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A RSTRAC.T

Except in the extreme case when it is known a priori exactly to which
finite dimensional manifold the probability density function which gave
rise to a set of samples belongs, the parametric maximum likelihood
estimation procedure leads to poor estimates and is unstable ; while
the nonparametric. maximum likelihood procedure is undefined.

In this paper, we develop a very gen, ral theory of maximum penalized
likelihood estimation which should avoid many of these present
difficulties. We also demonstrate that eac. reproducing kernel Hilbert
space leads, in a very natural way, to a maximum penalized likelihood
estimator and that a well-known class of reproducing kernel Hilbert
spaces gives polynomial splines as the nonparametric maximum penalized
likelihood estimates,
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Nonparametric Maximum Likelihood Estimation of

Probability Densities by Penalty Function Methods(1)

by
^'	 t

G.F. de tiontrieher ( ` ) , R. A, Tapia"0) and J, R, .Thompson(3)

ABSTRACT

yExcept in the extreme case when it is known a priori exactly to which

I! finite dimensional manifold the probability density function which

gave rise to a set of samples belongs lthe parametric maximum likeli-

hood estimation procedure leads to poor estimates and is unstable;
I

while the nonparametric maximum likelihood procedure is undefined,

j
Good and Gaskins have recently suggested replacing the nonparametric

maximum likelihood estimate with a nonparametric maximum penalized
i

+!
likelihood estimate; however they dill not show that these estimates

existed.	 In this paper we develop a very general theory of maximum

penalized likelihood. estimation which should avoid mariy of these

1

present difficulties.	 We Also lemonstrate that each reproducing

kernel Hilbert space leads, in a ve y natural way, to a maximum

penalized likelihood estimator and that a well-known class of repro-

'	 I
ducing kernel Hilbert spaces gives polynomial splines as the non-

I

parametric maximum penalized likelihood estimates.	 In addition
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our general theory is used to snow that Good's and Gaskins' non-

parametric maximum penalized likelihood estimators are well defined

and that one of their estimators gives exponential splines as the

estimates. Finally we show that Good's and Gaskins' method of im-

plementation does not in general lead to their estimators.

1. Introduction. Let Q be a subset of Rn . In this study we consider the

^l
problem of estimating the probability density function cp E L1 (0) which gave

1

rise to the random samples xl,...,xN E 0. The set Q may be either bounded

H	 or unbounded.

As usual we define L(v), the likelihood that v E L I(Q) gave rise

to the samplesxl,...,xN by
^f

N
(1.1)	 L(v) = II v(xi)

L;	 i=1

Let H(Q) be a manifold in Ll(Q) and consider the following optimization

problem:

maximize L(v); subject to

(1.2)

v EH(Q),kdµ=1 and v(t)>OVt EQ.

We let dµ denote the Lebesgue measure on Q . By the maximum likelihood'.

estimator (corresponding to H(Q)) we mean the functional

L* : QN ,, ^Ll(a,b)
r

(I
(AN	 denotes the Nth Cartesian product of A with itself and 2A	denotes the

'I subset_ of	 A) which assigns to each 	 (xl,...,xN) E 
n  

the solutions of

j problem (1.2).	 Any v E L*(.xl, ... ,x, ) is said to be a maximum likelihood

-2-
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estimate (of the probability density 9 ) for the samples (xl, ... pxI7)

The maximum likelihood estimator L* is said to be well defined if L*(xl, ... ,xN)

consists of exactly one unction (equivalently problem (1.2) possesses a

unique solution). It is also usual to say that L* is a parametric estimator

if the manifold H(Q) is finite dimensional and a nonparametric estimator

otherwise.

It is well known and part o° the folklore that the standard histogram

	

f	 estimates are parametric maximum likelihood estimates and that when H( r)) is

	

i	 a finite dimensional linear manifold the corresponding maximum likelihood

estimator is well defined. Except in the case when it is known a priori that

y E Ii(n) , it is generally true that the parametric maximum likelihood 	 it

	

li	
estimates are far from satisfactory. Moreover the nonparametric maximum

it
likelihood estimator is essentially undefined.Some justification for these

latter two statements follows.

t,I

	

	 Clearly if the manifold H(R) can approximate the Dirac delta

funct.on, i.e., contains nonnegative functions whose support is a given small

sphere centered at x E 0 , integrate to one and have arbitrarily large values

at x , then problem (1.1) has no solution. Moreover this approximation

property is enjoyed by most infinite dimensional manifolds of L1(0); hence

we should not expect the nonparametric maximum likelihood estimation problem

to have a solution. The situation is actually worse for it is often Lhe case

that in the parametric case we choose H(n) from a sequence of spaces (Sm)

where the dimension of Sm is m , 'm+1 :) Sm 
andM=l

Sm is dense in L1'(P);

hence the problem is def;'.nitely unstable and somewhat ill defined. Namely we

are motivated to choose m large so that we can better approximate the

probability density giving r' to the samples x 1, ... ,xrj ; however for large m
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our problem approximates a problem which has no solution.

Rosenblatt [7] in 1956 performed the first analytical study of the

theoretical properties of histograms. ha 1962 Parzen constructed a class of

estimators which properly included the histogram estimators and examined the

consistency properties of the estimators in this class. These results have
i

been improved upon recently by 11ahba [10] (1971). Kimeldorf and'Wahba 131 ih

1970 introduced the application of spline techniques in contemporary statistics.

Boneva, Kendall and Stefanov [1] in 1971 and Schaenberg [8] in 1972 examined

the use of spline techniques for obtaining from histograms smooth estimates

of a probability density function. It is of interest to us that essentially

all previous authors seem to either ignore the nonnegativity constraint or 	 r

attempt to handle it with the seemingly clever trick of working with a functions

whose square is to be used as the estimate of the probability density; how-

ever in the case of maximum likelihood estimation this trick tacitly ignores

the nonnegativity constraint. More will be said about this in Sections 3 and 4.

