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1. Pointing Accuracy of the Low-Cost Large Space Telescope Due to
Noise and Quantization

1-1. Introduction

The objective of this»study is to conduct an investigation on the
pointing stability of -the low-cost Large Space Telescope (LST) system.
The Tow-cost LST is characterized by the use of reaction wheels for
the generation of ;ontro] torques. Because of tﬁe critical requirement
on the pointing accuracy of the LST, the nonlinear frictional characteristics
of the bearings of the reaction whee]s cannot be neglected. It is well
known that the nonlinear friction can cause limit cycles in a closed-loop
system. |

Another possible source of pointing error in the LST is due to the
effect of quantization and sensor noise. Since the LST is a digital
system, D-A and A-D converters, and sensors for positional and rate
feedbacks are used. Sensor noise and amplitude quantization will also
cause pointing error in the LST. In addition, quantization is a |
nonlinear phenomenon so that it may also cause self-sustained oscillations
_in the closed-loop system.

The dyhamic modeling of the single-axis LST is described in this'
Chapter. Several methods of evaluating the attitude error of the digital

LST due to quantization and noise inputs are given.



1-2. Dynamic Models of the Low-Cost LST System

The dynamic model of the single-axis lTow-cost LST system with
| sampled data is shown in the block diagram of Fig. 1-1. The rigid
body is represented by the doub]e-ihtegrator transfer function. The
controller.is formed by proportional, rate, and integral feedbacks of
the vehicle attitude. The nonlinear element N in the reaction wheel
dynamics represents the rolling friction, and its functional description
is given by the well-known Dahl model.

The definitions of variables and the va]ues of parameters and

constants are tabu]atei in Table 1-1 [1].

Table 1-1.
¢C Reference input command
g Body attitude of LST
éB Body rate of LST
Tc Torque command of reaction wheel
TRw‘ : Torque output of reaction wheel
' éRN Angular velocity of reaction wheel
ORw Angufar displacement of reaction wheel
TF Frictional tordue of reaction wheel
¢e Attitude error
Proportional gain of controller 1.65 x ]06 N-m/rad
KR Rate gain of controller 3.71 x 105 N-m/rad/sec
Ky Integral gain of controller 7.33 x 10° N-m/rad/sec
RF Feedback resistance _ 0.484 ohms

.'KA Vo]tége amplifier gain ' 10000
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KM Motor torque constant A 0.484 N-m/amp -
KB Back emf constant 0.484 voTt/rad/sec
RW Moment of inertia of reaction wheel S 0.2 Kg-m2
JV Moment of inertia of vehic]g about 9
pitch axis 41822 Kg-m
Tn Motor time constant 0.002 sec
RT Motor resistance 10 ohms

Although the low-cost LST system has digital control, it is
informative to analyze the system of Fig. 1-1 first without the sample-
“and-hold device. Figure 1-2 shows the signal flow graph of the continuous-
data LST system. The characteristic equation of the system is determined

from Fig. 1-2,

R K
i} | Fu&x )
A 1-+RFG2G3-FKBKMG3G6'+-KH——GZG3G4-FRFG]GZG3G465-+N(G667-+RFGZG3G6G y=0
| . (1-1)
where
G1 = Kp + KI/s
G2 = KA/s
N 1
G3 R+(1+Tms)
o=
G = 35
v
=1
'GS T s
]
G:
6 JRWS
_1
G7 T s

and N denotes the analog describing function of the reaction wheel nonlinearity.
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For the linear model of the LST system, we set N = 0, and the

characteristic equation becomes

KK .
5 KM V363 4 RKK.s2

4
s°+ (I ReKy rKrKa

FA Joui

+ J R
v RW

TRt T

+ KARFKpS + KAKIRF =0 (1-2)

It is of interest to investigate the dynamics of the reaction wheel

and the vehicle. The open-loop transfer function between-TC and o is

R..K
FA | (1-3)

K, K
c 2 2 M'B
J,5 (RTTms + RTS + RFKA + I )

1]

-—il-e-
(o=

Substituting the system parameters into Eq. (1-3) gives

b _ 5.7865
+ 500s + 242058.5)

TC 52(52

_ 5.7865 (1-4)
s2(s + 250 + j423.74)(s + 250 + j423.74)

Thus, the reaction wheel is shown to have relatively fast dynamics.
Substitution of the values of the system parameters into Eq. (1-2), -
and simplifying, the characteristic equation of the linear LST system is

written

5 4 3

s2 + 500s 2

+ 202058.555 + 2.1468 x 10%52 + 9.5476 x 10°s

+4.24145 x 10% = 0 (1-5)

The roots of the characteristic equation are:



s = -0.49659
s = -4.22743 + j4.25123
s = -4.22743 - j4.25123
s = -245.524 + j421.118
s = -245.524 - j421.118

Note that the damping ratio of the dominant complex roots is
0.705, and the natural undamped frequency is 6 rad/sec or 0.954 Hz.
These parameters are achieved by se]ecting the controller constantvap,
KR'and KI at the indicated values. However, the poles of the reaction
wheel dynamics at s = -250 + j423.74 and s = -250.- j423.74 are only
slightly affected by the body controller and they account for the charac- -
teristic roots at s = -245.524 + j421.118 and s = -245.524 - j421.118 of
the overall closed-loop system. Since these fast roots are very far away
from the dominant ones, this means that for all practical purposeé the
dynamics of the.reaction wheel can be neglected as far as the linear
system 15 concerned. Figure 1-3 shows the block diagram of the simplified
continuous-data low-cost LST system, and the digital system‘is shown in
Fig. 1-4.

The c1osed-1oop'transfer function of the continuous-data system of

Fig. 1-3 is
o,(s) Ks+ K ,
Qf(sjz J 53 + Kps2 + ; s + K ‘~ (1-6)
.V R p I

For the digital system of Fig. 1-4, the closed-loop transfer function

is written



*

% 1 ‘8
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Figure 1-3. Simplified continuous-data low-cost LST system.
- N 6 Gy G
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Figure 1-4. Simplified digital low-cost LST system.



0g(2) G, (2)Gg(2)

= (1-7)
¢C(z) 1+ Gc(z) + GA(Z)GB(Z)
wheré )
: -Ts
_1-e
Gho(s) - s
Kis + K Kz + K. T-K '
= = - ] I I = p I —p -
GA(z) . 6(Gh061) (1 -z )3[ 2 ] T . (1-8)
Gg(z) = %(G 6,6:) = (1 - 27 )gl—=| = Tz +1) (1-9)
B ho°4°5 873 72, (2 - 1)
v v
6 (2) =2(G, G,K,) = K, (1 - 27 )3 |—] = 1 (1-10)
c 6 ho"4"R | R 3 JVSZ Jy Z - 1
Equation (1-7) is simplified to
5. (z) T2k 22 + KTz + K.T - K)
B - : p I I p
3 _(2) 3. .2 2 2 3 o 2
C ZJVZ, + (T Kp+2KRT-6JV)z + (6JV-4KRT+T KIT)Z+ (ZKRT+ KIT -ZJV- KpT )
(1-11)
The characteristic equation of the system is
3 2 2 ' 3
2Jvz + (T Kp.+ ZKRT - 6JV)z + (6JV _.4KRT + T KI)Z
F KT+ KT -20 -KT2 =0 (1-12)
R I \ p

Or,



8364423 + (1.65 x 10072 + 7.42 x 10°T - 2.50932 x 10
+ (2.50932 x 10° - 14.84 x 10

+ (-8.3644 x 10

10
5)22

5 5.3

T +7.33 x 10°T%)z

5.3 6.2 ;

4 T +7.33 x 10°7° - 1.65 x 10%7%) = ¢

+7.42 x 10°

(1-13)

The characteristic equation roots are tabulated below as functjohs of

the sampling period T:

T (msec)
0.1
0.5
1

5

10

25

50

100

120

150

170

180
200 0.
220 0.
230 0.

‘The root loci of Eq.

890,
885,

(e

0.
0.

0

O © ©o o ©o o o o

Roots

.998 + j0.0025
.998 + j0.0022
.996 + j0.0043
.979 + j0.0208
.957 = j0.0411
.889 + j0.0988
.766'1 j0.1825
.483 + j0.2901
.356 = j0.300
.150 £ j0.260
.0034 + j0.144
.049, -0.195
107, -0.571
1116, -0.9078

.1085, -1.077 (unstable)

(1-13) are sketched in Fig. 1-5 as a function of

T. For small sampling periods, the characteristic roots are all located near
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the z = 1 point. The Tinear digital LST system becomes unsfab]e when

T exceeds approximately 225 msec.

12
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-1-3. Effects of Quantization on Pointing Stability of the Low-Cost LST -
Limit Cycle Conditions

Quantization occurs at at least three places in the LST system. Two
are at the displacement sensor and the rate sensor where A-to-D converters
are used. A quantizer is also needed at the control torque input to the
- reaction wheel since D-to-A conversion is effected there. In addition, if
the infegra] control KI/s is implemented digitally, quantization should be
considered in the digital controller as well. Figure 1-6 shows_the digital
LST.system with quantizers. The z-transfer functions are defined in
Eqs. (1-8), (1-9), and (1-10). The quantizers at the displacement
sensor, the rate sensor, and the reaction wheel control torque are denoted
bnyp’ QR,,and QT,.respective]y. The input-output relation of a quantizer
is shown in Fig. 1-7. The quantization level is represented by h.

We shall analyze the effects of quantization on pointing stability
or accuracy of the LST by means of three different methods. The first
method utilizes the deterministic approach and establishes a least upper
bound on the poinfing error due to quantization. The second method relies
on treating the quantizer as a noise source, and statistical analysis is
applied. The third method is also a statistical approach which represents
the quantizer by a linearized gain Keq(z).

It should be pointed out that a system with quantization is a noﬁ]inear
system and its behavior cannot be prédicted by Tinear theory. One of the
we]]-known'phenomena of a nonlinear system is that sustained oscillations .
may occur. When a digital system has several quantizers, it is extremely

difficult to predict the condition of self-sustained oscillations.
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oB(Z)

QR e GC(Z)
- Figure 1-6. Simplified digital LST system with quantizers.
y
4h —_—
3h
2h
h
-h
1 1] 2 1 A ) 'x
-4h -3h -2h  -h Oh h 2n 3h 4h
2 - '
-h
-2h
-3h X y
—ee g} Q I
| -4h

Fighre 1-7. Input-output characteristics of a quantizer.



To illustrate the effects of quantization, and how quantization
can cause sustained oscillations in an otherwise stable linear systém,
let us refer to the digital systems shown in Figs. 1-8 and 1-9. The
difference between the two systems in Figs. 1-8a and 1-9a is thaf_the
former has negative feedback and the latter has poéitive feedback;

~but both systems are stable.

For r(k) = 0, both linear systems have zero steady-state values
for c(k); that is, c(k) = 0 for k-», for arbitrary initial state

“¢c{(0). We shall show that when quantization is considered, the system
in Fig. 1-9b has a steady-state error, whereas the system in Fig. 1-8b
exhibits a sustained oscillation. '

Let the quantization level h be 2 in Fig. 1-7, and when the input
is an integer, tHe output is the same integer. The state equation of

the system in Fig. 1-9b is
c(k+1) = Q[0.9¢c(k)]

For ¢(0) = 10, it can be easily shown that c(k) = 4 for k > 2.

The state equation of the system in Fig. 1-8b is

c(k+1) = Q[-0.9¢c (k)]

For c(0) = 10, c(k) = 8 for k > 2 even, and c(k) = -8 for k > 2

 odd. Thus, the state of the system oscillates between -8 and +8.

