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Introduction

This investigation is concerned with the dynamic characteristics of the

Long-Term Zonal Earth Energy Budget Experiment (LZEEBE) spacecraft (see Fig. 1)

The spacecraft mass center moves in a known circular orbit about the earth. On

the other hand, the spacecraft attitude motion is expected to be as random as

possible. Hence, capture in a gravity-gradient configuration must be avoided.

The mathematical model consists of a rigid hub and three flexible booms

equally spaced in a plane, referred to as the spacecraft plane, where the

angle between any pair of booms is 120°. At the tips of the booms there are

spherical balloons coated with different materials, so that the solar ra-

diation produces not only forces but also torques.

Assuming that the orbital motion is known, the dynamical problem reduces

to that for the rotational motion of the spacecraft as a whole and the elastic

motion of the flexible booms. Representing the displacements of the booms

by the first bending mode of the associated fixed-base booms with balloons

at their tips, the behavior of the spacecraft can be simulated by means of

a nine-degree-of-freedom nonlinear system subjected to external excitation.

No closed-form solution can be obtained for such a system, so that the equations

of motion must be integrated numerically.

The nine-degree-of-freedom simulation has been cast in a form suitable
9

for numerical integration and programmed for digital compuation. Computer

results indicate that the spacecraft will perform as desired, nrovided the

injection in orbit does not create conditions favorable to capture.



The Generalized Coordinates

Let us consider an inertia! system XYZ with the origin at the sun's

center S; axes X and Y are in the ecliptic plane, with axis X along the

vernal equinox, and axis Z is normal to the ecliptic plane. The earth's

center E moves in the ecliptic plane in a circular orbit around the sun,

so that at any time the position of E is defined by the radius vector Rr

making an angle x^ with respect to the vernal equinox (see Fig. 2). The

equatorial plane of the earth intersects the ecliptic plane along an axis

X1 parallel to X. Denoting by Y1 the axis normal to X' and in the equatorial

plane and by Z1 the polar axis of the earth, and letting a be the angle

of inclination of the polar axis relative to the ecliptic, we conclude that

the relation between the systems X'Y'Z' and XYZ can be written in the

matrix form

- {n<4 (1)

where

1 0 0
0 COSa -Sl'na
0 sina cosa

(2)

plays the role of a rotation matrix (see Ref. 1).

Next, we wish to define the orbit of the spacecraft. To this end, we
c

introduce the set of axes X"Y"Z" obtained from X'Y'Z' by a rotation XN

about axis Z1; axis X" defines the ascending node of the spacecraft orbit

(see Fig. 3). The relation between X"Y"Z" and X'Y'Z1 is simply

(3)



where
cos A., siiu.. 0

-sinx,. COSA.. 0
0 0 1

(4)

Denoting by i the orbit inclination relative to the equatorial plane, the

spacecraft orbit plane can be defined by axes x"'\"'I"' obtained from axes

X'T'Z" by means of the rotation i about X". The relation between the two

sets of axes is

(5)
Z"1

where

[R<D] •
0

cos i
-sin i

0
sin i
cos i

(6)

The spacecraft moves in a circular orbit about E in the x'"Y'" plane.

The position in the orbit of the spacecraft mass center C is defined by

the radius vector R~ from E to C, where the direction of the vector is

defined by the angle ty = fit measured from the ascending node. It will

prove convenient to introduce a set of "orbital axes" abc with the origin

at C and with axis a along RQ, axis b tangent to the orbit and in the di-

rection of motion, and axis c normal to the orbit plane. The relation be-

tween systems abc and x^Y"1!"1 is simply

(7)

where

COStJ; Sl'niJ; 0
-siniji cosi{/ 0

0 0 1
(8)



The overall motion of the spacecraft can be conveniently described by

a set of body axes xyz, defining the rotational motion of the spacecraft

relative to axes abc, and by the elastic deformation of any point on the

spacecraft relative to xyz. Assuming that the triad xyz, initially coincident

with axes abc, undergoes the rotations e^ about y, -e, about x, and 9-

about z in that order (see Fig. 4), the relation between xyz and abc can

be shown to be

(\ fa I
(9)

where [«,] is the matrix of the direction cosines between the two sets of

axes; its explicit form is

ce3 - se1 se2 se3

C0-,

C61 S93
ce!.ce3
se.