In 1971 Good and Gaskins [2] suggest adjoining a penalty term to the

likelihood functional (1.1). They actually suggested two nonparametric

maximum penalized likelihood estimators; howev-cr the; 	 :.ot show that these

estimators were meaningful, i.e., well defined. MorBo c- in dealing Ath the	 %I

nonnegativity constraint in problem (1.2), Good and Gaskins also fell into
{I

the trap described above of obtaining the estimate as the square of the solution

of an optimization problem; hence Good's and Gaskins' implementation does nut,
^i

in general, give their estimator.
it

	In Section 2 we give a rigorous definition of the maximum penalized 	 1-
i,

likelihood estimator. We also propose a very natural penalty term in the 	 ±'

case when the underlying manifold is a reproducing kernel Hilbert space andl,
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show that a very important and well-known class of reproducing kernel Hilbert

spaces gives rise to maximum: penalized likelihood estimates which are poly-

nomial splines with knots at the sample points.

Sections 3 and 4 contain a rigorous analysis and proof of the fact

that the Good and Gaskins maximum penalized likelihood estimators and their

pseudo maximum penalized likelihood estimators obtained by their incorrect

method of implementation are well defined and in the first case identical,

but in the second case distinct. It is also of interest that in Section 3

we show that Good's and Gaskins' first nonparametric maximum penalized likeli-

hood estimator leads to estimates hich are exponential splines with knots at

the sample points.

Much of our analysis uses the notions of the Frechet gradient, the

Frechet derivative and the second Frechet derivative ir. an abstract Hilbert

space. The reader not familiar with these notions is referred to Tapia [9].

i<
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2. Maximum Penalized Likelihood Estimators, In order to avoid the pitfalls

and numerical instabilities attributed to the presently used maximum likeli-

hood estimation procedures we suggest adjoining a penalty term to the like-

lihood functional.

Let H(n) be a manifold of real-valued functions defined and

integrable on a set n C Rn, i.e., H(n) C Ll(n) . Consider a functional

:11(0) -> R , Given the samples x1 , ... 3 XN E n we define the t=penalized

likelihood of v E H(n) by

Ir
(2,1)	 L(v) = R v(xi ) exp (4(v))

i=1

Consider the constrained optimizaticn problem:

(2,2)	 maximize L(v); subject ^o

v E H(n) , kdp = 1 and v(t) > 0 1 V t E l .

The maximum penalized likelihood estimator L corresponding to

the set H(n) and the penalty function & is defined in a manner analogous

to the definition of the maximum likelihood estimator given in Section 1,

using the solutions of problem (2,2). The term- Parametric, the term

nonparametric and the term . well defined have the same meaning in this

context as in Section 1. For the remainder of the paper we consider the

nonparametric case of the maximum penalized likelihood estimator; specifi-

cally we will choose H(n) to be either an infinite dimensional Hilbert space

or an infinite dimensional manifold in a Hilbert space. In the case when

H(n) is a Hilbert space a very natural penalty function to-use is $(v) =

11vII2 where 11 . 11 denotes the norm on H(0). Consequently when H(n) is a



Hilbert space and we refer to the penalized likelihood functional on H(Q)

or to the maximum penalized likelihood estimator corresponding to H(Q)

with no reference to the pe;ialty functional § ire are assuming that $ is

the square of the norm iit H(Q) , Recall that when H(Q) is a Hilbert

space it is said to be a reproducing kernel space if point evaluation is a

continuous operation, i.e,, vn > v in H(Q) implies vn(x) 4 v(x) V x E Q,

In order for problem (2,2) to make sense we would like H(Q) to

have the property that for each (xl , ... ,xN) E 
0  

there exists at least

one v E H(Q) such that

(2,3)	 fvdp = 1, v't) > 0 V t E Q and v(xi) > 0 1 = 1,...,N,
0

Proposition 2.1, Suppose that H(Q) is a reproducing kernel space and D

is a closed convex subset of (v E H(Q): v(xi) > 0) with the property that

D contains at least one function which is positive at the points xII ... ,xN,

Then the penalized likelihood functional on H(Q) has a unique maximizer in

D.

Proof, Since H(Q) is a reproducing kernel spe. ce we have Iv(xi)I < Killvll

°or i = 1, ... ,N, It follows that

(2.4)	 ^L(v)I < Clllvll	 exp (-jjvll2)
N

The function g(a) = X  exp (-k2 ) is bounded above by (N/2)2 exp (-N/2);

hence IL(v)I < C2	If M = sup(L(v):v E D) , then there exists (vj ) c D

such that L(vj ) a M	 From our hypothesis M > 0. Notice that B()L) -) 0

as n -+ W . Hence from (2.4) 11vi ll < C3 V j	 The ball (v E H(Q):

llvll < C3) is weakly compact. Hence (vj) contains a weakly convergent

subsequence which we also denote by (v,). Let v * denote the weak limit

-7-
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of (vi ). We have that vj (xi ) -► v*(xi) as J .+ a for each i = 1, ... IN.

The norm is a convex functional; hence weakly low--r semicontinuous so that

lim 11v1 11 ? IIv* II . It follows that

	

. ^l	 (2.5)	 lim nv^(xi ) exp(-IIv3 112 ) < n v*(xi ) exp(-IIvx112 > .
3 i=1	 i=1

	I	
However the left-hand side of (2.5) is equal to M and the right-hand side

is equal to L(v*); so M < L(vs ). Now since D is closed and convex it is

weakly closed; hence v* E D. This establishes the existence of a maximizer.

Since M > 0, maximizing L over D is equivalent to maximizing

J = log L over D. A straightforward calculation gives the second Frechet

derivative of J as

„	 N 1+(xi)TI(xi)
i=1 v(xi)2

Now since J"(v) is negative definite J is strictly concave and -, an there-

fore have at most one maximizer on a convex set. This proves the proposition.