15

(1-14)

(1-15)
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Ce(k)  r(k) c(ke1) 7] elk)
- » z -
0.9
(a) Linear'system " (b) System with quantizer
Figure 1-8. Systems with quantizers.
1 (k) r(k) c(k+1) -1 c(k)
z ant B 4 >
0.9 0.9
(a) Linear system (b) System with quantizer
Figure 1-9. Systems with quantizers.
+ M + M
2 2
+
+ %
+ GB(Z) o
6 (z)
4+ Lc
+ "y
2.

Figure 1-10. Digital LST system with quantizers rep]acgd by
deterministic noise sources. A '
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1-4. Effects of Quantization on Pointing Stability of the Digital Low-
Cost LST - Least Upper Bound Quantization Error

In this section the effects of quantization on the low-cost LST
system are invéstigated using a deterministic approach. The method
of analysis is based on the "worst" error conditfon due to quantization.
In general, thexana1ysis gives a conservative estimation of the quantization
error. | | |
Since the quantization error has a maximum bound of +h/2, the "worst"
error due to quantization in a digital system can be studied by rep]abing
the quantizer in the state diagram by a branch with unity gain and ah
external noise source with a signé] magnitude of *h/2. The block diagram
of the digital LST system with quantizers shown in Fig. 1-6 is redrawn '
" in Fig. 1-10 with the noise sources. The transfer functions GA(z), GB(z),
' ahd Gc(z)‘are defined in Eqs. (1-8), (1-9), and (1-10), respectively. |
The z-transform of the body attitude of the LST due to the three

quantizers when ¢C =0 is

e 26y (2) £t - |
7 .
(DB(Z) = Z - 11+ GA(Z)GB(Z) T GC(Z) GB(Z) (]-]6)

Substitution of Egs. (1-8) through (1-10) into Eq. (1-16), and
simplifying, we have .

hy h o
T-K) £ (5 ) (2-1)]T (241)

?
_ 2
T- Kp) +2TKR(251)

[+5- (K z+K

z 1

-] 20, 221347 (2+1) (K 2 +K

op(z) = -
' I
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| The steady—étate error of the body attitude due to the quantization'éffects
is obtained by applying the final-value theorem to Eq. (1-17), (if the
system is stable).

Thus,

' h
(kT) = 2ém (1 - 27 )ay(2) = e -2 (1-18)

Limd
B ) z->1

k-0
It is interesting to explore the significance of this result on
the erfor due to quantization. Firstly, the quantization error at the
disp]acemenf sensor is propagated through the system without change in-
amplitude. Secondly, the errors due to the torque and rate sensor
. quantizers are completely eliminated at the output position. This is

attributed to the integral control KI/s in the forward path.
Digital Implementation of Foruward Contrnoller

If the proportional-plus-integral controller is implemented

digitally, the transfer function GA(z) becomes

TKI(Z +1) - |

Substituting GA(z) from Eq. (1-19) into Eq. (1-16), we can again show
that the steady-state error in @B(kT) due to the three guantizers is
thD/Z, and the errors due to QR and QT are complietely eliminated.

In reality, the digital implementation of the controller should
also inc]ude‘quantization in the digital process. Figure 1-11 shows
the_b]ock diagram of the LST system with quantizations a]éo considered

in the digital controller. The z-transform of the body attitude of the
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.LST due to the five quantizers when ¢C =0 is

where GA(z) is given by Eq. (1-19) and_GB(z) and Gc(z) are given in
Egs. (1-9) and (1-10), respectively.
Applying the final-value theorem to Eq. (1-20), we have

. + h2 + h K. T h h

. ) p'1' _ . ™ 2 : )
24n1®B(kT) = T T (1-21)

k-0 I I

It is interesting to note that the introduction of the integral
control eliminates the noise signals that enter at all points after the
integral control in the control loop; however, the digita] implementation
of this control in turn produces a quantization error which is bounded

by h,/2K T, where h, is the quantization level.

(1-20);
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1-5. Effects of Quantization on Pointing Stability of the Digital Low-
Cost LST - Equivalent Noise Source, Statistical Analysis

In this section the bointing errors of the digital LST»system due
to quantizations in the displacement, rate, and torque channels are
investigated by statistical means. The rms (root-mean-square) error
in ¢B due to quantizations that are represented by'equivalent Gaussian
noise sources with zero mean, or white hoisersources, is determined by
setting ¢C = 0. The results are then compared with those of the continuous-
data LST obtained in referénce [1].

The block diagram model of the continuous-data LST with the quantizers
replaced by equivalent noise sources is shown in Fig. 1-12. The equivalent
~digital system is shown in Fig. 1-13. It is assumed that the equivalent

noise sources that-fepresent the quantization operations are white, so
“that their power spectral density functions in both the s and the z

domains are constants. Therefore,

®D(s), @D(z) = @ = power spectral densfty of displacement quantizer

1
o
1)

@R(s); @R(z) R = bower spectraT density of rate quantizer

|
©

®T(s), @T(z).— 7 = power spectral density of rate quantizer

Let the rms attitude error of the continuous-data LST due to ¢D

be represented by Ogp* The rms errors are given by the following

relations:

Displacement:

Ipp = [553 J MD(S)MD(-s)ds " 0 ' (1-22)




v |—1

22

| K>

Figure 1-12. Continuous-data LST with quantizers represented by
equivalent white noise sources. :

Gy (2)

- Gg(2)

Y

¢R(z)=¢R

Figure, 1-13. Digital LST with quantizers represented by equivalent

white noise sources.
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'where MD(s) denotes the transfer function betwéen @D(s) and @B(s),

oq(s) Ks + K
B p I
M. (s) = = (1-23).
D o _(s) 3 2
c va + KRs + Kps + KI
Similarly,
| Rate:
, 1/2
= | I M d ' 1-24
o~ |75 j_jw M (s )Mo (-5)ds « o (1-24)
Torque:
o : Ny 1/2 '
R Jo 25
%T = |2m3 J_jw Mpls)Mp-s)ds - op - (-28)
where
(s) = 1 (s) = B : " (1-26)
- s = S = = -
R T or{s) 53 b kis? + ks + K
. v R p 1

This result is obtained with the assumption that the quantizer noise
is not multiplied by the sensor gain Kps as in reference [1]; otherwise,

the right-hand side of Eq. (1-26) should be multiplied by Kg-

The total rms attitude error due to all three quantizers is simply

the sum of the errors due to each noise source acting alone; that is,

0og = opp * Opp t Opy (1-27)

From Eq. (1-26) it is easy to see that 9gR and o, have the same magnitude.

' BT
The line integral of the form of Eq. (1-22) can be evaluated by
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contour integration, and then the residue theorem. An integral table is

also available for the evaluation of the contour integral. Using Eqs.
(1-23) and (1-26), the rms attitude errors of the continuous-data system

are obtained as

_.2 72
K + KIKR ’ 1/2 .
ogp = LZIK Sanl D = (2.57480) = 1.605/,
) 1/2
1 ) 1/2
G = ® = (0.8598 x 107%. )
BT 2(KR 0 KIJV) TJ T
= 0.927 x 10'6/6;
= 0.927 x 10'6/65

BR

For the digital LST, the rms attitude errors are:

Displacement:

ok =[ §%j'§ My {2y (27 s AZ . ®D]]/2

Rate:
1 e -] 1/2
* = —_— .
9Br [Zﬂj § MR(z)MR(z Yz 'dz @R]

Torque:

GET = [Z]J é M (z)M (z ])z']dz . @T]]/Z

The transfer functions, MD(z), MR(z), and MT(Z)'are determined from

(1-28)

(1-29)

(1-30)

(1-31)

+ {1-32)

(1-33)
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Fig. 1-13.
) Gy (2)Gg(2) |
M) = TR T () F 62 (1-34)
_ 65(z2)
-MR(Z) = MT(Z) = T + GA(Z)GB(Z) ¥ GC(ZY (]-35)
where
2 .
6 (2) = _I_Lz;t;L%? (1-36)
2d (z - 1)
v
KRT
GC(Z) =:];—G'“ﬂ_ | ’ (]--37)
and
' Kz + KIT - K
GA(z) = P 77 P (sample-and-hold and . (1-38)

analog controller)

(2K_ + TKI)Z + TKI - 2K
GA(z) = P 5= T) P (digital implementation | (1-39)

of controller)

Substituting Egs. (1-36) through (1-39) into Eqs.‘(1-34) and'(]—35),
we get the following transfer functions which are used for the computation
of the rms attitute errors in Egs. (1-31) through (1-33).

With zero-order hold and analog controller,

20K 22 + Kz + (KT - )]
My(z) = P < P (1-40)
" .
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2052 1 -
—rvh(z) = MT(Z) = A] : . (]"4])
where
A, = 20 25 + (-6d + 2K.T + T2K )22 + (6. - 4K,T + K.T9)z
1 v v R p v R I
3 2, 4
+ (-2JV + 2KRTA+ KIT - KpT ) (1-42)
With digitally implemented controller,
20 o N2 : |
TL[(2K  + TKI)Z + 2TKIZ + TKI - 2K
Mo (2) = P 5 P (1-43)
_ )
2,2
_ _2T (27 - 1) _
-MR(z) = MT(Z) = —————EE————— (1-44)
where:
_ 3 2, . 3 2
A2 = 4JVZ + (-12JV + 27 Kp + T KI + 4KRT)Z
£ (120 + 2K, - 8K.T)z + (BK.T + TOK, - 2T°K_ - 44J)
Y I R R I p Y
© (1-45)

A tabulation method or a numerical method [3] can be used to
evaluate the contour integrals of Eqs. (1-31), (1-32), and (1-33), once
the values of the parameters of the transfer functions are known. Table

1-2 gives the values of (¢Brms)5’ (¢B nns)? and (¢Brms)§ for various

values of the sampling period T.
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Table 1-2.

T Sample-and-Hold with Digitally Implemented
(msec) Analog Controller Controller
R Ay
0.01 0.0052  2.932 x 107 0.0052  2.932 x 1077
0.1 0.0161  9.274 x 107° 0.0161  9.274 x 107°
1.0 0.0508  2.936 x 107° 0.0508  2.936 x 1078
5.0  0.1140  6.599 x 1078 0.1141  6.595 x 107°
10 0.1621  9.394 x 1078 0.1622  9.383 x 10°°
25 0.2602  1.515 x 107/ 0.2607  1.511 x 1077
50 o 0.3777 2.216 x 1077 0.3796  2.205 x 107/
100 0.5652  3.368 x 107/ 7

0.5720 3.339 x 10°

The results tabulated in Table 1-2 show that the rms errors of the
-LST with sample-and-hold and the analog controller are very close to those
of the LST.with the controller implemented digitally.
| It is interesting to show that the rms attitude errors of the digital
LST due to quantization are related to those of the continuous-data system
in Fig. 1-12.

" Applying the 1imit as T approaches zero to Eq. (1-31), we get

' 1/2
. : 1 -1,_-1
2im o, = £&im {——T-é M (zM. (z ")z 'dz¢ } (1-46)
10 BD 10 2mJ D D D
Since
Lim My(z) = My(s) B (1-47)

T-0



where MD(s) is given in Eq. (1-23), and MD(z) is given by either Eq.
(1-40) or (1-43), depending on. the way the controller is implemented,

~and

z-]dz = Tds

- Eq. (1-46) is written

or

The meaning of this relation is that the mean-square value of the
attitude error of the continuous-data system is equal to 1/T ttmes the
attitude error 6f the digital system as T approaches zero. Table 1-3
gives the values of ch//TEB'and Q§T//TE; for various values 6f T.

