ICNTA,4)
ICNTA=ICNTA+1
IF(ICNTA.LE.IC)GO TO 50
DO 20 I=1,16
CA(I)=PHIA(I)
CAINV(I)=PHIA(I)
20 CONTINUE
CALL MINV(CAINV,4,DA)
ICNTA=1
GO TO 50
30 CALL COVAR(PHIB,X,ICNTB,4)
ICNTB=ICNTB+1
IF(ICNTB.LE.IC)GO TO 50
DO 40 I=1,16
CB(I)=PHIB(I)
40 CBINV(I)=PHIB(I)
40 CONTINUE
CALL MINV(CBINV,4,DB)
ICNTB=1
50 RETURN
END
SUBROUTINE COVAR(COV,X,INDEX,NDIM)
C THIS SUBROUTINE IMPLEMENTS THE RECURSIVE FORM OF COVARIANCE
C ESTIMATION.
DIMENSION COV(4,4),X(4),XM(4)
X1=FLOAT(INDEX)
X0=X1-1.
IF(INDEX.NE.1)GO TO 5
DO 4 I=1,NDIM
4 XM(I)=X(I)
DO 9 J=1,NDIM
9 COV(I,J)=0.
3 CONTINUE
4 CONTINUE
GO TO 20
5 DO 10 I=1,NDIM
10 DO 11 J=1,NDIM
11 COV(I,J)=(7./X1)*(X0*COV(I,J)+X0*XM(I)*XM(J)+X(I)*X(J))
1-(1./(X1*X1))*X0*XM(I)+X(I)*(X0*XM(J)+X(J))
11 CONTINUE
10 CONTINUE
DO 15 I=1,NDIM
15 XM(I)=(1./X1)*(X0*XM(I)+X(I))
20 RETURN
END
SUBROUTINE MINV(A,N,D)
C THIS SUBROUTINE FINDS THE INVERSE OF A GENERAL MATRIX
C 'A', WHICH IS DESTROYED IN COMPUTATION. THE INVERSE
C IS RETURNED IN 'A'. THE DETERMINANT IS CALCULATED,
C 'D'. 'N' IS THE ORDER OF THE MATRIX, 'L' IS A WORK
C VECTOR OF LENGTH 'N', AND 'M' IS A WORK VECTOR OF
C LENGTH 'N'.
0002 DIMENSION A(16),L(4),M(4)
0003 D=1.0
0004 NK=-N
0005 DO 80 K=1,N
0006 NK=NK+N
0007 L(K)=K
0008 M(K)=K
0009 KK=NK+K
0010 BIGA=A(KK)
0011 DO 20 J=K,N
0012 IZ=N*(J-1)
0013 DO 20 I=K,N
0014 IJ=I+I
0015 10 IF (ABS(BIGA)-ABS(A(IJ))) < 15,20,20
0016 15 BIGA=A(IJ)
0017 L(K)=I
0018 M(K)=J
0019 20 CONTINUE
0020 J=L(K)
0021 IF(J-K) < 35,35,25
0022 25 KI=K-N
0023 DO 30 I=1,N
0024 KI=KI+N
0025 HOLD=A(KI)
0026 JI=KI+K+J
0027 A(KI)=A(JI)
0028 30 A(JI)=HOLD
35 I=M(K)
0030 IF(I-K)45,45,38
0031 38 JP=N*(I-1)
0032 DO 40 J=1,N
0033 JK=NK+J
0034 JI=JP+J
0035 HOLD=A(JK)
0036 A(JK)=A(JI)
0037 40 A(JI)=HOLD
0038 45 IF(BIGA) 48,46,48
0039 46 D=0.
0040 RETURN
0041 48 DO 55 I=1,N
0042 IF(I-K) 50,55,50
0043 50 IK=NK+I
0044 A(IK)=A(IK)/(-BIGA)
0045 55 CONTINUE
0046 DO 65 I=1,N
0047 IK=NK+I
0048 HOLD=A(IK)
0049 IJ=I-N
0050 DO 65 J=1,N
0051 IJ=IJ+N
0052 IF(I-K) 60,65,60
0053 60 IF(J-K) 62,65,62
0054 62 KJ=IJ-I+K
0055 A(IJ)=HOLD*A(KJ)+A(IJ)
0056 65 CONTINUE
0057 KJ=K-N
0058 DO 75 J=1,N
0059 KJ=KJ+N
0060 IF(J-K) 70,75,70
0061 70 A(KJ)=A(KJ)/BIGA
0062 75 CONTINUE
0063 D=D*BIGA
0064 A(KK)=1.0/BIGA
0065 80 CONTINUE
0066 K=N
0067 100 K=K-1
0068 IF(K) 150,150,105
0069 105 I=L(K)
0070 IF(I-K) 120,120,108
0071 108 JQ=N*(K-1)
0072 JR=N*(I-1)
0073 DO 110 J=1,N
0074 JK=JQ+J
0075 HOLD=A(JK)
0076 JI=JR+J
0077 A(JK)=-A(JI)
0078 110 A(J1)=HOLD
0079 120 J=M(K)
0080 IF(J-K) 100,100,125
0081 125 KI=K-N
0082 DO 130 I=1,N
0083 KI=KI+N
0084 HOLD=A(KI)
0085 JI=KI-K+J
0086 A(KI)=-A(JI)
0087 130 A(JI)=HOLD
0088 GO TO 100
0089 150 RETURN
0090 END
SUBROUTINE MPRD(A,B,R,N,M,L)
C THIS SUBROUTINE FORMS THE PRODUCT OF TWO GENERAL MATRICES
C 'A' AND 'B', AND RETURNS THE PRODUCT IN 'R'. 'N' IS THE NUMBER
C OF ROWS IN 'A', 'M' IS THE NUMBER OF COLUMNS IN 'A' AND ROWS
C IN 'B', AND 'L' IS THE NUMBER OF COLUMNS IN 'B'.

