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FOREWORD

MAPSEP (Mission Analysis Program for Solar Elect;ic Propulsion)
is a computer program developed by Martin Marietta Aerospace, Denver
Division, for the NASA Marshall Space Flight Center under Contract
NAS8-29666. MAPSEP contains the basic modes: TOPSEP (trajectory
generation), GODSEP (linear error amalysis) and SIMSEP (simulation).
These modes and their various options give the user sufficiert flexi-
bility to analyze any low thrust mission with respect to trajectory
performance, guidance and navigation, and to provide meaningful sys-
tem related requirements for the purpose of vehicle design,

This volume is the first of three and contains the analytical or
functional description of MAPSEP, Subsequent volumes relate to opera-

tional usage and to program logical flow.
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1.  INTRODUCTION

A major requirement for spacecraft systems desig& is the effec-

tive analysis of performance errors and their impact on mission success.

This requirement is especially necessary for low thrust missions where

thrust errors dominate all spacecraft error sources., Fast, accurate para-

metric error analyses can only be performed by a computer program which
is efficiently constructed, eusy to use, flexible, and contains model-
ing of all pertinent spacecraft and environmental processes. MAPSEP
(Mission Analysis Program for Solar Electric Propulsion) is designed

to nmeet these characteristics, It is intended to provide rapid evalu-~
ation of guidance, navigation and performance requirements to the
degree necessary for spacecraft and mission design,

The baseline design of. MAPSFP was taken from a previous study
effort (Referonce 1), Suitable modifications to the design were made
which reflected subsequent operational experience (References 2 and 3)
and actual construction and testing of MAPSEP, Considerable knowledge
was also gained in the construction and usage of the engineering ver-
sion of MAPSEP which was actually three separate programs that corre-
sponded to the modes (Figure 1-1): TOPSEP, GODSEP and SIMSEP, Driving
considerations in the program design and construction were: realistic
vehicle and environment modeling consis;ent with preliminary vehicle
design, flexibility in usage, computational speed and accuracy, mini-
mum core utilization (for turnaround time and operating costs) and

maximum growth potential through modulerity,

Y
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This document is the first of three volumes. Contained herein
15 a brief introduction to MAPSEP organization and éetailed analyti-
cal descriptions of all models and algorithms, These include, for
example, trajectory and error covariance propagation methods, orbit
determination processes, thrust modeling and trajectory correction
(guidance) schemes. This analytic background is necessary to fully
understand program operation and to maximize program capability with
respect to the user,

The second volume is a description of program usage, that is,
input, ourput, recommended operating proéedures and sample cases,
The third volume is a detailed description of internal MAPSEP struc=-
ture including macrologic, variable definition, subroutines and logi-

cal flow,
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2, PROGR4M DESCRIPTION

This section summarizes MAPSEP's function and use, and MAPSEP
structure, These areas are discussed in greater detail in the user's
manual and programmer's manual, respectively.

As mentioned earlier, MAPSEP is composed of three primary modes.
Each mode is intended to serve a given function in the mission design
sequence, TOPSEP (Targeting and Optimization for SEP) is used to
generate numerically integrated trajectories consistent with dynawmic
and system constraints. Performance data and related sensitiviiies
are computed in the process of trajectory generation but can also be
obtained by parametric application of TOPSEP., Indeed, each mode
readily lends itself to parametric use which is a necessary feature
for miséion and system design studies.

GODSEP (Guidance and Orbit Determination for SEP) is used to
perform a linear covariance analysis about a selected reference tra-
Jectory, generated by TOPSEF, Various dynamic and measurement related
error sources are applied in a statistical sense to compute trajectory
error covariances, These covariances, corresponding to estimation un-
certainty (knowledge) and to actual trajectory deviations from the
nominal (control), are propagated through a sequence of mission events:
thruster switching, navigation measurement /stat:> update, trajectory
correction (guidance), etc. Thus, GODSEP computes a time history of
the ensemble of all expected trajectory errors, and in the process

displays such useful system parameters as required thrust control

- e
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authority, predicted terminal miss, additional fuel exrenditures for
of f-nominal performance, ctc.

SIMSEP (Trajectory SIMulation of SEP) is used in the latter
stages of system design, It deterministically simulates the trajec-
tory including the application of discrete dynamic errors, Trajectory
corrections are simulated in an operational sense through a thrust
update design and execution process. Navigation is simulated by
sampling estimation error covariances (generated by GODSEP) prior to
each guidance event, By operating SIMSEP in a Monte Carlo fashion,
any desired number of simulated missions can be obtained, and estimated
singly or collectively in statistical displays,

A fourth "mode', RFFSEP (REFerence SEP), is actually en eaxpansion
of TOPSEP to provide a greater amount of trajectory and navigation
reirated data for a particular reference trajectory.

Each mode of MAPSEP uses a commo' trajectory propagation routine,
TRAJ. This guarastees trajectory reproducibility among modes, TRAJ
integrates the equations of mction in Encke form using a fourth order
Runge-Kutta schemz, Covari‘ance propagation and transition mstrices
are computed by integrating variational equations simultaneously with
the equations of motion. An option exists in GODSEP which stores a
complete set of trajactory paramecters and transition matrices as it
is generated by TRAJ onto a magnetic disc called the STM file so that
subsequent error anslyses will not have tc regenerate thz data, The
information on disc can then be transferred to magnetic tape for per-
manent storage, if desired. A more limited option is available for
TOPSEP and SIMSTP which stores only the initisl (input) trsjectory

data on disc,

< v'«wm.,,
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Input to MAPSEP is primarily through cards using the SAME] 77
feature, with supplementary means depending upon mode and function

(Table 2-1), All modes require the $TRAJ namelist which defines

INPUT OuUTPUT
Mode Namelist Formated Tape Punched Tape
Cacds (or disc)| Cards (or disc)
TOPSEP $TRAJ None STM None STM
$TOPSEP GAIN
$TRAJ States
» GODSEP ’GﬂDSEP Event ST™ Covariances STM
1 $GEVENT Data GAIN Guidance GAIN
» SUMARY
$TRAJ None ST™M Statistics ST™
SIMSEP $SIMSEP GAIN
$GUID SUMARY
REFSEP $TRAJ Print ST™M Nene ST™
Events

TABLE 2-1, MAPSEP Input/Output

the nominal trajectory and subsequent mode usage, However, if

recycling or case stacking is performed it is not necessary to in-

put $TRAJ again unless desired. The second namelist required for

each mode corresponds to mode peculiar input and bears the name of

that particular mode. Additional namelist, formated cards, and tape

input are generally optional. Besides the standard printout asso-
iA ) ciated with MAPSEP auxiliary output can be obtained which will

facilitate subseque.: runs,
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The structure of MAPSEP is organized into three levels of
“overlays" which are designed to minimize tou :1 computer storage,

At any given time, only those routines which are in active use are
loaded into the working core of the computer. The main nverlay
(Figure 2-1) is always in core and contains the main executive,
MAPSEP, and all utility routines that are common to the three modes.
The primary overlays contain key operating routines of each mode,
that is, those routines which are always needed when that particular
wode is in use. Also included as a primary overlay i{s the data
infitialization routine, DATAM, where STRAﬁ namelist {s read, trajec-
tory and preliminary mode parameters are initialized, and appropriate
parameters are printed out,

The secondary overlays contain routines which perform varic
computations during a particulsr operational sequence. Included .re
data {nftialization routines, analgous to DATAM, which operate on
wmode peculiar input and perform mode initialzzation. An examgle of
core ussge in the changing overlay structure may be provided by a
standard error analysis event tequence, Error sanalysis initializn-
tion is performed by the overlay DATAG, Transition matrices are then
read from the STM file, the state covariance is propagated to a
messurement event, and the overlay MEAS is called, which physically
replaces, or overlays, the same core used previously by DATAC,

Similarly at a guidance event, overlay TRA] will replace MEAS to

.compute target sensitivity matrices and overlay GUID will then
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replace TRAJ to compute guidance corrections, Overﬁay s;itcﬁing is
performed internally and is transparent to the user:

A1l of the routines and structure of MAPSEP are constructed to
minimize core storage (thus reducing turn-around time and computer
run cost) yet retain the flexibility needed for broad analysis re=
quirements. Furthermore, routines are buiit as mouular as possible

to reduce the difficulties in future modifications and extensions.
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3. UOMENCLATURE

Fir .ty
/
—
\ e

The following symbols are used throughout the Analytic Manual, and

to a great extent in the User's and Program Manuals, ﬁowever, deviations

from these symbols may occur in localized discussion if required for pur-

i poses of clarity,
SYMBOL DEFINITION
: a . propulsive acceleration
E c ' propulsive éxhaust velocity
é cij cross covariance between i and j parameters
E target error index
é F dynamic vat-'iation matrix
: g performance gradient or thrust transfor-
i mation matrix
; 4 L
é Q@gﬁl H observation sensitivity matrix (WRT state)
; 1 fdentity matrix
3 ’ | SR filter gain matrix
1 m spacecraft mass
P . covariance of state deviations or elec-
= trical power or projection operator
;. Po | effective power at 1 AU
éf Q dynamic (thrust) noise matrix
f; 4 spacecraft position
%: s , solve-for parameters
i
% ] target sensitirity matrix WRT control para-
meters

t time

e,
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SYMBOL DEFINITION
T event time, or taxget variables, cr
3 thrust
: . u dynamic (consider) parameters
ur thrust acceleration proportionality (throttlin
U Control parameters
v spacecraft velocity or measurement para-
i meters
g
% w ignore parameters
% L weighting matrix
g
§ . x spacecraft state
£ T guidance matrix
1 propulsive efficiency
§ !I e L) transition matrix of dynamic parameters
..‘i P '
% M gravitational constant
g © relative range
& o
5 standard deviation
% T correlation time of thrust noise
g ¢ transition matrix of augmented state
g I(tk'l-l’tk) state transition matrix from time £, to
5 et
£,
E* w thrust noise
i SUBSCRIPT DEFINITION
; ( )c state control covariance
( )k+1,k ::t:ix evaluated over time interval t
k+l
( )k state knowledge covariance
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DEFINITION
planet related parameters
solve-for parameters
measurement consider parameters
ignore parameters

spacecraft state parameters

DEFINITION
guidance and navigation
orbit determination
Projected Gradient Method
spacecraft

solar electric propulsion

" with respect to

expected value operation
post-event value
pre-event value

time derivative

unit vector
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4.0 TRAJ

Essential to any program used for performance anq navigation
analysis is an accurate, but computationally efficient, trajectory
propagation routine, This routine must contain realistic models of
the dynamic processes acting on and performed by the spacecraft. In
MAPSEP, the subroutine TRAJ fulfills this role. TRAJ is designed to be
used by the three modes TOPSEP, GODSEP and SIMSEP, and is capable
of duplicating the same trajectory in all modes.

The trajectory overlay TRAJ propagates planetary and intér-
planetary low thrust trajectories, using Encke's formulation of
the equations of motion, from any epoch to a termination conditior,
TRAJ can optionally propagate the.state covariance or the state
transition matrix along the trajectory for either the basic state
r. an augmented state. Two of the most important features incorpo-
rated inté TRAJ are the variable integration step algorithm and
trajectory repeatibility. ~

4.1 Equations of Motion

In Encke'’s formulation, all accelerations other than those due
to the gravity of a primary body are called perturbing'accelerations.
Position (gc) and velocity (;c) vectors are computed relative to the
primary body using two body formula. The deviation vectors from
the reference conic position and velocity vectors, § r and 6_;;,
respectively, are the direct results of numerically integrating the

sum of the perturbing accelerations, The true position and velocity
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vectors are, respectively,
r = r + St
X L S0 oL
r = r + 5¢
- =

.

Since I, and Ec can easily be computed from conic formula (See

Appendix 1), the only problem is to compute 1 and I.
Let Sg_ be the acceleration deviation from two body motion, such
that Sg_ is the sum of all perturbing accelerations, e.g., other

bodies, thrust, etc.

N
. M Y
St - -;-0-3-[f(00 £+ 5] g‘lé [=+ec £, ]
+a+ ER

The first term is the difference brtween two body and perturbed two
body motion. The second term is the sum of the accelerations due to
the N perturbing bodies. The third term (8) is the acceleration due
to thrust, The fourth term (QR) is the acceleration due to radiation
pressure,

The first term is computed frow the following equations (See

Reference 4),

2
£() = o((3+3o(+;(ﬁ)
1+ 1+

o = (S_l‘_- 2!.) '51

2
r
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vhere 1 1s4the true s/c position vector relative to the primary body
and p is the gravitational constant of the primary body.

To compute the second term, the heliocentric position vectors,
X of the perturbing bodies, are computed from mean analytical

orbital elements to obtain

@G=rtr, -y
2
f(“i""‘i[ 3+3e, +o,
14 Q +a) 2

where r_ is the heliocentric position vector of the primary body.

P
The acceleration vector due to radiation pressure is

. 1.02 x 10% ac_

2
mr

N

">

8

wvhere 1,024 X 10 solar flux constant

instantaneous mass of the s/c

- -
14 - heliocentric position vector of the s/c
A - effective cross sectional area of the s/c
ct ; coeffient of reflectivity.

The option exists in TRAJ, to include or exclude the effects of
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will model

used by TRAJ for low thrust.

{ ;
l radiation pressure when propagating both planetary and interplanetary

s. Before defining the acceleration due to_thrust a, we
the power subsystem. There are two power subsystem models

They are solar electric and nuclear electric

!
i
3 The power to the thrusters (Pp) is
r [c, ¢, c, ¢, ¢
Po -—2+ 572 + —3—+ 72 + 72 | exp [-PL(t-tDL)] - PHK, solar
r r r T 1 4 electric
PelP ifP 2 P or r{r solar
max, max min s
electric
P_exp [-P (t-t )] - P nuclear
\ © L™ DL HK - * electric
: P - Power available (at 1 AU for solar, at energization for
° nuclear electric .
s
(:1 - (Empirical) Constants defining solar array characteristics
r - Heliocentric position magnitude of the S/C
PL « Power decay constant
t » Time from epoch
tDL « Time delay
?n - Housekeeping power
Pux - Maximum allowable solar electric power
T - Helfocentric distance at which P reaches P
oin max

The exponen

degradation

L/

et admr o et < rin o o

tial term in the solar electric expression describes the

of the solar array as a function of time,

PP ——

B,

B
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The thrusters provide the spacecraft with the ability.to maneu-
ver. By changing the orientation of the thrust vector{and maintain-
ing that orientation for a long enough time, it i{s possible to steer
the spacecraft and "shape' the trajectory. The thrust controls are
defined in terms of constant parameters over a given time segment of
the trajectory. Thus the user or modg can specify the following
controls for each segment (up to 20):

1. Thrust policy: Cone + Clock (s .rientation), In and

Out of Plane Angles (orbit plane coordinates), or coast,

2. Segment end time (referenced to launch) of the current

segment,

T
J 4, Cone angle (or In Plane Angle).

i 3. Throttling level, u
5. Clock Angle (or Out of Plane Angle).
6., Time rate of (4).
7. Time rate of (5).
8. Number of operating thrusters.
The thrust policy is merely thrusting or not thrusting (coasting).
During thrust, the user has an option as to the reference system for
the acceleration vector. The two reference systems are Cone and Clock
Angles, Figure (4-1), and In and Out of Plane Angles, Figure (4-2).

The latter is primarily used for Earth orbital applications and the

former i{s primarily used for interplanetary miss{ons, ;

N Pt s
Ol

g e L,
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("SUJ)
z’ .
A The spacecraft is assumed

to be oriented with the 2'
axis in the sun-spacecraft
line and the X' axis in a
plane containing 2' and Z

T
TQE//'i (reference star dixectioni.

Figure (4-1). Cone and Clock Angles

§ - out of pléne angle

T - 1In plane angle

A /Orbit Plane r, !/

(S/C Velocity)

Figure (4-2), In and Out of Plane Angles
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The acceleration due to thrust is

0.002 { P u

mc

.002 Conversion factor

pe.. |
'

P - Power delivered to the thrusters
“T - Throttling level

m - Spacecraft mass

¢ = Exhaust velocity

The mass is numerically integrated from the equation

- ma
c

X ’
The thrust acceleration vector 8 relative to the spacecraft for

the two reference systems is

l'x = a cos CLOCK
l" = g sin CLOCK
.'z = @ cos CONE

for the Cone-Clock system and
' R acos§ cosY

l'y = 8cos§ sin ¥

c" = agsin$

Averaged efficiency of the thrusters

-

sin CONE

sin CONE

-

e R —

B,
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for the In and Out of Plane system, In order to transform a' into a,
vhich 1s in helifocentric ecliptic coordinates, we must define the

matrix A such that

a=A a’
vhere
A -;-x-l : !' . Z_'J
and z' = r/ir|

=exg/lyexz

X' = y' x2'

L is the heliocentric spacecraft position vector and g‘ are the
ecliptic direction cosines of a reference star for the Cone/Clock
System. For the In/Out of Plane system, A is defined in terms
of the position and velocity vectors relative to the primary body.
Let r be the position vector and y be the velocity vector, then

A c¢an be defined as

A '[9-15 A, | ‘-‘-3]

wvhere
A]_- !/'!’.'
A - =rx!
3 frxyl
and
b mhy x4y

P
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Since the trajectory is made up of segments, TRAJ propagates
the trajectory using the appropriate set of controls over the inter-
val the controls are in effect, Updates are automatically performed,

at the beginning of each new segment,
Now that the perturbing acceleration, $r , is defined, we can

obtain $r and §r . To do this, §r 1s numerical’ . tegrated
with a generalized 4th Order Runge-Kutta algorithm f + . vst ovder

differential equations (Appendix 2). We can express §r as a set

of first order equations

A
$x =
St

. : S!
$x can be numerically integrated to give §x(t) -{ 5: when

given the following initial conditions:

0

*
and r = =
]-t L, k"L

at t=t, tx -[o

The propagation of S_r_ (and $r ) continues until Ss_ is greater
than or equal to some prescribed value Srmx' then "rectification'
occurs,

Hence, when gr §Srm,‘ at some time, t,

o o 0
ve reinitialize ¢ = c(t), r_ =p(t) and &x = ol’

and compute a new reference conic orbit, Rectification ensures that

the conic is always "c'ose" to the true state. The propagation
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continues until St is again greater than or equal to S:;m and

x’
80 on to the end of the trajectory.

