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NOMENCLATURE
A defined in Eq. (IV~18), also of the order one
Al defined in Eq. (II-6)

Aij defined in Eq, (IV-33)
A, (E),A ’Ab random fast fluctuating acceleration due to smaller
i a,R*b,k . .
equilibrium eddies

B,C defined in Eq. (IV-18), C also represents the mass concentra-
tion defined in Eq. (Vv-25)

B, ,B, defined in Eq. (IV-22)

Bc defined in Eq., (IV-23)

a,b,c defined in Eq. (IV-15), a, b are also constants in Egs. (III-28b)
and (III-28¢)

b! , defined in Eq. (V-74)

a,b,d numbers of moles defined in Eq, (v-1)

az,bz,cz,da,ez,gz defined in Eq. (IV-30)

D grid size defined in Eq. (IV-28b), also as a constant parameter
given in Eq. (V-25)

TAE activation energy

Eo <UkUk>D, turbulent energy given at = = 0

F distribution function of chemical species z

Fa distribution function of chemical species o

F,G,H defined in Eq. (L~II~3)

] defined in Eg. (IV-5)

¥ function of (%,ﬁ,t)

(Fm)i,(Fn)i chemical frozen case of Fm and Fn
(Fm,v)i’(Fn,v)i defined in Eq. (V-53)

Fp,v} defined in Eq, (V-61)
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£y

h%ij

ml(t},mzit),mECt}

11:F12:F135

yii

defined in Eq, (IV-16)
distribution function of fluid slement

joint distribution function of fluid element affected
by two families of eddies with different lepgth scale

Gaussian intensity of source at x = 0
singlessode Green's function

multi-mode Green's function

defined in Eq. (V-7)

heat of combustion

It at source for vy < 0

b at source for y » 0

defined in Eg. (V-30)

z at source at x = 0

uormalized temperature due to chemical reaction
normalized temperature in a chemical frozen field
collection of constants in reaction rate
specific reaction rate

constant

defined in Eq. (II-3)

defined in Eq. (III-3)

defined in Eq. (IV-4)

defined in Eq, (IV-22)

constants in LEq. (V=77)

rate of molecular dissipation of chemieal species, also
defined as Aalﬂb -

molecular weight of fuel, oxidant and product, respectively
defined in Eq, (L~III-5)

Functions of ¢
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m, n at source at x = 0

defined in Eq. (V-45)

defined in Eq. (V~26), also defined in Eq. (L-II-1)
pressure

general function of momantum quantity

defined in Eq. (II1-6)

defined in Eq. (IV-4)

Gas constant |

defined in Eq. (IV-26), also defined in Eq. (IV-9)
subscrint representing the species r

condition of sources at x = 0

sﬁbscript representing the oxidant

inicial time

time

B t/2, dimensionless time used in Chapter III defined in
ao .
Eq. (IV~9)

(Tj)

t=t
Q

 defined in Eq. (IV-26)

(T ) s (T, )
= =
a,j to b,j’t t0

relative and abseolute velocity vector of the fluid element,
also represents the relative and abscolute velocity vector
contributed tc the fluid élement from the group of eddies
with a larger length scale

x-component of a

3 at source at t = to

relative and gbsolute velocity vector of the fluid element
contributed from the group of eddies with.a smaller length

scale

3
y-component of u
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ﬁ,ﬁ relative and absolute veloecity vector of the fluid element
in a multiscale turbulence field

v z-component of a.

b position vector

xij spatial independent varlables other than time

%110 (x4 b=t

xi,j’xz,J %3 4 vector variables in Eq. {1L-~I1I-6)

e

*10°%202 %3¢ (xl,j’xZ,j’x3,j)t=to

X 3%55%g independent varizbles other than time

x! xf/A!

Y a funetion of‘(xl,xz,x3,t)

Y, a function of (§l,§é,§3,t)

¥, defined in Eq. (A~11I-10)

YBao (YBa)t=to

YZQ”YZal’YZaZ’Y2a3 defined in Eq. (A~III-17a)

y' y/A'

z chemical species concentration per unit mass

z, mass fraction, z, of the ath chemical species

<> ensemble average

<> normalized ensenble average

&, B defined in Eq. (V-8), B also defined in Eq, (IV-1)

Bl characteristic equilibration rate of energy-centaining eddies

g characteristic dissipation rate

B8y defined in Eq, (III~2)

8e defined in Bq, (III-4)

v kinetic vigcogity
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Bysdy s

§3 ’éij

dissipation scale

integral scale

defined in Eq. (V-76)

length scale of eddy family "a"

length scale of eddy family "b"

apparent length scale

hy/h,

Aelﬁa

transition probability

a funetion of time

chemical reaction term in Eqs. (II-8) and (II-3)
production of o species due to chemical reationm
a cunstant

y/x

average mean velocities dividing line

oy/%x, also a dummy variable in Eq. (IV-18)

‘auxiliary variable in integral transform

function of time in Eg. (IV-31)
defined in Eq. (IV-31)

defined in Eq. (L~IXI-4)




CHAPTER T

INTRODUCTION

I.A. General Review of the Development of Turbulent Flow Analyses

As noted by many investigators, turbulence has to be treated statistically. ~
Continuum f£luid mechanics is, of course, governed by the Navier-Stokes egqua-
tion. .The traditional analyses of turbulence have employed the various moment
equations derived from the Navier-Stokes equation for the velocity field and
associated moment equationsg for the scalar fields of interest; In these
analyses, closure problems were immediately encountered. ThHe classical statis-—
tical theory provides a better description of the basic characteristies of
turbulence, but it ig focused on certain idealized cases, These studies
revealed much of the structure and dynamics of turbulence, yet they were never
intended for nor capable of solving engineering problems. Because of this
lack of proper modeling of engineering interest, many engineers sought solu-

(1,2,4,5)

tions from phenomenological theories. The major sources of the

phenomenological theories are familiar to the reader. They are mostly modeled

Chapter 5) apd rely heavily

after some form of Prandtl's mixing length theoryi}’
on empirical formulations leading to quantitative results.

Glushko(s) presented a model which is typical of the Boussinesq relation-
ship approach. Donaldson(7) used the second order strizz equations and the
method of Invariant Modeling originated by himself. Again, he used various
forms of the Doussinesq model in eliminating triple order moments in terms of

(8)

gradients of second order moments. Another approach due to Bradshaw in-
corporated the turbulence energy equation and a non-gradient type of modeling

in which terms such as Reynolds stress are replaced by functioms of the turbu-
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lence energy. Basically, their approaches are more or less the same, and
differ oniy in the particular modeling employed in the closure of the second
order moment equatlons,

Other phenomenological theories, rather than adding turbulence energyu/
equations or the stress equations, proposed a model equation for a total
viscosity or a length scale equation. Harlow and Nakayama(g) derived a
transport equation for the dissipation scale from a physical argument, Nee

and Kovasznay(lg)

proposed a differential field theory by formulating a
transport egquation for the above-mentioned total viscosity, again from a
physical argument in addition to that necessary for closing the turbulent
momentum equation, Spaldingill’lz) formed a transport equation for the
integral length scale. Ue recognized the importance of allowing the turbu-
lence field to determine this coupled variation throupghout ﬁhe flow field.
His formulation aiso rests on physical reasoning apart from that inveolved in
closing the lower order {(moment) eguations.

Another group of theories consists of those making substantial use of v

(13) (14) are notable contributors in

statistical arguments. Tchen and Lin
this area. Tchen determined the diffusing properties of small eddies By
considering the pair density of a diffusive element through amn analysis of

the Liouville equation of the statistical mechanics., However, this diffusion
is of the near-equilibrium gradient type.which is known to be invalid din
general siuce the large energy containing eddies, which are usually anisotropic,

dominate the diffusion processes, Linclé)

described a fluid element as being
comprised of two mass fractions, each having different dissipation character-
isties, thereby taking into account both the large eddy and molecular proper-

ties of the fluid elements. His governing equations, which describe the

evolution of the chemical species mass fractions comprising the fluid element,



are not easily compared witl moment equatlions derived from the Navier-Stokes
and species-conservation equations, and their consistency cannot be readily
assessed. However, Lin's work gives the substance to the simplified statis-~

tical model developed by Chung(ls)

whicih is very successful in many aspects,
especially in its consistency in comparison with the wmoment equations derived
from the Navier-Stokes and species conservation equations. The primary purpose
6f this theory is to replace the various empirical closure schemes (which
often do not reflect the true character of turbulence) by a statistiecal
description which draws on known properties of turbulence as determined by
the classical statistical theories of turbulence. It is the ‘intent of this
theory to study practical turbulent shear flows in a context allowing access
to both the results of the classical statistical theories and the voluminous
empirical information in the engineering theories.

The concept of the one-point averages veing the appropriate moments of
a probability density function which is governed by a kimetic equations, has
been alien to many engineers working with turbulent flow problems. Since an
average (ensemble average) simply implies a weighed moment of a probaﬁility
function, one should realize the need to analyze the manner in which tﬁe
averages are constructed, especially when they involve chemicall§ reactive
species. This immediately leads us to demand tools in kinetic theory which
describe the probability density function. In the next section we will review

several turbulent flow descriptions based on kinetic theories in recent years.

I.B. Review of Recent Kinetic Theories of Turbulent Flow

Several turbulent £low descripticns based on kinetic theories have been

proposed in recent years [see Lundgren (1967), Chung (1967, 1969, 1970, 1971,




1972, 1973, 1974), Spalding (1971), Fox (1971), Yue, et al. (1974)]. The
objectives of these theories, except for Chung et al., have been limited to
studies of the flow fields; whereas that for Chung et al. included the
analysis cf chemical reactions. Starting from the formulation of statistical
mechanics and employing the Navier-Stokes eauations, Lundgren(lﬁ) derived
an equation governing the one-point distributlion function of fluid elements.
There are certain direct contact peints between Lundgren's and Chung's work,
and these are well described in References 23 and 22.

A description of the simplified statistical theory begins by pointing
out the major differences between the approach of this theory.and that of the ,//
classical statistical and engineering theories. The classical studies proceeé Y
in large degreze by sprctral analysis yielding one of the mest important
conceptual results in turbulent analysis-~-~that being the association of wave
numbers ox the reciprocal length scale with the eddy size. Particularly, in
the analysis .of the spectral energy function, a given range of turbulent
energy is associated with a2 given range of eddy sizes. Kolmogorov's universal
equilibrium hypothgsis utilizes this spectral representation to describé, in
the case of high turbulence Reynolds number, what is essentially a statistical
saparation between the low wave number, energy-containing eddies and the high
wave aumber, viscous (near equilibricm) region., This result, which has been
originally argued for the homogeneous tuqulence, is known ta be true also

in shear flow.(l» Chapter 4)

This 1is one of the a priori conditions that
forms the basis of the simplified statistical theory. The primary difference
between these two theories is that the present approach attempts no spectral
analysis since it 1s recognized that this method leads immedlately to an

unsolvable formulation in the type of problams under censideration. It is

known that in the high turbulence Reynolds number flows the energy-containing
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region of the spectrum {(eddies) accounts primarily for the observable quanti-
ties, while the high wave number region attempts to degenerate the energy
containing eddies toward isotropy.  In this context, the mathematical descrip-
tion is in terms of a probability density function (PDF) for odne-nonequilibrium
degree of freedom which represents the whole energy containing region and,
hencé, the whole turbulent field. In order to satisfy cextain characteristics
of high turbulence Reynolds number flows, the representative nonequilibrium
degree of freedom is assumed to evolve according to generalizﬁd Brownian

(35,24)

stochastics. Although statistical coneepts were employed in the classi-

cal theories, ne substantial advances were made in dealing directly with the
PDF. Hopf<25} has formulated equations for the characteristic functionul of |
this quantity, yet progress came to an early halt with the attempt to obtain
solutions. In this sense, the present theory could be looked upon as an exten-—
sion of the classical statistical work to include the formulation of a solvable
equation for the PDF (kinetic equation).

The essential point of comparison between the simplified statistical
theory and other engineering theories is between the various moments of the
Navier-Stokes and species conservation equations and the corresponding-moments
of the modified Fokker-Planck equation for the PDF. This is one c% the main
advantages of the present theory-~it can be assessed by comparison with the
same equation uéed throughout turbulent analyses of both homogeneocus and
shear flows. The very difference is that the closure assumption in this
theory is embodied in the single assumption of Brownian stochastics. This
closure assumption is free from the conventional concept of the gradient
Eransport. "It is also free from the necessity of additional often unrelated

assumptions needed to eliminate triple order velocity correlations which



occur in the turbulence energy and struss equations. The most distinguished
aspact of the theofy is that it is not necessary te drop species correlations
in chemically reacting flow problems having non~linear rveaction kinetics for
complete lack of any modeling method.

The simplified statistic~? theory has been used successfully on free
sheaé flows, wall turbulence, inert and chemically reacting flows.(26~3l’22)
The most notable was the treatment of the turbulent diffusion flame indicat-
ing the dependence of the finite flame thickness on the integral scale of
turbulence. At the time this result was obtained by Chung, the prevailing
concept was that in the limit of fast reaction rates there ekists a flame
sheet similar to that predicted by laminar amalyses. The many other theories
utilizing mixing length models yielded flame sheet solutions simply because
by the nature of the mixing length theory the governing equations became
identical in structure to their laminar counterparts, and therefore naturally
displayed the same limiting behavior. These equations attribute the same
properties to eddy transport as they do to molecular tramsport, which»is a
gerious mistake, Turbulence processes may or may not proceed at molecular
rates. If the turbulence is in equilibrium, molecular or gradient traﬁsport
may occur. Ascribing gradient transport to turbulence, as does the mixing
length concept, prescribes that the turbulent processes are locally governed
and are void of any long range nonequilibrium memory. Actually, whem a fluid
element ¢rosses an interface as a result of a large eddy motion, its interior
still maintains the properties existing before crdssing. Therefore, inm the
case of chemical reaction, the reaction can proceed only as fast as the fluid
element can break up through eddy breakdown and create new interfaces for
reaction. The result is that the thickness of the reaction zone is of the

order of the turbulence intepral length scale, independent of the molecular



parameters (viscosity, diffusivity, reaction rate, ete.). More of these
facts will be shown in the results of a specifie solution of two-dimensional

turbulent chemically reactive flow in a later chapter.

1.C. Multilength-Scale Turbulent Shear Flows: Extension of the Simplified
Statistical Theory
It was through attempts to treat some of the current generation of
turbulent shear flow problems that Chung's theory was found to be general
enough to include multiscale analyses in the context of its origimal formu-

lation. Bywater with Chung(23)

extended this theory to include two non~
equilibrium degrees pf freedom. He solved a pair of coupled Langevin equa-
tions, each representing different degrees of freedom, and derived a Fokker-
Planck type equation similar to that of one ncn-equilibrium‘degree of freedonm
originated by Chung. It was noted that in many flow fields of importance
there are more than one predominant scale of turbulemce, Turbulence fields
reflect the character of the physical mechanism by which they are gengrated.
Consequently, multiscale flows arlse as a result of the simultaneous presence
of more than one turbulence generating mechanism.

One example of this is the mixing of two streams, each having its own
length scale. This will result in a mixing layer between the streams, where
the statistical properties axe governed by both length scales and the relaxa-
tion or interactisn process which takes place between the two modes of turbu-
lence. Another multiscale flow occcurs at the trailing edge of a wing or
plate which has a small finite thickness, in which case there i# a length
scale associated with the thickness and another with the boundary layer at
that peint. Combustors used in propulsion systems generally present a turbu-

lence field composed of more than one scale. Swirl combustors obviously
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contain two possible different length scales-—one 1s due to the vortical flow
at the wall having a length scale corresponding to the size of the inlet
slits of the swirl chamber, while the other one is from the mainstream due

to its generating mechanism upstream. It is recognized that the turbulent
model needed must allow the variation of the scale length as determined by -
the flow field (similar to Spalding's approach) and must treat multiple
length scales, The bimodal characteristics of velocity distribution fune-

tions are also shown in Trenkiel and Klebanoff's(BB)

measurements in a
turbulent boundary layer.

