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1. INTRODUCTION

Among the various types of available data relevant to the establishment
of geometric control on the moon, the only one covering significant portions
of the lunar surface (20 %) with gufficient information content, is lunar photog-
raphy, tai«:en at the proximity of the moon from lunar orbiters. 'Ifhe naturally
suited tool for the analysis of such data is the well known method of analytical
phototriangulation. However, analytical phototriangulation in its earth-bound
applications has not been traditionally viewed by photogrammetrists as a method
to esi:atblish2 but rather to extend or densify already existi;ng geodetic contro}.
The lack of high quality geometric control on the moon-requires the introduc-
tion of orbital control which can be established from earth-based tracking of
lunar orbiters using models confaining information on the lunar ephemeris,
on the rotations of the earth and the moon, station positions on the earth and
on the moon and on the Iunar gravity field.

Past experience from lunar phofotriangulation with separately deter-
mined and constrained orbital control shows unacceptable inconsistencies [7],
and there has been a call for the employment of advanced orbit determination
techniques emphasizing the geometric aspects rather than the previously em-
ployed gravimetric aspects. Such technigques have become available mainly
through the philosophy expressed in the work of Ingram and Tapley [9].

This v\;ork attempis fo e;;gplore certain new ideas aiﬁed in somewhat
different directions. The systematic pattern in some of the inconsistencies
mentioned above [7, Fig. 5 and 6]- strongly indicates that they are at least
partly due to referencing the orbit geometry to poorly determined frames,

T e.g., tothe principél moments of i;nertia axes or to the selenographic systems.

In this paper the idea of "free geodetic networks' {4] is introduced as
a tool for the statistical comparison of the geometric aspécts of the various
data used. Further, methods are developed for the ,updating of the statistics
of observations and the a priori parameter estimates to obtain statistically

consistent solutions by means of the "optimum relative weighting™ concept.
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2. REVIEW OF AVAILABLE DATA

s
o

Although other tﬁes of data such as laser ranging to the moon and differ-
ential VLBI are releyanj: to the establishment -of selenodetic control, the empha-
sis here is on the utilizétion of orhital metric photography in eonjunction with
supporting laser altimetry and stellar photography and of a priori estimates of
satellite positions. More specifically, the daia here considered have been ob-
tained by the Mapping Camera System aboard the spacecraft during the Apollo
15, 16 and 17 missions. Since a detailed descrii)tion of the system can be found
in [13] and [3}, only a general description is given here.

The Mapping Camera System is composed of a terrain camera, an agsoci-
ated stellar camera and a laser altimeter. The terrain camera has a focal length
of 76 mm, a 115mm x 115 mm format and reseau marks with a spacing é)f 10 mm
recorded on everj'.r photograph for film deformation compensation. The camera
is capable of compensating for forward motion and the shutter interval is auto-
matically set by means of separate sensor measuring the brightnr-;\ss of the lunar
surface, Resolution depends on the solar altifude with an optimum of 90 lines
per mm. The stellar camera has a 76 mm focal length, a format of 32mm X
25mm and a reseau grid with 5 mm spacing. The laser altimeter records the
spacecraft altitude with an accuracy of £ 2m.

During each revolution as the spacecraft passes over the sun-illuminated
part of the lunar surface, the terrain and stellar cameras and the altimeter oper-
ate simultaneously to provide three types of observations at each exposure time,
The terrain camera takes a sirip of almost vertical lunar photographs, while the
stellar camera takes a corresponding series of star photographs in the direction
of the flight about 4° to 6° above the horizon. Af the same time the altimeter
measures the distance between the camera exposure point and the intersection
of the camera axis with the limar surface. The terrain camera also records
this laser illuminated point. From the star field photographs, the orientation

of the stellar camera is determined with respect to a "star catalog' system and



the orientation of the terrain camera in the same system can be determined
using the relative orientation of the two cameras known from preflight cali-
brations.

Earth-based tracking of the spacecraft is used to determine the orbit
geometry, more specifically, the coordinates of the camera with respect to

some moon-fixed coordinate system at each exposure time.



3. COMMENTS ON COORDINATE SYSTEMS

3.1 Coordinate Systems in General

The concept of geodetic control traditionally has always been connected
to the use of coordinates with respect fo some frame of reference. Although
coordinates are not the only necessary means to represent geodetic control,
they have been introduced in préctice as a matter of convenience because they
allow the use of Cartesian analytic geometry, inspite of possible pitfalls.
Reference frames can be divided into natural and convenfional frames. The
former naturally arise from the physics of a given situation (e.g., principal
axes of inertia), while the latter are arbitrarily set to meet some criteria.
Coordinates have a physical meaning and they can be determined (estimated)
from observations only when they are referred to the natural frames of
reference.

While some observations are invariant under coordinate system trans-
formations and therefore they can be analyzed in any arbitrary reference frame,
other observations are comnected with certain reference frames and must be
analyzed therein. For example, while range or range rate observations are
coordinate system invariant, the siellar camera observations are naturally
variant with respect to the "'star catalog' frame of reference.

Modeling the physgical processes is also connected to certain reference
frames. For example, lunar theory can be viewed as the time history of
the geocenter to the Iunar center of mass vector, and the physical librations
of the moon are conhected to the principal axes of inertia selenocentric ref-
erence frame, For the foregoing reasons it seems advisable to define precisely

the reference frames to be used in this report.

3.2 Traditional Coordinate Systems

The first reference frames for the description of coordinates of lunar features



emerged at times when the only possible means of observations were the low
accuracy earth-based optical observations, such as heliometry and later lunar
photography. In view of the low accuracy of these observations, some aspects
in the prec ise definition of coordinate systems may have seemed to be too theore-
tical and/or irrelevant. As a result, errors are frequent in selenographic papers
and the confusion found its way even into astronomical almanacs [6]. The main
problem arises from the failure to distinguish between the following four direc-
tions (supposedly) through the selenocenter:
1) The direction of the axis of maximum moment of inertia..‘
2} The direction of the instantaneous axis of lunar rotation.
3) The Cassini axis, i.e., the axis whose change of orientation with
respect to an inertial (ecliptic) system is governed by the three
"empirical laws of Cassini. '
4) The direction of the mean lunar rotf;ttior; axis.
A detailed description of the current and past situation is given in a paper by
Habibullen (1971) {6]. His terininology is adopted also for this papér. The

following four selenocentric systems are considered:

1) True Selenographic System — The z axis is the instantaneous rotation
axis of the moon,

2) Dynamical System — This one is usually referred to as the principal

axes of inertia system. Itis defined as the Cartesian selenocentric system -

for which the following products of inertia vanish:
D = fMyzdm=0, E = L,‘xzdm= 0, F = fxydm= 0.

3) Cassini Selenographic System — This system is such that its rotation

with respect to the ecliptic system is given at any epoch by three Eulerian angles
defined as follows: ~ '

o = &

©g 180°+(£D+ )

90 = 1

]

where {i is the mean longitude of the ascending node of the lunar orbit; ¢ » the

mean lupar longitude and I the inclination of the Cassini equator (not the orbital



plane) with respect to the ecliptic.
4) Mean Selenographic System — The z axis is the mean rotation of the moon.

For systems (2} and (3) the direction of the x axis is defined. For systems (1) and
(4) the "zero point' on the corresponding equator remains to be defined or to be arbi-
trarily selected. The only moon-fixed coordinate system by definifion is the
Dynamical System. Systems (1) and (3) can also be considered moon-fixed if
they are referred to a certain reference epoch. System (4) has the most compli-
cated definition and though it is the most widely used, it is the least well realized
(established). Formally, 2 mean position is to be defined by means of a time
average of the time variant positions, i.e., it involves an integral with respect
to time over the interval (- », +«),. Such an integration could be carried out
only if the variation of the positioni of the instantaneous axis of rotation with respect
to the rigid lunar body has a purely periodic character. Since this is not neces-
sarily the case, the integration has to be realized over a certain time interval
and then system (4) becomes moon-fixed with respect to this certain fized time
interval ,

The Dynamical {coordinate) System is related to the Cassini Selenographic

System through the relations [ 6 ]:

%b‘l = Yot o
© = @t (T-0)
8 = 60+p

where o, p and T are the physical librations in node, inclination and longitude,
respectively. The difficulty in .detecting the position of the principal axes of
inertia by means of present observations -necessitates the use of an "observable"
system such as the Mean Selenographic or the True Selenographic Systems
referred to some fixed epoch. In practice, therefore, the physical libration
parameters ¢, p and' T connect‘ the Cassini System to one of the above systems.
In earliest works the mean rotation axis of the moon (Mean Selenographic
System) was taken as identical to the principal axis of maximum inertia (Dynamic
System) [6]. The distinction betwlaen these systems is not critical when construc-

ting a libration theory in which the product of inertia D, E, F are to be constrained



to zero, because the products of inertia in the Mean Selenographic System are
close enough to zero. The detection of the directions of the principal axes of

inertia with respect to another moon-fixed system is possible only through the
knowledge of the gravity field, specifically the second degree harmonics, with
respect to the moon-fixed system. In Appendix C the possibility and methods

of deterrﬁining these directions are dealt with separately.

3.3 Natural and Arbitrary Coordinate Systems

From the point of view of establishing geometric control, the primary
obj ective is to determine the shape and scale of a network formed by a cluste:
of points on the lunar surface. The shape and scale of a network is determined
when the following quantities can be determined: ‘

1) The angle P; P; P, between lines P, P, , P, P, through any points
P, , P, , Py inthe network.

2) The distance d;; of the line segment P,P; joining any two points
P, and P; in the network,

Group (1) quantities determine only the shape of the network,

Alternatively, for representing the network geonietry one may use the
coordinates of the points with respect to a coordinate system which is invariant
in space with respect Tfo the rigid netwm-:'k of points. In this case both the angles
P, i’J P, and the distances d,, are functions of the Cartesian coordinates of the
points, which functions are invariant with respect to the choice of a particular
coordinate system. This reflects the fact that the shape and scale of the nétwork
is independent of the choice of the reference system.