The use of constant th;ust controls over discrete time intervals
makes the trajectory discontinuous in acceleration at the control
switching boundaries, The integration is thus done piecewise., That
is, the state at the boundary between segments is used as initial
condations (rectification) for the next segment,

4.2 Trajectory Termination

There are four options for terminating trajectories in TRAJ:

(1) final time, {2) closest approach to a target body, (3) sphere of
influence of the target body, and (4) a radius relative to & target
body. Termination at final time is straight forward. For the other
conditions, termination criferia are tested after each intcgration
step. Once a cutoff condition is sensed, a step-size is computed s0
that TRAJ can propagate .0 an interpolated time. TRAJ takes the three
previous planet relative position magnitudes olus the present relative
position magnitude, and the corresponding trajectory times, and fits

8 third order polynominal thr?ugh the four data points, using Newton's
3rd order divided difference interpolation polynomial (Appendix 3).
The independent variables for sphere of influence and stopping radius
termination are the position magnitudes and the corresponding trajec-
tory times are the dependent' variables., Since the radius of the sphere
of influence or the stopping radius is known before hand, the infor-

mation that is needed is the time at these position magnitudes, For
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closest approach, the same information is stored as before, but now
the independent variables are the trajectory times and the position
magnitudes are the dependent variables. Instead of knowing a time
for which the position magnitude is a minimum, a value is computed
corresponding to the minimum of a 3rd order polynomial,

Of particular note is stopping on the sphere of influence or
radius of closest approach (Figure 4-3), These stopping conditions
are used to evaluate B~ plane (impact plane) parameters, BeT and
B+R (Figure 4-4)., These parameters form a convenient set of variables
for the description of the approach geometry for interplanetary mis-

sions, Let XHE denote the hyperbolic excess velocity of the space-

craft. Then

i)

$Xk
IS Xkl

o]

E =

jn

XTI
Qhere k is a ﬁnit vector normal to the reference plane, usually the
planetocentric ecliptic plane.

4.3 Trajectory Accuracy

As with all problems that require numerical integration, some
eriteria must be used in determining the nominal integration stepsize,

The stepsize algorithm used in TRAJ is empirical, and it meets the
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Figure (4-3).

Radius Stopping Conditions

Parallel To

B-Plane S 1Incoming

Perpendicular - Asymptote

To Incoming . bols

As tote yperbolic
P Path of

Spacecraft
Trajectory
Plane

Incoming Asymptote

Impact Parameter (Vector from Planet Center to Aiming Point)
Orientation of B Relative to T

Parallel to Incoming Asymptote

Parallel to Reference Plane (Ecliptic Unless Otherwise Specified)
SxT

Figure (4-4). B-Plane

e
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requirements of reasonable numerical results and computer run time,

The algorithm is T
h=e-|f|lj

where h is the integration stepsize, f is the gravity gradient (See
Appendix 4) and € is a user input scale factor, There are con-

straints on h such that

h €5 days
for heliocentric trajectories and
h €1 day

for planetary trajectories.

The effects of h on the state transition matrix are small com-
pared to the spacecraft s*ate. Mass and mass variation are also not
strongly affected by h because they are affecé;d primarily by the
spacecraft heliocentric position, Therefore, a good choice of h
ensures a satisfactory trajectory.

4,4 Trajectory Repeatability

A major goal in building TRAJ was the ability to reproduce the
same trajectory in all modes, given the same initial and spacecraft
related data, To accomplish this, all propagation that resulted in
altering the nominal integration stepsize was decoupled from the
event stepsize logic, That is, event times and print times do not

alter the norminal stepsize; instead, the information at the grevious
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nominal stepsize, t, is saved and a separate stepsize is computed
for the event or print time, t + hE (Figure 4-5). I{ there a}e
many events or prints betweén t and t + h a stepsize hE is compuved
for each. Afterward, TRAJ returns to the nominal trajectory and
continues the propagaticn, This suggests that, if the trajectory
starts at any nominal integration step the trajectory will be
duplicated, especially with respect to termiral conditions, for any
run with different print and event times. For trajectories that do
not start at a nominal integration ;tep, there will be slight devi-
ations in the terminal conditions from the nominal, but they will be

close,

t+h

- nominal integration time
event or ‘print time

- evert or print integration step

= F oD

- nominal integration step

Figure 4-5. Trajectory Preservation
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4.5 State Transition Mstrix Generation

In a linecar analysis, the state transition matrix, §k+1’ K
is used to map perturbations about tue reference trajectory from one

enoch to anotlier according to the equation,

§xi ~ ok S

Because this mathematicsl operation is repeated many times, it is
important to use the most efficient and accurate method of computing
§ available, This is best done by simultaneously integra.ing the
variational differential equations which generate Q and the S/C
equations of motion. In MAPSEP these variational equations have been
implemented and § is augmented to the state variabl's in the inte-
grator.

The origin and composition of the variational equations are best
understood by first considering the equations of S/C motion written as

a system of first order, coupled differential equations; namely,
i = i (}_) t) (4'1)

In 4-1, x is a six-dimensional state vector of position and velocity
components, and £ is a vector function giving the time derivstive of

each state component. The most general form for f may be written as

— e . = wmy e -

(6x1)

where g is the gravitatinnal acceleration due to the primary body,
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g{is the gravitational acceleration contribution from secondary bodies,
and ar is the thrust caused acceleration term discussed in Section 4.1.

% is a term of miscellaneous accelerations due to radiation pressure,
planetary oblateness, etc., and is normally neglected for interplanetary
missions as a low order effect. It should be noted that the three
primary terms, g, é and ap are all dependent on the S/C position vector.
For example, g and é depend on position through the law of graviiy; &rs
through the electric power function and the transformation which relates
the body axis sys.cem to the inertial representation.

To derive the variational equations, the vector function, £, is

expanded in a Taylor series about some reference solution to equation

4-1. Hence, the right hand side of 4-1 becomes

£(§+853t) =.f.(l(’t)+ _b__i 85"' 6’(852)

o x

where 65 is relative to the reference trajectory state at time t,

By neglecting second and higher order terms, this expression reduces to
8x = F 8x (4-2)
where 3_;_5 is defined by
Bx = £ x+86x t)-£(x 0

and F is a matrix of first order partials of the vector function f with
respect to state components, Explicitly writing the F matrix, it is

seen that it has only two non-zero partitions.
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where 133 is a 3x3 identity matrix and f33 i3 a 3x3 matrix of time
varying expressions evaluated along the reference trajectory. The

components of f in terms of state variables, are obtained by

33
analytically differentiating g, d and & with respect to r.
The solution of 4-2 is known from the theory of linear dif-

ferential equations to be of the form

8x = ¥dx (4-3)

where Q is identified as the state transition matrix and is

representable as

- }( Xy Y zsvx’ VJL’ v.)

? V&o, on)

(6x6)

As noted before, 8_50 is a perturbation, or deviation, from the
reference trajectory at the initial epoch and, as such, it is arbitrary
but constant., Differenting 4-3 with respect to time and substituting

the resulting expression into 4-2 yields
} = rF 3} (4-4)

This equation is the varistional differential equation for the state
transition matrix and is numerically integrated to obtain Q over &n

arbitrary interval, t, to tg, with initial conditions at t, being given

by
b} - Iog-

From the more general point of view, equation 4-1 can be



I il

WAt o et e

29-B

considered to be dependent on other parameters as well as the usual
state variables., For example, the trajectory genersted as a solution

to 4-1 is dependent on the thrust controls, the inertial states and

gravitational constants of planetary bodies, and the solar gravitationsl

constant, When some of these parameters are of interest in a linear

analysis, the state vector .of dynamic parameters is said to be augmented,

thus increasing its dimension to as great as seventeen. This occurs
when there are three thrust controls, six ephemeris elements, and two
gravitational constants in addition to the vehicle state,

For the sake of modeling simplicity, MAPSEP allows ephemeris
elements for only one planet to be augmented as dynamic parameters.
This body is referred to as the 'ephemeris »ody" and is usually
selected to be the planet that most strongly influences the S/C tra-
jectory (other than the earth). In many cases, the ephemeris body is
the same as the target planet,

For the problem where the state vector is augmented with para-

meters, the equations of motion are more suitably written as

LA = iA (5’ u, %: /A P, )AS H t) (16-5)

where x A is the augmented state vector, i,e,,

[EJ
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In the above expression,

vector; u , to the thrust control vector;

Ep' to the ephemeris

x corresponds, as before, to the S/C state

planet state vector; and the M 's refer to gravitational constaits,

Following the previous analysis, it is possible to expand 4-5 to obtain

- variational equations for the augmented state transition matrix.

differential equation is of the form

b = Fa b
where QA is part tioned as
QA = [] o o M
O T3z O3 034
[}
%6 O3 S p M
0
16 0., 0, 1
%% %3 Y% 0

and where FA

F =

:
L
f

o <)

ol

\[=)

is given sas

:1
2 66

o] 36

UU 23
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ol

o
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This
(4-6)
M S
03y
Mg
0
1 (17x17)
o, 0L
e e |
], [
0 0
Je1 5] e
0 0
0 0 (17x17)

o b
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Explicit definitions for

29-D

the terms in FA are given in Appendix 4, Terms

appearing in QA are explicitly defined as follows:

(partials of state

® = (partials of state

® = (partials of state

components) =

M = (partials of state
constant) =

M = (partials of state

component w.r.t. state couponents) -g—f— 66
-0

components w,r,.t. thrust controls) -}ﬁ- 63
components w,r.t., ephemeris planet state
d x ,
d %
P66

components w.,r.t. ephemeris planet gravitational

e :
I My 61

components w,r.t. solar gravitational constant) =

dx )
M 61

St = (partials of ephemeris planet state components at the final epoch

w.r.t, ephemeris planet state components at the initiel epoch) =

9% ¢ :
0% ()

66
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M! = (partials of ephemeris planet state components w,.r.t. ephemeris
planet gravitational ciuastant) =
X
——————— ’

Ty
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and M; = (partials of ephemeris planet state components w.r.t, so_ar
gravitational constant) =

61

Before concluding this section, it should be noted that MAPSEP
has progrem legic which allows arbitrary augmentation of dynamic pera-
meters, That is, the program organizes and integrates matrices in
equation 4-6 dimensioned to accommodate only those parameters requested

during input., In this way, there is no time wasted in unnecessary

calculations.
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4,6 Covariance Integration

In any linear error analysis, a major problem is the prop-
agation of state error covariances (P) from one event to the

next event, Two methods are generally used: propagation with

state transition matrices and numerical integration of the
covariance matrix differential equations; both of which are

options in TRAJ, In the latter case, the covariance is inte-

grated to an event, where operations are performed on P, and

the updated P is integrated to the next event.

Given the nonlinear equations of motion

.5 = 'i (.’i» !-.".’Q) (4'7)

where x is the spacecraft position and velocity, u are constant

spacecraft controls and & are time-varying thrust parameters
(nominally zero), these equations can be linearized about a

reference trajectory such that

oNn
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where $%, §x, du and H are errors in the respective dynamic para-
meters. Both $u and §u are described in terms of the 3x1 parameter
set: U cone and clock. The 6xl Sg:actually models two distinct
processes for each parameter set (See also Page 62-A). Whereas Equation

4-7 describes motion of the deterministic reference trajectory, Equaticn

4-8 describes the linearized propagation of trajectory deviations result-

ing from dynamic and a prior{i uncertainties. The covariance integrated
by TRAJ not only maps dynamic errors but also measurement related
errors, specifically, uncertainties in three station locations, The

augmented state covariance is defined as

P=E[55A $xy ]

where SEA = Sw

so that P = FP + PFT +Q

where F is similar to that used in the definition of the state transi-
tion matrix, and is evaluated along the reference trajectofy, and Q is a

process noise matrix, The augmented F matrix is defined as

P ——
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K 1 0 0 0 0 0 |
£ 0 . n 0 0 0
0 0 0 0 0 0 ¢
F = 0 0 0 h 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
Lo 0 0 0 0 0 o |

where I is 8 3 x 3 identity matris,

)
]

o/

| ST

Ubgi .

e

n = {gis]

snd h is the matrix of process noise correlation times

p -
L g0
T
-1
h = S eeee 0
o T
2 52
0 0 -----1
b 76 Jl

Analytical equations for terms in the F matrix appear in Appendix &4,
The process Qotse, Q, is modeled as 8 stationary first order Gauss-

Markov process and is defined as

o e
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[ o 0 0 o 0. 0 o0
0 0 0 0:0 o0 o0
0 0 0 8 0 o0 o
Q - 0 0 0 2.hE[Swsw] 0 0 0
0 0 0 o 0 ¢ o
0 0 0 o o o o
o 0 0 o o o0 o

For a discussion of Q, see Chapter 6 (GODSEP).

" Propagating P by integrating P is more mathematically
accurate than the use of effective process noise as in the I' method,
and it lends itself to greater médeling flexibility for Q, The draw-

back to this method is the increased run time.
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5.0 TRAJECTORY GENERATION - TGPSEP

The targeting and optimization mode, TOPSEP, generates a reference
trajectory which is supplied as basic input to the error analysis and
simulation modes. The primary purpose of TOPSEP is to incorporate in
this trajectory all of the desired flight characteristics for a particular
interplanetary or near-Earth micsion while optimizing the final spacecraft
mass. Injection conditions (See Appendix 5), a thrusting time history,
and other control parameters are found which accomplish this optimization
and yet lead to the required target conditions. The target constraints may
be the final spacecraft state (cartesian or B-plane coordinates), final
orbital elements, radius of closest approach, or other mission specifications

which are listed in Table 5-1 and in the input section of the Users Manual.

Performance
Control Parameters Target Parameters Parameter
Initial State and Mass Impact (B) Plane Final Mass
(Payload)
Thrust Magnitude Sphere-of-Influence Time
Thrust Direction Closest Approach Conditions
Thrust Times (Radius, Inclination, Time)
Base Power Level Target Centered State
Exhaust Velocity Heliocentric State

Table 5-1., Control, Target, and Performance Parameters

The manipulation of trajectories to satisfy mission requirements is
managed in three submodes of TOPSEP which represent successive stages of

trajectory development, These submodes are:
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1. Nomjiual trajectory propagation
2. Grid generation .
3. Targeting and Optimization
a. Trajectory targeting only
b. A combination of trajectory targeting and optimization
¢. Trajectory optimization only
Generally, these submodes are employed in order as listed above. However,
any submode may be skipped or used individually if the proper control pro-
file is available. Due to the simplicity of the {irst two submodes a
brief discussion of their operational procedures is all that is necessary to
understand their analytical basis in TOPSEP, The targeting and optimiza-
tion submode will be reviewed in greater depth,

5.1 NOMINAL TRAJECTORY FROPAGATION

The simplest TOPSEP application is propagation of a single trajectory
for spacecraft ephemeris information, After all the trajectory parameters
are initialized, the trajectory is propagated from the initial state to
the termination condition. TOPSEP performs no additional analysis of
the trajectory when operating in this submode. This submode is also
used for manval manipulation of the control profile,

5.2 GRID GENERATION

The grid generaticn submode is available to produce a number of tra-
jectories which do not necessarily satisfy mission requirements but pro-
vide a range of trajectory solutions. Thus, the main purpose of the grid

submode is to locate desirable control regions for further examination.
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In turn, each control is incremented a fixed amount while the remaining
controls maintair their nominai values. A single low thrust trajectory

is generated for each control change and the associsted target error index
is calculated. Subsequently, contours of constant target error may te
plotted in the control space so that some control regions can be eliminated
from further consideration, Upon completion of the grid, the trajectory
generation mode is terminated and the program user must choose the best
control profile to initialize targeting and optimization or to employ
another grid approach,

5.3 TARGETING AND OPTIMIZATION

The trajectory targeting and optimization submode features a discrete
parameter iteration algorithm which accommodates the non-linear aspects of
the low thrust problem. The algorithm is a modification of Rosen's pro-
jected gradient method (PGM) for non-linear programming (Refs, 5 and 6).
The , arameters which have been chosen to shape the trajectory (Table 5-1)
constitute the control profile and are subject to modification by the PGM
algorithm. Based upon the sensitivities of the final S/C mass and state
to control variations, corrections to the profile are computed which
maximize performance while minimizing target errors: The performance is
measured simply by the value of the final spacecraft mass while the target
errors are measured according to the constraint violations., The method
chosen to represent the target errors in terms of a scalar measure is the
quadretic error index which is the weighted sum of the squares of the
target errors.

When the targeting and optimizetion submode is entered, a nominal

trajectory is propagated directly from the input perameters, A series of
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tests is performed to determine which submode (targeting, optimization or
both) is to be executed. If the target error index is large, the submode
will be exclusively targeting. However, a target error index smaller than
some value (TUP in namelist $T@PPSEP) will result in simultaneous targeting
and optimization., Whenever the index is below a specified lower bound
(TLOW in namelist STPPSEP), the optimization algorithm will be executed.
Prior to the application of the projected gradient algorithm, the
targeting sensitivity matrix S and the performance gradient g, are computed.
Elements of the S matrix represent the sensitivities of individual target
pafameters to changes in controls and are used for both targeting and
optimization, Similarly, the elements of the g vector represent the
sensitivity of the performance index to changes in controls although
these elements are used only for optimization. For purposes of targeting
only, S 1is computed from the integrated state transition matrix (STM)
and g is ignored, Appendix 7 discusses the formulation of S from the
integrated STM., Whenever optimization is to occur both § and g are con-
structed by finite differencing techniques. Following the determination
of S and g a weighting matrix which amplifies or diminishes the effects
of the chosen controls is calculated, Applying the projected gradient
algorithm a control correction is estabiished. The magnitude of the con-
trol change is determined by computing trial trajectories. The new control
profile is simply the old control profile plus a scalar multiole of the
control correction such that the targeting error index is minimized and/or
the performance index is maximized. If the optimization is complete (the
values of the performance index have converged to & maximum), TOPSEP is
terminated, Otherwise, the submode decision is made again and the cycle

is repeated,
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Of primary importance in the targeting and optimization submode is
the selection of the control correction, In the following sections this
selection process will be discussed,

THE PROJECTED GRADIENT METHOD

The projected gradient method has been devised to maximize a per-
formance index while simultaneously minimizing an error iandex. Since
maximizing performance is equivalent to minimizing cost in an optimization
sense, PGM's purpose relative to the trajectory problem may be restated as
minimizing fuel expended as well as minimizing target error. The concept
of net cost, which is simply a more realistic assessment of fuel expended,
will be discussed later in this section,

The projected gradient algorithm employs cost-function and constraint
gradiernt information to replace the multi-dimensional targeting and opti-
mization problem by an equivaient sequence of one-dimensionai searches
(Ref, 7). In this manner, it solves a difficult multi-dimensional problem
by solving a sequence of simpler problems. In general, at the initiation
of the iteration scyueance, PGM primarily satisfies the constraint require-
ments. As the iteration process proceeds, the emphasis changes fron con-
straint satisfaction to cost-function reduction,

Since numerous analytical developments of this technique are available
(Refs, 5 and 6), this presentation will primarily emphasize the geome-
trical aspects of the algorithm., Clearly, the geometric interpretation of
the algorithm is the motivation for the logic contained in TOPSEP, and a
basic understanding of these concepts is usually sufficient to enable the
user to efficiently manipulate $TOPSEP input and to handle diverse mission

problems,
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PROBLEM FORMULATION

The projected gradient method solves the following non-linear pro-
gramming problem:
Determine the values of the control variables, u, that minimize the cost

function (optimization variable)

F(u)

subject to the equality constraints

e x(w) = T (x(@) - Iy = 0,

u & U, an M-dimensional control space
T E T, an N-dimensional target space

x £ X, a six-dimensional state space

where the elements of ¢, T, Id’ and x are referred to as the target error,
the target values, the desired target values, and the final state respec~-
tively; and F is a scalar valued function messuring system cost.