It is the effort of this dissertation to find the general solution of
the kinetic equations gemerated in this theory of turbulence. The bimodal
method after Lee and Liu(aﬁ) as employed in references (26) through (31),
has revealed many salient features of turbulent chemiecally reactive £low. The
fundamental solutions to be constructed in a later chapter will afford
more direct and accurate solutions than those obtainable from the bimodal
approximation. Certain efforts are required in using the'Green's funqtion
to satisfy the appropriate boundary conditions for a given physical problem.

Lo the next chapter, we will review Chung's theory in detail.

The structure of a homologous turbulent mixing region characterized by
two significant dynamic length scales will be first studied in the third
chapter, The subsequent chapters will give the fundamental solutions of the
kinetic equations of the present theory. A specifie solution of a plane
turbuelnt shear flow with chemical reaction will also be presented as an
illustrative application of the Green's function method to the solution of

the present kinetic equatious.



CHAPTER II

REVIEW OF TURBULENT KINETIC THEORY DUE TO CHUNG

In the analysis of later chapters, the kinetic equations developed
from Chung's theory will be directly employed to solve certain physical
problems., In this chapter, we shall review certain basic concepts in the

formulation of the theory. For details, see references 15, 22 and 32.

II1.A. General Theory

As mentioned in the beginning of the first chapter, turbulence must be
treated statistically?/ Yet, the objective of classical statistical turbulence
theories has been limited to providing a certain basic understanding of the
dynamic structure of the homogeneous turbulence field. These theories are
not intended for nor capable of prdviding quantities of engineering interest
such as the distribution function for the inhomogeneoug flow problems. On
the other hand, the mixing~length type theories were not concerned with ‘the
study of the dynamic turbulence structure, but rather they were concerned with
the solution of the one~point averaged quantities of engineering interest for
the inhomogeneous flow problems. As it was pointed out earlier [Chung, 1972
reference (29)], Prandtl's approach could face difficulty when a chemical
reaction is imvolved. /In Prandtl's closure technique, the sccond order moments .
are first modeled in terms of the gradients of the first order moments via
suitable eddy diffusivities. It can be shown that such a model is equivaleat
to assuming that ;;; probability distribution functions of the fluid elements
anﬁ chemical species are in near statistical equilibrium. This is often

incorrect, especially in reactive flows [see Chung, 1967, reference (15)].
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Since it is the energy-containing eddies that account for the observable
properties of turbulence, a logical approach to a statistical formulation is
to model the turbulence dynamics around the energy-containing eddies according
to the known statistical behavior of the energy-containing eddies from the
classical statistical theornies,

Let us first make a conceptual distinction between the fluid elements
and the eddies. On the physical plane of a turbulence field, all size eddies
arc intermingled together (these eddies can be discerned only on a spectral
plane). A fluid element physically belongs to all size eddies affecting that
fluid element. Thus, the behavior of a fluid element at a physical point (§)
is correlated to all other fluid elements comprising the eddies of which this
flui& element, at (;), is also a constituent. The maximum size of the eddies
that affect a fluid element substantizlly is of the order of the integral
length scale of turbulence. Because of the transport of momentum and the
chemical species (as well as the thermal energy), which are contained in and
carried by the fluid elements, the description of the movement of the.fluid
element becomes the central point in the present modeling of turbulent flow,
This description will be carried out statistically as it 1s done with the
movement of the molecules in the moleculay kinetic theory.

There is a basic difference between the molecular kinetic theory and
the present description of the fluid elements. In the former, the collision
of a molecule with its neighboring molecules changes the momentum of the molecule
and, finally, randomizes its movement, while in the latter, the fluid element
is always in direct interaction with all fluid elements comprising the eddies
of which our fluid element is.a part. That is, the fluid element interacts
continually and directly with all fluid elements within the distance of the

integral scale,
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Lt is the movement uf the fluid element at a physical point (x) which
we wish to desaribe, hut it is the behavior of all size eddies surrounding
the given point (x) which determines the behavior of this fluid element.

Lf the eddies ave in nonequilibrium such that they have memories and pre-
ferred directions, then the movement of the fluid element at point (ﬁ) will
have preferred directions, and its behavior will be statistically in non-
equilibrivm, Hence, the present kinetic equations would contain the terms
which impart the overall effect of the eddies on the movement of the fluid

elements in place of the collision integral found in the molecular kimetic

equations.

II.B, Langevin Equations

As déscribed in the previous paragrapli, the behavior of a fluid element
at a given position (%) is governed by all size eddies of which the fluid
element is a constituent. These effects of the intermingled eddies on the
movement of the fluid element are well established in the classical statis-
tical theories,cz) for turbulence fields with sufficilently high turbulgnce
Reynolds nuwbers. These properties, to be discussed below, have been
originally established for homogeneous fields. However, their validity for
inhomogeneous fields has been strongly suggested by Batchelor(z) and by
subsequent researchers [see aiso Monin and Yaglom, reference (4)].

{L] Turbulence properties of fluld elements are mainly due to the
eddies whose sizes are of the order of éhe integral scale. These
eddies are called the "energy-containing” eddles.

[2] Behavior of the energy-containing eddies is statistically sepaxated

from that of the smaller eddies which are in statistical equilibrium.
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[3] Turbulence properties continuously cascade from the larger to the

AL 1 T

smaller eddies across the eddy spectrum and they finally dissipate.

The above collective properties of the eddies implies that the movements
of the fluid elements are mainly governed by the larger, energy-containing
addies which may be in nonequilibrium, and by the smaller, equilibrium
eddies. Shear and other turbulence generating wechanisms supply the energy- . b=
containing eddies and, therefore, these eddies may be in nonequilibrium;
that is, these eddies may be non-isotropic and contain preferred memories
imparted to them by the generating mechanisms. Through interactions between
the eddies, these larpger eddies become isotropic or random. ffor the usual
situations wherein the eddies are continuously generated, the energy-containing
eddies are in nonequilibrium,

The sum total effect of the eddies on the movement of the fluid elements
must contain both the nonequilibrium influence of the larger, energy-containing
eddies, and the completely random influence of the smaller, equilibrium eddies.
With tlie known eddy properties [1] - [3], the equation to be used to describe
the effect of the dynamics of interaction on the movement of the fluid.ele—

ments is the stochastic Langevin equation,

o= - B luy - <)+ AL 4K (11-1)

In the above equation, the first term on the right.side represents the influ-
ence on the fluid element of the energy~containing eddies, which may be in
nonequilibrium and contain preferred memories. The second term, Ai(t),
répresents the randomizing influence of the smaller, equilibrium eddies on

the movement of the fluid element. Ki represents the dissipation rate of
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the fluid momentum caused by the smaller equilibrium eddies, and the effect
of the mean pressure gradient and other body forces on the acceleration of

the fluid element., Bl is the characteristic equilibration rate of the larger,

(2)

energy-containing eddies, and is known to be
<Ukuk>l/2
By = A‘*"*EK———— (11~2)

where A is of the order of unity,

The description of the eddy influence on the fluid element by the Langevin
equation which separates the influence of the nonequilibrium degrees,
Bﬂhi - <u>i), from that of the equilibrium degrees, Ai(t), is possible
because of the eddy property [2].

The generalized Brownian stochastics describe a procesé which is governed
by a few nonequilibrium degrees of freedom and a sea of equilibrium degrces
of freedom rsherein the former are statistically separated from the latter, and
the characteristic times of the former are sufficiently longer than those of
the latter. In the present problem, the eddles represent the degrees of
freedom. The energy-containing eddies represent the nonequilibrium degrees

and the smaller equilibrium eddies represent the equilibrium degrees., It

. is very clear that the known properties [1] - [3] satisfy the basic conditions

required for the use of the Brownian stochastics. Detailed discussion aof the
Langevin equation is given in references (15) and (24).

We note that Eq. (II~l) is simply an equation which imparts certain
collective properties of the eddies into the description of the behavier of
a fluid element. The collective properties of the eddies we use are those
found from the turbulence structure studies carried out im the classical

statistical theories by use of the Navier-Stokes eguation, The present Langevin
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equation, Eq. (II-1), is used to describe an entirely different physical
phenomenon from the well known problem of large molecules moving through a
sea of small molecules described by Chandrasekhar.(zé) This difference
between the present turbulent flow problems and the molecular problems has

been explained in the previous section.

I1.C. Derivation of Kinetic Equations

We recognize the fact that, in the present continuum turbulence, the
chemical species move as they are being transported by the £liid elements.
Therefore, the transport velocity of the chemical épecies ig the fluid
element velocity ] governed by Eq. (II-1).

Let us consider the probability density functiom (henceforth, it will
be called the distribution function after the molecular kinetic~theory
terminoclogy) of a chemical species, F(t,i,ﬁ). This quantity is defined such
that F(t,z,ﬁ)dﬁ denotes the mass fraction of the chemical species with
velocities between u and u + du at t and %. Then these distribution functions

at two different phase points are related by the integral relatiomship,

F(t -+ At,%,0) J 'F(t,% - UAt,u - Au)

+ wh(t,¥ ~ UAL,u - AUYAEL + ME(E,X - ubt,u - Au)at]

"

P(x - UAt,u - Au;AL)d (AD) ‘ (11~3)

The function ¢ is the transition probability of the fluid elements

between the two phase points., 1 is obtained from the stochastic solution

*A11 symbols used are defined in the nomenclature.
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of the Langevin equation, Eq. (I1~1), to satisfy the boundary condition
that in the limit of time much longer than the characteristic equilibratiocn
time, 1181, and in the absence of,dissipation,.the mean pressure gradien;,'
and the other body forces (Ki -+ 0), the velocity distribution functiom, £,
shou;d be Maxwellian about the'local mean turbulence energy, <UkUk>. M
denotes the rate of molecular dissipation of the chemical species which will
be def;ned presently.

With the use of the solution of the Langevin equation for ¢, Eq. (II-3)

can be manipulated to give the kinetic equation of the chemical species

[see references (15), (26~28) for details].

8 oF a_
t T Y5 ax, T oae, Ry
K| ki
<0 U > 2 )
_ ] _ k'l a’F -
= By %auj [(uj <u>j)F] + 5 Bujauj } + wf + M (I1-4)

Commensurate with the form of the first term on the right of Eq. (II-1),
(22)

we express for the free shear layers "with no body forces

-

= - . - .> = ——
K 8 (u <u,>)

[=E]

. -
| 3

(11~5)

M = - gY(F - <z>f)
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where z is the species concentration, and the characteristic dissipation

rate, Bv, is known to be(l)
BY = A % \ (11-6)

8Y can be related to B through a turbulence Reynolds number, This will be
given in detail in a later chapter. @ is the chemical reaction term, and
the detail of this term is given in references (26) - (28). |

In a turbulent flow field consisting of n-chemical species, we would
havé n~equations of the type of Eq. (II-4)., That is, we would have Eq, (II-4)
for F

12 FZ’ .« o . Fn‘ The sum of these equations then becomes the kinetic

equation of the fluid elements

af of g
—_ o+ u, T/ + feK.)
a3t .
h| BxJ a.uj ]
: U, U,.> 2.
- d _ kMl 3 f .
= 51{“’3‘13. [(uj <uj>)f] + 3 aujauj } (11 7?

Nerivation of the kinetic equation is now essentially complete.

More specifically, an equation for the free shear layers can be derived
for the distribution function for a sgalér quantity z (such as temperature ox
chemical species) and is given as [the reader is referred to references (15),(32)

and (26--29) for details]
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a(fz) 3(fz)
e T Yy Tk,
3
. <U U > 2
3 kk 9 fe
= B {........ f(e, - <u,>)fz} +
1} 29 3 Ju, i,
g 43 Y%
+ gY %‘“’" [Ca, ~ <u,>)fz] - £(z - <2>)} + wf (11-8)

The moment equations constructed from the present kinetic equations
are termwise comparable to the one-point averaged equations derived from
the Navier-Stokes and species conservation equations. Details of this com-

(15,26-28) ¢ 10 of the

parison are well presented in previous references.
salient features will be explained herein.

The starting point of testing the consistency of the present theory and
the conventiona' one-point averaged equations derived from the Navier-Stokes
and species concentration equations is the kinetic equations given in
Chung(zz) which are the generalized version of Eq. (II-8) including the
effects of the mean pressure gradient and wall., We first multiply the
kinetdc equation-through by an undetermined tensor function Q(ﬁ) ard inte~
grate it termwise with respect to the velocity space. This results in the
generalized moment equation of the present theory. We can then generate
from this equation various particular mement equations by assigning particu-
lar functions for Q.

First, we set z = 1. Then, when we also set Q@ = 1, there results the
standard averaged continuity equation. With Q = Ui’ we obtain the averaged
m?mentum equation, Eq. (II-3). With Q@ = Uin, we obtain the averaged Reynolds
equation, except it does not contain the diffusion term of the pressure energy.

Now, we restore z and then set Q = 1. The generalized moment equation
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then gives the averaged species conservation equation. With @ = wi, we,
obtain the second order averaged equation, obtainable by multiplying the

standard specles conservation equation by W, and averaging it. The higher

i
order moment equations ave found to be termwise comparable ta the corres-
ponding order one-point averaged equations obtainable from the Navier-Stokes
and standard species conserwvation eguations except for the terms resulting
from éhe pressure-energy diffusion term. For many. flow problems of our
interest, the pressure energy diffusion is not teo large. It is felt that
the order of inaccuracy invelved with this term may be within the order

of the other approximations of this theory.

The above shows that the present kinetic theory basically satisfies
the conservation of the averaged gquantities as dictated by the Navier-Stokes
and species conservation equations. Therefore, the present theory is as
consistent in describing turbulent flow as those theories which begin from
the one-point averaged equations,

Further support for the consistency of Chung's theory can be obtained -
from the work of Lundgren}lﬁ“la) Starting from the formalism of statistical
mechanics and employing the MNavier-Stokes equation, Lundgren(lel derived
an equation governing the distribution function of the fluid element, 4n
equation similar to Lundgren's equation.can be derived for £z using the
Navier-Stokes and species conservation equations [see references (22) and
(32)]. Again, if we express the eddy interaction effects in Fokker-Planck
form, we derive the present kinetic equation for fz. Details of these deri-
vations are well presented in reference (32) and (15) and will not be
repeated here,

‘In the above derivations, the present analysis, based on the Langevin

equation, supplies a detailed rationale for the Folkker-Planck form based on
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the knovm dynamics of the eddies and the physical arguments for the turbulent

movements of the chemlecal species,

11.D, Hultiscale Kinetic Equation

Based on Chung's theory, ByWater(zs) with Chung solved two coupled
Langevin equations and derived a kinetic equation for two nonequilibrium
degrees of freedom governing the one~point joint distribution function of

the fluid elements. These two Langevin equations are given as

dg, |
““IE=~B[-<>]+A(t)+K + g (v -v]
dc at™ T Yk a,k a,k ek T Yk
(11-9)
dir*k
T = -~ Bply - el oA ) R+ B - T

This time the flow field is assumed to be characterized by two nonequilibrium
families of eddies in addition to the equilibrium eddies., The above two
equations each represent the contribution from each mode of ncqequilibrium
families of eddies and many equilibrium eddies on the movement of the fluid
element. These two coupled Langevin equations are formed based on the same
physical reasoning as Chung's theory, except that the interaction terms

£ Bc{Uj - Vj] are added to take in account the iyteraction between two non-
equilibrium eddies. The resulting kinetic equation for two nonequilibrium
degrees of freedom governing the distributionm function of the fluid element
will be presented in the next chapter. The readey is referred to reference

(23) for details of this derivation.
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CHAPTER III

MIXING AND DECAY OF A TURBULENCE FIELD CHARACTERIZED
BY TWO SIGNIFLCANT LENGTH SCALES

' The need to describe lengfh scales in the wodeling of a turbulent flow
has been noted by many investigators (Spalding, Chung, Yen, Bywater, et al.).
Hany of the important turbulent flow fields are actually characterized by
more than one significant dynamic length scale as mentiomned in the previous
chapter. Although Spalding(lz) has proposed an equation gdverning the length
scale of turbulent flow, its approach is rather traditional and is similar
to that of other equations governing the transferrable physical quantities
of the flow. Hls formulation is based on the physical reasoning similar to
those employed in the closure of the other moment (averaged) equationms.
Ingtead of clqsing the moment equation, a more basic and general-~in the
sense of generating moments--~kinetic theory of turbulence due to Chung(15)
has been developed as described in the previous chapter. Although the
original model lumped the turbulent flow fileld into one nonequilibrium‘degree
of freedom, Chuné's theory is found to be general enough to include the
multiscale features of the flow field in its original formulation. Bywater

(23)

with Chung extended the theory to include two nonequilibrium degrees of

freedom.