- S0i ce2

C8-,

(10)

where se. = sine, and ce. = cose. (j=l,2,3). Note that of all the quantities,
J J J J

introduced to this point, only e,(t), 02(t), and 63(t) are generalized

coordinates, as all the remaining quantities are either constant or they

are known functions of time.

It follows from the above that the relation between the body axes xyz

and the inertial axes XYZ can be written in the compact form

= [L] (ID

where

[L] = [£][R(*)][R(1)][R.(xN)][R(a)] (12)



is an overall matrix of direction cosines.

The elastic displacements are assumed to be caused by flexure and to

take place in two orthogonal directions. Letting x.(1=1,2,3) be the nominal

longitudinal directions of the booms we shall denote the elastic displacements

in the plane of the spacecraft by v-(x.,t) and those out of the plane by

w^x^t) (see Fig. -5).

Lagrange's Equations of Motion in General Form

The motion of the spacecraft can be adequately described by nine generalized

coordinates, three rotations 9-(t) (j=l,2,3) and six elastic displacements
*j

v.j(x.j,t) and w.(x^,t) (1=1,2,3), where the elastic displacements depend not

only on time but also on spatial position. For simplicity, it is assumed that

the spacecraft mass center coincides with its geometric center at all times, i.e.

its position does not shift relative to the spacecraft because of elastic

displacements.

To derive Lagrange's equations, it is necessary to produce expressions

for the kinetic energy, potential energy, and work function. First, we must

define certain vector quantites. Denoting by r the position vector of any

point in the hub relative to C, the position of that point relative to the

inertial space is simply

*o = BE + Bc
 + r~0

 (13a)

On the other hand, denoting the nominal position of a point on boom i relative

to C by r. and the elastic displacement of that point by u., the position of

the point relative to the inertial space is

R. = R.- -f Rr + r. + u. , i = 1,2,3 (13b)
— I — t •*" U •" 1 "• 1



For convenience, let us assume that RE and R^ are expressed in terms of com-

ponents along the inertial system XYZ and that r , r. , and u. are in terms

of components along the body axes xyz. If the body axes xyz rotate with

the angular velocity o> relative to an inertial space, the absolute velocities

of the point in question are

R0 = RE + Rc + |a x rQ . (14a)

and

• • • •

R. = R + R + u! + -ia x (r. + u_.) , i=l,2,3 (14b)
*** I "* d *** L/ *** I *** *** I **• I

where u! denotes the elastic velocity of any point on boom i relative to

axes xyz.

The kinetic energy can be written in the general form

T = 1 z f R.-Rf dm, (15)
i=0 Jm:j -1 ~

Inserting Eqs. (14) into (15), we obtain

o

T = im(RF + Rp)-(RF + Rr) + i E f [to x (r. + uOl'Cu x (r, + u,)]dm,e. ~t ~t ~t ~L t = ji ~i ~i ~i ~i i

3 r . 3r . i (•
u-^s (r. + u.)x u]..dm. + 4 E ui'u! dm.
~ 1=1 Jmv ~n -1 -1 n ^i=l % 1 n 1

(16)

3 3 fwhere m = E. Q m^ is the total mass of the spacecraft. Moreover, Z^Q (r.
' m^

+ .. Uf)^.dm. "•-= -OC by the assumption that the center of mass of the spacecraft
~ i ~ I - . I : —

does not shift relative to the body axes xyz during motion. Introducing

the notation

3 r
K = E (r. + u.) x U! dm. (17)
: 1=1 Jm^ -1 -1 -1 n

where K is recognized as the angular momentum about .C due to elastic velocities



alone, and letting J be the inertia dyadic of the spacecraft in deformed

state about xyz, the kinetic energy can be written in the compact form

T - T, * Tre, (18)

where

Tc = lm(RE + RC)-(RE + Rc) (19)

is the kinetic energy due to the motion of C and

• 1 ' 1 3 f ' 'T , = iu-J-w + lo-K + i-.s ul-u! dm.rel 2~ ~ ~ - - 2.=1 J ~i ~i i (20)

is the kinetic energy due to the motion of the spacecraft relative to C.