In an attempt to solve the constrained optimization problem, iterative
methods are employed, The following scheme >riefly describes the process

‘ occurring in TOPSEP,

® (Guess Y, (In general u, will not satisfy the constraints nor

PO
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o Determine a correction A u such that
o F(u +4Au) < F(_go) and
o [l tawll < lle el

e Iterate until
e F is minimized and
) “ ng < £, a pre-determined tolerance

NOMENCLATURE AND CONCEPTS

To fascilitate the discussion of the projected gradient algorithm,
the following ncmenclature and basic concepts will be introduced. x denotes
#® column vector whose elements are X where i = 1,2, ¢+, n and n is the
dimension of the space containing x. YT denotes the transposc of the real
matrix Y. The feasible region defined in the M-dimensional control space

within which PGM operates is the restricted space

& 'Ai L ui » 1=1,2, ¢, M,
MIN MAX

The equality condition implies that the control is on a bound. The cost
gradient 8 is an M-vector of partial derivatives and is defined as
-0
- 2y
The sensitivity matrix is that matrix whose rows are the gradients to the

equality constraints, and is denoted by

s@ = 28 @ |
d u

wvhere ¢ is an N-dimensional vector. The target error function is defined

to be

B = e [we'] e
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where we is a target weighting matrix which will be defined later.
Corresponding to each control vector u in the control space U,

there is an error vector e. Let Ao be the set of all u such that

e(u) = 0.
Ao then represents all the control vectors satisfying zero-target error.
It can be shown (Reference 6) that Ao defines an M-N dimensional non-linear
hypersutrfcce or manifold in U. Unfortunately, Ao cannot be defined
explicitly; hence, one cannot easily find a u which is an element of Ao.
However, Ao can be estimated implicity via the sensitivity matrix.

Let Ac be the set of all u such that
e = ¢,

vhere ¢ is a vector of constants, Thus, Ac represents a non-linear mani-
fold containing those control vectors which provide constant target error.
It can also be shown (Reference 6) that any u in the control space is
contained in one and only one Ac. At a give; u, the corresponding
no_n-linear manifold Ac may be approximated by a linear manifold B(u) which
18 defined explicitly by the sensitivity matrix S(u). The linear manifold
B(u) may be considered a tangent hyperplane to Ac at u. The orientation
of B(u) in the control space allows one to define a search direction to Ao
wvhich is orthogonal to B(u). This search is in the direction of maximum
decreasing target error.,

Let g@) denote the orthogonal complement to B(u). One can demon-

strate (Reference 6) that E(g) is the unique linear space that can be

B
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translated to obtain the linear manifold B(u). Furthermore, there
exist unique orthogonal projection operators ';(g) and ?(_u_) that' resolve
any vector in the control spa;:e into its corresponding components in
‘;(g) and B(u), respectively; that is
u = P@ u+P@ u
In particular,
P = sT (ss"')-1 s (5-1)

and

Pw = 1-F

where I is an identity matrix. The projection operators ‘; and P thus pro-
vide a simple method for reconstructing a general vector Au emanating from
u into its two components inB and B. In a discussion to follow later in
this section, it will be explained how Au may be defined such that ';Ag

represents "he .cortrol correction to minimize the target error and Pau

- represents the control correction to minimize cost.

The final key concept employed by PGM is the idea of problem scaling.
The purpose of problem scaling is to increase the efficiency of the tar-
geting and optimization algorithms by transforming the original problem
into an equivalent problem that {s numerically easier to solve.

To numerically scale a problem, twc general types of scaling are
required: 1) control variable scaling, and 2) target variable scaling.
Control variable scaling is aécomplished by defining a positive diagonal
scaling matrix, Wu (UWATE in namelist STGPSEQL such that the weighted

control variables are given by

O
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Similarly, target variable weighting is accomplighed by defining a
positive diagonal scaling matrix, we (TARTOL in namelist ST@PSEP), such
that the weighted target variables are
, - -1,
ORI EAE AU
The target error index is then

E@ = el e'.

TOPSEP contains several options for computing the control variable
weighting matrix. The option most often used is the normalization scaling

matrix (See Appendix 6 for other options),

[w;] i T-%;T— ¢

The target variable weighting matrix is always computers as the reciprocal

of the constraint tolerances and is given by

[we] i N B
ci

where Ei is the tolerance for the ith target error.

For simplicity, the following discussion of the algorithm assumes an
appropriately scaled problem, However, the scaled equations can be obtained
by making the following simple substitutions.

u replaced by u'

e replaced by e'

S replaced by [we}[s]{.wu-l -1

-1
E replaced b~ [wu] B
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DIRECTION OF SFARCH

The concept of the direction of search in control space' nceds
slightly more elaboration., The direction of search is ;othing more than
8 particular line in the control spacel along which the target error is
reduced or along which the cost function i{s decreasei., 1In a more precise
sense, the direction of search at f._x_ is a half-ray emanating from g. Thus,

for any positive scalar, ¥, the equation
u = u +¥ab

gsets the limits of this half-ray and represents a "step" in the direction

Ag from U . This is fllustrated in Figure 5-1.

Ys

e

1 _
Figure 5-1, Dire:ction of Search
This concept of direction-of-search is particularly important since it
enables the M-dimensional non-linear programming problem to be replaced by
s sequence of one-dimensional minimizations. What remains to be explained
is: 1) how to select the direction of search, and 2) how to determine

the step size in that direction,
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The projected gradient method uces two basic search dirvctionms.

For this discussion they will be termed constraint and optimization

directions. PGM proceeds by taking successive steps :in one or the other

of these two directions. The computation of each of these search direc-

tions is described below at a pdrticular point u in the M-dimensional con-

trol space where N constraints (target conditions) are enforced.

CONSTRAINT DIRECTION

The constraint direction depends critically on the number of targets.

Two cases are distinguished below:

1.

If N¢<M, then that unique control correction A:x_ is sought which

solves the linearized constraint equation
)
[s]lat + e @ = 0 (5-2)

and minimizes the norm of 6;\_ » The solutions to the preceding
vector equa:ion define the M-N dimensional linear manifold BOQL)
which i{s an estimate of the non~linear manifold Ao (zero-target
error). The desired minimum norm cqrrection A:n_ is then the vector
of minirum length in the control space from i to the linear ..ani-

fold BJQ), thus requiring A% to be orthogonal to Bo (v.

ot
Application of the linear operators P and P allow one to represent
»N
Ai as the sum of two orthogonal vectors relative to 30@ or
-~
AU = PAU + PAU;

however,
Pauy = 0

sirce there are no components of Ag in B . From equation (5-1)

&H .g may be expressed as
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-1
L]
au = st s S8l

which may be reduced to
-1
ay = -8 (ssh e

using the constraint equation (5-2)., This correction is illus-

trated in Figure 5-2,

Ay, minimum norm Bo(g_), intersection of
correction linearized constraints

1>

First linearized Second linearized

constraint (ei-O) constraint (e2=

Figure 5-2, Illustration cf Minimum Norm Constraint Direction
for N=2, M= 13,

The direction of search then is simply taken to be this minimum
porm correction to the linearized constraints,

If N = M there is unique solution to the linearvized constraint
equations without the additonal requirement that the norm of

the control correction be minimized. The Qolution for Al reduces

to the familiar Newton-Raphson formula for solving M equiations

with M unknowns; namely



47

57! e

ic?
n
’

.3

* The Newton-Raphson correction is illustrated geumetfically in

Figure 5-3,

Second linearized
constraint (e2=0)

A
Au, Newton-Raphson
correction

Third linearized
constraint (e3=0)

l Bo(g), intersection of

linearized constraints

First linearized
counstrainr (e1=0)

Figure 5-3, Illustration of Newton-Raphson constraint direction for
N=M=3

OPTIMIZATION DIRECTION

When the number of targets is less than the number of controls, it
i8 then possible to minimize the cost function F(ﬁ) assuming, of course,
that i_is some non-optimal control profile. Obviously, the steepest
descent direction, - gﬁﬁ), would be the best local search direction for
reducing the cost function, Such a direction, however, couvid produce
unacceptable constraint violations, To avoid this difffculty PGM ortho-

gonally projects the unconstrained negative gradient,- g, onto the local
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linearized constraint manifold Bc (_:_) « By searching in the direction of
this negative projected gradient the algorithm can guarantee in a linear
sense that there is no further constraint violation than that of g@) .
To calculate this direction, it is only necessary to apply to ~ g the
projection operator P(Q) which will map the vector into its component on

the linear manifold Bc(g) + Thus,

ah = -Pg @
= f-Fle®
EW .
= -1 - sT (ssT) S]s @)

COMBINED TARGETING AND OPTIMIZATION DIRECTION

When it is desirable to minimize the cost function as well as reducing
the target error the constraint direction and optimization direction may

be combined such that the resulting control correction is of the form

+ Au

Ay = Ay Yy _

1
vhere Agl is the optimization correction and 4y, is the constraint correc-

tion. Note that ay, and Au, are orthogonal components of Au . Depending

. upon the magnitude of the target error, one may want to emphasize either

optimization or targeting. Since this decision is rather subjective and
1inked directly to the degree of problem non-linearity, an option is pro-
vided to weight Au (Sée Page 50) in one of its component directions.

Figure 5-4 and Figure 5-5 illustrate the geometric interpretation of the

resulting control correction,



b e

- _umi,
.

L

A

*

49

L

AL, j o
1

L Agl
Nonlinear Constraiat
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g
a

B

Manifold (e=0) Constrained
Optimum
Figure 5-4. Geometric Interpretation of a Combined Targeting

and Optimization Control Correctionr, N=1, M=3

Intersection of BC(Q) and %;(Q)
/

— ey Gne tu—

3

Figure 5-5, Illustration of Combined Targeting and Optimization
Control Correction As Seen In Bc(g).

(Enlargement of %c(g) from Figure 5-4).
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The total control correction is constructed as follows, where d is an input
scalar, Au = "Agz" * d * 521 + Ay
Iaxy ||

(DP2 in namelist $T@PSEP).Thus, one has the flexibility of determining

2

the magnitude of the optimization correction relative to the magnitude of

the corstraint correction. The optimization correctiun can then be written

as
-1 l -1

ay = - g? ssT) e * (1 + a4 a-sT sshH  s) g .

Ja-sTesH s gll

The norm of the control correction Ag,which is obtained by summing 4y, and
Agz,is not as important as the direction, The resulting half-ray provides
the basic search direction with which to calculate the trial step.

TRIAL STEP-SIZE CALCULATION

At any particular point ﬁ in the control space, the PGM algorithm
proceeds by reducing the multi-dimensional problem to a one-dimensional
search in the direction prescribed by the constraint or optimization con-
trol change vector, Once the initial point ; and the direction of search
Azx_ are specified, the problem reduces to the numerical minimization of a
function of a single variable, namely, the step scale factor 8§ . PGM per-
forms this numerical minimization by polynomial interpolation based on
function values along the search ray and the function's value and slope at
the starting point,

CONSTRAINT DIRECTION

»
The function to be minimized along the constraint direction Ay_z is
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E(¥), the sum of the squares of the target errors.

E(8) ~ ¢ @+al) [WJ e @+ al)

Evaluation of the function at ¥ = 0 results in
T a
E0) = ¢ @ [u]e
e
Differentiation via the chain rule yields

3E£ 3 ) = 2e
Y
¥=0
If constraints are reasonably linear, a good initial estimate for the

minimizing ¥ is one.

OPTIMIZATION DIRECTION

The function to be minimized along the optimization directionAgl is

the estimated net cost function C(¥ ), where
-1
) -~ »
C(¥) = Fl +¥8u)) -F + g [ - 5T (ssh) e L;+!A§_1)]
-~ — — o
'_v T~

Change in cost produced Linearized approximation to change

by a step of lengtb in cost required to perform a minimum

4 ”A§1” along ay; norm correction in order to retarget
Clearly,

T -1

co = -gs s e @

By expanding C(0) in a taylor series in ¥ about ¥ = 0, and by making use

~ ~
of the fact that P A u

1= 0, it can be shown that

dc(¥) = gal
r.X -
¥=0

These properties are illustrated in Figure 5-6.
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Both the constraint and optimization ditéctions are based on a
sensitivity matrix assuming a linear space, Due to nonlinearities in the
problem, 1t.is often necessary to restrict the trial step such that
unexpected increases in cost or target error are reduced. In addition,
the control correctionAu does not reflect the "nearness'" of control bounds
as long as u is not on any bound. Thus, the trial step must also be
restricted so that the new control vector remains within the bounded con-

trol space. For these reasons a maximum limit is placed on ® . After

Estimated change

‘ A in cost function /
due to constraint /
correction - ,/

-

clY) , /7

Cost index /7

Estimate net
cost function

Equal

slopes ~—
- ' .

Yo (optimal step length) Change in cost

function along

]
N ——— / dircction of
s\ search

o

Figure 5-6., Properties of net-cost function along the direction of
search.
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Au is computed, a calculation is m‘ade to find the § .along the
search direction which will size a trial step that. intersects the
boundary of the feasible region. This value is compared to the
maximum step allowed by the user to counter the nonlinearity prob-
lem. The smaller value is specified as the maximum ¥ allowed
during the search. A method has been devisad to alleviate the
problem of a control which is very near a boundary, A tolerance
region is defined in the neighborhood of the boundary surface such
that if the control is within this region and A u intersects the
boundary the search to minimize the net cost or target error can
continue along the boundary without calculating a new sensitivity
matrix. Once a control element reaches one of its bounds it becomes
inactive. Unless a subsequent correction for this control element
is back into the feasible region it remains inactive.

ONE DIMENSIONAL MINIMIZATION

Nonvariant minimization in PGM is performed exclusively by
polynominal interpolation. The act'uai function to be minimized is
fitted with one or more quadratic or cubic polynominals until a
sufficiently ~ccurate curve fit is obtained. - The minimum of this
curve and the corresponding scale factor can easily be found analyt-
ically,

The one-dimensional search proceeds by taking trial steps in
the Au direction to obtain information about the function to be
minimized. If WAu is a conséraint correction, the quadratic

error function is evaluated; if YA u is an optimization correction,



‘/

the net-cost function is evaluated; and if TAu is a combined cor-
rection,a furction which is a weighted combination of the error
function and net-cost functfon ic evaluated. .

The minimization routine makes ingenious use of all the infor-
mation it accumulates. The following curve-fitting techniques are
applied in order.

1. Quadratic polynomial fit: two points-one slope;

2, Cubic polynomial fit: three points-one slope; )

3. Quadratic polynomial fit: three points;

4. Cubic polynomial fit: four points,

Each time a trial step is taken, the function whica is evaluated is
used as a trial point to analytically determine the next trial step.

The analytical formulation of the above curve fits may be found in

the subroutine description of MINMUM in the Program Manual.

[
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6. LINEAR ERROR ANALYSIS - GODSEP

GODSEP analyzes spacecraft and trajectory related dispersions as
a funcgion of expected uncertainties in dynamic and ‘navigation parameters.
The ensemble of expected errors is studied without actually simulating
individual trajectories by applying linear techniques. That is, small
deviations about a reference trajectory are linearly related to other
deviations by a transformation matrix, For example, the state transition
matrix relates position and velocity deviations about the reference tra-
Jectory from one time pecint to another. The ensemble of errors, or covar-
iance, is assumed to have a zero-mean Gaussian distribution, except for
special processes,

Probabalistic a-priori errors in the environment, spacec;aft and
tracking systems are propagated in time along the reference trajectory

through sequential events such as orbit determination (OD) and guidance

corrections. Two types of ensemble error or covariances are distinguished -

knowledge, which reflects the ability of the OD algorithm to estimate the
spacecraft state and other parameters; and c;ntrol, which represents the
dispersions of the actual spacecraft trajectory about the reference.
Covariance p;opagation is done by either integration of covariance varia-
tional equations, or by the state transition matrix method.

The error analysis proceeds sequentially from start time through each
specified trajectory event to final time. Event types available are
measurement, propagation, eigenvector, prediction, thrust switching, and

guidance. A measurement event processes tracking data at a time point by

applying the user specified OD algorithm. Available to the user are both
Kslman-Schmidt (K-S) and sequential weighted least squares (WLS) filters.
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GODSEP modularit' also allews the user to insert his own filter algorithm
quite easily, The filters are distinguished by their methods 'of gain
matrix calculation and subsequent update of the knnwledge covariance.

A prupagation event merely update§ the knowledge (and control) covari-
ance at the event time. Its primary value is in maintaining accurate covari-
ance values during long prépagations by forcing computation of the effective
process noise over predetermined, user-specified intervals.

An eigenvector event is used for information display and behaves similar
to a propagation event., Covariance matrix sub-blocks are converted to
standard deviations and correlation coefficients. It also computes eigen-
values, their square rcots, and eigenvectors for the position and velocity
3x3 sub-blocks of the state covariance matrix. Thrust switching events are
simply eigenvector events at the time where a change in the number of
thrusters or thrust policy has occurred,

A guidance event is an update of the control covariance to reflect
implementation of a trajectory correction., A correction is not performed
deterministically, but only in a probablistic seA;e. The guidance event
computes expected correction covariances (Av or thrust control), target
error covariances before and after the guidance event, and the updated state
control covariance. |

The following sections will describe in more detail the analytical
foundations of GODSEP,

6.1 AUGMENTED STATE
The augmented state discussed previously in TRAJ (Section 4,5)

includes dynamic parameters besides the basic spacecraft position and

velocity vectors. In GODSEP, the augmentation not only adds measurement
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related parameters to this list, but also distinguishes between solve-
for and consider, Solve-for parameteés are directlx estimatéd by the OD
process, Consider parameters are system uncertaint{es which are recog-
nized and accounted for in the estimation algorithm but are not estimated,
usually because the process cannot be adequately modeled or there is a high
correlation between two (or more) parameters which might cause numerical
difficulties if both were solved-for,
The possible augmented parameters that can be either solved-for or
considered are
e thrust bias (magnitude and pointing)
dynamic e position and velocity of a selected planetary (ephemeris) body
e gravitational constants of ephemeris body and/or sun
measure-{' o tracking station locations
ment
® sensor bias (range, range-rate, etc.)
Time varying thrust noise (magnitude and pointing) can only be considered
in the standard CODSEP analysis, but can be solved-for (or considered) in
the covariance integration option (PDOT in Section 6.2). A third possible
category, in addition to solve-for and consider, is the ignore parameter
used i{n guneralized covariance analysis (Section 6.5).
The total ensemble of state uncertainties, or error covariance,
including all augmented parameters, is formed by applying the expected

value operation on state deviations from their reference values,

P=k[$x S&T]
The covariance P contains uncertainties and their respective correlations

for all parameters in the sugmented state, There are two covariances,
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corresponding to contzol and knowledge, which are computed in parallel
through a GODSEP analysis, Starting with a-priori values, ea;h P is
modified between events by trﬁjectory propagation effect;, and at events
by either OD (knowledge) or by guidance corrections (control),

6.2 COVARIANCE PROPACATION

There are two methods available in GODSEP for propagating covariances
between events: transition matrices (¢§) and explicit covariance integration
(PDOT). Although these two techniques were discussed in TRAJ, Sections 4.5
and 4.6, respectively, their importance in GODSEP requires additional explana-
tion,

The most common form of covariance propagation, both in GODSEP and in
other linear error analyses, makes use of transition matrices. This is

because the ¢'s are a characteristic of the trajectory, not of the covari-

ance, A covariance P(tl) is propagated from time t1 to, tz by
T -
P(z,) b1 Bt dy + Qy (6-1)

vhere 521 =d (tz,tl) and 6&1 = a(tz,tl) is an effective process noise
covariance.

