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1. Pointing Accuracy of the Low-Cost Large Space Telescope Due to
Noise and Quantization

1 -1. Introduction

The objective of this study is to conduct an investigation on the

pointing stability of the low-cost Large Space Telescope (LST) system.

The low-cost LST is characterized by the use of reaction wheels for

the generation of control torques. Because of the critical requirement

on the pointing accuracy of the LST, the nonlinear frictional characteristics

of the bearings of the reaction wheels cannot be neglected. It is well

known that the nonlinear friction can cause limit cycles in a closed-loop

system.

Another possible source of pointing error in the LST is due to the

effect of quantization and sensor noise. Since the LST is a digital

system, D-A and A-D converters, and sensors for positional and rate

feedbacks are used. Sensor noise and amplitude quantization will also

cause pointing error in the LST. In addition, quantization is a .

nonlinear phenomenon so that it may also cause self-sustained oscillations

in the closed-loop system.

The dynamic modeling of the single-axis LST is described in this

chapter. Several methods of evaluating the attitude error of the digital

LST due to quantization and noise inputs are given.



1-2. Dynamic Models of the Low-Cost LSI System

The dynamic model of the single-axis low-cost 1ST system wi th

sampled data is shown in the block diagram of Fig. 1-1. The r ig id

body is represented by the double-integrator transfer funct ion . The

controller is formed by proportional, rate, and integral feedbacks of

the vehicle attitude. The nonl inear element N in the reaction wheel

dynamics represents the ro l l ing f r ic t ion, and its funct ional description

is given by the wel l -known Dahl model.

The def ini t ions of variables and the values of parameters and

constants are tabulated in Table 1-1 [1],

Table 1-1.

4> Reference input command

<j>B Body attitude of 1ST

4>o Body rate of LST

T Torque command of reaction wheel

Torque output of reaction wheel

Angular velocity of reaction wheel

Angular displacement of reaction wheel

Frictional torque of reaction wheel

Attitude error

Proportional gain of controller

Rate gain of controller

Integral gain of controller

Feedback resistance

Voltage amplifier gain

'RH

0,RW

0,RW

1.65 x 10° N-m/rad

3.71 x 105 N-m/rad/sec

7.33 x 105 N-m/rad/sec

0.484 ohms

10000
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RT

Motor torque constant

Back emf constant

Moment of inertia of reaction wheel

Moment of inertia of vehicle about
pitch axis

Motor time constant

Motor resistance

0.484 N-m/amp

0.484 volt/rad/sec

0.2 Kg-m2

41822 Kg-m

0.002 sec

10 ohms

Although the low-cost LSI system has digital control, it is

informative to analyze the system of Fig. 1-1 first without the sample-

and-hold device. Figure 1-2 shows the signal flow graph of the continuous

data LSI system. The characteristic equation of the system is determined

from Fig. 1-2,

TU2 3 NBNMU3U6 RFG1G2G3G4G5

where
(1-D

- Kp + KI/S

= KA/s

66 = JRWS

and N denotes the analog describing function of the reaction wheel nonlinearity.
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For the linear model of the LSI system, we set N = 0, and the

characteristic equation becomes

r n R%1 w 7 ?

VvRTS + W + (JvRFKA + -^S + RFKRKAS

+ KARpKps + KAKjRF = 0 (1-2)

It is of interest to investigate the dynamics' of the reaction wheel

and the vehicle. The open-loop transfer function between T and ({>„ is

Substituting the system parameters into Eq. (1-3) gives

B 5.7865
Tc s2(s2 + 500s + 242058.5)

5.7865 (1_4)
S2(s + 250 + J423.74)(s + 250 + J423.74)

Thus, the reaction wheel is shown to have relatively fast dynamics.

Substitution of the values of the system parameters into Eq. (1-2),

and simplifying, the characteristic equation of the linear 1ST system' is

written

s5 + 500s4 + 242058.5s3 + 2.1468 x 106s2 + 9.5476 x 106s

+ 4.24145 x 106 = 0 (1-5)

The roots of the characteristic equation are:



s = -0.49659

s = -4.22743 + J4. 25123

s = -4.22743 - J4. 25123

s = -245.524 + J421.118

s = -245.524 - J421.118

Note that the damping ratio of the dominant complex roots is

0.705, and the natural undamped frequency is 6 rad/sec or 0.954 Hz.

These parameters are achieved by selecting the controller constants K ,

KR and K, at the indicated values. However, the poles of the reaction

wheel dynamics at s = -250 + J423.74 and s = -250 - J423.74 are only

slightly affected by the body controller and they account for the charac- -

teristic roots at s = -245.524 + J421.118 and s = -245.524 - J421.118 of

the overall closed- loop system. Since these fast roots are very far away

from the dominant ones, this means that for all practical purposes the

dynamics of the reaction wheel can be neglected as far as the linear

system is concerned. Figure 1-3 shows the block diagram of the simplified

continuous-data low-cost LSI system, and the digital system is shown in

Fig. 1-4.

The closed-loop transfer function of the continuous-data system of

Fig. 1-3 is

KDS + KI
- J— 1 - - -

Jvs + KRS + Kps + KI

For the digital system of Fig. 1-4, the closed-loop transfer function

is written



Figure 1-3. Simplified continuous-data low-cost LSI system.
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Figure 1-4. Simplified digital low-cost 1ST system.



•B(z) GA(z)GB(z)

GA(2)Gg(z)
(1-7)

where
-Ts

-1 K f, i |y
T ^ 1* T

s2
_ v + KjT - S

z - 1 (1-8)

i<GhoG4G5> =
-1

J s'
_ r(z + D
2J..(z - I)1

(1-9)

- z-1
J s

R T
J z - 1 (1-10)

Equation (1-7) is simplified to

T2(Kpz
2 - Kp)

(TKp + 2KRT - - 4KRT (2KRT

The characteristic equation of the system is

'v - V2)

(1-11)

2Jvz
3 + (T2Kp 2KRT - 6Jv)z2 + (6Jv - 4KRT + T 3Kj)z

2KRT - KpT^ = 0 (1-12)

Or,
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83644z3 + (1.65 x 106T2 + 7.42 x 1Q5T - 2.50932 x 105)z2

+ (2.50932 x 105 - 14.84 x 1Q5T + 7.33 x 105T3)z

+ (-8.3644 x TO4 + 7.42 x 105T + 7.33 x 1Q5T3 - 1.65 x 106T2) = 6

(1-13)

The characteristic equation roots are tabulated below as functions of

the sampling period T:

T (msec) Roots

0.1 1, 0.998 ± J0.0025

0.5 1, 0.998 ± J0.0022

1 1, 0.996 ± jO.0043

5 0.998, 0.979 ± J0.0208

10 0.995, 0.957 ± J0.0411

25 0.987, 0.889 ± J0.0988

50 0.975, 0.766 ± J0.1825

100 0.950, 0.483 ± J0.2901

120 0.940, 0.356 ± JO.300

150 0.925, 0.150 ± J0.260

170 0.915, 0.0034 ± J0.144

180 0.910, 0.049, -0.195

200 0.900, 0.107, -0.571

220 0.890, 0.1116, -0.9078

230 0.885, 0.1085, -1.077 (unstable)

The root loci of Eq. (1-13) are sketched in Fig. 1-5 as a function of

T. For small sampling periods, the characteristic roots are all located near
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the z = 1 point. The linear digital LSI system becomes unstable when

T exceeds approximately 225 msec.
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1-3. Effects of Quantization on Pointing Stability of the Low-Cost 1ST -

Limit Cycle Conditions

Quantization occurs at at least three places in the LSI system. Two

are at the displacement sensor and the rate sensor where A-to-D converters

are used. A quantizer is also needed at the control torque input to the

reaction wheel since D-to-A conversion is effected there. In addition, if

the integral control Kr/s is implemented digitally, quantization should be

considered in the digital controller as well. Figure 1-6 shows the digital

LSI system with quantizers. The z-transfer functions are defined in

Eqs. (1-8), (1-9), and (1-10). The quantizers at the displacement

sensor, the rate sensor, and the reaction wheel control torque are denoted

by Q , QD»
 and QT> respectively. The input-output relation of a quantizer

p K I

is shown in Fig. 1-7. The quantization level is represented by h.

We shall analyze the effects of quantization on pointing stability

or accuracy of the 1ST by means of three different methods. The first

method utilizes the deterministic approach and establishes a least upper

bound on the pointing error due to quantization. The second method relies

on treating the quantizer as a noise source, and statistical analysis is

applied. The third method is also a statistical approach which represents

the quantizer by a linearized gain K Q(z).

It should be pointed out that a system with quantization is a nonlinear

system and its behavior cannot be predicted by linear theory. One of the

well-known phenomena of a nonlinear system is that sustained oscillations

may occur. When a digital system has several quantizers, it is extremely

difficult to predict the condition of self-sustained oscillations.
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•B(z)

Figure 1-6. Simplified digital LSI system with quantizers.
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Figure 1-7. Input-output characteristics of a quantizer.
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To illustrate the effects of quantization, and how quantization

can cause sustained oscillations in an otherwise stable linear system,

let us refer to the digital systems shown in Figs. 1-8 and 1-9. The

difference between the two systems in Figs. l-8a and l-9a is that the

former has negative feedback and the latter has positive feedback;

but both systems are stable.

For r(k) = 0, both linear systems have zero steady-state values

for c(k); that is, c(k) = 0 for k-*», for arbitrary initial state

c(0). We shall show that when quantization is considered, the system

in Fig. l-9b has a steady-state error, whereas the system in Fig. l-8b

exhibits a sustained oscillation.

Let the quantization level h be 2 in Fig. 1-7, and when the input

is an integer, the output is the same integer. The state equation of

the system in Fig. l-9b is

c(k+l) = Q[0.9c(k)] . . (1-14)

For c(0) = 10, it can be easily shown that c(k) = 4 for k _> 2.

The state equation of the system in Fig. l-8b is

c(k+l) = Q[-0.9c(k)] (1-15)

For c(0) = 10, c(k) = 8 for k >_ 2 even, and c(k) = -8 for k > 2

odd. Thus, the state of the system oscillates between -8 and +8.
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r(k)

(a) Linear system (b) System with quantizer
Figure 1-8. Systems with quantizers.

r(k) !k>ii«XA-J -1 c(k)
V w

O n.y

Z

(a) Linear system (b) System with quantizer

Figure 1-9. Systems with quantizers.