Proposition 2.2. Suppose H((1) is a reproducing kernel spaces, integration over

0 is a continuous functional and there exists at least one v E H(n)

satisfying (2.3^ Then the maximum penalized likelihood estimator corresponding

to H(0) is well defined.

	

'	 Proof. The proof follows from Proposition 2.1 since the constraints in (2.2)

give a closed convex subset of (v E H((l): v(xi ) > 0, i = 1,...,'1) .

Recall that by the Sobols :v space of order s on the real line we

mean

L
(2 . 6 )	 Hs(-a ,a) = (µ E S':(1+w2)2F ( µ)(u:) E L2( -a,°V))

where S' is the space of distributions with polynomial increase at infinity
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and Flu) denotes the Fourier transform of 7.. The norm of u E }!s(-m,m)

is given by

e

(2.7)	 HullHs(^ m _ I1(1,,.2)2 F lu] (w)IEL2(_W .)

If s is an integer, then u E 	 if and only if u,u(i) , ... ,u (s) E

L2 (-m -) and an equivalent norm is given by

1

(2.8)	 [iEwilltt(1)IILO 2 ( W ^)]2

where wi > 0 and "O"S > 0. Ile have the analogous definitions in the case

of the finite interval; :however wren considering the Fourier transform we

must extend the functtvi.to the entire interval (- ,w)	 As in the pre-

vious section the notation H s (a,b) does not preclude the possibility that

either a or b (or both) may be infinite. The reader interested in-more

detail is refered to Lions and Magenes [5] .

Lemma 2. 3. The Sobolev space H s (a,b) is a reproducing kernel space if and

only if s > 2 Moreover for s > the linear functional I:H s (a,b) a R

defined by

b

I(v) = fv(t)dt

a

is continuous if and only if [a,b] is a finite interval.

Proof. The proof follows in a reasonably straightforward manner using results

in Lions [3].

Proposition 2.4. The maximum penalized likelihood estimator corresponding

to the Hilbert space Hs (a,b) where s > 2 and [a,b] is a finite interval
xj

containing the sample points is well defined.

Proof. The proof follows from Proposition 2.2 and Lemma 2.3.
I

Recall that if a is an integer, then



r
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H;8(a,b) = (u E Hs(a,b):u(k)(a) = n(k)(b) 	 0 1 k = 0,...,s-1)

LA HZ(a,b) )—' the collection of functions in HO(a,b) with the Hilbert

space structure induced instead by the inner product

a

It can be shown that H;(a,b) and Fi;(a,b) are equivalent, i.e., have the

same topology, in a manner similar to that which shows that (2.7) and (2.8)

are equivalent. Clearly H;(a,b) and Hp(a,b) do not have the same inner

product.

Theorem 2.5. Suppose (a,b) is a finite interval properly containing the

sample points xl , ... ,xH . Let s be a positive integer. Then the maximum

penalized likelihood estimator corresponding to s (a,b) is well defined

and gives as an estimate a polynomial spline of degree 2s . Moreover, if

the estimate is positive in the interior of an interval, then in this interval

it is a polynomial spline of degree 2s and of continuity class 2s-2 with

knots exactly at the sample points.

Proof. Clearly HZ(a,b) is a reproducing kernel Hilbert space since

HDs (a,b) Ls such a space. It follows that the maximum penalized likelihood

estimator corresponding to H s (a,b) is well defined from Proposition 2.2.

Consider an interval I + = [a sp) a [a,b] . Let I - = (t E [a,b]:

t 0 [asp]) . Define the two functionals J+ and J- on Hs (a,b) by

J+ (v) = E log v(xi ) - J'v(t)2dt
i	 I+

and

J- (v) = i log v(xi ) -IJ'v(t)2dt ,

r



where the summation in the first formula is taken uver aSU i such that

xi E I+ and the summation in the second formula is taken over all i much

that xi E I - ,It should be clear that

A 4

	 J(v) = J+ (v) + J-(v)

A

where as before J(v) = log (v) and L is the penalized likelihood in

H0(a,b) . Let V* denote the maximum penalized likelihood estimate for the

samples x1 , ... ,x,	 Suypose V., is positive on the interval I+ . We

claim that V* restricted to this interval solves the following constrained

optimization problem:

maximize J,(v); subject to

+1(^ .;e,)	 v E Hs (a,b) , V (m) (a) = v* (a) , V(m) (B) = v^m) (^)11

u - 0, ... , g 	 1 ,

^V(t)dt = ^V* (t)dt sad v(t) < 0 ; t E I+

To see this observe that if v+ satisfies the constraints of problem (2,10)

and J+ (v* ) < Ji_(v+ ) , then the function v
*
 defined'by

v+ (t) , t E I+

V*(t) _

v,(t) , t E I_

satisfies the constraints of problem (2.2) with HO(a,b) playing the role of

H(R) and J(v*) = J+(v* ) + J_(v* ) < J+ (v+ ) + J_(v+ ) = J(v*) ) whi^.h in turn

implies that L(v*) < L(v*); however this contradicts the optimality of v* .

Now define the functional G on H;s (a,p) by

-il-

9



-12-

G(v) = J_,.(v+ + v) for v E HD(a,p) .

j	 Consider the constrained optimization problem

iK maximize G(v) ; subject to

(2.11)

v E Hp(a, p) and	 v = 0 .

+
	j	 If v satisfies the constraints of problem (2.11), then v* + tv satisfies

the constraints of problem (2.10) for t sufficiently small, since v* is

positive in I+	It follows that the zero function is the unigee solution

of problem (2.11). From the theory of Lagrange multipliers we therefcre must

have

(2.12)	
+ Xv0 = 

0 ^

where a is a real number, VG(0) is the Frechet gradient of G at 0 and vo

is the Fre
i
chet gradient of the functional v -^'v in the space H s (a^o) .