Because T- contains no generalized coordinates or velocities, it will be

dropped in future discussions. Consequently, '"the subscript rel will be

dropped in Eq. (20). Equation (20) can also be written in matrix form. In-

deed, denoting the inertia matrix representing J by [J] and the column matrices
• •

associated with the vectors &', K, and uj by {u1}, {K}, and {u.|}, respectively,

Eq. (20) becomes

T = 1 {a>}T[J]{o3} o.+.a {'K}T{u»> +,£. f {u:}T{u!} dm, (21)
^ i=l ^mi

 1 n n

At this point it appears desirable to specify some of the quantities

in T. It should be pointed out that all these quantities are in terms of

components about the body axes xyz. Letting i, j, and k be unit vectors

along xy y, and z, respectively, and recalling that there is a 120° angle

between any pair of booms, we can write the position vectors

• v •! 4. v -iyXgi + -y x2j



Moreover, the elastic displacements are as follows:

T V *u~2 = - T V * 7 2 2 (23)

'̂ + W3~k

so that the relative elastic velocities are simply

^2 = - T V B \ "2* + W2* (24)

u~3 = 4 V3l - 1 V3J- + W3^

Considering Figs. 2-5, the angular velocity vector can be written in the form

where, assuming that x - 0, the components of ̂  are

i) = n(s02 s03 - S9-, cap C03) + 0, S83 + 02 C0-, s©3 (26)

The moments and products of inertia of the deformed spacecraft are

xx ~ xxo + f (v,2 + W^Jdm, + f [tt̂  x7 - v?)
2 + w 2]dm

Jm--, ' ' ' ^mJ2
 4 ^ £ *

Ik3

= J

L ̂
x1 + w, Jdm, + J [?yyo

/m'3



Jzz = Jzzo + f (xl2 + Vl2)dml + I f C(X2 + ̂  V2)2 + ̂  X2 - V2)23dm2•* n?, ni,,

f C(x3 - /3 v3}2 + (/3 x3 + V3)
2]dm3

m'3

°xyo + XTVA ' ^ U2 * ̂ V2)(v^x2 ' V2)dm2
" I" I • • " m'0

\ (x3 - n v3)(/3 x3 + v3)dm3 (27)
3

f x-.w.dm, -if (x2 + /3 v2)w2dm2 -if (x3 - /3 v3)w3 dm3
Jml 'mi ^m-

Jxz = °xzo

Jyz = Jyzo +
 ml

 V1wldml + ^ (v/J X2 '

where Ovvrt, J,. • • • > Ju a«^e the moments and products of inertia of thexxo

hub. Moreover, the elements of {K} have the expressions

f i f
KX = I (v1w1 - W1v-,)dm1 + ̂  I

m T nifx

\\
* n\"3

3 (28)
f ' 1 fK = - x,w,dm-, + 4-

y ^rrii, ! ' ' ^ Jm|

+ 1 f - ̂X3 " ̂ V

= L w•̂
The potential energy can be written in the general form

V - Yn H- V, (29)



where V^. is the elastic potential energy having the expression (see Ref. 3)

=1 I fti, [(!V)2+/!V|
2L

2,-=l J0
 P*U\»x,J UJ J 1

+ ;=r

(30)

Note that the first integral in Eq. (30) is due to axial forces and the

second is due to flexure. On the other hand, V~ is the gravitational poten-

tial energy, which has the matrix form (see Ref. 3)

«2
v -VG 7 (trr [J] - (31)

where {£„} is the column matrix of direction cosines between the direction
G

of the vector R~ (which coincides with the direction of axis a) and axes xyz

Note that a c

explicit form

Note that a constant term has been ignored in Vr. The matrix U > has theu a

xa

za

2 C0 -3 "" S0 •!
O I

-C92 S83 - S6, (32)

which is merely the first column of Eq. (10).

It will prove convenient to eliminate the spatial dependence from v- and

w. (1=1,2,3), i.e., to discretize the system. To this end, we use the assumed-

modes method (see Ref. 2) and introduce the notation

V2(x2,t) = <}>2(x2)q3(t);
V3(x3,t) = <{)3(x3)q5(t),

w^Xpt) = <f>1(x1)q2(t)
W2(x2,t) = (j)2(x2)q4(t)

W3(x3,t) = <|.3(x3)q6(t)

(33)

10



where <f>.j(x.j) (1=1,2,3) are "shape functions". They can be taken as the first

bending modes of the booms (see Ref. 2). The functions can be normalized

so as to satisfy

m, *i dmi = 1 , 1=1,2,3 (34)
i

Moreover, we can introduce the notation

f x^. dmi = bi , 1=1,2,3 (35)

and

:[ x? dmi = J. , 1=1,2,3 (36)
Jmi

where J. is recognized as the moment of inertia of boom i about the z axis.