Figure 1-10. Digital LSI system with quantizers replaced by

deterministic noise sources.
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1-4. Effects of Quantization on Pointing Stability of the Digital Low-

Cost LST - Least Upper Bound Quantization Error

In this section the effects of quantization on the low-cost LSI

system are investigated using a deterministic approach. The method

of analysis is based on the "worst" error condition due to quantization.

In general, the analysis gives a conservative estimation of the quantization

error.

Since the quantization error has a maximum bound of ±h/2, the "worst"

error due to quantization in a digital system can be studied by replacing

the quantizer in the state diagram by a branch with unity gain and an

external noise source with a signal magnitude of ±h/2. The block diagram

of the digital LST system with quantizers shown in Fig. 1-6 is redrawn

in Fig. 1-10 with the noise sources. The transfer functions G. (z) , Gn(z) ,

and G C (Z ) are defined in Eqs. (1-8), (1-9), and (1-10), respectively.

The z- transform of the body attitude of the LST due to the three

quantizers when <J> = 0 is

hn h, hR
± D ± ±

GA (Z)G,(Z) + G
M b C

Substitution of Eqs. (1-8) through (1-10) into Eq. (1-16), and

simplifying, we have

, [ ± - ^ ( K z + K T - K ) ± ( T + R ) ( z_1 ) ] T2 ( z + 1 )

*B(z) = 7^ — V-5 B ~ :

z- ' 2J (z-l)W(z+l)(K z + K T-K )+2TKR (z- l
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The steady-state error of the body attitude due to the quantization effects

is obtained by applying the final-value theorem to Eq. (1-17), (if the

system is stable).

Thus,

l hn
-turxUkT) = Urn (1 - z~')*B(z) = ±-g- (1-18)

It is interesting to explore the significance of this result on

the error due to quantization. Firstly, the quantization error at the

displacement sensor is propagated through the system without change in

amplitude. Secondly, the errors due to the torque and rate sensor

quantizers are completely eliminated at the output position. This is

attributed to the integral control Kj/s in the forward path.

V-cg^ital lmptwe.yrfation oft ^onuxLnd Con&iotteA

If the proportional-plus-integral controller is implemented

digitally, the transfer function G A (Z) becomes

TK T ( z + 1 )

V z ) = K p + 2 ( z - l )

Substituting GA(
Z) ^rom Eq. (1-19) into Eq. (1-16), we can again show

that the steady-state error in $B(kT) due to the three quantizers is '

±hR/2, and the errors due to QR and Q_ are completely eliminated.

In reality, the digital implementation of the controller should

also include quantization in the digital process. Figure 1-11 shows

the block diagram of the 1ST system with quantizations also considered

in the digital controller. The z-transform of the body attitude of the
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LSI due to the five quantizers when * = 0 is

hn h, hu - , hD hT
± JG A(z) ± -J- ± 4(f̂ 4) ± 4± -f

<1 H £ £ Z - I C. L r t_,\

- 1 + GA(z)GB(z) H. Gc(z) - ~
 GB(z)

where G. (z ) is given by Eq. (1-19) and GB (Z) and G C (Z ) are given in

Eqs. (1-9) and (1-10), respectively.

Applying the final-value theorem to Eq. (1-20), we have

± h? ± h KTT2 D I
2 K lT

It is interesting to note that the introduction of the integral

control eliminates the noise signals that enter at all points after the

integral control in the control loop; however, the digital implementation

of this control in turn produces a quantization error which is bounded

by ±h2/2KjT, where h,, is the quantization level.
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1-5. Effects of Quantization on Pointing Stability of the Digital Low-
Cost LSI - Equivalent Noise Source, Statistical Analysis

In this section the pointing errors of the digital LSI system due

to quantizations in the displacement, rate, and torque channels are

investigated by statistical means. The rms (root-mean-square) error

in <j>n due to quantizations that are represented by equivalent Gaussian

noise sources with zero mean, or white noise sources, is determined by

setting <)> = 0. The results are then compared with those of the continuous-

data 1ST obtained in reference [1].

The block diagram model of the continuous-data 1ST with the quantizers

replaced by equivalent noise sources is shown in Fig. 1-12. The equivalent

digital system is shown in Fig. 1-13. It is assumed that the equivalent

noise sources that represent the quantization operations are white, so

that their power spectral density functions in both the s and the z

domains are constants. Therefore,

$P.(S), $r)(z) = $r> = power spectral density of displacement quantizer

$D(S), $R(z) = $R = power spectral density of rate quantizer

$_(s), $T(z) .= $-,- = power spectral density of rate quantizer

Let the rms attitude error of the continuous-data 1ST due to $n

be represented by aR[y The rms errors are given by the following

relations:

Displacement:

1/2
aBD f MD(s)MD(-s)ds - $c

J-joo
(1-22)
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*D(s)=*D

Figure 1-12. Continuous-data LSI with quantizers represented by
equivalent white noise sources.

*D(Z)=*D

Figure; 1-13. Digital LSI with quantizers represented by equivalent
white noise sources.
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where Mn(s) denotes the transfer function between $n(s) and $r,(s),u u D

V + Kl
(1-23),

Similarly,

Rate:

aBR 2irj
-Jc

MR(s)MR(-s)ds • $

1/2

(1-24)

Torque:

JBT _
J

MT(s)MT(-s)ds

1/2

(1-25)

where

-MR(s) = MT(s) =
»(s)

V

(1-26)

This result is obtained with the assumption that the quantizer noise

is not multiplied by the sensor gain KD, as in reference [1]; otherwise,K

the right-hand side of Eq. (1-26) should be multiplied by KD.
K

The total rms attitude error due to all three quantizers is simply

the sum of the errors due to each noise source acting alone; that is,

0B = °BD + 0BR + aBT (1-27)

From Eq. (1-26) it is easy to see that aDr) and aDT have the same magnitude.
bK DI

The line integral of the form of Eq. (1-22) can be evaluated by
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contour integration, and then the residue theorem. An integral table is

also available for the evaluation of the contour integral. Using Eqs.

(1-23) and (1-26), the rms attitude errors of the continuous-data system

are obtained as • ,

;BD

KIKR

1/2

= (2.5748lU1/2 = 1.605/$n (1-28)

JBT 2(KRKp -

1/2
= (0.8598 x 10"12$T)

1/2

= 0.927 x 10~6/<DT (1-29)

0BR = 0.927

For the digital LSI, the rms attitude errors are:

Displacement:

Rate:

T* =

Torque:

J

1/2

1/2

(1-30)

(1-31)

(1-32)

(1-33)

The transfer functions, MD (Z) , MR (z) , and M T (Z) 'a re determined from
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Fig. 1-13.

G A (Z )G B (Z )
+ G A (z )G R (z ) + G c (z) (1'34)

G r (z)
C

where

GR (z) = T (z + !) • (1-36)
B 2 J v ( z - l ) 2

0-37)

and
K z + KTT - K

G.(z) = -2——y-5 2- (sample-and-hold and (1-38)
analog controller)

(2K + TKT)z + TK, - 2K
GA(Z) = E 2(2-1} (digital implementation (1-39)

\ ~ ' of controller)

Substituting Eqs. (1-36) through (1-39) into Eqs. (1-34) and (1-35),

we get the following transfer functions which are used for the computation

of the rms attitute errors in Eqs. (1-31) through (1-33). , ,

With zero-order hold and analog controller,

T2[K z2 + KTz + (K T - K )]
MD(z) = E L_ P (1.40)
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2 2
= MT(z) =

 T (Z
A "

 ]). . (1-41)

where

A. = ?.i 73 + f-fi.i + ?K_T + T2i.
P

= 2Jyz
3 + (-6JV + 2KRT + T

2Kp)z
2 + (6Jv - 4KRT + KjT

3)z

(-2Jv + 2KRT + KjT - KpT
2) (1-42)

With digitally implemented controller,

r[(2K + TK T )z^ + 2TKTz + TKT - 2K
MD(z) = £ 1 5 i [- E. ( i_43)

2 2
-MR (z) = MT(z) = 2T (Z

A " ]) (1-44)

where

A2 = 4Jvz
3 + (-12Jy + 2T2Kp + T3Kj + 4KRT)z2

+ (120 + 2T3KT - 8KDT)z + (4KDT + T3KT - 2T2K - 4J )
V 1 K K 1 p V

(1-45)

A tabulation method or a numerical method [3] can be used to

evaluate the contour integrals of Eqs. (1-31), (1-32), and (1-33), once

the values of the parameters of the transfer functions are known. Table

1-2 gives the values of (*Brms)J» (*BrmsH
 and ^Brnis^R for various

values of the sampling period T.
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Table 1-2.

T
(msec)

0.01

0.1

1.0

5.0

10

25

50

100

Sample-and-Hold with
Analog Controller

a*°BD

^
0.0052

0.0161

0.0508

0.1140

0.1621

0.2602

0.3777

0.5652

n*
°BT

*T

2.932 x

9.274 x

2.936 x

6.599 x

9.394 x

1.515 x

2.216 x

3.368 x

io-9

ID'9

io-8

io-8

io-8

io-7

io-7

io-7

Digitally Implemented
Controller

a*°BD

^
0.0052

0.0161

0.0508

0.1141

0.1622

0.2607

0.3796

0.5720

a*
°BT

^
2.932 x

9.274 x

2.936 x

6.595 x

9.383 x

1.511 x

2.205 x

3.339 x

io-9

io-9

io-8

ID'8

io-8

io-7

ID'7

io-7

The results tabulated in Table 1-2 show that the rms errors of the

LST with sample-and-hold and the analog controller are yery close to those

of the LST with the controller implemented digitally.

It is interesting to show that the rms attitude errors of the digital

LST due to quantization are related to those of the continuous-data system

in Fig. 1-12.

Applying the limit as T approaches zero to Eq. (1-31), we get

|—T- if HniZ/MnU N~
T+0

Since

tun Mn(z) = Mn(s) (1-47)
T+0 U U
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where MD(S) is given in Eq. (1-23), and MD(Z) is given by either Eq.

(1-40) or (1-43), depending on the way the controller is implemented,

and

z-1dz = Ids (1-48)

Eq. (1-46) is written

1/2

T+0
JBD

J

MD(s)MD(-s)ds$D (1-49)

or

aBD /f1 - *JUma* (1-50)

The meaning of this relation is that the mean-square value of the

attitude error of the continuous-data system is equal to 1/T times the

attitude error of the digital system as T approaches zero. Table 1-3

gives the values of a*n//T$n and a* //T$T for various values of T.

These values are very close to the values of OBD = 1.605 and agT =

0.926 x 10" , respectively, especially at very small sampling periods.

