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Nonparametric Maximum Likelihood Egtimation of

Probability Densities by Penalty Function Methods(l)
by

G.F. de Mantricher(g), R.A, TapiaCS) and J.R."Thompson(3)
ABSTRACT
Except in the extreme case when it is known a priori exactly to which
finite dimensional manifold the probability density function which

gave rise to a set of samples belongs the parametric maximum likeli-

)]
hood estimation procedure leads to poor estimates and is unstable;
while the nonparametric maximum likelihood procedure is undefined,
Good and Gaskins have recently suggested replacing the nonparametric
maximun likelihood estimate with a nonparametric maxdmum penalized
likelihood estimat=; however they did not show that these estimates
existed. In this paper we develop a very general theory of maximum
penalized likelihood estimastion which should avoid many of these
present difficulties. We also demonstrate that each reproducing
kernel Hilbert space leads, in a very natural way, to a maximum
penalized likelihood estimator and that a well-known class of repro-
ducing kernel Hilbert spaces gives polynomial splines as the non-

parametric maximum penalized likelihood estimates. In addition
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our genzral theory is used to saow that Good's and Gaskins' non-
parametric maximum penalized likelihood estimators are well defined
and that one of their estimators gives exponential splines ss the
estimetes. Finally we show that Good's and Gaskins' nethod of im-

plementation does nobt 4n general lead to their estimators.

1. Introduction. Let (@ be a subset of ' . In this study we congider the

problem of estimating the probabjiity density function ¢ € Ll(n) which gave

rise to the random samples XyseoosXy € 0. The set {1 may be either bounded

or unbounded,

As usual we define L(v), the likelihood that v € L'(q) gave rise

to the samples XyseeesXy by

N
(1.1) L(v) =1 v(x,) .
=1 *
Let H(Q) be & manifold in I7(0) &nd consider the following optimization

problem:

maximize L(v); subject to
(1.2) |

v eHQ), [vdp =1 and v(t)20vten.

We let dp denote the Lebesgue measure on () . By the maximum likelihood -

estimator (corresponding to H(Q)) we mean the functional

1
¥ QN N I—EL {a,b)

(&' denotes the Nth Cartesian product of A with itself and 2* dinotes the
subsets of A) which assigns to each {xl,...,xN} € QN the solutions of

problem (1.2). Any v ¢ L*{_xl,...,xN ) is said to be a maximum likelihood



estimate (of the probobility density ¢ ) for the samples [xl,...,xnl .
The maximum likelihood estimator L* is said to be well defined if L¥(x) 5000 5%)
consists of exactly one function (equivalently problem (1.2) possesses e
unique golution). It is also usual to say that ¥ ise parametric estimator
if the manifold H(Q) is finite dimensional and a nonparemetric estimetor
otherwise.,

It is well known and part of the folklore that the standerd histogram
estimates are parametric maximum likelihood estimates and that when H(D) is
a finite dimensional linear manifold the corresponding maximum likelihood
estimetor is well defined, Exczept in {the case when it is known a priori that
o € H(Q) , it is generally true that the parametric meximum likelihood
estimates are far from satisfactory. Moreover the nonparametric maximun
likelihood estimator is essentially undefined.Some justification for these
latter two statements follows, |

Clearly if the manifold H(Q) can approximate the Dirac delta
function, i,e,, contains nonnegative functions whose support is a given small
sphere centered at x € 0 , integrate 1o one and have arbitrarily large values
at x , then problem {1,1) hes no solution, Moreover this approximation
property is enjoyed by most infinite dimensional manifolds of Ll(Q); hence
ve should not expect the nonparametric maximum likelihood estimation problem
to have & solution. The situation is actually worse for it is often _he case
that in the parametric case we choose H(Q) from a sequence of spaces [Sm]

=] A
where the dimension of Sm is m, 8§ o Sm and U Sm is dense in Ll(Q);

m+l
m=1 .
hance the problem is def.initely unstable and somewhat ill defined., INamely we
are motivated to choose m large so that we can better approximate the

probability density giving r*- ‘to the samples XysesesXy 3 howaver fcr large m



our problem spproximates a problem which has no solution,

Rosenblatt [7] in 1956 performed the first analytical study of the
theoreticul properties of histograms, Ik 1962 Parzen constructed a class of
estimators which properly included the histogram estimators and examined the
consisternicy properties of the estimators in this class. ‘These resultc have
been improved upon recently by Wabba [10] (1971). Kimeldorf and Wahba [3] in
1970 introduced the application of spline techniques in contemporary statistics.
Boneva, Kendall and Stefanov [1] in 1971 and Schmenberg [8] in 1972 examined
the use of spline techniques for obtaining from hlstograms smooth estimates
of a probability density function, It is of interest to us that essentielly
gll previous authors seem to either ignore the nonnegativity constraint or
attempt to handle it with the seemingly clever trick of working with a funetion
whose square is to be used as the estimate of the probsbility density; how-
ever in the cese of maximum likelihood estimation this trick tacitly ignores
the nonnegativity constraint. More will be said about this in Sections 3 and L.

In 1971 Good aznd Gaskins [2] suggest adjoining & penalty term to the
likelihood funetionmal {1.1). They actually suggested two nonparemetric
maxiimm penalized likelihood estimators; howevar they Ji- not show that these
estimators were meaningful, i.e., well defined, Morsc-s: in dealing iith the
nonnegativity constraint in problem (1.2), Good and Gaskins also fell into
the trap described above of obtaining the estimate as the square of the solution
of an optimization problem; hence Good's and Gaskins' implementation does nut,
in general, give thelr estimator.