In view of Eqs. (33)-(36), Eqs. (27), (28), and (30) reduce to

3 \ ' T^3 2 212 2 2 12

JJ Jr J

i - i A l i 1 ^ i J . 2 J . 2 J . 2
Jzz " Jzzo Jl J2 J3 ql q3 q5

(37)
/3~ i i yr. 9 9.

Jxy = Jxyo - ̂J2'J3) + blql '

xz ~ xzo

yz ~ yzo H

Ky = ~blq2 + q4q3 + (b2 + ̂  q3)q4 + ̂  q6q5 + (b3 " ̂ q5)q6:! (38)

11



and

£2

0

5.
2

where >it> was assumed-that El' .'= EI-..;=^EI.- (i=l ,2,3); The axial forces are. yi „•. zi /, i

due: to2centri.fugaltahd ;grav>1tat1:6nal'7eeffects ;and:can.be_obtained from Ref. 3.

lagrange's equations of motion can be written in the general form

— + — = e j=l 2 3

(40)

H£)~ a ^ + 3 q i = QI • i = 1 > 2 6

where 0. and Q. are nonconservative generalized forces. In this particular
J '

case, they arise from solar radiation and internal damping. Equations (40)

are second-order nonlinear differential equations and they are not very con

venient for integration purposes; it is actually more convenient to work

with first-order differential equations. Our efforts will be directed next

toward producing such a set of equations.

12



Fi rst-Order Pifferential Equations

3 f • T 'Considering Eq. (21) and recognizing that £ {u!} {u!
6 2 i=l Jmi n n

£ q. , the second set of Eqs. (40) can be written in the form
1=1 n

}dm. =

B

7= Q!-. i=l,2,...,6 (41)
19M

To transform Eqs. (41) into a set of twelve first-order equations, let us

introduce the auxiliary variables

Pi = qi , i = 1,2 6 (42)

In addition, let us introduce the 3x6 matrix [K*] defined as

/ ^v ^ v-\.. 3K.. • -3K..

[K*] = !i !i... !i

. 3K_

(43)

as well as the modified generalized forces

i=l;.2,...,6 (44)

so that, arranging p. and Qt in column matrices, we can write Eqs. (41) and

(42) in the form of the first-order differential equations

{p} ='{Q*}

(ql = (p>

(45a)

13



Next, let us turn our attention to the first set of Eqs. (40). The

equations are in terms of the actual angular coordinates e.. It will prove
J

more convenient, however, to work with a set of equations in terms of quasi -

coordinates (Ref. 1). These equations can be written in the form

(af(lf)[+M'te| ={N'G + (N)R <46>
where [to/] is the skew symmetric matrix of angular velocity components, i.e.

0 - W

0) 0 -W
Z

-a) to 0
"y "x

(47)

and {N}g and {N}R are the gravitational and radiation pressure torques, res-

pectively. The gravitational torque can be shown to have the components

(see Ref. 1, p. 437)

xG Vxa£za ' Jxz£xa£ya Jyz<4

NyG
= 3n^Jxx-0zz^xaaza + Vxa£ya ' JxyV£za + Jxz< ' ^ (48)

NzG=

where au,, s,wa, «,__ are given by Eq. (32). The radiation pressure torquexa ya za
is derived in the next section.

From Eq. (21), we conclude that

so that, introducing Eq. (49) into Eq. (46), we obtain

(N}

(49)

(50)

14



Next, we observe that

{K} = [K*]{p>

so that, introducing the notation

(51)

{N*} = {N> + (N}R -G K (52)

Eq. (50) reduces to

= {N*} (53)

On the other hand, from Eqs. (26), we conclude that the angular velocity

vector can be written in the matrix form

co} = [e]{e} + (54)

where

[e] =
-ce3 ce] se3 0
se,

se
0
1

(55)

and
-(se2 ce3

S92 S63 " S61 C62 (56)

where {£ } is recognized as the matrix of direction cosines between axis c

and the body axes xy<z (see the last column of Eq. (10)). Equation (54) can

be rewritten in the form

{6} = [s]" ({to} - fi{£ }) (57)

Equations (53) and (57) represents another two sets of first-order differential

equations replacing the set (46).