These relations show that, in general, for small sampling periods,

the attitude error due to a white noise input in a digital system will

be less than that of the same system without sampling. For example,

for T = 25 msec, the rms attitude error ai^ is 0.2602/FT , whereas

aon is 1.605/5T . Therefore, the use of the continuous-data 1ST model
BU U

of Fig. 1-12, as in [1], for the error analysis of the digital 1ST

results in conservative results.
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Table 1-3.

T
(msec)

0.01

0.1

1.0

5.0

10

25

50

100

rr*
°BD

0*
°BT

/r»f /™r

1.644

1.610

1.606

1 . 61 2

1.621

1.645

1.689

1.787

0.927 x 10"6

0.927 x IQ"6

0.928 x 10"6

0.933 x 10"6

0.939 x 10"6

0.958 x 10"6

0.991 x 10"6

1.065 x TO"6

The results in Tables 1-2 and 1-3 again show that for the same

quantization levels, the quantizer in the displacement channel produces

far greater attitude errors than those due to the quantizers in the rate

and torque channels.
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1-6. Effects of Quantization on Pointing Stability of the Digital Low-

Cost LSI - Quasi linear Analysis, Statistical

In this section the effects of quantization on the low-cost LSI

are studied by means of a quasi linearized equivalent-gain approach [4],

[5]. Although the analysis is conducted in the statistical sense, there

is a basic difference between the present analysis and the one conducted

in Section 1-5. In the previous section, the rms attitude error of the

LSI is evaluated by treating the quantizers as noise sources that are

stationary Gaussian processes with zero means. In this section,

the quantizer will be treated as a nonlinear element whose input is

a random stochastic process. An equivalent gain, K Q(z), is derived for

the quantizer. The attitude of the LSI is then determined with the quantizer

replaced by Kg (z), and when the system is subject to a stochastic input.

The only restriction with this method is that only one quantizer can be

considered at a time. Since it has been established that the attitude

of the 1ST is more sensitive to the quantizer Q~, we shall consider only

the system model shown in Fig. 1-14.

The quantizer QQ is isolated as shown by the block diagram in

Fig. l-15a; the input is x(t) and the output is y(t). Figure l-15b

shows the equivalent gain representation of (L. The equivalent gain

of QD is defined as

*(z)

where <J> (z) denotes the z-transform of the autocorrelation function of
XX

x(t) , and $ (z) is the z-transform of the crosscorrelation function ofxy
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Gc(2)

GB(z)

Figure 1-14. Digital LSI with quantizer in the displacement
channel.

x(t) y(t)

(a)

(b)

Figure 1-15. The representation of the quantizer with statistical
input and output as an equivalent gain.
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x(t) and y(t). In order to derive K (z), we consider that the input

to (L is a stationary Gaussian process with zero mean so that the

probability function is

p(x) =

where a is the standard deviation of x(t).
X

The crosscorrelation function of x(t) and y(t) is given by

$xy (T) = ( . QD(x)pU)pAdx (1-53)
J -00

where

QD[x(t)] = y(t) (1-54)

is the mathematical description of the quantizer, and

(1-55)2
ax

Thus,

J_
2

ax

Taking the z-transform on both sides of Eq. (1-56) and rearranging, we have

<*> (z) i
& (z) 2xxv ' av

 J-°°
A
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Although the equivalent gain K (z) is indicated as a function of z,

the nature of the right-hand side of Eq. (1-57) implies that it is

always a constant. It is apparent that although our interest is centered

on the quantizer nonlinearity, in general, the definition of K (z) can

be applied to any comman nonlinearities found in control systems.

With reference to the quantizer characteristics of Fig. 1-7,

y(t) = 0 -h/2 < x < h/2

y(t) = -h -3h/2 < x <_ -h/2

y(t) = h h/2 < x < 3h/2

- -(N-l)h

y(t) = (N-l)h

y(t) = -Nh ' _„ < x

y ( t ) - N h

where N is a positive integer.

Equation (1-57) gives

-(2N-l)h/2',
K (z) = -7 ( - N h ) p ( A ) A d A

r(2N-3)h/2 f -h /2
- ( N - l ) h p ( X ) X d X ' + • • • + -hp (A)AdX

J-(2N-l)h/2 J-3h/2

f3h/2 f(2N-l)h/2
hp(A)AdA + ... + (N- l )hp(X)XdX

J h/2 J(2N-3)h/2

Nhp(A)AdA (1-58)
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Or,

a

3h/2
2h | p(X)XdX

h/2

f(2N-l)h/2
2(N-l)h p(X)XdX

J(2N-3)h/2

2Nh p(X)XdX
(2N-l)h/2

(1-59)

Since all the integrals in the last equation have the same integrand,

we evaluate one of the integrals as follows:

3h/2 . f3h/2
p(X)XdX = = — XdX

h/2 J h/2 ^TT ax
(1-60)

Let

Then

9 9
u = XV2c/

A

du = XdX or XdX = a du
A

and

h/2
p(X)XdX =

.2 2

2
X exp(-u)axdu

2 2
exp(- ) + exp(- d-61)

Thus, the equivalent gain for the quantizer with 2N levels of quantization

is
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=/fV U 8c
exp(- -) + -.. + exp(-

(1-62)'

Although the equivalent gain has been derived from Qn, the

response of the closed-loop system of Fig. 1-14 cannot be determined

by using K (z) directly, since a , the standard deviation, of x(t)
GCj X

is not known. The analysis procedure is outlined as follows:

For a given a , which is the rms value of the input,

. (1) The equivalent gain K (z) is computed using Eq. (1-62) for

various values of a .
A

(2) The values of a that correspond to the various values of K (z)

obtained in step (1) are calculated from

i i
(2)Mx(z >*cc<z'z

where

Mx(2) = 1 + Keq(z)GA(z
1)GB(z) + Gc(z)

and

It is assumed that the input of the system is a white noise.

The solution of a for the given a is determined when there is
A (*.

a match between a from Eq. (1-63) and that used in step (1).
X

(3) The rms attitude response of the system is determined from
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1 1
M(z)M(z"l)$cc(z)z-

|dz (1-65)

using the K (z) which corresponds to the a obtained in
C*-J A

step (2).

For the LSI system, a quantization level of h =.0.003 is selected

for Q The quantizer is assumed to saturate after 5000 increments; that

is, N = 5000 in Eq. (1-62). A digital computer program is prepared

which automatically cuts off the series of Eq. (1-62) when an additional

term is contributing less than 10~ to the entire result. The sampling

period T is chosen to be 25 msec, and the system transfer functions G.(z),

GgU), and G (z) are given by Eqs. (1-38), (1-36), and (1-37), respectively.

Following the procedure outlined above, the results of the analysis with

several values of a are tabulated in Table 1-4.
Irf

The results in Table 1-4 show that for a given set of quantization

and saturation levels, both small and large input signals cause the

quantizer to act as an attenuator. The true characteristics of the system

as a function of the input a are displayed by normal izi.ng aR. The last

column in Table 1-4 represents the normalized output 0Bf., which is

defined as

where

°B1 = 0B at °c = ] . ' (1-67)
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Table 1-4.

Input

0c

5 x l Q - 4

io-3

ID'2

ID'1

1

10

50

ax

5.318xlO"4

1.086xlO"3

1.093xlO" 2

1.093X10"1

1.093

10.87

53.37

No. of terms
K used in Kg q(z]

0.075

0.797

1.0

1.0

1.0

0.836

0.22

2

3

19

176

1753

5000

5000

Output
1

5 .20x lO" 5

2.40x lO" 4

2.68x lO" 3

2 .60x lO" 2

2.60x 10

2.383

6.88

Normalized
output

aBN

0.4

0.92

1.0

1.0

1.0

0.916

0.529

Figure 1-16 shows the plot of K (z) versus a . The plot has the
GC| X

significance of a "statistical describing function" of the quantizer. This

plot shows that for small inputs, when the input magnitude is comparable to

the quantization level, h, the gain drops below unity, and the quantizer is

attenuating the signal. For larger inputs the quantizer appears as a unity-

gain element in a statistical sense, and for very large inputs, where the

input magnitude is comparable to maximum output (N levels of h), the

quantizer gain again reduces, and the input is attenuated.

Figure 1-17 gives a plot of a versus a which represents the solution
X C

of Eq. (1-63) and step (1) for the range of a considered.
t*

Figure 1-18 shows a plot of aRN versus a . It is seen that the normalized

output reduces from unity in the ranges of a when K (z) is less than 1.

As an interesting comparison, the statistical method of Section 1-5

assumes K (z) = 1 for all values of a and, consequently, it always yields
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a result of ORM
 = 1- In'this sense that method is more conservative and does

not recognize the severity of the nonlinearity due to the quantizer at

very small and very large input magnitudes.
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2. Stability of the Analog Low-Cost Large Space Telescope Due to

Quantization

2-1. Introduction

The objective of this chapter is to conduct an investigation on

the pointing stability of the low-cost Large Space Telescope (LST)

System under the influence of quantization at various locations of

the system. Only the analog model of the LST system is considered

in this chapter. The stability of the digital LST system with quan-

tization is considered in Chapters 5 and 6.

The block diagram of the simplified analog LST system with

quantizers is shown in Fig. 2-1.

The describing function method is used to determine the condition

of self-sustained oscillation in the LST system due to the effect of

each of the three quantizers acting alone. The present analysis

considers only one quantizer at a time.

Let the analog describing functions of the quantizers Q~, QT, and

Qn be represented by !\L, N,, and NR, respectively. In general, the

describing function of a quantizer nonlinearity is a function of the input

amplitude, E; quantization level, h; and the number of quantization

levels, n, which depends on E.

For the LST system shown in Fig..2-1, the "characteristic equations"

of the system when each one of the quantizers is acting, are given as

follows:
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Displacement Quantizer (L:

V + ND(Kps + KI} * KR* = ° (M)

Torque Quantizer Q,.:

Jvs
3 + NT(KRs2 + Kps + Kj) = 0 (2-2)

Rate Quantizer QD:

Jvs
3 + Kps + Kj + NRKRs

2 = 0 (2-3)

These equations can be conditioned by dividing both sides of the

equations by the terms that do not contain the describing function, so

that the stability equation is expressed in the form of

1 + N6(s) =0 . (2-4)

where N is the describing function, and G(s) is a linear transfer

function. The condition of self-sustained oscillations is found by

investigating the possible intersections between the trajectories of

-1/N and G(s) in the complex plane.