In this chapter, the kinetic equation of two nonequilibrium degrees of
freedom will be employed to study some of. the mixing behavior of a multiscale
turbulence field. The physical problem of interest is the mixing and decay
of an initially uniform and homageneous turbulence field which is characterized
by two different length scales. The generation and subsequent behavior of

the apparent length scale will also be analyzed.
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I11.A. Governing Equations

The starting point of this analysis is the kinetic equatiom .of two

nonequilibrium degrees of freedom given in reference (23), which is,

of F3<u> of d<y>. 3f
2 x 3% x 93
3 T | e Tt OTIETOW } ARG R e®
L. k k
) a_fg__ i deu>  f, ) a<v> afz]
X o%, 90_ By, v
= =2 {8 U+ B (U - V) - K 1
BUk “k a,k" "2
b 2 e v + B (V y - K, 1f
5, bk x = Lt
% % 52
+ q + 2 + £ (II1~1)
90, 30, 50, 37, 3 9%, (2

where fZ(t,§,ﬁ,$) is the one-point joint distribution function of the fluid
elements affected by two families of nonequilibrium degrees of freedom as

well as the equilibrium degrees of freedom. and <u>k, and Vk, vy and

4

k' Yk
<v>k are the relative, absolute, and mean velocity contributions to the
same fluid element of the two different nonequilibrium degrees of freedom,
respectively. Ba and Eb are the characteristic relaxation rates of the two

nonequilibrium degrees of freedom, respectively., As in the previous analysis,

Ba and B, are given as
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1/2
] } <wkwk>
a 20
a
(111-2)
i/2
8 - (wkwk>
b ZAb

where <wkwk> is the total turbulence energy, and b and Ab are, respectively,
the characteristic lengths of the two nonequilibrium degrees of freedom
representing the two families of the nonequilibrium eddies. Wk and W, are,
respectively, the relative and absolute velocities of the fluid element, and

these are the vector sums of the contributions Ffrom the two nonequilibrium

degrees of freedom (see Figure 1)

Figure 1 Contribution of two nonequilibrium degrees of freedom to the
velocity of a fluid element

et i e .
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Thus, Wk and W are given as
Wk = Uk + Vk
(I11i-3)
Ve T W W
or
e T U * i

ﬁc is the characteristic rate of interaction between the two nonequilibrium

degrees of freedom which, according to Chung and Bywater, is

8 if Ay > Ay
B, = (III~4)

By A A < by

Equation (III-4) is based on the premise that the larger (therefore, the
lower wave number) fluctuating eddies control the rate of momentum exchange
between the two families of eddies.

For the flows with no mean pressure gradient and laminar sublayer, the

molecular dissipation rates Ka Kk and Kb | are given, analogous to references
L) 3 ’

(26-29), as,

Ka = - B 1
(111~5)

Ko = 7 BV

e
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The right hand side of Eq. (I1I-1l) deseribes three major aspects of the
eddy interactions consisting ofl(i) the relaxation of the nonequilibyrium
eddies toward equilibrium, (2) the exchange of momentum between the two
nonequilibrium degrees, and (3) the dissipation. The first two aspects
pertain only to the internal redistribution of the properties, whereas thne
dissipation constitutes a sink for the turbulence properties. If a turbu-
lence-energy conservation equation is constructed by taking an appropriate

moment of Eq. (IXI~l), all terms except those containing Ka K and Kb K should
?

3

vanish independently of apy particular fé. q is thus defined by Bywater as,

. - Ba<UkUk> + (Ba + Bb)<Uka> + Bb<Vka>
12

(I11-6)

The physical phenomena of present interest are the mixing and decay of a
turbulence field characterized by two nonequilibrium degrees of freedom
representing two families of nonequilibrium eddies. We assume that'initially
{(t = 0) these two families of eddies are uniformly distributed throughout the
field, We consider that there exists no mean velocity. The sdlution would
be the same if the mean velocity were non-zero but uniform. We specify,
initially, the contributions of the twe families of eddies to the turbulence
enerpy® of the field as <UkUk> and <vkvk>. The characteristic length scales
Aa and Ab are also specified. We then seek the'solution of Eq. (1iIl-1l), for
t >0, for <UkUk>, <vkvk>, <UkV >, and A, . The apparent length scale, Ae‘
represents the length scale of a hypothetical turbulence field characterized

by one family of nonequilibrium eddies wherein the behavior of <Wka> is

%Note that gince the field is spacially isotropic, the only nontrivial

components of <wiwj> iz the turbulence energy <wkwy>.
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the same as that in the actual field governed by the two nonequilibrium.

families of eddies. A, is defined subsequently in Eq. (III-20). Note that

<Wk1-1k> = <UkUk > + 2<Uka> + <VI¢.V1<.> (I11~7)

where <Ukvk> evolves for t > 0 through the interaction of the two nonequili-~
brium degrees of freedom.

Thus, for the present problem,

a<u> a<u»
n = 0 2 m = 0
axk ! at
B<v>m 8<v>m
B, o, se = O (I11-8)

<> = [

for all t.

OQur governing equation, Eq. (III-1), then simplifies to,

My s

ot

=
i

{Gauk + Bc(Uk - vk) - Ka,k]fZ}

3 | )
o {[Bbvk * Bc(vk - Uy Kb,k]fZ}

32 )2 2
*oq 30, a0, ko2 30, 3V, * A £y (111-9)
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I1I.B. 1Initial Conditions

For the present physical problem, we have the following initial condi-

tions:

At £ =0
The contribution to the turbulence energy of the family of eddies

denoted by "a'":

<UkUk> = <UkUk>o s+ length scale ﬁa (I1I-9a)
The contribution to the turbulence energy of the family of eddies

denoted by "b":

<V, V.» = <V V
4 <

A Vio 0 length scale A (111~9b)

No interaction between the two nonequilibrium degrees of freedom, i.e.,
<Uka> = kaVk>o= 0.
And the turbulence energy:

<W, W
4

Moo= S _ (1II-9c)

Obviously, we have
s T -
<Wkwk>0 <LkUk>° + <Vkvk>o (I11-94d)
In the subsequent analysis we will let "a" represent the family of eddies

with the larger length scale, (Aa > f,), and <, V; > will be called the "inter-

action turbulence energy,"
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IIX.C, Generalized Moment Equations
We multiply each term of Eq. (III-9) by a general function,
Q(ﬁ,ﬁ). Then, the term~wise integration with respect to U and V and
the subsequent manipulation result in the following generalized moment
equation,
o o ok gg
—— I3 -
3% JJ ,2QdUdV [J f2 ot dudv
e - - _32_ = -
JI [28,U, + B (U - V)IE, - dUav
- - 3Q_ 447
” [2p, v, + 8. (V, - U)IE, 3V dudv
- 2 2
3°Q - 24 3 '3 T
+ q JJ £ + + = duav
2 aUkBUk aukavk ovkavk
(I11I-10)

II1.D, Averaged Energy Equations

As it has been mentioned, the only nontrivial component of <Wiwj> is
the turbulence energy, <wkwk>, which consists of the three constituents shown
in Eq. (III-7). We can directly deduce the governing moment equations for

the turbulenece energy and its comstituents by substituting the following

particular values for ¢ in Eq. (III-10} as,

k7l

Q=UuU1l

'a<ukuk>
—5e— = - 6B <UU> + 28 <U V> + Gg (111-10)
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kk

BstVk>
— = - (4Bb + 23a)<vkvk> + 28 <U V> + 6q - (111-12)

|

k'k

a<ukvk>
5 = 8, + B <V V> - (aea + 2sb)<ukvk> + 6q (I1I-13)

k'k

Q=WW

3<Wkwk>

e 7 T 4B <UL b - 4B SVVL> = 4B+ B)<UU> 4 24

k

(111~14)
Substituting Eq¢. (I1I-6) into Eq. (III-14), we obtain

3<Wka>

—e— = - z[ga¢ukuk> + (3a + sb)cukvk> + sb<vkvk>] (I11-15)

We let Be represent the apparent characteristic relaxation rate and Ae
represent the apparent 1eﬁgth scale for a hypothetical turbulence field
characterized by one nonequilibrium family of eddies wherein the behavior

of <Wkwk> will be the same as that in the actual field characterized by two

nonequilibrium degrees of freedom. The kinetic equation for one nonequili-~

brium degree of freedom, Eq. (II-7), can be employed to describe this hypo~

thetical turbulence field characterized by one nonequilibrium family of
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eddies. Under the same assumptions as cited in section III,A,~-l.e., that
there is no mean velocity, no ﬁeén pressure gradient, nc laminar sublayer,
and the turbulence is initially isotropic throughout the field--the governing
equation of this hypothetical turbulence field characterized by one nonequili-~

brium family of eddies can be obtained, from Eq. (II-7) as,

of AW, N> 22z
a0 - 2P ot B TR oW (111-16
3 k' k
We multiply the above equation by Wkwk and term~wise integrate with respect
-
to W, as,
a<W W, >
k'k -
5 = 2Becwkwk> (I1iT-17)

Analogous to Eq. (II~2), B, can be written as

<Wkwk>l/2
Be - — (111-18)

e

Mow, by equating the right sides of Eqs. (III~15) and (ITI-17), the

apparent relaxation rate, Be, can be written as

; . <UkUk> + <Ukvk> . 0 <vkvk> o+ <Ukvk> PR
e a <wkwk> b <Wk“k>

One of our main interests is the equation explicitly governing the apparent

length scale of the flow field, This is readily obtained from Eqs. (III-2),
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(III-18) and (III-19), and can be written as
-1
L [1_ <ULl > + <U V> L L <Yy V> + <vkvk>:\ 211-20)
e I\a <Wka> l\.b <wkwk>

. Equation (II1I-20) describes the apparent characteristic length A, in
terms of the two constant dynamic scales Aa and Ab’ and the energles associated
with these scales. The energies in Eq. (III-20) are dependent upon the
solution of the governing equation, Eq. (III~-8). The apparent length scale,
Ae’ and its variation depend on the solution of the governing equation itself.

This is in basic agreement with the concept proposed by Spalding(ll,lz)

that
the length scale depenls on a given prpblem, and that it should have a
governing equation which must be solved simultaneously with the governing
equations of the other turbulence properties.

Equations (III-11) through (III-15) and Eq. (I1I-20) are manipulated

and nondimensionalized as,

k'k e 1./ 2 — S —_

I <H, W, > { 11<Uk1.|k> MV V> (5 + M) <ukvk>} (III~21a)
d<V. V, >

ko k™ 1/2 _
—F = <w1 wt > [<Uk 5 (7H + 4)<vkvk> + (5 + M)<U ]

(I1I-21b}

7 et
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d<Uka> — 12 —_— . ]
5 = <wkwk> [3<Ukvk> + (2 + M) <V V> - (7 + 3M) <Ukvk>]
(I1I~21c)
d<ii. . >
) i A i —
—F - -wkwk> [ 4<UkUk> 4M<vkvk> (4 + 4M) <Uka>]
(ITI~-21d)
and
o o -l
— <U. U, >+ <U V. > <V V. > 4+ <U V, >
A, k'k k'k N k'k k'k ‘l (111-22)
<H, W, > <, W, > |

where < > ig normalized by <Wkwk> o

—— < >
e > = e (11I-23)
<Wkwk>o

and M is the length scale ratio,

M = (I11~24)

Aa
by

The limit t, is nondimensionalized by 830/2, as

= = . ‘ {111-25)
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where
<wktcrk>i/2
Bao = TR (III-26)
a
and
. A,
Ae = -K;- (III-Z?)

Equations (III-2la) through (III~-21d) and (I1I-22) are now self-contained

and are clused.

III.E. Typical Numerical Results

Equations (III-21la) through (IIi~21d) constitute a system of nonlinear
fivst order ordinary differential equations. This system is numerically
integrated to satisfy the initial conditions, Egs. (II1I-9a) through.(III-Qd).

Typical results for three different length-scazle ratios are precented ip
Figures 2 through 7. These three length-scale ratios are chosén in such a
way that they may represent small, intermediate and large length~scale rativ..
Two sets of initial conditions are chosen for each set of calculations for a

given length-~scale ratio--one is for <U U, > relatively larger than <V, V, > ,

kk o kko
and the other one is for <U, U, > relatively smaller than <V, V. > .
k'k o k'ko

Figures 2 and 3 give the solution of the decay of <Ikwk> for different

length—~scale ratios and initial conditions, Iigures 4 and 5 present the

r—r———

variation of <UkUk>~~the turbulence energy contributed by the group of eddies

with a larger length scale~—under wvarious given conditions., Tigures 4 and 5 also

show the changes of <Vkvk>——the turbulence energy contributed by the group of

R W O

e e T—— |t b
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eddies with a smaller length-scale--for different length-scale ratios and
given initial conditions. Tigures 6 and 7 indicate the emergence and decay
of the interacting turbulence energy, <U V, >, under various given conditions.

k'k®

IT1.T. Discussion of the Results

t—

Figure 2 shows the decay of <Jka> and the variation of the normalized gw

apparent length~scale, Aelha, for different values of the length~scale ratio

M. The curves in Figure 2 are under the initial conditions of <Ukuk>o = 0.8
and <Vkvk>o = 0,2, which indicates that the initial turbulence energy, <Wkwk>o,

is mainly contributed by the family of eddies with a larger length scale (Aa).

A st

Ir Figure 2, <Wkwk> decays approximately in proportion to the inverse of

T, i.e.,
e ———. ...l .w
WW> = (T~ T) - (311-28)

where TQ is zero. Equation (III-28) shows the simple power law of the decay
of turbulence energy as studied in the grid-generated homogeneous turbulence.(z)

if the turbulence field has a uniform mean velocity <w>_, Eq. (III-28) may be

written as

-1
<wkwk> = (x - ho) (I11-28a)

where (x - xo) is the down stream distance from the grid. From experimental

evidence,(z) Eq, (111-28a) is further given as(zj
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<W, W > a -1 :
0
<w>m

where D is the grid size and a is a function of the shape of the grid and the

grid PReynolds number, <Wkwk>l/2D/v. Our Tigure 2 shows that éﬁ;ﬁ;& decays
faster or slower according to whether its corresponding normalized apparent
length scale is smaller or larger. If we would put an equal sign in Eq.
(111-28), the proportionality constant would be a function of the normalized

apparent length scale. Thus, Eq. (III-28) may be writtenm as,

(I11-28¢c)

Since the grid size D is approximately the integral length scale of the
grid-generated turbulence, the meaning of the proportionmality constants of
Eq. (I11-28b).4is equivalent to that of Egq. (II1I-28c).

If the apparent length scale is larger, one would expect that it would
take a longer time for the energy-containing eddies to relax toward equilibrium,

or that the turbulence energy would decay more slowly. These properties are

Nsr————

shown in Figure 2 for the dscay of <Wkwk>.