Next, let us introduce the state vector

15



{X} =
Jo'}

ig>
{9}

(58)

which has the dimension eighteen. Then introducing the square matrix

CM ! [o] • [o]-i i.[K*] ; EJ]
Coi"|"co]"

i;_[o^____
CM ! [0][A] =

as well as the column matrix of "generalized forces"

(59)

{X} = (60)

Eqs. (45), (53), and (57) can be written in the compact form

[A]{x} = {X} (61)

where the elements of {X} are generally nonlinear functions of the state

vector. Equation (61) can be rewritten as

(62)

which represents a form suitable for numerical integration. Note that

Eq. (62) implies the existence of [A]" , which in turn implies the existence

of [e]~ , with the further implication that [e] is nonsingular. From Eq.

(55), we conclude that d_et [e] ̂ '0 provided cos 9, ^ 0. Hence, at values

of e-. that are odd integer multiples of ir/2 Eq. (62) cannot be used, so that

such values must be avoided in a numerical solution.

16



Radiation Forces and Torques

There are several sources of radiation that can cause forces and possible

torques on the spacecraft. These sources are:

1. Direct solar photon radiation

2. Solar radiation reflected by the earth and its atmosphere

3. Radiation from the earth and its atmosphere

4. Radiation from the spacecraft.

The last three are one order of magnitude smaller than the first, so that they

will be ignored. Moreover, it will be assumed that the solar photon radiation

on the booms is negligible. Hence, the only forces and torques to be con-

sidered are caused by solar photon radiation on the balloons.

Next, we wish to obtain an expression for the force vector on a typical

balloon. To this end, let us consider a differential element of area dA (see

Fig. &) and denote by n the unit vector normal to the surface and pointing

outward and by s the unit vector tangent to the surface and in the direction

shown. Then, letting e be the angle between the incident radiation and n,

the photon radiation force corresponding to the area dA is (see Ref. 4)

dF = |- [-[(l+crs)cose + §crd]n + (1-cosine s]cose dA (63)

2
where I = energy per unit time through a unit cross sectional-area (in W/m )

c = speed of light

c = coefficient of specular reflection

c ^ = coefficient of diffuse reflection

To obtain the force exerted on the balloon,; we must integrate Eq. (63) over

the area, which is assumed to be spherical. From Fig. 6, we can write

n = sine cos<j> lr + sine sin<£ 1 • + cose 1~t, ~n -c,
(64)

s = cose cos<() 1£ + cose sin<j> 1 - sine 1

17



1 1 1
~C' ~n' -c are unit vectors along axes £, n, c, respectively. More-

over, the differential element of area has the expression

dA = r sine de d<j> (65)

where r is the radius of the balloon. Denoting the force vector by

F • F
5!E

 + Fn!n
 + FJ? <66>

and integrating over the surface of the balloon, the force components can

be shown to be

F = F =0£ n
O T T O (67)

Fc - -2,r
2 |4 * § crd)

For further reference, we wish to calculate the forces on the various

balloons in terms of components along the spacecraft body axes xyz. In view

of Eqs. (67), we conclude that the force on any balloon has the magnitude

|F.| I(l+| cr(J.) , 1=1.2.3 (68)

where allowance has been made for the possibility that the balloons are of

different sizes and that the coefficients of diffuse reflection are different.

The direction of the force vectors coincides with the direction of the solar

radiation. Hence, the direction of F. is parallel to the vector RF + Rr.
*** 1 "" EL "* U

Because |R£| » |Rj , it will be assumed that the direction is parallel to

Rr. This direction can be expressed in terms of inertial components as follows:

RP
IP | = cos A.. I + sin Ac J (69)
|KpJ t ~ t ~

where I and J are unit vectors along the inertial axes X and Y, respectively

(see Fig. 2). It follows that

18



F. = 2rrr? 1 (1 + | crdi)(cosAE I + s1nAE J) (70)

The same vector can be expressed in terms of components along the spacecraft

body axes xyz by writing

El • F1x ! * F1y i + F1i H

where the components F. , F. , and F. can be obtained from Eq. (70) by means

of the coordinate transformation (11).