For the equations given in Eqs. (2-1), (2-2) and (2-3), the equiva-

lent transfer functions are

K s + KT

(2-5)
s ( J v s + K R )



GT (s) =
KDs + K s + KT

K [J 1

KRS

V + KpS + KI

44

(2-6)

(2-7)
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*c .(\/̂  *e Q- - - • KI

- - i

Xy— U — Np T ,.

Displacement Proportional
Quantizer plus Integral

Control

_/ T
Q

Rate Q

"T
1

V ^

orque
uantizer

"R KR

1 ,
s

B̂

uantizer Rate feedback

Figure 2-1. Simplified analog LSI system with quantization.

4h

3h

2h

-5h -4h -3h -2h -h -

y(t)

0 h h
2

-h

-2h

-3h

-4h

2h 3h 4h 5h
•e(t)

Figure 2-2. Input-output relation of a quantizer.
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2-2. Analog Describing Function of the Quantizer Nonlinearity

Consider that a quantizer has the input-output relation as shown

in Fig. 2-2. Let the input to the quantizer be a sine wave,

e(t) = Esin art (2-8)

The quantization level is h, and let the magnitude of E be such that

—jj—^—£ E < -* 2— (2-9)

where n is a positive integer. A typical output of the quantizer is

shown in Fig. 2-3.

The fundamental component of the Fourier series expansion of y(t)

is

y^t) = Y] sinuit (2-10)

where

4 fiT/2± y(t) sin ut doit (2-11)
S

Evaluating the last integral, we have

4 f a n - 4 f717^
= J y(t) sinutdut + ̂  nhsintotdait

11 al * Jan

4 n;] rai+i 4 r71/2
= - I ihsintotdut + ± nh sinwt dwt (2-12)

7 1 i= J. ^ J
an
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Then,

Since

s ina . =. _

c o s a i= r ~

48

= - i[cosa i+1 - cosa i ] + cosan (2-13)

sin a., = . (2-14)

• cos a. = /I -
. V

Expanding the right-hand side of Eq. (2-13), we can show that

Y, = — I cos a. (2-18)
1 " 1=1 ]

Substituting Eq. (2-17) into Eq. (2-18), we have

Y =4h V {l f ( Z 1 " ^ , (21Yl u i1 - 2E (2 1

The describing function of the quantizer is written as

N(E/M - « ! - - (2-20)
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Figure 2-4 shows the plot of N(E/h) as a function of E/h. We

shall show in the following that

tim N(E/h) = 1 (2-21)

Fw

Letting x = E/h, Eq. (2-20) is written

Expanding the quantity inside the summation sign in the last

equation, we have

Ifi ll2 Ii 4

- - -

3fi ll6 15 fi ll8
- ' ~ - -

Or

15 f1 - I]' 1 • (2-24)
384X

8

Taking limit as x approaches infinity and n approaches infinity, in

the last equation, we get
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N ( x ) = L u n -

JUm ^~

n-x»

.2 .4
1 - 3i.6

n - JLlL
, 2 3

J_n_
, 4 5

151
.8

48X° 384X
8

15

48X
6 7

384X
8 9

1 fi 11
TT ' " 2'3

11 _LI ' 15 1
8'5 "48 '7 " 384"9

= 1 (2-25)

Since the describing function of the quantizer nonlinearity is

always a real number, the function -l/N(E/h) in the magnitude (db)

versus phase coordinates will lie on the -180-degree axis for all

values.of E/h. The plot in Fig. 2-4 shows that the magnitude of

- l /N(E/h) is infinite for 0 £ E/h < 0.5. For 0.5 £ E/h £ 0.707, the

plot of -l/N(E/h) extends from infinity to -2.09 db along the -180-degree

axis. Over the range of 0.707 £ E/h £ 1.5, - l /N(E/h) extends from

-2.09 db to 1.9 db along the -180-degree axis, etc. As E/h approaches

infinity, the plot of - l/N(E/h) is reduced to the zero-db point.

Figure 2-5 shows the plot of N(E/h) in magnitude versus E/h and shows

the multivalued property of the function.
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-0.53

- 0.55

- E/h= 0.6
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E/h = 0.707

I
-180°
PHASE

Figure 2-4. Analog describing function for the quantizer nonlinearity.
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2-3. Self-Sustained Oscillations of the Analog LSI System with

Quantization

The transfer functions of the three quantizers, 0-, Q,, and QR,

given by Eqs. (2-5), (2-6), and (2-7), are plotted in Fig. 2-6, together

with the -l/N(E/h) trajectory. The following system parameters are used:

K = 1.65 x 106 KD - 3.71 x 10
5

P K

Kj = 7.33 x 105 Jv = 41822

Figure 2-6 shows that since the plot of GD(S) does not intersect

the -l/N(E/h) trajectory in the finite domain, the quantizer Q_ will

not cause any self-sustained oscillations in the 1ST system.

Both the curves for GT(S) and GR(s) intersect the -180-degree axis

and the -l/N(E/h) trajectory at 25 db.

Thus,

20 £og1 Q | l /N(E/h) | = 25 db . (2-26)

which gives

N(E/h) = 0.05012 . •: . (2-27)

Figure 2-4 shows that for this value of N(E/h),

£ = 0 . 5 (2-28)

or

E = 0.5 h (2-29)
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100

V)
-J
UJ
tt>
U
UJ

-30O -260 -220 -/80 -J4O -100

PHASE (DEGREES)

-60

Figure 2-6. G (s ) plots for the analog low-cost LSI system with various
quantizers.
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This means that the quantizers QT and QR each independently may

cause self-sustained oscillations to occur in the LSI system. Further-

more, the self-sustained oscillations will have an amplitude equal to

one-half the level of quantization h. Another point of interest is

that the intersect between GT(S), GR(s), and -l/N(E/h) corresponds to

n = 1, so that the quantizers QT and QD are essentially acting as aI K

simple relay with dead zone.

Figure 2-6 shows that the frequency of the oscillations caused by

QT is 1.5 rad/sec, and that caused by QR is 6.3 rad/sec..

It is interesting to point out that the analysis in Chapter 1 shows

that the displacement quantizer Q~ produces far greater quantization

error than the torque and rate quantizers. However, the describing

function analysis shows that Qn does not cause self-sustained oscillations:

whereas QT and QD may excite oscillations with amplitudes equal to one-I K

half the level of quantization, h/2. All these factors must be taken

into consideration when selecting the quantization level.
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3. Stability of the Analog Low-Cost Large Space Telescope with

Reaction Wheel Friction Nonlinearity

3-1. Introduction

The objective of this chapter is to conduct an investigation on

the pointing stability of the analog model of the low-cost Large Space

Telescope (LST) System with the reaction wheel frictional nonlinearity.

Although the LST system is digital, the stability study on the

analog model will establish a limiting case when the sampling period

becomes very small, thus providing a check on the results of the digital

system.

The block diagram of the digital low-cost LST system, including the

reaction wheel dynamics, is shown in Fig. 1-1. It has been shown in

Section 1-1 that the dynamics of the LST system can be simplified.

Figure 3-1 shows the block diagram of the simplified low-cost LST

system with the reaction wheel nonlinearity.

The A of the system shown in Fig. 3-1 is

A = 1 + KRG4 + G^Gg + NG6G? . (3-1)

where N denotes the continuous-data describing function of the reaction

wheel frictional nonlinearity.

Substitution of the expressions of G, , G», G.-, G,., and G-, into
I 4 b o /

Eq. (3-1 ), we have

JRWS

\
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Setting A to zero, and rearranging Eq. (3-2), we get

which is the "characteristic equation" of the system.
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3-2. Condition of Self-Sustained Oscillations in the Analog 1ST System

with Reaction Wheel

It has been shown [1] that the nonlinear frictional characteristics

of a reaction wheel can be described by the Dahl model. Therefore, the

analog describing function of the CMG frictional nonlinearity derived .

in [5] can be directly utilized.

The equivalent transfer function that N sees is determined from

Eq. (3-3) by dividing both sides of the equation by the terms that do

not contain N. We have

NJ s
1+ = ^ =0 (3-4)

JRW< JvS + KRS + Kps + KI} '

Thus,

G (s) = , (3-5)

' JRW< JvS + K R S + V + K I )

The condition of self-sustained oscillation is investigated by

plotting G (joj) and -1/N in the magnitude (db) versus phase coordinates.

Figure 3-2 shows the plot of G a( jw) of the 1ST system with

KR = 3.71 x io5

K = 1.65 x IO6

Kj = 7.33 x IO5

Jv = 41822

JRW = °'2
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Figure 3-2. Geg(jw) and -1/N plots of analog LSI with reaction wheel and
fnotional nonlinearity.
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and the plots of -1/N with

(i) y = 8470 (ii) y = 84700 (iii) j = 8470

TGFQ= 0.0424 T6FO= 0.0424 TGR) = 0.424

Since the G (joi) plot never enters the region bounded by -180°

and -270° in which the plot of -1/N lies, the analog LSI system will

not have self-sustained oscillations, due to the reaction wheel

frictional nonlinearity.



4. Stability of the Digital Low-Cost Large Space Telescope With

Reaction Wheel Friction Nonlinearity
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4-1. Introduction

In this chapter we shall investigate the condition of self-

sustained oscillations of the digital low-cost LSI system with, reaction

wheel friction nonlinearity.

The block diagram of the simplified LST system is shown in Fig.

4-1. The equations written for the outputs of the samplers are:

*e(z) = -GA(z)$e(z) + N(z)GB(z)0RW(z)

6R W(z) = Gc fre(z) - N(z)G D (z )0 R W (z )

(4-1)

(4-2)

where N(z) denotes the discrete describing function of the reaction

wheel friction nonlinearity. Since the friction nonlinearity of the

reaction wheel can be represented by the Dahl model, N(z) is identical

to the discrete describing function of the CMS nonlinearity [5].