The coordinates of the points with respect to some particular reference
frame contain more information than spe;cified under shape and scale. They
also define the position of the coordinate system with respect to the network of
points, If the coordinate system is a natural one, i.e., if it is the consequence
of the natural characteristics of the physical objects involved in the model, and
the problem is to determine the position of a network of points with respect to

this system., one should proceed in two steps, as follows:



1) Find the shape and scale of the network of points,

2) Find the position of the natural system of reference with respect

to the network’

A minimum number of angles and distances which uniquely determine the shape
and scale of the network is called a "'fundamental set. 1 All other angles and
distances can be deterﬁxined as functions of the fundamental set. Such a funda-
mental set also serves as a represel}tation of the shape and scale. I coordi-
nates are to be uged as a representation of the shape and scale only, the refer-
ence frame's position with respect to the network of points must bé known by
definition. Such a reference frame can be established by means of the concept
of minimell constaints on the coordinates. A sef of coordinate cqnditions which
specify the positions of the reference frame with respect to the network is
called "minimal constraints.' An easy way to set such a constraint is to
assign constant values to six coordinates distributed ober at least three differ-
ent points. For a more detailed discussion on minimal constraints see [4],

[2] and [14].

3.4 Role of Coordinates in Selenodesy

The problem of finding the position of a network of points with respect
to a natural system can now be viewed in two paris:

1-) “Finc.l the coordinates of the points in the network with respect to
an arl-oitrary reference system introduced through the use of a set of minimal
constrainis. .

2) Find a set of transformation parameters which specifies the relative
positions of the natural coordinate system with respect 't_o the arbitrary system.
The natural choice of such parameters is of courfse, three translations and
three orientation angles,

The reason for the above dicﬁotomy becomes obvious if one brings to
mind that beyond the deterministic definitions concerning positions of points,
one in practice has fo extract estimates of these positions from observations

which can be either coordinate system dependent or not. Furthermore,



observations may depend on more than one reference syste;n. The situation
becomes even more complicated when the relative position of these systems
varies with time. For example, the representation of the geometry of a system
of points on the moon requires a moon-fixed system of reference. Such a system
can be either arbitrary (defined by means of a set of minimal constraints), or
natural. The only natural system qualifying is the Dynamical System. Its
advantage is that its position depends only on distribution of masses and that
it is time invariant. Lumar photography and laser altimetry provide us with
data which are independent of coordinate systems and, therefore, their analysis
could be performed in an arbitrary system. However, because stellar photography
is star catalog system dependent and the libration theory transforms it to a moon-
fixed system, the lunar photography and laser data could also be analyzed in this
system. Estimates of orbital geometry are given in the form of camera expo-
sure station positions with respect to some moon-fixed system, not necessarily
the same used in the libration theory for the transformation of stellar camera
observations.

For the purpose of estimating only the shape and scale of the network
it is quite easy to "free' the observational data from their dependence on
coordinate systems. The problem, however, of relating the network to any

of the data reference frames still remains.

3.5 Coordinate Systems in the External Information Used

At this point it is appropriate to say a word about the theories of lunar
motion and physieal libration. A lunar theory is a solution to the problem of
the variation of the position (geocenter-selenocenter) vector with time. As
such, it is an integral in one form or another of the differential equations
governing the motion of this vector. 'The solution contains some integration
constants which are either the values of the initial state of the Dynamical
System (mumerical integration) or they are. implicit functions of the initial
state (analytical theories). A libration theory is similarly a solution to the
problem of the rotation of the moon (or more precisely, of a moon-fixed

system, usually the Dynamical System) about the selenocenter.



In both theories in addition to the problem of determining the positions
vector or the set of libration angles at any epoch, in terms of the integration
constants, the values of the integration constants themselves also have to be
determined. This is possible only through an estimation procedure based upon
actual observations. The observations are of a geometric nature, distances
and angles related to points on the earth and on the moon. The position of
these points is represented throﬁgh their coordinates with respect to an earth-
fixed or moon-fixed system, and a theory (model) must be available for the
description of the relative motion of the two systems. This model can be sepa-
rated into three components all with respect to an inertial system: rotation of
a geocentric earth-fixed system, motion of the geocenter-—selenocentei: vector
and the rotation of the moon-figed selenocentric system. The choice of the
geocenter and selenocenter as system origins is natural Because lunar theory
is developed upon differential equations governing the motion of those two
centers of mass.

The choice of the Dynamical System among all possible selenocentric moon-
fixed system is attractive to libration theorists [12] because of the relatively
simple form that Euler's dynamical differential equations take when this
system. is used.

In the process of estimating the integration constants of a lunar or
libration theory, the coordinates of observational or t;bserved points can be
estimated as a by-product. Their accuracy will reflect how well th(_e position
of the coordinate system with respect to these points is known.,

The user of lunar ephemeris or libration theory must realize that the
poéition of the selenocenter and the orientation of the principal moments of
inertia axes given in those theories are only estimates of the position of the
true selenocenter and the true orientation of the axes. The accuracy of
those estimates is supposedly given by means of the associated statistics
(variances and covariances). These statistics, however, are realistic only
when the model is perfect and there are no computational (round-off) errors
and the observational input statistics are true. '

Another problem arises from the fact that before a solution is attempted,

10



there is a need for two sources of a priori information:

1) A libration theory for the reduction of stellar camera observations
from an inertial ("'star catalog") system to a moon-fixed system.

2) Orbital geometry estimates for the strengthening of the photogram-
metric solution.

In general such information is available from external sources and it
may or may not fit the model, In this case either the model needs to be
changed (but not if it is believed to be correct), or the statistics J‘npluded

with the information need to be modified in some appropriate way.
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4., APPROXIMATE ERROR ANALYSIS OF THE CONTRIBUTION
OF THE VARIOUS DATA TYPES

The purpose of this section is to give a.projection on how the different
types of data contribute to the determination of geometric control on the moon.
The analysis will be with respect to a strep of photographs covering an arc
of approximately 180° on the lunar surface. The analysis requires four systems
of reference:

S;gstein (17)

An arbitrary system introduced by the following set of minimal constraints:
X1=Y1=Z]_=n1=(p1=w1=0

where X;, Y., Z, are the coordinates of the first camera exposure
station and %, , ¢, » w; are the camera orientation angles in the tradi-
tional photogrammetric sense (X axis positive in the direction of the
flight, ¥ perpendicular to the orbital plane and Z in the direction of the
selenocentric vector pointing away from the moon, forming a right

handed system).

System (2)

The moon-fixed system whose oriqntation with respect to the ecliptic
system is given by the physical libration parameters to be used in the

transformation of stellar camera observations (Dynamical System).

System (3)

The moon-fixed system in which estimates of camera exposure station

positions are given from a previous orbit analysis.

System (4)
A special cylindric type system designed to match the geometry of a

photo strip. In this system after a point is orthogonally projected into
the orbital plane, its X coordinate is the angle between the projection's

selenocentric vector and the Z axis of system (1). The Z axis is along

12



Assuming that the only source of errors is the error §p in the measurements

of photo coordinates from Figure 2, it is clear that the error in direction X is

6X = 2 —I; 8p . 4.1
Similarly, from the YZ plane

6Y = 2*%613. 4.2)

From Figure 3 the error components from the same displacements §p in

the direction Z are

§Z, = H

H B,

and 57,  m
T

Agssuming that B; = By = -—:2—, the total error is

67

6Z, + 0Z¢

H2
f

4
= = 8p.
or 02 B p “4.3)

From Figure 4 the following obvious relationships can be derived:

Vu? + B? 69, = AXsing

aing = ——i
VH? + B?
H

AX = Tﬁp.

Substituting the last two equations info the first one yields

5 1
b, = 2 2 fﬁp’

13



the selenocenter vector of the projection-and the coordinate Z is the

distance from the orbit. (See Figure 1 ),

4.1 Errors in the Relative Orientation of Two Cameras

TFigure 2 illustrates in the XZ plane of system (4), the geometry of two
vertical photographs taken from the same height H at a distance B apart,

le
L 3p ,
ONF,
_‘r > S
H
A
fe—8X—
< B . {
Fig, 2



-

Z
Y K([) ¢
4\ X .Aw
\ 7
3p
3¢
ey 3¢,
&
a
+AYH-
k B —
Fig. 4
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therefore, the errors in the orientation angles ¢ and w are

_ -2 H
0p = 2690, = " op = Bw .

From Figure 5 the error in the orientation angle » can be derived as

follows:
H
Bény, = AY = Tﬁp,~
and thus . _ 2 H
on = 28x;, = P Bﬁp.

In accordance with the definition in coordinate system (4), the errors in

the coordinates Y and Z, contributed by 6x and 8¢ will be

6Y%=B-6x

6Z¢=B-5qo

As anumerical example close fo reality, let Figure 6 show a strip

of photographs of semicircular shape over an arc of 180°,

Orbit
/"_'_'-"“-\
P \\
- N\
4 \
4 \
<1/
/ \
Y \\ Y
z H T R— Z
X
Tig. 6
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The height is H = 110 km; 'the lunar radius is R = 1738km and there is a
total of 70 photographs in the strip so that B~ 83km. The focal length of
the camera is 76 mm and the error of pla%e coordinate measurements is

6p = 5um. The problem is to find the total accumulated errors in AX =

2, 6X, etc. at the end point of the strip.

For two successive photographs, equations 4.1 through 4,3 vield
6 = §Y = 14.4Tm
52 ° = 38.36m
and equations 4.4 through 4.7 give

bw = b = 17729

& n = 17798
6Z, = 6.9m
GYX = 7.24m,

Thus for photography alone, the total acewmnulated errors at the end point
(5805 kan away)} are:

.70
L
AX = /l, 86X = 1.013km or 174 ppM
1
&
AY = Z‘ (6Y + 6Y,) = 1.520km or 262 ppM
1
7e
AZ . = ) (OZ + 6Zy) = 3.170km  or 546 ppM.
3

The effect of altimetry is mainly in the Z direction. Since the altimetry
error is 0a = 2m, the error in Z for one pair of photographs becomes

only
6z = 26z = 4m,

18



and, therefore, the total error in Z reduces to
AZ = Z({z+ 6Z¢) = 767.13m or 132ppM

which is considerably smaller than the AZ from photography alone.

The stellar photography with an accuracy of 20”, does not permit the
accumulation of errors in 1, 6¢ , 6w, thus GY% = 5Z(p = 0, and therefore,
the total errors in Y and Z, including the effecis of photography and altimetry,
will be

AY
AZ

Il

ZoY
ZoZ

1018.15m or 174ppM

I
In

280.0 m or 48ppM
again a considerable reduction. The total error in X will remain the same
AX = 1013.15m or 174ppM.

A displacement in X or Y, however, causes a displacement in orientation
which, with respect to the selenocenter in the XZ plane is

1.013km

= n
1848. km 113.06

and one of similar magnitude in the YZ plane. Such angular displacements are
controlled by the stellar camera orientation and therefore the errors in XorY

are limited to 20" x (R+ H), i.e.,
AX = AY = 180m or 3lppM.