DIMENSION A(16),B(16),R(16)
IR=0
IK=-N
DO 10 K=1,L
IK=IK+M
DO 10 J=1,N
IR=IK+1
JI=J-N
IB=IK
R(IR)=0
DO 10 I=1,M
JI=JI+N
IB=IB+1
10 R(IR)=R(IR)+A(JI)*B(IB)
RETURN
END
0001 SUBROUTINE OUTPUT (IY)
C THIS SUBROUTINE WRITES ONE 128 POINT ROW (BYTE DATA POINTS) OF A
C 128 X 128 POINT ARRAY FOR BOUNDARY DISPLAY VIA VIDEO DISPLAY SYSTEM.
0002 LOGICAL*1 IODATA(128)
0003 COMMON /DUMB2/ICDATA
0004 WRITE(2'IY)ICDATA
0005 RETURN
0006 END
APPENDIX D

COMPILED FORTRAN IV PROGRAM LISTING OF ADAPTIVE BAYES CLASSIFIER

INCORPORATING SECOND DEGREE PF ALGORITHM

THIS PROGRAM READS A 128 X 128 DATA POINT ARRAY FROM A DISK
FILE, EACH POINT OF WHICH MAY BE CONSIDERED A FOUR DIMENSIONAL
PATTERN. EACH PATTERN IS CLASSIFIED INTO ONE OF TWO CLASSES
BY MEANS OF A BAYES CLASSIFIER. A STOCHASTIC APPROXIMATION
TECHNIQUE (SECOND DEGREE PF) IS USED IN THE ESTIMATION OF THE
MEAN OF THE TWO CLASS SIGNATURES. UPDATED ESTIMATES OF COVARIANCE
MATRICES ARE MADE FOR BLOCKS OF CLASSIFIED DATA. THE A PRIORI
PROBABILITIES ASSOCIATED WITH THE TWO CLASSES ARE FURTHER ASSUMED
TO BE EQUIVALENT. A BOUNDARY IS DEFINED SEPARATING THE TWO CLASSES
AND IS STORED IN DISK MEMORY IN PROPER FORM FOR DISPLAY
VIA THE DATA-DISK VIDEO SYSTEM.

