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NOMENCLATURE

A defined in Eq. (1V-38), also of the order one

A'll defined in Eq.	 (11-6)

Aij defined in Eq.	 (TV-33)

Ai(t)'Aa
R' Ab k	 random East fluctuating acceleration due to smaller

'	 '	 equilibrium eddies

31^ B,C defined in Eq.	 (IV-18), C also represents the mass concentra-
tion defined in Eq. (V-25)

1. Ba,Bb defined in Eq.	 (IV-22)

B  defined in Eq.	 (TV-23)

a,b,c defined in Eq.	 (IV-15), a, b are also constants in Eqs.	 (111-28b)
and (ITT-28c)

b' defined in Eq. (V-74)

a,b,d numbers of moles defined in Eq. 	 (V-1)

a 2 ,b2 ,c 2 ,d2 ,e2 ,92 defined in Eq.	 (IV-30)

p grid size defined in Eq.	 (IV-28b), also as a constant parameter
given in Eq.	 (V-25)

1

!!!
QE activation energy
E
 <UkUk>o, turbulent energy given at x = 0

l.^ F distribution function of chemical species z

Fa distribution function of chemical species a

F,G,I3 defined in Eq.	 (L--11-3)
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k'll,^'l2' defined in Eq. (IV-16)
l3

tl f distribution function of fluid element

N f2 joint distribution function of fluid element affected
by two families of eddies with different length scale

fo (uo ) Gaussian intensity of source at x = 0

Gl single^,-^ode Green's function

G2 multi-mode Green's function

h,m,n defined in Eq.	 (V-7)

6h
0

heat of combustion

h h at source for y < 0

h+ h at source for y > 0
a

Ii(u ) defined in Eq. (V-30)

zo z at source at x = 0

h normalized temperature due to chemical reaction
F

s

hi normalized temperature in a chemical frozen field

K collection of constants in reaction rate

Kf specific reaction rate

t

K constant

Kj defined in Eq.	 (11-5)

Kask,KU,k defined in Eq.	 (111-5)

.•^ kj defined in Eq.	 (1V--4)

k	 ,kb defined in Eq.	 (1V-22)
a , j	 .j

£s ,Qs constants in Eq. (V-77)

rate of molecular dissipation of chemical species, also
defined as Aa/Ab

' M ' M molecular weight of fuel, oxidant and product, respectively
S

Mij defined in Eq.	 (L-I1.I-5)

i
f. ml(t),m2(t),mM(t) 	 functions of t
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mo ,no m, u at source at x = 0

N defined in Eq.	 (V-45)

`

P defined in Eq.	 (V^26), also defined in Eq. (L-II-l)

p pressure

Q general function of momentum quantity

q defined in Eq.	 (I1I-6)

J[ qi defined in Eq.	 (IV-4)

R Gas constant

R^ defined in Eq.	 (IV-26), also defined in Eq. (IV-4)

r subscript representing the species r

so condition of sources at x = 0

^ s subscript representing the oxidant

to initial time

t time

T Oaot/2, dimensionless time used in Chapter III defined in
Eq.	 (IV--})

=
50

Ta,j'Tb,j

Tao,j'Tbo,j
4- _}
U,u

[1

i
u

u

V, V

V

t
3._:

r --

(Tj ) t=t^

defined in Eq. (IV-26)

(Ta,j ) t=t ' (Tb, j )t=t0	 0
relative and absolute velocity vector of the fluid element,
also represents the relative and absolute velocity vector
contributed to the fluid element from the group of eddies
with a large: length scale

x--component of u

u at source at t = t
0

relative and absolute velocity vector of the fluid element
contributed from the group of eddies with a smaller length
scale

y--component of u
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W 'w relative and absolute velocity vector of the fluid element
in a multiscale turbulence field

w z-component of IA

h position vector

r xi3 spatial independent variables other than time

xi j 
o (xij) t-to

x,x	 x
i ' 3	 '2:a	 3,j

vector variables in Eq. (L-111-6)

x lo' x2o' x3o (x1>J'x2,3"3,j)t=t

xl ,x2 ,x3 independent variables other than time

x , x/A'

Y a function of (xl,x2,x3,t)

Ya a function of (xV X22 x3 : t)

Y 3 defined in Eq.	 (A--III-10)

Y3ao (Y3a) t=t0

Y2o ly 2al'Y2a2'Y2a3	
defined in Eq.	 (A III-17a)