These numbers together with the maximum expected AZ = 280m or 48ppM,
represent reasonable estimates of the accumulated errors over the strip coming

from a 5ym photo-measure error in each photograph.

19



5, REDUCTION AND MODELING OF THE OBSERVATIONS
AND THE USE OF ORBITAL INFORMATION

5.1 The Use of Observations from the Mapping Camera System

Since the terrain camera is separately calibrated, the coordinates used in
the analysis are not the measured photo~images coordinates, but those which
have been corrected for distortion, film éhrinkage, ete., i.e., they are assumed
to be free of systematic errors and as such they fit the simple photogrammetric

model of the following projection equations:

Py
£ = Xy - X t i =0
i 8
1
(5.1)
Q 1
f,, = ¥y - Yo +t 1 =0
Sij

In the above equations

P, | AX,, ]
Qut = M |AYy
SJU ! AZ“—J

where My; = Ra(t;)R2(0;) R1(w;}

*AXL;— = _Xi = Xj_
AYM Yi - YJ
“AZQ_ _Zi - ZJ...

X,, Y,, Z, are the coordinates of i*" ground point,

Xy» Yy, Zy,wy, @5 %y are the coordinates and orientation angles of j tn

camera exposure station,

20



X4y s Y13 are the plate coordinates and
Xo s Vo » £ are the plate coordinates of the principal point and the focal length,
all determined from calibration.

The altimeter observations are modeled in a straightforward way,

as follows:

i
fa, = dy - [(Xy- X, P+ (Y- Y2 +(Zy- 2,015 =0

where dy; is the measured distance between the j ‘! camera exposure station
and the corresponding (illuminated)' i'" point on the ground.

The stellar camera produces observations yvith respect to a star catalog
system, which subsequently will be reduced to a moon-figed system as shown

below. Using a libration theory we have

X eg = vector in the camera axes system at the j th exposure
3(, = same vector in the inertial system
—}"{s = same vector in selenocentric moon-fixed system used in
the libration theory
K; »y®;, Q5 = camera orientation angles with respect to the inertial
system at the j th exposure
Xy,®;, Wy = same angles with respect to the selenocentric moon-fixed

gystem,

We have

Xoy = MK, , &, Qj)—}zl
X = MKy, 055 )X .

At epoch t; the three Eulerian angles from the libration theory are

€5 = €(ty) ., 8 = 8ty), by = P(ty)
and Xs = Ra(;)Ra(- B)Ra(e;)X,
or,

Xs = R, » 8y s €)X
and Rey= MOty 2.0 » W)R@y » 0, €)X .
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Also ﬁ(K“@s: £;) My 05, Wy )Ry, 8, €5)

and My, O, Wy) iVuI(KJ , & . O )Ra(-€;)R1(0)Ra(-¥)

= ’ffl(Kj L By, QR (Y, 8, €).

After the matrix M has been computed, the angles x;, ©; , w; can be calculated

from the elements of M as follows:

; ~I o
tan® !
v Mg+

=
]

(3

|
- 1
BB
W W
[
LA

; m
0, tem 31 .
2
Mgz + Mgy

The variance-covariance matrix of the quantities %, , ¢ , w;, as computed
from the variances and covariances of Ky, @, , {4, $;, 0, €; given in

Appendix B.

5.2 General Comments on the Use of Orbital Information

The analysis of tracking data for orbit determination depends heavily on the
gravity field model used. The reference system naturally suited for such an
orbit analysis is a selenocentric inertial system. The analysis of earth-based
tracking data involves the rofation of the earth, earth station coordinates and the
lunar theory. The role of libration theory is 1imited to the description of varia-
tions in the moon's gravity field due to the moon's rotation with respect to the
inertial selenoccentric system,

The geometry of the observations (range, rénge rate) is poor since tracking
takes place always from the same direction and it is interrupted while the lunar
satellite is on the far side of the moon. This interfuption of tracking and the fact

that the knowledge of gravity information on the far side is still rather poor,
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impose strong limitations on the use of long ares of more than one revolution,

For the purpose of this analysis, side overlaps of photo-strips from dif-
ferent passes provide betier quality ties between the network ppints than one
could hope to get through long arc techniques. Each orbital arc corresponding
to one photo-strip is viewed as a separate orbit and tracking provides informa-
tion on the geometry of camera points along each arc,

Both range and range rate observations can provide relatively good estimates
on the shape and scale of each arc, but not on rotational displacements with the
earth (geocenter or tracking station) as a center. Positioning with respect to
the selenocenter and orientation mainly come from the lunar gravity model.

The weakness of the orbit in positioning and especially in orientation may well
not be reﬂectéd in the sfatistics (variances and covariances) of orbit point coor-
dinates. The reason is that statistics strongly depend on the model, and they
are realistic only as far as the model is realistic. While the shape and scale

of the orbit mostly depend on the observations themselves for which realistic

a priori statistics are avaﬂable; the truncation of the gravity field and its
uncertainties make the statistics of gravity field dependent parameters {(position
and orientation) unrealistic. Past phototriangulation solutions with use of orbital
support indeed.show displacements in the "adjusted" orbit, mainly in rotations of
the-arcs around some point in the orbit Eéee e.g., Figures 5 and 6 in [7]).

'i‘he conclusion is that in the use of orbital support in phototriangulation,
one needs to consider two deviations from the classical implementation of a
priori estimates and their statistics. First, different passes will have to be
freed from their reference to a common moon-fixed system. Second, since
statistics of orbit positions are not reliable, they need to be updated in a proper
- way. In simple terms, the orbit information has to be properly weighted rela-
tive to the photographic information, In the next chapters these two problems

are investigated,
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6. STATISTICAL COMPABISO:N.' OF DATA

6.1 The Input Data, Their Contributions and Their Associated Reference Systems

Table 1 is a summary of the various data types and where they contribute to
the problem of determination of shape, scale, orientation and positioning of a

selenodetic network,

Table 1
Type of Data Shape | Scale | Orientation | Positioning
Lunar Photography | YES
Stellar Photography} YES YES
Altimetry YES | YES
Orbit State Vectors] YES YES YES YES

Since all data types contribute to the shape of the netwoxk, it becomes a possible
tool for detecting inconsisfencies between the various types of data. Pogifioning
depends only on orbital support and one can expect the tie between the selencdetic
network and the selenocenter to be only as strong as provided by the orbit analysis.
Orientation depends both on stellar photography and on the orbit, but the low quality
of stellar photography makes the detection of possible inconsistencies in orbit
orientation with respect to a moon-fixed system almost impossible.

In this work the farget of the analysis is only the determination of the shape
and scale of the network, and for positioning and orientation, one has to rely on
orbital support. The latter also provides a means for scale information, and as
such it can detect scale inconsistencies in the altimetry data.

To avoid inconsistencies in the orientation and positioning between the different
passes and also between these passes and the corresponding stellar photography,
in golutions directed to determine the shape and scale of the selenodetic network,
the stellar photography and the state vectors have to be freed from their depen-

dence on their given system of reference. This is possible with the use of minimal



constraints particular to each type of data. For example, instead of absolute
camera orientation, one can use relative camera orientation, i.e., the orien-
tation of the camera axes at each exposure with respect to that at the time of

the first exposure in each strip. These relative orientations are coordinate
system independent. For the use of orbital support, the apprdach is to first
establish an arbitrary system fox_‘ the network through minimal constraints.

Then positionai and orientation parameters with respect to this system are intro-
duced for each pass as additional parameters. From these solved parameters
one may detect either the random or systematic pattern in the orientation and
position of the orbit systems. If the differences between these position and orien-
tation parameters are statistically significant, then the approach of separating the

coordinate systems for each arc is justified.

6.2 Method for the Statistical Comparison of Data

6.2,1 Statistical Test for the Recovery of Inconsistencies

Between Two Data Groups

It has already been shown that when combining lunar terrain photography
with any of the other observational groups (stellar photography, altimetry and
orbital support), there exists a set of parameters that can be determined (esti-
mated). " At 1_eaét the shape can always be determined, in which case the estimable
paramete;rs are the coordinates with respect to a system established by minimal
constraints in which the scale is also constrained,

To generalize, consider two groups of observations G; and Gy and a set of
estimable parameters X, common to both groups. If X, and X, are unbiased
linear estimates of X, using groups G, and Gz, respectively, and if the groups

are divided into

Gq = {Los Ll} ’

Gz = {Lm Lz} ’

where L, are observations common to both groups, then
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Xl QOlLO + QlLl ’

6.1)
Xz = Qoalo + Qaliz »

where Qo » Qo2 » Q1 » Q2 are known matrices (available from the estimation)
of appropriate dimensions.
Next consider the matrix

XD= X]_"X?. = {Ia"I]
Xa

The observations Ly, L, , Lg are takentobe independent with their respective

variance-covariance matrices Lg , L1 s &2 -

Then
Qo1 Q 0
1 f-g L,
Qo2 0 Qs L2

5
Il

[ Qo+ Q2)! Q1 1 -Qal1|1n] = QL. (6.2)

The variance-covariance matrix of X, is
o = QL QT

Zo 0 O Qo1+ Qoz)

= [{Qort Qz) Q1 -QI1|0 2, © Q3
‘ 0 0 Iz "'Q;r?

(Qor ~ Q2)T0(Qar - Qoa)'+ Q1Z1 Q1 +Q:T2Qz  (6.3)
Further assume that Lo , L, , Lz are normally distributed. This is a reasonable
assumption since Ly, L, , Lz are either observations corrupted by Gaussian
noise or their linear transformations (synthetic observations). To indicate

this, one can write

L,~N@ys Z1) » Leg~ Nz, Z2) s Lo~ N@o, Zo)
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where Po = E(Lo), o = E(Ln), Uz = E (Lz)

Zo = E{(Lo- po) @o- po) }

Dy = E{@i-p1) @1- om) )

To= E{(z- ) Lo- pa) }

E {} is the expectation operator and T, , X, , L2 are assumed to be the true
variance-covariance matrices of Ly , L, , La.
Since X, is a linear transformation of Ly, L; , La, it is also normally

distributed, thus
Xp ~ N(U-o ) En)

Since X;, X3 are unbiased estimates of the same parameter vector,

E{Xl} - E{Xg} ,
and therefore,

w, = E{XD} . E{Xl - Xz} = E{Xl} - E{Xz} =0
and
o Xy ~ N(0, Zp)
At this point a statistical test is performed on the hypothesis:
H:X, is a sample drawn from a population with the distribution N(E s Zip).