Transition matrices can be stored, for exauple on magnetic tape, to
be used for analyses of different error source levels and.navigation strate-
gies. Obviously, if ¢'s have been computed between the intervals tyr tys
tys °'°tu, they can be used to propagate any P as long as the set of pro-
pagation times is a subset or ;qual to the original set. Transition matrices

can always be chained to cover desired propagation intervals, for example,

letting ‘“ - ‘(t3’t1) = d(tq.t,) d(t,,¢))

T -
then  P(ty) = 6y P(t) B3+ Oy
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The method of computing and storing ¢'s (on the STM file) over a grid
of timg points is used in GODSEP to facilitate paramecric error analyses,

Since covariance propagation accounts for uncértainties in all
dynamic parameters which have beeﬁ augmented to the basic spacecraft state,
the transition matrix must have the same augmentation. In actual operation,
TRAJ provides a transition matrix containing only dynamic variztions which
GODSEP must eugment with appropriate rows and columns of zeros (for measure-
ment parameters) such that the total augmented ¢ is consistent with P,

An additional requirement for GODSEP is the modification of the thrust
sensfitivity matrix 0 computed by TRAJ as part of the augmented transition
matrix,

dx(ty)

] (tz,tl) = -—,5—2—'——'
wvhere u are constant thrust controls (proportionality, cone and clock) over
the interval (tl,tz). The © matrix is used in GODSEP t> map thrust biases
into spacecraft state uncertainties. However, GCOSEP chrust biases refer
to a single thruster. If more thrusters are operating, and if each operating
thruster is assumed to be independent of all others {n terms of bias, then
the total effective bias is simply the single thruster bias divided by Jﬁ"
where N is the number of thrusters, or

O = IV o

The effective process noise, Q , is 8 very important conditioning
term on the covariance propagation., Because a rigorous mathematical com-
putation of Q involves (1) modeling of a process or processes which are

i11-defined and (2) evaluation of complex double integrals, GODSEP uses a
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mation, The effective process noise assumes that

time-varying thrust errors appear as stationary first-order Gauss Markov

processes. The moie rigorous modeling is performed {n the PDOT option to

be discussed shortly,

mented state from conta

takes on the app-~rance
The effective nois

only the spacecraft pos

The relationship hetween P and 6 precludes the aug-

ining time-varying thrust terms so that process noise

of consider parameters.

2 over a time interval tl to t2

ition and velocity uncertainties at t

directly affects

2.

o o0

Qy = 1/24A¢ [(o H) A 7% ‘.I: :1) §;zrl]

where § is the 6x6 stat

matrix (&),
Hy
HZ
Pw =
ol =
At =

1’ "2 73

2

e transition sub-matrix of the augmented tranrition

‘ T
= g(tl) Pu 8 (tl)
T
= g(tz) A B, g (t,)
T 0‘2/N 0 0
1Y
2
0 T2 0‘2 /N 0
2
0 0 T30‘3 /N
oy 0 0
2, if At?'ri
0 Xy 0 “ =1o, 1f ac & T,
0 0 oLy
t, - tl

variances in thrust proportionality, cone, clock,
respectively,

nu.’ er of operating thrusturs
oY (see Section 4.1 and Appendix 4)
o

process noise correlation times
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Thrust proportionality error is scaled by the number of thrusters
because it is assumed that time-varying noise is independent for each
thruster, just as bias is. Thrust pointing noise is also scaled
because it is assumed to be caused by the thrust vector control system
which currently consists of gimbaling each thruster independently.

This empirical model for Q is generally effective over propagation
intervals on the order of 50 days or less, Propagation events can be
employed in GODSEP to break up longer intervals and to ensure the accuracy
of 6.

The second method of covariance propagation, PDOT, is used primarily
to examine thrust noise effects. Process modeling is mathematically
rigorous and includes augmenta:ion of thrust noise parameters to the basic

state. Recalling from Section 4.1, the linearized equations of motion,
§x=TF5x

and from Section 4,6, the corresponding covariance matrix differential
ecuations

P= FP+ PF! + 9
where x is the augmented state which, for PDOT, includes at most space-
craft position and velocit, thrust biases, thrust noise and tracking sta-
tion locations, T is the variacion matrix, and Q is a white noise term
which affects only the thrust ncise directly. If thrust noise is omitted,
then the integrated covariance would ir theory be identical to a similarly
augmented covariance propagated by transition matrices.

In PDOT, the time-varying noise is modeled as a stationary Gauss-
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Markov process, as in 6,

-1 o 1]
o = T .
2 = 1. 2 + W
0 -1
T

where <3 is a 6xl vector of independent noise parameters corresponding to

thrust proportionality, cone and clock, each of which is described by two
processes having their own distinct correlation times (T). This permits

the study of superimposed and multi-process effects. W is a white noise

component which drives the time varying noise (and defines the only non-

zero term of Q which is E [ﬂ_ﬂ?] ).

Since ¢ is in the desired form of the linearized equations of motion,
it can easily be augmented to the state vector {and covariance). Thus,
 can be solved-for in the PDOT mode although in reallty this practice is
questionable because of the ¢ modeling assumptions - who knows how thrust
noise really behaves?

One of the more useful applications of PDOT is in refining the form
of effective noise, 6, for a particular mission and in verifying the
explicit assumption in 6 of zero correlation between noise and state para-
meters.

Whether state transition matrices or PDOT is used for covariance
propagation, an auxilliary computation is the vehicle muss uncertainty,
Since mass and thrust magnitude uncertainties ate indistinguishable
ir their trajectory effects, that is, they are correlated one to one,
GODSEP has chosen to model thrust (acceleration proportionality) magni-
tude explicitly, and provide the approximate equivalent mass uncertainty

as supplementary information,
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Two types of mass uncertainty are distinguished: knowledge
(estimated) and control (actual).

Estimated mass uncertainty is the
instantaneous knowledge error in thrust magnitude, bias and noise.

2 2 2
estimated O'm = (0, + O'an) m
2 2 2
where G'm, G-ab’ O;n

are the variances in mass, thrust bias

proportionality (from Pk) and thrust noise proportionality (from P
or Q), respectively.

k

Actual mass uncertainty is the cumulative mass variation reflected
by the control error covariance.

The actual mass deviation from the
refereace at time

t + At based upon uncertainties from time t is

actual 002 (t +At) = [ o) +2 0 A c] 2
REEE,

where m, o'ab and o.an are averaged ever the interval At, ¢ is the

£20 T

exhaust velocity and T the correlation time. O;b (and o.an for PDOT)
are obtained from the augmented control covariance,

Accuracy of the
msss variance computation depends upon the event schedule because GODSEP
evaluates 0'm2

from one event to the next.
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6,3 NEASUREMENT TYPES

In a linear error analysis, the reference trajectory deterministically
characterizes the motion of the S/C, and no real state vector estimation
is explicitly performed in GODSEP., Rather, an orbit determination anal-
ysis estimates how well the state vector can be determined if the S/C
were to move along the reference trajectory and were to be observed as
directed by the analyst., In this sense, the term "orbit determination"
rafers to the calculation of a knowledge covariance based upon the proc-
essing of modeled observational data, This section of the Analytic Manual
describes the data types and mathematical models that have been implemented
in GODSEP., The next section will treat the problem of filter formulation
and the process of updating the knowledge covariance.

When an observation is to be simulated in GODSEP, the knowledge
covariance is propagaced to the scheduled measurement point and is made
available tc be updated by the filter, Before this can happen, it is
necessary to evaluate the observation matrix which relates the observables
to the state vector, Given an arbitrary vect - (or scalar) measurement
Yy =y (X) where X is the total augmented stat. onsisting of
spacecraft position and velocity
solve-for parameters
dynsmic consider parameters

measurement consider parameters
ignore parameters

(E
]

12 i< Ie |0 )%
[

then the linearized measurement, which assumes small deviations from the

nominal, is

Sy = Hx55+assg+ﬂu53+ﬂv8_v_ ‘erS!
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9y P
where Hx‘ 33:_""’Hw- >

all of which are computed analytically in GODSEP,

are the observation matrices,

GODSEP has the capability of processing the folluwing measurement

types:
~ o 2-way range
o 2-way doppler
o 3-way range
o 3-way doppler
earth- o simultaneous 2-way and 3-way range
based
o simultaneous 2-way and 3-way doppler
o differenced 2-way and 3-way range
o differenced 2-way and 3-way doppler
o azimuth and elevation angles
L o right ascension and declination angles (of target
body)
spacecraft o star-planet/target body angles
based

o planet limb angles (apparent planet diameter)

All earthbased data types which make observations of the S/C are
applicable to both near earth and deep space missions; however as a
practical matter, azimuth and elevation angles are normally used for
near earth analysis only, Astronomical observations of the apparent
right ascension and declination of the target body are used to determine
ephemeris errors and can be made concurrently with carthbased tracking
of the S/C. (Astronomical observations provide information about the
state of the target body and indirectly imply information about ine S/C

motion if there are dynamic and/or measurement correlations between the
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S/C and the target body). Spacecraft based observations have been
formulated to model measurements of the target body with an onboard
optical system. Hence, GODSEP permits an integrated navigational
analysis for interplanetary missions with astronomical, radio, and
onboard optical measurements all in one computer run.

For earthbased radio observations of the S/C, the program normally
uses the standard DSN tracking stations located at Goldstone, Madrid,
and Canberra. However, the locations of these stations may be changed
by input and as many as six others added. For astronomical observations,
the nominal observatory ic assumed to be Kitt Peak in Arizona. As with
the DSN stations, the location of the observatory may also be changed to
model whatever real observatory the analyst chooses.

In order to display the analytic partials contained in the observa-
tion matrices, earthbased data types are separated into two categories
according to their normal application for deep space or near earth
missions. Thus, all mathematical models for range and range-rate data
will be described as deep space data, although they are directly appli-
cable, without reformulation, to the near earth prnblem. The right ascen-
sion and -~lination obscervations are also grouped in the deep space cate-
gory although visual observations of near earth satellites could be made
with a few minor changes to the model. Only azimuth and elevation angle
measurements are specifically treated as near earth data, and a discussion
of their observation paitials will follow the development of the deep
space data types. Finally, a description is given for the S/C based data

types and the observation partials,
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The following definitions of position and velocity vectors are neces=

sary to relate the mission geometry to the observable quantities, All

vectors are assumed to be column vectors and are expressed relative to an

inertial, ecliptic coordinate frame, unless otherwise noted.

1]
I1=e

e_g ’ez

0
NO?

S/C heliocentric cartesian position and velocity

Earth heliocentric cartesian position and velocity

Target body heliocentric cartesian position and

velocity

Station 1 geocentric cartesian position and velocity

Station 2 geocentric cartesian position and velocity

S/C position and velocity relative to Station 1

S/C position and velocity relative to Station 2

Unit vectors defining direction of S/C from

Stations 1 and 2 respectively
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S/C range and range-rate from Station 1
S/C range and range-rate from Station 2

3-way range and range-rate

Differenced 2-wav and 3-way range and range-rate

Geocentric cylindrical coordinates of Stations

land 2, s = (r8,7\, z)T
Zero vector, 3 x 1

Identity matrix, 3 x 3 unless noted otherwise

s/c

Tracking Geometry for Range and Range-Rate
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We first note one identity which is used numerous times in the follow-
ing derivations. Given the vector a = b - ¢ and its corresponding

unit vector 3 = a/}a},

1 a nT
? = - -2,
9/,32 Ta | [ 1 aa ] (6-2.1)
Two-way range and range rate from Station 1 are modeled

TA
G =81

wvhere

Differentiation yields the following results,

r) . pT 20 51 36
c’1/35 & Yor * y ox
_p'r'._l_[I_(“,“r]+?T.I
-1 e, 14 1
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3(’1/3; « T
or
20 . n :
1/3@5. x) = [ PIT. 2t ] (6-2.2)

The remainder of the partials are produced in like manner but for

brevity only the results will be printed

“1/38 T o0y x))
ks &) 25

3"1/;31 - -236 26, x) (6-2.3)
9 (%) 25
3¢ N O U .8 1T (6-2.4)
Pl b(i,l) €, (_Pl -ee)
(2
? é’1/ 26 3 (xy,x) (6-2.5)
9% T T @D 35 -

For use in Equations 6-2,3 and 6-2.5 above, we need the derivative of

the instantaneous geocentric ecliptic cartesian state of the tracking

-

station with respect to its cylindrical equatorial coordinates of spin

e L,
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radius (rs), longitude (A) and z-height (z). If G represents the

Greenwich hour angle at launch, t, the universal time (U.T.) at the

launch epoch, t the U,T. at the current epoch, and & the Earth's

sidereal rotation rate, we have

rocos| X 4cro e )] ]

x, = E rosin [ A+6+@ (-t )]
i z i
[ rostn[ A +G+aec)] -

X, = E @r, cos[i+c+w(c-t°)]
L 0 d

where E represents the 3 x 3 transformation from geocentric equato-
rial to geocentric ecliptic cartesian coordinates. This transformation
18 assumed constant, Even though the Earth's obliquity to the ecliptic
does vary slightly, its effect is negligible over the duration of the

missions for which these programs are used. Letting

¢ = P +6 +o (t-t))
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[ cos ¢ T, sin @ . O .'1
9x - . -
/)-8-1 - ’35/)&5,1, z) = E sin @ r  cos ¢ O (6-2.6)
L O 0 1

- sin ¢ “wr  cos ¢ o |

K, = E weos ¥ -wr_ sin@ 0 (6-2.7)

0 o o

Three-way range and range-rate are measured with one station on the
DSN uplink and another station on the downlink, Three-way data may
be proceésed by itself, simultaneously with conventional two-way data,
or as differenced two-way minus three-way data, also known as QVLBI
(quasi-very long baselihe interferometry). Three-way data types are
modeled as the sum of the two-way types plus a timing error term for

ranging and 2 frequency bias term for range-rate.

. [ Af
93 - el + ez + ¢ £

wvhere At i{s the timing error, ¢ the speed of light, and Af/f the

frequency bias term which results from drift error between the frequency
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standards at the two scparate tracking stations, The sensitivity
partials for the three-way data types are formed by adding thé par-
tials computed for each station individually. The ¢ At': and

c Af/f terms are treated either as biases or part of the white

noise term., The differenced data types are modeled:

. AP = 91 < ez = cAt

60 - 6 -6, - 8%

The partials for the difforenced data types are formed by differ-

encing the individual paritials, with the following exception, Since

240 240 _ ['é i (‘; T
e 167 6]
5 3 -
and \'1 ard PZ are very nearly equal (as are §1 and Q?) for

irterplanccai s missions, we use the following subgtitutions

AX * X - X

Ae.[e1+ 92] AX
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For the astronomical observations, it is necessary to re-define,
slightly, certain vectors in the table of vector definitions on Page 64-C
Namely, the vector Pl is computed as

fl‘-lg - X - X

and is the position vector of the target body relative to tracking,
Station 1, Station 1 will now be taken to be the astronomicai observ-
atory from which the right ascension ( & ) and declinaticu { § )
measurements are mad~ In order to compute the apparent of and S ,
_P_ must e rotated from its ecliptic representation into the geo-

1

equatoriai sv-: - 2ccording to the transformatior
'1| C
£, - 5 £,

From the ccmponents of -ﬁl’ che right ascension ¢. .nc ts-get body is

computed 83
‘ ’
o = tan.l ( ely/ elx)

and the declination &:

’
S = sin.l (elz /el)
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The observation partials for the astronomical observations can be

written as

VERRY,
H =] 9 (a,%) =] 2 (a«, %) [ [2(x;, %))
D (x, . X,) | (2x6) 3y, &) | 2 L %
where the . :ond ter~ on the right hand side of this equation is identified
as
’ e /
Ok, X, ) 66 0., i,

Elements in tiie first matrix on the right hand side above are given by

el - . sinel / ( eICOSS)
rFH
AL = +coseol / ( Pz cos §)




© A WS XS TR TV e gt ety e

ot s e e <1 =

-

e

71-C

’S = ad = ?& = ‘ad = ()
22, 3%} 7y 2z,

Q)
on
"

- cosal sin$ / el

2%
LA

- sino{ sin § / 91

o
on
"

cos § / 91

2§ - 2% =_}_‘_S__7_= 0
3*; 3'/ ?z'

These partials are handled differently than the observacicr partials
for other deep space data types. Since the astronomical observations are
made on the target body whose state must be augmented to the usual S§/C
state vector as solve-for or dynamic consider parameters, the partials
correspond to partitions Hs or Hu, respectively, in the augmented
observation matrix. Furthermore, only when there are onboard optical
observations or significant dynamical interactions between the S/C and

the body is the S/C knowledge covariance affected by astronomical
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|
~ b observations, One final note about astronomical observations: G@DSEP's

mathematicel model has been desigred to handle both measurement noises and

biases separately for each observable ( of and/or S ).

The following definitions are used in the azimuth and elevation

angle partials,

o = 8/C azimuth, measured positive from north toward east

(See Figure 6-2)

8 = S/C elevation

g o)
0

S/C range vector from station

Unit vector in ¢ direction

70 >
H

P =  Projection of Q onto plane normal to X,

X = Geocentric equatorial S/C position

X, = Heliocentric ecliptic S/C position

X, =  Geocentric equatorial station position

A . 2 e ,

X =  Unit vector in x direction

s =s

N

w = Unit vector orthogonal to X, and pole (local east
from station)

~

u = Unit vector orthogonal to X and w (local north from
station)

£ = Transformation from equatorial to ecliptic coordinates,

' For simplicity, all azimuth and elevation partials are derived in

o

- geocentric equatorial cartesian coordinates and then transformed to

ecliptic.,

e o -

e gin
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Figure 6-2, Tracking Geometry for Azimuth and Elevation Angles

N
Referring to Figure 6-2, we see that the projection ~f € onto the
i '!