In Section 2 we give a rigorous definition of the maximum penalized
likelihood estimator. We also propose a very natural penalty term in the

case when the underlying manifold is a reproducing kernel Hilbert speace and



show that & very important and well-known class of reprodgcing kernel Hilbert
spaces gives rise to maximum penalized likelihood estimates which are poly-
nomial splines with knots at the sample points,

Sections 3 and b contain a rigorous analysis and proof oftthe fact
that the Good and Gaskins maximum penalized likelihood estimators and theix
pseudo maximum penalized likelihocd estimators obtained by their incorrect
method of implementation are well defined and in the first case identical,
but in the second case distinet, It is &lso of interest that in Section 3
we show that Good's end Gaskins' first nonparemetric mﬁximum penalized likeli-
hood estimalor leads to estimates wnich are exponential splines with knots at
the sample points,

Much of our snalysis uses the notions of the Fréchet gradient, the
Frechet derivative and the second Frbchet derivative ir an abstract Hilbert

space. The reader not familiar with these notions is referred to Tapia [9].
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2, Maximum Penalized Likelihood Estimetors. In order to avoid the pitfalls

end numerical instabilities attributed to the presently used maximum likeli-
hood estimation procedures we suggest adjoining a penalty term to the like-
lihood functional,
Let H{Q) be & manifold of real-valued functions defined and
integrable on a set Q C Rn, i.e., HQ) c Ll(m + Consider a functional

$:H(Q) » R . Given the samples x

130 s ¥y € 0 we define the $:-pcnalized

likelihooda of v € H((}) by
N i)
(2.1) L(v) = 1 v(xi) exp (-3(v)) .
i=1

Congider the constrained optimizaticn problem:
(2.2) maximize i(v); subject to
v € H(n) ,{gvdp.=l and v(t) >0, VteEn.

The meximum penalized likelihood estimator i*' corresponding to
the set H(Q) and the penalty function & is defined in a manner analogous
to ‘tﬁe definition of the maximum likelihood estimator given in Section 1,
using the solutions of problem {2.2), The term parametric, the term
nonparsmetric and the term . well defined have the same meaning in this
context ms in Section 1. For the remainder of the paper we consider the
nonparametric case of the maximum penalized likelihood estimator; specifi-
cally we will choose H{{)) to be either an infinite dimensional Hilbert space
or an infinite dimensional manifold 1n a Hilbert space, In the case when
H(n) is a Hilbert space a very natural penalty function to. use is ¥(v) =

Hv]l2 where ||.|| denotes the norm on H(). Consequently when H(N) is a



Hilbert space and we refer to the penalized likelihood functional on H(()
or to the maximum penalized likelihood estimator correspox:lding to H(Q)
with no reference to the pe;nalty functional & we are assuming that § is
the square of the noxm in B(n) . Recall that when H(Q) is a Hilbert
gpace it is seid to be a reproducing kernel space if point evaluation iz a
continuous operstion, i.e., v, - v in H(Q) implies vn(x) > vix) ¥V x€qQ.
In order for problem (2.2) to make sense we would like H(Q) +o
have the property that for each (xl,...,xN} € QN there exists at lepst

one v € H(N)} asuch that
(2.3) [vaw =3, vie) 20Vt €Q end v(x) >0 1=2,...,N
{1

Proposition 2.1, Suppose that H(Q) is a reproducing kernel space gnd D

is a closed convex subset of [v € H(Q): v(xi) > 0} with the property that
D contains at least one function which ié poeitive at the points XyseeeaXy
Then the penalized likelihood functional on H{Q}) hes a unique maximizer in
D,

Proof, Since H(N) 1is a reproducing kernel spece we have |v(xi)| < K livil

for i = 1,...,N. It follows that

(2.4) 2] < vl e (ivll®)
N

The function 8(2) )\N exp (-AE) is bounded sbove by (Iil/e)2 exp (-N/2);

It

hence |f:(v)‘ <C . If M= su‘p[ﬁ(v):v € D} , then there exists (vj] cD
such thet i(vj) > M ., From our hypothesis M > 0. Notice that 6(A) - 0
a8 Ao *w , Hence from (2.4) llvdu SCV 3 '“‘."; The ball {v € H(Q):
vl < 03] is wéakly compact., Hence (va.} cont';.ins a weakly convergent

subsequence which we also denote by [vj}. Let v* denote the weak limit
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of [vj]. We have that vJ(xi)-e v*(xi) o5 j~+ e for each i=1,,..,K,
The norm is a convex functionalj hence weakly lowsar semicontinuous so that
Lim [v i > [Iv¥|l . It follows that

N ‘ N
(2.5) 1m0 vy (%) exp(-llvyli®) £ 1 v¥(x,) exp(-Iv"IE)
J i=1 i=1

However the left-hand side of (2,5) is equal to M and the right-hand side
A A,
iz equal to L(v*); so M < L(v*). Now since D is closed and convex it is
weakly closed; hence v¥ € D, This.establishes the existence of a maximizer,
Sfince M > O, maximizing ?. over D 4is equivalent to meximizing
FaS
Jd = log L over D, A straightforward calculation gives the second Fréchet

derivetive of J as

(x, )n(x,)
J"(V)(u,'ﬂ) - . _Z‘ B x:_ xi

-2 <>,
i=1 v(xi)2

Now since J"(v) is negestive definite J is strictly concave and 3en there-
fore have at most one meximizer on a convex set. This proves the proposition,

Proposition 2,2, Suppose H(Q) is a reproducing kernel spac~, integration over

(0 is a ccntinuous functional and there exists at least one v € H(Q)
satisfving (2.31 Then the maximum penalized likelihood estimator corresponding
to H(N) 4is well defined,
Proof, The proof follows from Proposition 2.1 since tﬂe,qcnstréints in (2.2)
give a closed convex subset of (v € H(): v(xi_) >0, 1i=1,...;5 .