The statistical test is performed at a certain significance level, i.e., the hypothesis,
that X, belongs to the population with distribution N{0 , ;) with a probablility
¢, where 0<a<1, istested. The hypothesis is certainly rejected for =1
and certainly accepted for ¢ = 0. The choice of o, from the interval 0< @< 1,
is subjective, but it has to be cloge to 1 to be meaningful, Standard choices
are o = 95/100 and @ = 99/100. For the performance of the test see [1],
especially chapter 5.
Since X, is intended to be an estimate of a null vector of quantites, it is
known a priori that the above hypothesis H is ture, and its rejection in the perfor-

mance of the statistical test would correspond fo a rejection of the estimate X,
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or its variance-covariance matrix X,. In the latter case one would have to
accept the fact that the observations L, , Ly, L2 and their statistics X, ,
T1, Lo are statistically inconsistent at the significance level of the test. The
reason for this inconsistency can be either a systematic error in at least one
of the observation sets Ly, L; , Lz or one or more erroneous variance-co-
variance matrices from Lo, D3, Zz. Systematic error means that an actual

observation does not correspond to its expected value included in the model,

6.2.2 Testing for Inconsistencies due to Systematic

Errors in Altimetry and Stellar Photography

For the particular problem in this paper, consider the following set of

observations:
G = {1unar photographic observations}
G, = {stellar camera obs ervations}
G, = {altimeter obs ervations}
Go = {a. priori estimates of camera exposure station

coordinates from orbit analysis}

Assume that group G, is free of sysfematic errors and that the corresponding
variance-covariance matrix does not deviate significantly from its true value.
This assumption is reasonable in view of previous photogrammetric experience,

Next consider the possibility of systematic errors in groups G4 and G, .
Testing the groups, G,=G_ and Gz =G U G;, one can detect sjstematic
errors in G;. The common parameters used in the test will be the network
coordinates with respect to an arbitrary system established through minimal
consiraints specifying position and scale,

In a similar way one can test the groups G; = G and Gy = G, U G,.
However, from these tests one cannot detect significant systematic errors,
such as a scale factor in altimeter oﬁservations or a constant error in orien-

tation of the stellar camera. To detect such errors one needs comparison with
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orbital support, and for this purpose one should test groups like G, = G UG,
Gz = G YGg for orientation; or G, =G UG, , Gz =G U G, for secale.

Although such tests can detect orientation or scale errors, they cannot distin~
guish between stellar camera errors and altimeter observations, or errors in

the orbifal support. This is a definite limitation of the system.

6.2.3 Testing for Inconsistencies in System Orientation

and Positioning among Different Orbit Passes

As mentioned earlier in view of the geometry of earth-based tracking
used in orbital analysis, it is expected that shape and scale for each arc is
well determined, but there is a possibility of weak determination in positioning
and especially in orientation. To investigate this matter one can test the groups
G;=GUGLUGY and Gy = GUGLUGY, where G} and G} are given orbit

coordinates for the i® and j

arcs; while 'éé and AC:}E, are coordinates of the
arcs where the possibility of a change of coordinate system has been introduced

in the model. If no inconsistencies are justified (i.e., our hypothesis is not
rejected), one can proceed in testing the possibility ;)f different scales in altimetry

and orbital support. The appropriate test for this is between the groups

n - n
G = GU( UGS and G2 = G U ( U gluag,.
1=1

i=1
In case the arcs don't fit together one would rather test

n o, no,,
Gi = GU( UG and Gz = G U( U GHUG,.

1=1
Finally, if there is no orientation inconsistency between different orbit arcs,
it is possible to test for stellar camera orientation only, in which case one tests

the groups

n n
G, = G U{ 1L_JlGé,) and Gz = G U( U GyYa, .
= 1=1

At this point it should be obvious that in the search for statistical inconsistencies
between the various types of data, one is faced with an enormous, although not im-

possible, computational task, The problem obviously calls for a simplified, not
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http:possible-.to

completely rigorous approach. The main problem is to determine whether

or not the various orbit arcs are consistent in position and orientation. After
this question has been answered, one has to find a way to take care of the incon-
sistencies between the two groups, namely the terrain photography with its
supporting observations (G U GsUG,) and the estimates of orbit coordinates

(G o) on the various passes which may be constrained to the same reference
system or not,

Before continuing with this problem one should note that if inconsistencies
in system definition between the different passes are found, one must abandon
the hope of positioning or orienting (except via stellar camera observations)
the network in a meaningful way. The simplest way to check reference system
consistency between orbit arcs is given below.

First of all, a solution must be made- using terrain photography and ail
passes to determine coordinates with respect to the system specified by one of
the arcs. All other arcs are considered to refer to a different system which
differs from the first one by a vector 6, where 6= [6/ | 6/,] corresponds
tothe i®™ arc (i =2,3,---n) and 6,5, 04, are vectors of shifts and orientation
angles included as parameters and solved for.

Next, a series of tests are performed on the hypotheses as follows:

H,,: 8;5 belongs to the population N{0 , % )

615

Hir: 0O3g belongs to the population N (0 , 2'36
{R

fori=23""n

where 2513 ’ 2618 ?.re the variance-covariance matirices of 6, and §,5, also
computed during the .sclution.

I all hypotheses axe accepted then one can obviously constrain all the arcs
to the same system. If the majority of the tests is accepted than the coordinate
system of these arcs is used as the reference system and all the remaining arcs

are free of the coordinate system,
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6.2.4 'Testing for Inconsistencies between Photogrammetric

Control and Orbital Support Data

After the problem of the different passes has been settled, one can return
to the problem of taking care of inconsistencies between photogrammetric control
and orbital support. Returning fo the test of the hypothesis Xy ~ N (E » 24D )s
note that for every significantlevel & <1, one can find a scalar ¢ such that the B
hypothesis X,~ N(0, T3), where T 5 =0 T,, is accepted.

It is obvious that an increase in T ] makes the vector X, a more possible
candidate as a member of the population N(0, Zf).

If the test refers to two groups of observations of the form G, = L, and
G, = {Ll , Tg } , then

X1 = Qulb,

X2 Qar Ly + Q2 Lp

- Ll
and Xo X1 -X2= Qu-Q2)L17Q2Lz [ (Qu- Q21):Q2] |:L2J

Setting (Qn - Q21) =Q,, one gets

Xp = Q1L; + QaLe
and Tp T Q:1Z:Q1 + Qz5:2Q

One can always find two constants o, , oz such that the hypotheéis' X,~ N(0, T 5)

is accepted where

1 .
Tp= Qi{1T1) Q1 + Q2 (02 E)Q;

Thisg indicates that the effect. of the inconsistency in the data can be reduced by
updating the variance-covariance matrices. Obviously this cannot be done in an
arbitrary way and a proper way has to be found, conforming with some criterion
of optimality.

In simple terms, one needs to find a proper way of weighting orbital support
versus lunar photography for a statistically consistent solution, This problem

is investigated in detail in the next chapter.
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6.2.5 The Use of Muumal and Inner Constraints

The previous digcussion repeétedly mentioned the use of a set of minimal
constraints as a meané to find station coordinates even though ’ché cbservations
may be position, orientation or even scale invariant. )

Minimal constraints are a very useful tooi, but there are some computational
problems associated with their use. To understand this, consider an analytic
phototriangulation for a strip of pholographs where the camera coordinates and
orientation angles of the first camera exposure point in the sirip are constrained
to a set of constants, and scale is provided by some other means, e.g., altimeter
observations, It is obvious that in the solution ‘with coordinates as unknowns,
the variances of the first caméra pdint will be zero, Furthermore, the variances
of point coordinates will grow larger for points further and further away from the
first point. Since the variance-covariance matrix of the unknowns is the inverse
of the coefficient matrix in the normal equations, any difficulties in inverting
such a matrix will be presen;c in t;ie inversion_ of -its inverse,- i.e., of the normal
equations' coefficient matrix. .A' matrix that has diagonal elements which grow
systematically along the.diagona;l, is bound to be difficult to invert, compared to
a matrix -that has a smaller possible variation aiong the diagonal.

Since a different set of minimal constraints will result in a different coefficient
matrix in the normal equations, it is obvious that one should use a set of minimal
constraints which is optimal from a computational point of view. When the optimality
criterion is the minimum {frace of the variance-covariance matrix (inverse of the
normal equations' coefficient matrix), the corresponding set of optimum minimal
constrainis is the so-called "inner constraints.'" This concept of inner constraints
has been investigated in [2], with emphasis on range observations.

Appendix A is an extension of this concept for photogrammetric application.
The use of an inner set of constraints instead of a more easily identified set of
minimal constraints causes no additional difficulties. Formulas for the transformation
of solution vectors and Avariance—covariance matrices when different sets of minimal

constraints are used, are found in [14]. -
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7. OPTIMAL WEIGHTING OF ORBITAL SUPPORT DATA
VERSUS LUNAR TERRAIN PHOTOGRAPHY

In this chapter a way is sought to use two sets of observations together with
their variance-covariance matrices, when the two sets are statistically inconsis-
tent (at a certain significance level). The only rigorous answer, of course, is to
' reject either or both sets of ocbservations, the former if there is reason to believe
that the inconsistency comes from that set only. Such a negative attitude does not
solve the problem, and instead one should look for a way of using the observations
despite their incongistency. _

If there is no way of improving one or both sets of observations, then the
effect of the inconsistency can be reduced by updating their variance-covariance
matrices. The simplest way of updating thses matrices would be to assume that
they differ from their consistent coumterparis by scalar multiplications only. This
way the relative accuracies between the observations within each set would be pre-
served, while the two sets are properly weighted against each other by giving-the
less consistent set a smaller weight, thus reducing its effect in the solution:

More explicitly, given two sets of observations L, and Ly, with the corres-
ponding variance-covariance matrices K; and Kz, it is assumed that the'ir frue
variance-covariance matrices are X, = 0, X; and X2 =0,K;, where the scalars
g, and gz are to be determined. Since there are an infinite number of such
scalars which would reduce the effect of inconsistency in the two sets of observations,
some criterion is needed to determine the optimum pair of values for-og, and gs.
In the following, two such criteria are discussed, namely the well known Maximum
Likelihood and the less familiar but in this case computationally more practical

Minimum Norm (MINQUE).
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7.1 Maximum Likelihood Cxiterion
Lemma 1 [1]

Ifx=(Xq, Xas"° x,)" is a random vector variable with expectation E(x) =,

and its variance-covariance matrix is
B{-p)@-w} =V,

then assuming that x is multivariate normally distributed, the joint probability

density function is given by

1 ®-pNvVix-u)
f(Xls X?-!"'Xn)::_-__g-_-—"#e}{p - p' 9 ( £ ] (7.1)
27y JIV]
jm]

7.1.1  The Regression Model

Suppose that a set of parameters X, and two sets of observations L, and L.
are related by the vector model T(X., La, La2)=0. After a Taylor series
expansion and neglection of second or higher order, the following set of linear

equations is obtained:

—_ 3 3
0=f(Xo, Lyiys Lb2)+aXa' {Xa_X.O)'i' 3L (Lal_Lbl) +
0 0
b b
of
+ aLaz (Laz _L'bz) ]

b

where X, are approximate values of X, ; Ly, , L2 are observed values of
L., L, and the partials are evaluated for approximate and observed values.