-

x, direction will have magnitude sin $,or
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E sin@ = ;Té
: s
ap 1 A A T
| 2x  @cosp [ % - stng €] (6-2.9)

"

- sing ?Es] - '%x (6-2.10)

/s

39/355 355/35 (6-2.11)

A
Again referring to Figure 6-2, the projection of @ onto w will have

|
Q_, i magnitude cos @ sinol , or

T A
sine = sec @ Ic} e

Y3 -
-a—z = tan&can@ 'ap/ai + iT
(6-2.12)
2 = [seca[ sec? W - tanod ’é ] /e
oy e Wy + [1-a]"
where
b = ._:... [ secat secq ¢, & -5 €] (6-2.13)

[ »

A A
fx, ey, Wx, Wy are components are w aud
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A " "’"{/ /5 (6-2.14)
s .98 s .
For use in Equations 6-2.11 and 6-7.13 above
I x T - 0 7
Is/s xzs
/as = 3(: o) | % /r *1 0 (6-2.15)
s s s
| O 0 1 J

where X3 and X, are components of X e Finally, the partials
s ‘s
computed in equatorial coordinates must be transformed into ecliptic

(. 8) _ 2(x, B) . 2%

X X 92X,

(e, 8) _ (e, &) . gT (6-12.16)
dx, ?2x

For vehicle based optical measurements, we use the following

definitions.

spacecraft heliogentric cartesian position

(£ ]
»

x, - planet/target body heliocentric cartesian position
' f? = x = x = planet range vector
i : .
i
- "
o/ d = yector of star direction cosines
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P = vector of target planet orbital elements (Keplerian)

R = target planet radius

Al =  star~planet angle

S = apparent planet diameter measurement - angle subtended

by planet disc at the spacecraft

Z =  zero vector, 3 x 1.

Star-planet angle partials:

COST = gT é
W, [l [ Gocmw £) ] -
/35 Q sin¥ - cos , e (6-12.
4
-
‘/33_' - - 3"'/35 - (6-12.18)

and if the ephemeris body elements are Keplerian rather than Cartesian

rY)
/7~ p = .‘T/? X ? lp/.“z (6-12.19)

where the partials of cartesian to Keplerian elements are computed
numerically.
Apparent planet diameter partials:

R

lins. - l’/p

2
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35/x = - —%— tan %— f"r (6-12.20)
b _ . 9% -
?/bzsp = /35 (6-12,21)

23§ . 2% 6-12,22
35/32 = 3%, 5 (6-12,22)

For any data type which has a bias,
y = H§X+b
Iy = 1.0 (6-12,23)
/s

6.4 FILTER

After the knowledge covariance has been propagated to a measurement
time, and the observation matrices are computed, the OD filter can per-
form its function of estimating the set of solve-for parameters (non-
determiristically) and updating the knowledge covariance accordingly.

There are two types of filters available, Kalman-Schmidt (K-S) and
weighted least squares (WLS), pluc capability for a third filter, to be
established by the user. K-S is the most commonly used filter because it
treats consider parameters in a realistic fashion.

The filter updating process requires computation of several matrices.
First, the propagated estimation error (knowledge) covariance P at the

measurement event time is
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. I i
[ P ¢ c
X XS xw
ct » :
b 43 8 L
P = ; P,
P C
v v
cT [ ALK ] cT P
L xXw w W d

where Px’ ces, Pw are the covariances of the S/C state, °++, ignore para-
meters, respectively, and st, cee, Cw are the cross-covariances between
appropriate augmented parameters. The observation matrix H defined in the

previous section is

The measurement residual matrix J is defined as
J = HPH' 4R
where R is a diagonal matrix containing variances of the measurement white

noise. For example, a simultaneous 2-way/3-way range measurement would

look like )
Or °

2 2
0 O * Oig
?
vhere O}RZ is the 2-way range noise variance and G;R is the additjonal

3~wny range noise variance due to timing synchronization. For a single

Q | star-planet angle measurement, R would be & scaler

R = 03 + 6.2/1.'2



EEP R S

s ¥ U S e Wi r 1 - bwws 4

1 ] I | !
P | I i i
ey (Y

78

i
B ] ' where 0}2 and 6;2 are the optical resolution and planet or body
center finding noise variances, respectively, and r is the spacecraft

range to the planet.
+
The updated covariance (P ) after the measur.ment has been

processed (and in theory after the staie estimate has been updated)
is in general
PP -k P (- k) 4K (6-3)

where K is the {ilter gain.

‘ KALMAN-SCHMIDT

The filter gain for K-S is straightiorward

K = pu' gl
Since only estimated parameters can be updated by the OD process,
the entries of K corresponding to consider and ignore parameters

- are zeroed out, that is, K = [ l(x Ks 000 ] T « The updated

covariance is theu formed by Equation 6-3,

WEIGHTED LEAST SQUARES

The sequential, or recursive weighted least squares (WLS) algorithm

fmplemented in GODSEP is equivalent to a batch WLS filter if there is no
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process noise, Since process noise is a significant part of low thrust
analysis, the WLS filter must be used recursively, becaus; it has no

batch equivalent, The sequential WLS consider filte; acknowledges con-
sider parameters only in the covariance update (Eqn. 6-3) and not in the
gain matrix calculation, Therefore a2 set of reference covariances

for the state and solve-for parameters must be maintained at all times.
This set also represents the fiiter analysis as it would be in non-consider
form.

Thus, the WLS filter computation requires three operations: (1) pro-
pagation of the reference covariance to the measurement event, (2) com-
putation of the filter gain and (3) updating both the reference and
knowledge covariances.

(1) The reference covariance (%) consists of

A P T
P = x X8
xS s

and is initialized at the a-priori values., Thercafter, it is

propagated from one measurement to the next by

vhere ¢ is the augmented transition matrix corresponding to the
x and s parameters. 6 is computed in parallel with the actual
knowledge covariance P.

(2) Given B at the measurement event, the WLS filter gain is

A

. -1
kP RH? AT + )

where ﬁ = ux .
H.
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(3) 7The reference covariance is updated, after measurement pro-
cessing, by
tt = (ki) B
and the knowledge covariance P is updated by Eqn. 6-3,

Thus, at measuremeut events, the OD filter updates the knowledge
covariance to simulate taking a tracking measurement, processing the measure-
ment in an orbit Jdetermination algorithm, estimating desired parameters and
reducing (or updating) the knowledge uncertainty to reflect this new infor-

mation about the trajectory.

6.5 GENERALIZED COVARIANCE

The function of any filtering algorithm is to process available measure-
ment information snd produce a best estimate of the spacecraft state and
any parameters that are being solved-for. Best is usually defined in a sta-
tistical scnse, such as the minimum variance processes uscd in differing forms
in the weighted least squares and Kalman-Schmidt filters. But in practice,
filter performance is dependent on how well the assumptions used in the
filter definition approximate real-world processes, because all error sources
cannot be modeled, nor can those that are modeled ever be modeled exactly,
Therefore, each filter must be evaluated not only on its ability to produce
small error covariances in the resulting estimated state, but also be as
i{nsensitive as possible to errors in its model assumptions.

Generalized covariance error analysis is a useful tool for studying
filter sensitivicy. For gen:ralized covariance studies, twé sets of know-
ledge errors are carried during the orbit-determination process. Assumed

knowledge uncertainties are those generated by the filtering algorithm

B
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according to the mathematical model and ali the assumed errors input tc
ft, True knowledge uncertainties rep;esent the effect the filtering
algorithm has on actual state estimation when the real-world error sources
are not the same as those assumed by the filter, Evaluating filter sensi-
tivity to a model assumption involves comparing the resultant effect on
assumed and true uncertainties of 8 modeling mismatch between the filter
and real-world uncertainties. This modeling mismatch is accomplished in
one of two ways; true a priori uncertainties may be set at levels other
than assumed levels or the true state may be augmented by a vector of ignore
parameters--parameters whose uncertainties arc recognized by the true
covariance analysis, but which are completely ignored by the assumed filter
analysis,

The filter that is least sensitive to a model mismatch is determined
on the basis of two criteria. First, which filter yields the smallest true
estiration errors. Second, for which filter are the true errors most closely
approximated by the errors predicted by the filter covariance analysis. Thus,

given a mission with a specific set of model mismatches, if two different

. zilters produce equivalent true errors, then the superior filter is the

one whose asgsumed errors are closest to the true onei. Similarly, i{f the
resultant assumed errors of the two filters arc equivalent, the supcrior
filter is the one with the least true estimat{on uncertsinty. Generally,
qualitative judgments are required because several sets of mismatches must
be studied, and the relative performance of the fi.ters may vary.

In error analysis, gene;alized covariance is a filter sensitivity

study tool that is normally available oniy in s simulation program, it is

SR R e D
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accomplished in G@DSEP with a minor increese in core and comoutational
time compared to a full simulation and has the additional advantage of
generating ensemble true state statistics rather than a éingle sample as
in a simulation. The only disadvantage nf generalized covariance is that
it uses the same linearized dynamic and observation models as the assumed
filter analysis, and can therefore not study problems that arise from
nonline#rities.

The actual operation of generalized covariance in G@DSEP requires that
a standard error analysis be run first., The filter gains, associated with
the assumed knowledge uncertainties, are stored on disc or tape., Now the
error znalysis with all the same measurement events is repeated, Only this
time, a-priori uncertainty levels and measurement noise are modified, and
ignore parameters are added, to the extent of desired mismodeling, At
each measurement event, Eqn, 6-3 is applied to what {s now the true know-
ledge covariance using the appropriate stored filter gain. The true
covariancce analysis thus proceeds in analogous fashion to the previous
assumed covariance analysis. Obviou:ly, many mismodeling conditions can
oe studied with the same filter by repeating the generalized covariance

snalysis.

6.6 GUIDANCE

Although the knowledge ccvariance is moditied by measurement events,
the control covariance, which represents the encemble of actual deviations
from the desired or reference trajectory, will grow without bound, The
only process which will reduce the control covariance is & guidance event

that is, the design and execution of a trajectory correction, either
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impulsive AV or low thrust,

Low thrust guidance represents an update of the nominal thrust con-
trols (magnitude, direction and cut-off time). In terms of system cost
and efficiency, it is better to use the existing low thrust propulsion
system for guidance than to add auxiliary means, for example high thrust
chemical engines to produce impulsive Av., Of course, certain problems
inherent in low thrust propulsion, in particular terminal controllability,
may force the addition and use of an auxiliary chemical propulsion system.

In mathematical terms, given a trajectory state deviation, S)_co =
$x (to), where t, is the guidance epoch, we wish to null out the effects
of 5_35.0 by making a bias type correction §u to the nominal thrust controls.
To be efficient, the correction is applied over some finite interval

[ t, tc] such that the target error $T , caused by Slc_o, at some final

time (tf) is removed. For linear analysis, we seek the guidance matrix r s

such that
$u = [ 8x
The linear ensemble of thrust control corrections is then
v = E[6ufy"]

v o= Pelsx, 6] T

In G@PDSEP, the trajectory ercor ensemble E [8350 SxoT]is thz2 control
covariance Pc- (to). Using P; represents a pessimistic sizing of the
thrust corrections because only the known trajectory error (mot to be
confused with the knowledge error) can be removed, The known error
generally corresponds to the control error as long ss Pc-(t°)>> Pk(to)

where I’k i1s the knowledge covariance,
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To compute the guidance matrix " we first compute the sensitivicy

matrices
S(eg,t,) ? I (c,)
?
27T (to)
V(t s ¢ ) = — f
£° 2x (t)
or,
[ 3 I(ty)
P lEEeyT] e e

[ 9 T(t )
vV = (t,t:) (t,t
.ax<t>] bpra d o,

where the first matrix in S and V {s formed by numerical differencing
and the second two matrices (Q and O) are obtained from transition matrices
generated by the trajectory propagation routine (Section 6.2), If variable
time of arrival is desired, the control array S!i is augmented with the
arrival time and the S matrix is augmented by i (tf), relative to

the target.

The guidance matrix can now ba defined by

-1
P = w? sT[sw2 sT] v IfEN &N (6-5.1)
u u u=-— T
- [sT w? s]‘l sT w 2y IfEN. DN (6-5.2)
[ T T T u °

where Nu and NT are the aumber of parameters in the control and target set,

respectively, and Wu and W_ are disgonal weighting met:iices for the control

T
and Larget parameters, respectively. The first fqrm of ", 6-5.1, reflects
a mir mum quadrstic control correction and the second, 6-5,2, corresponds

to minimum quadretic target error.

) »‘WMWW*»: W i £8P w3 R e i i 2 bR
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Generally, there are more control parameters than targets with the
e..ception of two cases: (1) terminal approach to the target where con-
trollability drops uff rapidly; and (2) the application of control
constraints which effectively reduces the set of availsble controls.

If constraints on the control correctioas are imposed, then P mist
be suitably modified. First, the unconstrained [ is computed along with

the ensemble unconstrained control corrections,

u = [rpr - r'T (6-4) again

Each 1iagonal component of U, G-uz, is compored against its constraint

2
value ( suMAX) . If 0‘u is greater than SUMAX’ then the appropriate
row of [' is scaled by SUMAX/ 0u. The total control set (and guidance
matrix) is then separated into two subsets: uncenstrained controls, Sg'

and |"1, and constrained controls, 89_2 and r.2'

{ § u C,
$§u = r-
by Suyax r
o 2

The new control corrections are computed with (6-4), {actually only the
remaining uncoastrained controls are computed ) the test for constraints
are made, r' is modified again, and the entire process is repeated until
all constraints are met, or there are nc more controls left, The guidance
corrections are executed (figuratively) at time to’ that is, are uplinked
to the spacecraft,-but apply over the entire guidance interval [to, tc] .

Execution of the guidance updates causes the control covariance to
diminish from t, to t. whereupon it begins to grow again, Guidance accuracy
is measured by how much the control covariance can be reduced at tc which

depends upon how well the thrust corrections were designed. The limiting

S A SR g LY kB e L
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accuracy of maneuver design is the knowledge error or covariance at to.
Thus, the post maneuver control covarisnce at tc is the propagated

knowledge covarisnce (as per Eqn. 6-1) from to to tc’
+ - = T o -
P = Ble Lt ) Bt B (e e + e L) (6-6)

In GPDSEP, to denote guidance execution, P:(to) is set equal to
Pk(to). This is equivalent in 2ffect at t. to applying Eqn. 6-6.
However, it means the value of P: in the guidance interval is not valid.
This is a relatively minor problem compared to the reduced burden on
computaticnal storage and logic.

One exception to setting P: = Pk occurs when there are more
targets than available controls, which often happens when control
constraints have been activated., 1In this case, there will be some non-
zero target error that was not removed by the guidance corrections., This

implies that not all of Pc- was removed, Hence, the post maneuver control

covariance must include the residual state error,
+ 7. T ! - 1 19!
Pc=Pk+{v[vv] [v+s['] P vi{w'] [v+sd

As long &s no more guldance events are executed between [to,tc] ,
updating the control covariance at t, is theorettically no different
then using Eqn. 6-6 at t. However, if another guidance event is scheduled
in the burn interval, say at tl’ then a somewhst different logic is applied
to size the correction, It is sssumed that the first guidance -vent between
to and tc is a primary maneuver, Subsequent guidence events in this 16ter-
val are considered to be vernier maneuvers, representing refinements of the

thrust corrections computed in the primary maneuvers.
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For vernier maneuvers, @ end 0 are redefined for the vernier burn
interval and r is computel as in Eqn, 6-5. The guidance updates sre
computed using Eqn. 6-~4 with the knowledge gained since the primary

(or previous vernier), that is,
T +
E[8x $x]= Fp-r@)

Recall from the previous discussion that P:(tl) is usually the propagated
knowledge from the previous guidance event,
A measure of guidance effectiveness is the estimated target error

before and after the maneuvers,

T -
before guidance correction, E [52 Sl‘ ] \' Pc (to) VT

+
after guidence correction, E [Sl SIT] VEPLt) VT,

This simple measure assumes, of course, that no further dynamic error

* will occur from £, to the target time te
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An important part of the guidance aid navigation process is

ks

the time interval from the last navigation measurement used for

; guidance design to the actual time of guidance implementation

(to). The time interval (or delay) is necessary for ground pro-

PR e R 5 T SR St 35 5 p S AL A RSN o e B st S

cessing of all previous measurements, estimation of the S/C state,

Frmi i PR

designing the thrust updates to correct the trajectory, and

R

execution of the updates. Typical intervals are 3 to 15 hours,

[,

and are usually critical only in the terminal mission phase where

ke

trajectory ccatrollability (with respect to thrust controls)
diminishes rgpidly. This time delay is user specified for each

guidance event. ;
i

Impulsive AY guidance is very similar to low thrust except
for a zero burn interval (to = tc). The delta-velocity is treated

ag if it were a control correction §u, that is,
ay = [ $x,

To compute r , the sensitivity matrix S 1is first partitioned

into position and velocity submatrices,

3 I(ty) Ity

) vhere A =
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[, J
1f the target vector T has only two components, e.g., BT and B:R,

then |AY | is minimized and

1

' - : ;1
r - [-BT @ A | -8 @) B ]

If T has three components, e.g., the pcsition vector at tes then

IRCIES
The computation of ensemble velocity correction, U in Equation 6-4,

follows directly. As in low thrust guldance, the pre-maneuver control

covariance P; (to) is used to size U,
. T . - T
veefay ay'] = P )l

Execution errors related to low thrust control updates are neg-
lectecl[ because they are seconi order effects compared Lo thrust error
associated with the nominal thrust profile. However, AY execution
errors are taken into account because impt.:lsive maneuvers often occur
during ballistic or coasting portions of the mission and can represent
a significant contribution to trajectory error. In order to compute
QY execution errors, the most probable AY e first determined by
the Hoffman-Young approximation (Reference 8). Let 31, 22, 13

be the eigenvalvwes of the av covariance, U, and :( be the largest

eigenvector of U, define

A -11+12+13

B o= XAt x4,

- FF ]

i P

.

oy i

B s o

Aemcomaib s S

U Y 855 o S b

B R T Y PN

RTPEP

AR St ¢ C A SR S nts




=\

8¢
A AV,
then the probable AY is E[A\L] = (Pad = AV,
av;

Now the 3 x 3 AV execution error covariance '6 is composed of

(6-7)

2.2 _2 2 .2 2
- 2 .2 + AV V.
G, - AV a~m+Av2(°0‘; 1 4V Op
“o 2 52,2 2 .2
Q2 = = AV, sz[o; P G, * AV, 0 ]
€ xy
~ ~ 2 2
U3 =Y = AV Av, [°_m © G, }
. . Av1292 N A\,22 Av32 0;2
. Iy
Qo= &Y, 0, Pry?
e, =3 AV, AV 2 2
23 = Y 1 AY; IO‘N - O" ]
2 2 2 2

e R S Y .

o A Y

O

S e
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where nyz = Avlz + AV22

g—mz - 0-92 + ¢r2
2

2 2
0'“0'9 = AV resolution and proportionality variances
2 . ,
o“ = ecliptic (X-Y) pointing variance

02 = out of ecliptic (z) pointing variance.

As in low thrust guidance, the post-maneuver control covariance Pc+
(to) is set equal to the knowledge covariance Pk (to) corrupted by

the AY execution errors,

+ 0 0
P (¢)=P (t)+
c ] k ‘o [OﬁJ

Pre and post maneuver target uncertainties sre computed in equivalent

fashion to low thrust guidance,

it

g
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7.0 SIMSEP Analysis
The trajectory simulaction mode SIMSEP has been designed to

»
.