The varlation of the normalized apparent length scale'K; is given by

Eq. (IL1I-22). TFor a given length-scale ratio M; the initial value of E; is

—smmtensm L ee———

determined by the initial values of <UkUk>o and S which is easily seen

from Eq. (III-22), and can -be written as

. T T 17 -
A = [<UkUk>0 + Msvkvk>0] (I11~29)
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Equztion (III~-29) pgives the starting point of the curve for E; for a given
M and the initial values of <UkUk> and <Vkvk> . When mizing oi th. two
families of nonequilibrium eddies begins, T > 0, the norﬁélized g.psvent
length scale ﬂ;'varies aceording to the redistribution of the wvar . 5 turbu-
lence energies which appeared in Eq. (I1I-22). Since we do not have a closed
form solution for each turbulence energy and the normalized apparent length-
scale K;; it is difficult to see the variation of K;'in the initial period,
0<T < 2.5, of mixing and decay. However, after T > 2.5, the normalized
apparent length-scales, K;'s, tend to reach a steady value which is slightly
less than the value of (1/2(1 + 1/M) as shown in Figures 2 and 3. Since our
turbulence field is characterized by two length scales, the apparent length
scale of a hypothetical turbulence field characterized by one length scale,
Ae’ would have a value between Aa and Ab. It seems logical to estimate that
A, has a value which is clese to the average value of Aa and ﬁb. This gives
us the normalized length scale‘ﬁu as approximately equal to(1/2)(L + 1/M).
Figure 3 ghows the decay of <0 W, : W > and the wvariation of A /ﬁ with the

k

initial conditions <UkUk>o = 0,2 and <V1Vk> = 0.8. The decay of <Wkwk>o

in Figure 3 is similar to that in Figure 2, and the curves of Figure 2 are
discussed in the previous paragraph. This time, the initial turbulence energy
is mainly contributed by the turbulence energy of the group of eddies with a

smaller length scale. From Eq. (I1I-29), for each M, we can see that the

=2

initial value of the normalized apparent length scale K;' in Figure 3
TT"

is relatiﬁﬁ§y smaller than those in Figure 2. Before reaches its steady

value, 0 < T < 2,5, for any given M, <wkw > of Figure 3 decays faster than
that in Figure 2. This again reflects the same property that when the corres-
ponding normalized apparent length ®tale is smaller, the turbulence emergy

will decay faster.

R SRR 1 3 R
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Figure & presencs the decay of <UkUk> with the initial conditions of

<UkUk>0 = 0.8 znd <vkvk>0 = 0.2. Figure 4 chows that the‘decay of :UkUk> is

relatively insensitive to the length scale ratio, M. Since the initial tur-
bulence energy of the field is mainly contained in the family of eddies with
a‘large length =cale (<Ukuk>)’ which has a domineering role in the decay of
the turbulence field, the behavior of the family of eddies with a smaller
initial value (<Vkvk>o) and a smaller length scale (Ab) would have very little
effect on the behavior of the other turbulent gquantities of the field. There~

fore, the decay of <U U >--the turbulence energy of the family of eddies with

£k
a large initial value and alrge length scale--will be similar to the decay of
the turbulence enmergy without the presence of the other family of energy-

containing eddies of 2 small length scale. 1In this case, we can see <Ukuk>

decays in a manner analogous to the decay of <wkwk>.

——mian

The decay of <Vkvk> in Figure 4 shows that for large M, <vkvk> decays

faster than that for small M., If M is large, which indicates that.initially
the energy-containing eddies of family "w" are located in a farther large

wave number region in the energy spectrum (compared to the en?rgy—containing
eddies of family "a"), then, this group of eddies of family "b" is smaller in
size compared to that of small M, and th decay of family "b" energy-containing

eddies takes a shorter time to reach equilibrium. Similar phevomena of the

——————t Y

variations of Vs when initial conditions are <UkUk>o = 0.2 and <vkvk>° =

0.8, are shown in Figure 5.

In Figure 5, <UkUk>o has relatively small initial values compared to those

of <Vkvk>o. Although two families of energy-containing eddies are presented

in the seme field, the family of energy-containing eddies of a larger charac-

teristic length scale will dominate the relaxation rate of the turbulence

field. The rate of turbulence enetgy transfered from the anergy~containiig

et g e bt s 1 ma 5
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eddies of family "b" (with small length scale Ab) to the equilibrium small
eddies, has to be adjusted appfo#imately to the rate of the energy pass-over
from the energy-containing eddies of family "a'" (with large length scale)
to the family of eddies "b".

The imbalanced initial distribution of the turbulence energies between
two families of nonequilibrium eddies as assigned to Figure 5 will cause a
certain redistribution of turbulence energies between these two families of
nonequilibrium eddies. This vedistribution of turbulence energies mzkes
<UkUk>~~the'energy of the family of eddies with a larger length scale but
a very small initial value-~decay slower and sometimes causes it to gain
energy instead of decay in the initial period of mixing of these two families

of nonequilibrium eddies. These are shown in Figure 5.

Figures & and 7 describe the emerpence and decay of the interacting

turbulence energy <Ukvk>. <Ukvk> beging with zero value, because there is

no interaction between the two groups of nonequilibrium eddies before mixing

begins. After mixing begins, through the interaction between these two

families of nonequilibrium eddies, the interacting turbulence gnergy <ukvk>
begins to emerge as shown in the figures. After a certain redistribution of
the turbulence energy between these two nonequilibrium eddies, there will be
less interaction between them and the interactimg turbulence energy will
decline, This is also shown in the figures,

Figures 6 and 7 also show that the interacting turbulence energy 45;3;5
has a larger value when the length-scale ratio M is smaller thanm that which
occurs when the length-scale ratio, M, is large. As mentioned before, the
engrgywcontaining eddies with larger length-scale control the dynamic behavior
of the turbulence field, When M is small the two groups of energy-containing

eddies are closer to each other in ¥%ave number space, Then, they will be
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competing for control of the relaxation of the turbulence field. Therefore,
when M is small the interaction between the two groups of nonequilibrium

eddies will be stronger than that when M is large.

38
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CHAPTER IV

GREEN'S FUNCTIONS OF THE KINETIC EQUATTONS

One of the immediate problems of the present kinetic theory ils to solve
the kinetic equations generated in the theory for the various engineering
flow problems.

'bfhe remainder of this dissertation is devoted to the method of solution

of the kinetic equations via construction of the appropriate Green's functionsbf/

We shall first consider the solution of the kinetic equatlons describing the
turbulence field characterized by one family of nonequilibrium eddies. Ve
shall then consider that for the field characterized by more than one family
of the nonequilibrium eddies.

In the past, the bimodal method has been employed to solve the kinetie
equations [see references (26 - 31)]. In this method, all distribution
functions are a priori assumed to consist of two half-Maxwellian functions—-
one for v > 0 and the other for v < 0. Into these assumed forms of the
distribution functions, an appropriate number of undetermined functions are
imbedded. Appropriate moments of the kinetic equations are then employed to
determine these imbedded funections,

As it was expected [see Chapter I and references (26 - 31)], thé solution
showed that the two half-Maxwellian functions are dissimilar and they together
constitute a completely non-Maxwellia.. distribution function of chemical
species for the chemically reactive problems analyzed.

We now confine ourselves to the £ree shear flow problems governed by the
kinetic equations (II-8).

Fox thelmomeut, if we discard the explicit reactioun term wf, then Eq.

(11-8) for f, obtained by setting £ to one, and the subsequent equatilons

d
y
4
4
;
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for the z's (or F's) are all linear if we assume that the average quantities
<uj> and <UkUk> are known. Then we can construct the Gregn's funetions
(fundamental solutions) of these kinetic equations satisfying certain source
conditions,

Utilizing this fact, we construct the solution of a given flow problem
in éhe following manner. We f£irst assume the values of <uj> and <UkUk>.
Then, by appropriately summing the Green's functions, we construct a solu-
tion satisfying the initial and boundary conditions of the problem for £
and F's. TFrom these distribution functions, we evaluate <uj> and <UkUk> and
repeat the process until a suitable convergence is attained.

Now let us return to the chemical reaction term wf. We confine our
discussion to the chemical reactions which are either frozen or in equili-
brium. Of course, wf = 0 for the frozen case. When the reaction is in
equilibrium, one can define a set of new variables comprised of certain
combinations of z's, such that the set of the Eqs. (II-8) can be replaced
by a new set of equations, fur the new variables, whose forms are identical
to Eqs. (LI-8), but which do not explicitly contain the reaction term. In
this set, the reaction term degenerates to a separate algebraic equation
[after Chung, reference (27)]. Therefore, the equilibiyium reaction case can

be solved in the manner described in the preceding paragraphs. These

details will be presented in the next chapter.

IV.A., Green's Function of the Kinetic Equations Governed by One Nonequilibrium
Degree of Freedom

The mathematical problem at hand is to obtain a set of Ffundamental
solutions (Green's functions) of the equations of the form of Eq. (IT-8)

with its last term deleted. These solutions can be then erployed to construct
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the solutions for f and fz's of a variety of the flow problems with either
frozen or equilibrium chemical ;égctions.

On the right side of Eq. (I1-8), if we dgnore <z> in the term
8Vi(z - <z>) then this term 8 £(z - <z>) can be approximated by the

term -ﬁv(alauj)[fz(uj - <u.>)]. This approximation does not change the

|

moment equations for z through the second order [see reference (27),

Eq. (10)]. 1f we further define a new parameter B as

By * gY for equation of £
'B = (IV"‘l)
By T 28¥  for equation of fz

then the equation for T = fz will be identical in form to that for £, This
will be shown in the following manner. Using the azbove mentioned approxima-
tion and employing the notaticn 8 as defined in Eq. (IV-1), Eq. (II~8) can

be written (without chemical reaction term) as,

3F, A N PN 51 F _
e T T B T [y = «u)F] + 55 <O, 0> ENET (1v-2)

We see that Eq. {IV~2) stands for the equation for fz (= F) and also,.by
setting z = 1, stands for the equation for £, and both are identical in form.
In order to obtain the fundamental solutioﬂ of Eq. (IV-2), we will

transform Eq. (IV-2) Into a simpler form. We first rewrite it in the

following manner:
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2 .
5F aF 3F_ _ 3°F ~
T Tts LA T N v 3BF + 9y 5w, (TV-3)
: k| _ ] 3973
where
k = <u,?
J é ki
(IV-4)
1
9 = 3 By

We will make two transformations on Eq., (IV-3). The first transformation

is made to eliminate the first term on the right side of Eq. (IV~3). We let

FE, 0,6 = TE,5,0)edtt (1V-5)

Equation (IV-5) implies the following relations!

F_ _ e3£3t aF
2% )
] axJ
o e g
au du
h

(IV-6)
F  _ 3Rtz 3Bt 9F
ot 3" T 4+ @ At
o’F  _ 3t _o°F
Ju,du du, an
i3 i3

W;th the aid of Egqs. (IV~6) and (IV~5), Eq. (IV-4} is transformed into the

following form.

i
!
i
¢
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oF aF F 3°F y
at "+ (kj BuJ) 'r31.1.j + Yy ij 9 Ju.ou (1v-7)

The g2eand transformation is undertaken to eliminate the first oxder
derivatives (except with respect to t) in Eq. (IV-7). The six subsidary

equations of Eq. (IV-7) are readily seen as,

Al
B 2

I

1

ke

e

+

&

(Iv-8)

As mentioned before, we assume <gj> and <Uknk> are known in Eq. (IV-2),
hence, Eg. (IV-~2) is linear and the solution will be obtained by iterating

on <u,> and <U, U >, 1In this scheme, B, and g¥ as defined on Egs. (1I-2)

k| k7k 1
and (II-6) carn also be considered as kunown, Therefore, B, as given in
Eq, (IV-1), and kj (= B<wj>) in Eqg. {IV-8) are considered as kno'm values.

The transformation is then constructed as

(1v-9)
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The Jacobian of the above transformation is found as

e

»(T ¥ )

, . J36E
3T %)

(Iv-10)

which implies that our transformation has a one to one correspondence.
“The function 'I:"(f:.},;,t) ig transformed into 'fl(f,'fi,t) in the following

mauners:

e 2= )
821" ) ( 'I‘ ) d Fl (BRi)(aTk)
auj auj a'r a'r u BRiaTk auj E)u:I
+ au Bu ) 31‘
i
2._
+
a'ria 3
3

Tl Rk) . 31?1 (ani)(ank )
u:i Buj BRiBRk Buj Buj
Ty

* ou, auj ) (IV-11)
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From BEg. (IV-10) we see that

aT aRk .

R T g K -

- 55 0w By (1/8) (TV-~12)
3 !

asz aznk

e - % e, -0 (Iv-13)
375 3773

Hence, Eq. (IV-8) is transformed into

T, 2°F, 2, 2T,
it = | g et e 2h wmenE— b ¢ m——e | g (Le14)
at :9Tka'rk aTkaRk . R, 3R, 1

vhere, by the aid of Eqs. (IV-11), (IV-12) and (IV-13}, we have
2Bt

a = e

b o= %eﬂt (IV-15)

The fundamental solution of Eq, (IV-14) can be obtained by eu{ploying
Lemma IT in reference (24). This Lemma II states: 1f a differential equation

ls given in the form
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2 2 2

3 _ 3°p 3P 3P .
vl ml(t) ax? + 2m2(t) 373y + ma(t) ayz (L-1I~1)

where P = P(x,y,t), then the fundémental solution satisfying an initial

condition

It

P(x,y,t/xo,yo,to) 6(x - xo)é(y - yo) at £t = t

[+]

is given as

[G(x ~ x0)2 + 2H(x -~ x )y -y ) + F(y ~ 3*0}2]
exp - : -

2(FH - H)

n

?(x:Y3t/xQ:yD!to) 1/2

25 (FC - )

{L~I1~ }
where § represents the Dirac delta function and (xo,yo) is the initial

position (x,y) at ¢ = tu'

Coefficients F, G and H are defined as

t
F = ZJ my (§)dg

£y
t
g = 2 I m, (E)dE (L-TI~3)
Yy
et
H = -2 m, (E)dE -
Je ™

The above Lemma was verified by substituting Eq. (L-II-2) into Eq, (L~II-1)

in reference (24).
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We see that Eq. (IV~14) Is a diffusion type equation and its variables
can be separated into three parfs which are (Tl’Rl’t)’ {TZ,Rz,tz) and

(T3’Ré!t)' The solution of fi(f,ﬁ,t) can be expressed ag,
S - -— o
1(TaRot) = Fp o (TR, 8)F 5 (Tgs Ry, £)F (T4 Ryyt) (IV-16}

The expression Eq. (IV-16) can be easily Vverified by taking Fourier transform
of Eq. {IV-14) and by solving the resulting first order differential equation
with respect to the independent variable t. Then, when we take an inverse
transform of the iesulting solution, the bgoperty of the separable wvariables
becomes self~evident. This detailed process is shown in Appendix II1I where
we have extended Lemma-II to the higher orders. In Appendix III it can be
also seen that each explicit expression of f&lch’Rl’t)’ ?lz(TZ’RZ’t) and
fl3(T3,R3,t) are derivable from Lemma-II, Thus, the fundamental solution

el Eq. (IV-14) satisfying the initial condition

— ad e ’ -t
7, (B R,e/T R e,

is obtained as,

.
Fy (TR, 6/ .8 ,t )
+ =9 5 X - ]
_ . - “le[T - F |*+ 2E-F pR-F) + AR - R |7
82 (AC - B%)372 2(AC -~ B%)

(Lv-17)




where

t
A = quf a()de

t
Q

t
¢ = ZJ q,e(8)dg

t
o)

t

B = - 2J qlb(E)dE
t .
Q
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(Tv-18)

e ' o3 =
and (TQRO) is the initial position, (T,R), at t = tye

‘From Eq. {IV-9), Toj and Ro

T . .
o] oj

u .
R. = x +_f3£l

0] o]

can be expressed as

3

k.
(wy, - ZL) et

™ L"E‘

t

(Iv-19)

Finally, with the aid of Egqs. (IV-5), (IV-9) and (IV-19), all independent

variables of Eq. (IV-17}, (%,ﬁ,tl?o ,ﬁo,to), are transformed back to the

original variables, (?c',-ti‘,tl':?o,ﬁ*o,t o)' We thus obtain the Green's function

(fundamental solution) of Eq. (IV-2) as,

I Y S
Gl(x,u,t|xo,uo,to) =

exp -

]

1 exp(3Bt) -

3

81~ (AC = 132)3/2

+ %k ope_ > -k _Btg?
clta - E)BB M *é-)eB o|

> Tt o Ky Bt 2
+ ZB[(u—E)e (;- {l:’o)" e ol
4~ Uy k.
...._.[.3-_-—- - g (t - to)]

s
1 e

+A|(x~xo) + = (u TF") -3 € —to)l

4

[~ %)+

B

2(AC - B2)

(1v-20)
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Here we use the notation G1 to represent the Green's function or the fundamental
solution of the kinetic equation, Eq. (IV-2), governing the turbulence field

describable by one nonequilibrium degree of freedom.