The transfer functions in Eqs. (4-1) and (4-2) are

GhoGTG2G3
KRG2

(4-3)

GhoG2G3
KRG2

(4-4)

G c < z > =

, i / i rho 1 4 5
KRG2

(4-5)
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GhoG4G5
KRG2

(4-6)

The signal flow graph representing Eqs. (4-1) and (4-2) is shown

in Fig. 4-2. The A of the system is obtained from Fig. 4-2,

A = 1 + 6A(z) + N(z)[6A(z)GD(z) - GB(z) GC(Z) + GD(Z)] (4-7)

Setting A to zero, the last equation can be written in the form

of

1 + N(z)Geq(z) = 0 (4-8)

where

Wz)=
GA(z)GD(z) - GB(z)Gc(z) + GD(z)

1 +
(4-9)

The individual transfer functions are evaluated as follows:

KP , Ki
(s2(s + a) ' s3(s + a)J

i!k z -_ _ _
2a(z - I)2 a2(z - 1) a3 a3(z - e"aT)

(4-10)

a = KR/Jv

GB(z) = ~B KR
1 - e-aT

Z - 1 a(z - e-aT)J
(4-11)



N(z)GB(z)

65

N(z)GD(z)

RW

Figure 4-2. Signal flow graph,
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4-2. Self-Sustained Oscillations in the Digital LSI System With

Reaction Wheel Nonlinearity

Figure 4-3 shows the plots of G (z) in Eq. (4-9) for various

values of n with T as a parameter. The integer n and sampling period T

are related to the frequency of oscillation by the following equation:

(4-14)

The following system parameters are used:

K = 1.65 x 106 KD = 3.71 x 1Q5

p R

K = 7.33 x 105 J =41822

JRW.

In Fig. 4-3 the curve for n = 2 extends up to approximately 30 db

at T = 0.7 sec. Also, as n is increased the curves for G (z) approach

the curve for G (s) presented in Fig. 3-2. The plots of G (z)

together with the plots of -l/N(z) allow the study of self-sustained

oscillations in the digital 1ST system.

Figures 4-4 through 4-6 show the plots for -l/N(z) for various n.

In these plots y = 84700 and TGFO = 0.424. In all cases, the magnitude

of the lowest point of the -l/N(z) curve as E approaches 0 is given by

GFO

With the given parameters this point is at -83.66 db. The curves

for n = 2. are shown in Fig. 4-4 and consist of two straight lines at
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-180° (for 0 <_ 4> < iT/2) and -360° (for ir/2 < <J> £ IT). The plots for

n = 3 and n = 4 are shown in Figs. 4-5 and 4-6, respectively. Several

values of $ are plotted in each case to illustrate the effect of the

phase of the input signal. It should be noted that for odd n the curves

repeat every 180/n degrees starting from <{> = 0, and for even n the curves

repeat every 360/n degrees starting from <f> = 0. As the input amplitude E

goes to infinity, the curves also go to infinity and span a region 180/n

degrees or 360/n degrees wide for odd or even n, respectively. This

region is centered about the -270° line. Thus, as n goes to infinity

these curves approach the -1/N curve of the continuous system shown in

Fig. .3-2.

For stability analysis it is sufficient to consider only the bounds

of the -l/N(z) plot for a fixed n. Self-sustained oscillations can

occur if the G(z) curve corresponding to the same n intersects with

the F(z) plot. Figures 4-3 through 4-6 show that self-sustained oscillations

can readily occur in this system with the choice of T determining the

possible n values which can exist. As the critical regions for higher

values than n = 4 can be easily visualized, it is apparent that this

system will have self-sustained oscillations for integral values beyond

n = 4. However, as n increases, theamplitude of oscillation decreases

and the oscillation will eventually cease as T gets smaller and smaller

and n gets larger and larger.

If y and T~RO are increased then the curves of -l/N(z) move up with

the end point shifting according to Eq. (4-15). Figures 4-7 through 4-9

show the plots of -l/N(z) for n = 2, 3 and 4, respectively, with y = 8470

and T = 0.0424. In this case the lowest point is at -23.66 db and
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self-sustained oscillations are possible only for n = 2 over a fixed

small range of sampling periods. If T is chosen to exclude the critical

region, self-sustained oscillations can be avoided.
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5. Discrete Describing Function of A Quantizer

5-1. Introduction

The effects of quantization and the study of quantization error

conducted in Chapter 1 are all based on the assumption that the digital

system with quantization is stable and free from sustained oscillations.

Since a quantizer is a nonlinear element, it can cause self-sustained

oscillations. In Chapter 2 the condition of self-sustained oscillations

in the analog low-cost LSI system with quantizer is studied by use of

the continuous-data describing function. However, in reality, the low-

cost LSI system is a digital system. The interaction between the sampling

operation and the quantizer will bring about phenomena which can be

grossly different from that in an analog system. Therefore, it is

essential that the discrete describing function (DDF) of a quantizer be

derived. To the authors' knowledge the DDF of a quantizer has not been

derived in the past.

Figure 5-1 shows the input-output characteristics of a quantizer.

The input of the quantizer is denoted by e*(t), and the output by y*(t).

It is assumed that the input of the quantizer is the output of an ideal

sampler. Therefore, e*(t) and y*(t) are trains of impulses. Furthermore,

it is assumed that the input to the sampler, e(t), is a cosine wave, and

thus the amplitude of e*(t) is. modulated by a cosine wave; that is,

e(t) = Ecos (wt + <|>) (5-1)

e*(t) = E I cos (kuT + 4>)6(t - kT) (5-2)
k=o
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-»- e*(t)

(b)

Figure .5-1. (a) Quantizer nonlinearity.

(b) Input-output relation of quantizer.
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where E is a constant, to is the frequency in radians per second, T is

the sampling period in seconds, and 6(t) denotes the unit impulse

function. The z-transform of e*(t) is

E(z) = —~ [(z - cos toT) cos cj> - sin wT sin 4>] (5-3)
z - 2z cos wT + 1

the z-transform of y*(t) is denoted by Y ( z ) .

The discrete describing function of the quantizer nonlinearity is

defined as

N(z) =||f[ (5-4)

As in. the case of the relay-type nonlinearity, we assume that

because of the periodic nature of the sampler, e*(t) and y*(t) are all

periodic functions of period nT, where n is a positive integer greater

than or equal to two. Thus,

fr c\(5-5)

or

coT = - (5-6)

n = 2, 3, 4

The DDF N(z) is incorporated in the "characteristic equation" of

the system,

1 + N(z)Geq(z) =0 (5-7)
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for the determination of the condition of self-sustained oscillations,

where G (z) denotes the linear transfer function which the quantizer

nonlinearity sees. Graphically, the condition of self-sustained

oscillation characterized by the period nT is determined by the inter-

sections of the G (z) trajectories with the critical regions of -l/N(z),

all for the same n. Therefore, the DDF problem involves the determination

of the critical regions of -l/N(z) for the quantizer for n = 2, 3
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5-2. The DDF of A Quantizer for n = 2

In order to illustrate the derivation of the DDF of the quantizer

nonlinearity, we shall first consider the case of n = 2; that is, the

self-sustained oscillation is characterized by the period which is equal

to twice the sampling period.

For this mode of oscillation, the waveforms of e(t), e*(t), and

y*(t) are shown in Fig. 5-2.

For n = 2, Eq. (5-6) gives wT = TT; Eq. (5-3) becomes

E(z) =

The z- transform of y*(t) is written

Y(z) = ̂T (5-9)

where k is a positive integer. In this case it is assumed that the

value of E is constrained by the following equation:

Using Eqs. (5-8) and (5-9), we have

1 _ E cos 4>
. " NlzT kh

For a given set of values of k, h, and <}>, the constraints on the

values of E for n = 2 are

(5-11)



82

- (2k
max 2 cos

E, --̂ ^"min 2 cos <|>

Substituting E and E_. into Eq. (5-11), we haveMI i n

(2k + 1)

(2k - 1)
2k

(5-12)

(5-13)

max

1
HTz (k) = -

(5-14)

(5-15)

The last two equations indicate that the critical region for -l/N(z)

for n = 2 is the line which extends from -(2k - 1)/2k to -(2k + 1)/2k

on the negative real axis in the polar coordinates.

It can be shown that

1
(k+1) <

max
(k) (5-16)

max

Since

(k+1) =
max

2(k + 1) + 1
2(k + 1) = 1 + 2(k (5-17)

and

max 2k
_

2k (5-18)

thus, Eq. (5-16) is verified.
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Figure 5-2. Waveforms for n = 2.
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Figure 5-3. Critical region of -l/N(z) for quantizer for n = 2.
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Similarly, using Eq. (5-15) we can show that, in general,

(k+1) (k)
mm

Thus, let S(k) be the set which is bounded by

(k)(k) .
max

and
"NUT

and S(k+l) be the set which is bounded by

1
NTH

(k+1) and
max

(k+1)

then

S(k+l)c S(k)

for k = 1, 2, 3

Equations (5-14) and (5-15) also show that

LLm - T
" N?iy (k)

max
= Lun

k-K)
- ,] (k)

min

(5-19)

(5-20)

(5-21)

This result implies that as the number of quantization levels increases,

the quantizer characteristics approach a linear gain, and the critical

region reduces to the (-1, jO) point in the complex plane.

The critical region for n = 2 is shown in Fig. 5-3.
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5-3. The DDF of A Quantizer for n = 4

Before embarking on the derivations of general expressions of

-l/N(z) for all n > 2, the case for n = 4 will be considered as an

illustrative example.

For n = 4, the input pulse train of the quantizer can assume a

maximum of two different pulse amplitudes, k and k,. The mode of

oscillation is thus characterized by A = (k , k,), where k and k, are

positive integers. Figure 5-4 illustrates the input and the output of

the sampler when the former is shifted through 360 degrees. It is

observed from these waveforms, as well as will be verified later by

equations, that the critical region for n = 4 repeats every 90 degrees

for <}>, so that only the range for -45° <_'()><. 45° needs be considered.

For n = 4, cos wT = cos 90° = 0, z = j. Thus, Eq. (5-3) becomes

E(z) = -^— (zcos<j> - sin4>) (5-22)
z- + 1

Mith reference to Fig. 5-4, the expressions of the input to the

quantizer for the various ranges of cf> are written as follows:

h(k z + k n ) z
-90° 1<J>10° Y ( z ) = - ^o - ! — (5-23)

z^ + 1

h(-k z + kjz
-.180° < <f> <. -90° Y ( z ) = - ^ - • — (5-24)

z^ + 1

h(k z - k,)z
0 ° < c f > < 9 0 ° Y(z) = V~ — (5-25)

z^ + 1
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Figure 5-4. Input and output signal waveforms of sampler preceding
the quantizer as $ varies through 360°.
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Figure 5-4. Input and output signal waveforms of sampler preceding
the quantizer as 41 varies through 360°.
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90° £ <f> <_ 180' Y(z) =
h(-k z - k,)z
- 1 - 1—

z- + 1
(5-26)

The constraints on the magnitude of E over these ranges of <!> are

tabulated as follows:

(2k - (2k
(5-27)

and

(2k, -
- i E s i n <H i

(2k,
(5-28)

These inequality conditions lead to maximum and minimum bounds on E.