The above equation may be written as

_W+ AX + Bl Vl + Bzvz

il

0

AX + BV, + BaVy | (7.2)

Il

or W
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The following information is also known:

E(V,) =0 E(Vz) = 0

Var (Vy) E{vlvf} = 02K,

.
Var(Ve) = E-‘LV2 Va' } = Ug K
where Var (y) stands for the variance-covariance matrix of vector y; E{ } is the
LS
expectation operator; K, , Kz are known positive-definite matrices and of s o5
are the unknown scalars to be determined.

Some of the obvious resulis are
E(W) = E(AX) + E(BV,) + E(BVy) = AX.
Also:

Var(w) = E{ (W-AX) (W- AX)"} =

E (ByV, + Bz Va) (BiVy+ BaVg) + =

4

_ Lo
B, E{V,VI Bl .+ BiB{V.V: By +

+

‘ T T - TN T
BzE\VzVJ_} B, + B4 E V; Vs Bs

-

If V, and V2 are uncorrelated, we have
Var (W) = Blvar(vl)BI + Be Var(Vz)BTz, =
2 2

=0y BK1By + 03 By Ky B} =

2 2
=0'181 + 0'2S2 =

- 2- 2
=0y (S; +¥25z) = 0. H

4’ 62

where wvao = ‘\—5'1-/,

2 2 -
If o, and ¢z were known, then the least squares estimator X, of

X, is given from the solution of the normal équations
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[AT(028, + 0282) A1 X = AT(6?8, + 02% ) W

* and 5( minimizes the quadratic form

- 1 p
0 =~ VIKIV, + —3 VIKE Vs
; o3 o3

7.1.2 The Maximum Likelihood Solution

The problem is now to find from all possible values of U? and 05 » the optimum
pair, where the optimization criterion remains to be established. Recalling the

definition of the vector W,
W = 'E(Xg,‘Lb) ) L.{, = [Lbrl:LJ2] )

and noficing that W is a deterministic function of the random observations L,
the established criterion of optimization is the "maximum likelihood" criterion,
where the likelihood is referred to the vettor W.

The likelihood of Wis given by L =fiw,, w2, **w, ), where fis the'joint
probability dengity function of the components w, , wz, " -w, of the vector W.

Equation (7.1), afte:g replacing x with W, p, with AX and .-V with O'EH, yields

L (W-AX) " (g3 H)® (W - AX) 1

(2w ) J| ol H 2 ' .

To get a maximum of L we can altematively get a maximum for
A =logl,

2 - Typd -
and A= —10g(2‘17)2 - logoy - IogA/IHi - (W= AX) 210% (W - AX)

f
where V| oiH| was replaced by o2V ]H]|.
The function A obtains a maximum for these values of X, 0, , %, Which

satisfy the following equations

3N 3A. 3N
AY - O, A - 0’ RNAaL - 0
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The developed form of these partial derivatives are as follows:

AN _ 1 9 -
3X T T 200 aX[(W-l'f&-‘?i) HY(W - AX)] =
1 — T T
aley: aX[W H'W-2W H'AX + XTATH?AX ] =

1
= - 20%[—2W7H'1A+ 2XTATH*A] = 0,

where the following identities have been used:

- - - _
Sy (Ry) R and 5y W' RY) = 2y'R
dA

2 2 — .
For o # 0 and g < =, E——O gives:

"

X = (ATH*A* ATH W

The derivative with respect to ¢, is

oA . -n 9(g7) 1 .éigif ) Tod )
30, 1 g, T2 do,  LWoAX)HU(W-AD] =
oDl WO AX)THY (W- AX) = 0
01 01

From where for ¢, # 0, one gets

o = (W- AX)TH Y (W - AX)
2 -
n

At this point, befofe proceeding further; two algebraic lemmata are introduced.

Lemma 2

For the square matrix H = H(y), the following relationshif) holds:

2 _ 2 OH
e [ log ]‘HI] tr (H ay)
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Proof:
Based on [5], page 266, eq. (10.8.22), for a square matrix H

8 |H| SH T
L S S = ®
>y tr [H Y ]

where H * is the adjugate matrix of H (i.e., Hf, =cofactor of Hy;). From [19],

page 39
HH* = |H |I

where I is the identity matrix, or H* = II-IIHIL Therefbi'e,

io»alg|l 1 dHT
lH| a8y  |H] tr 3y

2. - -
5y~ LleslH ] ]

Lemma 3

For the square non-singular matrix H = H(7y ), the following relationship

holds: |
.1 -
i(fi_l_ = __H—l,é..g_. HY . (7.6)
3y oy
: — 1
PI'OOf. H, H'l - I . a_I_ — O =§_§_H‘1 + H.a_(H_).
Y Y 3y
3(HY) _  3H .., DHY | _padH .
H 3y 3y H and dy DYy .

The partial derivative of A with respect to y is

A _ 1 3 1 1
—_ - = {10g|H|]— G’f (W-A.X)TE-(—H—L(W-AX)=

1 . 5H 1
= - = trace (H* + - T g1 OH_ .
2 s T2t W-a%)T B3 B (W-ax) |
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Since H:=

- Sl + Y2 Sz
oH  _
a’)/z Sz and
oA _ _ L a *
3va P trace(H ™ Sz) +

202 (W~ AX)"HP*S; HY(W - AX) = 0

or, (W~ AX)TH1S:HY (W - AX) = of trace (H*S;).

¥ in'the above equation X (ys) and U? (¥2) are replaced by their respective

values from equations (7,3) and (7.4), an equation is obtained with y» as
the only unknown.,

If it is known a priorily which observations set is less reliable, one can

always set 0<yz <1, and an approximate solution can be obtained by iteration
on equation (7.7).

7.1.3 Solution with Only one Updated Variance-covariance Matrix

Consider a least squares adjustment of the linear model W = AX + BV

where E(V) = 0, Var (V) = Z, the well known solution of which is:

~

X = (ATMatATu'w

a Te 4
VarX = ————V? Y (ATM? Ay

where f is the degrees of freedom and M = BE BT,

Consider the same adjustment, but with Var (V) = = k%% , where k? is a
scalar, then

X =

|
S
=
2
>
=
%

but
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Cons equently

s

2 . 1 } -
X = k? (ATM'lA)l(-Er)ATMIW = X

and also since V is a linear transformation of X, V=V. Also

~ 1
-~ TR ~ T2
Var(X) = —Y——-fz—j—(ATM'lA)'l =% VIV e ATM*A) =
f
= Var(X)

i.e., a scalar multiplication of the variance-covariance matrix of the

observations has no effect on the resulis.

Returning to the model with two sets of observations

W = AX+B,V,+ByVy = AX+[B;B;] Vilo Ax+ BV
_Vz
and 2
Var (V4) 0 o1 Ky 0
Var (V) = =
0 Var(Vz) 0 -Ung

Instead of Var(V), the following variance-covariance matrix can be used without

effecting the results:
K crf K; 0
k% var(v) =
0 k2 0‘% Kz

1
Selecting k? = g cne gets
1

‘-Kl 0 Kl 0
k2 Var{v) = ) =
0 92 K 0 vKz
(a2} 2
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This is exactly the same as using

Var (Vi) K;

i

and - Var (Vy) vKoe

where only the constant 7y remains to be determined, In this case

Var(W) = B;KyB] + yBsKa Bl = S,+ 48 = H

The likelihood of W is given by the same expression as before .

) _ Tl g -
A = logl = - —121——10g(211) -log./ IH[ - AW AX) I; (W, A%) (7.8)
. A _ 2. .
Setting 53X 0 and _a'y = 0, one canderive that
(ATH*A)X = ATH'w (7.9)
and ! T a BH a1 3 aH
- — — = ¢t
(W~ AX)" H 3y H™ (W - AX) race (H av)
Since H = 8, +¥8:2, 2—3"—‘82, so that
(W - AX)" H'S; H* (W - AX) = trace (H'S,). (7.10)
Let
H'S,H' = (Hs3H)? = 3
with Q = HS;H = (8, + ¥8,)83 (S; + ¥8z) =
= 8,828+ 2¥8; + ¥° 8,
Also H*S8z = [S3(S, +¥82)]" = (85S; + ¥I)* . Substituting the above
equations into (7.10), one arrives at the equation which is to be solved fory:
(W-AX)TQ* (W- AX) = trace [(S38; + yI)?'] (7.11)

where X = (ATH®A)*ATH'W
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and 0
g = Slsélsl + 2v8,; + y"B3 .

If ¥ is needed with a low accuracy only, and the algorithm is arranged so that
0<y< 1, equation (7.8) will provide XA for a given . The value of ¥ at which

X\ is maximum will also make the following X\’ function a maximum:
: T (W AR TH? (W - AX)
o= - log IH l - { ) 2

Thus computing A’ for various values of v, at some equal increments (say,

for example, y= 0.1k, with k=1, 2, --10), agraphof A'= X'(¥) can be

constructed, which at its maximum will provide the sought .