Clearly in this case v0 is merely the Riesz representer of the functional

v . ^v .

Specifically

0

	

{	 Integrating by parts in the distribution sense we see that v((2s) = 1; hence v0

	

ii	 is a polynomial. of degree 2s in Ia,P] . A straightforward calculation shows

that

v
(2.13)	 4G(0) = J+ (Kx.)(£ v* Xl - 2v*)

inhere the summation is taken over 1 such that x i E I+ and vi is the Riesz

representer of the functional v v(xi) in H0
s) (a,$) 2 i.e.,
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= v(xi )	 .^vis)v(s)

As before integrating by parts in the distribution sense we a^e that 	
vi2s) = bi

where	 b i	 is the Dirac mass at the point 	 xi	 It follows that	 vi	 is a

I polynomial spline of degree 	 2s-1	 and of continuity class 	 2s-2	 with a

knot exactly at ',he sample point xi .	 From (2,12) and (2.13) we have that

v*	 restricted to the interval [a,p] is a polynomial spline of degree 	 2s

I	 and of continuity class 	 2s-2	 with knots exactly at the sample points in

[a,9]	 A simple continuity argument takes care of the case when 	 v*	 is

only positive on the interior of [a,p] 	 .	 This proves the theorem.
'I

Remark.	 Observe that Theorem 2.5 says that the spline estimate is necessarily

zero at knots which are not sample points.

In the case when	 s=1	 we can say substantially more about the

II
distribution of the knots and zeros of the spline estimate.

Theorem 2.6.	 Suppose (a,b) is a finite. interval properly containing the sample

points	 x1 , ..., xN	 Then the maximum penalized likelihood estimator corres-

ponding to	 10(a,b)	 is well defined and gives as an estimate a continuous

quadratic spline with knots at the sample points and at most two knots in the

interior of each interval 	 [xi,xi, i = 0, ... ,N + I (x0 = a	 and	 xN+l = b) .+1]

Moreover in each such interval the spline is either zero at no points, zero

at one point (which must bt a knot) or zero on a proper subinterval whose end-
;I

I

^points are necessarily knots.

Proof.	 Suppose the estimate 	 v*	 is zero at	 a	 and	 P	 where	 xi 5: a <	 < xi+l

and not identically zero in (a,0] 	 Consider the function

ry
*(t ) 7 t	 [a,^]

v*(t)

^0
I{

, t E [affl



Clearly y = 1/Jv* > 1 . We also have that
a

J(av*) > J(v* ) > J(vO

and that yv E 0(a,b) , yv (t) > 0 for t E [a,b) and Jyv = i . This,
CI

however, contradicts the optimality of v *. and shows that v*_ must be iden-

tically zero in the interval [a,p) . The remainder of the theorem follows

from Theorem 2.5 and the remark following it.

i

E

u
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The First Maxim=a Penalized Likelihood Estimator of Good and Gaskins.

In [2) Good and Gaskins consider the maximum penalized likelihood estimator

corresponding to the penalty function

	

t fi
	

41(v) = a J v t^ dt	 (a > 0)

They do not define the manifold H(Q) ; but it is obvious from the constraints

that must be satisfied and the fact that

t1l(v) = a J ( t)2dt

that the underlying manifold H(0) should be

(v E Ll ( -w ,- ) : ^FE H3'(-- Pw )) .

This leads us to analyzing the following constrained optimization problem:

Y
(3.1)	 maximize L1(v) = H v ( xi)exp( -§1(v)); subject to

1=1

V E 	 J*v(t)dt = 1 and v(t) > 0 V t E(^ w)

In an effort to avoid the nonnegativity constraint in problem (3.1)

Good and Gaskins considered working with the „/v instead of v. Speci-

fically if we let u = ^v , then restating problem (3.1) in terms of u we

obtain

	

^
i^ 	 (3.2)	 maximize n u(xi )2exp(-4aJu'(t )2dt) ; subject to

	

I	 1=1	 -^
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u E H1(-®,®), 
J 
u(t)2dt = 1 and u(t f > 0, t E (i°,• ) .

Since the constraint u(t)2 > 0 is redundant they suggest solving problem

(3.2) for u* and then accepting v* = u* as the solution of problem (3.1).

On first impressions everything looks fine; however a moments reflection

should convince the reader that what tacitly has been assumed is that the

unique solution of problem (3.2) is actually nonnegative. Hence adding the

nonnegativity constraint to problem (3.2) and restating in the equivalent

form obtained by taking the square root of the objective functional (since

it is nonnegative) we arrive at the following constrained optimization problem:

N
(3.3)	 maximize L(v) = II v(xi)exp(-O(v)); subject to

i=1

v c	 ( : ^^,a) , Tv(t) 2dt = 1 and v(t) > 0 1 v t E

where

§(v) = 2a^v'(t)2dt
-0

and a is given in problem (3.1).

Pro osition 3.1. Problems (3.1) and (3.3) are equivalent in the sense that

if v* is a solution of problem (3.1), then qV* is a solution of problem

(3.3) and if v* is a solution of problem (3.3), then v* is a solution of

problem (3.1).

Proof. The proof follows from the fact that if v > 0, then

§(,.rv) = 241(v)

and

I, = L(^v)2 .