1V.B. Green's Function of the Kinetic Equation Describing the Turbulent
Field Governed by Two Nonequilibrium Degrees of Freedom and the
Equilibrium Degrees of Freedom

In this chapter, we will obtain the Green's function of the kinetice
equation, Eq. (III-1), which describes a turbulent field characterized by
two significant dyﬁamic length scales.

For our convenience in subsequent description (im this chapter) we will
refer to the Green's function obtained in the previous section as the "single-
mode G-function" and the Green's function of Eq. (III-1) (to be obtained in
this section) as the "multi-mode G~function."

The multi~mode G-function will not be employed to solve any real physical
problem in this dissertation, However, the single-mode G—function‘will be
used to solve a specific physical problem in the next chapter.

As mentioned in previous chapters, many important turbulént f£low fields
are actually characterized by more than one significant dynamic length
scale. Although we will not apply the multi-mode G-function to solve any
physical problem in this dissertation, the determination of the multi~mode
G-function is still within our interest for future application of the present
(Chung's) theory for the solution of the multiscale turbulent flow problems.

In this section, we will employ a technique similar to that used in
the previous section in obtaining the Green's function of Egq. (III-1). We
will also make assumptions similar to those made in section IV.A., viz.,

1 -
<vj>, <uj>, <LkUk>, <Ukvk> and <vkvk> are known so that Eq. (III-1) can be
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considered as a linear equation., In the future, 1f we apply the milti-mode

G-function to solve multiscale turbulent problems, we will have to iterate

on <vj>, <uj>, <Ukuk>’ <ukvk> and <V1Vk> when we try to obtaln the assoclated
momentum quantities. We will further assume that the problem is of the free
shear layer turbulent flow type with negligible mean pressure gradients.

K o and Kb in Eq. (III~1) can thug be given as in Eq. (IILI-5). The charac-
a,k .k

teristic dissipation rates, Ba, Bb and Bc, according to the previous analysis

(15,23,26) _ . given as in Eq. (I1I-2).

by Chung and Bywater
In order to obtain the Green's function of Eq. (I1I~1l), we have to

transform Eq. (III-1l) into a simpler form. We first make a change of inde-

e

pendent variables, U, V, x, t of the function f2’ into the same function,
-

fz, of new Independent variables, :, V, i, t. Chain rules associated with

this variable change are listed in Appendiz I. With this change of indepen-

dent variables, Eq. (III-1) becomes, after a little manipulation.

sz sz sz
T + (kaj - Bauj) EYO + (k'bj - Bbvj) '5;';
afz af2
+ uj P + vj el S(Ba + Bb)fz
3 3
. q a2 32 92 ;
3u, 3u u, v, v, adv. 2
$% uy 3™
£, = fz(‘ﬁ,??,':’é,t) (IV-21)

o e
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where
ka,j = 2Ea<uj> + Bc<uj> - ﬂc<vj>
kb,j = 26b<vj> 4 ﬁc<vj> - Bc<uj>
Ba = ZBa + Bc (19-22)
B, = 28 + B
. - Ba<UkUk> + Bb<vk:§> + (Ba + Bb)<Ukvk>

Next, a transformation is undertaken in order to eliminate the first term on

the right hand side of Eq. (IV-21). We let

£ = '52e“ct (IV-23)

where Bc = B(Ba + Bb).

With the aid of Eq. (iv-23), Egq. (IV-21) is then transformed into

of, 3t 3F,
T + (I{a’ - Bauj) st- + (kb,j - Bbvj) E
L, B L . 42 52 W2 7
ax, 3 . du, 3u,9 v, 3 2
h| 4 h| xj auJ uJ u vj vj vj
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Detailed transformation from Eq. (IV-21) into Eq. (IV-24) is given in
Appendix II.

The nine subsidiary equations of Eq. (IV-24) are readily seen as

du.
EEl = ~Bu, + k

(IVv-25)

= 8
.-,Ld
I
|
[
<
oL

Lo

Q‘L:‘-‘h
L
]
£
+
<

As mentioned before, <v.>, <uj>, <0 U >, <U V > and <vkvk> are assumed to be

j k'k™* "k'k
known values. Therefore, ka,j’ kb,j’ Ba and Bh as defined by Eq. (IV~23),
can be considered as known values in Eq. (IV~25). A transformation of

variables is then constructed as,

= _ _a B,t
k'b { Byt
T,y = (v - —B—;-l) e (1V~26)
k kb
= __1 " __j_ - ( E-,J + !J t
Rj xj + - 4 Bb Ba Bb )

The Jacobian of the above transformation is found as

> >
(T % B

“ah . 3(Ba + Bt (1v=27)
8u,v,x)
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which implies that our transformation has a one-to—one correspondence,
With the above transformation, Eq., (IV~26), Eq, (IV-24) is transformed into

the following form

. Qe 20 =+ =
38, (T, T, ,R,t) c o 8°F, (T, T, K, t) o ¥°E, (T, T, ,K,t)
ot 2 aTajaTaj 2 aTbJQTb
T S T Do o+
. ! BUphme iR
2 BRjBRj 2 aTajaTbj
g g >
. 3 97E(T , T, Ry t) 3TE(T LTy R, L) (1v-28)
2~ aT_,9R, & . 8R,
a3 ™y 2 aTbJBRh
where
a, = exp (ZBat)
b2 = exp(ZBbt)
2
1l 1
e, = (-ﬂﬂ + ——)
2 Ba Bb
t {IV-29)
dy = exp[(Ba + Bb)t]

( Ba + Bb

e, = -—ﬁ-;ﬁ;——— exp (Bat)
(Ba + Bb)

g ——— | exp(B, t)
2 \ BaBb b

i
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Detailed processes of the transformation from Eq. (IV-24) into Eq. (IV-28)
are given in Appendix II.

In oxder to obtain the fundamental seolution of Eq. (IV-28), two mathe-
matical lemmas will be proposed next. These two lemmas are the extension of
Lemma I and Lemma II in reference (24), which will provide the fundamental
solutions of certain types of diffusion equations. The differential equa-

tion cited in Lemma I of reference (24) has the form

2
3P _ 3P .
ot (L) oxax (L-1-1)

We will refer to Eq. (L-I-1) as the 'single-direction with non-coupled" diffu~
sion equation, Equation (L~II-1)} in the previous section (Lemma II) will be
referred to as the "single-direction with two coupled" diffusion equation,

and Eq. (Iané) can be called the "three-direction with two coupled" diffusion
equation, Lemma I and Lemma II of reference (24) give the fundamental
solutions of Eq. (1-I-1) and Eq. (I1~II-1). Lemma IIT will give the funda-
mental solution of a "single~direction with three-coupled" (so to speak)
diffusion equation and Lemma III-A will provide the fundamental solution of

a “three~direction with three-coupled" diffusion equation. These two Lemmas

will be presented in the following.

Lemma ILL

If the differential equation is given in the form
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2 | 2 2
Y Y oY Y
o = 4. (1) + by (t) o t+ g, (E)
] 1 axlaxl 2 ax23x2 3 3x38x3
2 2 2
g ¥ , 3 ¥ g ¥
+ 24, (t) ot 24, (8) = + 20 (L~111~-1)
12 axlaxz 13 axlax3 23 ax23x3

in which Y = Y(xl,xz,x3,t), the fundamental solution of Eq. (L-III-1) which

satisfies the initial condition

-

Y(xl,xz,x3,t) - = ﬁ(xl - xlo)a(x2 - xzo)ﬁ(xs - xSo) (L-ITI-1a)
0

is given as

I S
ey amg g, bl oy 0%y L) = (2ny 3 2172
T B3
Ay (x, = % )2 + Ay (2, = % )2 + A éx - % )2
B9y (g = o) T Ly Bty = )T ¥ AgaRy = %y,
1
7ol B P Tl PUAS B TR S W PR M P
28530y = %) (g = Xg0)
(L-TTI-2)
where
*101%207830) = (Rys¥po¥a)pmy (L-I11-3)

and
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Myp Myg
2
By = 2
Myy My
) 1'121 1‘122
A, = 2
444
Mqy Mgy

(L-111~4)

t t
= f b (E)E , My = f 94(E)dE
t t

o 0

*

t
Mg = My = L ¢13(8)8
(8]

(L-1II-5)
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Lemma IXI~A

1f the differential equation is given in the form

aYa BzYa aZYa 32Ya
2 = g () §o(t) mom—r + (1)
ot 1 axljaxlj 2 axgjaxzj 3 8x3jax3j
a%a 2%y 2%y
+ 26, () = + 24, .{t) ———— + 20,,(t) c———
12 axljaxzj 13 axljaxsj 23 aijaij
{(I-111I-6)

where j is the cartesian tensor index, j =1, 2, 3.

The fundamental solution of Eq. (L-I11I-6) satisfying the initial condition

I

IR I I 8Cryy = %y )8(x 5 = %9 )80 = Hygy)
8(xyq = %y )8 Crgy = Xy Y ayy - x23;)
B(xgy = %gy)8(Kgy = Kgp )8y = Xg5,)
(L~I1I-7)
where

X, = H..
( lj)t=t° iJO

is given as
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> & > + 1
LN e YL E ST SOV 572 3/2
(2m) .+ Ay
-+ -+ 2 - -~ 2 - > 2
Byq %y = % 17 Byplsy = 1y 17+ Bagliy = x|

> -+ - - > - - -+
T2, (% = Xy My = Xy )+ 284 (xy =%y g - Xy )

-+ -

-> >
T 2y5(xy = Ky 3y - xy)

exp -

28,

(L-I11-9)

where QB and Aij are the same as in Eq. (L-1II-4). Lemma III and Lemma III-A
are verified in Appendix III,
From Lemma III-A, the Green's function of Eq. (IV-29) is readily obtained

as

L . S -3 e 1
2(1a’Tb’R’t|Tao’ bo’Re to) 9/2 3/2
(2m) 4y .
e > 2 -+ > 2 - 2
81T, = T ol #2501 - T 1™ + 8g5lR - R ]
o 5 s . _* ‘ e _Z
+ "AlZ(Ta Tao}(Tb 1bo) * 2["13('1‘&! Tao)(R Ro)
+ 28..(F, =T MR~ &)
exp . 23 7°h bo 0
z 2A3
(IV-30)
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1]

n where (¥ao’T£o’ﬁb’to) is the initial condition of (Té,?b,ﬁ,:) at €=t
it
— and
4
- b1 A2 AlBl |Ay5 Ay
L .3 22
: by = 27 1Ay Ay Azai By4
A.. A
?' | Ayp Agp A3y 32 733
‘ AZl A23 A21 AZZ
A, = - 22 p. = 22
; 12 i3
i 431 433 Agy by
( ) A1 A
| Byy = =2 (1v-31)
[ A31 432
T Also,
" t ot t
[ Ay = 4 L a,(6)dE , sy = ¢ Jt by(E)dE ,  Agy =g J ¢, (£)dE
. o [a] tO
| t t
A9 = Ay = g jt d,{8)dE , A4 = Ay = g f e, (£)dg

i 0 E
]

t
[ Ayg = Ay = g ft g, (£)dE (1V-32)

(o]

[ SN 1

Here we use the notation'aé to represent the Green's function (G) in the trans~

formed space (?a’%b’ﬁ’tz(_l of the two nonequilibrium degrees of freedom (2),

A

kinetic equation.
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Finally, the independent variables in Eq. (IV-31) are transformed back
to the original variables. By employing relations (IV-23) and (IV-27), the
Green's function of Eq. (IV-21) is obtained as,
B.t
> - e C
G, (u,v,tlu ,v ,t ) ———— X
2 3 hJ ] 3
a’ 0’0 (2“)9/253/2
presvee— - -> 2
k k -
> a .\ Bat _ o Ta . Bty
All (u 3 Je (uo 3 Ye
a a
e o 1 2
A ({?—-kﬁ)eﬂbt- & -:‘i)aﬂbto
22 B c B
b b
> - = I 2
-r u > v k kb
> u o v 0 a
b - X))+ g+ (g g ) ()
a “a b b b
+ 24 ((* _.Ei yetalt o (@ Eﬁ ) Bato)-( ( E“ ) Bpt
128 = 5= de - V- e
a a b
> - ->
k k
- 3 L EE. Bbto) 5 T_ By Bat | 2 L2 B‘r:!tu»)
@, 5, Ye +.¢Al3((u =2 Je @ )
a a
-+ d -> -+ - >
u-u v -V k kb
Y 0 o _ - AL B
((x ) t—g— * 5 (t to)(B g ))
a b a b
= >
k E,
+ 2 (({r’--—‘i)eBatn G - =) Bth)-
23 B o B
b b
- - -+ -* ﬁ I:.b
u-u v -V
> o 0 a
(x-.\)-l- + —(t-t)(——+—-—))
o Ba Bb o B Bb
exp -
2A3
(1v-33)
> o o> - > P e
where u, v, ka’ kb are vectors, and (xo,uo,vo,to) = (x,u,v,t)t=t0 in the phase

space.
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CHAPTER V

SPECIFIC SOLUTION

The single-mode Green's function obtained will be employed to soive a
two parallel stream turbulent shear flow problem with and without chemical
reactions.

As mentioned in the previous chapter, the kinetic equations for f and
for F [Eq. (IVv-2)] are linear if we assume <uj> and <, U, > are known.
The Green's function of Eq. (IV-2), without considering chemical reaction
term, wf, ig then obtained as described in Chapter IV.

The following simple chemical reactien will be comsidered in this chapter

for chemically reactive flow:

a + b U SN (v-1)
fuel oxidant product

w = K exp(-=—) z_ zb (V-1a)

o 1 z, r s .

In the above, the subscript o represents either of the subscripts t, t, s,
or p, which denote the temperature, fuel, oxidant and ceombustion product,
respectively. By introduting new variables, the kinetic equations (IV-2)
for the F's can be manipulated into two equations which are identical to
that of Eq. (IV-2) without the chemical reaction term. Also, in the limit
of an infinitely fast chemical reaction rate, the chemical reaction term
of -Eq. (IV-2) can be degenerated into a seL of algebraic equations. There-

fore, the obtained single-mode G-function, in which the chemical reaction
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term was not considered, can be employed to solve the infinitely fast chemically

reactive flow problems. This method was derived by Chung(26’27)

and details
of this process will be given later in this chapter.

Since we assumed that <uj> and <UkUk> are known when we were solving for
the CGreen's function of the kinetic equation, we will first assume the value
of fuj> and <UkUk>. Then, by appropriate summing of the Green's functions
according to the flow conditions of the given physical problem, we will con-
struct a solution for f and F's. From these distribution functions, we
evaluate <uj> and <UkUk> and repeat the process until a suitable convergence
is attained. This detailed process will be shown later in this chapter.