7.2 'The MINQUE Criterion

The criterion for optimal weighting i this case is the minimization of an
appropriate norm, established by C. R. Rao in his so called MINQUE theory
(Minimum Norm Quadratic Unbiased Estimator). The theory is developed in
[15], chapter 4j, and in a series of papers ([16], [17] and [18]). Only a very

short outline of the theory is given here. Rao considers the linear model
Y = XB+e¢
where. € = U €y +Uz&z + - " Ugky = Ut in which

E{§1}= 0 and E{gigg} = g3641 (o2 are unknown)

E(ee")=oiU Ul +  0iU, Up= 05V, + -+ 05 Vi

where Y are the known observations, X is a known matrix and f is a vector of
parameters to be estimated. The quantity to be estimated is a linear combination
of the cf

TPy o: =p'o
wherép ™= [p1, P2s-- ) and o' = [g%, 0%, ... ¢2]. The proposed estimator
is a quadratic form YTAY, where the matrix A remains to be determined. The

estimator is also required to have some additional properties which impose
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additional constraints on the matrix A. These properties are the following.
a.) Invariance. X B'=PB - Bo, where B, is a constant vector, the following

relationship needs to be fulfilled:
YTAY = YTAY

where Y "= XB '+ ¢. This property imposes the condition that AX =0,
b.) Unbiased. The following relationship needs to be fulfilled:

E{YTAY} = Zp,;07 =p'o.
i

The corresponding condifion is that Trace(AV,) =p,.

c.) Minimum Norm. If the £,'s were known, a natural estimator would be

5 _ E1E4

o =
1 n,

where n; = number of elements in £;. Then Tpi0i =1 —E—L Ele,=tT AL,
1 + Ny :

where £7=[£1, £3,° £4] and A,y =0 ni :
1
The difference of the estimators is

YTAY - £TAE

from where, using the condition AX = 0, one gets

YTAY - £TAE = £TUTAUE - £TAL = £T(UTAU - A .

It is desired to have the norm [[UTAU - A || = min. for some properly defined norm.
7.2.1 Solution Under Euclidean Norm

Consider the Euclidean norm defined as |B||®> = ZZ(By;)?, then the norm
13
to be minimized will become
[UTATG - All = TraAvAY) - Tr(AA)
where K
VvV = ZVi = ZUiUiT .
=1 1
Since A is fixed, the problem reduces to minimizing Tr(AVAYV), subject to the

conditions AX = 0 and Tr(AV,) =p,. The solution given by Rao is as follows:
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A = E AiRviR
1
where R= V- VXXTV*X)*X"Vv? and A, is the solution of

EA. 1TI'(RV1 RVJ) = pj
1

or SA = P,
where A7=[\y, Az, - Ai] and Sy = Tr (RV,RY)).
For the estimated quantity
pTé = Ziip:c?? = YTAY = A\TQ,
-where Q@ =[Q; | Q2 | '+~ @«] and Q; = Y'RV,RY. Combining SA=p and

p’6 = A'Q, one gets
6= 8"Q

where again S, = Tr(RV,RV;) and Q4 = Y 'RV, RY.

7.2.2 Application of the MINQUE Theory to
the Optimal Weighting Problem

The model is (see equations following (7. 2) ):

W = AX"I'B]_VI'{' BVy = AX+ e

E(Vy)=E(Ve) = 0 E(V,V3i) = E(VaV]) =0
E(V,V]) = 03K, E(Vz Vi) = 02K,

B,E(V,VI)B] + BygE(V2V3)Bs =

Var(W) = E(ee’)

= 07 B,KyB] + of ByKyBj =

2
U1 21'5‘0'222 .

The MINQUE solution for g% and 02 is

21
(U]

2
Te t
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1
where Sy Tr(RZ;RZ,;) , ¢ =|: ] with

Gz
41 = W RZ,RW , i=1, 2
R =H'- H*A(ATH®A)ATH?
H =3I+ 3,

The computational algorithm is summarized below:

B,K.B;

2
T = BpK; B

H = X2y + Zy

R =H'[I-AQATHA)*ATHY)
g1 = W' REZRW

gz = W RZ:RW

Sy = Trace(RZ,RZ;)

S = Trace(RZ,RX,)

S21 = Trace ({(RZo RZ;) —

Sea = Trace(RZ)z REZ)

and 1 -
U'? Sn Si2 d,
2 " ‘
o San Sz Qo
D = g8, +02%, and X = (ATD'A)*ATDw.

The main computational task is in the computation of R, but the computations
are of the same order as those involved in a normal least squares solution

when 0'% and g% are known.
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8. SUMMARY AND CONCLUSIONS

This work consists of two problems in the establishment of selenodetic control:
the determination of the shape and scale of a network of points on the lunar surface
and the determination of the relationship between this network and a physically
meaningful selenodetic system, namely that defined by the selenocentric principal
axes of inertia, The main source of shape information is hmar terrain photography.
Supporting altimetry and stellar photography, beyond the obvious scaling and orien-
tation, also contribute significantly to the strength of the network. The role of
coordinate systems, especially those inherent in the external information (lunar
theory, physical libration theory), has been analyzed and it has been shown that
positioning and orientation of the network is possible only with respect to a.) the
estimated "selenocenter' provided by the lunax: theory used in the orbital analysis
and b.) the estimated "15rincipa.1 axes of mertia, " provided by the libration theory
used in both orbital analysis and the reduction of stellar photography. The possi-
bility of orientation of the network with respect fo the principal axes of inertia
system by means of gravity information has been shown to be impossible in view
of the present limited accuracy of second degree harmonics of the gravity field of
the moon. In view of indications in previous work of inconsistencies in the esti-
mates and statistics of altimetry, stellar photography and orbital support data,
statistical tests have been described for the recovery of such inconsistencies.

The role of minimal constrained soltuions has been emphasized in retaining
coordinates as parameters, although the observations involved in solutions and
statistical tests may not provide information on positioning or orientation or
scale.

An glgorithm has ‘been developed for the use of imner constraints, as a compu-
tationally optimuimn set of minimal constraints. With special reference to the orbital
support, the possibility of inconsistencies in system definition between different
passes, has been elaborated. _Procedures for statistically establishing such

inconsistencies have been outlined and the idea of the utilization of such passes
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as free of positioning and orientation has been introduced as a means of reducing

the effects of their inconsistencies.

Finally, in the belief that inconsistencies in orbital support data are partly
due to non-realistic statistics, arising from the uncertainties in lunar gravity
{on which orbital analysis heavily depends), methods have been introduced for the
optimal weighting of orbital support versus terrain photography. No computational
effort using real data has been made, however, towards the u-se of the outlined
techniques. It is therefore proposed that the following numerical investigations
be undertaken: .

1) Lunar photography with orbital support data should be used in a
solution with respect to an arbitrary system, established by minimal
constraints. In this solution each orbit pass should be treated free of
position and orientation, and the estimates of shifts and orientation angles
of each orbit pass and their variance-covariance matrices should be tested
for statistical significance.

2.) A second solution should involve lunar photography and orbital
support data, where only those passes with significant inconsistencies
are treated as coordinate system free. This scoluiion should be com-
pared with solutions in which altimetry and stellar photography data
are included, and the results should be tested for inconsistenc‘ies in
those latest data sets. -

3.} If no inconsistencies have been found in altimetry and stellar
photography, or if they have been removed, a final solution would
involve all data types, where orbital support is optimally weighted
versug the lunar photography data, for the removal of any remaining

inconsistencies.
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Appendix A (Referenced in section 6, 2.5)

INNER CONSTRAINTS IN PHOTOGRAMMETRY

Consider the photogrammetric problem: L =fX,, Xz}, where L are
photo coordinates of a cluster of points; X; are the unknown coordinates of
those points and X, are the unknown elements of the exterior (and possibly

interior) orientation of the camera.

The application of a least squares adjustment leads to a set of normal

equations
NX+U=0

where the matrix N is singular with rank deficiency seven, due to the lack
of orientation positioning and scale in our model, If N is a u xu matrix, then

" _one way of obtaining a solution for X is to introduce a set of minimal constraints

'7CUX1 = 50,, such that

N ET

detC D # 0.

Among all pogsible C matrices there exists'some matrix E such that if
N ET|? Q M
E O M L
then @ is the pseudo-inverse of N, i.e., a matrix fulfilling the four relations:

NQN =N
QNQ =Q

NQ = (NQ)'
QN = (QN) " .

The set of constraints EX = O is then said to be a set of inner constraints.

Tt can be shown that the matrix E also fulfills the relations

det(EET)# O and AET = O
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or, since N = AT PA, the equivalent NE' = O,

The first step in the investigation to determine the matrix E was to follow the
procedure in [2]. According {o this procedure, the matrix E is formed as the matrix
of the partials of the parameters X, with respect to differential translations do y,
do, , do,, differential rotations d¢, , dgs , do; and differential sealing d e
of the coordinate system, The results showed that the changes in the angles of
camera orientation were non-linear functions of the differential rotation components.

Following the approximations in [2], page 18,
cosdga 1, sindp ~de,, dp, =dp;=0

a linear relation is obtained but the rsulting E matrix does not ruil the retazion
AE T 0. A more careful investigation showed that the above approximations are
not valid and that Blaha's results, which are correct despite the approximations,
can be derived rigorously.

Thé question that posed itself next, was whether or not a set of constraints
that does not involve the camera orientation paramefers can be an inner set of
constraints, Augmenting the normal equations

Nll ng Xl + =0

v
Nl 2 Ngg Xz Ug
in such -a ‘{vajr that X, are the coordinates of the control network and X o the

parameters of camera orientation, a set of constraints involving only X, can

be written as follows:
X
E; X3 =0 or EX =[E, 0]
Xz

.. T
Recognizing that N = A" PA or for simplicity and without Ioss of gererality
N = ATA, one gets

_ AT T T T ‘
N=AA=|A | [A& A5] = [A0A AJA, =iNy; Ny,
r
Ae A.;-Ag AgAz N;_rz Ngz

Now select a matrix E, such that

T T
det (E;E1) #0 and Ny By =0 or AgEy) =0
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Then the matrix E fulfills the relations

T ET T T T
EE = [E, 0] 01 = F, Ey det (EE') = det (B Ey # 0
T T T T
NET = Ny Nyg|{Ea |_ |MNaaEr} _ VAAE | 0] _ 0,
T T T T T
N]. 2 Naa 0 Nl 2E1 ASAl E]_ 0

and therefore EX=0 is an inner set of constrainis.

The constrained normal equations now become:

;
NMia Ny Eqf X Uy
M, Npo 0 |[Xal +{Us| =0
E, 0 0 Ke 0

where K; is the vector of the Lagrange multipliers. If the order of equations

and unknowns is changed

T

N1y Ex Nig| | & Uy

E,2 0 O K| +10 =90
T

Nip 0 Npz Xz Uz

Since N is singular both N;; and Npp must be singular, because otherwise
N could be invertedby partitioning utilizing the inverse of the non-singular

matrix among N;; and N,,. Now it is possible to invert by partitioning,

Nj_-t E]_ :' le

By 0 i 0 since Ny E;r is not singular.
T

Nyp O ; Noo E;, 0

The remaining question is how to find the matrix E; in such a form that
A, Ef =0 (N, EJ = 0) and det (E, E,) #0.