Next, we wish to use Eq. (71) and determine the radiation force and

torque vectors {Q>n and {N}R. Ignoring the radius of the balloons compared

to the length of the booms and using Eqs. (22), (23), and (33), we can write

the position of the balloons as follows:

+ u2U2,t) = - 1 l>2 + S5 <|>2U2)q3(t)]i +

+ <J»2(£2)q4(t)k (72)

+ u3U3,t) = - 1- [£3 - /3 *3(£3)q5(t)]i - \ [/3 &3 + *3(£3)qt(t)]

+ <j>3(£3)q6(t)k

But the virtual work associated with the radiation forces can be written

in terms of both actual coordinates and forces and generalized coordinates

and forces in the form
3 I •S WR= ,!;, Ei ' ««if'i't) - i=l «iRM,,- <73'

Inserting Eqs. (71) and (72) into (73) and equating coefficients of SQ^

(i=l ,2,. .. ,6), we obtain the generalized force components

19



Q1R = Fly ^

Q 2 R
= F l z * l < £ l >

F F2x + F2y)*2(jl2)

(74)
Q4R = F2z M^

Q5R = F ̂
 F3x - F3y>*3<*3>

^6R = F3z *3<£3>

The radiation torque is obtained by writing simply

3
. x;.F. (75)

Inserting Eqs. (71) and (72) into (75) we obtain the components

NxR = Îz'l -

" f 32*5 + f3y*6*3 + F2z^2 ' F3z^

NyR = FlxVl^l) + 1^*22*3 + F2x('4>*2(i2) ' { T

7 (F2z£2

NzR = -Flx^l*l^l^ + ? (F2x - ̂ F2y)c'3*2̂ 2) + \

F2x + F2y^2 + ^ F3x

It remains to determine when these radiation effects are present, i.e.,

when solar radiation impinges on the spacecraft. This coincides with the

period when the spacecraft is illuminated by the sun. For simplicity we shall

be concerned only with shadowing of the spacecraft by the earth.
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Let us denote the radius of the earth by r£ and the angle between IV

and RC by y (see Fig. 7). Once again we assume that |RU » |RJ . But

from the definitions of the cross and dot products of vectors, we can write

|RC x R | R .R1 ~E ~C ~t ~C /-,-,\sin Y = -TB-I — TR-T . cosy = -TB-I - TK-T- (77)
|KE| IJCI I!<EI I !>c I

s

Because solar radiation is in the direction of R^, we observe that the

spacecraft is in the shadow of the earth when the projection of Rr onto Rc~L> ~ t

is positive and when siny < r£/ |RC| . Hence, radiation forces will not

be present when

COSY > 0 and |RE x RC| < r£ |RE| (78)

Criteria (78) can be written in the explicit form

cosA£ (cos if; cosAj. - simjj cos i sin A^) + sin A£ cosa (cos \l> sin A.,

+ sin ty cos i cos AN) + sin AE sin a sin \i> sin i > 0 (79a)

and
2 2{sin A^ [sin i|» (sin i cos a - cos i sin a cos A^) - cos ij> sin a sin A..]

9
+ [cos \i> sin a sin AE cos A., - sin \j» (sin i cos AE + cos i sin a sin AE sin AN)]

+ [sin fy cos i (cos AE cos AN + cos a sin AE sin AN)

+ cos ij> (cos AE sin A., - sin AE cos a cos A^)] }^ < r£/Rc (79b)

where R£ = |Rg| .

Damping Forces

The other nonconservative forces acting on the system are the internal

damping forces. This type of damping is generally known as structural damping,

but the forces are often modelled as viscous forces. Of course, the forces

being internal they produce no torques.
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Letting c. be the damping coefficient per unit length of boom i, we

can introduce the Rayleigh dissipation function in the form (see Ref. 1)

3
F = 1_

2 .", I "i
1=1 }0

fe)2 * dx. (80)

Using Eqs. (33), Eq. (80) becomes

F = (81)

where

Ci = i*i dxi ' i=1'2'3 (82)

The damping forces can be obtained from Rayleigh's dissipation, function by

means of the formula

0 = —
10 aqt

from which it follows that

1=1,2,...,6 (83)

1D

4D

Q2D

Q5D

3D
(84)

Quite often damping is given in terms of the damping factor ?. rather

than in terms of the damping coefficient c.. The relation between the two is

-0). = c./Pi 1=1,2,3 (85)

where w. is the lowest natural frequency of boom i and p. is the mass per

unit length of the boom. Letting the mass of boom and balloon have the

expression

P^X-J) = PI +M. S(x. - £.) , 1=1,2,3 (86)

where p. on the right side is the constant mass per unit length of boom

introduced in Eq. (85), Mi is the mass of the balloon, and 6(x. •- a^} is

a spatial Dirac delta function, Eq. (34) yields
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f£l [pi + Mi 6(x. - J>.)]<j>2 dx. = p. [£1 (j.2 dx. + V\^2.(a.) = 1 (87)
•* 0 •'0

so that Eq. (82) yields
2

C- = c. ^-"-^—-—U-- = 2 ^ - c o • [1 - M.<{>. (&• ) ] , i=l,2,3 (88)
P.J 11 i

Equations (88) can be inserted in Eqs. (84) to express the damping forces

in terms of the damping factors £..