The physical problem given here is similar to a palr of parallel streams
flowing out continucusly at the x = 0 plane with given mean velocities and
turbulence energies., (See Figure 8.) The upper s.ream contains fuel and the
lower stream contains oxidant and inert species. The temperature is given as
uniform at the x = 0 plane,

The above mentioned flow problem has been of interest since the.late

(34-48) (34~48)

1880's, Most former researchers only investigated the momentum

flow field without considering chemical reactions. The analytical work of

(37) (41) (38)

Tollmein, Goertler,(39) Lessen,(éo) Chiarulli

and Lin, et al.
one way or the other employed a Bousinesg rela) ionship. Among these investi-
gations of the turbulent mixing problem which are based on the idealized
initial velocity profiles (Figure 8), the main difference in the analyses has
been in the expression chosen to represent the eddy viscosity in the mixing
regiomn. Tollmein,(37) in 1926, first obtained the analytical solution by
using Prandtl's mixing-length theory. His solution shows that the second

order derivatives of mean velocity are discontinuous at the edges of the

mixing layer and the velocity in the mixing region does not asymptotically
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(

approach the free stream values. Liepmann and Laufer 43 demonstrated that

their experimental results could be brought into reasonable agreement with
the mean velocity distributions obtained from either the solution of Tollmein
or that of Goertler. However, turbulent stress measurements and back calcula-
tions of the mixing length and the exchange coefficient showed that both
varied across the mixing region. Thus, they concluded that neither Prandtl's
mixing-length hypothesis nor the exchange coefficient hypothesis adequately
describes the turbulence characteristics of the mixing region. Schlichting(44)
pointed out that Tollmein's discontinuity solution is a general property of
all solutions based on Prandtl's mixing-length hypothesis and called this an
esthetical defieiency of the hypothesis. The inadeguacy of the gradient-type
approach of turbulent momentum transport has been fairly described in Chapter II,
Possibly because of a lack of proper expression for Reynold's stress in

(46,47)

the mixing region, Baker and Weinstein's experimental and analytical

studies of this problem in 1968 did not give any curve of Reynolds stress in the
mixing region.

The analytical solutionsg of the momentum field obtained by former investi-

gators are usually adjusted by changing the already embedded parameter when
they employed Prandtl's approach or by adding new parameters in order to com=~

pare the experimental data., The analytical results of Tollmein, Goertler and

(44~46)

others show that there exist similarity solutions of the momentum field.

‘These are evidenced by experimental results. Experimental data of this type

(48)

of problem of a uniform density fluid has been taken by Albertson,

(43) (47)

Reichardt,(ag) Liepmann and Laufer, Baker and Weinstein and others,

(50)

and most recently by Spencer. Spencer has conducted the most complete
and thorough experimental studies of this turbulent mixing problem.

Our main interest is in employing Chung's theory to solve chemically
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reactive flow problems. In order to assure our calculations, the momentum
field to be obtained later in this chapter will be compared with Spencer's
experimental data, However, the experimental combustion data of the present
problem analyzed is not available now.

Chung's model is the only existing kinetic theory for turbulent chemically
reactive flow. The solutions to be obtained in this chapter will rzconifirm
some salient features of Chung's theory which have mostly been revealed in pre-
vious analyses(ZG_Sl) by the bimodal method. The present Green's function method
only provides a more refined method for applying Chung's theory. Although the
previous bimodal method embedded certain discontinuities in the distribution
function and so resulted in discontinuities at the flame edges of the mean
quantity profiles, the assumed two half-Maxwellian functions are dissimilar and
together they constitute a completely non-Maxwellian distribution function of
chemical species for the chemically reactive problems analyzed. This is what
we would expect, since the Maxwellian distribution implies a completely homo-
geneous, isotropic field which is of little interest to engineers.

The conventional approach has been the use of one-point averaged equations
derived from the Navier-Stokes equation, and the species and energy conserva-
tion equations, which are not closed. The closure techniques of the above
mentioned equations are mainly based on Boussinesq's relationship or Prandtl's
approach, which are basically inadequate to desgribe turbulent transport as

At
(15) (11) and these have been

pointed out first by Chung and later by Spalding,
explained in Chapters I and II. Not only is the mean-gradient type closuxe
technique, which ascribes the turbulent transport as analogous to laminar trans-
port and results in a flame sheet solution in the turbulent combustion flame,
inadequate, but also the basic physics of the problem, concerning the mixing

and reactions, cannot be described successfully by the moment equations alone.
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These basic physical descriptions of mixing and reactions will be briefly
mentioned herein,
We will repeat a portion of the physical description given earlier by

(26,15,22,27) As an illustratien, let us consider the turbulent mixing

Chung.
of two groups of fluid elements containing two different chemical species,
say.the fuel and oxidant, across the plane A-A' in Figure 9. As far as the
transport of the momentum, energy, and the chemical species in the absence
of chemical reaction are concerned, this fluid-element transport (eddy trans-
port) completely describes the mixing. This mixing of the fluid elements,
however, will not allow chemical reaction between the two chemical species.
Chemical reaction 1s a molecular process, and the chemical species must mele-
cularly mix between the two groups of the fluid elements before a reaction can
conmence. Crossing of the fluid elements across the plane A-A' in itself does
not necessarily imply wmixing as far as the chemical processes are concerned.

The molecular mixing between the fluid elements (dissipation) takes a
finite amount of time. Therefore, the chemical reaction zone of the two
initially unmixed reactants of Figure 9 should be of finite thickness even
in the limit of an infinitely fast reaction rate [Kf + @ in Eq. (V-1)]. 1In
spite of this fact, if one employs Prandtl's approach, discussed previously
for the mixing and reaction problem at hand, one obtains an infinitesimally
thin combustion sheet (diffusion flame sheet) ;n the limit of Kf -+ ©, a5 1t
is in the laminar flame [see, for instance, Libby (1962), reference 53]}.

There have been several experimental results published in the past which

(54)

tried to zllude to this fact, such as Hawthorne et al., Wooldridge and

Muzzy,(JS) and Vranos(56) et al. Figure 10 shows the early experimental
results of Hawthorne et al., who established a diffusion flame between a

turbulent hydropen jet and the surrounding air. These restlts show that the
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flame (combustion zone) wherein both the reactants co-exist in the average

is of finite thickness, and the flame structure is basically different from

that predicted by Prandtl's theory. These points have been pointed out

and discussed by Chung.(15’26’27’32)
Let us consider, again as an illustration, the idealized cases shown

in Figure 11, Consider that point B is being alternmately occupied by the

fluid elements containing either the species r or s, whereas point B' is being

occupied in tandem by the fluid elements containing various meclecular mixtures

of the two speciea. We further ceonsider that the concentrations of the species

r and s in the fluid elements occupying B and those comprising the molecular

mixtures of the fluid element occupying B' are such that the mean eoncentra-

tions of r and s observed at B are equal respectively to theose observed at B'.

We now see that the chemical reaction of Eq., (V-1) is prohibited at B whereas

it can proceed at B' even though

<z 5. = <z »
r'B r B!
<z > = <z > V-2
25”B s B! ( )
€7 » <2 B 0w <2 >_.<Z >
r'8 "s'B r'B' “s"B’

What is different between B and B' is the simultaneous probability of finding
the species r and s. This probability is zero. at B, whereas it is finite at

B8', and, therefore, <z 2 >p = 0 whereas <z 2 >pr # 0.

B
Now, let ug consider for B' that the temperatures of the fluid elements

are substantially different from each othey, which is usually the case in

combustion., Then the chemical reaction rate in each fluid element will be

given by Eq. (V-lz) where z_ is the temperature of that fluid element and is

t
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not directly related to the average temperature <z > which one would observe
at B'., The average chemical reaction rate observed at B' will simply be the
average of the chemical reaction rates in the fluid elements, <Kaexp(—E/zt)-
Z:ZZ>. Replacement of this gquantity by Kuexp(-E/zt)<zr>a<zs>b as 1s done in
the conventional appreoach of turbulent chemically reactive flow is not
phygically meaningful,

The above illustrations show the fact that each averaged quantity in a
chemically reacting flow implicitly embodies specific information of a certain
process taking place in the flow field. Therefcre, replacement of a particular
higher order average by a collection of certain lower order averages-—that is,
direct modeling between the averages-—-could lead to an erroneous consequence.

Chung's theory is statistically more general in the sense of generating
moments., The solutions to be cbtained in this chapter will reflect more
evidence of the physical phenomena described before.

In the subsequent analysis, we will assume that the momentum flow field

will not be affected by chemical reactions,

V.A. Governing Equations .

Our governing equation is the kinetic equation, Eq., (IV-2). The chemical
reaction to be considered is given as Egq. (V-1).

Kf in Eq. (V-1) is the specific rate coefficient which is given as

+ - 1w ~AE/Rzy -
K = Kje (v-3)

vhere Ko is a comstant., AE, R and 2, denote the activation energy, the gas

constant, and the absolute temperature, respectively. K in Eq. (V-la) is
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given as
daM -
K = k[ —F pa+b-l exp | - ég; (V-4)
o} Mabib Rz T
“r's

where z¥ represents the mean chemical equilibrium value at one of the flame
edéea.

The instantaneocus rates of generation of the fuel W the oxidant Wy
and the temperature u, by chemical reaction are related to those of the

combustion product w,, by the relationship

P"
a Mr
w = - = {7 ) uw
T d (M >
M ’ i
= (=
s d (}1 ) “s (v-5)
B
Q
woo T (%h”) “p
€ p

o . .
where Ah~ and cp are the heat of combustion and the speeific heat, respectively.
For convenlence of later reference, we repeat the kinetic equation,

Eq. (IV-2)

oF, oF 3 8y 3°F,
e + uJ E;;- = B EE;—(FEUj) + T <?kuk> 3;;3;7' + mﬁf (Iv-2)

where bg = fzg.

The symbel & represents either of the following functions

r fuel p product
£ = (s oxidant ¢ imert species {(v-6)
2 t temperature
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Equation (IV-2) will be manipulated to eliminate the chemical reaction

term in the following manner. We first define the nondimensional variables

o
|
T
ol e
R
S’
N3
n

and

m -+ h

2
I

v-7

(v-8)

Now we rewrite Egq. (IV-2) in terms of the new variables h, o and R, and we

obtain the following equatiouns,

9F 5F ;

T I A T
j 3

3F aF

_B _B& . &

at uj X, é u, (FBUj)
K| 3

8F, B,

R o g2

+

2

. Bl<UkUk> 3 Fa (V-9
3 u, qu,
33
g, <l U > BZF
PR . 8 (v-10)
3 gu_ v,
J 3
Bl<UkUk> ath
+ 3 Buj S, mpf (v-11)
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2
oF oF B,<U U > 3F
m m ) ' 1 k'k m_ -
5c T Y4 3%, B au, Uy + 3 3u, au, wpf (v-=12)
J ] J ]
2
BFn aFn ) 81<Ukuk> 2 Fn
B = - . f -1
ot + uJ ax 8 u, (FnUJ) + 3 gu,3u, wp (v-13)
| 3 J 1
where
F = mf , F = nf {(v=-14)
m n
Fh = hf

We notice that Eqs. (V-9) and (V~10) have the same furm as that of Eq.
(1v-2) wiﬁhout the chemical reaction term. The single-mode G-function
obtained in the previous chapter can be used for solutious for FOl and FB' if
we further define (Fm)i and (Fn)i as Fm and F“ without chemical reactions,
from Eq. (IV-2) with the aid of Egqs. (V-12) and (V-13) we can readily see

the following relations,

(Fm)i - (Fn)i = Fm - Fn (V-15)
Since (F ), and (F); are governed by Eq. (IV~2) without the chemical reaction
term, the single-mode G-function can be used for the solutions of (Fm)i and

(F ..

n° i
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The governing equations have now become the set of equations (V-9) through
(v-13). Equation (V-11) will be degenerated into a set of algebraic equations

in the limit of K + « {or K. » «). With the aid of Eq. (V-7), the equation

£

for wp, Eq. (V-la), can be written as,

' a b
a, M b, M
- _AE q/ay( z) (L (_E'.) a b -
w, = K Ex"[ Rz ](d)(M)(d) n/ e (v-16)
t P P
Hence, we have
b M
. 1-a-b a.b -
wpt = K exp[ :l (M) (3 D (s )f Fo'n (v-17)

Substituting Eq. (V-17) into Eq. (V~11l) and dividing each term by K, we

cbtain
3F 5F 8 2%F
1) m o .8 ' - N :
g 13t T Yy o, e %, (FpLy) 5 Ul B Bu, %
a d
M b, M

o pRd _ BE qgayi/xy by (s l-a-b -
= Tafn e"p[ th](d) (Mp) (3) (Md) £ (v-18)

In the above, when the chemical reaction rate is infinitely larpge, i.e. K + =,

we get the following equation

FF- = 0 (v-19)

Since a and b are positive numbers, Eq. (V-19) may be written as
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FF =0 (v-20)

The above equation gives us some explanation of the physical phenomena
of mixing and reaction, in the limit of K » «, as described earlier in this
chapter. We would like to recall that the definition of Fm {or Fn) is the
probabilicy density function of finding the fluid element containing species
r (or s) with concentrations m (or n) {dimensionless form of z_ (or zs)]
having the velscities between U and U + du in velocity space. As mentioned
before, chemical reaction is a molecular process which takes a certain time
for two different chemical species (in our case they are originally contained
in different fluid elements) to diffuse into each other (between fluid
elements) in the course of turbulent mixing (eddy transport) so that the
chemical reaction can happen. In the limit of K -+ «, as soon as two different
species r and s appear in the same fluid elememt--so that they are in the
same probability cell in the velocity space--the combustion will take place
and complete simultaneously. Thus, Eq. (V-20) describes the prohibition of
the coexistence of the two species r and s in the same fluid element (which
occupies the same probability cell in the velocity space). .

The existence of one of the species r or s at a given phase point (§,E)
can be determined if the amount of the species appearing in the fluid element,
less the amount of that species required for a complete chemical reaction, is
positive,

For the conveniesnce of later calculations we will let

r = 5 = -
M. T W 0.5 (v-21)
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Thus, an equal amount of two speciles r and s is required for a complete
chemical reaction of Eg, (V-1).
Equation (V-20) will be further degenerated into the following algebraic

equations. We first divide the velocity space into two domains as,

v
o

G @ if [(Fm)i - (Fn)i]__
(v-22)

4
[A
o

ey o o - ]

According to our explanations in previous paragraphs on Eq. (V-20}, Fm and

Fn can be determined as follows,

Eo= (F), - (F) for u € (G)m

F,o= 0 . (V-23)
¢ Fo= 0 .
CF, o= (B, = (F),  foru e (W) (V=-24)

Thus, our governing equations finally become Egs. (V-9), (V-10), (V-23)

and (V-24),
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V.B. Properties of the Green's Functions

The kinetic equations w= employed previously are homogeneous. The
Fokkey-Planck type --uation such as Eq. (IV-2) is a diffusion type equation.
The fundamental so.utions obtained in the previous chapter are the instan-
taneous point source solrtjurs. These solutions are similar to that of an
ordinary diffusion equation,

In a mass diffusion field, if C represents the mass concentrations, its

diffusion equation is given as

2
L . piL (v-25)
ot 2

3x #

The Green's function of Eq. (V-25) is well known as a Gaussian kernel,

which is
P = 1 exp [.. = x)’ ] (V-26)
V2aD(t - t_) 2n(t - £ )

P is exactly the solution of Eq. (V-25) representing the solution of an

instantaneous point source with unit intensity given at x = X, when t = £,
P as well as G are delta functions at t = tys at a given physical point X1
or at the phase peoint (;o’ﬁo)' Obviously, froim tYe conservation of mass, P

satisfies the following relation

I_m P(x,tlxo,to)dx = 1 (v-27)
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Similarly, the Green's function which represents the unit intensity

point source solution of Bq. (IV-~2) has the following property

-

o =~
- > > > -
J—m J Gl (K,U,t xo,uo,to)dxdu = 1 (V"'ZB)
Equation (V-28) is easily verified by first considering the integral

J f -fl(-f,"ﬁ,tl-'f B e )dfaR = 1 (v-29)

whicl. is self-evident. Then, by employing Eq. (IV-53) the left hand side

of Eq., (V-29) can be written as

” r’ e I E 38t (TR e
G. (x,u,t|x ,u ,t ) e 22l duéx (v-30)
f_m . L 00’0 a(gsg)
3(T,%) J |
¢ mce the Jacobian = = = vdst s Eq. (V-30) readily gilves the result of
3(u,x)

Eq- (V—28) .