. These values are very close to the values of Ogp = 1.605 and OgT =
0.926 x 10'6, respectively, especially at very small sampling periods.

These relations show that, in‘genera1, for small sampling periods,
the attitude error due to a white noise input in a digital system will
be Tess than that of the same system without sampling. For example,
for'T =25 msec;'the rms attitude error o%

BD
Ogp is 1.605/56 .  Therefore, the use of the continuous-data LST model

is 0.2602/66', whereas

of Fig. 1-12, as in [1], for the error analysis of the digital LST

results in conservative results.

(1-48)

28

(1-49)

(1-50)
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Tabie 1-3.
(nsec) Sl — | -x
D .
0,01 - 1.644 0.927 x 107°
0.1 1.610  0.927 x 107°
1.0 1.606 0.928 x 107°
5.0 1,612 0.933 x 10°°
10 1.621 0.939 x 107°
25 1.645 0.958 x 107°
50 1.689  0.991 x 107°
100 1.787 1.065 x 107°

The results in Tables 1-2 and 1-3 again show that for the same
quantization Tevels, the quantizer in the displacement channel produces
far greater attitude errors than those due to the quantizers in the rate

. and torque channels.
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1-6. Effects of Quantiiation on Pointing Stability of the Digital Low-
Cost LST - Quasilinear Analysis, Statistical

In this section the effects of quantization on fhe low-cost LST
aré studied by means of a quasilinearized equivaient-gain approéch [4],
[5]. Although the analysis is conducted in the statistical sense, there
"is a basic difference between the present analysis and the one conducted
in Section 1-5. In the previous section, the rms attitude error of the.
LST is evaluated by treating the quantizers as nbisé sources that are
stationarvaaussian processes with zero means. In this section,
the quantizer will be treated as a nonlinear element whose input is
a random stochastic process. An equiva]ént‘gaih, Keq(z), is derived for
the quantizer. The attitude of the LST is then determined with the quantizer
replaced by Kéq(z), and when the system is subject to a stochastic input.
The only restriction with this method is that only one quantizer can be
‘considered at a time. Since it has been established that the attitude
of the LST is more sensitive to the quantizer QD’ we shall consider only
the system model shown in Fig. 1-14. |

The quantizer QD is isolated as shown by the block diagram in
Fig. 1-15a; the input is x(t) and the output is y(t). Figure 1-15b
shows the equiya]ent gain representation of QD. The equivalent gain
Qf QD is defined as | |

Keq(z)-= ;ffé;;‘ : (1-51)
where ¢xx(z) denotes the z-transform of the autocorrelation function of

- x(t), and o, (z) is the z-transform of the crosscorrelation function of

Y



Gg(2)

Figure 1-14. Digital LST with quantizer in the displacement

channel.

x(t) % y(t)
(a)

Qxx(z) . Keq(Z) —xz(i)b_
(b)

3

Figure 1-15. The representation of the quantizer with statistical

input and output as an equivalent gain.

Y
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x(t) and y(t). In order to derive Keq(Z), we consider that the input
to QD is a stationary Gaussian process with zero mean so that the

probability function is

o - exp(-x*/25%) |
p(x) = o o (1-52)

where Oy is the standard deviation of x(t).

The crosscorrelation function of x(t) and y(t) is given by

oy (1) = [ QR - (1-53)

where

Qlx(t)] = y(t) (1-54)

"is the mathematical description of the quantizer, and

’ (
o= QXXZT) - | (1-55)
O’X
Thus,
q>?(y(T? fgrbxx(r) [ 0y (VPO . 056

Taking the z-transform on both sides of Eq. (1-56) and rearranging, we have

o . (2) 1 ¢ | |
e = 305y = 7 | Qe BENCE)
X .



Although the equivalent .gain Keq(z) is indicated as a function of z, -

the nature of the right-hand side of Eq. (1-57) implies that it is

always a constant. It is apparent that although our interest is cehfered
on the quantizer nonlinearity, in general, the deffnition of Keq(z) can

be applied to any comman nonlinearities found in control systems.

With reference to the quantizer characteristics of Fig. 1-7,

y(t) =0 -h/2 < x < h/2
y(t) = -h . -3h/2 < x < -h/2
y(t)=h h/2 < x < 3h/2
y(t) = -(N-1)h _2m; h<><i-i@%ﬂh
y(t) = -Nh e <X < - 2N£] h
y(t) = Nh Z(Né] h <X<w
where N is a positive integer.
' Equation (1-57) gives
, [ (@2n-1)h/2
eg(2) = f (~Nh)p(M)Adh
O - Q0
X
2N 3)h/2 -h/2
+ S(N-T)Rp (AN + <o+ + J “hp(A)Ada
(2N-1)h/2 -3h/2

+ (N-1)hp(X)rdx

MAdA + -
h/2 (2N-3)h/2

[oe)

+

B

(2N-1)h/2
J3h/2 , J
|

2N 1) h/2

33

Nhp (A )Adk] (1-58)



. 3h/2 (2N-1)h/2
K (z) = X |2n I b + -+ + 2(N-T)h j Z P
h/?2 (2N-3)h/2

[o0]

+ 2N J p(x)di) R (1-59)

(2N-1)h/2

Since all the integrals in the last equation have the same integrand,

. we evaluate one of the integrals as follows:

32 B2 exp(-a/200) |
J p()AdA = f - AdA (1-60)
h/2 h/2 /2T oy -
Let.
2,2
u= /20X
Then
_ Adx e
du = 5 or Adx = oxdu
cjX
and
3h/2 | (on°/Bo
J p(AAdr = — J o 5 exp(-uo, du
Jhy2 - V2w ) n/8o}
2 2 -
] 9h h
= —— g, (exp(- =) + exp(- —= : - (1-61
Jo= Ox p( 802) p( 802) (1-61)

X

Thus, the equivalent gain for the quantizer with 2N levels of quantization

Cis

34
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2 2 2

2 h

Keq(2) =[5 5 |exp(- D—z) + exp(- gh—z-) + exp(- Z‘Shz) + e +exp(- ———T"—)
X 80X 80X 80x 80X
(1-62)"
Although the equivalent gain has been defjved from QD, the
response of the closed-loop system of Fig. 1-14 cannot be determined
by using Keq(z) directly, since O, the standard deviation, of x(t)
is not known. The'analysis procedure is outlined as follows:
Fbr a given Oe» which is the rms value of the input,
| (1) The equivalent gain Keq(z) is computed using Eq. (1-62):for
various values of O -
(2) The values of gy that correspond to the various values of Keq(z)
obtdined in step (1) are calculated from
1 -1 SIRLL
o, = {553 ﬁ Mx(z)MX(z )¢Cc(z)z dz : (1-63)
where
M. (z) = ] - (1-64)
X 1+ Keq(z)GA(z)GB(z) + GC(27
and
0..(2) = o

It is assumed that the input of the system is a white noise.

- The solution of oy for the given'oC is determined when there is

a match between oy from Eq. (1-63) and that used in step (1).

The rms attitude response of the system is determined from
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1/2
! ] (1-65)

o - [5%3 § MMz e (2)27\dz

using the keq(z) which corresponds to the a9, obtained in
step (2).
For the LST system, a quantization level of h =,0.003-is selected
for QD.‘ The quantizer is assuméd to saturate after SOOO increments; ‘that |
is, N = 5000 in Eq. (1-62). A digita]lcomputer program is prepared
which autbmatica]]y cuts off the series of Eq. (1-62) when an additional

term is contributing less than 1070

to the entire result. The sampling
period T is chosen to.be 25 msec, and the system transfer_functions GA(z),
GB(z), and Gc(z) are given by Eqs. (1-38), (1-36), and (1-37), respectively.
Following the procedure outlined above, the results of the analysis with
several values of o, are tabulated in Table 1-4.

The results in Téb]e 1-4 show that for a given set of quéntiZation ,
and saturation levels, both small and large input signals cause the
quantizer to act as an attenuator. The true characteristics of the system

as a function of the input<§zaredisp1ayed by normalizing o The last

B
column in Table 1-4 represents the normalized output SINE which is

defined as
o ,
B ,
Opy = (1-66)
BN GB]OC _
where
95y = Op at o, = 1. (1-67)



Table 1-4.

Input No. of terms Output Normalized
o, o, Keq used 1nAKeq(z) o oii;:t

5x10°%  5.318x107™%  0.075 2 .20x 10" 0.4
1073 1.086 %1075 0.797 3 80x 10 0.92
1000 1.093x10% 1.0 19 68x107 1.0
107" 1.093x1071 - 1.0 176 .60 10° 1.0
1 1.093 1.0 1753 .60x10” 1.0
10 10.87 0.836 5000 .383 0.916
50 53.37 0.22 5000 .88

Figure 1-16 shows the plot of Keq(z) versus o, . The plot has the

significance of a “statistical describing function" of the quantizer.

0.529

This

plot shows that for small inputs, when the input magnitude is comparable to

the quantization level, h, the gain drops below unity, and the quantizer is

attenuating the signal. For larger inputs the quantizer appearé as a unity

gain element in a statistical sense, and for very large inputs, where the

~input magnitude is comparable to maximum output (N levels of h), the

quantizer gain again reduces, and the input is attenuated.

Figure 1;17 gives a plot of g, Versus o which represents the solution

of Eq. (1-63) and step (1) for the range of . considered.

Figure 1-18 shows a plot of Oy Versus o. It is seen that the normalized

output reduces from unity in the ranges of oc_when Keq(z) is less than 1.

As an interesting_comparison, the statistical method of Section 1-5

assumes Keq(z) =1 for all values of 0. and, consequently, it always yields
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a result of o5y = 1. In’this sense that method is.more conservative and does
not recognize the severity of the nonlinearity due to the quantizer at

very small and very large input magnitudes.
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2. Stability of the Analog Low-Cost Large Space Telescope Due to
Quantization

2-1. Introduction

The objective of this chapter is to conduct an investigétion on
the pointing stabi1ity of the low-cost Large Space Telescope (LST)
System under-the influence of quantization at various locations of
the system. Only the analog model 6f the LST system is considered
in this chapter. The stability of the digital LST system wfth quan-
tization is considered in Chapters 5 and 6. '

The b}ock diagram of the simplified analog LST system with
quantizers is shown in Fig. 2—1._.

| The describing function method is used to determine the condition
of self-sustained oscillation in the LST system due to the effect of
each of the three quantizers acting alone. The present analysis
considers only one quantizer at a time.

Let the analog describing funétions of the qqantizers QD’ QT’ and

QR be represented by N NT’ and NR’ respectively. In general, the

D’
describing function of a quantizer nonlinearity is a function of the input
amplitude, E; quantization level, h; and the number of quantfzation
levels, n, which depends on E.

For the LST system shown in Fig;,2-], the "characteristic equétions"

- of the system when each one of the quantizers is acting, are given as

foliows:
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" Displacement Quantizer Qp:

3
va + ND( o

9

i
o
—
~nN
¥
—
~

Ks + KI) + KRs

Torque Quantizer QT:

3 2

va + NT(KRs + Kps + KI) =0 (2-2)
Rate Quantizer QR:

J 53 + Ks + K, + N,K 52 =0 (2-3)

v p I R™R _

These equations can be conditioned by dividing both sides of the
equations by the terms that do not contain the describing function, so

-that the stability equation is expressed in the form of
1 +NG(s) =0 , ‘ (2-4)

where N is the describing function, and G(s) is a linear transfer
function. The condition of self-sustained oscillations is found by
investigating the possible intersections between the trajectories of
-1/N and G(s) in the complex p]aﬁe.