VARIABLES:

NC - NUMBER OF CLASSES
IC - CLASS CONSIDERATION INTERVAL
IX - HORIZONTAL PICTURE ARRAY INDEX
IY - VERTICAL PICTURE ARRAY INDEX
ICLASS - EITHER 1 OR 2 INDICATING WHETHER LAST PATTERN
 WAS CLASSIFIED A MEMBER OF CLASS ONE OR TWO
INDEX - AN INDEX OF THE IADATA ARRAY
ARRAYS:

DATAI - ARRAY TO RECEIVE 128 FOUR DIMENSIONAL DATA POINTS AS INPUT
C1 - ARRAY CONTAINING ESTIMATE OF CLASS ONE COVARIANCE MATRIX
C2 - ARRAY CONTAINING ESTIMATE OF CLASS TWO COVARIANCE MATRIX
C1I - ARRAY CONTAINING INVERSE OF CLASS ONE COVARIANCE MATRIX
C2I - ARRAY CONTAINING INVERSE OF CLASS TWO COVARIANCE
U1EST - ARRAY CONTAINING INITIAL ESTIMATE OF CLASS ONE MEAN VECTOR
U2EST - ARRAY CONTAINING INITIAL ESTIMATE OF CLASS TWO MEAN VECTOR
UA - ARRAY CONTAINING AN INTERMEDIATE ESTIMATE OF CLASS ONE MEAN VECTOR
UB - ARRAY CONTAINING AN INTERMEDIATE ESTIMATE OF CLASS TWO MEAN VECTOR
U1 - ARRAY CONTAINING A PROJECTED ESTIMATE OF CLASS ONE MEAN VECTOR
U2 - ARRAY CONTAINING A PROJECTED ESTIMATE OF CLASS TWO MEAN VECTOR
X - ARRAY CONTAINING AN INDIVIDUAL PATTERN VECTOR
U1BAR - ARRAY CONTAINING DIVERGENCE INFORMATION CONCERNING CLASS ONE MEAN ESTIMATES
U2BAR - ARRAY CONTAINING DIVERGENCE INFORMATION CONCERNING CLASS TWO MEAN ESTIMATES
TIME1 - ARRAY CONTAINING TIME INFORMATION FOR USE IN STOCHASTIC APPROXIMATION OF CLASS ONE MEAN VECTOR
TIME2 - ARRAY CONTAINING TIME INFORMATION FOR USE IN STOCHASTIC APPROXIMATION OF CLASS TWO MEAN VECTOR
CIA - ARRAY CONTAINING CONVERGENCE INFORMATION FOR USE IN STOCHASTIC APPROXIMATION OF CLASS ONE MEAN
CIB - ARRAY CONTAINING CONVERGENCE INFORMATION FOR USE IN
STOCHASTIC APPROXIMATION OF CLASS TWO MEAN
E1 - ARRAY CONTAINING AN ESTIMATE OF THE MEAN SQUARE ERROR
OF THE CLASS ONE MEAN VECTOR
E2 - ARRAY CONTAINING AN ESTIMATE OF THE MEAN SQUARE ERROR
OF THE CLASS TWO MEAN VECTOR
IADATA - ARRAY CONTAINING ROW BOUNDARY POSITIONS
ICDATA - A LOGICAL STAR*1 ARRAY USED IN BUILDING A DISK OUTPUT
FILE FOR DISPLAY VIA DATA-DISK VIDEO SYSTEM
IODATA - ARRAY CONTAINING TRUE BOUNDARY

SUBROUTINES:

INPUT - READS DATA FROM DISK INPUT FILE
DECIDE - BAYES CLASSIFIER FOR TWO CLASSES
BOUND - SUBROUTINE TO PLACE CLASS BOUNDARY
PROJECT - STOCHASTIC APPROXIMATION SUBROUTINE
PROCov - MAKES ESTIMATES OF COVARIANCE MATRIX
COVAR - COMPUTES COVARIANCE OF DATA SAMPLES IN RECURSIVE
FORM
MINV - INVERTS A MATRIX
MPRD - FORMS THE PRODUCT OF TWO MATRICES
OUTPUT - WRITES BOUNDARY DATA TO A DISK FILE FOR DISPLAY
PURPOSES