When these E and E . are substituted intomax mm

(5-29)

and along with Eqs. (5-23) through (5-26), the equations that define

the boundaries of the critical regions are obtained as

and
max

For instance, for -90° <. <f> <. 0°, from Eq. (5-27),

E .
(2kQ -

min 1 2 cos <j) (5-30)

Using Eqs. (5-22), (5-23), and (5-29), we have



Rationalizing the last equation, we have

Let

where

Then, solving for tan 4) from Eq. (5-34) gives

where

89

mini T-jrT(tan4) - (5-31)

2k - 1

mini
k,)] (5-32)

min 1
= R + jl (5-33)

2k - 1
R = ^ 75- (k, tancj> - k )

2(k^ + k
2) ! °

(5-34)

2k - 1
- k,) (5-35)

tan

R + kQC
(5-36)

C = (5-37)
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Substitution of Eq. (5-36) into Eq. (5-35) yields after simplification,

2k - 1
(5-38)

which is the equation of a straight line in the complex -l/N(z) domain.

Similarly, from Eq. (5-27),

(2k
max 1 2 cos -90° (> < Oc (5-39)

Following through the same procedure as described above, we have

2k + 1o
max

(5-40)

which is represented by a straight line with the equation

T - -P- R
kKl

2k + 1
(5-41)

The boundaries for -l/N(z) when the constraint equation of Eq. (5-28)

is used are denoted as

1

max 2
and 1

" NH5" mi n 2

The equations which define the boundaries of -l/N(z) for the entire

range of <f> are tabulated below:

k 2k - 1
-90° £ 4> £ 0°

90° < <j> < 180°

(min 1)
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k 2k + 1
* IT R - ~5k (max

kl . ^kl

k, 2k, - 1

k, 2k, + 1

o

k 2k - 1
-180° £ 4 £ -90° I = ~- R + —§,- (mini)KI ^KI

0° £ $ £ 90°

k 2k + 1

2k] (max 1)

k, 2k, - 1
I = - ipR - -4i: . (min2)

ko ^Ko

k 2k + 1
~ R - ~ —

These equations show that for the oscillatory mode of n = 4 and

A = (k , k,), the critical regions are bounded by straight lines, and

that it is sufficient to consider the range of -90° < _ < { > < _ 90°.

However, Fig. 5-4 shows that k >^ k, for -45° £<}>_< 45° and k <_ k,

for 45° £ |<f>| <_ 90°, thus, the critical regions for modes A = (k , k,)

and A = (k,, k ) are identical. It is necessary only to consider the

range of <j> from -45° to +45°. In general, one does not have to use the

constraints on <{>, as the intersects of the eight equations in Eqs. (5-42)

and (5-43) will naturally define the critical region.
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Mocte/i A = (fe , 0) and A = (0, fe?)

Figure 5-4 shows that when $ = 0° or 180°, k, = 0, and the mode is

described as A = (k , 0). Similarly, when (J> = ±90°, the mode is

A = (0, k^.

For the mode A = (k , 0), Eqs. (5-42) and (5-43) are reduced to

2k - 1
R = 57; (min 1)

2k i+ 1
R = -- on - (max 1 )

o

(min2)

2ko
(max 2) (5-44)

These four lines define a square as shown in Fig. 5-5.
i

For the mode A = (0, k, ), it is simple to show that the critical

region is described by equations of the same form of Eq. (5-44) with

k replaced by k, . Therefore, the square region shown in Fig. 5-5

is also for the diode A = (0, k, ) with k replaced by k-, .

Mode. A = (kQ, kj), kQ = fej

When cj> = ±45°, ±135°, kQ = ^ , as shown in Fig. 5-4. The critical

region is now described by the following four equations:

2k - 1
0
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JI

2k
A = (k0, ko)

Figure 5-5. Critical regions of A = (k , 0), (0, k,), and (k , k ).
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2k + 1
I = -R -

2ko

2k - 1
I = R +

2ko

2k + 1
I '= R + —%z (5-45)

o

i
The critical region is again a square, as shown in Fig. 5-5.

In general, the critical region for the mode A = (k , k,) is .

defined by the intersects of the eight equations in Eqs. (5-42) and

(5-43). As an illustration, Fig. 5-6 shows the critical region for
i

A = (2, 1) which is also for A = (1, 2). Notice that this critical

region is bounded by that of A = (2, 0) or A = (0, 2).

, i
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5-4. A General DDF of a Quantizer for n > 2

In this chapter we will generalize the results of the previous

sections and derive a DDF of a quantizer which is valid for all n > 2.

Thus, for an oscillation of any order, n, we seek expressions which

will define the critical regions of -l/N(z) for all possible modes

that can exist.

The derivations for the case of odd n and for the case of even

n differ substantially and are therefore considered separately.i

A. Even n
; i .

When n is even, the input pulse train to the quantizer can

:assume a maximum of n/2 different amplitudes. The mode of oscillation

is thus characterized by

A = (kQ, kr k2, ..., kn _-,) (5-46)

where

n1 = n/2 . (5-47)

and

k.. = a positive integer, i = 0, 1, 2, ..., n,-l.

The corresponding expression for the output of the quantizer can

be written as

Y(Z) - h(kobo •+ k^z- + k2b2z- ..... k ,b
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-n -n,-l -(2n
-koboz -k^z - ... -k ^z

-n, -2n, , -(n-,-1)
h(l - Z +2 - ...Mk + k Z - ' + ... ^bZ

-n ^ V1

h(l + z ]) (I k-b.z'1)
1=0 1 T

1=0m
z ' + 1

n,-
h I k.b.z ]

(5-48)
lz ' + 1

where

i
h = level of quantization

b. = +1 or -1, depending on the phase of the input; i =0, 1, ..., n-,-1

The variables b . , i = 0, 1, 2, ..., n,-l, determine the sign of

the corresponding input and output pulses of the quantizer. The value

of b. is determined by the variable i and the phase shift <{> associated

with the input cosine signal.

The input to the sampler is written as

e(t) = Ecos (tot + <j>) (5-49)
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and the input to the quantizer is

CO

e*(t) = E I cos (kuT + <|»}6(t - kT) (5-50)
k=0

For an oscillation of order n, we have

u)T = ̂  . (5-51)

or

WT = — ' when n is even , (5-52)
nl

Thus, Eq. (5-50) becomes

e*(t) = E I cos{ + <fr)6(t - kT) (5-53)
k=0 "1

Let

i = 0, 1,2, .... n,-l (5-54)i

Then the variable b. is given by

i
bj = SIGN[cos (^ + 4>)] (5-55)

With a given input amplitude E, an output of k.h at time a-

requires the following relation to exist:

.(2k. - l)h (2k. + l)h
- ̂ 2 - < |Ecos{a.j + $)| <— 4 - (5-56)
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Equation (5-56) implies that for a given even n, all combinations

of k.'s in the mode expression in Eq. (5-46) may not exist. Further,

the range of <j> over which a particular mode exists will vary from mode

to mode. These facts provide useful insight into the operation of a

quantizer and play an important role in the implementation of any

scheme which is used to calculate the critical regions.

In general, the range of $ which must be considered in describing

function derivations is 2ir radians, but due to symmetry the required
i

variation of (J> can be reduced substantially. In the case of a quantizer

and with n being even, the output waveform repeats after every 2ir/fn

radians change in <|>. This fact was illustrated for n = 4 by the wave-

forms of Fig. 5-4. Thus, it is sufficient to consider the range

-ir/n <. 4> <. ir/n.

The expression for the output of the quantizer, Eq. (5-48), is

valid over that;/range of 4> where the k.'s and b.'s do not change from

their selected values. The expression in Eq. (5-56) provides the

restriction on cf> because of possible variation in k.. To determine

the influence of $ on b., it is necessary to determine minimum domains

of constant b.'s when tj> is varied. With reference to Fig. 5-7, the

time of pulse occurrence of the quantizer input/output is according to
t

the sequence

n ZTT 4jr i2ir (n-1 )2ir
u' n ' n ' ••" n ' ••" n

or

^r, i = 0, 1, 2, ..., n-1



100

Figure 5-7.
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With <j> = 0 as reference, the range of <j> for constant b. is defined

by the angle when any of the b . ' s first change sign. Thus, the pulses

located nearest to the ir/2 and 3ir/2 points must be considered; i.e.,

we need to determine those values of i for which |ir/2 - 2iri/n| and

|Sir/2 - 2iri/n| achieve a minimum.

First, note that

min 37T
Nil M o -

i
— . **» T n

n m n
7T , 27T1

2 + * ' nif

j = min TT , 2ir /
— "o" ^ n

i

= min
i

TT 2TTJ

2 ~ ~rT

,, , 2Trn
- to + n

" ^

(5-57)

j = n - i, i = 0, 1, 2, ..., n, j = 0, 1, 2, ..., n.

Thus, it is sufficient to consider the minimum of |u/2 - 2iTi/n| only.

Two separate cases have to be considered:

a: n1 -U> even

When n, is even, let

nl = 2nr

then

(5-58)

n = 4n (5-59)

If we choose i = n = n/4, then
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2iri IT IT

2" 2 = 0

which is then the desired minimum. In this case, there is a pulse at

a. = it/2 and also at a. = 3ir/2. The pulses nearest to these lie

2-ir/n radians on either side; thus, the b . ' s will remain constant for

the ranges 0 <_ <j> _< 2ir/n and -2ir/n <_ <J> <_ 0. Since the range of '<)>

variation is -ir/n <_ <)> 1 ir/n, two ranges of <f> have to be considered

Range 1: > 0 <_ $ <_ ir/n

Range 2: -ir/n <_ <j> <_ 0 • (5-60)

b: n, -c6 odd

In this case the pulse nearest to ir/2 is given by i = (n,/2 ± 1/2)

thus

rrnn
i

TT 2-rri
2 ~ re'. 2 " n

ir 2ir/n
2 ' T(4

7T

n (5-61)

Since the b . ' s will remain unchanged for 0 £ <j> _< u/n and -ir/n <_ <$> <_ 0,
I

the two ranges of <f> are the same as in case a, Eq. (5-60).

The ranges of 4> defined by Eq. (5-60) must therefore be considered

separately when the expression for the quantizer output in Eq..(5-48) is
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utilized. Although, the choice of the k.'s further restricts the range

of <J>, this restriction will not be considered in advance, and will

appear naturally when the critical regions are calculated. In fact,

for some combination of the k.'s the range of <$> will be nonexistent.