V.C. Source Conditions

The flow conditions at x = 0 of the present physical problem are idealized
as shown in Figure 8. The velocity profiles at x = 0 are so-called plug
velocity profiles. 1In the real physical picture, one should have a certain
mechianism for supplying fluids flowing continuously in the x < Q0 region, and
the two streams separated at the y = 0 plane should be kept unmixed. In many
experimental studies such as Baker's and Spencer’s experiments, in thelr wind

tunnel the section before the test section, i.e., the x < 0 region, the two
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streams are separated by a smooth plate which usually causes certain boundary
layers on both sides of the plate. They both tried to minimize these boundary
layers by smoothing the separating plate and by reduding the free stream
turbulence energies to as low as possible., However, after a certain distance
downstream, the effects of the original boundary layers near x = 0 on the
other momentum quantity 1s no longer important.

The flow region of interest is in the region of x > 0 where turbulent
mixing and reaction take place,

In the present analysis, we will idealize that the fluids flowing out
from the x = 0 plane have plug velocity profiles with given turbulent energies
for both strEams‘;hich are originally unmixed.

The kinetic equation considered in the present analysis is linear and
homogeneous, Eq. {IV-2). The Green's function obtained in the previous chap~
ter iz an instantaneous point source solution of the kinetic equation. If
we properly define the distributions of the sources according to the flow
conditions of the present physical problem, the Duhamel principle can be
applied to superimpose all selutions caused by these sources,

In order to utilize the Green's function-~the single-mode G-function--
which is an instantaneous point source solution of the kinetic equation, Eq.
(IV-2), we have to specify the distributions of the sources which will
suitably describe the given flow conditions of the present physical problem,
As far as the probability density function of the fluid elements, which carry
the chemical species, z, are concerned, the distributions of the sources—-
according to the flow conditions mentioned in the previous paragraph-~can be
considered as continuous probability demsity fluxes (at the x = 0 plane) per
unit area per unit time with Gaussian intensities, These are Gaussian sources

with respect to thelr own mean velecities and turbulence energies.. The condi-
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tion of the source distributions is thus defined as follows,

s, = la f (e )]u Blu )8(x,) (v-31)
where
1 [(a - <u>m)2 + vi + Wi]
5 3732 exp | - g 5 ] , ¥y >0
G T > ) 3 U U+
-~
fo(uo) ==
1 [(u0 - <u>_m)2 +-v§ + w%]
5 v U6 3 U
{(V-32)
and
1 u >0
H(u ) = ° (v-33)
0 u, <0

z denotes the species concentration given at the sources. All subscripts o
denote the quantities given at the source. H(uo) denotes that only those
fluid elements with positive U values can go intoc the region of x > 0 where
mixing and reaction take place.

In the present analysis we will let <Uk ot and <Uk o= be signifi-

cantly small compared to <u>i. In the subsequent analyses we will let
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<U, U > 4+
kko _ 2 x 10—5
2
<u>
(V-34)
<U U > -
ke = 2 10-5
<u>
- The value of v, is given as
u = <ur, 4+ U {V-35)
9] e o}
which can be approximately written as
- | 1/2 -
f(uo) v 0 unless ]uo u>_; < <UkUk>O {V=36)

From Eq. (V-32) we see that most fluid elements given at x = 0 have the
x-component velocities of the value of <u>_ (or <u>__). Under thelcondition
of Eq. (V-32) we also can see from Fq. (V-30) that the probability of finding
the fluid elements with negative wvalues of Y, is exponentially very small,

*

Therefore, Eg. (V=31 is approximated as,

. -
= ~37
N [z £, Ca ) ]<u> 8(x ) (v-37)
The above approximation will simplify some manipulations in later andlyses.

In the case of chemically frozen flow, we will let 2, = 1 in Eq. (V~-31).
When the chemical reactions are undertaken we assume that the upper stream
(v > 0) contains fuel (r) and the lower stream (y < 0) contains oxidant (s)

and inert species (¢). In the present analysis, these chemical species con-
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centrations at the source are given as follows.
In the upper stream (y > 0, x < 0):
z = 1.0
Ta
(V-38)
B = 0.5
o
In the lower stream (y < 0, x > 0)
z = 0.7
8u
2 = 0.3 (V-39)
Co
W= 0.5
o
We should notice that from Egs. (V-5) -and (V-21), we have
Zz = l It
r 2
(v-40)
z. = 2n
5 2
Therefore, the Ty and n, at the source are readily gilven as
m,= 2.0,}3; >0, x <0
n = 0
Q
(V-41)
m = 0
Q

1.4,}y< 0, x <0

e}
o}
1
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V.D. 8olutions

We will use the Green's function--~the single~mode G~function--to construct
the solutions for f and F's. As mentioned in the previous section, the kinetic
equation employed is linear and homogeneous, and its solution can be obtained
by properly summing up the sources distributed in the physical space. With
the distributions of the sources specified in the previous section and by
employing the Duhamel principle, the solution for F and f can be constructed

as follows (without chemical reaction).

oF
> > >
f dyo Gl(x,u,t]xo,uo,to)s {(V-42)

-0

and f is obtained by setting all z's equal to 1.

£ = (F) (V-43)

z=1

Since the fluids are continuously flowing out at the x = 0 plane, after a
certain considerable time, i,e., t »> 1, all the solutions to be obtained in
the }egiow @ > x > 0 will reach their steady state. In our subsequent calcula-
tion we will tend to obtain steady state solutions.

The integrations on the right hand side of Eq. (V-42) and Eg. (V-43) can
be evaluated by suitable application of integration tahles and little manipula-~
tlen except with respect to t- The last step of integration with respect to
time is left to the computer for numerical inmtegration,

Conce the distribution funetions are determined, the various one-point
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correlation functions can readily be obtained. Let Q(K) represent the general
momentum quantities. The averaged Q(g) can be obtained as follows,

- > >

« = i f U@, By (V=44)

In later calculation we will let § = u and Ukuk’ which are essentially needed
for further caleulation of combustion diffusion flame,
M in Eq. (V-44) is the normalization factor, which is

s}

N = J £(3,%)d0 (V-45)

N is sometimes called the particle demsity. When we defined the conditions of
our sources we made certain approximations which took a very little amount of
the fluids with negative U, velocities at x = 0 into our solutions. Ideally,
N should be exactly 1. In our calculation for the given original turbulence
energy and approximation made before, the result of N in the free stream has
the value of 1.000104, and with little variation in the mixing region. We
count N as the particle density and all the calculations are normalized by N.
The necessary parameters and iteration scheme on <uj> and <Ukuk> will be given
and discussed later in this chapter.

As we have assumed before, the momentum field will not be affected by

chemical: veactions.

Once the distribution functions, F's, are determined as given by Eq. (V-a2),

the various guantities of mean species concentration and their mean turbulent
transport can be easily determined. This will be given subsequently.
The determination of Fm('ﬁ) and Fn(ﬁ") 1s given by Egs.(V-23), (V-24) and

(V-42). Equation (V-20) prohibits the coexistence of the fuel and oxidant
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in the same fluld element which has been explained in Section V.A. OQur
physical problé; gives the two separated streams with one stream containing
fuel and the other one containing oxidant and inert species. These two
streams are originally unmixed. The intermixing between these two streams
and the associated interdiffusion of oxidant and fuel between fluid elements,
whiph originally contained different species, will be mainly undergone
through vertical mixing and transport. We then approximate that the require-
ment, in the limit of K » «, that the two chemical species, fuel and oxidant,
be "in phase" in velocify space ipAthe himdtof k @¢CB, is necessary only in

the vertical direction. Thus, Eq. (V-20) is approximated as follows,

m,an,v = 0 (V-46)
where
[++] -~ >
Fm v ] J‘ﬂm I_‘“Fm(u) dwdu . (v_&; )
_ 12 - =] > i ‘9 . _
Fn,v = de J“an(u)dwau (V-48)

Equation (V-46) prohibits the coexistence of fuel and oxidant appearing in the
probability density cell on the vertical velocity v-axis. Equation (V-46) can

be further written as,

For [(Fm,v)ii(Fn,v)i]’ voe v, (V=-49)

and
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Fm,v = (Fm,v)i - (Fn,v)i
{v-50)
A
Fn,v = (
For [(Fn,v)i 2-(Fm,v)i] A {V=51)
and
Fn,v - (Fn,v)i - (Fm,v)i
(Vv-52)
F = 0
m,v
where
(F_ )., = 'rm ) (F ), dwdu
m,v’i Jo Joee WL
(V-53)
(Fn,v}l = [_m J_w (Fn)idwdu

The expressions of Eqs. (V~49) through (V-52) are equivalent to Eqs. (V-22)
through (V-24) in section V.A, We only. reduce the velocity domain of interest,
gm (or 3n), toAthat of the v-component, v (or vn).

We would like to mention here again that the single-mode G-functionm, Gl’
is the Green's function of Eq. (IV-2) without the chemical reaction term.
The solutions for the F's given by Eq. (V-42 can be used for Fu’ FB’ (Fm)i and

(F),.
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With the aid of Eq., (V-42) and Eqs. (V-49) through (V-52), the various

quantities of the mean species concentration can be readily defined as follows,

<m> = J F dv ; :
m,V :
v :
m -
(V-54) |
<z > = f.m—>. "!
2 3§
3
<> = J Fn dv 2
v v
n i
(V-55) ;
2> = f%i ?
m -
. N
<z,> = I Fc(u,x)du (V-56)
- T} H
From the conservation of species, <zp> can be obtained as follows: !
<z » = 1 - <z > - <z > -~ <z2> (Vv-57) ;

Since the kinetic equations for Fu and FB do not contain ehemical reaction

terms, the solution for the F's given by Eq. (V-42) can be used for Fa and FB'

Thus, <w> and <f> can be readily obtained as i

> = J PGS (v-58)
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1-+ .
@ = J P (v-59)
- B
and
<hs> = <> - <o
or (V-60)
<h» = <g» =~ <>
aM bM

In Eq. (V-21) we let = 0.5, i.r., equal amounts of the mass

r__ 8
de de
of fuel (m) and oxidant (n) are required for a complete chemical reaction.

In the domain of v ¢ Vi all the oxidant appearing (before chemical reac-

tion occurs) in the fluid element will be totally committed to combustion and

will become product. Therefore, Fp v’ the distributien function for the species

of the product can be readily obtained as [from Egqs. (V-49) through (v-52)1,

¥ = (v-61)

5]
<z » = [ F dv {(v-62Y
P e PV

In our later caleculation, the results of <zp> calculated from Eq. (V-62)
and Eq. (V-57) are almost identical.
From Eqs. (V~49) through (V-52) and Eq. (V-61), the mean turbulent trans-

port of various species can be obtained as follows,
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<Vm> = J VF qu/
m,v
m 1]
(v-63)
<Vz » = L <V >
2 m
<Vn> = ] VF  dv
n,v
v
n
(V=-64)
<st> = %‘<Vn>
and
<Vzp> .= Lﬂ VF ’vdv (V-65)

If we define w, as the dimenslonless temperatutre due to chemical reaction,

we may write, from Eq. (V- 7),

. = (—P—-) o, | (V~66)

= (v=67)

h = =z and <Vhp> = <Vzp> (v—68)

et gl tmay e AL AR, AU - st e s e s+ 1 Memrr s - o o —amee
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where hP is the dimensionless temperature (product) due to chemical reaction.
1f hi represents the dimensionless temperature of the flow field for a
chemically frozen came, then h can be written as

h = h, + h (V-69)
and the vertical turbulent transport is

<Vh> = <Vhi> + <vhp> (V-70)
Since we have originally uniform temperature, ho = 0.5 for all v at x = 0,
there will be no net heat transfer under chemical frozen conditions. Therefore,
we have

<Vh,> = 0 (V-71)
With the aid of Egqs. (V-68) and (V-71), Eq. (V-70) becomes

Vh> = <Vz > ' (V-72)

In calculating the solutions cited above there are certain parameters
which must be determined and which will be discussed in the next section, TFor

the convenience of calculation, all quantities to be caleulated will be non-

dimensionalized by some referenmce quantities.
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V.E., Determination of Parameters and the Similarity Solutions

As mentioned in the previous chapter, our solutions will be iterated on
<uj> and <UkUk> until a certain convergence is attaired. In our present
physical problem, as described earller, the mean velocities given at x = 0

(source) are only in the x~direction, i.e., <v> =0, <«w>_= 0. Even in

I

the mixing region <w> = 0, which results from the nature of the problem being

I

two-dimensional, <w> = 0 is also shown in our caleculations. In the mixing

layer there is <v>, which is relatively very small compared to <u>

(¢v>/<u> ~ 0.005). Also, our preliminary calculations show that the
<ur
calculated <u> is relatively insensitive to that of the assumed,and the

chosen <UkUk>. Even when we merely assumed <u> = %'(<u>_m + <u>w), the

resulting <u> is very close to the error function and comparable to the
experimental data. In the subsequent analysls the iteration of <uj> will
be simplified on <u> only,

There are some parameters, associated with the guessing of <u> and

<Ukuk>’ which will be discussed subsequently. Later in this section we will

also see that by properly defining the integral length scale in the mixing

layer we will obtain similarity solutions, Similarity solutions of the pre-

(38,39,45)

sent problem have been giveun bhefore and were also shown by experi-

[-¥e .
(47,48.50) However, the present approach is quite different

{38,39,45)

mental results,
from the conventional omnes and the former investigators were
restricted to obtaining the momentum field only.

First, 8 has to be determined. g is given as the sum of Bl and 8"

which are given by Eqs. (I1-2) and (II-6). g, and BU can be related by

1
introducing the turbulent Reynold's number which is



<0 U >1/2A

k'k

Re = P,
A v

From Egqs. (II-2), {II-6) and (V-68}, Sv can be written in terms of Bl as

v
g™ = bﬁl

where

o HAT i,
Therefore, B becomes
(L + 2b931, for F
1(1 +v)8,, for £

Analogous to Bl, we define § as

1/2
<UkUk>

24!

where A" is similar to a length scale which represents the length scale
corresponding to the dissipation rate g and the turbulance energy <U
The growth of the mixing layer thickness is approximately a linear

function of x, which is shown in both Baker's and Spencer's experimental

89

(V-73)

(V-74)

{(V-74a)

{v-75)

(V-76)

0, 5.

results. This enables us to assume that A and A' are also linear functions

of x. The integral length scale is approximately of the order of one half

of the mixing layer thickness. Therefore, we let
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(v-77)
t - '
A 2Sx
where 25 and 2; are constants to be determined later.
The two dimensionless spatial variables appearing in our solution are
in the x~direction x' = x%/A', and in the y-direction ¥y' = y/A'. By using

A' as a linear funmction of %, »' and y' become

v o0x _ 1
S U 1
! s
{(V-78)
v - Yoo ¥ 1
y i X 3

s

The above functions of the dimensionless spatial variables automatically give

us the similarity solutions with the similarity variable
= -
n " {(v-79)

Thus, all the quantities to be obtained will be functions of n only.
Many investigators {(Tollmein, Goertler, Baker, Spencer, et al.) defined

the similarity parameter as
E o= gg . (v-80)

where ¢ is a constant to be determined bv experiments which also will indicate

how fast the mixing layer- grows..
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Goertler's error function of mean velocity profiles gives the divi&ing
line--where the mean velocity is the average mean of the free stream's
velocities~~as being on the x-axis. This dividing line given by Goevtler
does not agree with the experimental results. If we properly add one para-
meter n which will adjust the dividing line in Goertler's error functiom,
the mean velocity distributions of both Baker's and Spencer's data are very

close to the following form.