0001 DIMENSION DATAI(512),C1(16),C2(16),C11(16),C2I(16),
U1EST(4),U2EST(4),UA(4),UB(4),U1(4),U2(4),X(4),
U1BAR(4),U2BAR(4),TIME1(4),TIME2(4),CIA(4),CIB(4),
E1(4),E2(4)
0002 DIMENSION IADATA(128),IODATA(128)
0003 EQUIVALENCE (INT,DUM)
0004 LOGICAL*1 ICDATA(128),DUM(2)
0005 COMMON /DUMBI/DATAI
0006 COMMON /DUMB2/ICDATA
0007 DATA IAST/***"
0008 DATA IBLNK/* "
0009 WRITE(7,10)
0010 10 FORMAT(' SPECIFY INPUT FILE')
0011 CALL ASSIGN(1, 'SYO:ABSDEF.DAT', -14, 'RDO', 'NC', 1)
0012 DEFINE FILE 1(128, 1024, U, I1)
0013 WRITE(7,20)
0014 20 FORMAT(' SPECIFY OUTPUT FILE')
0015 CALL ASSIGN(2, 'SYO:ABCDEF.DAT', -14, 'NEW', 'NC', 1)
0016 DEFINE FILE 2(128, 64, U, I2)
0017 WRITE(7,25)
0018 25 FORMAT(' SPECIFY CLASS CONSIDERATION INTERVAL')
0019 READ(7,26)IC
0020 26 FORMAT(I3)
0021 WRITE(7,30)
0022 30 FORMAT(' SPECIFY 4X4 EST. OF CLASS 1 COV. MATRIX')
0023 DO 35 NM=1,4
0024 READ(5,40)(C1(I), I=NM,NM+12,4)
0025 35 CONTINUE
0026 WRITE(7,36)
0027 36 FORMAT(' SPECIFY 4X4 EST. OF CLASS 2 COV. MATRIX')
0028 DO 37 NM=1,4
0029 READ(5,40)(C2(I), I=NM,NM+12,4)
0030 37 CONTINUE
0031 40 FORMAT(4F10.5)
0032 WRITE(7,50)
0033 50 FORMAT(' SPECIFY EST. OF CLASS 1 MEAN VECTOR')
0034 READ(5,40)(U1EST(I), I=1,4)
0035 WRITE(7,60)
0036 60 FORMAT(' SPECIFY EST. OF CLASS 2 MEAN VECTOR')
0037 READ(5,40)(U2EST(I), I=1,4)
0038 NC=2
CALL PROCOV(C1,C2,C1I,C2I,D1,D2,X,ICLASS,IC,0)
C
C BEGINNING OF BOUNDARY DEFINITION PROCEDURE FOR THE 128 X 128
C PICTURE
C
0040 DO 70 IY=1,128
0041 INDEX=1
0042 DO 71 M=1,128
0043 IADATA(M)=129
0044 71 CONTINUE
0045 DO 75 NM=1,4
0046 UA(NM)=ULTEST(NM)
0047 UB(NM)=U2EST(NM)
0048 U1(NM)=ULTEST(NM)
0049 U2(NM)=U2EST(NM)
0050 TIME1(NM)=0.
0051 TIME2(NM)=0.
0052 E1(NM)=0.
0053 E2(NM)=0.
0054 75 CONTINUE
C
C READ A ROW AND PLACE BOUNDARIES WHERE NECESSARY
C
0055 CALL INPUT(IY)
0056 DO 90 J=1,512,4
0057 IX=(J+3)/4
0058 X(1)=DATAI(J)
0059 X(2)=DATAI(J+1)
0060 X(3)=DATAI(J+2)
0061 X(4)=DATAI(J+3)
0062 CALL DECIDE(X,C1I,C2I,U1,U2,D1,D2,ICLASS)
0063 CALL BOUND(IADATA,ICLASS,IX,IC,INDEX)
0064 88 CALL PROJECT(X,U1,U2,ICLASS,E1,E2,TIME1,TIME2)
CALL PROCVJ(C1, C2, CI, C21, D1, D2, X, ICLASS, IC, I)

