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Introduction

This investigation is concerned with the dynamic characteristics of the

Long-Term Zonal Earth Energy Budget Experiment (LZEEBE) spacecraft (see Fig. 1)

The spacecraft mass center moves in a known circular orbit about the earth. On

the other hand, the spacecraft attitude motion is expected to be as random as

possible. Hence, capture in a gravity-gradient configuration must be avoided.

The mathematical model consists of a rigid hub and three flexible booms
equally spaced in a plane, referred to as the spacecraft plane, where the
angle between any pair of booms is 120°. At the tips of the booms there are
spherical balloons coated with different materials, so that the solar ra-
diation produces not only forces but also torques.

Assuming that the orbital motion is known, the dynamical problem reduces
to that for the rotational motion of the spacecraft as a whole and the elastic
motion of the flexible booms. Representing the displacements of the booms
by the first bending mode of the associated fixed-base booms with balloons
at their tips, the behavior of the spacecraft can be simulated by means of
a nine-degree-of-freedom nonlinear system subjected to external excitation.

No closed-form solution can be obtained for such a system, so that the equations

of motion must be integrated numerically.

£ ;ﬁ nine-degree- freedom SiMulation has been cast in a form suitable
\@"it?z!?r; ‘ ’v/!' i,

for numerical integration and programmed for di i§a1 compuation. Computer
results indicate that the spacecraft wil 5 de ired, provided the

1njectiou4dnﬂovb(§ypoes bot create conditions favorable to capture.
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The Generalized Coordinates

Let us consider an inertial system XYZ with the origin at the sun's
center S; axes X and Y are in the ecliptic plane, with axis X along the
vernal equinox, and axis Z is normal to the ecliptic p1ané. The earth's .
center E moves in the ecliptic plane in a circular orbit around the sun,
so that at any time the positjon of E is defined by the radius vector BE
making an ang]e_Aé with respect to the vernal equinox (see Fig. 2). The
equatorial plane of the earth intersects the ecliptic plane along an axis
X' parallel to X. Denoting by Y' the axis normal to X' and in the equatorial
plane and by Z' the polar axis of the earth, and letting o be the angle
of inclination of the polar axis relative to the ecliptic, we conclude that

the relation between the systems X'Y'Z' and XYZ can be written in the

matrix form

g = [R()]);( )
where »
ﬁzm] 10 coss -sina (2)

0 sina cosa

plays the role of a rotation matrix (see Ref. 1).

Next, we wisy to define the orbit of the spacecraft. To this end, we
introduce the set of axes X"Y"Z" obtained from X'Y'Z' by a rotation A
about axis 7Z'; axis X" defines the ascending node of the spacecraft orbit

(see Fig. 3). The relation between X"Y"Z" and X'Y'Z' is simply

- ol



where
C?SAN sinAy 0
[R(ANﬂ = |-sinxy cospy 0 (4)
0 0 1
Denoting by i the orbit inclination relative to the equatorial plane, the
spacecraft orbit plane can be defined by axes X"'Y"'Z"' obtained from axes

X"Y"Z" by means of the rotation i about X". The relation between the two

sets of axes is

XIII . XII
YIII = [R(.i)] YII . (5)
lel ZII
where
1 0 0
[R(i)] =}0 cos i sin i (6)
0 -sini cos i

The spacecraft moves in a circular orbit about E in the X"'Y"' plane.
The position in the orbit of the spacecraft mass center C is defined by
the radius vector R. from E to C, where the direction of the vector is
defined by the angle ¢y = Qt measured from the ascending node. It will
prove convenient to introduce a set of "orbital axes" abc with the origin
at C and with axis a along R., axis b tangent to the orbit and in the di-
rectjon‘of motion, and axis c normal to the orbit plane. The relation be-

tween systems abc and X"'Y"'Z"' is simply

{2} i}

cosy siny O
[R(w)] = |-siny cosy O (8)
0 0 1

where



The overall motion of the spacecraft can be conveniently described by
a set of body axes Xyé, defining the rotational motion of the spacecraft
relative to axes abc, and by the elastic deformation of any point on the
spacecraft relative to xyz. Assuming that the triad iyz, initially coincident
with axes abc, undergoes the rotations 6, about vy, -84 about x, and 64
about z in that order (see Fig. 4), the relation between xyz and abc can

be shown to be

X a
{y] =[] {b (9)
z c

where [2] is the matrix of the direction cosines between the two sets of

axes; its explicit form is

ce2 ce3 - sQ] 562 SQ3 CQ] se3 - 562 c93 - se] c62 §e3
[¢] = |- O, S65 - S8y SB, CO3 €Oy COg S8, S8; - S8y CO, CO3 (10)
coy s6, S8y coq co,

where sej = sinej and cej = cosej (j=1,2,3). Note that of all the quantities,
introduced to this point, only 61(t), ez(t), and e3(t) are generalized
coordinates, as all the remaining quantities are either constant or they
are known functions of time.