It is very surprising and quite fortunate that Good's and Gaskins'
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i

I^
<j

a

ll

ii

omission does not really effect this estimators since we will presently

show that the nonnegativity constraint in problem ( 3.3) is not active at

the solution, i.e., problems ( 3.2) and (3.3) actually have the same solu-

tions. Unfortunately this will not be the case for the second maximum

penalized likelihood estimator Good and Gaskins propose. Good and Gaskins

did not show that their esti:wzors are well defined; hence this is our first

task.	 Along with problem ( 3.3) we will consider the constrained op-

timization problem obtained by only requiring nonnegativity at the sample

points:

(3.4)	 maximize L(v) ; subject to

v E lil(-W Pm ) , Jv(t)2dt == 1 and v(xi ) > 0, i = 1, ... ,N

Given ), > 0 and a in problem (3.3) we may also consider the

constrained optimization problem:

N
(3.5)	 maximize ^L (v)= n v ( xi)exp(- $^(v)) ; subject to

i=1

v E	 ( -m ,m ) , fv(t) 2dt = 1 and v (xi) > 0, i = 1, ... ,N

where

^^(v) = 2aj ,v' (t)2dt + a jv(t) 2dt .

Our study of problem ( 3.5) will begin with the study of the following

I^	
constrained optimization problem:

(3.6) maximize hAi'T); subject to

^I

ti	
v E(-!°,a	arid. y(xi) >_ 0 , i = 1, ... ,N

whereis -g vef, 'Ly r^cs,Irm (3._5). Tet L = L2(-w,00),

A
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Proposition 3.2. Problem (3.6) has a unique solution. Moreover if vk

denotes this solution, then

(i) vx is an exponential spline with knots at the sample points

., r	xl, ... , xN;

1

	 (ii) VX (t) > 0, V t E(-W ,W ); and

(iii) Ilva ll 2 > ,/17ZTT-
L

Proof, From Lemma 2,3 Hl( -W $W) is a reproducing kernel space. Also

2I1v11 % - I (v) gives a norm equivalent to the original norm on

The existence of vI now follows from Proposition 2.1 with D = (v E Hl(-W)W):

v(xi ) > 0 0 i = 1, ... ,N). We will denote the $k inner Product by < r >^

Let vi be the representer in the 0 I inner product of the continuous

linear functional given by point evaluation at the point x i , i = 1, ... ,N, i.e.

< vi ,1) >X = I( xi ) , V I E Al(-0os=)

Equivalently

W	 W

2gJvj(t)T'(t)dt i- 7XJvi (t)j(t)dt = J(xi ) , V I E
.m	 .m

Integrating by parts in the distribution sense gives

J[-2avl(t) + avi (t)) q(t)dt = I( xi ) , V I E

hence

(3.7)	 - 2ovi	 xvi = 8 i	,	 i = 1, ... ,N

where 6i  = 80(t-x1
) and 80 denotes the Dirac distribution, i.e.,

I,(	

J80(t)1(t)dt = 1(0)	 If we let v0 be the solution of (3.7) for i = 0,
d;

then
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I

	

laK exp(T/ 2a t)	 ,	 t <0

v0(t) = ,

	

lrr1 exp(-AT-2ciTt )	 ,	 t > 0

and vi(t) = v0(t-xi) for i = 1,...,N. Since v, is the maximizer we

have that vX (xi ) > 0 ) i = 1, ... ,II we necessarily have that the Prechet
n

derivative of l^ at v. must be the zero functional, equivalently the
A

gradient of	 £X or for that matter the 	 gradient of log Lk must vanish

at v. since I, and log	 have the same maxima. A calculation similar

to that used in the proof of Proposition 2.1 gives

^	 N vi
(3.8)	 vXlog L

X (v) = 2v - E v xi=1 i

where V
A 

denotes the gradient.	 It follows from ( 3.8) that

1 N vi
(3.9)	 v^ 2 E 

v xi=1Ti^
Properties ( i) and ( ii) are now immediate

from (3.9) we have

Since < vi ,vX >X = vx(xi)

(3.10)	 Ilvalla = N/2

A straightforward calculation shows that

V!1(t)v!3(t) < 2 vi

So
^ I	 —

, for	 i,j = 1, ... ,N

v`(t)2 _ 1 [E (vi	
)2 * E vi(t)v,(t)	

la	 17i v^ xi	 i, j vi xi va x j

v (t) s	 v (t)v (t)

i va xl i, j vx xi v% xj = 2a a(t)2
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Integrating in t gives

2ally ' 112 	< ally 112

By definition of the ^.-norm and (3,10) we have property (iii). This proves

c'	 the proposition.

Proposition 3.3. Problem (3.4) has a unique solution.

Proof. Let B = (v E Hl ( — ,w): Jv(t)2dt < 1 and v(xi ) > 0 1 i = 1 ) ... ,N),

1	 Clearly B is olosed and convex. If 1 4 is given by (3.5), then by Pro-

l
position 2.1 the functional has a unique maximizer in B; say u l . Now by

property (iii) of Proposition 3.2 if we choose 0 < a < , then vW
 the

unique solution of problem (3.6) will be such that jjv l ll 
	 > 1. We willL2 (_WPM)

show that for this range of 'KAUX ll 2	 = 1 . Consider v e = evX a

(1-6)u,. We know that log Ll is a strictly concave functional (see the
I	 i.	 n	 n

proof of proposition 2.1). Moreover log L^(v l ) > log L
%
(u.);hence log L,(v g) >

n	 '
log LA (u..) for 0 < e < 1	 Now suppose I1u,' 11 	

< 1 and consider
L2( m,m)

g (e) = IIv II
e L2(-m,m)

We have g(0) < 1 and g(1) > 1, So for some 0 < e0 < 1 0 g(e 0) = 1 and

n
log L^(ul ) < log L)' (ve ), This is a contradiction since ul is the unique

0
maximizer of I,1 in B; hence Ilu^ll 2 	 = 1, This shows that ux is

L ( oo,00)

the unique solution of problem (3.5) for 0 < a < 	 However, the term X
m	

2
fv(t) dt is constant over the constraint set in problems (3.4) and (3.5);

I	 -^

4	
hence problems (3.4) and (3.5) have the same solutions for any X > 0

This proves the proposition since we have demonstrated that problem (3.3) has

a unique solution for at least one X ,

Proposition 3.4. Problem (3.3) has a unique solution which is positive and



I^	

of	

i

an exponential spline with knots at the points xl,...,xN.