For the equations given in Eqé. (2-1), (2-2) and (2-3), the equiya—

lent transfer functions are

Kps + KI

éz(va + K

Gn(s) =
D
R)
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Displacement Proportional - Torque
Quantizer plus Integral Quantizer
Control
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Rate Quantizer Rate feedback
Figure 2-1. Simplified analog LST system with quantizatioh.

L y(t)

4
4h |+ ——
3h |
2h |
h
) : . . ‘. ' . ——w-e(t)
-5h  -4h  -3h ~-2h -h -H [0 h h 2h 3h 4h  5h

% 2
-h

L -2h

_ -3h

R -4h

Figure 2-2. Input-output relation of a quantizer.

‘I
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2-2. Analog Describing Function of the Quantizer Nonlinearity

Consider that a quantizer has the input-output relation as shown

in Fig. 2-2. et the input to the quantizer be a sine wave,
e(t) = Esinuwt (2-8)

The quantization level is h, and let the magnitude of E be such that

{2n - 1h _ £ {2n+1)h ' (2-9)

2 = 2
where n ié a positive integer. A typical output of the quantizer is
shown in Fig. 2-3.
The fundamentél component of the Fourier series expansion bf y(t)
is

yy(t) = ¥, sinat | (2-10)

where

Y, =

4
1 m

/2 ' .
J y(t) sin wt dot : : _ (2-11)
%

Evaluating the last integral, we have

4 an . 4 1T/2
" =;;J y(t) sinwt dut +;J nh sin wt dut
(l-l ’ an
n-1 (0. /2 |
= % ) J i+ ihsinwt dot + %—J nh sinuwt dwt (2-12)
i=1 ‘o o

i n
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Then,
- an " 4nh
¥y = - 7;-121 ifcoso;, 4 - cosa;] + == cosa (2-13) .
Since
sina, = 4L (2-14)
‘ ] 2E
. _ (21 - 1)h -
sina, 5E (2-15)
h 2 : .
cosay = [1 - [EE] _ (2-16)

cos o =~/1 ; [(z‘éki h] | (2-17)

Expanding the right-hand side of Eq. (2-13), we can show that

4h
Y = 2l
1 L

ne~-13

| cos, B | (2-18)

Substituting Eq. (2-17) into Eq. (2-18), we have
) 241/2 |
(2i - 1)h ,

The describing function of the quantizer is written as

- 4h
N T

Hi~3

i

Y | 421172
N(E/h) = - = 3h E] {] B} [LZJ_:_JQDJ }_ (2-20)

1
E 7k ; 2F .
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Figure 2-4 shows the plot of N(E/h) as a function of E/h. We

shall show in the following that

Lim N(E/h) = 1 | | (2-21)
: |

T 0.

h

‘Letting x = E/h, Eq. (2-20) is written

n 2172
s 1 b P e

Expanding the quantity inside the summation sign in the last
equation, we have
4

M) =y

He~13
e
P Y
—
]
no| —

C3fi 1) s o (2-23)
481x 2% 384(x 2%

Or

_._l§7§[1 ] %JS e } | . (2-24)

Taking 1imit as y approaches infinity and n approaches infinity, in

the last equation, we get
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pn ) = e & - 2 it 3% e®
oo oo ™ 351 2% 8t ag®  388y°
n-»o n-»
4 '3 1.0 3 o 15 n°
S N T S 2T T B S T 67 aaB 9
) sl X 2x 8x 48y 384y
n-»co :
S O U S I A 0 A -0 A
' 23785387 3809
1
=% /-y
‘0
1
=%[X‘/] -XZ +;—S‘in-]x]
0
= o | (2-25)

Since the describing function of the quantizer nonlinearity is
always a real number, the function -1/N(E/h) in the magnitude (db)
versus phase coordinates wi]1 lie on the -180-degree axis for a]]
values of E/h. The plot in Fig. 2-4 shows that the magnitude of.
. -1/N(E/h) is infinite for 0 < E/h < 0.5. For 0.5 < E/h < 0.707, the
plot of -1/N(E/h) extends from infinity to -2.09 db along the -180-degree-
axis. Over the range of 0.707 < E/h < 1.5, -1/N(E/h) extends from |
-2.09 db to 1.9 db along the -180-degree axis, etc. As E/h approaches
infinity, the plot of -1/N(E/h) 1is reduced to the zero-db point.
- Figure 2-5 shows the plot of N(E/h) in magnitude versus E/h and shows

the multivaiued property of the function.
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1.25
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0.65

E/h=0— 0.5

E/h = 0.707

51

80°

PHASE

Figure 2-4. Analog describing function for the quantizer nonlinearity.
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2-3. Se]f—Sustaihed Oscil1ations of the Analog LST System with

Quantization

The transfer function§ of the three quantizers, QD, QT’ and QR’

given by Eqs. (2-5), (2-6), and (2-7), are plotted in Fig. 2-6, together

with the -1/N(E/h) trajectory. The following system parameters are used:

6

1.65 x 10 X 5

3.71 x 10

-~
1

R

5 ‘
I 7.33 x 10 JV

~
"

41822

Figure 2-6 shows that sinée the plot Of.GD(S) does not intersect
the -1/N(E/h) trajectory in the finite domain, the quaﬁtiier Qg will
not cause any self-sustained oscillations in'the LST system.

Both fhe curves for,GT(s) and GR(s) intersect the -180-degree axis
and the -1/N(E/h) trajectory at 25 db.

Thus,

20 Logq,|1/N(E/h)| = 25 db , (2-26) -

~ which gives

53

- N(E/h) = 0.05012 . S (2-27)

 Figure 2-4 shows that for this value of N(E/h);

114

>|m

or

m
e

0.5 | (2-28)

0.5 h ; - (2-29)
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This means that the quantizers QT and Q-R each independently may
cause self-sustained oscililations to occur in the LST system. Further-
more, the self-sustained oscillations will have an amplitude equal to
one-half the level of quantization h. Another point of interest is
that the 5ntersect between GT(s), GR(s), and -1/N(E/h) corresponds- to
n =1, so that the quantizers QT and QR are essentially acting as a
simple relay with dead zone.

Figure 2-6 shows that the frequency of the oscillations caused by
QT is 1.5 rad/sec, and that caused by QR is 6.3 rad/sec. .

It is interesting to point out that the analysis in Chapter 1 shows
that the displacement quantizer QD produces far greater quantization
error than the torque and rate quantizers. However, the describing
function analysis shows that QD does not cause self-sustained oscillations,
whereas QT and QR may excite oséi]]ations with amp1ftudes equal to one-
half the level of quantization, h/2. A1l these factors must be taken

into consideration when selecting the quantization level.
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3. Stability of the Analog Low-Cost Large Space Telescope with
Reaction Wheel Friction Nonlinearity

" 3-1. Introduction

The objective of this chapter is to conduct an’ihvestigation on
the pointing stability of the analog model of the 1ow-éost Large Space
Telescope (LST) System with the reaction wheel frictional nonlinearity.

"~ Although the LST system is digita1; the stability study on the
aﬁa]og mode1'w111 establish a limiting case when the sampling period
becomes very small, thus providing a check on the results of the digifé]
system.

The block diagram of the digital Tow-cost LST system, including the
reaction whee] dynamics, is shown in Fig. 1-1. It has been shown in
Section 1-1.that the dynamics of the LST system can be simplified.
Figure.3-1 shows the block diagram of the simplified low-cost LST‘
system with the reaction wﬁee] nonlinearity.

The A of the system shown in Fig. 3-1 is

A=1+ KRG4 + G]G4G5 + NG6G7 , ' (3-1)

where N denotes the continuous-data describing function of the reaction
wheel frictiona]_non1inearity.
Substitution of the expressions of G], G4, GS’ 66’ and G7 into

Eq. (3-1), we have

56



57

"A}LIRBULLUOU |39UM UOLIIEIJ Y3 LM Wa]SAS 1S7 3s0d5-mo| patjtiduig *-§ aunbL4

4

r—-IU)




Setting A to zero, and rearranging Eq. (3-2), we get

3 2
Rws. + JRNK s+ J

g JVJ R Ks + KI) + NJVS‘= 0

Rw( p

which is the "characteristic equation" of the system.
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3-2. Condition of Self-Sustained Oscillations in the Analog LST System
with Reaction Wheel

It has been shown [1] that the nonlinear frictional characteristics
of a reaction wheel can be described by the Dahl model. Therefore, the
analog describing function of the CMG frictional nonlinearity derived .
in [5] can be directly utilized.

The equiva]ent transfer'function that N sees fs determined from
Eq. (3-3) by dividing both sides of the equation by the terms that do

not contain N. We have

NJ s
Y

Jpldys™ + Kps™ + Kps * Kp)
Thus,
G (s) = v (3-5)
€q JRw(JVS3 + KR52 * RS+ Kp) ‘

The cohdition'of self-sustained oscillation is investigated by

plotting G, (jw) and -1/N in the magnftude (db) versus phase coordinates.

q
Figure 3-2 shows the plot of Geq(jm) of the LST system with-

Ky = 3.71 x 10°
6
K = 1.65 x 10
p S
K, = 7.33 x 10°
J = 41822
v o
Jy = 0-2
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and the plots of -1/N with
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Since the Geq(jw) plot never enters the region bounded by -180°
and -270° in which the plot of -1/N lies, the analog LST system will
not have self-sustained oscillations, due to the reaction wheel

frictional nonlinearity.
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4, Stability of the Digital Low-Cost Large Space Telescope With
Reaction Wheel Friction Nonlinearity

4-1. Introduction

In this chapter we shall investigate the éondition of self-
“sustained oscillations of the digital low-cost LST system with reaction
Whee] friction nonlinearity. | | ‘ | |

The block diagram of the simp]ffied'LST system is shown in Fié.

4-1. The equations written for the outputs of the samplers are:

@e(z) = -GA(z)ée(z) + N(z)GB(z)ORw(z) : (4-1)

0py(2) = 6.(2)0,(2) - N(2)Gp(2)0p(2) 42

where N(z) denotes the discrete describing function of the reaction
wheel friction noniinearity. Since the friction nonlinearity of the -
reaction wheel can be represented by the Dahl model, N(z) is identical
to the discrete describing functfon of the CMG nonlinearity [5].