0055 CALL CONTINUE
0056 DO 91 M=1, 128
0057 IODATA(M) = IBLNK
0058 CONTINUE
0059 91 CONTINUE
0060 IF (IAM .GT. 128) GO TO 93
0061 IODATA(IAM) = IAST
0062 CONTINUE
0063 93 CONTINUE
0064 IF (IODEAT(I) .EQ. IBLANK) IODATA(I) = 0
0065 IF (IODEAT(I) .EQ. IAST) IODATA(I) = 128
0066 IF (IODEAT(I) .EQ. DUM(1)) IODATA(I) = DUM(1)
0067 CALL OUTPUT(IY)
0068 WRITE(7, 110) CLASIFICATION COMPLETE
0069 ENDFILE 1
0070 STOP
0071 END
SUBROUTINE INPUT (IY)
C THIS SUBROUTINE READS ONE ROW OF FOUR-DIMENSIONAL DATA OF A 128 X 128
C DATA POINT ARRAY FROM A PRESPECIFIED DISK FILE. THE ROW OF DATA
C READ INTO THE ARRAY DATA(1:128)
COMMON (IY,IY) RETURN
END
SUBROUTINE DECIDE(X,CAI,CBI,UA,UB,DA,DB,ICLASS)
C THIS SUBROUTINE IMPLEMENTS A BAYES CLASSIFIER FOR TWO CLASSES
C OF EQUAL A PRIORI PROBABILITY.
DIMENSION X(4),CAI(16),CBI(16),UA(4),UB(4),
YA(4),YB(4),RA(4),RB(4),A(1),B(1)
DO 10 I=1,4
YA(I)=X(I)-UA(I)
YB(I)=X(I)-UB(I)
10 CONTINUE
CALL MPRD(YA,CAI,RA,1,4,4)
CALL MPRD(YB,CBI,RB,1,4,4)
CALL MPRD(RA,YA,A,1,4,1)
CALL MPRD(RB,YB,B,1,4,1)
F1=-(ALOG(DA)+A(1))
F2=-(ALOG(DB)+B(1))
ICLASS=1
IF(F2.GT.F1)ICLASS=2
RETURN
END
SUBROUTINE BOUND(IDATA,ICLASS,IX,IC,INDEX)
C THIS SUBROUTINE FORMS A BOUNDARY BETWEEN THE TWO DATA CLASSES.
DIMENSION IDATA(128),ICON(32)
0003 IF(IX.GT.1)GO TO 10
0005 NCLASS=ICLASS
0006 10 DO 20 N=1,IC-1
0007 ICON(N)=ICON(N+1)
0008 20 CONTINUE
0009 ICON(IC)=ICLASS
0010 IF(IX.LT.IC)GO TO 30
0012 ICNT1=0
0013 ICNT2=0
0014 DO 40 II=1,IC
0015 IF(ICON(II).EQ.1)ICNT1=ICNT1+1
0017 IF(ICON(II).EQ.2)ICNT2=ICNT2+1
0019 40 CONTINUE
0020 IF(ICNT1.GT.ICNT2)MCLASS=1
0022 IF(ICNT2.GT.ICNT1)MCLASS=2
0024 IF(MCLASS.EQ.NCLASS)GO TO 30
0026 NCLASS=MCLASS
0027 IDATA(INDEX)=IX-IC/2
0028 INDEX=INDEX+1
0029 30 RETURN
0030 END
SUBROUTINE PROJECT(X,UX,UY,ICLASS,E1,E2,TIMEX,TIMEY)
 C THIS SUBROUTINE PROJECTS EACH COMPONENT OF THE MEAN VECTOR OF THE
 C CLASS OF INTEREST. THE PROJECTION IS MADE USING A STOCHASTIC
 C APPROXIMATION. THE FOUR COMPONENTS ARE PROJECTED INDEPENDENTLY OF
 C ONE ANOTHER. (SECOND DEGREE POLYNOMIAL FIT)
 1X1(128,1),X2(128,4),IT1(1),IT2(4)
 REAL K,K1,K2,K3
 IF(ICLASS.EQ.2)GO TO 30