_provide deterministic analysis of ballistic and low thrust missions,

Computationally, SIMSEP imitates '"real" trajectories in the presence
of a wide variety of environmental and system uncertainties., A pri-
mary objective is to deduce expected or probabalistic behavior of
the real mission by studying a relatively small subset of simulated
missions.

The purposc of this section is to discuss the key analytic
concepts in SIMSEP, Thié will be done in two parts: 1) by discuss-
ing the principal algorithms, and 2) by outlining the basic compu-
tational structure. Although many algorithms used in SIMSEP are
similar in function to algorithms used in T@PSEP and G@DSEP, éheir
specific'applications here warrant an éxtended discussion of their
underlying theories,

7.1 Program Scope and Methods

-

Before proceeding with a step-by-step description of the
algorithms and computational structure, it is worthwhile to compare
the essential similarities and differences between G@DSEP and SIMSEP,
Unlike the error analysis mode which works exclusively with error
ensembles and a reference trajectory, the simulation mode actually
formulates many discrete examples of the "real world" or "sctual”
trajectory, Bach of these is propagated, in a deterministic sence,

by the sa.e trajectory integrator, integrating the same equations of

motion., However, many variables and parameters appearing in these
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equations are subjected to random alterations, corresponding to
discrete uncertainties, Hence, each deterministic gimul;tioh - fa
mission is different according to the effects of :h; sampled errors,

Opérationally, SIMSEP does not sample each error in succession
and propagate trajectories with just one error source active at a
time. Rather, all are initialized by differing amounts for each
actual trajectory. Thus the a%eraged effect of all error sources
‘acting in concert can be estimated by repeating the mission simula-
tion process a sufficient number of times. This is the essence of
the Monte Carlo method and is the basis of the simulation approach
to determining how trajectory nonlinearities and uncertainties can
sffect the G&N process,

Perhaps the best example to il}ustrate the fundamental differ-
ences between the methods used in GPDSEP and SIMSEP is the problem
of propagating, or mapping, an error covariance from one point to
another along the reference trajectory. It-wiil :e recnlled that

the principal method for propagating a covarisnce in G@DSEP is by

the state transition matrix mapping, namely,

T
Pn = b v R | S

vhere §k+l,k represents the state transition matrix and ?k and

’k+l are covariances at t and tk+1’ respectively., When there is

dynamic process noise, an effective process noise matrix, 6;+1 X
[ B

is also added, (See Section 6.2). The state transition matrix is

generally computes simultaneously with the trajectory by integrating
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the variational equations, However, the variational equattpns are
based on linearized expansions of the differential equations oé
motion and neglect all second and higher order terms, Hence, &
state transition matrix mapping of covariances must theorezically
be limited to mapping covarfances within the envelope of linearity
surrounding the reference trajectory. Rarely is this assumption
true at all points along an interplanetary trajectory, especially a
low thrust trajectory, Covariances prupagated by this means are
subject to error whenever a region of significant trajectory non-
linearities is encountered.

On the other hand, the method for propagating a control
covariance in SIMSEP is not plagued by these effects, although 1£
has its own peculiar shortcomings. The SIMSEP approach to this
problem relies on the Monte Carlo method where a multitude of
sample trajectories are propagated between the two time points in
question, The trajectory state vector data at {k+1 are processed
and accumulated in such a way that the covariance can be reconstructed
by standard statistical celculations, Hence, SIMSEP maps s covariance
as 8 statistical ensemble calculated from many data points and not as
8 simple mathematical entity like G@DSEP,

Therein lies the primary drawback to the Monte Carlo method and
to the use of SIMSEP for general G&N analysis. Although the Monte
Carlo method will, in theory, converge to the exact covariance, the
rate ¢f convergence tends to be extremely slow, For accurate

statistics, inordinately large smounts of computer time are often
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necessary to perform the many trajectory propagations.

Although both GPDSEP and SIMSEP are nreflight mission analysis
programs used to identify the general G&N subsystem characteristics,
they are usually used at diff -ing phases in the development of an
overall systems analys!s, For the purposes of a preliminary systems
design, a GPDSEP analysis is the most cost effective means of evaluat-
ing the basic G&N subsystem requirements, As such, SIMSEP is generally
relegated to verifying the linear analysis results, and only in the
advent of serious nonlinearities is the simulation mode called upon
for more extensive studies,

7.2 Definitions and Concepts

‘The first important concept in SIMSEP and common to all MAPSEP
modes is the refer.nce trajectory, denoted by KR = 5R(t). The
reference trajectory is computed under some set of "reference
i{ntegrating conditions" to satisf{y desired targets at mission‘s end.
Moreover, XR represents a deterministic solution to the equations of
motion for the assumed dynamic and systems models. For SIMSEP, the
inftial state and reference integrating conditions, i.,e,, ephemeris
parameters, thruster characteristics, etc., are read as input since
it is assumed that they have already been computed as output from s
TYPSEP annlysis,

A |econd.quantity important in SIMSEP and common to GPDSEP is
the control error covariance, Pc. Generally, an a priori control
covariance is defined at injection (or at the starting point of the

mission being studfied). This matrix mathematically describes the
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distribution of real state errors relative to the initial reference
trajectory state, In SIMSEP, it is implicitly assumed that the
probability distribution of‘these errors is Gaussiaa{with zero mean,
Once an a3 priori control has been given, it is randomly sampled to
form an error vector, $ gﬂ, which corresponds to a deviation of the
actual trajectory state relative to the reference. At the same
time, error sources associated with the host of other dynamical

and systems uncertainties are also sampled to create the so-called
"real world integrating conditions". For the actual trajectory

state vector, this procedure may be written as

L= R+ 8%,

where S}_KA is a deviation obtained by sampling PG. Utilizing
these integrating conditions, the actual trajectory state, 3;, is

propagated from point tv point as a discrete example of an actual

trajectory.

The third\critical variable used in both GODSEP and SIMSEP is
the knowledge error covariance, PK. This matrix is propagated in
the error analysis from measurement to measurement where it is
systematically updated according to the filtering algorithm., In
SIMSEP, instantaneous evaluations of Pk are input at each guidance
event and are left unchanged throughout a given run since there is
no explicit orbit determination process modeled. However, the
knowledge covariance, like the control covariance, is sampled to

formulate an error vector. This error vector determines the error
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in the estimated state relative to the actual trajectory state, and

is used to compute an estimated state vector by

where e is the sampled error vector from P If other parameters

K*
are estimated during the orbit determination calculations, they are
included as augmentation parameters, These too are sampled in order
to formulate a set of "estimated world integrating conditions".

With each of these key quantities having' been defined, it is
worthwhile to mention why each is impcrtant in a simulation run,
The reference trajectory, for example, serves to define the mean
for all actual trajectories, as well as defining the reference target
conditions used during guidance. The actual trajectory is, of course,
the mathematical represeantation of the real motion and is carried
from event to event until the final target is reached. On the
other hand, the estimated trajectory is used exclusively for re-
targeting the actual trajectory back to the desired targets and is
computed only during guidance.

7.3 Guidance

e of the principal purposes of SIMSEP is the detailed exami-

nation of nonlingar trajectnry effects, especially as they bear

. upon the guidance problem. In this section, the fundamental concepts

underlying linear and nonlinear guidance will be presented, and the

~ iwplementation of these concepts into algorithms will be discussed,

Beforehand, a careful distinction between targeting and guidance
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wust be drawn since MAPSEP has algorithms for both and since many

of the basic steps and operations are similar. Whereas a ta}geting

problem is solved by formulating an entire control strategy for a
complete mission, a guidance problem assumes that a solution to the
targeting problem has already been found. Furthermore, the current
trajectory which is to be corrected is assumed to be in a "close
neighborhood" to the original reference solution, Hence, the con-
trol changes computed by 2 guidance law are expected to be small
refinements to the original controls, even in the presence of non-
linearities.,

7.3.1 Linear Guidance

The linear guidance option in SIMSEP is analogous to the guid-
ance used in GPDSEP except that it applies to a discrete trajectory
error as opposed to an ensemble of errors. For both modes, the
linear guidance matrix is the same. To compute a guidance matrix,
a sensitivity matrix is evaluated between the point of the guidance
event and the target about the reference trajectory. This matrix
of linear partials relates control changes to target deviations and
is used to map estimated trajectory errors, S-&E’ into control

updates, according to the guidance laws:
1) av =T Sgﬁ, for impulsive corrections, and
2) Au = P SEE’ for low thrust,

In spite of its overall simplicity and ease of implementation,
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the advantages of linear guidance ar? off-set somewhat. by its draw-
backs., First, the trajectory ‘error, _jLZE, must lie within the
envelope of linearity for this to be a valid method. Whenever this
is violated, the resulting guidance correction can be invalidated.
Furthermore, a linear guidance correction is executed without itera-
tions, In fact, with this guidance there is no direct evaluation of
a control correction's effectiveness in reducing target error. Only
if the updated trajectory is propagated to the target ccn the result-
ing target error be determined, and even then there is no recourse
for making further corrections if the original correctiomn is
ineffective.

7.3.2 Llinear Impulsive Guidance

The essence of impulsive guidance is founded on the mapping
relations which propagate arbitrary linear deviations relative to
;ome kﬁown trajectory into new deviations at some later time,
Clearly, this is a property of the state transition matrix which

maps a six component state deviation, SX1, evaluated at tk into a

new deviation, 81(_! +1° at tk+1’ by the equation,

Xy = i 8% @-1)

If t is the target time and t, is the time of the guidance event,

k+1 k
then ’ can also map state vector changes, like an impulsive
k+],k
velocity correction, into state changes at the target,

However, in most analysis the actual target conditions are
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specified in terms of target variables such as B-plane parameters,

Keplerian elements, etc., instead ?f X, Yyeeeu, Z state cosrdihates.
Fortunately, the target variables are functions of thé final trajec-
tory state and it is possible to gegerate a differential transforma-~

tion of the form

L N S a-2)

which transforms differeatial coordinate changes into target variable
variations, 1In the above equation, ﬂ\ represents 2 matrix of linear

partials of the form

S LT R
(X, Y, 2, X, %, 2)kﬂ

(7-3)

where there are n-target variables, Tl; TZ’ oy Tn and six state
components. By substituting Eq. 7-1 into 7-2, a relation for mapping

state changes at ty into target changes at t is obtained, that is,

ktl

81 - ”\§k+1,k 3x .

Performing the indicated matrix multiplication and replacing

"1 §k+1,k with N, the equation becomes

AT = N_grgk (7-4)

wiaere N has dimensions (n x 6).
With this background, the impulsive guidance problem can be

stated most simply as a determination of a velocity change, 4V,

b T <RI I e 2 < s ATt A 3 ks < e oAb A R

PN
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vhich, when added t¢ §xl , nulls the target error, §T. Again

writing Eq. 7-4 but in a partitioned format,

-

€1 = NQ) §r +N@2) 8v, ,

it is recognized that ® T can be wade zero by adding some appropri-

ate &V to 8y , i.e.

NQ) Sr +N@) (§v, + AV) = 0.

For the case of three-variable impulsive guidance, i.e., three

unique targets, the solution for AV is given as

&y = -8 N 8, - &y,

provided N(2) is nonsingular. Note that this can be re-written as

or
- [ -k

& = {-N(Z) Ly b - 1] (7-5a)
.- v

or AV - T $x., - (7-5b)

the desired guidance law,

For the case where there are two target variables instead of
three, the problem has more controls (3-velocity components) than
end conditions and a generalized inverse which minimizes the mayni-

tude of the velocity correction is used according to

——
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=1
AV = - N@)T [N(z) N(z)q N b,

T r]“
- N(2)" \N(2) N(2) N

where N(l) and N(2) are non-square matrices with dimensions (nx3),

Again this relation can be re-written as

\

-1
T T
AV = {-n(z) [N(Z) N(Z)] N(1) |

En(z) n(z)Tl . ‘& &

oW
or AY = T &x.

(7-6a)

(7-6b)

Algorithms based on Eqs, 7-5a and 7-6a are the basis of the
linear impulsive guidance contained in‘subroutine LGUID. The guid-
ance matrix;.r1 » for either the two or three variable cases, are

computed as outlined above and the state vector deviation, 5 xi,

is calculated as the error in the estimated trajectory state relative

to the reference, namely,

£x, - 8% - % - %, »
evaluated at the guidance event.
7.3.3 Llow Thrust Linear Guidance
The lovw thrust linear guidance law has the same format as the
ifmpulsive law except control changes are made to the vector of low

thrust control variables, 4. Another difference is that the low
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thrust acceleration acts slowly to bring about state changes; hence,
the low thrust linear guidance watrix operates in an integrated
fashion over a fixed trajectory segment to redirect the motion,
Otherwise, low thrust guidance is simply an extension of the basic
methods discussed above, .

The most complex part of computing low thrust corrections is
the determination of the guidance matrix, Tﬂ . This matrix depends
not only on the trajectory dynamics between the maneuver point and
the target, but it also depends on the trajectory response to con-
trol changes, i.e., controilability, As before, the first step is
to integrate the reference trajectory from the guidance point to
the target, evaluating the augmented state transition matrix., I
SIMSEP, the transition matrix is computed by integrating the vari-
ational equations as was discussed in Section 4-5. By selectively
partitioning the transition matrix, the requisite sensitivity matrices
relating state and control variable deviations to future state devia-
tions are obtainzd.

In terms of partitions in the augmented state transition matrix,

state deviations at the target time, tk+1’ are given by

8%, 7 b 85 + O %y -7

where is a state transition matrix as defined in Eq, 7-1
i k+1,k q
and @ 1is a matrix which maps control variable deviations into

state changes at t 5\1 in Eq. 7-7 corresponds to a set of

k+1°

thrust control biases. @ can also be written as
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O, Y, z, X, ¥, Z)kﬂ_
A('ul’fu 2, cr Uy )

(7-7.5)

and is seen to be (6xm) where m is the number of controls. Follow-
ing the same line of reasoning as was given in Section 7.3.2, it is
recognized that partials of target variable variations with respect
to control variable changes are needed. Hence, Eq. 7-7 is multiplied

by the transformation matrix ﬂ1 (Se ', 7-3) to obtatin,

§1 - M §k+1,k 83X +M0 fu. @-®)

Therefore, the guidance problem is reduced to finding a Au which
when added to 8§y will make ST’= 0. For convenience, it is assumed
that §u is either zero or that it can be solved-for during the orbit

determination; thus permitting Eq, 7-8 to be re-written as
-..‘ © ax + quﬂ’k 8x, = 0. (7-9)
\

For the problem where the number of controls (m) equals the number
of targets (n) and the matrix ~\ has an inverse, the solution for

Au in Eq. 7-9 is
-1
O T

where §_§E is the deviation of the estimated state vector relative
to the reference at the guidance event. From Eq, 7-10 it is easy

to see that the desired guidance matrix for this particular case
[

is given as

M b 3 B Bt S T
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T - e §k+1,k ’

and is a (6x6) matrix.

The problem is complicated somewhat when the number of targets
is less than the number of controls. In this case, a generalized,
or pseudo-, inverse matrix operation is used, and the transformation

matrix ’vl does not drop out. Nevertheless, a solution is obtained

by determining the Aw that makes 3T = 0. Letting A -'-\e and

B = “ Q K, k in Eq. 7-9, a particular solution (out of the

infinity of solutions) is given as

-1
Aw = -aT [aT] B §x.  @-11)

This particular choice of AW also minimizes the magnitude of the

control.change (See Section 5.3)., Therefore, the desired guidance

law can be written as

A&-T‘;z?

vhere T = - AT [MT]-I B.

As before, the computational steps described here are imple-
mented in LGUID.

7.3.4 Nonlinear Guidance

Bonlinear guidance parallels in many respects a targeting
problem where an iterative, linear algorithm is used to determine

control changes. The primary difference is that the trajectory is

P e S
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assumed to be reasonably close to the reference. By reasonable, it
i{s meant to imply that the algorithm should be able to rediréct the
s/c motion to the designated target by making a few ;terations (three
or four). In practice, a real trajectory can deviate widely from

the reference and thereby require as many as eight to ten iterations
before the guidance algorithm is able to compensate. For situations
where convergence {s not achievéd after many iterations, the guidance
is said to be divergent. The real criterion for qualifying a maneuver
as divergent i{s somewhat subjective and established by the analyst.
In some cases, an extremely slow rate of convergence ou the part of
the linear correction scheme can be attributed to non-adaptive itera-
tion logic.

‘Mathematically, divergence implies that the real world integrat-
fng conditicns acted in such a way that the guidance algorithm was
unable to rectify the motion, Physically, divergence suggests that
something in the dynamics or s/c system has been mismodeled, or under-
designed, and that it has interactions with the other systems to cause
wide, usually nonlinear, deviations from the reference mission, From
the G&N point of view, it is these missions that are often of the
greatest inte?est. They identify potential problems either in the
baseline configuration or with the navigation and operational proce-
dures. In many instances, divergence in the guidance can be traced
to some weil-understood phenomens, e.g., controllability, trajectory
non-linearities, suboptimal schedule of guidance evants, etc,, but

8 clear identification and resolution of these problems in terms of
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changes to the system d:sign and/or operational procedures may not
be so straightforward,

The basic computational steps taken in a single iteration are
as follows: First, an estimate of the actual state vector and the

corresponding estimated integrating conditions are obtained from

the simulated orbit determination logic. The estimated state is

integrated to generate the estimated trajectory between the guid-

< gy

ance point and the target. At the targeted stopping conditions,

e e aa e

an estimated target error is computed by
| AL = L -

I I; are the target variables on the estimated and refer-

ence trajectories, respectively, Next, a sensitivity matrix, S, of

: ; where T, and T

"

target variations with respect to control variations is computed

about the estimated trajectory according to the matrix relation,

S = 19

R

where 7 1is the state to target transformation defined in Eq. 7-3

and where @ 1is that partition in the augm>nted state transiticn

.

matrix which maps control changes into state variations (Eq. 7-25),

The matrix § has the format,

r
§
g

3(Tl, T2l tes2s Tn)
) (ul, Uys eeees um)

S -

and has dimensions (nxm), where n is the number of targets and m
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the number of controls. With S ic is possible to relate control

changes at the maneuver to target variable changes according to

LT = Sau, (7-12)

1f the matrix § is square, i.e., the number of controls and
targets are equal, then the solution to (7-12) r .. “res only a

single matrix inversion, namely,
-1 =
A [ = S Al . \’-13)

However, in most practical cases, § is a nonsquare matrix (m»n)

snd a generalized inversion must be used, {i.e,
] :
aw = sT[ssT]  aT. (7-14)

Note that Eqs. (7-13) and (7-14) again assume the form of 8 linear
guidance relation 4 u = r AT,

Once A4 has been determined, the updated controls are used to
generate 8 new estimated trajectory to see if the target errors have
decreased. This overall p.rocess is repeated untii the target errors
are made less than some specified tolerances, or until a maximum
number of allowable {terations has occurred. In SIMSEP, the prin-

cipal measure of target error is given by a so-called quadratic error

1]

Q - [Am)—-.
; Tror(d)

where A T(j) is the jth component of the target error vector «nd

function defined by
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TTOL(j) is the Jth component of a vector of target error tcler-
ances, Convergence occurs in the nonlinear guidance whenever Q is
made less than one,

Guidance divergence is said to have occurred if the quadratic
error function is greater than the backup convergence criterion
(APK) after iterating a maximum number of times (NMAX), Divergence

also occurs if the quadratic error functiou increases c¢1 three

successive predicted corrections. As far as the Monte Carlo nission

currently being executed, divergence is considered to be catastrophic,

and the mission is ended. As a backup, weak convergence occurs if
strong convergence fails to be satisfied but Q is less than A@K,
In this way, the nonlinear guidance algorithm can be tolerant of
"near misses" without bringing the mission to a halt,

Another feature inciuded in the nonlinear guidance logic is
the ability to weight certain low thrust controls more than others,
This permits the user an eided flexibility whereby he can effect a
normalization of disparities in the units associated with controls.
In addition, the user has the option to arbitrarily weight some
controls more heavily, based upon knowledge and experience gained
during the trajectory targeting process.