The transfer fﬁnctions in Eqs. (4-1) and (4-2) are

(G, G.G.,G
_ ho 17273
6, (2) = ¥7+xe (4-3)
g R72
(G, G.G
ho-2°3
GB(Z) = ¥Tv R (4-4)
R¥2
(G, G,G,G
ho 17475
Gc(z) = T KRGZ] (4-5)




63

. | | *L-p 24nbL4
"A3LJR3ULIUOU |38YM UOLIIRAJ Y3LM WBISAS |ST 350D-MO| _mu_an 40 weubelp yo0|g L-b L

.—Im

|

yoz

=

MY

yoz-

oy




-

64
G, G,G '
R (-9

' The signal flow graph representing Egs. (4-1) and (4-2) is shown

in Fig. 4-2. The A of the system is obtained from Fig. 4-2,

A=1+ GA(z) + N(z)[GA(z)GD(z) - GB(z) Gc(z) + GD(Z)] . (4-7)

Setting A to zero, the last equation can be written in the form

of
1+ N(2)Gy, (2) = 0 - (4-8)
where

. 6,(2)6,(2) - eB(z)ec(z) + Gy (2)
eq 1+ Gy(z)

The 1ndividua1 transfer functions are evaluated as follows:

K K

6y(2) = (V- 271) J- 3P T
A z ) Jy 2{52(5 ra) s3(s + a)
= K Gy(z) + ﬁi- T2(37+ 1) T P S AL (4-10)
PBE Ty l2az - 108 a%(z - 1) @ ad(z - &)
a = KR/Jv
BEE T
GB(Z) = RE [z-—] - a(z__i-aT)] | (4-11)



Figure 4-2. Signal flow graph.
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4-2. Self-Sustained Oscillations in the D{g1ta1 LST System With
React1on Wheel Nonlinearity

Figure 4-3 shows the plots of Geq(z) in Eq. (4-9) for_varioué
values of n with T as a parameter. The integer n and sampling period T

are related to the frequency of oscillation by the following equation:

The following system parameters are used:

K =1.65 x 10° K. = 3.71 x 10°

p R

Ky = 7.33 x 10° 3, = 41822
Jggy = 0-2

In Fig. 4-3 the curve for n = 2 extends up to approximately 30 db
at T = 0.7 sec. Also, as n is increased the curves for Geq(z) approach
eq(2)
together with the plots of -1/N(z) allow the study of self-sustained

the curve for Geq(s) presented in Fig. 3-2. The plots of G

osc1]1at1ons in the digital LST system.

A Figures 4-4 through 4-6 show the p]ots for -1/N(z) for various n.
In these ‘plots y = 84700 and TGFO
of the lowest point of the -1/N(z) curve as E approaches 0 is given by

- 0.424. 1In all cases, the magnitude

1

E->O|:]| yT

With the given parameters this point is at -83.66 db. The curves

“for n = 2 are shown in Fig. 4-4 and consist of two straight lines at

67
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~-180° (for 0 < ¢ < m/2) and -360° (for m/2 < ¢ < w). The plots for
n=3andn=4 are.shown in Figs. 4-5 and 4-6, respectively. Several
values of ¢ are plotted in each case to illustrate the effect of the

phase of the input signal. It should be noted that for odd n the curves

repeat every 180/n degrees starting from ¢ = 0, and for even n the curves

repeat every 360/n degrees starting from ¢ = 0. As the input amplitude E
goes to infinity, the curves also go to infinity and span a region 180/n
degrees or 360/n degrees wide for odd or even n, respectively. This
region is centered about the -270° 1ine. Thus, as n goes to infinity
these curves approach-the -1/N curve of tHe continuous system shown in
Fig. 3-2.
For stability analysis it is sufficient to consider only the bounds

of the -1/N(z) plot for a fixed n. Self-sustained oscillations can
occur if the G(z) curve corresponding to the same n intersects witﬁ
the F(z) plot. Figures 4-3 through 4-6 show that‘self—sustained oscillations
can readily occur in this system with the choice of T determining the
possible n values which can exist. As the critical regions for highér
vafues than n = 4 can be easily visua]ized, it is apparent that this
system will‘have self-sustained oscillations for integral values beyond
n = 4. However, as n incfeases, the amplitude of oscillation decreases
and the oscillation will eventually cease as T gets smaller and smaller
and n gets larger and larger.

va y and TGRO are 1ncrea$ed then the curves of —1/N(zj move up with
the end point shifting according to Eq. (4-15). Figures 4-7 through 4-9

show the plots of -1/N(z) for n = 2, 3 and 4, respectively, with y = 8470

and T = 0.0424. In this case the Towest point is at -23.66 db and

GFO
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self-sustained oscillations are possible only for n = 2 over a fixed
small range of sampling periods. If T is chosen to exclude the critical

region, self-sustained oscillations can be avoided. .

4.
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5. Discrete Describing Function of A Quantizer

5-1. Introduction

The effects of quantization and the study of quantization error
conducted in Chapter 1 are all based on the assumption that the digital
system with quantization is stable and free frdm sustained oscillations.
Since a quantizer is a nonlinear element, it can cause self-sustained
oscillations. In Chaptef 2 the condition of self-sustained oscillations
in the ‘analog low-cost LST system with quantizer is studied by use of
the continuous-data describing function. However, in reality, the low-
cost LST system is a digital system. The interaction between the sampling
opebation and the quantizer will bring about phenomena which can be
grossly different from that in an analog system. Therefore, it is
essential that the discrete descfibing'funétion (DDF) of a quantizer be
derived. To the authors' knowledge the DDF of a quantizer has not been
derived in the past. |

Figure 5-1 shows the input-output characteristics of a quantizer.
‘The input of the quantizer is denoted by e*(t), and the output by y*(t).
It is assumed that the input of the.quantizer is the output of an idéa]
sémp]er. Therefore, e*(t) and y*(t) are trains of impulses. Furthermore,
it is assumed that the input to the sampler, e(t), is a cosine waQe, and

thus the amplitude of e*(t) is modulated by a cosine wave; that is,

e(t)

H

Ecos (wt + ¢) (5-1)

E k§ cos (kwT + ¢)68(t - kT) (5-2)
=0

e*(t)
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Quantizer

e*(t) qQ y* ()

(a)

y*(t)

-4h , ' -

L 3h

]
N

-5h -4h  -3h -2h -h I o
i 1 I + ‘ 1 — | » ! 1 1 5lh - e*(t)

(b)
~ Figure 5-1. (a) Quantizer nonlinearity.

(b) Input-output relation of quantizer.
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where E is a constant, w is the frequency in radians per second, T is
the sampling period in seconds, and §(t) denotes the unit impulse
function. The z-transform of e*(t) is

Ez

E(z) = 5 [(z - coswT)cosd - sinwTsing] (5-3)
z" - 2zcoswl + 1 -

The z-transform of y*(t) is denoted by Y(z).
The discrete describing function of the quantizer nonlinearity is
defined as

nz) = 2 | | - (5-4)

As in the case of the relay-type nonlinearity, we assume thaf
because of the periodic nature of the sampler, e*(t) and y*(t) are all
‘periodic functions of period nT, where n is a positive integer greater

than or equal to two. Thus,

2
W= (5-5)
or
o
ol = - (5-6)
n=2, 3, 4,

The DDF N(z) s incorporated in the "characteristic equation" of

the system,

1+ N(2)6, (2) = 0 | | | (5-7)

q



for the determination of the condition of self-sustained oscillations,
where Geq(z) denotes the Tinear transfer function which the quantizer
nonlinearity sees. Graphically, the condition of self-sustained

oscillation characterized by the period nT is determined by the inter-

sections of the G, (z) trajectories with the critical regions of -1/N(z),

q
all for the same n. Therefore, the DDF problem involves the determination

of the critical regions of -1/N(z) for the quantizer for n =2, 3, ...
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5-2. The DDF of A Quantizer for n = 2

In order to illustrate the derivation of the DDF of fhe quantizer
nonlinearity, we shall first consider the case of n = 2; that is, the
‘ se]f—sqstained oscillation is characterized by the period which is equal
to twice the sampling period. |

For this mode of oéci]]ation, the waveforms of e(t), e*(t), and
y*(t) are shown in Fig. 5-2. |

For n.= 2, Eq. (5-6) gives wT = w; Eq. (5-3) becomes

" The z-transform of y*(t) is written

"~ khz

V(z) = 35 (5-9)
where k is a positive integer. In this case it is assuﬁed that the
value of E is constrained by the following equation:
{2k~ 10 peos gy < {22 1 ~ (5-10)
Using Egs. (5-8) and (5-9), we have
1 _ _Ecos¢
N(zZ) kh (5-11)

For a given set of values of k, h, and ¢, the constraints on the

values of E fof n =2 are
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_ (2 + 1)h oy
Emax 2Cos ¢ (5-12)
= {2k - 1)h (5-13)
min 2cos¢
Substitgt1ng Erax @9 Enin into Eq. (5-11), we have
1 (2k + 1) |
- (k) = - A—5—= (5-14)
N{z) max 2k | |
1 (2 - 1) |
- (k) = - ~5 - 1) (5-15)
N(z) min 2k | |
The last two equations indicate that the critical region for -1/N(z)
for n = 2 is the line which extends from -(2k - 1)/2k to -(2k + 1)/2k
on the negative real axis in the polar coordinates.
It can be shown that
] | 1 '
163} (k+1) < (k) (5-16)
Nz max N(z) max
Since
1 2k +1) 41 1 |
way| ) = T T Ay (5-17)
and
1 2k + 1 _ 1 -
N<25 max(k) - 2k = +2_k— (5']8)

thus, Eq. (5-16) is verified.
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e(t) |
' /
0 . / . ~t
T 2T 3T 4T 5T\ 6T
-E
ex(t)
a i
0 T 2T 3T 4T 5T 6T
-E
y*(t)
0 . ' _— ' . =t
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—kh|
Figure 5-2. Waveforms for n = 2.
Aglm
-1 :
% 4 4 i) > Re
- (2k+1) 4 - (2k-1)
2k =0 2k

Figure 5-3. Critical region of -1/N(z) for quantizer for n = 2.
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Similarly, using Eq. (5-15) we can show that, in general,

(k) | (5-19)

and S(k+1) be the set which is bounded by
] (k+1)  and - (k+1)
B ﬁ—(a_-max | N—(—Z—Tmin'
then
S(k+1) C S(K) . | (5-20)

for k =1, 2, 3,_...

Equations (5-14) and (5-15) also show that

—

5-21)

k-0 k-0

| (k)] - -1
min

This result implies that as the number of quantization levels increases,

. 1 . '1
Lim [- W)’max(k)} = Lim {- N—(?)—

the quantizer characteristics approach a linear gain, and the critical
region reduces to the (-1, jO) point in the complex plane.

The critical region for n = 2 is shown in Fig. 5-3.
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~ 5-3. The DDF of A Quantizer fqr n =4

Before embarking on the derivations of general expressions of
-1/N(z) for all n > 2, the case for n = 4 will be considered as an
illustrative example.

For n = 4, the input pulse train of the quantizer can assume a
maximum of two different pulse amplitudes, kO and k]. The mode of
oscillation is thus characterized by A = (ko, k]),'where ko and k1 are
positive integers. Figure 5-4 illustrates the input and the odtput of
the sampler when the former is shifted through 360 degreés. It is
observed from these waveforms, és well as will be verﬁfied later by
equations, that the critical region for n = 4 repeats'every 90 degrees
for ¢, so that only the range for -45° < ¢ < 45° needs be considered.