Recall that by the Sobolwuv space of order s on the real line we

‘mean

;-8
(2.6)  Hmym) = (3 € 8'1(100%)7FlUI (6} € 15(om,0))

where §' is the space of distributions with polynomial increase at infinity
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and F[u] denotes the Fourier transform of =, The norm of u € H%(w~e,)

is given by

36 |-

() g 2Py wiul (), ,

~2 ye0 L (-w,m

(1) (s) €

If 8 is an integer, then u € HS(-m,m) if and only if u,u’™’,,..,u

Lz(aw,m) and an equivalent norm is given by
1

s 1), ]
(2.8) [ifowiuu( i, (o]

where w, > 0 and W, W, > 0. We have the analogous definitions in the case
of the finite intervsl; nowever wiaen considering the Fourier transform we
must extend the functtiot. to the entire interval (-e,=) . As in the pre-
vious section the notation Hs(a,b) does not preclude the possibility that
either a or b (or both) mey be infinite. The reader interested i- more
detail is refered to Lions and Magenes [S] .

Lemma 2.3. The Sobolev space H®(a,b) is a reproducing kernel space if and
only if s > L, Moreover for s> % the linear functional I:H®(a,b) - R

2
defined by

b
I(v) = Iv(t)dt
8

is continuous if and only if [a,b) is a finite interval,
Proof, The proof follows in a reasonably straightforward manner using results

in Lions [3].

Prqpositién 2.4, The maximum penalized likelihood estimatoi> corresponding
to the Hilbert space H°(a,b) where s > % and [a,b] is a finite interval
conteining the sample points is well defined.

Proof, The proof follows from Pruposition 2.2 and Lemma 2,3,

Recall that if & is an integer, then
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I

H;(u,b) = {u g Hs(a,b):u(k)(a) = u(k)(b) = 0y K = Oyesaygs-l]

Let ﬁg(a,b) ¥» the collection of functions in Hj(a,b) with the Hilbert

space structure induced instead by the inner product
b

(2.9} <uv > = ju(s)v(s)
a

It can be shown that Hg(a,b) and ﬁg(a,b) are equivalent, i.e., have the
same topology, in & manner similar to that which shows that (2.7) and (2.8)
are equivalent, Clearly Hg(a,b) and ﬁg(a,b) do not have the same inner

product.

Theorem 2,5, Suppose (a,b) is a finite intervel properly containing the
sample points XyseassXy o Let & be a positive integer. Then the maximum
penalized likelihood estimator corresponding to ﬁg(a,b) is well defined
and gives as an estimate a polynomial spline of degree 28 , Moreover, if
the estimate is positive in the interior of an intervel, then in this interval
it is a polynomial spline of degree 28 and of continuity class 2s-2 with
knots exactly at the sample points,
Proof, Clearly ﬁg(a,b) is a reproducing kernel Hilbert space since
Hg(a,b) 48 such a space, It follows that the maximum penalized likelihood
estimator corresponding to ﬁg(a,b) is well defined from Proposition 2.2,

Consider an interval I, = [w,B] < [a,b] . Let I = {t € [a,b]:
t £ (a,8)) . Define the two functionals J, and J_ on Hie,b) by

J.(v) = £ log v(x,) - j’v(t)edt
i I,

and

J_(v) = £ log v(x)) - [v(t)%at ,
i 1



vhere the summaetion in the first formula is taken uver a®l i such that
X € I, eand the sunmation in the second formula is taken over all i such

that Xy € I_ ,It should be clear that
I(v) = 3,(v) + I_(v)

where as before J(v) = log ‘i](v) and T is the penalized likelihood in
ﬁg(a,b) . Let V, denote the maximm penaslized likelihood estimate for the
samples XysesesXy o Suppose V, is positive on the interval I . We
claim that V., restricted to this interval solves the following constrained

optimization problem:
maximize J,(v); subject to

= 1) ve ') , v - viMe , VW) - v

*

15‘ = 0’.'.?8 - l 3

5[v(t)d.t = [v,(t)at aad v(t) <0, t €I, ,
+ +
To see this observe that if v, satisfies the constraints of problem (2.10)

and J (v,) < J _(v,) , then the function v defined by
v.(t) ,t €T,
v (t) =
vlt) , t € I

satisfies the constraints of problem (2.2) with ‘ﬁg(a,b) playing the role of
_ *
2(0) and J(v,) = 3. (v,) + T _(vy) <3, (v,} + 3 (v,) = J(v) ,whizh in turn
*
implies that L{v,) < L(v*); however this contradicts the optimality of v .