Proof. If we can demonstrate that v the unique solution of problem (3.4)
n	 ^

has these properties we will be through. Let G(v) = log L(v) where L

is given in problem (3 . 3) and let

y	 w

g ( v) = fv(t)2dt
..m	

Y

for v E If (-m,m), Clearly v(xi ) > 0 for i = 1,...,N; hence from the theoi>

of Lagrange multipliers there exist X such that v satisfies the equations

(3.11)	 0'(-r) - ag'(v) = 0 and g(v) =I.
I

Using L2 (- ,d) gradients in the sense of distributions (3.11) is equivalent.

fr
to

^f	 N 8
(3.12)	 - 4av"+ 2av = E v x	

and g(v) 1
i=1	 3

W

where 8 i is the distribution such that fv(t)G I(t)dt - v(xi ); i - 10 ... ,it.

Since we have already established that problem (3.4) has a unique solution

is
f	 it follows that (3.12) must have a unique eolution in Hl(-m,-); namely v.

If a < 0, then any solution of the first equation in (3.12) would be a sum

of trigonemetric functions and could not possibly satisfy the constraint

g(v) = 1, i.e., can not be contained in L 2 (-W,W). It follows that ? > 0.

Now observe that

1, S	 G - ag=logLX

where 1^ is given by problem (3.5); hence if v satisfies (3•u) (from

{	 the first equation alone) it must also be a solution of problem (3.6) for

`
j	 this a and therefore has the desired properties according to Proposition

3.2. This proves the proposition,



Proposition 3.5. The first nonparametric maximum penalized likelihood

estimator of Good and Gaskins is well defined; specifically to maximum

penalized likelihood estimator corresponding to the penalty function

^(v) = a J vv t 9 dt	 (a > 0)

and the manifold

11 (n) = IV E Ll ( -W ,O ) : FE 1l(-*°,"))

is well defined. Moreover the estimate for the sample points xl , ... $X1,

given by this estimator is positive and an exponential spline with knots

at the sample points.

Proof. rrom Proposition 3.1 this estimate is v 2 where v solves problem

(3.3). By Proposition 3.4 v is positive and an exponential spline with

knots at xl,...,x,; hence so is v2 . This proves the proposition.

_22-

m
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4. The Second I%ximum Penalized Likelihood Estimator of Good and Gaskine.

Consider the functional W?(- ,w) -+ R defined by

(4.1)	 0(v) = a J
7
v'(t) 2dt + p w if(t)2dt

for some a > 0 and p > 0 . Also consider the functional $ 1 defined on

= (v E Ll(_ao,w): /v E H2 (_ff_)) by

(4.2)	 $1(v) = §( 3v)

where ^ is given by (4.1). By the second maximum penalized likelihood

estimator of Good and Gaskins we mean the estimator corresponding to the

II  2
manifold	 (-W,m) and the penalty function § 1 . Hence we must consider

jj the following constrained optimization problem:

N
(4.3)	 maximize Ll(v) = H v(xi )exp(-ol(v)); subject to

i=1

v E	 fv(t)dt = 1 and v(t) > 0 V t E

ff

;	 As in the first case (described in the previous section) Good and Gaskins suggest

I	
avoiding the nonnegativity constraint by calculating the solution of problem

(4.3) from the following constrained optimization problem:

^	 N

(4.4)	 maximize L(v) = H v(xi)exp(- 2 
(v)); subject to

j	 i=1

v E( 	 fv(t)2dt = 1 and v(xi ) > 0, i = 1, ... ,N
I	 -ae

where $ is given by (4.1).

A
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Clearly problems (4.3) and (4.4) are equivalent in the sense that

the solution of one can be obtained from the solution of the other by either

taking the square or square root if and only if the solutions of problem

are nonnegative. Moreover we will presently demonstrate that the solu-

tions of problem (4.4) are not necessarily nonnegative. It will then follow

that we can not obtain the second estimator by considering problem (4.4).

If we naively use v* ,	 where v* solves problem (4.^O , as an esti-

mate for the probability density function giving rise to the samples

xl, ... ,xa , then clearly v* will be nonnegative and integrate to 1 and

is therefoz:s a probability density; however the estimator obtained in this

jj	 manner will not in the strict sense of our definition be a maximum penalized

likelihood estimator. For this reason we will refer to this latter esti-

mator as the pseudo maximum penalized likelihood estimator of Good and Gaskins.

The next six propositions are needed to show that the second maximum

penalized likelihood estimator and the pseudo maximum penalized likelihood

estimator of Good and Gaskins are distinct ani _. 111 defined.

Proposition 4.1.	 The second maximun penalized likelihood estimator and the

pseudo maximum likelihood estimator of Good and Gaskins are distinct.

Proof. We will show that it is possible for problem (4.4) to have solutions

which are not nonnegative. Toward this end let N = 1 2 x1 ,= 0, a = 0 and

p = 2. Let G(v) = log L'(v), i.e.,
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G(v) = log v(0) - "j V 1,(t)2dt

and let

g(v) = Jv(t)2dt .
.ao

As in the proof of Proposition 3.4 using the theory of distribu'olons and the

theory of Lagrange multipliers we see that the solutions of problem (4.4)

in this case are exactly the so3utions of

b

(4.5)	 v(iv) , av = 2v10
	

and B(v ) = 1

where 
6  

is defined in the proof of Proposition 3.4. If we let v denote

the Fourier transform of v, then taking the Fourier transform of the first

expression in (4.5) gives

V(w) = [2v(0)(a A 
1694w4W .