In order to derive a general expression for -l/N(z) when n is

even, we write the expression for the input from Eq. (5-3) and the

expression for the output from Eq. (5-48):

= Ez[f(z - costoT) cos(|) - sin o)Tsin 4>] (5-62)
z2 - 2z cos coT + 1

V1 n,-i
h [ k .b.z '

Y(z) = —^ (5-63)
z ! + 1

The negative inverse of the describing function is given by
i1'.'

i _ E(Z ;

nlEz[(z - cos qj) cos <j) - sin gjTsin d)][z + 1] ^c
n,-l n . (

9 1 "i"1
(z^ - ZzcosuT + l)h I k.b.z '

1=0 n 1

4

Since z is given by

z = eJa)T = coswT + j sincoT (5-65)

Eq. (5-64) becomes



104

nl1 _ Ezj sin u)T(cos (fr + j sin 4>)(z +1)
NUT"" n r l n _

(z2 - 2zcoso)T + l)h y k.b.z ]

i=0 n 1

Define

n,
- zj sin o)T(z

n
 9 V1 n,-i

(z - 2zcoscoT + 1) £ k.b.z
i i=0

nlThe term (z + 1) can be expanded as

n,-l
M-i I j y tis i i i \\i i t-.

z ' + 1 = n (z - e ')
k=0

. , -JTT/n, n l
= ,(z - e ] ) ( z - e ]) n (z - e

k=l

k=l

Substituting Eq. (5-68) into Eq. (5-67) yields

i

V2 j(2k+lWn,
zj sin wT n (z - e )

c = k=1

y k .b .z ]
LI \ ~\ '

i=0 1 1

or

( 5_67 )

nl"2 j(2k+l)TT/n,
- 2zcos toT + 1) n (z - e ') (5-68)
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V2 j(2k+l)TT/n,
j sin o>T II (z - e

(5-70>

let

where C D and C T are the real and imaginary parts of the constant C .HK n i n

The expression in Eq. (5-66) can now be written as

= (C + jC)(c°S<t) + j Slnc(>) (5"72)F nR nI

The constraints on the magnitude of E are

(2k. - l)h (2k. + l)h
- ̂  - *'.< |Ecos ((J, + a.)-| < - L2 - (5-73)

1 =0, 1, 2, ..., ryl; kj f 0.

Since E is a positive quantity, the expression in Eq. (5-73) can

be written as

(2k. - l)h (2k. + l)h
- ̂ 2 - 1 E|cos(<J, + a.) | < - ̂ - (5-74)

Let the range of <f> be defined as

<j»1 < 4) < <j>2 (5-75)

where <j>-| and ty^ can take the values as specified in Eq. (5-60).
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Define <f>N as

(5-76)

The absolute value sign in Eq. (5-74) can be removed by use of a

new variable a' as

1̂

ai = ai 1f T< <*N + ai °r f

and

o{ = a. - TT if \ < (a. (5-77)

Equation (5-74) now becomes

(2k. -
1 E cos U + a! ) <

(2k
(5-78)

Thus, the maximum and minimum values of E can be written as

(2k_ _
max i 2 cos (4> + a' ) (5-79)

(2k -
4 _ '
_ _ _

min i 2 cos (<$> + a'.) (5-80)

i = 0, 1, 2 n,-l.

The corresponding maximum and minimum values of -l/N(z) are

i + mCnR + JCnI)(cos*

max 2 cos (((> + (5-81)
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(2k. - l)(CnR + jCnI)(cos(J>

mm 2 cos (<f> + al (5-82)

In order to eliminate ()> from Eqs. (5-81) and (5-82) consider

Eq. (5-8.1) first; expanding the denominator and numerator yields

max

(2k. + l ) [ (C n R cos<t ) - Cnl sine))) + j (Cn Rsin<|> +

2(cos <J> cos a1. - sin ()> sin a')

Let

i
= x + jy

max i

By comparing Eqs. (5-83) and (5-84), we have

(5-83)

(5-84)

x =
C n Rcos<t> - Cn lsin( j>

2 cos 4> cos a'. - sin <j> sin otT

i cos a'- - sin a', tan <)>• (5-85)

where

= (2k, (5-86)

and

C n R s in^ + C n I cosO)
y i cos <f> cos a'. - sin <}> sin a'

i cos a'. - sin a'- tan 4> (5-87)

Equation (5-85) is solved for tan <j> to yield
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K. Cnl - xsina;

If Eq. (5-88) is substituted into Eq. (5-87), we have
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(5-88)

Y =
+

 CnR

K | C n R - x c o s a :

K| Cpl - xs ina l

i

cos a' - sin a'.

i

+ Cnl

K! CnR - x cos aj'

K+ C - x s i n a 'K. Lpl xs in a i

After some algebraic manipulation, Eq. (5-89) yields

? 2f + CLnR nl CnRcosa i + Cnls 1 n a i
li - CnRs1nai Cnlcosai - CnRsina i

(5-89)

(5-90)

Equation (5-90) which is obtained from Eq. (5-81) by eliminating

<j> shows that the;-l/N|max i locus in the complex plane is a straight

line. Similarly, when $ is eliminated from the -l/N|mini expression,

Eq. (5-82), we have

= K
2 2r + rLnR Ln CnRC O S a i +Cnls ina i :

1 CnICOSa i ' CnRs1n°M Cnlcosai ' CnRs ina i

which is also a straight line in the complex plane, and

(2k. - 1)

r X (5-91)

(5-92)

Note that the lines defined by Eqs. (5-90) and (5-91) are parallel

but have different intercepts on the imaginary axis. Thus, each magnitude

constraint of Eqs. (5-79) and (5-80) on the input expression of
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Eq. (5-62) generates two parallel lines which represent the maximum

and minimum values of -l/N(z), respectively.

Since there are n, magnitude constraints, Eq. (5-73), each

output expression generates 2n, lines, where n-, lines are the maximum

values of -l/N(z), and n, lines are the minimum values of -l/N(z).

When n is even, the number of <f> ranges to be considered is two,

as in Eq. (5-60), then Eq. (5-63) gives two output expressions which

have to be considered. The difference between these two output
i

expressions would be that some of the b.'s are different due to the
v . '

different <j> range. Therefore, each mode as defined by Eq. (5-46)

yields the following number of lines:

nL = 4^ (5-93),

where n. represents the number of lines generated in the complex

plane. <•'.'

Among the lines in Eq. (5-93), 2n, represent maximum conditions

for -l/N(z), and 2n, represent minimum conditions. Also, each maximum

line is parallel to the corresponding minimum line.

The critical region for -l/N(z) is thus the region enclosed by the

n. lines and satisfying the maximum and minimum requirements associatedL *
with each line. In some cases if the choice of the k.'s in Eq. (5-46)

is such that there may be no region enclosed, then that particular mode

will not exist.

The procedure for determining the critical region for the quantizer

describing function when n is even, can be summarized as follows:

1. Select an even integral n.
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2. Select a mode by choosing the k.'s in Eq. (5-46).

3. There are two ranges of <}>, 0 £ <j> £ ir/n and -ir/n £ <{> £ 0.

For each range of <f> determine the b . ' s and thus the output,

Eq. (5-63).

4. Calculate the coefficient C as in Eq. (5-70) for each range

of <J>.

5. Determine the a. 's , Eq. (5-54), and a'. 's, Eq. (5-77), for the

chosen n.
/

6. For each a1, and each range of 4>, calculate the slope and

intercepts of the n, lines, Eqs. (5-90) and (5-91) which define

the maximum and minimum.values of -l/N(z).

7. Determine the region enclosed by these lines.

This is the critical region.

As n is increased, the number of equations defined by Eq. (5-93)

quickly rises a^d it is useful to consider utilizing a digital computer

for determining the critical regions. The following table illustrates the

number of lines associated with various even values of n > 4.

n

4

6

8

10

20

ranges of $ no. of lines
(degrees) per 4> range

t
0

-45

0

-30

0

-22.5

0

-18

0

-9

< *
l<f>

1 4>
1*

£ <j>

14>

1*
< *

< <j)
< d)

<

<

<

<

<

<

<

1

<

<

45 8

0

30 12

0

22.5 16

0

18 20

0

9 40

0

total number
of lines

16

24

32

40

80
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B. Odd n

When n is odd, the input pulse train to the quantizer can assume

a maximum of n different values. The mode of oscillation is thus

characterized by

A = (ko, kr k2, ..., kn-1) (5-94)

The output of the quantizer is written as

Y(z) = h(k0bo

...J(k0b0

h(V- z-n)(ni k.b.z-1)
i=0

n -
hzn( I k b z'1)

i=0 1 1

zn- 1

(5-95)
z" - 1

where h and b. have the same meaning as in the even n case.

The input to the sampler is again written as

e(t) = Ecos (art + <f>) (5-96)
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and the input to the quantizer is

e*(t) = E I cos (kooT +.<|>)6(t - kT)
k=0

CO

= E I c o s ( + <f r )6( t - kT) (5-97)
k=0 n

Let

a. = ̂ f- i = 0, 1, 2, .... n-1 (5-98)

then, b. is given by

b. = SIGN[cos (a. + (j>)] (5-99)

The input and output of the quantizer are constrained by the

following relation:

(2k. - ijh (2k. + Dh
- ^ - < |E cos (a. + < j > ) | < - L2 - (5-100)

As in the case of even n, Eq. (5-100) restricts the possible

combinations of k.'s in the mode expression of Eq. (5-94).

In order to^determine the range of <J>, consider the waveforms

in Fig. 5-8. In this figure n = 3 and the waveforms repeat every 120

degrees. In general, for odd n, the output waveform will repeat

when <(> is changed by 2ir/n radians. Thus, the range of <j> is chosen as

-ir/n <_ <j> <_ Tr/n.

It is now necessary to divide the chosen range of <j> into smaller

ranges depending on the variation of b.'s in the chosen full range.
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= 0

= 30C

4> = 60C

= 90C

<J> = 120° I-';

= 150C

<J> = 180'

Figure 5-8.
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4> = 0

4> = -90

= -1209'. i

<), = -150° i X '

4, = -180C

Figure 5-8.
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The effect of k.'s on restricting the range of <j> will be accounted

for when the limits on the input magnitude as described by Eq. (5-100)

are considered. To determine the influence of b. 's on <j>, we again

calculate the domains of constant b. when is varied in the chosen

range. The pulse occurrence timing is written as

or

(n-l)2TT
n

2.TT1 i = 0, 1, 2, ..., n-1.