Mathematical Solution and Computer Program

The numerical solution of the equations of motion involves several

steps, namely, the determination of the lowest natural frequency and mode

for each boom, the evaluation of certain definite integrals, the inversion

of the matrix [A], Eq. (59), and the numerical integration of Eqs. (62).

The computer program accomplishes all of these things with the aid of several

subroutines contained in the IBM Scientific Subroutine Package.

The lowest natural frequency for each boom is obtained by solving for

the first root of the associated characteristic equation numerically. A

simple method of interval halving produces this root. All the necessary

definite integrals are evaluated using the trapezoidal rule in conjunction

with Romberg's extrapolation method. Two hundred intervals are used in

integrating each function. Matrix [A] is inverted by a standard Gauss-Jordan

numerical procedure. An approximate solution of the first-order differential

equations of motion, Eqs. (62), for given initial conditions, is obtained

by a Runge-Kutta integration procedure. Evaluation is done by means of

fourth-order Runge-Kutta formulas with the modification by Gill. Accuracy

is tested comparing the results of the procedure by using single and double

increments. This method is both stable and self starting.
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Numerical Results

The dynamics problem of the LZEEBE spacecraft has been programmed for

digital computation and several cases of interest have been investigated.

These cases appear to be the most significant ones and they all differ in the

initial conditions. These initial conditions can be divided broadly into

two types: (1) zero (or nearly zero) initial velocities relative to an

inertia! space and zero (or nearly zero) initial displacements relative to

an orbital system of axes, and (2) zero (or nearly zero) initial displace-

ments and velocities relative to an orbital system of axes. These cases are

significant because they can shed some light on the possibility that the

spacecraft might be captured in a planar gravity-gradient stabilization

configuration.

The cases investigated and the results are as follows:

Case 1. Zero initial velocities relative to an inertia! space and zero

initial displacements relative to the orbital axes.

Some of the parameters have the values: x£ = 0°, x^ = 0°, \i> = 0°,

and i = 60°. The spacecraft begins vits motion in the earth's shadow. Be-

cause the initial tendency of the body orientation is to remain fixed in an

inertia! space, the angle e- tends initially to increase in magnitude at a

rate equal to the orbital velocity ft. This tends to introduce a very small

gravity torque about the z axis. At the same time, the differentia! gravity

forces on the booms cause them to deflect, with most of the elastic displace-

ments taking place in the plane of the spacecraft. As soon as the spacecraft

emerges from the earth's shadow, the sun's radiation pressure begins to exert

forces and torques on the spacecraft, causing the spacecraft to rotate and

the booms to deflect. Whereas the boom deflections remain well below one

meter, the angles e. become large. In particular, the angle e2 exceeds 2-n,
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thus ensuring a complete rotation of the spacecraft about its own center.

Because of the ever-changing pattern of motion, damping appears to have no

meaningful effect on the elastic displacements.

In view of the large rotations of the spacecraft, it appears that the

sun's radiation torques are sufficient to ensure that all sides of the

spacecraft are exposed to the sun in a random-like fashion.

For the duration of the computer run, a time period equivalent to about

20 orbits, there was no indication that the spacecraft might settle into a

planar gravity-gradient stabilization equilibrium.

Case 2. Zero or small initial angular displacements and velocities with

respect to the orbital axes, with booms 2 and 3 deformed by differential

gravi ty and centri f ugal forces.