Since j rv jj	 _ 11VII	 = 1 we must have

(4. 6 )	 f	 w44 2 = 4v(0)2
.m (a+16n w

For the integral in (4.6) to exist we mast have a > 0 . Now the inverse

Fourier transform of (a4•16114w4 ) -1 is given by v where

bt
e

3 
[cos bt - sin bt]	 t < 0

8b

(4,7)	 v(t)
-bt
e 3 [cos bt + sin bt] , 	 t > 0

1 ^8b

with b = a^/2^, From (4.7) v(0) = (8b3 ) -1 and from (4.6) v(0) 2 _ a K
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`l

ti

i

1
where K = II(1+16n

4W4 ) -1 112 	
Hence lV= 2K and b = qfK . It follows

L2(-m,W)
that the unique solution of problem (4.4) is given by (4.7) with b =,AK

which is clearly not nonnegative. This proves the proposition.

We will. devote the remainder of this section to showing that both

the . second estimator and the pseudo estimator are well defined. The

approach taken will be very similar to that used in Section 3 to show that

the first estimator of Good and Gaskins is well defined.

Given k > 0 consider The constrained optimization problem:

A	 N
(4.8)	 maximize 1^(v) = II v(xi)exp(-^k(v)); subject to

i=1

v E(-^,^) i fv(t) 2dt = 1 and v(xi ) 10 ; i = 1, ... ,N

where

^^(v) = z ^(v) + afv(t)2dt
-m

with O(v) given by (4.1).

As before we also consider the constrained optimization problem

obtained by dropping the integral constraint:

(4.9)	 maximize LX (v) ; subject to

v E 12 (- ,-) and v(xi ) > 0 ,	 1 = 1, ... ,N.

Proposition 4.2. Problem (4.9) has a unique solution. Moreover if vk

denotes this solution, then

Proof. By Lemma 2.3 the Sobolev space H2 (^,W) is a reproducing kernel

space. Moreover, if
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i

IMIX = X(v)

then an integration by parts gives

Ilv' 1122 = I< v ,v" > 2 I <_ IIvII 2IIv"II
L	 L	 L	 L2

(4.10)

<LIIvII2L2 + IIV'I1 
I
2?]

where L2 denotes L2 (- ,m)g hence II'Ih is equivalent to the original

none on ]i2(-.ono•)	 The existence and uniqueness ofv), now follows from

Proposition 2.1.

We must now show that 11v 11 2 ► + oo as a -> 0. From the funds-

mental theorem of calculus we have

V(x)2 
f 

ddt, ? 
dt = 2 f v(t)v'(t)dt

(4.11)

< 211vII
21111v' IIL2

Also, IIv"IIL2 < llvll,/qf so that from (4.10) and (4.11)

g{	

(4.12)	 v(x)2 < 2 IIvII22 AIvllX j

F	 Evaluating (4.12) at x 	 logs (since v (xi ) > 0) and summing over i

gives

jf	 N
(4.13)	

i 
llog v(xi) < t log( , O

4 MIX  +	 loB(IIYIIL2)

iHence from (4.13) we see that

(4.14)	 log Yv) <	 log (IIvIIL2 ) + 17 lo g(	 ^ IlYllx) - IMIX

In a manner exactly the same as that used to establish (3.10) we have that
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IIV
)6
Ih = 2	 Hence from (4.14) and the fact that log Yv) < log L^(v),)

we obtain

(4.15)	 log 1^(v) < 77 log 01VX 1l L̂ ) + 8 log(8N/^) - 2

for any v E (u E H2 (-m^^): u(xi ) > 0 9 i = 1, ... ,N) .

Let a and b be such that

a < min (xi) and max(xi ) < b .

Gig-en ). > 0 and a and b define the function 0  in the following piece-

wise fashion:

aeexp(-(t-a)2/2a2)	 for t E (--I&)

61 (t) =	 Xe	 for t E (a,bl

X6 exp(-(t-b )2/2a2 )	 for t E (bo+m)

where a = xa 	Straightforward calculations can be used to show

N
log( H e (x.)) = eNlog(X)

i=1	 i

IIe^iI2 = (b-a)),2e + 
^ff.X2e+E

IleaflL2 = ^^2e - a

IIe^iI2 = 2,Xna2e-36

and

(4.16)	 Il^iailx = (b-a)a2e+1 + , &2e+6+1 + 4^i2e-b + 20"g&2e -38

If we want I1eX112 -► 0 as a -► 0 it is sufficient to choose all exponents

of x in (4.16) positive. If we also want



_. t

N
log( n 8^(xi ))	 + m as	 -► 0

i=1

we should choose e < 0 . This leads to the inequalities

, 2e +1>0

2e + b + 1 > 0

(4.17)	 2e - b > 0

—^a 	2P - 36 > 0

f	 e < 0 .

The system of inequalities (4.17) has solutions; specifically e = - 32 and

b = - $ is one such solution, With this choice of a and b we see that

log 1, (8X ) + + m as a 4 0 . It follows from (4.15) by choosing v = 8X
i

that JJvAII 2 -+ + m as X-+ 0 . This proves the proposition.
L

Proposition 4.3. Problem (4.8) has a unique solution.

I !	 Proof. By Proposition 4.2 there exists X > 0 such that if v  is the unique

solution of problem (4.9), then JJv,,JJ 2 > 1 . Now, if B = (v E 112(-^,^):
L

J'v(t)2dt < 1) and v(xi ) > 0, i = 1, ... ,N), then B is closed and convex.

IThe proof of the proposition is now exactly the same as the proof of Proposition

I^	 3.3.	 k .

Proposition 4.4.	 The pseudo maximum penalized likelihood estimator of Good 	 ^.

and Gaskins is well defined.

Proo:. Since problems ( 4.4) and (4.8) have the same solutions the proposition

follows from Proposition 4.3.