It follows from the above that the relation between the body axes xyz

and the inertial axes XYZ can be written in the compact form

X X
y{ = [ Yt (11)
z JA
where
[L] = [2IIR(v)IR(1)IR(A) I[R(a)] (12)



is an overall matrix of direction cosines.

The elastic displacements are assumed to be caused by flexire and to
take place in two orthogonal directions. Letting xi(i=1,2,3) be the nominal
longitudinal directions of the booms we shall denote the elastic displacements
in the plane of the spacecraft by vi(ki,t) and those out of the plane by

wi(xi,t) (see Fig. 5).

The motion of the spacecraft can be adequately described by nine generalized
coordinates, three rotations éj(t) (j=1,2,3) and six elastic displacements
Vi(xi’t) and Wi(xi’t) (i=1,2,3), where the elastic displacements depend not
only on time but also on spatial position. For simplicity, it is assumed that
the spacecraft mass center coincides with its geometric center at all times, i.e.
its position does not shift relative to the spacecraft because of elastic
displacements.

To derive Lagfange's equations, it is necessary to produce expressions
for the kinetic energy, potential energy, and work function. First, we must
define certain vector quantites. Denoting by o the position vector of any
point in the hub relative to C, the position of that point relative to the

inertial space is simply
+ R+ (13a)

On the other hand, denoting the nominal position of a point on boom i relative
to C by r; and the elastic displacement of that point by Uss the position of

the point relative to the inertial space is

R: =R +R. + r, + i=1,2,3 (13b)

NTRET R T T Y



For convenience, Tet us assume that RE and RC are eXpressed in terms of com-
ponents along the inertial system XYE and that Tos Fis and u; are in terms

of components along the body axes Xyz.  If the body axes xyz rotate with

the angular velocity w relative to an inertial space, the absolute velocities

of the point in question are

R, = R + RC tuox g . (14a)

and
R

i =Re ¥ Re+usvwx (rg+uy), 191,2,3 (14b)

13-«

where u denotes the elastic velocity of any point on boom i relative to
axes xyz.

The kinetic energy can be written in the general form

. 3 .. " (18)
T =5 j R.*R; dm. 15
2 i= 0 SR 1

Inserting Eqs. (14) into (15), we obtain

3 |

1 N o
= L mRe + Ro)* (R +R)+2éojﬁQX(5+9Q]QX(5+QQMW
O ng (ry + ug)x usodmg + 5

ulti! dm. (16)
i=1 1 Jm‘ ii i

i ™
where m = 23 -o M; is the total mass of the.spacecraft. Moreover, z?=0 J (r;

m.
+._u$)gdmi“*é =0 by the assumption that the center of mass of the spacec}aft

AY

~ L~

does not shift relative to the body axes xyz during motion. Introducing
the notation
3 .
S Jmf (ry +u3) x uj dmg (17)

where K is recognized as the angular momentum about.C due to elastic velocities



alone, and letting J be the inertia dyadic of the spacecraft in deformed

state about xyz, the kinetic energy can be written in the compact form

T=Tc+ T (18)

where
1, S .

Te = 7 mRg + Re)- (R + Re) (19)

is the kinetic energy due to the motion of C and
_ ’ S 4.3 .o
T =lm-J-m+w-K+1—2 Gl-u! dm (20)
rel 2~~~ =~ 2%=1 m. ~i~i i
' i

is the kinetic energy due to the motion of the spacecraft relative to C.
Because Tc contains no generalized coordinates or velocities, it will be
dropped in future discussions. Consequently, “the subscript rel will be

dropped in Eq. (20). Equation (20) can also be written in matrix form. In-
deed, denoting the inertia matrix representing J by [J] and the column matrices
associated with the vectors i, K, and é% by {u}, {K}, and'{ﬁ%}, respectively,
Eq. (20) becomes

T =5 ) [0} ota (KT} +.1. f Wity dn, (21)
ms
1

™|

1=1

At this point it appears desirable to specify some of the quantities
in T. It should be pointed out that all these quantities are in terms of
components about the body axes xyz. Letting i, j; and 5 be unit vectors
along x, y, and z, respectively, and recalling that there is a 120° angle

between any pair of booms, we can write the position vectors

T = %1

I <
rp == 7 %1 ¥ 75 %3l (22)
r3 =y ugi = Gy



Moreover, the elastic displacements are as follows:

Uy = vqd + Wik
/3L 1,

Uy = - 5 Vol = 7 Vol + Wk (23)
_ Y3 1 .