Now define ihe functional G on T{;(a,ﬁ) by



G(v) = J, (v, +v) for v¢ ﬁg(a,ﬁ) .
Consider the constrained optimization problem

maximize G(v) ; subject to

(2.11)

vE-ﬁS(a,ﬂ) and {v=0.
4

If v satisfies the constraints of problem {2.11) s then v, + tv satisfies
the constraints of problem {2.10) for t sufficiently small, since v, is

positive in I It follows that the zero function is the uniqre solution

+ °

of problem (2,11). From the theory of Lagrange multipliers we therefcre must

have

(2.12) vGL) + AV, = 0,

where A 1is a real number, vG(0)} is the Frechet gradient of G at O and A

o S T o A

TR

1s 4he Fréchet gradient of the functional v —qu'v in the space Ho(a,B) .

_ -
Clearly in this case v, 1is merely the Riesz representer of the functional

0
v - i .
Specihcally .
. () v

+ +

Integrating by parts in the distribution sense we see that v(()as)

is a polynomial of degree 28 in [a,B] . A straightforward calculation shows

= 1j hence‘ Yo

—

T e

that
Vi
(2.13) vG{0) = J+(V_*)(§' ;J_:(-x—;}- - 2v*)

vhere the summation is taken over 1 such that x, €I, and v, is the Riesz

representer of the functional v - v(xi) in ?Iés')(a,ﬂ) y 1.4,
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As before integrating by parts in the distribution sense we t<e that vias) = 61
where &, is the Dirac mass at the point Xy It follows that vy is 2
polynomial spline of degree 2s-1 and of continuity class 2s-2 with a
knot exacily at “he sample point x, . From (2.12) and {2.13) we have that
v, restricted te the interval [o,B] is & polynomial spline of degree 2s
and of continuity class 2s-2 with knots exactly at the sample points in
{a,B] . A simple continuity argument takes care of the case when v, is
only positive én the interior of [g,8] . This proves the theorem,
Remark, Observe that Theorem 2,5 says that the spline estimate is necessarily
zero at knots which are not sample points,

In the case when s=1 we can say substantially more about the
distribution of the knots and zeros of the spline estimate,
Theorem 2.6, Suppose (a,b) is a finite interval properly containing the sample
points Xys veerXy Then the maximum penalized likelihood estimator corres-
ponding to E%(a,b) is well defined and gives as an estimate a continuous
guadratic spline with knots at the sample points and at most two knots in the
interior of each inmterval [x,,x,.,] ,1=20,...,8+1 (xo =a and xg. = b) .
Moreover in each such intervel the spline is either zero at no points, zero
at one point (which must be a knot) or zero on a proper subinterval whose éndf
points are necessarily‘knots.
Proof., Suppose the estimate v, is zero at o and P where x, Sa<f < ki+l

and not identically zero in !¢,B] . Consider the function

VR(t) 5t £ (8] o

v (t) .~'=i o
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B
Ciearly vy = l/j%* > 1, We also have that
o
Iav') > I(v') > I(v,)

* — * p. *
and that v ¢ Hé(a.,b) , ¥ (¢) >0 for t € [a,b] and Jw = 1. This,
o
however; contradicts the optimality of v, and shows that v, must be iden-
tically zero in the interval [a,f] . The remainder of the theorem follows

from Theorem 2.5 and the remark following it.
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3. _The First Meximum Pesnslized Likelihood Fstimator of Good end Gaskins.,

In [2] Good end Gaskins consider the maximum penelized likelihood estimator

corresponding to the penalty function
- - I V'(t 2 at (
8(v) = o [ Tol- a>0) .

They do not define the manifold H(Q1) ; but it is obvious from the constraints

that must be satisfied and the fact that
1 _ L Faf2
72 (v) = [(55) et
=00
that the underlying manifold iH(Q) should be
I ey |
AL (o) = (v € Tomp)t oF € H(omym))

This leads us to analyzing the following constrained optimization problem:
~ N
(3.1) maximize L. (v) = 0 v(x,)exp(-3,(v)); subject to
1 121 i 1

v € J{F(-w,m); Tv(t)dt =1 and v(t) >0 ¥Vt €(=,»)

In an effort to avoid the nonnegativity constraint in problem (3.1)
Good and Gaskins considered working with the & instead of v. Speci-
fically if we let u = 45', then restating problem (3.1) in terms of u we
obtain

N ©
(3.2) maximize inlu(xi)aexxi-hcdﬁﬂ(t)edt) ; subject to
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ue i (wye), u(t)?at = 1 and u(tf 30, t € (ampm) .

Since the constraint u(‘t‘.)2 > 0 1is redundantthey suggest solving problem
(3.2) for u, and then accepting v, = ui as the solution of problem (3.1).
On first impressions everything looks fine; however a momentg reflection
should conﬁnce the reader that what tacitly has been assumed is that the
unique solution of problem (3.2) is actually nonnegetive., Hence adding the
nonnegativity constraint to problem (3.2) and restating in the equivalent
form obtained by taking the square root of the objective functional (since

it is nonnegative) we arrive at the following constrained optimization problem:

N
(3.3) maximize Liv) = 1 v(x,)exp(-2(v)); subject to
i=1

v € H () Tv(t)edt =1 and v(t) >0, Vt € (~o,)

-5
where

&(v) = zafv' (t)adt

and ¢ is given in problem (3.1).