 DO 10 I=1,4
 IT1(I)=IFIX(TIMEX(I))+1
 J=IT1(I)
 X1(J,I)=X(I)
 IF(TIMEX(I).LT.3.)GO TO 15
 II=IFIX(TIMEX(I)/2.)+1
 B=FLOAT(II)
 IB=IFIX(B)
 ID=J-1
 D=FLOAT(ID)
 K=(D+B+1.)/(D*B)
 GAMMA=(E1(I)-K)/(E1(I)+1.)
 UX(I)=UX(I)+GAMMA*(X(I)-UX(I))
 S=(X(I)*((D*D+1.)*B*(B+1.))-XI(J-IB,I)*(D*(D+1.))+XI(1,I)
 1*(B*(B+1.))/((D-B)*D*B)
 UX(I)=UX(I)+S
 K2=-(D+1.)/(B*(D-B))
 K3=(B+1.)/(D*(D-B))
 K1=-(K2+K3)+1.**2
 E1(I)=(E1(I))/(E1(I)+1.)*K1+K2**2+K3**2
 15 TIMEX(I)=TIMEX(I)+1.
 10 CONTINUE
 GO TO 60
 DO 30 I=1,4
 IT2(I)=IFIX(TIMEY(I))+1
 J=IT2(I)
 30 CONTINUE
0032 X2(J,I)=X(I)
0033 IF(TIMEY(I).LT.3.)GO TO 45
0035 II=IFIX(TIMEY(I)/2.)+1
0036 B=FLOAT(I')
0037 IB=IFIX(B)
0038 ID=J-1
0039 D=FLOAT(ID)
0040 K=(D+B+1.)/(D*B)
0041 GAMMA=(E2(I)-K)/(E2(I)+1.)
0042 UY(I)=UY(I)+GAMMA*(X(I)-UY(I))
0043 S=(X(I)*(D*(D+1.)-B*(B+1.))-X2(J-IB,I)*(D*(D+1.))+X2(1,I)
0044 *B*(B+1.))/((D-B)*D*B)
0045 UY(I)=UY(I)+S
0046 K2=-(D+1.)/(B*(D-B))
0047 K3=(B+1.)/(D*(D-B))
0048 K1=-(K2+K2)+1.)*2
0049 E2(I)=(E2(I)/(E2(I)+1.))*K1+K2**2+K3**2
0049 45 TIMEY(I)=TIMEY(I)+1.
0050 40 CONTINUE
0051 60 RETURN
0052 END
SUBROUTINE PROCOV(CA,CB,CAINV,CBINV,DA,DB,X,ICLASS,IC,IFLAG)
 C THIS SUBROUTINE MAKES A NEW ESTIMATE OF THE COVARIANCE OF A
 C CLASS AFTER IC POINTS HAVE BEEN CLASSIFIED INTO THAT PARTICULAR
 C CLASS.
0002 DIMENSION CA(16),CB(16),CAINV(16),CBINV(16),
0003 PHIA(16),PHIB(16),X(4)
0004 IF(IFLAG.GT.0)GO TO 10
0006 ICNTA=1
0007 ICNTB=1
0008 DO 5 I=1,16
0009 CAINV(I)=CA(I)
0010 CBINV(I)=CB(I)
0010 5 CONTINUE
0012 CALL MINV(CAINV,4,DA)
0013 CALL MINV(CBINV,4,DB)
0014 GO TO 50
0014 10 IF(ICLASS.EQ.2)GO TO 30
0016 CALL COVAR(PHIA,X,ICNTA,4)
0017 ICNTA=ICNTA+1
0018 IF(ICNTA.LE.IC)GO TO 50
0020 DO 20 I=1,16
0021 CA(I)=PHIA(I)
0022 CAINV(I)=PHIA(I)
0023 20 CONTINUE
0024 CALL MINV(CAINV,4,DA)
0025 ICNTA=1
0026 GO TO 50
0027 30 CALL COVAR(PHIB,X,ICNTB,4)
0028 ICNTB=ICNTB+1
0029 IF(ICNTB.LE.IC)GO TO 50
0031 DO 40 I=1,16
0032 CB(I)=PHIB(I)
0033 CBINV(I)=PHIB(I)
0034 40 CONTINUE
0035 CALL MINV(CBINV,4,DB)
SUBROUTINE COVAR(COV, X, INDEX, NDIM)
C THIS SUBROUTINE IMPLEMENTS THE RECURSIVE FORM OF COVARIANCE
C ESTIMATION.