U3 = 7 V3l - 7 Va3l * wak

so that the relative elastic velocities are simply

Uy = Vad * Wik

~ ~

3

Up = = 3 Vol = 7 Vol +wyk (24)

~

.| . 3 . . - 1 . . .
Uz = 2 V3l -7 V3l *wsk

Considering Figs. 2=3, the angular velocity vector can be written in the form
o= wd o g+ owk (25)

where, assuming that XN = 0, the components of  are

_ | ST U
wy, = -sz(se2 o, + s0; Co, se3) - 8y €83 + 8,0C04 COq
Wy = sz(se2 S8 - s8; €6, ce3) + 8, S05 + 0, CBy SO3 (26)
w, = 0CBy CB, + 6, SOy + B,

The moments and products of inertia of the deformed spacecraft are

2 . 2 2
. +wiT)dmg 4 Jm’ [Z(/§ Xp = V,)7 + W, Jdm,
‘2

' J T3 x5 + "3)2 + w3 Jdmg
m3

N 2

Yyy = yyo * Jm (xy

+ wlz)dm + J
1 ]

mé'[%(xz + /§'v2)2 + w22]dm2

ol 2., 2
[Hx, - /3 v + d

8



3 2 2 o | 2 ., 2
Jyz 20 * [m (x;% + vy")dmy + Z’] [(xy + /3 v,)" + (V3 x5 - v,)"Tdm,

T B
M [(x, - /3 v )2 + (VT x, + v )z}dm
T) 3 3 * Vgl ldmg
l3 S .
' - 1 :
ny = nyo +. Jm 4X.!V]dq‘] - 4 Jm.}\(xz + 1/3_ Vz)(/j. X2 - Vz)dmz
L
1 o
- sz (x5 = 73 v3) (/3 x4 + v;)dng (27)
3
= 1 { 1
Yz = Y20 * J L XqWydmy =g ] (% ¥ /3 V) hupdmy - 5 [m (x3 = /3 v3)uy dmg
my m 3

) 1 1
Jyz = Jyzo + j 1 v1w1dm] + 7 (V@‘xz - v2)w2dm2 - ?’f (¢§°x3 + v3)w3 dm3
m] m’z m3

where Jxxo’ Jyyo’ cens Jyzo are the moments and products of inertia of the

hub. Moreover, the elements of {K} have the expressions

>
¥

m m%

'] . .
3

| | (28)
Ky = —ImE X]Q}dm] + %'jmﬁ [(x2 + ¢§'v2)Q2 - /§'w202]dm2
1 ’ 2
+ %.[mé [(x3 - /§'v3)ﬁ3 + /§‘w393]dm3
K, = ]m} x191dm] + Im% xz{izdm2 + fm% x3\}3dm3
The potential energy can be written in the general form
Vo=V + Vg (29)



where VEL is the elastic potential energy having the expression (see Ref. 3)
3 . 3.\ 2 /aw.\ 2
1 21 i i
Ve, =5 I F’.K——) +<——) ]M.
EL 2550 ), XTIV X i
2 2
L1 J“ EI .(a,'v")z [1 ;i'(aﬁ) ]
Zistdo | T\ 52 2\ex;/
(zaz.wi)2 [1 5.(3w1.)2 ]] 30)
+ EI . {— -2 — dx. 30
yi axiz 2 Xy i

Note that the first integral in Eq. (30) is due to axial forces and the

second is due to flexure. On the other hand, VG is the gravitational poten-
tial energy, which has the matrix form (see Ref. 3)
o2 are 2T
Vg = - —§-(tp [J9] - 3{2,} [J]{Za}) (31)
where'{ﬂa} is the column matrix of direction cosines between the direction
of the vector R. (which coincides with the direction of axis &) and axes xyz.
Note that a constant term has been ignored in VG' The matrix‘{zé} has the

explicit form

{za} = zya = }C8, sS85 - 56, SO, COg (32)
%52 €8y s6,

which is merely the first column of Eq. (10).
It will prove convenient to eliminate the spatial dependence from Vs and
W, (i=1,2,3), i.e., to discretize the system. To this end, we use the assumed-

modes method (see Ref. 2) and introduce the notation

vi(xq5t) = 6q(x7)ap(t), Wy (x75t) = 47(x7)ay(t)
VZ(XZ’t) = ¢2(x2)Q3(t): WZ(XZ’t) = ¢2(x2)Q4(t) (33)
V3(X3,t) = ¢3(X3)q5(t), W3(X3,t) = ¢3(X3)QG(t)

10



where ¢i(xi) (i=1,2,3) are "shape functions”. They can be taken as the first
bending modes of the booms (see Ref. 2). The functions can be normalized

so as to satisfy

2 _ .
Jm, 95 dmi =1, i=1,2,3 _ (34)
Moreovef, we can introduce the notation
J ' Xsds dmi = bi s i=1,2,3 (35)
m,
1
and
{ 2 - s
J 2 dn, = J, , §=1,2.3 (36)
SRS B i
my
where Ji is recognized as the moment of inertia of boom i about the z axis.