Proposition 3.1, Problems (3.1) and (3.3) are equivalent in the sense that

if v, is a solution of procblem (3,1}, then AV, 1is & solution of problem
2

(3.3) end if v, is a solution of problem (3.3), then v, is a solution of

problem (3.1),

Proof. The proof follows from the fact that if v > 0, then

3(A)

"

1
'é'@ 1( v)
and

A2 .

fl(\r)

It is very surprising and quite fortunate that Good's and Gaskins'




omigsion does not really effect this estimator; since we will presently
gnow that the nonnegativity constraint in problem {3.3) is not active at

the solution, i.e., problems (3.2) and (3.3) actually have the same solu-
tions. Unfortunately thiz will not be the case for the gecond maximum
penalized likelihood estimator Goeed and Gaskins propose. Good and Gaskine
did not show that their estinacors are well defined; hence this is our first
task, Along with problem (3.3) we will consider the constrained op-
timization problem obtained by only requiring ncnnegativity at the sample

points:
’~
(3.4) maximize L{v) ; subject to

-]
v 6 Iil(“w,m) » J.V(t)Edt =1 a.nd V(xi) 2 0, i-= l’-cr’N .
-
N Given % >0 and « in problem (3.3) we may also consider the
constrained optimizetion problem:
A~ N .
(3.5) maximize LX(V) =1 v(x.)exp(—Ql(v)) ; subject to
=1
rPRY-
v € (=) , [v(t)%at =1 and v(%,) 20, £ = 1,...,N
(-]

where

8,(v) = 2cjzv'(t)2dt + ﬁv(t)ea{; )

Our éfudy of problem (3,5) will begin with the study of the following

constrained optimization problem: !
(3.6) maximize ii(v); tubject to
v E€ Hl(—é,aﬁ and v(xﬁ) 20, i=1,,..,N

vhere 31 ir given, by‘ptdaaem'(E.S).:.Leb 2 - L?(-a,u;,



Propogition 3.2, Problem (3.6) has a unique solution. Moreover if vy

denotes this solution, then

(i) v, is an exponential spline with knots at the sample points

A
x,l’..., XN;

(11) w($) >0, V t € (-=,=); and
(1ii) HVAHLQ > ATJTERT

Proof. From Lemma 2.3 Hl(-m,w) is a reproducing kernel space., Also
ani = §K(v) gives a norm equivalent to the original norm on Hl(dn,m) \
The existence of v, rnow follows from Proposition 2.1 with D = {v € H'(ww,m):

v(xi) >0, 1=1,,..,8]. We will denote the & inner product by < » >

A Al

inner product of the continuous

Let v, be the representer in the &

i A
linear functional given by point evaluation at the point Xy i=1,...,N§ i.e.

<YL >y = x) , V€ B (moym)
Equivalently
[ ] F-s 1
2ofvi(t)N' (t)at + Afv, (EIM()at = N(x) , VN € H (-my0) .
baad -t
Integrating by parts in the distribution sense gives

Jr-aanf() « w01 1)t = Ax) , V1 € Hmpe)

hence

(3.7) - 2av" - Av, = &

: s i=1,,..,N

i 2

where bi(t) = 60(t-xi) and &, denotes the Dirac distribution, i.e.,

[}

N(0) . If we let v, be the solution of (3.7) for i = 0,

-Iao(t)n(t)dt A

then N
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(Q;ﬁ /B, t<0

vo(t) =

2' s (AT, >0

and vi(t) = voit-xi) for i =1,,..,N, Since v i5 the maximizer we
have that v.(x.,) >0, i =121,...,] we necessarily have that the Frechet
AT

Fa)
derivative of Ll at v, must be the zero functicnal: equivalently the

A

A

gradient of ﬁA or for that matter the gradient of log Ii must vanish
. o

at v\ gince Ll and log Ii have the same maxima, A caleculation similar

to that used in the proofl of Proposition 2,1 gives

N v

~ . i

(3.8) Vklog LA(V) = 2y -iE '{r_(x_iT

where 2 denotes the gradient, It follows from (3.8) that
1 N

(3.9) v, =35 § -—T*—T .

Properties (i) and (ii) are now immediate. Since < iy > = vi(xi)

from (3.9) we have
(3.10) v I% = N2 .
AUA
A straightforwvard calculation shows that

v! (t)v (t) < a i(t)v (t) , for 1,3 =1,...,8 .

So

' 1 vi(t) vi(t)vi(t)
vi(t) =y [ (—;Ti;y) + (x ) (xd) )

v, (t) & vy (t)v,(t) R
<& BT E, e ea I ORI
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Integrating in t gives

2allve ||

<Al 2 .
_x"La v, 11”5

-ea,m} L - n)

By definition of the §A-norm and (3.10) we have property (iii), This proves
the proposition,

Proposition 3.3, Problem (3.4) has a unique solution.