DIMENSION COV(4,4), X(4), XM(4)
X1=FLOAT(INDEX)
X0=X1-1.

IF(INDEX.NE.1)GO TO 5

DO 4 I=1,NDIM
4 XM(I)=X(I)

DO 3 J=1,NDIM
3 COV(I,J)=0.

3 CONTINUE
4 CONTINUE
GO TO 20
5 CONTINUE
DO 10 I=1,NDIM
10 XM(I)=(1./X1)*(XM(I)*XM(J)+X0*X(I)*X(J))
11 CONTINUE
10 CONTINUE
DO 15 I=1,NDIM
15 XM(I)=(1./X1)*(XM(I)*X(I))
20 RETURN
END
SUBROUTINE MINV(A,N,D)
C THIS SUBROUTINE FINDS THE INVERSE OF A GENERAL MATRIX
C 'A', WHICH IS DESTROYED IN COMPUTATION. THE INVERSE
C IS RETURNED IN 'A'. THE DETERMINANT IS CALCULATED,
C 'D'. 'N' IS THE ORDER OF THE MATRIX, 'L' IS A WORK
C VECTOR OF LENGTH 'N', AND 'M' IS A WORK VECTOR OF
C LENGTH 'N'.
0002 DIMENSION A(16),L(4),M(4)
0003 D=1.0
0004 NK=-N
0005 DO 80 K=1,N
0006 NK=NK+N
0007 L(K)=K
0008 M(K)=K
0009 KK=NK+K
0010 BIGA=A(KK)
0011 DO 20 J=K,N
0012 IZ=N*(J-1)
0013 DO 20 I=K,N
0014 IJ=IZ+I
0015 10 IF (ABS(BIGA)-ABS(A(IJ))) 15,20,20
0016 15 BIGA=A(IJ)
0017 L(K)=I
0018 M(K)=J
0019 20 CONTINUE
0020 J=L(K)
0021 25 IF(J-K) 35,35,25
0022 35 KI=K-N
0023 DO 30 I=1,N
0024 KI=KI+N
0025 HOLD=-A(KI)
0026 JI=KI+J
0027 30 A(KI)=A(JI)
0028 35 I=M(K)
0030 IF(I-K) 45,45,38
0031 38 JP=N*(I-I)
0032 DO 40 J=1,N
0033 JK=NK+J
0034 JI=JP+J
0035 HOLD=-A(JK)
0036 A(JK)=A(JI)
0037 40 A(JI)=HOLD
0038 45 IF(BIGA) 48,46,48
0039 46 D=0.
0040 RETURN
0041 48 DO 55 I=1,N
0042 IF(I-K) 50,55,50
0043 50 IK=NK+I
0044 A(IK)=A(IK)/(-BIGA)
0045 55 CONTINUE
0046 DO 65 I=1,N
0047 IK=NK+I
0048 HOLD=A(IK)
0049 IJ=I-N
0050 DO 65 J=1,N
0051 IJ=IJ+N
0052 IF(I-K) 60,65,60
0053 60 IF(J-K) 62,65,62
0054 62 KJ=IJ-I+K
0055 A(IJ)=HOLD*A(KJ)+A(IJ)
0056 65 CONTINUE
0057 KJ=K-N
0058 DO 75 J=1,N
0059 KJ=KJ+N
0060 IF(J-K) 70,75,70
0061 70 A(KJ)=A(KJ)/BIGA
0062 75 CONTINUE
0063 D=D*BIGA
A(KK)=1.0/BIGA
80 CONTINUE
K=N
100 K=K-1
IF(K) 150,150,105
105 I=L(K)
IF(I-K) 120,120,108
108 JQ=N*(K-1)
JR=N*(I-1)
DO 110 J=1,N
110 JK=JQ+J
HOLD=A(JK)
JI=JR+J
A(JK)=-A(JI)
110 A(JI)=HOLD
120 J=M(K)
IF(J-K) 100,100,125
125 KI=K-N
DO 130 I=1,N
130 KI=KI+N
HOLD=A(KI)
JI=KI-K+J
A(KI)=-A(JI)
130 A(JI)=HOLD
GO TO 100
150 RETURN
END
SUBROUTINE MPRD(A,B,R,N,M,L)
C THIS SUBROUTINE FORMS THE PRODUCT OF TWO GENERAL MATRICES
C 'A' AND 'B', AND RETURNS THE PRODUCT IN 'R'. 'N' IS THE NUMBER
C OF ROWS IN 'A', 'M' IS THE NUMBER OF COLUMNS IN 'A' AND ROWS
C IN 'B', AND 'L' IS THE NUMBER OF COLUMNS IN 'B'.
0002 DIMENSION A(16),B(16),R(16)
0003 IR=0
0004 IK=-M
0005 DO 10 K=1,L
0006 IK=IK+M
0007 DO 10 J=1,N
0008 IR=IR+1
0009 JI=J-N
0010 IB=IK
0011 R(IR)=0
0012 DO 10 I=1,M
0013 JI=JI+N
0014 IB=IB+1
0015 10 R(IR)=R(IR)+A(JI)*B(IB)
0016 RETURN
0017 END
SUBROUTINE OUTPUT (IY)
C THIS SUBROUTINE WRITES ONE 128 POINT ROW (BYTE DATA POINTS) OF A
C 128 X 128 POINT ARRAY FOR BOUNDARY DISPLAY VIA VIDEO DISPLAY SYSTEM.
LOGICAL*1 ICDATA(128)
COMMON /DUMB2/ICDATA
WRITE(2'IY)ICDATA
RETURN
END