In view of Egs. (33)-(36), Eqs. (27), (28), and (30) reduce to

i 3 3 2, 2,12, 2. 2.12
Ixx = Ixxo T 7IgH3) - Tplbaa3baag) *ay + ap + 7d3 *+ ay * dp + 79
_ 1, /3 2.32,2.32, 2
yy = Jyyo + 7(891#95%03) + —5{byaz-byag) + q; + 793 + ap + 795 * g
_ 2. 2, 2
Jpz g0ty Py I3t oyt a3t gg
p (37)
i} V3 1 1 3,2 2
ny B nyo - _E(JZ'J3) * byay - 5bpa3 - 0505 ¢ _ﬁ(q3 - q5)

_ 1y V3
ez = gz * D19p = 5{byay + byag) - —{aza, - agq¢)

- /3 : 1
Jyz = Jyzo * 72{bydy - b3ag) + 979, - 5{a3a, + ag)

. . ] . - . -
KX = (q]qz - qzq]) + ?‘[q4Q3 + (/3 b2 - Q3)q4 - Q45 - (V3 b3 - q5)q6]

e
!

R : : . _ :
-byay + 51/3 qga3 + (by * /3 az)ay + V3 qgay + (b3 - /3 aglagl  (3q)

~
!

z = b1ay * byaz + baag

n



and
2

[dé )2 . £d%¢,\ 2
_ T 21 1 21 1 2 2
Ve = 2 {U P (——dx dxy * I EI]<—2> dx1](q1 + ;)
(o} 1 dx]

0
2

2
rJzz (d¢2)2 S (g2 '(d"”z) ] 2 2
+ | Poo\gs=) dx, + J EI dx, (g3 + a7)
L), Pe\a,) 2t El ix,? 2 (a3 + g

A . 2
dd\ d%¢ ]
(23, (%3 23 3 2, 2
*l J Px3 (El_x3> dx3 *J EI3< 2) dx3 J(ag + qs)}

0] 0 dx3

- 2, .2 2

d2o\2 /ds\2

5 Ju ( 1) < 1) ] 4 4
-5 , EI dx, |(a; + q,)
2 1L/, 1 dx]2 dx 1M 2

p———

2. .
(12 (2 (23] bt

where qt.was assumed: that- EI ::- EIZ1 ‘,EI; (i=1,2,3). The axial'forces are

due: to“centr1fuga1 and . gravitatﬁona1”ceffects -and:can. be obtained from Ref 3.
Lagrqnge-s equations of motion can be written in the general form

d ( aT) 3T, V. _ .
= - 0. s J-.I ,2,3
dt 56 aej aej J

d aT aT aV .
[ S=\- + = Q; , i=1,2,...,6
dt (aqi) 9q;  aq; i

(40)

where ej and Qi are nonconservative generalized forces. In this particular
case, they arise from solar radiation and internal damping. Equations (40)
are second-order nonlinear differential equations and they are not very con-
venient for integration purposes; it is actually more convenient to work
with first-order differential equations. Our efforts will be directed next

toward producing such a set of equations.

12



3

i=1
diz, the second set of Eqs. (40) can be written 1n the form

[a— y )}T{m‘} + :an]{m} + f{w [ ]{m}

oV _ _
{aq } {w} + qi = Qi’ i=1,2,...,6

6
z

i=1

To transform Eqs. (41) into a set of twelve first-order equations,

introduce the auxiliary variables

In addition, let us introduce the 3 x 6 matrix [K*] defined as

- CLOR WL

BQ‘]' aqé 3;46

7 - Ky a|.<’y B a_Kl
997 29, 9qg
BKZ..BKZ 3K

30, adz 3qg

as well as the modified generalized forces
_ d [aK- 3V
=9 - laE'(SE;) ” } (@) + 3t} [ ]{w} " 3q;

12152,...,6

so that, arranging ﬁi and Qg in column matrices, we can write Egs.

(42) in the form of the first-order differential equations

(1 + [k*]T (@)

{Q*}
{p}

13

Considering Eq. (21) and recogn1z1ng that = J '{ﬁ%}T{ﬁ;}dmi

(41)

let us

(42)

(43)

(44)
(41) and

(45a)



Next, let us turn our attention to the first set of Eqs. (40). The
equations are in terms of the actual angular coordinates éj. It will prove
more convenient, however, to work with a set of equations in terms of quasi-

coordinates (Ref. 1). These equations can be written in the form

Hf@9}+m1@%,sm%+rmR (46)

where [w] is the skew symmetric matrix of angular velocity components, i.e.

0 —mz wy
[w] = @, 0 -4 (47)
Hy % O

and'{'N}G and'{N}R are the gravitational and radiation pressure torques, res-
pectively. The gravitational torque can be shown to have the components

(see Ref. 1, p. 437)

_ anl 2 2
NxG' 3 [(Jzz'dyy)lyalza * nylxagza - szlxazya * Jyz(zza 'an)]
N = 302000, -3 Ve, o +d oo n_ -d.po g +d, (22 -22)]  (48)
VG xx “zz'"xa"za yz'xa'ya xy ya“za xz'"xa za
N_.= 302[(J 3 Yo 8+t g, - d g g +d (12 - 42)]
26 yy Uxx’/"xa"ya xa ya'za = “yz'xa za xy‘“ya Xa

where 2ea® Yva> %za 3T given by Eq. (32). The radiation pressure torque

ya
is derived in the next section.