Y' y/A'

z chemical species concentration per unit mass

z 
mass fraction, z, of the ath chemical species

a > ensemble average



16 dissipation scale

A integral scale

At defined in Eq. (V-76)

A Length scale of eddy family "a"

A length scale of eddy family "b"

A apparent length scale

A Ab /Aa

A ne/Aa

transition probability

(t) a function of time

w chemical reaction term in Eqs. 	 (11-8) and (11-3)

ma production of a species due to chemical reation

o a c,.nstant

n y/x

no average mean velocities dividing line

9 oy/x, also a dummy variable in Eq. (IV-18)

Cij
auxiliary variable	 in integral. transform

^ij(t)
function of time in Eq. (1V-31)

d3, 
6i3	

defined in Eq. (IV--31)

A3 ,A
i1	

defined in Eq. (L-IIIM4)

x

11	 ?"	 2	 ,

y3 }
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CIL4PTER I

' INTRODUCTION

I.A.	 General Review of the Development of Turbulent Flow Analyses

As noted by many investigators, turbulence has to be treated statistically. 'Fr.:
/.	 .

Continuum fluid mechanics is, of course, governed by the Navier-Stokes equa-

Lion.	 The traditional analyses of turbulence have employed the various moment

equations derived from the Navier-Stokes equation for the velocity field and

•
r

associated moment equations for the scalar fields of interesto 	 In these

analyses, closure problems were immediately encountered. 	 The classical statis-

tical theory provides a better description of the basic characteristics of

turbulence, but it is focused on certain idealized cases. 	 'These studies

revealed muctt of the structure and dynamics of turbulence, yet they were never

-' intended for nor capable of solving engineering problems. 	 Because of this }``

lack of proper modeling of engineering interest, many engitteers sought solo-
(1,2,4,5)

Lions from phenomenological theories. 	 The major sources	 of the

phenomenological theories are familiar to the reader. 	 They are mostly modeled

(	 Chapter 51 .
after some form of Prandt.l's mixing length theory ' 	 and rely heavily

on empirical formulations leading to quantitative results.

Glushko (6) presented a model which as typical of the Boussinesq relation-

ship approach. Donaldson 
(7) 

used the second order straac e quations and the

method of Invariant Modeling originated by himself. Again, he used various

forms of the Boussinesq model in eliminating triple order moments in terms of

gradients of second order moments. Another approach due to Bradshaw (8) in-

corporated the turbulence energy equation and a non-gradient type of modeling

in which terms such as Reynolds stress are replaced by functions of the turbu•-
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Rj lence energy. Basically, their approaches are more or Less the same, and

differ only in the particular modeling employed in the closure of the second

u 3t

order moment equations.

Other phenomenological theories, rather than adding turbulence energy V/

equations or the stress equations, proposed a model equation for a total

viscosity or a length scale equation. Harlow and Nakayama (g) derived a

transport equation for the dissipation scale from a physical. argument. Nee
.'	

(1Q)and Kovasznay	 proposed a differential field theory by formulating a

lu	 transport- equation for the above-mentioned total viscosity, again from a

#	 physical argument- in addition to that necessary for closing the turbulent

i	 momentum equation, Spalding	 formed a transport equation for the

integral length scale, He recognized the importance of allowing the turbu-

lence field to determine this coupled variation throughout the flow field.
rxr	

^{ His formulation aisa rests on physical reasoning apart from that involved in

closing the lower order (moment) equations.

Another group of theories consists of those making substantial use of v

P

statistical arguments. Tchen (13) and Lin 
(14) 

are notable contributors in

H
t_I

this area. Tchen determined the diffusing properties of small eddies by

considering the pair density of a diffusive element through an analysis of

the Liouville equation of the statistical mechanics. However, this diffusion

is of the near-equilibrium gradient type which is known to be invalid in

general since the large energy containing eddies, which are usually anisotropic,

dominate the diffusion processes. Lin 
(14) 

described a fluidelement as being

comprised of two mass fractions, each having different dissipation character

istics, thereby taking into account both the large eddy and molecular proper-
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i .. are not easily compared vsifAi moment equations derived from the havier-Stokes

^-	 and species-conservations equations, and their consistency cannot be readily

`.l	 assessed. However, Lin's work gives the substance to the simplified statis-

tical model developed by Chung 
(15) 

which is very successful in many aspects,

especially in its consistency in comparison with the moment equations derived

from the Navier-Stokes and species conservation equations. The primary purpose

^J of this theory is to replace the various empirical closure schemes (which

often do not reflect the true character of turbulence) by a statistical

description which draws on known properties of turbulence as determined by

the classical statistical theories of turbulence.	 It is the intent of this

t 1teory to study practical turbulent shear flours in a context allowing access

to both the results of the classical statistical theories and the voluminous

empirical information in the engineering theories.