A. e1 = 62 = 63 = 0, AE = 90°, \N = 180°, .\1>.= 0°, .i . = .66.5°, u>z = Q.

This case is designed to assess the effect of the sun's radiation pressure

on the spacecraft in the initial planar gravity-gradient equilibrium. In-

deed, in this case the sun's radiation forces are initially normal to the

orbit plane, and hence to the spacecraft plane, and remain constant in mag-

nitude and direction for time intervals of the order of one day. (It should

be pointed out that the earth's oblateness causes the orbit plane to precess

at a rate of the order of 3° per day, so that, after a while, the radiation

pressure ceases to be normal to the orbit plane.) The radiation forces

cause booms 2 and 3 to oscillate about the deformed equilibrium with an ampli-

tude of the order of 0.04 meters tip deflection. Small e1 and 92 oscillations

are also present. Hence, the initial planar gravity-gradient stabilization

equilibrium is largely maintained. It follows that, when working against

the stabilizing effect of differential gravity and centrifugal forces, the

radiation pressure has a very small effect.
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B. e] . = .e3- = .o,.e2 V5V*E = OV*N = OV^ 0°, .i = 60°, .o>2 = a.

The booms undergo small oscillations about the deformed equilibrium as

in the case 2A. In addition, the spacecraft oscillates between e2 = ±5°

with a period of approximately 3,000 sec. The gyroscopic effect also induces

an oscillation about the x axis with the same amplitude but with twice the

period. Once again the radiation pressure effect on the equilibrium state

is minimal. There appears to be a small secular rate of reduction in o> .

Summary and Conclusions

The dynamical behavior of the LZEEBE spacecraft has been investigated

under certain simplifying assumptions. In particular, it is assumed that

the spacecraft center of mass moves in a circular orbit around the earth,

so that its motion in an inertial space is known. The spacecraft is subjected

to solar radiation forces and differential-gravity forces. Thermal bending

effects have been ignored, an assumption justified when the spacecraft

rotates about its own mass center in a way that no one side is exposed con-

tinuously to the sun. The formulation consists of the system Lagrange's equa-

tions of motion for the three rotations e.(t) (j=l,2,3) of the spacecraft as
J

a whole and for the six elastic displacements v. (x.,t) and w.(x.,t) (i=l,2,3)
I I I I *

of the booms, where v. and w. are the displacements of boom i in the plane

of the spacecraft and normal to the plane, respectively. Note that the

rotations e. are measured relative to an orbiting set of axes abc, where a
J

coincides with the local vertical, b is tangent to the orbit and in the direction

of the orbital motion, and c is normal to the orbit.' The rotations e. define
J

the orientation in space of the spacecraft body axes xyz; the elastic dis-

placements are measured relative to axes xyz.
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The six elastic displacements are represented by one degree of freedom
- ' • ". -» '

each, so that the spacecraft is simulated by a nine-degree-of-freedom

system. For the purpose of numerical integration, the nine second-order

Lagrangian equations have been transformed into eighteen first-order equations

for the state variables, namely, the spacecraft generalized displacements

and velocities. The first-order equations have been integrated numerically

by a Runge-Kutta procedure. Note that the differential equations are highly

nonlinear, so that no closed-form solution is possible.

The behavior of the spacecraft has been investigated for various cases,

depending on the initial conditions. Computer results indicate that if the

spacecraft is injected into orbit with zero initial displacements and velocities

relative to an inertia! space, then the sun's radiation and gravitational

torques impart to the spacecraft a rotational motion about its own center that

can be regarded as random. The results over a 20 orbit time interval do not

show any tendency of the spacecraft to settle into an equilibrium corresponding • "
.»••

to planar gravity-gradient stabilization. On the other hand, if the spacecraft

is captured in the above equilibrium configuration, then it shows no tendency

to escape this equilibrium state, but continues to oscillate slowly about

that equilibrium. Hence, there is the possibility of capture in that equilBi-

brium state. Note that the boom flexibility does not change the nominal con-

figuration of the spacecraft significantly, and the thermal effects are not

likely to change it appreciably either. Although a circularMrlrH^P^'assurtf§0,

it should be pointed out that orbit eccentricity has a destabilizing influence

on the gravity-gradient equilibrium state.

If the possibility of capture in planar gravity-gradient stabilization,.

equilibrium is to be absolutely prevented, then a slightly different spafet-̂ >

craft design may deserve consideration. Indeed, a spacecraft with four equal

booms instead of three, so that the ballons lie at the four.corners of a regular
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•
• ' • ,i : . I

pyramid and the hub lies ait the center of yf̂ -'̂ ŷ ^̂ ^̂ ŝ ̂ufffSSjP̂ :̂-:A.,

spherical inertial symmetry to virtually_eTiigJnate^r#f&y torques, ffti*̂ -??v̂

should permit the sun's radiation pressure to impart to the spacecraft a

rotational motion that, for all practical purposes, can be considered as

being random.
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