From Eq. (21), we conclude that

dTY_ I
‘m\‘ [3]w} + (K} (49)
so that, introducing Eq. (49) into Eq. (46), we obtain

[31tw} + [01G} + (K3 + [0][0]6) + (810K = (N}, + (N} (50)

14



Next, we observe that

(K} = [K*](p} (51)
so that, introducing the notation
INEY = (N} N - [J]{e} - [o]([J1{e} + {K}) (52)

Eq. (50) reduces to
[K*T{p},+ [I1{0} = (N*} (53)

On the other hand, from Eqs. (26), we conclude that the angular velocity

vector can be written in the matrix . form

{u} = [el{6} + e (54)
where
-ce3 ce] 563 0
fe] = S65 €Oy COq 0 (55)
0 se] 1
and
| -(se2 o, + 56, €O, se3)
{8} =¢ 6, 565 - s8; €O, COy (56)

c8, 6,
where'{zc} is recognized as the matrix of direction cosines between axis ¢
and the body axes xyz (see the last column of Eq. (10)). Equation (54) can

be rewritten in the form

163 = (017 (1w} - atr)) (57)

Equations (53) and (57) represents another two sets of first-order differential

equations replacing the set (46).

Next, let us introduce the state vector

15



{x} = (58)

which has the dimension eighteen. Then introducing the square matrix

170! [K*J [01 (0]

S Eai';’fai"'ffﬁ & (s
[0]  [0] ![0]:[1]]

as well as the column matrix of "generalized forces"

{Q*}

4 S {N*}
{X} = haiuhatntaiel (60)

(- {p}

(o1 ' (tw} - 2l2)
Eqs. (45), (53), and (57) can be written in the compact form

[Al{x} = (X} (61)

where the elements of {X} are generally nonlinear functions of the state

vector. Equation (61) can be rewritten as

Ix} = [ATT (03 (62)

which represents a form suitable for numerical integration. Note that

Eq. (62) implies the existence of [A]'], which in turn implies the existence
of [e]'], with the further implication that [6] is nonsingular. From Eq.
(55), we conclude that det [é] # ‘0 provided cos 8 # 0. Hence, at values

of 8, that are odd integer multiples of /2 Eq. (62) cannot be used, so that

such values must be avoided in a numerical solution.

16



Radiation Forces and Torques

There are several sources of radiation that can cause forces and possible
torques on the spacecraft. These sources are:

1. Direct solar photon radiation

2. Solar radiation reflected by the earth and its atmosphere

3. Radiation from the earth and its atmosphere

4, Radiation from the spacecraft.

The Tast three are one order of magnitude smaller than the first, so that they
will be ignored. Moreover, it will be assumed that the solar photon radiation
on the booms is negligible. Hence, the only forces and torques to be con-
sidered are caused by solar photon radiation on the balloons.

Next, we wish to obtain an expression for the force vector on a typical
balloon. To this end, let us consider a differential element of area dA (see
Fig. 6) and denote by n the unit vector normal to the surface and pointing
outwafd and by s the unit vector tangent to the surface and in the direction
shown. Then, letting 6 be the angle between the incident radiation and n,

the photon radiation force corresponding to the area dA is (see Ref. 4)

dF = é—[-[(1+crs)cose + %crd]g + (1-crs)sine s]lcose dA (63)
where I = energy per unit time through a unit cross sectional-area (in W/mz)

¢ = speed of light

CY‘S

rd
To obtain the force exerted on the balloon, we must integrate Eq. (63) over

coefficient of specular reflection

coefficient of diffuse reflection

the area, which is assumed to be spherical. From Fig. 6, we can write

n = siné cos¢ 1& + sing sing ]ﬁ + C0S6 ]C

~

. : (64)
S = €0SH COSd lg + €0s6 sing 1n - sine ]C

17



s 1 51

where 1., 105 1. are unit vectors along axes £, n, ¢, respectively. More-

over, the differential element of area has the expression

dA = r2sine do do (65)

where r is the radius of the balloon. Denoting the force vector by

E - FEIE ¥ Fnln * Fclc (66)

and integrating over the surface of the balloon, the force components can

be shown to be

F.=F =0
g n
(67)

Fa

2 I,1 2
-2 oz + g epg)

For further reference, we wish to calculate the forces on the various
balloons in terms of components along the spacecraft body axes xyz. In view

of Eqs. (67), we conclude that the force on any balloon has the magnitude

1

I 2 S T IR RE o5

Eil = Fyg

YN

where allowance has been made for the possibility that the balloons are of
different sizes and that the coefficients of diffuse reflection are different.
The direction of the force vectors coincides with the direction of the solar
radiation. Hence, the direction of F. is parallel to the vector R + R..