The concept of the one-point averages Oeing the appropriate moments of

a probability density function which is governed by a kinetic equations, has

been alien to many engineers working with turbulent flora problems. Since an

average (ensemble average) simply implies a weighed moment of a probability

function, one should realize the need to analyze the manner in which the

averages are constructed, especially when they involve chemically reactive

species. This immediately leads us to demand tools in kinetic theory which

describe the probability density function. In the next section we will review

several turbulent flow descriptions based on kinetic theories in recent years.

I.B. Review of Recent Kinetic Theories of Turbulent Flow

Several turbulent flow descriptions based on kinetic theories have been

proposed in recent years [see Lundgren (1967), Chung (1967, 1969, 1970, 1971,
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i

l 1972, 2973, 1974), Spalding (1971), Fox (1971), Yue, et al.	 (1974)x.	 The 3	 .

objectiveo of these theories, except for Chung et al., have been limited to

studies of the flow fields; whereas.that for Chung et al. included the

k analysis of chemical reactions.	 Starting from the formulation of statistical

mechanics and employing the Navier-Stokes equations, Lundgren
(16)

 derived_

an equation governing the one-point distribution function of fluid elements.

There are certain direct contact points between Lundgren's and Chung's work, ^	 T-

and these are well described in References 23 and 22.

A description of the simplified statistical theory begins by pointing

out the major differences between the approach of this theory: and that of the
s 

V.4
classical statistical and engineering theories. 	 The classical studies proceed

• i

^

in large degre by spectral analysis yielding one of the most important
a

conceptual results in turbulent analysis--that being the association of nave

numbers or the reciprocal Length scale with the eddy size. 	 Particularly, in
oaf

-- the analysis-of the spectral energy function, a given range of turbulent
1

Lfi energy is associated with a given range of eddy sizes. 	 Kolmogorov's universal 9

equilibrium hypothesis utilizes this spectral representation to describe, in

the case of high turbulence Reynolds number, what is essentially a statistical t	 ^;

separation between the low wave number, energy-containinganergy-containing eddies and the high

wave number, viscous (near equilibrium) region.	 This result, which has been
1

originally argued for the homogeneous turbulence, is known to be true also

y;
(Z	 Ch	 )

in shear flow.	 ' 
Chapter 4

This is one of the a priori conditions that Id

forms the basis of the simplified statistical theory. 	 The primary difference

f between these two theories is that the present approach attempts no spectral
1tttt

analysis since it is recognized that this method leads immediately to an

unsolvable formulation in the type of problams under consideration. 	 It is

known that in the high turbulence Reynolds number flows the energy-containing ^	 3

^l
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H,a	 region of the spectrum (eddies) accounts primarily for the observable quanti-

HI 
	

ties, while the high wave number region attempts to degenerate the energy

containing eddies toward isotropy.- In this context, the mathematical descrip-

tion is in terms of a probability density function (PDF) for one-nonequilibrium

degree of freedom which represents the whole energy containing region and,

hence, the whole turbulent field. In order to satisfy certain characteristics

q;	 of high,turbulence Reynolds number flows, the representative nonequilibrium

degree of freedom is assumed to evolve according to generalized Brownian

stochastics.
(35,24)

 Although statistical concepts were employed in the classi -

cal theories, tie substantial. advances were made in dealing directly with the

u	 PDF. Kopf	 has formulated equations for the characteristic functior:il of,

this quantity, yet progress came to an early halt with the attempt to obtain

solutions. in this sense, the present theory could be lc.oked upon as an exten-

sion of the classical statistical work to include the formulatiDu of a solvable

equation for the PDF (kinetic equation).

The essential point of comparison between the simplified statistical

theory and other engineering; theories is between the various moments of the
k

Navier-Stokes and species conservation equations and the corresponding moments

of the modified Fokker-Planck equation for the PDF. This is one of the main

advantages of the present theory--it can be assessed by comparison with the

same equation used throughout turbulent analyses of both homogeneous and

L

l	 shear flows. The very difference is that the closure assumption in this

1	 Hicory is embodied in the single assumption of Brownian stochastics. This

closure assumption is free from the conventional concept of the gradient

transport. 'It is also free from the necessity of additional often unrelated

assumptions needed to eliminate triple order velocity correlations which

y ^
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occur in the turbulence energy and stress equations. 	 The most distinguished

~	 Y7

aspect of the theory is that it is not neces},ary to drop species correlations

^ t	 in chemically reacting flow problems having non-linear reaction kinetics for ^ J

complete lack of any modeling method.