Algorithms based on the computational steps outlined above are
implemented in NLGUID, Both delta-velocity maneuvers and low thrust

corrections are handled by esesentially the same logic with Au in
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Eqs. (7-13) and (7-14) being a velocity update for impulsive guid-
ance, '

7.4 Simulated Orbit Determination

SIMSEP, in the strictest sense of the word, is not a complete
"simulation'" in that an explicit orbit determination process is
not included in the computational algorithms. The problem of
estimating a state vector is done by sampling a knowledge covariance
in much ths same way as it samples a control covariance or an ephem-
eris error covariance, Simply stated, an augmented knowledge
covariance is sampled to obtain an error in the estimated state
vector, ¢, relative to the actual trajectory state, Zh. Therefore,

the estimated state vector is given by

X

Likewise, parameters which have been augmented to the state and
estimated during the orbit determination process are also computed.

Typically, the knowledge error covariances which are read as
input to SIMSEP have been computed in an equivalent G@DSEP ruam,
they are equivalent in the sense that the same trajectory and
sequence of guidance events are evaluated, With this procedyre,
there is an added advantage of permitting a direct comparison of
guidance reSulc; computed in G@DSEP and SIMSEP and their dependen-
cies on the same state estimation results,

There are several reasons why an explicit orbit determination

capability has not been included in SIMSEP. Primarily, the
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estimation process is not as subiecs to trajectory nonlinearities
as is the guidance process. This is because the estimation errors
are generally small and well within the envelope of linearity. In
addition, this method of simulating orbit determination minimizes
the computational complexity of the program, while at the same time
repre.enting a cost effective means of performing an effective state
estimation,

7.5 Thrust Process Noise

Digressing briefly to discuss the actual trajectory again,
there is one very important process related to the generation of a
real trajectory that is either ignored or modeled by an effective
process in the other modes. This is the time-correlated thrust
noise, These independent stochastic processes corrupt the commanded
thrust controls, i.e., thrust magnitude, cone and clock angles, as
small ;ime-correlated perturbations, Each stochastic parameter is
modeled in SIMSEP as a Gauss-Markov sequence which is computed during

the actual trajectory integration., At time point t the vector

k+l’
Yo of stochastic parameters is given by

LIS}

S “A

where W . has been evaluated at tk. M-‘ is assumed to remain constant
over the interval At = tk+1 -tk, with its effect being determined by

the coefficient matrix, A.
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e At/ Ty J

wvhere 'rl, Ty ooy 1'n are correlation times associated with
each corresponding stochastic parameter. Ek+1 is a vector of white
noise terms which have statistics dictated by the requirement that

the process remain stationary; namely

G"j = (1 - e ) “j
0 2 ' th
where wj is the variance associated with the j component of

3 3 u
the ££k+1 vector. During the integration, Kt is evaluated at

the start, the half-interval, and the end of a normal integration

step,

7.6 Guidance Execution Errors

Once that a guidance correction has been formulated, the
execution of that correction must be performed to affect the actual
trajectory. The commanded correction computed by the guidance is
an idealized set of control changes which are invariably cc ‘rupted
by execution errors. For a low thrust control change, the executions

errors are actually built into the thrust process through the thrust
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biases and the dynamic process noise. However, for an imp_ulsive
maneuver, an explicit set of logic to corrupt the.commanded deltc-
velocity change must be implemented.

In general there are three basic execution errors which are
modeled for impulsive maneuvers: 1) pointing, 2) resolution,
and 3) proportionality. Givgn the commanded delta-velocity vector,
M-c’ in its heliocentric representation the in-and-out of the

ecliptic plane angles are determined as,
o = tanl (AV_(2) / AV, (3))
-1
@ = sin = ( AVc(3) /Iélcl ).

Specified pointing angle errors are sampled to formulate changes

in the commanded angles (§x and $& ) to simulate orientation errors for
the actual delta-velocity, -MA' Likewise, errors specified as
proportional to the maneuver magnitude, SP- » and as a minimum meas-
urable resolution of a maneuver magnitude, Sr, are also sampled and

added to the commanded correction., The actual velocity change is given as

lavn] = |Av] +Sp + S

for the actual velocity magnitude, The actual velocity vector is

given as )
AVA(l) = l A VH' cos (l +Sd ) cos (Q-‘- Se)
Av,(2) = l_AlAI sin(d+ S ) cos (£+58)

AV, ) AV, sin(@+38)
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9.1 Conic Equations For Position And Velocityzln Elliptical

And Hyperbolic Orbits

Given: r , v, t and p
o’ -0’ o

% Find: r and v at time t.

From the initial conditions we can find the inverse semi-major
axis

2

1.2 o
a r,

<

The mean angular motion

ol e

and relationships for the eccentricity and eccentric anomaly for

elliptical orbits (a>o) -
I, - Y,
e * sin E = ———
o (TF]
; t, v 2
: e *cos E = °. . 1
' o "
§ or for hyperbolic orbits (a<o)
i
T v
-0 -0
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b ohA e St o

e an . et o e T St bvm * mige s

At AL K e S




wren pmpw ¢ o L m

v om—

o A A

114

To find the position and velocity along the conic orbit. Keplers
equation must be ;olved for the change in eccentric anomafy.
Newton's method is used to so.lve the equation iterati\{rely. Let
Newton's method be given in the form

f(xk)
" T %% T Tk
k
Then for elliptical orbits

x=E ~-E
0

£(x) = x + e*sin Eo (1 - cos x) - e*cos Eo sinx ~n (t-to)
and for hyperbolic orbits

x =exp (H - Ho) .

f(x) = % e-exp(Ho) x + %e‘exp(-ﬂo)x_ﬂ' - In(x+1) - n(t-to).

The position and velocity at time t in elliptical orbits is given by

T -{1 - % [1 - cos(E-Eo)]} I, + %{ sin(E—Eo)
)

~ e*(sin E -~ sin E )}v
0’) o

v = - ‘:': sin (E-Eo) g "‘{1 - %[1 - cos (E’Eo)]} ¥

-0 o

d

and for a hyperbolic orbit

a 1
T -{1 - ;o [cosh (H—Ho)—].]}_t_o'l‘ Y
{e’(sinh) H-sinh H) - sinh (H-lg)} v,
ve _'C;j_?_ sinh (H-Ho) L3R +{1 - -:—[ cosh (H-Ho) "1]} .Vo

(]

-

o e
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APPENDIX 2

9.2 A Generalized 4th Order Runge-Kutta Algorfthm With

Runge's Coefficients For A Matrix System Of First Order Differential

Equations.

The 4th Order Runge-Kutta formula for numerically integrating

first order Differential Equations of the form

y' = £ (x,y)

is
h, )
Yeor "N tg U t25,+28,41)

where h is the stepsize, x is the independent variable, y is the
dependent variable and
- 4

i h hk°£
- £ k X1
fz f (xk+2 tyk+ 2 )

b T I

S' ————
fy=f v Ly, 3

f4 - f! (xk + hk’ yk + hk°f3)

To generalize these équations for an mxn Matrix system of

first order differential equations, write equation (1) as

P .
D =y, 0+ [ @ 2,0 ¢ e +

£,1.0)]

Q1)

T i SR Rt A R MR s 2
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and this can be written as

P

T = Y Y5

where

P, o= Fx, Y)

?2 - F'(xk+zi

1 = ' ‘__‘k
53 F (xk+2

By

Fl. = F'(xk+

116

( F + 2

hk.l")

Yyt o B

h
K
RS IRy

R R Y

Hoeindr L

el By ot




117

APPENDIX 3

9.3 Newton's 3rd Order Divided Difference Interpolation

Polynomial,
Given: (xl’ yl). ("2’ yz), (x3. y3) and (x,., 74)

Find: A third Order Polynomial that fits the given points

Construct the following table

» N .

[x, x{]
X, Yy [x3, X0 X ]

[x3' x2] ' [xk, X3s Xy x1]
X3 ¥, 1 [xee x50 %]

X, X
% Y4
vhere -
["14-1’ x] Vi1V . . 1=1,2,3
1+1 i .
x . ' -

[‘j"‘zn xj"'l: x] [1"'2’ 1*1 [ j+1 x ] . 1,2

*3

7 - P St ] ~ [esn e 1% ]
" Xet3 " %

lek+3"k+2,xk+1
2 k=1

3 e P A e e
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Newton's 3rd Order Divided Difference Interpolation Polynomial

has the following form,

‘e
‘

3 (%) = y1+(x-x1) . [xz,xl'] + (x-xl)-(x-xz)-[ x3.x2.xl] +
(x-xl) *(x-x,) - (x-x3) . [ Xy 1% 50X, ,x1]
while a Jrd Order Polynomial can be written

y(x)-ax3+bxz+cx+d

To find a,b,c and d, the coefficients of the x terms in the Newton's

Divided Difference Polynomial can be equated to a,b,c and d, such

tha't

(x40 %30 %50 %]
b= - (x3, Xy xl)oa +[x3, Xy x1]

‘ o . ]
c = -(x3, x, + Xas xz,xl) a (x2+x1) [XS’XZ’XI] + sz,xll

4 -(xl.xz,xs)-a + X, Xy [hz,xz.xl] - xi [xz.xll +y

Now a third order polynominal can be fitted to the four points and
y can be determined from a given x or a maximum or minimum can

be found from the following values of x,

_ b +/b? - 3ac

x []
s is ninimum
- -b — =
x 32
is maximum

[P R
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APPENDIX 4

9.4 Analytic Expressions for Terms in the Fjp Matrix

In Section 4.5 it was shown that the augmented state transition matrix,

’A’ is computed by integrating the matrix differential equation,
do= 0,

In order to efficiently integrate this expression, it i{s necessary to have

analytic representations for the individual elements of FA.

F, has been identified in equation 4-6 as a matrix of first order

A
partial derivatives cbtained by expanding the equations of motion. In

concise symbolism, FA may be written as,

F, = O
0xa

where fA was defined in equation 4-5 and x5 is the augmented dynamic state.

For an analysis wh.re covariances are propagated by the state transition
matrix, i.e., the STM mode, the (maximum)component vectors of x, are

defined as:

I s/c position vector ]
v s/c velority vector
o thrust control vector
X, = Ep = ephemeris body position vector
!p ephemeris body velocity vector
Hp ephemeris body gravitational constant
U, solar gravitational constant
L — -l

R

WM -
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and the corresponding FA matrix, in partitioned format, is

=

ol

o

L_T

When the covariances are propagated by integrating the covariance differen-

tial equation (see Section 4.6) in the PDOT mode, the augmented dynamic state

I, 0 0
0 Jes 1833le3

0 ]36 0 ]33 [0
0o P o
© J6 [° Je3s [P
0 0 ] 0
© o6 |® Ja3 |°

vector is defined as

X5

L
and FA in this

pom

-
I

e I<

1€

- L.

s/c position vector
s/c velocity vector
constant thrust controls

time-varying thrust ~arameters (6x1)

case 1s given as

o o ]36

o 0]66

o

>

e d )

o | !

0 0

k33 016 d31—‘61 w3161

0]36 [° ]31 [0 ]31

1,] [0 0
0 k6 |931)61 | 5311
0] o 0
0 L 0 0

-4 (71x17)
where the subscripts refer to the dimensions of the appropriate partitions.

-

w
-]

[+
[}

[

(15x15)
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In either STM or PDOT mode, the fully «ugnsnted state, as used by

GODSEP, may also incluce measurement parameter:.

However, the terms

appearing in FA corresponding to measuremeut parameters are zero because

they do not affect the dynamic process.

Specific matrices in F

£as

833

) are defired as follows:
partials of the s/c acceleration vector w.r.

components = Ja/ar ,

partials of the s/c acceleration vector w.r.

controls = Ja/du ,
partials of the s/c acceleration vector w.r.

of the ephemeris body = ag/&;p ,

partials of the s/c acceleration vector w.r.

constant of . he ephemeris body '35/0;4,, ,

partials of the s/c acceleration vector w.r.

gravitational constant = a_n_/ays R

partials of the ephemeris body acceleratiun

iticn of the ephemeris body = da /dr
positicn o ephemeris y LINL) S

t.

t.

t.

t.

t.

position

the thrust

the position

the gravitational

the solar

vector w.r.t. the

partials of the ephemeris body acceleration vector w.r.t. the

ephemeris body's gravitational constant = agpla,,p ,

partials of the ephemeris body acceleration vector w.r.t.

the solar gravitational constant = e;p/ays ’

partials of the s/c acceleration vector w.r.t. the time-varying

thrust parameters = Ja/dw , and

partials of the time derivative of the time-varying thrust parameters

w.r.t. the time-varying parameters = pw/aw .

R U
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As noted from its definition, the elements of the f33 matrix are
evaluated by differentiating components of the s/c acceleration vector,

a, with respect to s/c coordinates, i.e.:

£33 =

| @
irt|ln
-

where a 1s the sum of two contributing terms: the gravitational
acceleration, g , and the thrust acceleration, ap . The partials of g
with respect to r are the components of the so-called gravity gradient
matrix and are well-known, e.g. see Battin (Reference 4). In terms of
s/c position vectors relative to the gravitating bodies, . the gravity
gradient matrix is
T 2 5
/ = -
Og/or zi [35151 Ty I33:| uyles
with the summation being performed for all bodies. In this equation, 3

h

is the gravitational constant of the it body, and I, is a +2x3) identity

33
matrix.

The second matrix comprising f33 is obtained by differentiating the thrust
acceleraticn vector, as seen in the inertial frame, with respect to the
heliocentric position of the s/c. Since the rotation matrix relating the
body axis thrust vector to the inertial frame is dependent on the helio-
centric position, it is necessary to differentiate components of the
orthogonal rotation matrix as well as the components of the body axis
thrust vector. Recalling from Section 4.1 (page 20) that the thrust

acceleration is given by

& = A &

R

Ly u
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this becomes upon differentiation,

A A ~ [ o
LK aigl 2 8] ] 8 ! oa
=T _|Z3B| ap, ,|9B] ap, 4+[°%| ar, 4 A|°=r ahe
az [62:] X [a}:] y T z ax ‘A4-1)

A
where ?B’ ?ﬁ and kB are unit vectors defined by

A
btz /zl s

?B =rxZ /|zxz],
A A A
and ip = igx kB.

r is, ol ccurse, the heliocentric position vector of the s/c, and gs is

the unit vector of ecliptic direction cosines pointing toward the reference
star for the cone/clock system. In terms of the unit vectors defined above

and the unit vector for the reference star, the first three terms of the

’right hand side of equation A4-1 are

o 1 rlsa-’l‘c,, “T] :
or r -

% 1 [h% - I33] z » and
ér " r L

oty . ; 'Q’En;]- X [ain]

or Oz oc

R is the magnitude of the vector cross product of r and @®s. The matrices
Z, J, ana K are skew-symmetric matrices corresponding to the unit vectors

A
Zs, 35 and kg, respectively, and are defined as

L,

SN TS T P

e Bk
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r -y
2z = |0 Zg(3) 24(2)
24(3) 0 -24(1)
-24(2) Z4(1) 0 ,
b J
B T
J =10 -3(3) 3g(2)
JB(3) 0 - 1g(1)
-13(2) jg(1) 0
K = 0 -kB(3) kB(Z)
kB(B) 0 -kB(l)
-k (2 1 0
N 3 kg (1) |

The last term in A4-1 reflects how the body axis components of the
thrust acceleration vary with variations in the solar distance. Since the
only quantity in each acceleration component which depends on the solar
distance is the (scalar) power function. P(r), (See Page 16), the partials

of aj with respect to z become

a4 1 & BB ()
ar P(r) or

]
where the product of -9-'11‘ and OP/9r is a 3x3 matrix.

The 3x3 g matrix is

i
ov

o
"
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wvhere A is the transformation matrix from spacecraft cartesian to inertial

st
coordinates (Section 4.1) and -g‘u‘- transforms thrust controls to spacecraft

coordinates.
l' B q
Ov' = a' a' cos (clock) cos (cone) -a'
u X y
a; 4 sin (clock) cos (cone) a;
a; -a'sin (cone) 0
e -
for the cone/clock system, with a' = thrust acceleration in spacecraft

coordinates, and

av' _ [ ., . ]

= a -a -a' sins cos¥

2l
»
«

a}', a;: -a sinS sin¥
a; 0 a cosd
L .

for the in/out of plane system.

The 3x3 k matrix is

2
[353T - R 1]

vhere R = spacecraft position WRT the ephemeris body.

The 3x1 d vector is

d = Qg = -
Oup

ww{lw

The 3x1 m vector is

OlUs r3

[

S The AR ¢ k% S

P e P )
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s

The 3x3 p matrix is

osp .
P or T TS [“
P |

(¥, ]

The 3x1 q vector is

0 _ 5
17 omp e 3
P
The 3x1 s vector is
9 . 5
s = - -
U s .3
P

The 3x6 n matrix is
_ O¥
"7 ow 8

The 6x6 h matrix is

09
e—

~L

T,
w

no- 92 0
¥

L

where 7‘1, veny 1% are process noise correlation times.