Because |[R.| >> IBCI , it will be assumed that the direction is parallel to

BE‘ This direction can be expressed in terms of inertial components as follows:
..... Re .
—TFEI—- = cos Ag I+ sinapd (69)

where I and J are unit vectors along the inertial axes X and Y, respectively

(see Fig. 2). It follows that
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o211,
=2y o7+

o[~

crdi)(cqsx I+ sinmg J) (70)

Fy I
The same vector can be expressed in terms of components along the spacecraft

body axes xyz by writing

Fi = Fix T+ Py 3+ F K (71)

where the components Fix’ F.

1y
of the coordinate transformation (11).

, and F1.z can be obtained from Eq. (70) by means

Next, we wish to use Eq. (71) and determine the radiation force and
torque vectors'{Q}R and'{N}R. Ignoring the radius of the balloons compared
to the length of the booms and using Eqs. (22), (23), and (33), we can write

the position of the balloons as follows:

™ (2]) + 9](2],1:) 29 i+ ¢1(9«1)q](t)§ + ¢'|(2] )qZ(t)lf

ro(2g) * upltgst) = - 7 [ty + V3 4p(2)a5(t)11 + 7 /3 1, - #p(15)a5(0)];

+ (2,09, () (72)

ra(2g) + ugltg,t) = - 3 [2g - /3 b5(23)a5(t)11 = 5 [V3 15 + 05(25)q, (£)1

+ 45(25)06(1)k

But the virtual work associated with the radiation forces can be written
in terms of both actual coordinates and forces and generalized coordinates

and forces in the form
3 6 .
= z
S = I Fy o ouilagt) = oy Qgp 9y (73)
Inserting Eqs. (71) and (72) into (73) and equating coefficients of 84,

(i=1,2,...,6), we obtain the generalized force components
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Qp = Fry 012

Qup = Frz 91(29)

Q3p = - %'(/§-F2x + Fpydealsy)
(74)
Qup = Fpp ¢2(25)
S1 |
Qgp = 7 (Y3 Fgy = F3 )e5(23)
Qpr = F3 ¢3(23)
The radiation torque is obtained by writing simply
3 -
N = 2 [rleg) + uy(e.t)excr, (75)

i=1

Inserting Eqs. (71) and (72) into (75) we obtain the components

N = (Fp - Fryapdoq(ay) -(3 Fpyaz + Fauag)e(2,)
- (3 Fa,05 + F3y9)3(23) + Kg (Fp 2y = F3p%3)
Nyr = Fixatr{aq) + ( Kg Faz93 * Faxg)ep(2y) - Z§:F3zq5 - Fa,96)43(23)
¥ %'(FZZQZ * F3223) - P (76)
Nop = -Fixapepleg) + %'(FZx - /3 Fy )a385(25) + %'(st + V3 F3)0505(25)

1 1
t Ryt - g3 Fp # Ry )y + 5 (3 Fg - Fa g
It remains to determine when these radiation effects are present, i.e.,
when solar radiation impinges on the spacecraft. This coincides with the
period when the spacecraft is illuminated by the sun. For simplicity we shall
be concerned only with shadowing of the spacecraft by the earth.
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Let us denote the radjus of the earth by re and the angle between RE
and R, by v (see Fig. 7). Once again we assume that IRel >> [|Rs| . But

from the definitions of the cross and dot products of vectors, we can write

x R.| R.-R

|R
: - ~E C - ~E -C

Because solar radiation is in the direction of BE’ we observe that the
spacecraft is in the shadow of the earth when the projection of R. onto R
is positive and when siny < rg/ IBCI . Hence, radiation forces will not

be present when
cosy >0 and [Rp x R.| <rp Re | (78)
Criteria (78) can be written in the explicit form
cosAp (gos.w cosiy - siny cos i sin AN) + sin Ag cosa (cos ¢ sin‘AN

+ sin ¢ cos i cos AN)'+ sin Ag sin o sin v sin i > 0 (79a)

~ and

’{sinz Ap [sin v (sin i cos a - cos i sin a cos AN) - cos ¢ sin a sin ANJZ

+ [cos ¢ sin a sin A\p €OS Ay - sin ¢ (sin i cos Ag + cos i sin o sin e sin AN)]2

+ [sin y cos i (cos Ap cos Ay + cos a 'sin Ap sin ay)
. . 2.1
+ cos ¢ (cos Ag sin Ay - sin Ap cos a cos AN)] }2 < re/Rg (79b)

where Re = |Re| .