The simplified statistic-7 theory has been used successfully on free

shear flows, wall turbulence, inert and chemically reacting flows.(26-31,22)

is The most notable was the treatment of the turbulent diffusion flame indicat-

ing the dependence of the finite flame thickness on the integral scale of

turbulence.	 At the time this result was obtained by Chung, the prevailing

concept was that in the limit of fast reaction crates there e:.ists a flame

sheet similar to that predicted by laminar analyses. 	 The many other theories

utilizing mixing length models yielded flame sheet solutions simply because

by the nature of the mixing length theory the governing equations became

identical in structure to their laminar counterparts, and therefore naturally

displayed the same limiting behavior.	 These equations attribute the same

properties to eddy transport as they do to molecular transport, which is a

serious mistake.	 Turbulence processes may or may not proceed at molecular

€_I	 rates.	 If the turbulence is in equilibrium, molecular or gradient transport

may occur.	 Ascribing gradient transport to turbulence, as does the mixing

length concept, prescribes that the turbulent processes are locally governed

w'`,...
and are void of any long range nonequilibrium memory. 	 Actually, when a fluid

element crosses an interface as a result of a large eddy motion, its interior

still maintains the propeLties existing before crossing,.	 Therefore, in the

case of chemical reaction, the reaction can proceed only as fast as the fluid

element can break up through eddy breakdown and create new interfaces for

reaction.	 The result is that the thickness of the reaction zone is of the

order of the .turbulence integral length scale, independent of the molecular
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j

parameters (viscosity, diffusivity, reaction rate, etc.). More of these

facts will be shown in the results of a specific solution of two-dimensional

	

1.1	

turbulent chemically reactive flout in a later chapter.

I.C. Piultilength--Scale Turbulent Shear Flows: Extension of the Simplified

	

t	 Statistical Theory

	

1	 It was through attempts to treat some of the current generation of

turbulent shear flow problems that Chung's theory was found to be general

enough to include multiscale analyses in the context of its original formu-

lation. Bywater with Chung 
(23) extended this theory to include two non-

D1

equilibrium degrees of freedom. He solved a pair of coupled Langevin equa-

tions, each representing different degrees of freedom, and derived a Fokker-

Planck type equation similar to that of one non-equilibrium degree of freedom

originated by Chun;. it was noted that in many flow fields of importance

there are more than one predominant scale of turbulence. 'Turbulence fields

reflect the character of the physical mechanism by which they are generated.

Consequently, multiscale flows arise as a result of the simultaneous presence

of more than one turbulence generating mechanism.

one example of this is the mixing of two streams, each having its own

length scale. This will result in a mixing layer between the streams, where

the statistical properties are governed by both length scales and the relaxa-

tion or interaction process which takes place between the two modes of turbu-

lence. Another multiscale flow occurs at the trailing edge of a wing or

	

l	 plate which has a small finite thickness, in which case there is a length

scale associated with the thickness and another with the boundary layer at

that point. Combustors used in propulsion systems generally' present a turbu-

lence 	 composed of more than one scale. Swirl combustors obviously
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`rl

contain two possible different length scales---one is due to the vortical €low

at the wall having a length scale corresponding to the size of the inlet

slits of the swirl chamber, while the other one is from the mainstream due

to its generating mechanism upstream. It is recognized that the turbulent

model needed must allow the variation of the scale length as determined by

the flow field (similar to Spalding's approach) and must treat multiple	 '±

length . scales. The bimodal characteristics of velocity distribution func-

tionsare also shoran in Frenkiel and Klebarioff's
(33)

 measurements in a

t	 turbulent boundary layer.

IIt is the effort of this dissertation to find the general solution of

the kinetic equations generated in this theory of turbulence. The bimodal

method after Lee and Liu 
(34) 

as employed in references (26) through (31),

has revealed many salient features of turbulent chemically reactive flow. The

fundamental solutions to be constructed in a later chapter will afford

more direct and accurate solutions than those obtainable from the bimodal

approximation. Certain efforts are required in using the Green's function

to satisfy the appropriate boundary conditions for a given physical problem.

In the next chapter, we will review Chung's theory in detail.