1

23-D

L
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APPENDIX 5

9.5 TOPSEP Injection Modeling
9.5.1 Injection Controls

One set of controls which may be used in the targeting
and optimization submode of TOPSEP is the initial state Eo’ which

defines a hyperbolic escaye orbit relative to the faunch planet,

where
. =]
-° - v
| %]
and
<] x
_T_-'_o = y ’ !O = 5’
z z
L

X is the state of the S/C in cartesian elements immediately follow-
ing injection from a parking orbit about the launch planet. Instead
of using Zo directly as control parameters, one may simulate the
heliocentric injection process more realistically with a different
set of injection parameters (See Figure 9-1, Page 128):
1) L the magnitude of the radius vector at the
point of injection.
2) i, the inclination of the parking orbit,
3) Av, the magnitude of the velocity change from
the parking orbit to a hyperbolic escape
orbit.
4) X, the angle locating the projection of Av
vector in the parking orbit plane relative

tor .
-
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5) ¥, the angle locating the Ay vector out of
the parking orbit plane

6) t the heliocentric injection time.

o’
These injection controls are augmented to the control profile in
TOPSEP by correctly setting the following elements of the H array
in the $TOPSEP namelist: H (9, 21), H (10, 21), H (1, 22), H (2, 22),
H (3, 22), and H (4, 22). Refer to Page 15 in the User's Manual for
additional information for implementation., The initial values of
the injection parameters are not input in either the $TRAJ namelji:t
or the S$TOPSEP namelist but are determined analytically from the
initial state §0 based on certain assumptions about the parking orbit,
The injection state (50, Xo) of the reference trajectory for
any given iteration in TOPSEP is assumed to define a circular coplanar
parking orbit (the eccentricity is very small but non-zero to accommo-
date future program modifications for elliptical parking orbits). An
in-plane Av is applied at time to which injects the S/C from the

parking orbit to the hyperbolic orbit, Thus, the nominal or refer-

ence parking orbit and injection controls are uniquely defined.

o=zl .‘
i = the inclination of the hyperbolic orbit j

= - ' J’
Av l Y, !Pk‘ s where !pk is the S/C's velocity %

in the parking orbit prior to injection

X = 1] o ¢ Ay
cos T AV
o
¥ = 0
t = 0
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The velocity in the circular parking orbit prior to injection is

where //JE is the mass of the Earth.
*

During tho: construction of the perturbed trajectories and
trial trajectories in each iteration of TOPSEP, the injection controls
are changed by some pre-determined amount so that a new cartesian

/ ’
state (r , v ) may be defined. When the injection controls r , i,

-0’ =0 o

or to are modified,a new parking orbit must be computed. Changes to
’
these injection controls affect both position EJ and velocity v,

however, modifications to Av, X, or ¥ affect only velocity xé.

’ ’ .
1f L i, and to are changed to L i, anu t; a new state

/

(50, !;k) may be found. First, the unitary angular momentum vector

~
h, the node vector E”(Z , and the longitude of the ascending node N

must be computed. If

h o= X, x vy
then
[y
h = h/h
and
n = | hx " = a /n Ns tan”! (% /-h.)
-Q 0 Bt —Q  a 0y

For the case in which the parking orbit is in the ecliptic,the node is

defaulted to be the %X axis so

A
n = |0 . 1= 0 radians.
-_Q

*
Finite differencing techniques are used to calculaste injection control
corrections for targeting purposes,

p—
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The angular position @ of the S/C in the orbital plane as measured
from the node is

injection time nominal parking orbit

g = {K. traveled by changing} + {Lof S/C from node in}

0 = (t,o't) He + cos-l(-r-o'aﬂ)

o .3
(r.) r
Finally, ( cos{) cos § - sinf) sin@ cos i’
r' = sin{) cos @ + cosfd sin@ cos 1’
-~ 0
L sin@® sin i’
and
~ -
cosf) sin@ + sinf) cos @ cos i’
v’k = Mg sin{) sin@ - cosf) cos@ cos i’
P r’ .’
0 -cos @ sin i
e -

\_r:) is constructed by adding the delta-velocity vector A !'

to the S/C's parking orbit velocity y_; The vector A_\L'is computed

K’
in terms of in-orbit plane and out-of-orbit plane components. Let

4
Av: x', and ¥ be modified injection controls, Then

’ ’ ’ 4

AXI= Ay’ cos (\ll') cos(X') 5
TS
’ / ’ . ’ ’ .
Ay, = Av cos (¥) sin (X)) h x ]
lh’x r’l
- -0
’ 4 ¢ '
AV, = AV sin (¥) h
—
where
h'= ! xv'’,

-0 nd

AY_; is the vector in the radial direction _r_;, A‘L_;_ is the vector
orthogonal to _1;; in the orbit plane, and A‘L; is the vector normal to

the parking orbit plane and in the direction of the angular momentum

I'4 7’ /
. v = vy + v and a new initial state vector
vector, Thus Yo Yok Av

X! has been established.
-0

PPN —
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Figure 9-1 illustrates how the injection parameters determine the

new initial state vectors ' and v'.
-0 -0

Figure 9-1, The new state vectors, ;é and xé, as
defined for perturbed and trial trajectories
using injection controls,
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9.5,2 Tug Multiple-Impulse Orbit Transfer

When the injection controls (r , i, t,, Av, X, Y ) are
applied in TOPSEP, the reference parking orbit is likely to change
from iteration to iteration, 1In fect, it is possible that the park-
ing orbit characteristic of the last iteration may not be attainable
directly from an Earth based launch within realistic launch constraints.
Therefore, it becomes necessary to consider the interface between the
SEP S/C and the launch vehicle 1in order to predict the "cest'" of
achieving the reference parking orbit, The cost may be estimated
indirect’y by determining the launch vehicle fuel budget to transfer
the SEP S/C from some nominal inner parking orbit to the outer refer-
ence parking orbit, If the inclination of the inner parking orbit is
realistically constrained, an orbit plane change may be necessary to
complete the transfer. As the angle of the plane change increasses
ine estimated cost of the orbit transfer will increase dramatically,
The estimated cost may then be used to distinguish between acceptable
and unacceptable outer parking orbitr while simultaneously sizing the
fuel expenditure for presently conceived or operational launch vehicles
(or intermediate stages). An additional e¢fficiency check may be made
by comparing the fuel expenditure of the multiple impulse orbit transfer
with that of a single impulse injection from the inner parking orbit.
The only requirement on the single impulse is that it provide the
correct v  vector. The single impulse calculation is not intended
to be used in conjunction with the thrust control profile for targeting
but rather as a standard for determining the inefficiencies of the

multiple impulse injection process,

g e et
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The launch vehicle simplistically modeled in TOPSEP is the
expendable space tug*. Initially, the tug is in a circuler inner
parking orbit whose equatorial inclination is constrained due to
bounds on the booster launch szimuth., The tug then performs the
transfer to the outer parking orbit, the characteristics of which are
described in Section 9.5.1., The outer parking orbit is also circular;
however, it is assumed to have an inclinstion and sscending node equal
to those of the hyperbolic escape orbit. The tug's path from the
inner parking orbit to the outer parking orbit will be & coplanar
Hohmann transfer if the required equatorial inclination does not
violate the launch azimuth constraints. Otherwise, the tug follows
a modified Hohmann transfer (i.e., a regular Hohmann transfer in the
inner orbit plane followed by a plane chsnge and circulsrization at
the line of intersection with the outer orbit plane). The equatorisl
inclination of this transfer orbit is either the maximum or minimum
inclination bound such that the required plane change is a minimum.
For the coplanar transfer the ascending node of the inner orbit is
fixed; thus, the launch szimuth may be computed explicitly and tested
for a constraint viclation, For the plane change transfer the lsunch
azimuth is fixed, and the inner parking orbit is uniquely determined
when the minimum plane change condition is enforced.

Figure 9-2 {llustrates the selection of the inner orbit normal
vector which minimizes the plane change for the transfer to the outer

parking orbit.

*Although the launch vehicle is referred to ss the space tug, in the
remaining discussion, the sjecific vehicle is inconsequential to the
sizing of the fuel budget (i.e., the vehicle may be a trans-stage,
Burner 1I, Centaur, etc.)

-
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zec normal vector of

inner orbit mini-
mizing plane

f change, ¢

locus of normal
vectors for orbits
with minimum
equatorial inclination

normal vector of
outer parking
orbit

ec
locus of normal
vectors for orbits
with maximum
equatorial inclination

ec

Figure 9-2 Selection of the Normal Vector for the Inner
Orbit Which Minimizes the Plane Change

The larger cone in the figure represents the locus of normal vectors for
all possible inner orbits having the maximum equatoriasl inclination
sllowed by the lasunch szimuth constraints (AZMIN and AZMAX in S$T@®SEP).
The smaller cone {s the locus of normal vectors for orbits hsving the
minimum equatorial inclination, which in general will be equal to the
latitude of the Kennedy Space Center (28,608 deg). If the normal vector
of the outer parking orbit falls betweer the two cones, the parking
orbits ere assumed coplanar, 1f the normal vector falls outside ¢f this

region, the inner parking orbit is chsracterized as follows:

Wit ar B~
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(1) the lnner orbit is inclined to the outer orbit by the
angle @ where ¢ is the minimum angle between
the normal vector of the vuter crbit and the nearcst
cone,

(2) the normal vector of the inner o:-bit becomes the
projection of the outer orbit normal wvector on the
nearest cone,

For both the Hohmann and modified Hohmann transfers three

distinguishable velocity increments or Av's will occur. Figure 9-3
illustrates the relative positions where these maneuvers are executed

for the general casea (ra specified by RP1 in $TOPSEP).

z
ec 4;30
intersection v
of orbit ‘ -0
planes
r
=0
A!a -
outer parki a
orbit ‘.G.\ 1
‘ ) |
\ = v
\
\
\
\
transfer \
orbit
X
. ec
inner parx
ing orbit

FPigure 9-3 The Tug 3-Impulse Orbit Transfer
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The first impulse A!a occurs at periapsis of the Hohmann trarsfer
at the line of intersection of the parking orbit planes. The second
impulse Ay_b occurs at apoapsis of the transfer orbit and provides

a8 velocity increment to circularize the orbit and :o change orbit
planes if necessary. At a point on the outer parking orbit prescribed
by the injection position vector I, a third impulse Ayo is executed
which places the tug on a hyperbolic escape trajectory from Earth
{Note that the injection impulse AY, is exactly the same as the
Av vector discussed in Section 9.5.1), If both parking orbits are
coplanar the line of intersection becomes ambigious so the impulse

position vectors and r, are assumed oriented such that

“r T
= a =o
=a
r
0
anl
r, I
T = b o
—b .
b
o]

however, the impulses will always be referred to individually as in the
orbical plane change example,
The msgnitudes of the velocity increments Ava and Avb for

the general case ave computed as follows,

TN A et A Sads LS e
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- ‘/ Mg ! 2 MYy r,
(V) ~ r, ’ (Vg) ™ ‘/ ra(ra + rb)
- 2 Mg x, + Mg
Vy) = V Ty (ra + rb) Vp) T

Since the first impulse does not initiate a plane change and since the

velocity vectors before and after the impuise are aligned

+ -
A.va = (va) - (va)
Mg 2 T
Ava = r r +r, -1
a a b

The second impulse may perform a plane change through the angle ¢ .

Thus, by applying the law of cosines

. 5
Av, = ((vb.'-)2 + (vb-)2 - 2(vb+) (vb ) cos P )

If ¢ = 0 the above equation reduces to
+ -
Avp = (v - )

2 r
Av - "‘E a
b rb

b .
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The magnitude for the injection velocity increment Avo is
dependent upon the state vector 2(_0. The computations are discussed
in detail in Section 9.5.1.

Once Ava, Avb, and Avo have been calculated the fuel
budget for the space tug may be computed, The tug's dry weight (wtug)’
the propellent weight (wfuel)MAX’ and the tug's specific impulse (Isp)
are specified in the input namelist (TUGWT, TGFUEL, and TUGISP in

$TOPSEP). The fuel required for the first maneuver (wfuel)a is then

- Av,
(wfuel)a B 1 - exp ( gl ) wtot:
sp
where
= + +
wtot wtug (wfuel)max wsep

wsep is the weight of the SEP vehicle and g is the gravitational

constant, It follows that the fuel for the second and third maneuvers

. v
b
(wfuel)b 1- exP(SIsp ) '( wcot (wfuel)a )

are

and

- AV
, 0
(wfuel)o - 1 - exp(gI ) * (wtot B (wfuel)a -(wfuel)b)

sp

The required fuel budget to perform the orbit transfers including injection

is then

W, 1)

fuel’o

W

= )
(wf“el)tot (wfuel)a fuel'd

R T T SR ORI

CRTR I

net
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If
T N T PO T
fuel tot fuel max
the outer reference parking orbit is undesirable and messures must
be taken to make the Injection state and octer parking orbit reslistic,
Calculations for the single impulse injectior. from the inner °
orbit proceed as follows, The velocity at periapsis (va)+ necessary

to obtain the hyperbolic excess veloc..ty Ve is

+ P | et1,
(Va) = 'al (e-l)

where a and e are the semi-major axis and eccentricity of the hyperbolic
orbit. The parameters a and e are determined so that the vector v, re-
sulting from this orbit is the same as that obtained from the multiple-
impulse injection process.

The single velocity increment is then

_ (Mg e+l " UE
avy * lal (e-l) B T

a

The required fuel expenditure is then

= - = Av
(wfuel)a 1 xp (——'—1) wtot

SISP

A comparison of (W ) and (wfuel) will indicate the relative

fuel a tot

efficiency of the multiple impulse injection process.



e

137
APPENDIX 6

9.6 Control Weighting Schemes for TOPSEP

Various weighting schemes are provided to allow the MAPSEP
user flexibility in scaling controls in the TOPSEP mode (Chapter 5).
The purpose of these schemes is to alter the contours of constant
cost and constant target error in the control space so that the
projected gradient algorsithm may converge more readily. Convergence
problems occur most often when elements of the control vector differ

in units. For example, there may be considerable difficulty in

finding a converged solution when thrusting angles (cone or clock)

are selected as controls in addition to thrust phase times. Whereas
the internal units for the angles and times are radians and seconds
respectively, the corresponding elements of the sensitivity matrix
may vary by several orders of magnitude. That is, the sensitivity
of the targets to a change of one radian in thrusting angle is many
orders of magnitude greater than the sensitivity of the targets to
a change of one second in thrust phase duration. In the example
just described one would find that the PGM algorithm would compute
a control correction which would try to eliminate the target errors
by large changes in the thrusting angles and very small changes in
thrust duration, Unfortunately, large control changes are often
invalid in the very nonlinear control space associated with low
thrust trajectories. To alleviate this problem, the normalized
contro]l weighting scheme has been devised, The diagonal elements

of the control weighting matrix are defined as

O R
i3 [ %3]

R AR NI S8+ TSt B ey e
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Application of this weighting matrix to the controls determines a
sensitivity matrix whose elements are roughly the same order of
magnitude. Thus, the removal of the target error is spread evenly
among the selected controls rather than among >nly a few., Hopefully
all the cortrol changes will be small enough to be valid in the
nonlinear control space.

Another tvpe of convergence problem may occur, Sometimes
elements of the sensitivity matrix vary by orders of magnitude
even though the controls are all of the same units, For example,
target parameters are much more sensitive to changes in thrusting
angles early in the trajectory than they are to changes in these
angles late in a trajectory., If the controls are not scaled, the
PGM algorithm computes a control correction where changes in
thrusting angles during early phases are unacceptably large and
changes to ilic angles during later phases are undetectable. The
following weighting schemes have been devised to spread the removal
of target error more evenly among the selected controls.

a) Sensitivity weighting

] sy - o flegl v - v

b) Combined sensitivity, target error, and control weighting

N
[w] i Z 'sij, * ey
O 1 — Yy
i=1
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Gradient weighting
N
Gj = 2% Z Sij €,
i=1

<, |
[+],, - T

Averaged gradient and control weighting

SRR

where G is defined in c.

S
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APPENDIX 7

9,7 Integrated State Transition Matrices for Computing the

Targetin;; Sensitivity Matrix

Within the threc¢ basic modes of MAPSEP, trajectory guidance
and/or retargeting represent one of the primary cuaputational
problems worked in the program. Whereas the logic controlling
these calculations is, in general, straightforward and eassily
understood, the actual execution remains as one of the more costly
computational operations to be performed. This is especially true
in TOPSEP and SIMSEF where targeting over long trajectory arcs is
done repeatly. In order to minimize computational expenses, an
algorithm which uses state transition matrices integrated with
the trajectory has been implemented and is used exclusively in
GODSEP and SIMSEP for computing the targeting sensitivity matrix.
In TOPSEP, the user has the option to use either this or the more
expensive, but equivalent, numerical differencing algorithm.

The targeting sensitivity matrix, S, 1is a matrix of linear

partials relating variations in the control variables, Au, to

veriations in the targets, A T, according to

41 =5 Au .
\
Looking at the targeting sensitivity matrix in more detail, it is

seen to be of the form,

AT, T, ceens T.)

‘,(ul, uys e ees um)

where the T's are selected target variables and the u's are controls.
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Typical target variables include xf, Yf, Zf. B«T, BsR, etc, which are
all evaluated about the final trajectory state., Typical low thrust
control variables are the thrust phase stop time, thruster throttling,
cone angle, angle in the same or different thrust control
phases.

To provide a conceptual understanding of how S is evaluated
from trajectory information generated in the augmented state transi-
tion matrix, it is convenient to consider the trajectory segment

depicted below where time poinfs k,

Reference Trajectory

k+1, .... and f are shown bounding thrust control phases n, n + 1,

etc. In the figure, time point f denotes the target time and represents

the trajectory etorping condition. Considering a specific thrust con-
trol phase, say n, it is recalied from Section 4-5 that the sugmented
state transition matrix generates partials of state varistions of time

k + 1 with respect to state chaiges at k and control variable changes

interior to thrust phase n, In particular, these partials are contained

in the ! and @, partitions ¢f the augmented matrix and may be sym-

bolically written as,

- e
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- (%) Yo 2, Viy Vs V)i 4y
A x, vy, z, Vx) xy’ Vz)k

] . - Oy ¥y 2y vy Vo V)
an u o (u,, u, 1, u)
| R AR A

The u's correspond to the phase stop time, throttling, cone augle,
and clock angle for the nth phase. (Cone and clock angle rates are
excluded from this treatment since their partials must be obtained
by numerical differencing.)

If u2 (for example) in thrust control phase n is specified as
an active control for the targeting event being considered, then the
action of u, on the state vector at f is computed by pre-multiplying

the appropriate column from Ou(n) for phase n by all intervening

‘ 's, i.e.

3 % )X
< £ .} } i 9k _ .
auz (n) f, k+3 k+3, k+2 k+2, k+1 Auz (n)
Hence, an augmented Ou, say §u, can be constructed by storing and
pre-multiplying appropriate columns from the Ou'a as they are computed
during trajectory integration. The resulting 6u gives the partials of
the finel state with respect to the active controls occurring in the

various thrust phases between k and f and may be written as

a é(x, Yo 2y Vs Vo, vz)f

] n
v A\ul, Upy seeees um)

[ 23



[—

\ ——

143

The final component necessary to compute the requisite S metrix
is the evaluation of target variable partials with respect to the
{inal state, Ef. This is most expediently done by a numerical dif-
ferencing algorithm to generate the differential point transformation

matrix, '1 . The '\'\ matrix can be written as

_ & (T Tys veey Ty
~\ d(x, ¥, 2, vy v, V)¢

Now S 1is seen to be

s = "\ 3 .
u
In TOPSEP where initial state conditions are also permitted as
control variasbles, it is necessary to extend the above procedure but
not the computational method, For this special case, only the chained
; 's are needed to compute the partials of final state with respect
to ckcnges in the state at k, Clearly, selected columns from !f,k

which is defined by

If,k = If,k+3 §k+3, k+2 }k+2, k+l §k+1, k

may be augmented to the previously defined 3u to give the requisite

targeting sensitivity matrix to be used by TOPSEP,