Proof, Let B = {vE€ Hl(-w,w): ‘T'v(t)edt <1 and v(x) 20, 1=1,...,N.
Clearly B is 2losed and conve;T If il is given by (3.5), then by Pro-
position 2,1 the functionel has a unique maximizer in B; say W o Now by
property (iii} of Proposition 3.2 if we choose 0 <) < % , then vy the

| unique solution of problem (3.6) will be such that IIVRIIL2 . > 1, We will
show that for this range of l,"uknl? o) =1, Consider vé = BVX 4

(l-e)ul. We know that log Ll is e strlctly concave functional (see the

proof of proposition 2,1), Moreover log L (v ) > log Ll(ul);hence log LL(VQ) >

log Ll(ul) for 0< 9 <1, Now suppose HulH <1 and consider

L = Jeo

g(e) = livyll , .
L -mm)

We have g(0)}) <1 and g(1) > 1, So for some O < 8y < 1, 3(80) = 1 end
log Lk(ul) < log Lx(v This is & contradiction since W is the unique

maximizer of Lk in B' hence Hulﬂ = 1, This shows that LN is

the unique solution of problem (3.5 )Lfc();°° 0<< K However, the term A
Iv\t) dt is constant over the constraint set in problems (3.4) end (3.5);
d;ence problems (3.4) and (3.5) have the same solutions for any A > O ,

This proves the proposition since we have dembnstrated that prob;em (3.3) has

a unique solution for at least one A .

Proposition 3.4, Problem (3.3) has a unique solution which is positive and
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an exponential spline with knots at the points Xyaeae Xy

Proof, If we can demonstrate that ¥ the unique colution of problem {(3.4)
A A

has these properties we will be through, Let G{v) = log L(v) where L

is given in problem (3.3) and let
PR
g(v) = [v(t)"at
il

for v € Hl(-m,m). Clearly 3(xi) >0 for i =1,..,.,N; hence from the theory

of Lagrangé multipliers there exist A such that v satisfies the equations
(3.11) a'(+) - xg'{v) =0 and g(v) = 1.

Using L2(-m,w) gradients in the sense of distributions (3.11) is equivelent
to
N 6i
it -~ - =
(3,12) - b+ SAv -.El m and g(v) 1
(-]
where &, is the distribution such thab Iv(t)bi(t)dt = vl(x), 1= 1,000
wall
Since we have already established that problem (3.4) has a unique solution
it follows that (3.12) must have a unique solution in Hl(am,m); nemely V.
If A <0, then any solution of the first equation in (3.12) would be a sum
of trigonemetric functions and could not possibly satisfy the constraint
g{v) =1, i.e,, can not be contained in LE(-w,w). It follows that X > O.
Now observe that
Fa)
G =g = log Lh
~ ~

where Il is given by problem (3.5); hence if v setisfizs (3.11) (from
the first equation alone) it must also be a solution of problem (3.4) for
this )\ and therefore has the desired properties according to Proposition

3.2. This proves the proposition,
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Proposition 3.9. The first nonparometric maximum penalized likelihood

estimator of Good and Gaskins is well defined; specifically ti: maximum
penalized likelihood estimator corresponding to the penalty function

2
8(v) = o dt (o > 0)

vi{t
vit

bes

and the manifold
HQ) = (v € Lm0}t W€ H(wo0,m))

is well defined., Moreover the estimate for the sample points XyseresXy
given by this estimator is positive and an exponentizl spline with knots

at the sample points, |

Proof. Trom Proposition 3.1 this estimate is ?2 where v solves problem
(3.3).. By Proposition 3.4 Vv is positive end an exponential spline with

knots at XyseeesXyd heqce 80 is ;2' This proves the proposition.
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4, The Second Maximum Penalized Likelihood Evtimator of Good and Gaskine,

Consider the functional §:H2(-eu,-) + R defined by

(4.1) #(v) = o Tv' (t)%at + fv"(t)gdt

for some o> 0 and B > 0 . Alsc consider the functional él defined on

B (@) = (v € BL(w0,0)t F € Ho(0,m)) By
(4.2) 3 (v) = a(WW)

where & is given by (4.1). By the second maximum penalized likelihood
estimator of Good und Geskins we mean the estimator corresponding to the
manifold _,,/ﬁe(-m yo) and the penalty function 51 . Hence vwe must consider

the following constrained optimization problem:

N
(4.3) maximize /ﬁl(v) = v(xi)exp(-él(v)); subject to
i=l

v e By, v(t)at = 1 and v(£) 26V t € (=) .

As in the first case (described in the previous section) Good and Gaskins suggest
avoiding the nonnegativity constraint by calculating the solution of problem
(4.3) from the following constrained optimization problem:

A N 1
(L. 4) maximize L{v) =iI=Ilv(xi)exp(- §§(v)); subject to

v € B(wme), [v(t)Pat =1 and v(x) 20, i=1,...,0
L

wher: & is given by (%.1).
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Clearly problems (4,3) and (4.4) are equivalent in the sense that
the solution of one can ba obteined from the solution of the other by either

taking the square or cquare root if and only if the solutione of problenm

(k.4) are nonnegative. Moreover we will presently demonstrete that the solu
tions of problem (h.4) are not necessarily nonnegative. It will then follow
that we can not obtain the second estimator by considering problem (L.k4).
If we naively use vi , . where v, solves problem (L4.%), as en esti-
mate for the probability density function giving rise to the samples

!
ig therefor:> a probability density; however the estimator obtained in this

seeesXy s then clearly vi will be nonnegative and integrate to 1 and

menner will not in the strict sense of our definition be a maximum penalized
likelihood estimator, For this reason we will refer to this latter esti-
mator as the pseudo maximum penalized likelihood estimator of Good and Gaskins,
The next six propositions are needed to show that the second maximum
penalized likelihood estimator and the pseudo maximum venalized likelihood

estimator of Good and Gasking are distinct an: . 11 definad.