Damping Forces

The other nonconservative forces acting on the system are the internal
damping forces. This type of damping is generally khqwn as structural damping,

but the forces are often modelled as viscous forces. Of course, the forces

being internal they produce no torques.
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Letting c; be the damping coefficient per unit Tength of boom i, we
can introduce the Rayleigh dissipation function in the form (see Ref. 1)

3 . Iv.\2 IW.\2
VA 1 1
i§1f 2 (W) +(ﬁ_) ax; (80)

0o

N —

Using Eqs. (33), Eq. (80) becomes

1 . 2 2 4 2 2
F = 7 [C](q] + q2) + Cz(Q3 + CI4)A + C3(q5 + qﬁ)J (81)

C. = Jzi ciof dx, . i=1,2,3 (82)
] |

The damping forces can be obtained from Rayleigh's dissipation function by
means of the formula

oF
3q;

from which it follows that

. i=1,2,...,6 - (83)

Qp

Qo =Ga > QphE Q3p = C293

(84)

=C-

Qup = €0y s Qgp =C305 Qp = C39%

Quite often damping is given in terms of the damping factor Z; rather

than in terms of the damping coefficient Cs- The relation between the two is

2;imﬁ = Ci/pi ’ i=1,2,3 (85)

where w; is the lowest natural frequency of boom i and P is the mass per
unit length of the boom. Letting the mass of boom and balloon have the
expression

pi(xi) =0y + Mi 6(xi - Ri) . i=1,2,3 (86)

where p; on the right side is the constant mass per unit length of boom
introduced in Eq. (85), M; is the mass of the balloon, and 6(&1'- 21) is

a spatial Dirac delta function, Eq. (34) ywields
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2 2 ) 2i 2 2 .
Jo [p_i + M, ‘S(xi - 21.)]¢1. dx; = ps fo 93 dxi + M1.¢1.(z1.) = ] (87)

so that Eq. (82) yields

’ |
oo 1o MioiT(eg) | 2 i=
C; = ¢, "Lij = 2piwy [1 - Mo %201, 21,2,3 (88)

Equations (88) can be inserted in Eqs. (84) to eXpress the damping forces

in terms of the damping factors Zs -

Mathematical Solution and Computer Program

The numerical solution of the equations of motion involves several
steps, namely, the determination of the lowest natural frequency and mode
for each boom, the evaluation of certain definite integrals, the inversion
of the matrix [A], Eq. (59), and tﬁe numerical integration of Eqs. (62).

The computer program accomplishes all of these things with the aid of several
subroutines contained in the IBM Scientific Subroutine Package.

The lowest natural frequency for each boom is obtained by solving for
the first root of the associated characteristic equation numerically. A
simple method of interval halving produces this root. A11-the necessary
definite integrals are evaluated using the trapezoidal rule in conjunction
with Romberg's extrapolation method. Two hundred intervals are used in
integrating each function. Matrix [A] is inverted by a standard Gauss-Jordan
numerical procedure. An approximate solution of the first-order differential
equations of motion, Eqs. (62), for given initial conditions, is obtained
by a Runge-Kutta integration procedure. Evaluation is done by means of
fourth-order Runge-Kutta formulas with the modificatién by Gill. Accuracy
is tested comparing the results of the procedure by using single and double

increments. This method is both stable and self starting.
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Numerical Results

The dynamics problem of the LZEEBE spacecraft has been programmed for
digital computation and several cases of interest have been investigated.
These cases appear to be the most significant ones and they all differ in the
initial conditions. These initial conditions can be divided broadly into
two types: (1) zero (or nearly zero) initial velocities relative to an
inertial space and zero (or nearly zero) initial displacements relative to
an orbital system of axes, and (2) zero (or nearly zero) initial displace-
ments and velocities relative to an orbital system of axes. These cases are
significant because they can shed some 1ight on the possibility that the
spacecraft might be captured in a planar gravity-gradient stabilization
configuration.

The cases investigated and the results are as follows:

Some of the parameters have the values: A = 0°, AN = 0°, v = 0°,
and i = 60°. The spacecraft begins its motion in the earth's shadow. Be-
cause the initial tendency of the body orientation is to remain fixed in an
inertial space, the ahg1é 64 tends initially to increase in magnitude at a
rate equal to the orbital velocity Q. This tends to introduce a very small
gravity torque about the z axis. At the same time, the differential gravity
forces on the booms cause them to deflect, with most of the elastic displace-
ments taking place in the plane of the spacecraft. As soon as the spacecraft
emerges from the earth's shadow, the sun's radiation pressure begins to exert
forces and torques on the spacecraft, causing the spacecraft to rotaté and
the booms to deflect. Whereas the boom deflections remain well below one

meter, the angles ej become large. In particular, the angle 8, exceeds 27,
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thus ensuring a complete rotation of the spacecraft about its own center.
Because of the ever-changing pattern of motion, damping appears to have no
meaningful effect on the elastic displacements.

In view of thé large rotations of the spacecraft, it appears that the
sun's radiation torques are sufficient to ensure that all sides of the
spacecraft are exposed to the sun in a random-1ike fashion.