For n =4, coswl = cos 90° = 0, z = j. Thus, Eq. (5-3) becomes

E(z) = 2EZ (zcos ¢ - sino) (5-22)
z- + 1

With reference to Fig. 5-4, the expressions of the input to the

quantizér for the various ranges of ¢ are written as follows:

h(koz + k])z

-90° < ¢ < 0° Y(z) = 5 (5-23)
: z +1
h(—koz + k])z
-180° < ¢ < -90° Y(z) = > (5-24)
' z- + 1
h(koz - k])z
0° < ¢ < 90° Y{(z) = 5 (5-25)
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the quantizer as ¢ varies through 360°.
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o h(-kéz - k])z ‘
90° < ¢ < 180° Y(z) = 5 (5-26)
: z + 1
The constraints on the magnitude of E over these rénges of ¢ are
tabulated as follows:
(2k0 - 1)h (2k0 + 1)h
—0— < |Ecos 9| < —2p— (5-27)
and
(2k] - 1)h _ (Zk] + 1)h
———— < |Esing| < ———— (5-28)
These inequality conditions lead to maximum and minimum bounds on E.
When these Emax and Emin are substituted into
1 _ E(z
W@ Tz | (5-29)
and along with Eqs. (5-23) through (5-26), the equations that define
the boundaries of the critical regions are obtained as
- N%ET 3 ~and - N%ET
max min
For instance, for -90° < ¢ < 0°, from Eq. (5-27),
('2k0 - 1)h
Enin1 = 72 cos ¢ (5-30)

Using Eqs. (5-22), (5-23), and (5-29), we have
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2k -1
] . 0 .
- N(Z) min 1 = zzkoj T k]) (tan¢ - J) (5-31)

Rationalizing the last equation, we have

2k_ -1
] _ 0 ) L - ‘
TN _2(k§ N kﬁ) [(kytang - k) +3(-k tano - k;)1 - (5-32)
Let
W) “Reg | (5-33)
N{z min 1
where
2k, -1 .
R = TT (k-l tancp - kO) ) : (5_34)
2(kg + k)
2k, -1 o
D=2z 2 Chtane - k) ‘ (5-35)
2(k0 + k])

Then, solving for tan¢ from Eq. (5-34) gives

_ R + koC
tan¢ = —X.C A (5-36)
1
wheré
‘ 2, - 1 -

2(k0 f k])
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Substitution of Eq. (5-36) into Eq. (5-35) yields after simplification,

I':_k_O.R_E&__-_l
k] 2k

(5-38)
1
- which is the equation of a straight line in the complex -1/N(z) domain.

Similarly, from Eq. (5-27),

. _ (2k0+ 1)h

max1 - " Zcosg "90° < ¢ <0 (5-39)

Following through the same procedure as described above, we have

‘. 2k +.1 )
-1 _ 0 .
€3] "2 koj + k] (tan¢ - j) . (5-40)

max 1
which is represehted by a straight Tine with the equation

I:_k_oR_.Z_kO_t_l
k] 2k

(5-41)
]
The boundaries for -1/N(z) when the constraint equation of Eq. (5-28)

is used are denoted as

and 6]
N{(z max 2 Nz min 2

.

The equations which define the boundaries of -1/N{(z) for the entire
range of ¢ are tabulated below:
-90° < ¢ < 0° 1=-2p- 2 (min1)

90° < ¢ <180°



91

kO 2ko + 1
I=-R-—5x (max 1)
1 . 1
k.| Zk] -1
[ = —R+ (min2)
k0 Zko
X 2ky + 1
I = E—-R * ok (max 2) (5-42)
0 0
k0 2k0 -1
-180°i¢_<_-90° I=_|Z-I_R+—2E-]— (m1n1)
0° < ¢ <90°
k 2k + 1
I=__0_R+_o—._.
Ky 2k, (max 1)
k] 2k] -1
I =-I<_R-_T (m1'n2)
o 0
, k] 2k] + ]
I= - 'S R -4—-—2T(-— (max 2) (5-43)
0 0

These equations show thét for the oscillatory mode of n = 4 and
A = (ko, k]), the critical regions are bounded by straight lines, and
that it is sufficient to consider the range of -90° < ¢ < 90°.
However, Fig. 5-4 shows that Ko > Ky for -45° < ¢ < 45° and Ko 5_k]
for 45° < |¢]| < 90°, thus, the critical regions for modes A = (ko, k)
and A = (k]; ko) are identical. It is necessary only to consider the
range of ¢ from -45° to +45°, in general, one does not have to use the
constraints on ¢, as the intersects of the eight-equations in Eqs. (5-42)

~and (5-43) will naturally define the critical region.



Modes A = (ha, 0) and A = (0, k’)

Figure 5-4 shows that when ¢ = 0° or 180°, k] = 0, and the mode is
described as ? = (ko, 0). Similarly, when ¢ = +90°, the mode is
&= (0, k). ' |

For the mode A = (ko’ 0), Eqs. (5-42) and (5-43) are reduced to

2k0 -1
R=__2T(__ (min])
0
¢
2koi+ 1
R = - o (max 1)
0
I=- E%— (min2)
0
1= 7%— | (max 2)
o

These four lines define é square as shown in #ig. 5-5.

| For the mode A = (0, k]), it is simple to show that the‘critica]
region is described by equations of the same form of Eq. (5-44) with
'ko rep]aced'by k]. Therefore, the'squaré régioh shown ih Fig. 5-5

is also for the ﬁode A = (0, k])_with k0 replaced by k];
Mode A = (ho, h,), k =‘h

When ¢ = +45°, +135°, ko = k], as shown in Fig. 5-4. The critical

region is now described by the following four equations:

2k -1
-0

0

92

(5-44)
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y

- 2ko+1 -1
2k _

- 2k0-1
2k

Figure 5-5. Critical regions of A = (ko, 0), (0, k

1

}, and (ko’ k).




2k + 1
1= R-—x
0
2K, - 1
I =R+
2K
2k + 1
I=R+—3
Q

The critical region is again a square, as shown in Fig. 5-5.
In general, the critical region for the mode A = (kys kq) s,
defined by the intersects of the eight equations in Egqs. (5-42) .and

(5-43). As an illustration, Fig. 5-6 shows the critical region for

A= (2, 1) whiéh is also for A = (1, 2). Notice that this critical

region is bounded by that of A = (2, 0) or A= (0, 2).

g
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(5-45)
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(1) 1 = -2R - 3/2 (5) I =R/2 +1/4 I
(2) 1 = -2R - 5/2 (6) I =R/2 + 3/4 ‘
(3) 1 =2R + 3/2 ' (7) I = -R/2 - 1/4
(4) T = 2R + 5/2 (8) I =-R/2 - 3/4
\’z) | (1) / '
\ y /
\ \ /(3) , (4) ]
\ \ ! /
. ’ (Z) \ \ / /
i > \ \ / /
=~ ~ \ \ / / ~
~ Nas o sas 22
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Figure 5-6. Critical regions of a = (2,0), (0,2), (2,1),
(1,2), and (2,2), for n = 4,




5-4. A General DDF of a Quantizer for n > 2

In this chapter we will generalize the results of the previous
sections and derive a DDF of a quantizer which is valid for all n > 2.
Thus, for an oscillation of any order, n, we seek expressions which

will define the critical regions of -1/N(z) for all possible modes

that can exist.

The derivations for the case of odd n and for the case of even

n differ substantially and are therefore conéidered separately.
t

A. Even n ,
v I

When n is even, the input pulse train to the quantizer can

‘assume a maximum of n/2 different amplitudes. The mode of oscillation

is thus characterized by

A= (ko, Kys Kos wees kh]-1)
)
where
! ——
n] = n/2
and
k. =

i

The corresponding expression for the output of the quantizer can

be written as

] : -1
Y(z) = h(kobO + k,b,z

a posi%ive integer, i =0, 1, 2, ..

1012+ kybyz

- n]-l.
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(5-46)

(5-47)
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h = level of quantization

b, = +1 or -1, depending on the phase of the input; i =0, 1, ..

The variables b., i =0, 1, 2, ..., n,-1, determine the sign of
the corresponding input and output pulses of the quantizer. The value

of bi is determined by the variable i and the phase shift ¢ associated

.with the input cosine signal.

The input to the sampler is written as

e(t) = Ecos (wt + ¢)
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(5—48)

. n]—l.

(5-49)



and the input to the quantizer is

e*(t) = E E cos (kwT + ¢)6(t ~ kT)
k=0

For an oscillation of order n, we have

_ 27
wT N
or !
' T .
wl = . when n is even
1

Thus, Eg. (5-50) becomes

e*(t) = E § cos (%E + ¢)8(t - kT)
’ k=0 1

!.I

Let

_ 1
T
M

"~ Then the variable bi is given by

| ;
b, =. SIGN[ cos (ai + ¢)]

With a given input amplitude E, an output of kih at time o

requires the following relation to exist:

(2k; - Dh | (2k; + 1)h
——— < |Ecos (o; + ¢)] < —5—
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(5-50)

(5-51)

(5-52)

(5-53)

(5-54)

(5-55)

{(5-56)
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Equation (5-56) implies that for a given even n, all combinations
of ki‘s.in the mode expression in Eq. (5-46) may not exist. Further,
the range of ¢ over which a particular mode exists will vary from mode
to mode. These facts provide useful insight into the operation of a
quantizer and play an important role in the implementation of any -
scheme which is used to calculate the critical regions.

In general, the range of ¢ which must be considered in describing
“function deriv%tions is 2w radians, but due to symmetry the required
variation of ¢ can be reduced substantially. In the case of a quantizef
and with n beihg even, the output waveform repeats after every 2n4n
radians change in ¢. This fact was illustrated for n = 4 by the wave-
forms of Fig. 5-4. Thus, it is sufficient to consider the range
-m/n < ¢ < 7/n. |

- The expression for the output of the quantizer, Eq. (5-48), is

~ valid over thagﬂrangg of ¢ where the ki's and bi's do not change from

their selected values. The expression in Eq. (5-56) proVides the
restriction on ¢ because of possible variation in k;- To determine
the iﬁfluence of ¢‘on bi’ it is necessary to determine minimum domains
of constant.bi's when ¢ is varied. With reference to Fig. 5-7, the
time of pulse ocgurrenceof'the quantizer input/output is according to

: . 8
the sequence

S or

o 21 dn iz n-1)2n
] n’ n, ] n ] b
lng_’ i=20,1,2, , Nn-1



gl S
3w a Cm
2 '

(n-1)2m

n

Figure 5-7.
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With ¢ =-0 as'reference,-the range of ¢ for constant'bi is defined
by the angle when any of the bi's first change sign. Thus, the pulses
located nearest to the w/2 and 3n/2'points must be considéred; i.e.,
we need to determine those values of i for whfch |n/2 - 2mi/n| énd
|3n/2 - 2wi/n| achieve a minimum.

First, note that

o A3m 2mif LT _2mi 2mn
m}n 2 n | m}n 2 n am + 5
= minte T4 20 (0
i =min|- 5 + iy (n - i)
i
- minlT - 2 (5-57)
. |2 n
J )
j=n-di,  i=0,1,2, ...,  §=0,1,2, ..., 0
Thus, it is sufficient to consider the minimum of |w/2 - 27i/n| only.
Two separate cases have to be considered:
Case a: " A5 even
When N is even, let
ny = an i (5-58).A
~then
n = 4nr . ' (5-59)

If we choose i = nr = n/4, then
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2wi
n

u

s
2 2

1t
o

T
2

which is then the desired minimum. In this case, there is a pulse at
o, = n/2 and also at a; = 3n/2. The pulses nearest to these lie
2n/n radians.on either side; thus, the bi's_wi]] remain constant for
the ranges 0 < ¢ < 2m/n and -27/n < ¢ < 0. Since the range of ¢

variation is -m/n < ¢ < n/n, two ranges of ¢ have to be considered

Range 1: ¢ 0<¢ <u/n
~Range 2: i-ﬂ/n <¢<0 . (5-60)

Case b: ny 48 odd

In this case the pulse nearest to w/2 is given by 1 = (n]/2 +1/2),

thus
Jw  2mi r 2r,M 1
minjz = Thr - E‘ﬂ?f?)l
= |7 _Zmn 1
|2 n(4i2)‘
S
n
; |
- : -61)
=1 | . (5-61)

Since the bi's will remain unchanged for O 5;¢ < w/n and -m/n < ¢ < 0,
the two ranges of ¢ are the same as in case a, Eq. (5-60).
The ranges of ¢ defined by Eq. (5-60) must therefore be considered

separately when the expression for the quantizer output in Eq..(5-48) is .



utilized. .A]fhough, the choice of the ki's further réstricts the range
of ¢, this restriction will not be considered in advance, and will
Aappear naturally when the critical regions are calculated. In fact,
for some combinétion of the ki‘s the range of ¢ will be noﬁexistent.