Proposition b.1, The second maximus: penalized likelihood estimator and the

pseﬁdo maximum likelihood esztimator of Good and Gaskins are distinct.
Proof, We will show that it is possible for problem (4.4} to have solutions

which are not nonnegetive, Toward this end let N = 1, X070, 0 =0 and

A
g =2, Let G(v) = log L(v), i.e.,



-25-

G(v) = log v{0) - Tv"(t)adt
and let

glv) = Tv(t)adt .

As in the proof of Proposition 3.l using the theory of distribuilons and the
theory of Lagrange multipliers w: see that the solutions of problem (L, L)

in thig case are exactly the solutions of

- (iv) 5y
(4.5) v AV = m end g(v) = 1
where 61 is defined in the proof of' Proposition 3.4, If we let ¥ denote

the Fourier transform of v, then taking the Fourier transform of the first

expression in (4.5) gives

Vo) = [2v(0)(x + 161" .

Since ‘HHL? -m’“)= HVHLQ(.a,w = 1 we must have
(1.6) [ o .
= (160t ?

For the integral in (4.6) to exist we mast have A\ > 0, Now the inverse

Fourier transform of (l+16nhwh 1o given by v where
ebt
-3 [cos bt - 8in BE] |, t<0
8b
(L.7) v(t) =
e-bt
_ 3 {cos bt + sin bt] , t>0 .
1 \_8"

with b = ?\E/.ﬁ-. From (4.7) v(0) = (863)) and from (4.6) v(0)° = £ A-E X
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1
~ R TR TR I L _ n
vhere K = ||{1+161 w )} ") 2 ). Hence A = 2K and b =,B5K . It follows
L (w2 o o
that the unique solution of p;oblem (4.4) is given by (h.7) with b = K
which is clearly not nonnegative., This proves the proposgition,
We will, devote the remainder of this section to showing that both
the . second estimator and the pseudo estimator are well defined., The
approach taken will be very similar to that used in Section 3 to show that
the first estimator of Good and Gaskins is well defined.
Given A > O consider the constrained optimization problem:
. o N
(4,8) maximize LA(V) =1l v(xi)exp(-&?l(v)); subject to
i=1
v E 1-12(-4:,::) , J'v(t) dt =1 and v(xi) >0, 1=1,...,N
=il
where

5,(v) = £ 2(v) + 2 Jv(e) e

with &(v) given by (k.1).
As before we also consider the constrained optimization problem

obtained by dropping the integral constraint:
~
(4.9) maximize LR(V) ; subject to
VEH(we) and vix) 20,  1=1,...,N

Proposition 4.2, Problem (4.9) hus a unique solution., Moceover if vy

denotes this solution, then

Hviﬂ ++e as A0,

LE(-oo,w)
Proof. By Lemma 2.3 the Sobolev space H?(-n,w) is a reproducing kernel

gepace., Moreover, if
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2 .
then an integraticn by parts gives

1 2 = ] ~ (1]
Iviie |< vyv Lg‘ < !IVHLEHV HL2
(4,10)

< ;._[ | 2 + nle ]
< B, + v

where I° denotes Le(-w,m) ; hence "'"A is equivalent to the original
norm on Il‘a‘(-w,m) . The existence and uniqueness of v, now follows from
Proposition 2.'1. |

We must now show that ”v'A”LE -+ +w 88 i~ 0, From the funda-

mental theorem of celeculus we have

2
v(x)® = f%{-‘?—L at = 2 fv(t)v' (t)dt

(4.11)

2 ! .
< 1hﬂH?HHV'UL?
Also, |iv"l 5 < ]lvl]l/.ﬁ‘ 50 that from (4.10) and (k4.11)
L
(k.12) v)® < 2 Wi Vil 78

Evaluating (4.12) at X5 taking logs (since v(xi) > 0) and suming over i

gives
N
4,13 lo N 1o 4 1 .
(k.13) JZ 108 v(x,) < T 20s( Jgivly) + £ 2og(vll )
Hence from (4.13) we see that
~ N L 2
(.14) 108 5 (v) < 2% 208(1v1 o) + § 208( Z Il - v -

In a manner exactly the same as that used to establish (3.10) we have that
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||vl]]§ = g . Hence from (4.14) and the fact that log %(v) < log /I;(vl)

we obtain
(4.15) 1og 1 (v) £ §* 0ellivll ) + 5 loa(BV/s) - 7 ,

for any v € {u € 1-12(-ee,w): u(xi) >0, 1i=1,...,8,
let & and b be such that
a< min(xi) and max(x.)<b.
i |
i 1
Given >0 and € and § define the function el in the following piece-

wise fashion:
€ 2 2
( ACexp(-(t-a) /26 ) for t € (-w,a)

o.(t) = 2% for t € {a,b]

A
Aexp(~(t-b)2/20%) for t € (b,+w)

where ¢ = 16 . Straightforward calculations can be used to show

N
log‘(il;llel(xi)) = ¢Nlog{)) ,

leylZp = (b-an® + BT
legii%p = B

eI, = ame3

and
(k.16) uaﬂﬁ = (p-anPetl ¢ 26Ol Ly pmlesb |, o p26-30

If we want || 20 a8 A= 0 it is sufficient to choose all exponents

2
LY
of A in (4,16) positive. If we also want
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N
log{ 1 6, (x,))» += as A =0
A1
i=1
we should choose ¢ < 0, This leads to the inequalities

2¢ +1>0

2e +§+1>0
(4.17) 2¢ - § > 0

22 - 36 >0

e <0,

The system of inequalities (h.l?) has solutionsj specificelly ¢ = - }3—2- and

5= - % is one such solution, With this choice of ¢ and § we see that
log f')\(e?\) 2 +® as A= 0, It follows from (4.15) by choosing v = N
that llvAH st 28 A2 0. This proves the proposition.,

L

Proposition 4.3, Problem (L4.8) has a unique solution.