For the duration of the computer run, a time period equivalent to about
20 orbits, there was no indication that the spacecraft might settle into a

planar gravity-gradient stabilization equilibrium.

gravity and centrifugal forces.

A. 0y =6, =063 =0, A= 90°, Ay =180, y.= 0%, i.=.66.5°, u, = 0.

This case is designed to assess the effect of the sun's radiation pressure
on the spacecraft in the initial planar gravity-gradient equilibrium. In-
deed, in this case the sun's radiation forces are initially normal to the
orbit plane, and hence to the spacecraft plane, and remain constant in mag-
nitude and direction for time intervals of the order of one day. (It should
be pointed out that the earth's oblateness gaysas the orbit plane to precess
at a rate of the order of 3° per day, so that, after a while, the radiation
pressure ceases to be normal to the orbit plane.) The radiation forces
cause booms 2 and 3 to oscillate about the deformed equilibrium with an ampli-
tude of the order of 0.04 meters tip deflection. Small 8, and 6, oscillations
are also present. Hence, the initial planar gravity-gradient stabilization
equilibrium is largely maintained. It follows that, when working against
the stabilizing effect of differential gravity and centrifugaT forces, the
radiation pressure has a very small effect.
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B. e].=.63.=.0,AezA;A59{.AE.=.091.AN.=‘09,.w.:.O?,.1.:.609,4mz.= Q.

The booms undergo small oscillations about the deformed equilibrium as
in the case 2A. 1In addition, the spacecraft oscillates between 8, = +5°
with a period of approximately 3,000 sec. The gyroscopic effect also induces .
an oscillation about the x axis with the same amplitude but with twice the
period. Once again the radiation pressure effect on the equilibrium state

is minimal. There appears to be a small secular rate of reduction in W, .

Summary and Conclusions

The dynamical behavior of the LZEEBE spacecraft has been investigated
under certain simplifying assumptions. In particular, it is assumed that
the spacecraft center of mass moves in a circular orbit around the earth,
so that its motion in an inertial space is known. The spacecraft is subjected
to solar radiation forces and differential-gravity forces. Thermal bending
effects have been ignored, an assumption justified when the spacecraft
rotates about its own masé center in a way that no one side is exposed con-
tinuously to the sun. The formulation consists of the system Lagrange's equa-
tions of motion for the three rotations ej(t) (j=1,2,3) of the spacecraft as
a whole and for the six elastic displacements Vi(xi’t) and Wi(xi’t) (j=1,2,3)
of the booms, where v and w, are the displacements of boom i in the plane
of the spacecraft and normal to the plane, respectively. Note that the
rotations ej are measured relative to an orbiting set of axes abc, where a
coincides with the local vertical, b is tangent to the orbit and in the direction
of the orbital motion, and ¢ is normal to the orbit.  The rotations ej define
the orientation in space of the spacecraft body axes xyz; the elastic dis-

placements are measured relative to axes xyz.
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The six elastic displacements are represented by one degree:of freedom
each, so that the spacecraft is simulated by a nine- degree of- freedom
system. For the purpose of numerical integration, the nine second-order
Lagrangian equations have been transformed into eighteen first-order equatioﬁs
for the state variables, namely, the spacecraft generalized displacements
and velocities. The first-order equations have been integrated numerically
by a Runge-Kutta procedure. Note that the differential equations are highly
nonlinear, so that no closed-form solution is possible.

The behavior of the spacecraft has been investigated for various cases,
depending on the initial conditions. Computer results indicate that if the
spacecraft is injected into orbit with zero initial disp]acements‘end velocities
relative to an inertial space, then the sun's radiation and graviﬁgiiénal
torques impart to the spacecraft a rotational motion about its own'Eeﬁter that
can be regarded as random. The results over a 20 orbit time interval do not
show any tendency of the spacecraft to settle into an equi]ibrium}corresponding
to planar gravity-gradient stabilization. On the other hand, iflthe spacecraft 3

is captured in the above equilibrium configuration, then it shoys no tendency
to escape this equilibrium state, but continues to osci]late‘slbw1y‘ébbut
that equilibrium. Hence, there is the possibility of capture in that equilie
brium state. Note that the boom flexibility does not change the nominal coﬁ;

figuration of the spacecraft s1gn1f1cant1y, and the thermal effects are not v
assumﬁd

likely to change 1t appreciably either. A]though a circular:orby
it should be pointed out that orbit eccentricity has a destabilizing influence

on the gravity-gradient equilibrium state.

If the possibility of capture in p1anar grav1ty gradwent stab111zat1on

“-.

equilibrium is to be absolutely prevented, then a s]1ghtﬂy dlfferent\spaée-’*-
craft design may deserve consideration. Indeed, a spacecraft w1th four equal

booms instead of three, so that the ballons lie at the four. corners of a regular

A sk
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rotational motion that, for all practical purposes, can be considered- as

being random.
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