I N, is ap nxn matrix it can be augmented

. -
N Niiz
n—-7 x n—% n~? 17
Nia =
nxn T
M1z Nizz
7 x n—-7%7 7 27



in such a way (by rearranging the order of unszowns if necessary) that Nyia

X . ) T ;
is a non-singular matrix and Ny = Nyap Nyj7 Nips o

Setting also E, = [ Ey, E.p,} one musthave
F XN FAN=F F %F
T
Ny Ey = [N Niiz Ey; = 0
M1z Nigg| |EiZ
T T
or Niz1r Ein + Nyyg BEyp = 0

T T T
Ni1g Eyy * Nygp B35 =0
If R ;rg =1, the first of the above equations gives

Elf-= _Nll-i Nll;
and setting this value into the second egquation one obtains
Nige = N11:>: Nia 1 Niig
which relation is known to hold a priorily.
Therefore,
EJ’.F = El;:r = | -Ni;1 Ni3p
Ey 5 1
A different approach will be to find the matrix E, in analytical form
with some sort of systematic pattern, such that AlE;r = 0 and det (E, ElT} #0.
However, such an approach will not reduce the fotal computational effort,
since to obtain a solution the mairix Ny;; will have to be inverted ex-
plicitly or implicitly.

Now the solution to the system becomes
E]

T
Xy Ny, E; N, U, @1 Gz @i |[_U1
T
Kl=—1E 0 0 0 [ =- |Gz Qzz Qas | 0
T T T
XZ Nl -] 0 Ngg Ug Q13 Q23 QSE [UEJ

If only the parameters X, are of interest, then
X1 = @1 Uy -5 Uz
Setting 1

T
Nyg Ell —g=|S1 S
T
E, O 1 Sz Sgp
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and inverting by partitioning one obtains

S1 S | Nig
T T
Qaz = {Ngp - [ Ny2 O] B2 Szo 0

T E
Qas = ( Ngz ~Nyg 8, Nyp)*

Qa| __ | S Sie| [N Q
= T 33
Qga S12 Sgz| |0 :

@z = - 511 Nip Qs

@1 @iz _|Su Sz, i1 Si2f [ Ma| Qes [N 01 |8 51,
Qi Qea| |52 S| [Si7 Sl |0 S5 S

: T
Q1 = 83 * /1 Nig Qazg Ny §,

S, can be found by inverting the matrix LNll E,TJ
E, 0 |.

Another approach is to recognize the fact that 8;, is the pseudoinverse

+
of Nyj (81 = N;:1) and to use some direct algorithm to find this pseudoinverse.
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Appendix B (Referenced in section 5, 1)

COMPUTATION OF VARIANCE-COVARIANCE MATRICES
OF CAMERA ORIENTATION ANGLES WITH
RESPECT TO A MOON-FIXED SYSTEM

I Ky, ®, , §; are the orientation angles at j " camera exposure with
respect to an inertial system, and $,, 8, , € are the Tulerian angles re~
lating a moon-fixed system to the inertial one, then the relationship between
the orientation angles of the camera (%, , ¥; , w;) with respect to the moon-

fixed system is

MM, @y, wy) = ﬂf[_(KJ, @, Q)R @y, 05, €)
where

M = Ra(n;)}R2(0;) Ra(wy)

M = Rs (K;) Rz (2 )R1(Q))

R = Rs(-¢,)R1(8;) Ra(~¥y) .
Introducing the notation
E = [%;0;w]"

[K; &; Q2,17

F

G [E.;e.s%b;]T ’

the corresponding variance~-covariance matrices are given by
_ T T
s = QrZrQr + Qi I, Qg

3E oFE

where QFf =ﬁ- and Qs = 3G

If m;, are the elements of the matrix M, one gets

E -m m .,
xj_mnl( m?11>’@4=tanl(ff—+;ﬂ—z}’
Mgo Mgz
4 f Tay N
w; = tanl< Mg ]
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” — m g,
and: mgaq —May 0 0 0 Mgy
oE _ 0 0 cospy -tang,; -tangp =2 ma
da ! da
0 0 ~Masg 0 M Mgz
L i |

There is also a need to compiite 3M/ da , where a is an element.of F or G.

3M _ M dM _ _ ~ 3R
dar dag R and da, M da,

where ar is a componentof ¥, and a, is acomponentof G.

Using the matrices

0 ¢ 0 0 0 -1 0 1
P, =10 0 1 sy P2 =1 0 0 0 y Py =[-1 0
0o -1 0 1 0 0 0 0

one gets the following relations:

M = Ra®BR:(®)R(Q) R = Ra(-€)R;(9)Ra(-0)
d ~ S= _ 50
3K PsM 3e & PS?
et a avl
%M Rs(K) P Rz (2)R1 () 3R = Ra(-€)PyR1(6) Ra ()
d_ &5 _ o D
a2 M = MP, A;IJR = ~RPs.
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Appendix C (Referenced in section 3, 2)

ON THE DETERMINATION OF THE DIRECTION OF THE
PRINCIPAL AXES OF INERTTA FROM
GRAVITY FIELD INFORMATION

1. Transformations of Momenis and Products of Inertia due to Changes

in the Coordinate System

Assume only Carteésian systems with origin at the center of
masge of the body in question. If 0,%, v,z and O,_}E,_y—,; are two such systems
with corresponding moments and products of inertia, A,B,C,D,E, F and

—A,TS, E,I_),f:, F , then the transformation from one system to the other can

be represented as:

M
M

v| = Ra(0)R20)Ri@) |¥

v

The problem is to find K, IE, E‘,‘_, f)—, f}, F given A, B, C, D, E, F and the angles

®,0, w. Introduce the following auxiliary coordinate systems:
’ i 4 i

X X X X
v'| = Riw) |y | > y'| = Rafo) |¥
v, ’ z 7 " 7, /

-SE 1 _x”“

y|= Re(w) |y

E "

The corresponding moments and products of inertia are
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Cl’

DI

1l

Ir

J @y =
-/':E;coswy-l-sinwz)z + {(-sinwy+ coswz)z}dm- =
./M-(yz-i-zz)dm = A
) fM(X’2 +7/%)dm =fM[X2 + (-sinwy + cosa?z)zjdm =
sin? . € +y*)dm + cos®w _/j_(xz +z%)dm -,
2coswsinw fMyzdm =
sin®w C +cos®w B - sn2wD
.fM{X,z +y’2)dm- = _/:I[x2 -l:{coswy+ sinwz)*ljdm =
cos? w L(xz +‘372)dm +,-.sin-2w /.(x2 + z%)dm +
2cosw sinw ./-Myzdm
cos?wC +sin2wB+sinZij
‘/M'y’z’dm = ./;(coswy+ sinw z) (~sinwy + cos w z)dm
.siﬂwcosw['/;zzdm— ./;yzdm] +

(cos? @ - sin? () fyzdm =
M
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A+B-C A-B+C
2 2

sinw cosw [ ] +cos2w D

sinw cosw (B -C) + cos2w D

E’ = fx'z’dm = fx(—sinwy+coswz)dm =
™ > Y .
= -sinw fxydm+cosw Xz2dm = -sinw F+coswEkE
[ #
= fx’y’dm = fx(coswy+ sinwz)dm =
M M

COSwF + sinw E

il

In summary

A" = A
B’ = cos?wB+sin®wC -sin2wD
c’ = smnfwB+ cos’sz +gin2w D (C.1a)
D’ = %sinZw(B—C)+sin2wD
E'’ = coswE - sinwF
F' = cosw F + sinw E
Similarly
AT = -cosch“A’-P sin®¢ C’+ sin2¢p E’
B” = B’
C” = sin®p A'+ cos®@oC ! - sin2p E’ (C.1b)
D’ = cosp D' + sinp F’
E” = %siano (C' - A')+ cos2¢p E'
7" = -sing D'+ cosp F’
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and

A = cosZx A" + sin® xBY - sin2x ¥

B = sin?x A” + cos® B + sin2n ¥

c = ¢ (C.1c)
D = cosnD” - sinnE”

E = sinxD”+ cosx E”

Fo- 1 sin2x (A” - B) + cos2x F" .

2

Combining the above three sets of equations, the following final

transformation equations are obtained:

A

oy

Qj

-+

A{coszx &:()Sch}

.2 2 2 .2 .2 1. . .

Bysin“x cos"w +cos” H sin" ¢ sin“w+—sin2x sing sin 2w
2 -

. . . 1 . . :
C{sm2x sin®w + cosZn smz(p cosZw -3 sm2n sing stw}
D{—sinzx sin2w + cos® % sinacp sin2w + sin2x sing cosZw}
E {COS2K sin 2¢ cosw ~ sin2x cosp sinw }

F {~ cos®n sin2¢ sinw -sin2x cosy cosw} (C. 2a)
]
A{sinzx cosch}
. . . 1 . . .
B {coszx cos®w + sin®x smzrp sin®w ) sin 2 sing sm2w}
. . . 1 . . .
C {cosz)t sin®w + sin®x smzqo coszw+§ sin2x sing sin2¢w }
2 . . . . " .
D {wcos A sin2e + sin® % smzqo sin2w - sin2x sine cosZw}
E {sinzx 8in 2¢0 costw -+ sin 22 cosg sinw}
. J

F {—sinzx sin2¢ sinw+ sin2x cose cosc.o}l (C. 2a)

A{sin2 (p}
B{coszzp sinzcu}
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&=

=|

C {cosch coszw}
D JLcoszgc& sinZw}
E {—siano cosw}

7 {sinzqo sinw} (C. 2a)

A {sinx cosg Sing }
1 . - . 2 1 .
B {—Esmx sin2¢ sin“w +E COS U COS¢Y -stw]r
. 4
L. . 2 1 .
C nL—Esmx sin2¢ cos"w —Ecosn cose sin2w
] . .
D {— Esinx 8in2¢ sin 2w + cos ® COSQ cos 2w}
E {—zsinx cos 2¢p cosw + cos K sing sinw}

F {sinx cos 2¢ sinw + cosn sing cosw‘} {C. 2b)

] -
A i—cosx cos @ sincp‘}
J
; J’l . . 2 L . . |
B {5 cos sin 2¢ sin“w + 5 Sinx cosg smzw}
1 1
C {E cos # sin 2¢p coszw?-z—*sinx cosg sinZw}
1
b {E cos % sin2¢ sin2w+ sinx cose cosZw}

E {cosx cos2¢ cosw + siny sing sinw}

F {— cos ¥ cos 2¢ sinw + sin ¥ sine cosw} (C. 2b)