Proof. By Proposition 4.2 there exists A\ > 0 such that if vl

>1, ¥ow, if B= (v € lg(-‘”,"'):

is the unique

solution of problem (4.9}, then llvlll 2
® L

J'v(t)edt <1) eand v(xi) >0, i=1,,..,N], then B is closed and convex.

Ll
The proof of the proposition is now exactly the same as the proof of Proposition
3-3!

Proposition b, bk, The pseudo maximum penalized likelihood estimator of Good

and Gaskins is well defined,
Prov’, Since problems (4.4) and (4.8) have the same solutions the proposition
follows from Proposition U, 3. |

By the change of um:noﬁn function v = J-.T we see that problem (L,3)
is equivalent to the following constrained optimization problem:

N
(4.18) maximize L(v) = N v(xJesp(-28(v)); swbject to
i=1



v e Bmpe), [v(£)2 = 1 and v(8) 20 V€ (maym)

vhere &(v) is given by (L.1).

In turn for X\ > O problem (4.18) iz equivalent to
(4.19) maximize 3i(v); subject to
raPRY:
v € Ha(-w,m) » [vlt)Tat = 1 and v(£) 2 0V t € (woy=)
-gn)

~,
where L is defined in problem (4,.8).
As in the previous two cases we also consider the constrained opti-

mizgtion problem:

FaS

(4.20) maximize Ll(v); subject to
VEH(em) and v(£) >0 V&€ (wo,)

vhere i&(v) is defined in pr.blem (4.8),

Proposition 4,5. Problem (4.20) has a unique solution. Morecver if v; de-

notes this solution, then
+
nvlnl‘? -+ +two ag A0,

+
Proof. The existence of vx follows from Proposition 2,1 as in the proof

of Proposition 4.2, let us first show that

(4.21) Ity < 72

From Iions {4, p.9) we see that
(k.22) ?ﬁ(vi)(ﬂ-v;:) <0

for all nonnegative 1 in H?(-w,m). We have



-3l

LR(V)(T\) m -2<VN>

hence

(4.23) I’x(" Yvy) = N - 2|l H

Now choosing 1 = O in (4.22) and using (4.23) we arrive at (4,21}, The

functions ©, defined in the proof of Proposition L,2 satisfy the con-

A
straints of this problem; hence

log /f'x(ex) < log fh(v;) .
From {4,14) and (4,21) we have
(k.2h) log L (e,) < 3 log(llvkli )+ 'g log(BN/8) + - .

The proof now follows from (L4.24k) since log Li(ek) ++ew as A= 0.,

Proposition 4.6. The second maximum penalized estimstor of Good and Gaskins

is well defined,
Proof, Using Proposition 4,5 the arrmument used to prove Proposition k4.3
shows that problem (4.19) has-a unique solution which is also the unique

solution of problem (4.18), This proves the proposition.

The authors would like to thank Professors B,F, Jones, P,E, Pfeiffer
and W.A, Veech for helpful discussions. They would also like to thank the

referee for helpful suggestions.
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APPENDIX
Numerical implementation

We wish to implement numerically the maximum penalized likelihood
estimavor corresponding to the reproducing kernel space ﬁg(a,b) discussed

in Section 2. Toward this end we introduce a partition of the interval (a,b):

Bty <t <<, <t <t =D,

1l 1

where the mesh spacing is equel to h = (b-a)/m for some predetermined positive

integer m . Ve let ¥i denote the value of the dlscrete solution at the mesh

point +t; . Clearly since we are approrimating elements in ﬁ%(a,b) we will
require that Yo ¥ Ypey T Q0 , Ve choose as a discrete approximetion to the

derivative at the mesh point +t, the first forward difference (yi+l - yi)/h.

Ae the discrete form of the integral constraint we choose the {rapezoidal rule,
m

which in this case leads to T v ® h-l . Given the samples XyseensXy € [a,b]
i=l

let oy denote the number of samples in the interval [ti - %,ti + %) for

i=2,,,.,m -1, let o, denote the number of samples in [a,t, + g) and

1
finally let ) denote the number of samples in the interval ltm - % ) I
OQur discrete maximum penallzed likelihood estimate is cbtained as the solution

of the following constrained finite dimensionsal optimization problem:

m oo 2o n 2
maximize J('.Vl,.. -,Ym) = E yi exp('h -§ (Vi+l - yi) ) >
i=1 i=0
subject to
a 1
Ey. =h—. and Y- 3_".0,1:1,...,11‘1.
i=1 * *

The fact that this optimization problem has a unique solution follows as in the

proof of Proposition 2.1, Figure 1 shows our numerical results when this
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procedures wag applied to 100 samples obtained from the uniform distribution
and Figure 2 shows the result obtained when this procedure was applied to
100 samples obtained from the Gaussian distribution, Since the curves are
only described at the mesh points we have interpolated linearly between

every -two mesh points,
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