In order to derive a general expression for -1/N(z) when n is
even, we write the expression for the input from Eq..(5—3) and the

expression for the output from Eq. (5-48):
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E(z) = Ez[i(z - coswT)cosd - sinwTsin¢] | (5-62)

z2 - 2zcoswl + 1

ny-1 i
h } k;b.z v
_ i=0
Y(z) = - (5-63)
z 1 + 1]
"The negative inverse of the deScribing function is given by
. v
R I 4 ¥ -
N(z) Y(z
_ ' n,
. _Ez[(z - coswl)cos¢ - sinwTsing]lz ~ + 1] (5-64)
_ n,-1 .
2 1 n,-i
(z° - 2zcoswT + 1)h } k1b124
. i=0
. i
Since z is given by
2 = 9T = cos T + jsinwT | | (5-65)

Eq. (5-64) becomes



1 _ _Ezjsingwl(cos ¢ + jsing)(z 1, 1)
N(z) ' ny-1 o
(z2 -2zcoswl '+ 1)h } k;b.z !
A
i=0
Define
\
™
C = - zjsinwl(z ' +1)
n ' n]-l .
2 M-t
(z° - 2zcoswT +1) ) kibiz
/ i=0
ny
The term (z % 1) can be expanded as
oy Tt ek,
z +1= 10 (z-e ) -
k=0
. . n,-2 .
,Jﬂ/n1 -Jn/n] 1 3(2k+1)n/n]
=fz-e )z - e ) 1 o (z-e
n,-2 .
) 1 3(2k+1)n/ng
= (2" - 2zcoswT +1) T (z-e )
) k=1
Substituting Eq. (5-68) into Eq. (5-67) yields
i |
‘n,-2 .
1 \](2k+1)'n/n.l
zjsineT T (z - e )
c - k=1
" M -
) kib.z
i=0

or .

)
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(5-66)

(5-67)

(5-68)

(5-69)



ny-2 §(2k41 )/,
jsinwT T (z -e )
c - k=1
n ™ n,-1
Lokiabig?
“let .
Cn - CnR * anI

where CnR and an are the real and imaginary parts of the constant Cn.

The expression in Eq. (5-66) can now be written as

- RR%7-= %'(CnR + anI)(cos¢ + jsing)

The constraints on the magnitude of E are

(Zki - 1)h | (Zki + 1)h

—— < |Ecos (¢ + o) < 5

i=0,1,2, ..., n;-1; ki # 0.

1

Since E is a positive quantity, the expression in Eq. (5-73) can
be written as
. ‘
(Zki - 1)h (Zki + 1)h
— < Eleos (¢ + ;)| < ———

Let the range‘of ¢ be defined as
b1 2629

where ¢] and ¢2 can take the values as specified in Eq. (5-60).
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(5-70)

(5-71)

(5-72)

(5-73)

(5-74)

(5-75)
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Define ¢N as

Al

¢N = 2 (5-76) |

The absolute value sign in Eq. (5-74) can be removed by use of a

new variable a% as

a% = o if %;-< (¢N + ai) <2 or 0« (¢N + ai)'< %
i
and
i
o =, -1 if T< (o, * dy) < 3 ' f (5-77)
i i 2 i N 2
Equation (5-74) now becomes ’ » .
(2k; - 1)h (2k; + 1)h -
————7?————g5 Ecos (¢ + a%)-i'——__ﬁ__—_— (5-78)

o

Thus, the maximum and minimum values of E can be written as

(Zki + 1)h

Enax i = 2cos (¢ + a%) (5-79)
(gki - 1)h

Emini = Zcos (g + of) (5-80) .

i=0,1,2, ..., n]-l.
The corresponding maximum and minimum values of -1/N(z) are
1 (Zki + 1)(CnR + anI)(cos¢ + jsing)
N B 2cos (¢ + al) ' (5-81)

max i : i



(2kj - 1)(CnR + anI)(cos¢ + jsing)

nin 2 cos (¢ +oc1-)

=2|—

In order to eliminate ¢ from Eqs. (5-81) and (5-82) consider

Eq. (5-81) first; expanding the denominator and numerator yields
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(5-82)

(2k1.- + 1)[(CnR cos ¢ - CnI sing) + j(CnR sinq) + CnIcos¢)

] -
N max i 2(cos¢cosa_]. - s1nq>s1na1.)
, (5-83)
Let !
1 i
"N =X +Jy (5-84)
max i
By comparing Eqs. (5-83) and (5-84), we have
- (Zki +1) Cchos ¢ - CnI sin ¢
2 cos¢cosa%-sin¢sina%
#
- K+ CnR ) CnI tan ¢ (5-85)
i cos 0L15 -sin oc;. tan ¢ 4
where
N .
Ky = (2k; +1)/2 (5-86)
;
and
4 CnRs1n¢ + CnIcos¢
i cos ¢ cos oa;. -sing sin on]'.
Ctand + C
= K} R nl (5-87)

i cosa%-sina%tan¢

Equation (5-85) is solved for tan¢ to yield
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+
K. C , - xcosal
tang = ——DR (5-88) -
Ki CnI - Xsina,
If Eq. (5-88) is substituted into Eq. (5-87), we have
+ 1
. K]. CnR - XCosa, .
+ nR K:.’,CnI - xsina; nl
y = Ki r (5-89)
K1. CnR - X COS a_'i
coso: - sina
! '1K+C - xsino}
] i “nl i
After some a]gébraic manipulation, Eq. (5-89) yields
C2 + C2 C cnsa' + C_.sina.
y = et nR nl _ _nR i nl” i X (5-90)
i CnIcosaﬁ - CnRS1nai CnICOSui - CnR51na1 . .
Equation (5-90) which is obtained from Eq. (5-81) by eliminating
¢ shows that the -1/N|max i lTocus in the complex plane is a straight’
line.  Similarly, when ¢ is eliminated from the -1/N{min i expression,
Eq. (5-82), we have
¢ + ¢ C ,cosal +C sino .
y = K nB nl _ _ _nR i nl” i X (5-91)
i CnIcesai - CnRS1nai CnICOSai - CnRsmoci _
. "l
which is also a straight line in the complex plane, and
. '(2ki - 1)
Ki R — | (5-92)

Note that the lines defined by Eqs. (5-90) and (5-91) are parallel

but have different intercepts on the imaginary axis. Thus, each magnitude

constraint of Egs. (5-79) and (5-80) on the input expression of
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Eq. (5-62) generates two parallel jines which represent the maximum
and minimum values of -1/N(z), respectively.

Since there are n magnitude constraints, Eq. (5-73), each
output expression generates 2n]-1ines, where " lines are the maximqm
values of -1/N(z), and Ny lines are the minimum values of -1/N(z).

~ When n is even, the number of ¢ ranges to be considered is two,
as fn Eq. (5-60), then Eq. (5-63).gives two output expressions which

have to be considered. The difference between these two output
]

-expressions would be that some of the bi's are different due to the

different ¢ rahge. Therefore, each mode as defined by Eq. (5-46)

yiers the following number of Tines:

n. = 4n - E (5—93),

where n. represents the number of lines generafed in thé'complex
plane.. v

Among the lines in Eq. (5-93), 2n] represent maximum conditions
for -1/N(z), and 2n, -represent hinimum conditions. Also, each max imum
line is parallel to the corresponding minimum line.

The critical region for -1/N(z) is thus the region enclosed by the
n 1ines and satjsfying the maximum and minimum requirements associated
with each line. In some cases if the choice of.the ki's in Eq. (5-46)

is such that there may be no region enclosed, then that particular mode

will not exist.

The brocedure for determining the critical region for the quantizer
describing function when n is even, can be summarized as follows:

1. Select.an even integral n.
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2. Se]eét a mode by choosing the ki'S in Eq. (5-46).
3. There afe two ranges of ¢, O 5_¢'§_n/n and -m/n < ¢ < 0.
For each range of ¢ determine the bi's and thus fhe output,
Eq. (5-63).
4. Calculate the coefficient Cn as in Eq. (5-70) for each range
of ¢. | ‘
5. Determine the a.'s, Eq. (5-54), and ai's, Eq. (5-77), for the
chosen n.
k~6. For e;;h a% and each range of ¢, calculate the slope and
1nterEeptsof‘the n. Tines, Eqs: (5-90) and (5-91) which Qefiﬁe.
the maximum and minimum.values of -1/N(z). |
7. Determine the region enclosed by these lines.
This is the critical region.
As n is increased, the number of equations defined by Eq. (5-93)
quickly rises qu it is useful to consider utilizing a digital computer
for determining the critical regions. The following table illustrates tﬁe

3 number of lines associated with various even values of n > 4.

ranges of ¢ no. of lines total number
n (degrees) _ per ¢ range of lines
' A (2n,) (4n;)
1 17
“m .
4 . 0<¢<45 8 ' 16
-45 <9 <0
6 o 0<<30 » 12 24
-30<¢<0 '
8 0<¢<2.5 - 16 32
~22.5<¢ <0
10 0<¢<18 20 40
-18<¢<0 |
20 , 0<¢ ,i 9 40 80

960
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-B. 0dd n

When n is odd, the input pulse train to the quantizer can assume
a maximum of n different values. The mode of oscillation is thus

characterized by

b= (ks kys Kps vees ko q) o (5-94)

The output of the quantizer is written as

f

) | -1 -2, ~(n-1)
Y(z) = h(:<0b0 + k]b]z + k2b2z + ...+ kn—1bn-1z
-n -(n+1)
+ koboz + ka]z +...)
- -n -2n -1 -(n-1), .
=h(T+z 7 +z270+ ) (kb + Kbz "+ ...+ kn-lbn-lz )
ny -
= h(.I'"\— z )(.z k_ib.iz )
i=0
n-1 .
hz"( ¥ kibiz'T)
_ i=0
2" -
n-1 i
h 7 k.b,2" _ .
_ =0 ' |
= - (5-95)
z -1

where h and bi have the same meaning as in the even n case.

The input to the sampler is again written as

e(t) = Ecos (wt + ¢) (5-96)



and the input to the quantizer is

ex(t) = E ) cos (kwT + .¢)8(t - kT)
k=0 _
=E ) cos(gﬁﬂ-+ $)8(t - kT)
k=0
Let
_ 2mi ? B
OL.I——n— 1—0,1,2, ,n-]

then, bi is given by

bi = SIGN[cos(ui + ¢)]

The input and output of the quantizer are constrained by the
following relatjon:

(2k; - 1)h (2k; + 1)
———— < |Ecos (0; + ¢)| < — 55—

As in the case of even n, Eq. (5-100) restricts the possible
combinations of ki's in-the mode expression of Eq. (5-94).

In order to{determine the range of ¢, consider the waveforms
in Fig. 5-8. In this figure n = 3 and the waveforms repeat every 120

degrees. In general, for odd n, the output waveform will repeat
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(5-97)

- (5-98)

(5-99)

T

(5-100)

When ¢ is changed by 2w/n radians. Thus, the range of ¢ is chosen as

-m/n < ¢ < w/n.
It is now necessary to divide the chosen range of ¢ into smaller

ranges depending on the variation of bi's in the chosen full range.
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EEEP —-—

P N

~_ | 1

e
{ e
P
¢ =0 \
¢ = 30° I
b
b = 60°
¢ = 90°
¢ = 120°
o = 150° |-
¢ = 180°

" Figure 5-8.



M4

Figure 5-8.