<u>w <u>w

u> %_ {(l + erfloln - no)]) + e (1 - erfio(n - no)])}

(v-81)

<>

The veloeity ratie will be chosen as 0.3. From Spencer's experi-
mental data, those parameters, o, A, 2, ReA, and b, needed for our calculation

are as follows

<U>..m
Tor <u>m = 0 .3
1
N, a A REA b A
~0.02 20,43 3.28 n 1600 0.012 0.044(x = xo)

where X is the virtual origin point of Spencer's experiments and has a very
small negative value. As we can see from the agbove list of parameters, b is

relatively small as compared to 1, and we approximate A' as

A' = 0.044x [i.e., 2; = 0,044 in Eq. (V-77)] (V-82)
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By using the above parameters, the calculated =<u> is almost identical
to that given by Eq. (V-81). These results of <u> and their comparison
with Spencer's data will be given in the next section.

In calculating <UkUk> we need more iteration work. From both Spencer's
and Baker's (Baker only measured the turbulent intensity, <U2>l/2, instead
of the turbulent energy profile) data, we propose the following formula for

the turbulent energy profiles

<y U > 2
kk . g o T(n=n,) (v-83)

where TI' is a constant parameter to be determined later, Em is the maximum

value of <UkUk> which is given by the experimental data, Equation (V~-83) is

evolved based on Baker's turbulent intensity prorile and Spencer's turbulence

<UP

energy profiles. Finally, a proper choice of T' = 1.4 (for 0.3) is

#

<u>
-

found to have very good agreement between both the given and the calculated

values. The results of <UkUk> which will be compared with Spencer's experi-

mental data will be given in the next section,

V.F. Results of the Iteration on <u> and <UkUk>
<Ukuk>
We will let Ep and E represent the given and the calculated 5=
<ur
respectively, and :z: and UK represent the calculated and the ®
=]

. <u>
given ———

perandt reSpectiﬁely. All the necessary parameters for the caleculation
o :

are defined in Chapter V. The resulting Ep, E, <u> and UK are listed in the

following table.



<u> = 0.3
n=ylx Ep E UK <u>/<u>,
0.06 0.00062 0.0004168 0.9927 0.9978
. 0.05 0.00200 0.00232 0.9849 0.9200
0.04 0.00420 0.0054721 0.9729 0,9709
0.03 0.00802 0.008797 0.9480 0.9501
0.02 0.01347 0.013652 0.9178 0.91325
0.01 0.02027 0.0201724 - 0.8648 0.8724
0.0 0.02715 0.027106 0.8028 0.8125
~0.01 0.03235 0.0325176 6.72957 0.7403
-0.02 0.03430 0.034707 0.650 0.6613
-0.03 0.03235 0.033013 0.5703 0.5827
-0.04 0.02715 0.028117 0.4972 0.5121
-0.05 0.02027 0.0217065 0.43513 0.4557
-0.06 0.01347 0.01582 0.3867 0.410
-0,07 0.0080 0.0100 0.352 0.371
-0.09 0.00196 0.00181 0.3151 0.3115
~0.10 0.00082 0.00072 0.3072 0.3043
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V.G, Results

With the solution cited in gsection V.D. and the calculation scheme
£ <u> and <U. U > given i tion V.G, the results of <2~ and bl i
of <u> an WU siven in section V.G., the results of o= a —:G:z_

are given in Figures 12 and 13, These figures show that the comparison

with Spencer's experimental data has a very good apreement.

Once the momentum field is determined, no further iteration is needed
for further calculation of the combustion data. The distribution functions
Fm,v aﬁ@\Fn,v of fuel and oxidant species in the combustion zone at differ-
ent positions n are given in Figures 14 and 15. These two figures show
the non-Gaussian nature of the distribution functions of the different
species in the mixing layer.

The combustion diffusion flame strﬁcture is given in Figure 16. Figure
16 presents the various mean specles concentration profiles and also shows
the finite thickness of the diffusion flame which is approximately of the
order of half of the mixing layer thickness.

Finally, the mean turbulent transpert of various different species is
given in Tigure 17. Figure 17 shows that in some region of the mixing layer,

the heat transfer direction does not depend on mean temperature gradients.

All the resulte will be discussed in the next section.

V.H. Discussion of the Results

The results for the momentum fleld, both for mean velocity profile and
mean turbulence energy profile have very good agreement in comparison with
Spencer's experimental results, Those parameters needed for calculation

which are determined in a previous section are based on Spencer's data.
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From the results shown in Figures 12 and 13, it seems that the present .
Green's function method is satiéfactorily accessible in applying Chung's
theoﬁy.

For the present two dimensional. shear flow problem, the mean velocity
distribution can well be described by certain error functions. These have
been shown by many former investigators(37—48) both analytically and experi-
mentally. Although the present kinetic approach is totally different from
the former conventional approach, the error function distribution of the
mean velocity profiles can be seen from our solution, one step hefore we
integrate with respect to time. Thig error function distribution of the
mean velocity can be considered as the nature of the problem.

The present similarity solutions are automatically obtained after suit-
ably choosing the expression of the integral length scale A'. We do not
intend to obtain similarity solutions in the beginning of the present analysis.
Since ¢ is a constant (to be determined by expewiments) our present simllarity
variable, n = y/x, and the similarity variable defined by others,(39’47)
£ = gy/x, function in the same manner.

In the real physical picture, as mentioned before, there is a separating
plate between the two streams in the region of x < 0, and the resulting
boundary layers do affect the velocity profile and turbulence energy profiles
in the initial part of the mixing region. In between these two regions,
both Baker's and Spencer's experimental results show that the measured turbu-
lent intensity,<U%£§and the turbulence energy distribution are constants
on the centerline, n = n,s and the mean velocity profiles are nearly similar,
However, ouxr present analysis has assumed ideal plug velocity profiles at
¥ = 0 and no wall effects of the wind tunnel; therefore, our solutions are

similar everywhere (along the x axis).
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From Figure 12, we see that the deflection point of the mean velocity
profile is near n = s which gives the maximum shear stress near that‘
point. Since our vriginal turbulence energy given at x = 0 (source) is
negligibly small, the turbulence energies are preduced by shear stress in
the mixing layer. The maximum turbulence energy as shown in Figure 13 is
near the region of n = n, which corresponds to the deflection point (maximum
shear stress} near the region of n = n in Figure 12,

The distribution functions of F ,and F_ at two different positions

3 3

of n in the mixing layer are given in Figures 14 and 15. As it was explained

in sections V.A. and V.C. of this chapter, the governing set of fundamental

solutions for this problem consists of single-mode G-functions and an alge-
braic equation which is the degenerate of the reaction term, wf. This
algebraic equation, Eq. (V-46), prohibits the coexistence of the fuel and
oxidant in the same fluid element since K + « demands the immediate combus-
tion of all molecularly mixed reactants until one of the reactants diséppears.
This fact manifests itself in the present solution, as the prohibition of
coexistence of the fuel and oxidant within the same velocity.cell for a given
t and X. The above phenomena are evident in the distribution functions of
the chemical species shown in Figures 14 and 15, In these figures, the
completely non-Maxwellian nature of the distribution functions is evident
in these results,

Figure 16 shows the structure of the combustion diffusion flame. As we
expected, the flame is of finite thickness, and its thickness is close to
one half of the mixing layer thickness (local integral scale). These features
of the combusticn diffusion {"ame have been revealed in the previous analy-
525(26—31) by using the bimodal method. As we have explained before, chemical

reaction is a molecular process, and the chemical species must molecularly
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diffuse into each other (they are origirally contained in different fluid
elements) so that the chemical reaction can commence. The molecular diffu-
sion of chemical speeies between the fluid elements has to take a finite
amountt of time, and, therefore, the combustion zone must be of finite
thickness even in the limit of K + », As a matter of fact, the existing

experimental resu1t5(53-55)

of the turbulent diffusion flames bear out the
above mentioned aspect of combustion.

8ince the chemical species are carried by the fluid elements, the rate
of momentum mixing (eddy transpert) will comtrol the rate of mixing and,
meanwhile, the interdiffusion of two differemt chemical species. The rate
of momentum mixing is Bl, and in a complete momentum mixing the fluid element
will travel a distance of the order of the integral length scale, Therefore,
the complete combusiion of the reactants will take place in a flame whose
thickness is of the order of A. This is shown in Figure 16.

We also see that the maximum <zp> appears near n - n_ = -0.02, Since
the species from both streams have to cross the centerline region, n = D
in the coursé of mixing and reaction, the area near the centarline reglon
would have a better chance of more complete mixing and chemical reaction
btotween these two chemical species. Therefore, the maximum <zp> appears
in this region, n - n, = 0. However, the mass rate of supply of fuel from
the upper stream is faster with larger momentum than that of the oxidant
from the lower stream. We see that the maximum value of <zp> is located
near n = n, = ~0.02 which is slight;y lower than the centerline n = n, = 0.

Figure 17 presents the mean turbulent transport of varioﬁs chemical
species and the mean temperature distributions, <h>, Qur source conditiomns

specify that we have originally uniform ﬁemperature'in both streams. The

heat production (or temperature increase) in the mixing layer is mainly
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contributed by the heat of combustion. Therefore, the profile of <h>r is
distributed in & manner analogous to that of <zp>.

In Figure 17 we also can see that <nV> has positive‘values and <mV>
has negative values, Since the oxidant is supplied from the lower stream
and the fuel is coming from the upper stream, the former species have to
move upward while the latter have to be transported downward in order to
particpate in the mixing and reaction in the mixing region.

From the cuxves of <zp> and <h> we can see that much of the production
appeared in the core region of the mixing layer. The vertical transport of
zp and h, i.e., <Vzp> and <Vh», will emanate from this region to both the
upper and lower directions. These are shown on the curve of <Vzp> and <Vh>
in Figure 17.

As mentioned earlier, the original two streams have uniform temperature.
The temperature incyease or the heat production in the mixing layer are
mainly obtained from chemical reaction., Therefore, the immediate turbulent
transport of zp and h would behave in the same manner. This is sﬁown in
TFigure 17,

One interesting phenomenon which has also been revealed by the prévious
bimodal method, as shown in Figure 17, is that in some region of the combustion
zone, heat transfer, <Vh», takes place against the conventional negative mean
temperature gradient. In the region of ~0.02 < n -n,<-.005, «Vh> hasg nEgativé
values which implies that heat transfer is taking place in the - (n - no)
direction, while the mean temperature profile, <h»>, has negative gradient
values along ﬁhe + {n -~ no) direction. This manifesﬁs'the inadequacy of
the conventional gradient-type approach in which turbulent transport has
béen analogous to laminar transport end is in terms of local mean'prope:tiés.

The irnadequacy of the mean gradient-type approach and the insufficiency of the
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one-point moment equation in deseribing the turbulent mixing and combustion
have been well explained beforé and will not be repeated here.

Most of the salient features of Chung's theory of éurbulent chemically
reactive flow as discussed in the previous paragraphs have been revealmsd
in the previous analyses by the bimodal method.(26_3l) The present solutions.
do not show the discontinuities in gradients of the mean concentrations at
the two flame edges seen in the bimodal solutions. It seems logical that
such discontinuities should be a natural consequence of the bimodzl approxi-
mation. As ié was explained in Chapter IV, in a bimodal approximation, all
distribution functions are a priori approximated by two dissimilar half~-
Maxwellian functions. Therefore, for the completely non~Maxwellian combustion
preblems, the distribution functions have imbedded discontinuity at v = 0.
Furthermore, in the bimodal method, one divides the f£luid elements into two
families in velocity space with one for v » 0 and the other one for v < 0,
respectively. All veactants s in v > 0, for imstance, are considered to be
molecularly mixeq and may react simultanecusly., No distinction is possible
among the f£fluid elements and the chemical species with varying positive
values of wv.

Obviously, all chemical species s moving with the positive v (see Figure
9) will not molecularly mix with r at the same rate. Ones with greater v
will mix before those with smaller v. Therefore, the beginning or end of a
flame zone is reached in a continuous manner and not discontinucusly. A
description cf these detailed phenomena, however, has been precluded in a
bimodal approximation, and the discontinuities in the mean‘profile gradients

resulted,
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CHAPTER VI

CONCLUDING REMARKS

A study of turbulent mixing and combustion according to the kinetic
theory due to Chung has been presented in this dissertation., A further
stu&y of the multiscale turbulent kinetic theory generated from Chung's
theory has alsc been studied,

We first thoroughly reviewed Chung's theory, its basic physical standing
and its engineering-wise applicability which distinguishes Chung's theory
from the conventional phenomenclogical and classical statistical theories.

In Chapter III, the extended kinetic equation from Chung's theory
characterized by two-length-scales was employed to analyze the behavior of
the mixing and deecay of a multiscale turbulence field. The decay and inter-
action of the two nonequilibrium degrees and the behavior of the apparent
length scale representing the hypothetical turbulence field characterized
by one length-scale was studied through the kinetic theory approach for
the first time. The relaxation of a multiscale turbulence fileld is found
to be in basic agreaement with that analyzed in the classical statistical
theories that the group of energy~containing eddies with a larger length
scale controls the relaxation rate of the turbulence field. The variations
of the apparent length scale’are guantitatively revealed during the deecy
of a multiscale turbulence field. The apparent length scale is found to
tend to reach a steady value, for lawge T, of approximately the average value
of the two given length scales. We also found that the imteraction between
the ftwo nonequilibrium degrees i1s strouger when they are closer in wave
space in the energy spectrum,

The analysis presented in Chapter IV provides the mathematical scheme
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of Finding the fundamental solutions of the kinetic equations given by -
Chung's theory. In principle, if one should find it necessary to seek
for the higher order (more than two) kinetic equations accerding to
Churg's theory (only at the expense of mathematical complications) the
mathematical techniques are implicitly given in Chapter IV, and the
generalized fundamental solutions can be obtained by extending the mathe-
matical lemmas glven in Appendix III.

The results in Chapter V show that the present Green's funmction method of
applying Chung's theory improves qualitatively the results obtained by the
former bimodal method. The present solutions removed the discontinuities
of the mean gradient quantities in the diffusion flame structure which are
caused by the approximation of the bimodal methed in the previous analy-
ses.(26_31) Qur solutions reconfirm the finite thickness of the diffusion
flame, and they reconfirm that the flame thickness is of thé order of the
integral length scale, both of which have been revealed by the bimodal method

(26-31) tle alto noticed that the heat transfer could

in previous analyses.
take place against the negative mean temperature pradient inm certain regioms of
combustion zone, All these salient features of turbulent chemically reacting
flow mentioned above enlightened the present kinetic theory approach of
turbulent chemically reacting £low.

It is our main purpose to study Chung's theory of turbulent chemically
reacting flow. Nomne of the other existing kinetic theories of turbulence
are modeled for chemically reacting flow. We have provided a better method
and improved the results in applying Chung's theory. We also studied the
decay of a multiscale turbulence field and we do realize the need for a

multiscale turbulence theory, which enables ug to have an equation to describe

the length scale, but there is no chemical species equation for a multiscale
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turbulent flow. The establishment of a chemical species kinetic equation
for a multiscale turbulent chemically reacting flow will be of great interest

in the near future.
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Figure 2 Decay of the turbulence energy, <Wkwk?’ and the variation
of the apparent length scale, A, with initial conditions

<UkUk>o = 0,8, <Vkvk&0 = 0,2¢
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