A {cosx sinx coszgo}
1 . E-J 1 . . 1 . 2

B {—2- sin2x sin“e sin w—ECOSZ')‘L sing sm2w—-2-sm2n cos” W
(L. .2 2 1 . . 1. . 2

C 13 sin2x sin“¢@ cos w+2 cos2x sing sin2w —Estxsm w
-1 1

D {E sin 2% sin®p sin2w - cos 2 sing cos 2w+§sin2xsin2w}
1

E {E sin 2% sin2¢ cosw+ cos2 % cos¢ sinw}

¥ *-;:sinzx sin2¢ sinw + cos 2% cosgp cosw} (C. 2b)
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2. Determination of the Directions of the Principal Axes of Inertia

Assume that the system x , y , 2z is the principal axes of inertia system,
and X, ¥, z is an arbitrary system with the same origin for which
the integrals A, B, C, D, E, F are known, then

D(A,B,C,D,E,Fon, 0, w) = 0

D =
E = E{(ABC,D,E,F,n,0,0) = 0
F = F(4B,CD,EF,x,p,w) = 0

This is a system of 3 nonlinear equations which can be solved for the 3 unknowns,
H,¢, w. The 3angles then, specify the orientation of the principal axes of
inertia with respect to the arbitrary system x , Y » z. However knowledge of
all the 6 quantities A,B,C,D,E, F is not necessary. A little algebraic
manipulation of the transforma?:ion equations for ]_5, E and F results in

D = _A?"‘B_ {sinx sin2¢ sin? w.- cos x cos¢@ sin Zw}
A-C
2

. . . !
{smx sin2¢ cos®w + cos 1 cosg stwJ

1 . . .
+ D{— Esmn sinZ¢ sin2w + cos K cos¢® cos 203}

. . . 3
+ E {—smx €os 2¢0 cosw + cos ¥ sing smw)}

)

+ F«[sinx cos 2 sinw + cosx sing coswy = 0 (C.3)

A

i
1

-B . . . 1
5 cosx sin2¢p sin® w ~ sinxn cose sin2 w}
A-C

. . . 1
2 {-cosx sin 2¢ cos®w + sinx cosp sinZw!
. L J

. . . 3
+ D cos i sin2¢ sin2w +sini cose cos 2 w;
4

b

[
+ E {cosx cos 2¢ cosw + sinx sing sinw}
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= F{—cosx cos 2¢p sinw + sinx sing cosw}= 0 (C.3)

A-B
2
A-C

2

k|
I

{cosz % sing sin2w - sin2x sin®p sinw + sin zxcoszw}

{-—cos 2% sing sin A» - sin 2x sin’p cos® w + sin 2x sinzw}

sin 2% sin’@ sin2w - cos2 xsing cos2w + %Sin%ﬁ sinZw}

+
o
ey

KR
=
he—

sin2x sin 2m cosw + cos 2 COSQY sinwl
H

Nl = o

sin 2% sin2¢ sinw + cos 2% cosE cosw = 0. (C.3)

4
b

r—

From the above equations one can see that if the quantities A-B, A-C,
D, E, ¥ are known, # , ¢, (¢ can be computed. These gquantities are
related to the second degree harmonics of the gravitational field.

From [8] (p. 160, eq. 21.043) :

Czo = A;'B - C

Czy, = E - (C.4)
Sy = D

Caz2 = B;A

SEPI %F s

where C,,, S,, are coefficients in an expansion of the gravitational potential

of the form ([8], p. 159),

@ n
v 1 ¢ : :

V =G} 7557 ; [Chpcosmi+ §,,sinmA] Py, (sing)
n=0 m=Q

r, ©® , A being spherical coordinates and G the gravitational constant.
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The inverses of the above relations are

A-B = -4Cz2 D = 82,
: (C.5)
A-C = Cgo- 2022 E = Cg
F = 28,5, .
An algorithm is still needed to solve for #,p,¢ in termsof Czp, Cay »
Csz » 8215, Sap. One can always define the'x, y, z system to be cloge
to the x , _3? , z. 'Then as a first approximation set
cos® = cos¢ = cosw = 1,
sinx = %, sine® = ¢, shw =@ and
%2 =go2 = w? = yp = %W = pw = 0.
Under these simplifications
A = A+20E-2x4F
B = B-2wD+2xF
C = C+2wD-20E
— (C.6)
D = B-Cu+Fo-E1+D =20
E = -Fw+(C-Ap+DA+E = 0
T = Ew-Dp+(A-Bxr+F =0

The solution of the last three equations is

" ‘c-B -F E]°? D"

i) = F A~C -D E
% -E D B-A F

And the final results are
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where

DA-aB] - EF(at B)

d

E[A+aB-a’] + DF(2a - B)
d

FlA+aB- 8% + DE(28- a)

(@~ B)D? + BE® - aF® - aBlo- B) .

o
It

Of course tﬁe values of # , © , w are only first approximations but

they can be improved by an iteration schéme based on the following

sets of equations:

(A-B)in

(A - C)H—l

- 2 .

(A - B).[cos2x, cos®w, - cos 2x ; sin®p, sinw,
- sin 21, sing, sin2w,]

. 2 .2 2
(A-C)iyfcos2n, sin"w,; ~ cos2x,; sin“p, cos“w,
+ 8in2x , sihe, sin 2w, ]

- . 2 .

Djlcos2x sin2w, +cos 2% ; sin"©, sin 2w,
+ 28in2x, sin¢g, cos 2w, ]
E,;[cos2x;sinZ2¢p; cosw; - 2sin2x,; cosp; sinw, ]

Fi[-cos2xn,sin2p,; sinw; - 2sin2x; cosw,; cosw,]

. . . 2 2
sin 2% ; sinw, sin 2w, - sin” x, cos w,

b =

(A -B)s[ -

[

2 . 2 2 . 2
+ cos"y sin"w - cos” xy sin"@, sin w,]

1 .
(A-C)y[ 7 sin2x, sinw, sin2w, - sinzxi smzwi
2 OF]
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2 2

+ cosch1 cos® w; ~ cos” wy sin‘p, coszwi]

= 2 f 2 PR .
+ Dy[-sin"x,sin2w, +tcos" Ky SinN"Q, sin 2w,
. . 2 .

+ sin 2%, sing , cos 2w, - cos“y sin2w, |
+ By [cossz gin2¢, cos @y ~ sin 2x, cosE; sinew,

+ sin 2¢0; cosw; |
+ Fi[-—cos2x1 sin2¢; sinw, - sin 2 ; cosy; cos w;:

- sin 2wy sinw;}

Diy1 5 Eja1 » Fyyy can be obtained fr;)m Eq. (C.3) if in the

right hand side (A -B), (A-C), D, E, F, %, ¢, w are replaced with (A-B),,
(A-C)y,yD;,Ey, Fy, %y, 0y, Wy , respectively. Also, 3435 Qi1

w 1+.1 can be obtained from Eq. (C.7) if on th}e right hand sides,

D, E, F, (A - B), (A-C) are replaced with the same guantities with a

subscript "i'",
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3. The Accuracy of the Directions of the Principal Axes of mertia

The last three of equations (C.6) can be rewritten as

D = (Cag¥2Caz)w+ 2820 - Coy% + S = 0
E = -28,,@ + (2Ca2 - C20) + Sa1%x + Czy = 0 (C.8)
f = Coyw - 8oy - 4C22 % T 28,5 = 0,

Introducing the notation
f=[DE FI

e =[x o W]’

M= [Cgs C22 Ca1 831 Sazl’
one can write the equations determining %, ¢ , @ as

f = fle, M) = 0
and the solution will be of the form

e = e(M).

The respective variance-covariance matrices of M ande, T and £., are

s - [ n 2]

Taking the total differential of f=f(e, M) =0

of 1
_ [2f de = 0
dt [aM] dM -+ [aeJ ©

so that

- 2] 28] a

or . :
2 B B ©.10
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The matrices [—g—fg:l [: f\&] can be found from equations (C.3), after A- B,

A-C, D, E and F are substituted with C20, Cz2, Cz0, Sz1, S22 by means
of equations (C.5). However since the angles %, ¢ and w are small, one can

use equations (C.8) to obtain

—"‘021 28252 Caot 2Cp2
af
[ae] = 821 2Ca3- Cap -254n
L-—‘Lng -8z, Cgz; ]
i) 20 —-H 1 2¢
3F 7 _ (. 11)
—_—| = - 2 1 n -2
[am] © 20
0 -4n w -0 2 |
After analytical inversion
[ I
2521822 = C21(2C22-Cz0) | 2C21822+821(C20+ 2Cz2) :
Sel — 4 Ca1821~ 8C22 532 IC21 -4C22(Czp + 2C22) |
|
]
831~ 4C25(2C 23~ Csp) :021521 +8Cz2822 :
| -
1482, + 4%, - CZo
I
:2021822 = 821(Cg0 *+ 2C23) (C.12)

I
fzsgiszz + C21(2C2z ~ Cag)

where d = 2C22(2C30+ C5, - 8C3, + 83, ~ 852,) + Cao(S2:1 ~C3y) »
o raf 24 2e]
With [BM] and [ae from (C.11) and (C. 12), one can compute [aM

by means of (C.10) and finally with Xy, one can find X, from (C.9).
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As an example, to get an idea of the order of the Iﬁagnitude involved,
examine the simple case when x = ¢ = w = 0, Czy = Sz, = Sgz2 = 0, all
the coefficients have the same variance s2 without any correlatior‘l, and. from
[10], Cao= -204.8 x 107% (Cas = 22.1 x 1078,

For this case

| 0 ' 0 Czo +2022‘
[g—fg] = 0 2Cas - Cgo 0
-4Cag 0 0 |
0 0 (-4 Caz)?
[22} .l= 0 (2C22 —Cgo )-1 0
(Czo + Ca2)* 0 0
o 0 ~1.13]
~ 10* 0 0.40 0
-0.62 0 0 |

0 0 0 0 2.26
de 4
a2 0 -0.40 0 0
[BM] 10 0 0.4
0 0O 0 0.62 0 |
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Y. =~ s210° 0 0.16 O

The variance of the angle % is

2 4
= 2,26 X 10" s.
0'7{’ IS

With the current accuracy of s = 3.0 X 10~ ° [10]

o-i = 6,78 x10°2 rad = 118km/1738km

i.e., a standard deviation of about 120 km of arc on the lunar surface.

T nhtain an ancnracy of 1km, potential coefficients would need to be

g 1km 10™¢ -
g = % = w1075 g 5 x10®

2.26 x10% . 1738km 2. 26

i.e., an improvement of the current accuracy-by a factor of 100 would be

needed,
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