The effect of'ki's on restricting the range of ¢ will be accounted

for when the 1imits on the input magnitude as described by Eq. (5-]00)
are considered. To determine the influence of bi's on ¢, we again
cé]culate the domains of constant bi when ¢ is varied in the chosen

range. The pulse occurrence timing is written as

0 2n (n-1)2n

or i

am _ i=0,1,2, ..., n-1.

Taking ¢ = 0 as reference, it is necessary to determine the values

of i for which |n/2 - 2wi/n| becomes a minimum. The result of Eq.
(5;57) is stf]] valid and allows us to ignore the 3n/2‘point while
considering thﬁ}n/Z poiht only.

‘The minimuﬁ of |mn/2 - 2wi/n| will be achieved By one of the
two pulse occurrences on either side of the m/2 points (When'n is odd,

no pulse occurs at w/2 exactly). Thus, the minimum will be given by

&=
.

. _n
= — +
i=7%

. ‘ :
which ever sign makes i an integer. Thus, when n = 3, the + sign is

used and when n = 5 the - sign is used, i = 1 in each case. Thus,

. 2mi
min .

.i

r.
2

N
3

Bl=

115

(5-101)
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The chosen range of ¢, -m/n ﬁ_¢ < m/n has to be subdivided into
sections given by Eq. (5-101), over which the bi's are constant.

Four ranges of ¢ must therefore be considered.

Range 1: @/2n < ¢ < 7/n

Range 2: 0 <¢<m/2n
-Range 3: —n/2n15_¢ <0
Range 4: -m/n < ¢ < -7/2n ' : (5-102)

i _ : ,
A general expression for -1/N(z) with odd n is now derived. The in-

put signal will change when ¢ is varied beyond its range as definqd by Eq.
(5-102). Accordingly, each range in Eq. (5-102) will have to be
Calculéted separately.

The input and the output of the quantizer are written as

E(z) = - Ezj sinwl(cos ¢ + jsing)

5 (5-103)
2 - 2zcoswl + 1 '
n-1 .
h k.b.z"! _
i=g 1
Y(z) = - (5-104)
z +1 ' A '
respectively.
The negative invgrse of the describing function is
1 . Kz
N(z) Y(z
. _ EzjsinwT(cos ¢ + jsin o)(z" + 1) (5-105)
n-1 .
(z2 - 2zcoswT + 1)h ) k.b.z"!
ifg 11

Define



. zj sinwT(z" + 1)

n 2 _ n-1

(z° - 2zcoswT + 1)( ]
i:

k.b.z2" ")
g 11

In Eq. (5-106), the term (z" - 1) is written as

n-1
(zn -1) =1
j=

0 (Z _ ej?”ﬂi/n)

, n-2 em e
Z(z - 1)(22 - 2zcoswl + 1) (z - e32“1/n)

i=2

Substituting Eq. (5-107) into Eq. (5-106) yields

n-2 ch
zjsinwT(z - 1) 1 (z - eJZﬂ]/n)
— | i=2
n n-1 .
) k.z"?
i=0 !
1
n-2 cn
jsinwT(z-T1) 1m (z - eJZﬂi/n)
: i=2

n .
n-1
L KiabiaZ

Dividing Eq.. (5-108) into real and imaginary components, we
‘

write

C =C, t+JiC

n nR nl

The expression in Eq. (5-105) then becomes

E - i si
- N%%7.= ﬁ'(CnR + JCnI)(COS¢ + jsing)
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(5-106)

(5-107)

(5-108)

(5-109)

(5-1]0)_
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"The magnitude-of E is constrained by

(2k1 - 1)h (2k1 + 1)h
———— < |Ecos (¢ + o) < —5—— (5-111)
i=0,1,2, ..., n-1, k; # 0.
Let the range of ¢ under consideration be
O <0<y - ‘ . (5-112)
‘ '
where 9 and ¢, can take on values as specified in Eq. (5-102), we
define
¢y + 9 ' '
oy~ ]2 £ o (5-113)
~Select a% such that
i A3 ‘
a; = a; if 7§-< (¢N + ai) < 2m
or 0 < (¢N +_ai) < /2
af = o - if %—< (o) * ai) < 3n/2 ‘ (551T4)
Then, Eq. (5-111% cén be written as
(2k; - 1)h o (2k; + 1)h
—5—— < Ecos (¢ + a}) < —5—— ~ (5-115)

The maximum and minimum values of E from Eq. (5-115) become
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(2k1 + 1)h

“max i = Zcos (¢ + ol) (5-116)

(Zki - 1)h |
Enini = 2 cos (¢ + a%) (5-117)
The corresponding maximum and minimum values of -1/N(z) are
a3 eos s + 3 sing) -
N{max i | 2cos (¢ + af) |
1 } (2k1 - ])(CnR + JCnI)(C?S o + jsing) 5-119)
N min i - 2cos (¢ + af)

Equations (5-118) and (5-119) are similar to Egs. (5-81) and (5-82),
respectively, bbtained earlier for even n. Thus, as in that case, it
is_possibie to eliminate ¢ and dete;mine the straight lines defined
by the Tocus ofi*each expression which ¢ is varied. VThe result is
identical to Eqé. (5-90) through (5-92).

Each magnitude constraint in Eq.. (5-115) again generates two
pafa]]e]-straight lines, one representing the maximum value of -1/N(z)
and the other representing the minimum value of -1/N(z).

With n magn}tude constraints and four rahges of.¢, the total

- number of straight lines in the complex plane is

n, = 8n . o (5-120)

As before, the critical region for -1/N(z) is the region enclosed
by the n lines and simujtaneously satisfying the maximum and minimum
requirements associated with each line. Also, if the choice of ki's

is such that no region may be enclosed, that particular mode will not exist.



The procedure for determining the critical region for the quantizer

describing function when n is odd is summarized below:

1.
2.

Select an odd integral n.

Select a mode by choosing the ki'S'in Eq. (5-94).
Four’rangeé of ¢ can exist, as defined by Eq. (5-102).
Determine the bi's for each range.

Cé]culate coefficients Cn as given by Eq. (5-108) for each
range of ¢. | |

i's, Eq. (5-114).

Determine the o

For each u% and each range of ¢ calculate the two lines qf
Eqs. (5-118) -and -(5-119) which define the maximum and miﬁimum
values of -1/N(z). |

Deterhine the critical region by finding_the regiqn enc]oséd

by all the Tlines.

The following table indicates the number of lines associated with.

several values of odd n:

120

. of lines total number
Ranges of ¢ no. o .
n : per ¢ range of lines
(degrees) (2n) (8n)
3 0<$<30 , 30<¢<60 6 - 48
-60 < ¢ <-30 , -30<¢<0 ' ‘
5 0<¢<18 , 18<¢c<36 10 80
-36<¢<-18 , -18<¢<0
7 0<¢<12.9, 12.9<¢<258 14 12

_25.8 < ¢ <-12.9, -12.9 < § < 0
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5-5. Computer Implementation and Results with the General Quantizer

“Describing Functian

The DDF derived inAfhe previous sections has been programmed on a
digital computer. Inbut data consists of the order of_osci]]ation n
and the modes which are to be investigated. The program calculates
the ¢ ranges, the a%'s, the bi's and- generates all the possible 1inés
fpr the given mode. These lines are then plotted by hand and the
critica]lregion determined.

As examples of the utility of the program, two vé]ues of n,

n =4 (even case) and n = 3 (odd case) are selected.

A. Results for n=4

Figure 5-9 Shows a typical printed oufput from the program for ' ,
one mode, & = (1, 2). In Fig. 5-9:the following information is
provided:
1. N = the order of oéci]]ation n
Nt = n/2 for even n and N1 = n for odd n

NPR = no. of ¢ ranges

NLS = NPR x NI
NL " = no. of lines n
n].(nL -2)
NINT = no. of intersections of the lines, ———
2. The ¢ range is printed next as PHI RANGE
3. The a%'s are written as ALPHA VALUES
4. Sequence of boko’ b]k1, b2k2,'... is written as SEQUENCE OF

K0, K1, etc.

5. CnR and CnI are printed next



DIZCRETE DEZCRIEBING FUMCTION FOR A QUAMTIZER HOMLIMERRITY
H= 4 Hi= & HFRE= 2  tHLE= 4 HL= 2 HINT= 24

FHI RAMGE IZ-45.00 70 g.0n

HALFHA “ALUEZ ARE 0.000E-1 S,000E+01

COZERUENCE OF EdskKls...ETC IZ 1., 2.

IH-RERAL=-2.00000DE-D1  CH-IMAG=-4,00000E-01
THE LIMEZ ARE GIWVEM BY v=xeIlLOPE+CRO=ZE
SLOFE CEOZEL CROZZE
=S 00000E-101 -7 .433933E~-01 -2S000n0E-01
S.ON001E+DD SSUNNLE+DD LSRNUROE+DD
FHI RAMGE IZ  0.00 TO 45.09
ALPHA “YALLUESL REE N.oooE-01 —-2.0008+01
SEQUEMCE DOF KiOsKl.,..ETC IS 1. -2.
CH=-FERL=-2.00000E-01  CH=-IMAG= 4.,00000E-101
THE LIMEZ ARE GIWEM EY Y==+ZL0OFE+CEOZE
ZLAOFE CEOZZ1 CROZZE
_____ FL.o000ieE~0L 2L.o0000E-01
-2. l:I DODIE+QD -2.5000 i E+00 0 -1 . SONOOE+ I:lAI:!

Figure 5-9.
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6. The 1ines for this ¢ range are then written, where SLOPE
refers to the slope of the maximum and minimum lines.
CROSS] is the intercept of the maximum line and.CROSSZ is
the same for the minimum line. The lines are written in the
same order as the a%'s, or the occurrence of the pulses.

7. Al information is repeated for the other ¢ range.

The lines are plotted and the critical region is determfhed.

Figure 5-10 shows the plots for several different modes with n = 4.

In this case the critical regions are symmetricai]y located around the

(-1, 0) point in the complex plane. Also, as Ky Ky inckease the

"critical region tends to shrink towards the (-1, 0) point.

B. Results for n = 3

With n = 3 the mode of oscillation is defined by three different

o’ k] and k2. Also, in this case, many of the combinations

variables, k
of‘ki;s cannot exist. Figqure 5-11 shows the critical regions obtained
with the computer program for & = (1, 0, 0) and & = (1, 1, 1). The
critical region was found not to exist for the modes 4 = (2, 0, 0),
A=(1,2,2), 5={(1, 2, 3).

Results for other modes and other values of n can be obtained
‘simi]ar]y. However, as n gets larger, the number of lines increases
substantially and the procedure for determining the critical region
. gets more involved. It would be desirable if the computer program were
. able to calculate these regions itseif from. the straight lines. "In

order to expand the scope of the program to include this calculation,

several special cases, which can occur have to be resolved first:
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1. - In cértain modes, the duplication of the lines results in
many parallel lines, and their intersection calculations
can cause singularities. Such duplicate lines and repetitions
should be recognized and eliminated, thus removing any
singuiarities as well as reducing the computation.

2. In certain modes, the straight line can be a line with infinite

slope. This happens when certain combinations of CnR’ C I and

n
' ai's yield zero denominator in the slope expression; Eq. (5-90).

This condition should be recognized and the 1line should be
redefined as x = f(c, o), with no occurrence of y in the21ine
equation. | |

3. Sometimes the straight line has zero slope and thi§ must
also be recognized and eliminated. The line must be re-
defined using y only.

These comments can provide a basis for extending the results

presented here and using them in a more general situation.
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