By the change of unknown function v-+ q v we see that problem (4.3)
I

is equivalent to the following constrained optimization problem:

j ^	 N

(4.18)	 maximize L(v) = n v(xi)e..p (-2 (v)); subject to
^1	 1=1
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v E I?(-^,^), J 
-
v(t)2dt = 1 and v(t) > 0 V t E (^,w)

—oe

where $(v) is given by (4.1).

In turn for x > 0 problem (4.18) is equivalent to

(4.19)	 maximize L^(v); subject to

v E R2 (-W,m> fv(t) 2dt = 1 and v(t) > 0 v t E(-W,m)

~	 whereLk is defined in problem (4.8).

As in the previous two cases we also consider the constrained opti-

mization problem:

1 n
(4.20)	 maximize Yv); subject to

I

v E 1j2(- ,m) and v(t) > 0 V t E (-^,m)

there LA (v) is defined in problem (4.8).

(	 Proposition 4.5. Problem (4.20) has a unique solution. Moreover if v. de-

I1	 notes this solution, then

+	 as X -> 0 .

J

j 	 L
Proof. The existence of v+ follows from Proposition 2.1 as in the proof

i
of Proposition 4.2. Let us first show that

(4.21)	 ^^v^^^^ <	 .

I
{	

From Lions L4{	 , p.91 we see that

(4.22)L^ VX (^-vO < 0

I
for all nonnegative 11 in 	 ^,^). We have

I
L
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i

i=1	 3
hence

	

(4.23)	 1(v^)(v^) = N - 211va11
2
 .

Now choosing 11 = 0 in (4.22) and using (4.23) we arrive at (4.21). The

functions 0x defined in the proof of Proposition 4.2 satisfy the con-

straints of this problem; hence

log '.(Ox) < log L1 (VX) .

From (4.14) and (4.21) we have

	

(4.24)	 log i),(6x) <_	 log (IlvXliL2) + 8 log (8N/5) + 2

The proof now follows from (4.24) since log z^(g^) -+ + w as a -► 0 .

Proposition 4.6. The second maximum penalized estimator of Good and Gaskins

is well defined.

Proof. Using Proposition 4.5 the argument used to prove Proposition 4.3

shows that problem (4.19) he- a unique solution which is also the unique

solution of problem (4.18). This proves the proposition.

The authors would like to thank Professors B.F. Jones, P.E. Pfeiffer

and W.A. Veech for helpful discussions. They would also like to thank the

referee for helpful suggestions.



-32-

References

[1] L. Boneva, D. Kendall, I. Stefanov, Spline transformations: Three new

diagnostic aids for the statistical data-analyst, Journal Royal Stat.

Soc. B. 33(1971), 1-77.

[2] I.J. Good and R.A. Gaskins, Nonparametric roughness penalties for pro-

bability densities, Biometrika, 58(1971), 255-277.

[3] G.S. Kimeldorf and G. Wahba, A correspondence between Baysian estimation

on stochastic processes and smoothing by splines, Annals of Math. Stat.,

41(1970), 495-502.

[4] J.L. Lions, Contro'le optimal de systems gouvernes par des equations aux

derivees partielles, Dunod, Gauthier-Villars, Paris, 1968.

[5] J.L. Lions and E. Magenes, Prob?ams aux limites non homogenes et applications

Vol. 1, Dunod, Paris, 1968.

[6] E. Parzen, On estimation of a probability density function and mode,

Annals of Math. Stat., 33(1962 ), 1065-1076.

[7] M. Rosenblatt, Remarks on some nonparametric estimates of a density function,

Annals of Math. Stat., 27(1956), 832-837.

[8] I.J. Schoenberg, Splines and histograms, with an appendix by Carl de Boor,

Mathematics Research Center Report 1273, University of Wisconsin, Madison,

October 1972.

[9] R.A. Tapia, The differentiation and integration of nonlinear operators,

in Nonlinear Functional Analysis and Applications, Ed. Louis B. Ball,

Academic, New York, 1971.

[10] G. Wahba, A polynomial algorithm for density estimation. Annals of

Math. Stat., 42(1971), 1870-1886.

d.



APPENDIX

Numerical implementation
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I^

We wish to implement numerically the maximum penalized likelihood

estimator corresponding to the reproducing kernel space H 0(a,b) discussed

in Section 2. Toward this end we introduce a partition of the interval (.1,'*

a=t0<t1<... <... <tm <tm+1 -b ,

where the mesh spacing is equal to h (b-a)/m for some predetermined positive

integer m	 We let yi denote the value of the discrete solution at the mesh

point ti 	Clearly since we are approximating elements in HD(a ,b) we will

require that y0 = ym+l = 0 . We choose as a discrete approximation to the

derivative at the mesh point ti the first forward difference (yi+l - yi)/h.

As the discrete form of the integral constraint we choose the trapezoidal rule,
M

which in this case leads to lElyi = h 1	 Given the samples xl , ... ,x11 E [a,b]

let ai denote the number of samples in the interval [t i - 22ti + 2) for

1 = 2, ... ,m -1, let al denote the number of samples in [a,t 1 + 2) and

finally let am denote the number of samples in the interval [tm - 2 ,b] ,

Our discrete maximum penalized likelihood estimate is obtained as the ,volution

of the following constrained finite dimensional optimization problem:

maximize J(y1, ... )Ym) = II Ya i	 2eXp(-h 
2 
E (Yi+l - Yi)) i

i=1	 i=0

subject to

M
Eyi = h

1
 and Yi>0, i=1, ... ,m.

i=1

The fact that this optimization problem has a unique solution follows as in the

proof of Proposition 2.1. Figure 1 shows our numerical results when this
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procedure was applied to 100 samples obtained from the uniform distribution

and Figure 2 shows the result obtained when this procedure was applied to

100 samples obtained from the Gaussian distribution. Since the curves are

only described at the mesh points we have interpolated linearly between

+	 every -two mesh points.

1

I

i
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