Taking <J> = 0 as reference, it is necessary to determine the values

of i for which JTr/2 - 2-rri/n| becomes a minimum. The result of Eq.

(5-57) is still valid and allows us to ignore the S-rr/2 point while

considering the jr/2 point only.
!•',

The minimum of \-n/2 - 2Tri/n| will be achieved by one of the

two pulse occurrences on either side of the ir/2 points (when n is odd,

no pulse occurs at ir/2 exactly). Thus, the minimum will be given by

V

which ever sign makes i an integer. Thus, when n = 3, the + sign is

used and when n = 5 the - sign is used, i = 1 in each case. Thus,

mm
i

2fri TT 2Trfn_ • 1
2 " n 4 ± 4

IT

2n

JL
2n (5-101)
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The chosen range of <j>, -ir/n <_ <f> <_ TT/II has to be subdivided into

sections given by Eq. (5-101), over which the b . 's are constant.

Four ranges of <f> must therefore be considered.

Range 1 : ir/2n £ <J> £ ir/n

Range 2: 0 £ cf> 5 ir/2n

Range 3: -Tr/2n £ <j> £ 0

Range 4: -n/n £ <|> £ -ir/2n (5-102)

( . •
A general expression for -l/N(z) with odd n is now derived. The in-

put signal will change when <|> is varied beyond its range as defined by Eq.

(5-102). Accordingly, each range in Eq. (5-102) will have to be

calculated separately.

The input and the output of the quantizer are written as

Ezj sinu)T(cos d> + j sinj>) (5-103)

z2 - 2zcoswT + 1

respectively.

The negative inverse of the describing function is

Ezj sino)T(cos d> + j sin (fr)(zn + 1 )

(z2 - 2 z c o s w T + l)h I k.b.z""1

i=0 n 1

(5-105)

Define
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Cn = zjsinu)T(zn -M) (5-106)'

(z2 - 2zcoso)T + 1)( I k.b.z""1}
1=0 1 n

In Eq. (5-106), the term (zn - 1) is written as

(zn - 1) = n (z- ej2lri/n)
1=0

=* (z - l ) (z2 - 2zcoscoT + 1) n (z - e
j27fi/n) (5-107)

1=2

Substituting Eq. (5-107) into Eq. (5-106) yields

n-2

Cn = -

zjs ino)T(z - 1) n (z - e
j2ri/n)

i=2

i=0
(•''

Osin u T(z - T) "i (z - e
j27ri/n)

(5-108)

Dividing Eqv (5-108) into real and imaginary components, we

write

Cn = CnR + jCnI (5-109)

The expression in Eq. (5-105) then becomes

1 = F (CnR + jCnI)(cos<t) + jsin4>) (5-110)
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The magnitude of E is constrained by

(2k. - l)h (2k + l)h
^ £ |Ecos (<j> + Oj)! < ^2 (5-111)

i = 0, 1, 2, ..., n-1, k. f 0.

Let the range of $ under consideration be

.fj 1 4> 1 *2 (5-112)

i

where <j>, and <j>2 can take on values as specified in Eq. (5-102), we

define •:

,
(5-113)

Select a! such that

a =

or 0 < ((|>N + an- ) < TT/2

a! = af - TT if f < (4>N + a^ < 3v/2 (5-114)

Then, Eq. ( 5-111 j can be written as

(2k. - l)h (2k. + l)h
- ^ - < E cos (cf> + aj ) 1 — ̂  - (5-115)

The maximum and minimum values of E from Eq. (5-115) become
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(2k. + l)h
Emaxi = 2 cos (4, + aj) (5-116)

(2k. - l)h
Emini = 2 cos (4, + aj) (5-117)

The corresponding maximum and minimum values of - l /N(z) are

, (2k. + 1)(C nR + j C T ) ( c o s < f > + j sine},)
- TF = —' ?rnc^ + M (5-118)max i ( 19 o^;

(2k. - l)(CnR + jC n I ) (cosc j> + j sine)))

N min i

Equations (5-118) and (5-119) are similar to Eqs. (5-81) and (5-82),

respectively, obtained earlier for even n. Thus, as in that case, it

is possible to eliminate 9 and determine the straight lines defined

by the locus ofi'.each expression which $ is varied. The result is

identical to Eqs. (5-90) through (5-92).

Each magnitude constraint in Eq. (5-115) again generates two

parallel straight lines, one representing the maximum value of -l/N(z)

and the other representing the minimum value of -l/N(z).

With n magnitude constraints and four ranges of 9, the total

number of straight lines in the complex plane is

nL = 8n . (5-120)

As before, the critical region for -l/N(z) is the region enclosed

by the n^ lines and simultaneously satisfying the maximum and minimum

requirements associated with each line. Also, if the choice of k.'s

is such that no region may be enclosed, that particular mode will not exist.



120

The procedure for determining the critical region for the quantizer

describing function when n is odd is summarized below:

1. Select an odd integral n.

2. Select a mode by choosing the k.'s in Eq. (5-94).

3. Four ranges of <J> can exist, as defined by Eq. (5-102).

Determine the b.'s for each range.

4. Calculate coefficients Cn as given by Eq. (5-108) for each

range of <j>.

5. Determine the oil's, Eq. (5-114).

6. For each a.1, and each range of <j> calculate the two lines of

Eqs. (5-118) and (5-119) which define the maximum and minimum

values of -l/N(z).

7. Determine the critical region by finding the region enclosed

by all the lines.

The following table indicates the number of lines associated with

several values of odd n:

n°- of lines total number
per * range of lines

(2n) (8n)

0 <_ 4> <_ 30 30 <_ <j> £ 60 6 48

-60 <_ <J> <_ -30 , -30 £ 4> £ 0

0 £ <J> £ 18 , 18 £ <J> £ 36 10 80

-36 < <j) <_ -18 , -18 <_ <J> £ 0

O l 4 > £ l 2 . 9 , 12.9 £ <J> < 25.8 . 14 112

-25.8 £ <j> < -12.9, -12.9 £ <{> £ 0
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5-5. Computer Implementation and Results with the General Quantizer

Describing Function

The DDF derived in the previous sections has been programmed on a

digital computer. Input data consists of the order of oscillation n

and the modes which are to be investigated. The program calculates

the <|> ranges, the al's, the b.'s and generates all the possible lines

for the given mode. These lines are then plotted by hand and the

critical region determined.

As examples of the utility of the program, two values of n,

n = 4 (even case) and n = 3 (odd case) are selected.

A. Results for n - 4

Figure 5-9 shows a typical printed output from the program for

one mode, A = (1, 2). In Fig. 5-9 the following information is

provided:

1. N = the order of oscillation n

Nl = n/2 for even n and Nl = n for odd n

NPR = no. of <(> ranges

NLS = NPR x Nl

NL ' = no. of lines n.
L n (n - 2)

N1NT = no. of intersections of the lines, ^

2. The cj) range is printed nextasPHI RANGE

3. The oil's are written as ALPHA VALUES

4. Sequence of bQko, b^, b^, ... is written as SEQUENCE OF

KO, Kl, etc.

5. CnR and C j are printed next



122

DISCRETE DESCRIBING FUNCTION FDR ft QURNTIZER NONLINERR.ITY
M= 4 Nl= 2 . NPR- £ . NLS = 4 NL = 3 NINT = £4
PHI RRNGE IS-45.00 TD 0.00
RLPHR VRLUES RRE O.OOOE-01 9.000E+01
SEQUENCE DF KO>K1«..-ETC IS 1. £.
CN-RERL=-£ . 0000OE-01 CM-1HRG=-4.00 0 0 OE-01
THE LINES RRE GIVEN BY Y=X+SLDPE+CRDSS

SLOPE
•5.00000E-01

CROSS£
-£ .5GOGOE-01

1 .50000E+00

-9.000E-H31

CROSS1
-7.49999E-01

£ . 0 0 0 01E + 0 0 £ . 5 0 0 01E + 0 0
PHI RflMGE IS 0.00 TO 45.00
RLPHR VRLUES RRE O.OOOE-01
SEQUENCE DF KO :-Kl > . . .ETC IS 1. -S .
CM-REfiL=-£.0 0 0 0 OE-01 CM-1NRG= 4 . 00 0 0 OE-01
THE LINES RRE GIVEN BY Y=X*SLOPE+CROSS

SLOPE CROSS 1 CROSS£
5 . 0 0 00 OE-01 7 .50 001E-01 £.50 0 0 OE-01
- £ . 0 0 0 01E + 0 0 - £ . 5 0 0 01E + 0 0 -1 .5 0 0 0 0 E + 0 0

Figure 5-9.
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6. The lines for this $ range are then written, where SLOPE

refers to the slope of the maximum and minimum lines.

CROSS1 is the intercept of the maximum line and CROSS2 is

the same for the minimum line. The lines are written in the

same order as the a!'s, or the occurrence of the pulses.

7. All information is repeated for the other $ range.

The lines are plotted and the critical region is determined.

Figure 5-10 shows the plots for several different modes with n = 4.

In this case the critical regions are symmetrically located around the

(-1, 0) point in the complex plane. Also, as k , k, increase the

critical region tends to shrink towards the (-1, 0) point.

B. Results for n = 3

With n = 3 the mode of oscillation is defined by three different

variables, k , k, and k*. Also, in this case, many of the combinations

of k.'s cannot exist. Figure 5-11 shows the critical regions obtained

with the computer program for A = (1, 0, 0) and A = (1, 1, 1). The

critical region was found not to exist for the modes A = (2, 0, 0),

A = (1, 2, 2), A = (1, 2, 3).

Results' for other modes and other values of n can be obtained

similarly. However, as n gets larger, the number of lines increases

substantially and the procedure for determining the critical region

gets more involved. It would be desirable if the computer program were

able to calculate these regions itself from the straight lines. In

order to expand the scope of the program to include this calculation,

several special cases, which can occur have to be resolved first:
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1. In certain modes, the duplication of the lines results in

many parallel lines, and their intersection calculations

can cause singularities. Such duplicate lines and repetitions

should be recognized and eliminated, thus removing any

singularities as well as reducing the computation.

2. In certain modes, the straight line can be a line with infinite

slope. This happens when certain combinations of C R, C j and

a.'s yield zero denominator in the slope expression, Eq. (5-90).

This condition should be recognized and the line should be

redefined as x = f(c, a), with no occurrence of y in the line

equation.

3. Sometimes the straight line has zero slope and this must

also be recognized and eliminated. The line must be re-

defined using y only.

These comments can provide a basis for extending the results

presented here and using them in a more general situation.
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