The structure of a homologous turbulent mixing region characterized by

two significant dynamic length scales will be first studied in the third

chapter. The subsequent chapters will give the f'undamental ' solutions of the

kinetic equations of the present theory. A specific solution of a plane
3

turbuelnt shear flow with chemical reaction will also be presented as an 	 F

I

illustrative application of the Green's function method to the solution of

the present kinetic equations.
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CRAFTER II

REVIEW OF TURBULENT KINETIC THEORY DUE TO CHUNG

In the analysis of later chapters, the kinetic equations developed

from Chung's theory will be directly employed to solve certain physical

problems. In this chapter, we shah, review certain basic concepts in the

formulation of the theory. For details, see references 15, 22 and 32.

II.A. General Theory

As mentioned in the beginning of the first chapter, turbulence must be

treated statistically Yet, the objective of classical statistical turbulence

theories has been limited to providing a certain basic understanding of the

dynamic structure of the homogeneous turbulence field. These theories are

not intended for nor capable of providing quantities of engineering interest

such as the distribution function for the i.nhomogeneous flow problems. On

the other Band, the mixing-length type theories Caere not concerned with 'the

study of the dynamic turbulence structure, but rather they were concerned with

the solution of the one--point averaged quantities of engineering interest for

the inhomogeneous flow problems. As it was pointed out earlier [Chung, 1972

reference (29)], Prandtl's approach could-face difficulty when a chemical.

reaction is involved. \An Prandtl t s closure technique, the second order moments 4

are first modeled in terms of the gradients of the first order moments via

suitable eddy diffusivities.	 It can be shown that such a model is equivalent

I to assuming that the probability distribution functions of the fluid elements

and chemical species are in near statistical equilibrium. This is often

_ incorrect, especially in reactive flows [see Chung, 1967, reference (15)]. i.

F I.

A
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Since it is the energy--containing eddies that account for the observable_

properties of turbulence, a logical, approach to a statistical formulation is

^Yry

^ S

^TE

to model the turbulence dynamics around the energy--containing eddies according

to the known statistical behavior of the energy-containing eddies from the

classical statistical theories.

Let us first make a conceptual distinction beLi geen the fluid elements

l
and tine eddies.	 On the physical plane of a turbulence field, all size eddies

^.1 are intermingled together (these eddies can be discerned only on a spectral
7

plane).	 A fluid element physically belongs to all size eddies affecting that

fluid element.	 Thus, the behavior of a fluid element at a physical point ( 
%
x)

is correlated to all other fluid elements comprising the eddies of which this

fluid element, at (x), is also a constituent. 	 The maximum size of the eddies

that affect a fluid element substantiL ly is of the order of the integral

length scale of turbulence. 	 Because of the transport of momentum and th^

chemical species (as well as the thermal energy), which are contained in and

carried by the fluid elements, the description of the movement of the fluid

element	 becomes the central point in the present modeling of turbulent flow.

This description will be carried out statistically as it is done with the

movement of the molecules in the molecular kinetic theory.

There is a basic difference between the molecular kinetic theory and

the present description of the fluid elements. 	 in the former, the collision

of a molecule with its neighboring molecules changes the momentum of the molecule

and, finally, randomizes its movement, while in the latter, the fluid element

, is always in direct interaction with all fluid elements comprising the eddies

of which our fluid element is.a part. 	 That is, the fluid element interacts

continually and directly with all fluid elements within the distance of the

integral Scale.

;a

F

5
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It is the movement of the fluid element at a physical paint (x) which

rl	 we wish to describe, but it is the behavior of all size eddies surrounding
1	 '` the given point (:k) which determines the behavior of this fluid element.

+1

If the eddies are in nonequilibrium such that they have memories and pre-

ferred directions, then the movement of the fluid element at point (x) will

have preferred directions, and its behavior will be statistically in non-

r equilibrium.	 Hence, the present kinetic equations would contain the terms

which impart the overall effect of the eddies on the movement of the fluid

elements in place of , the collision integral found in the molecular kinetic

equations.

` II.B.	 LanueVin Equations

I

As described in the previous paragraph, the behavior of a fluid element
-

at a given position (x) is governed by all size eddies of which the fluid

y

element is a constituent.	 These effects of the intermingled eddies on the

movement of the fluid element are well established in the classical sCatis-

tical theories, (2) for turbulence fields with sufficiently high turbulence

Reynolds	 These	 to be discussed below, have beennumbers.	 properties,

originally established for homogeneous fields. 	 However, their validity for

inhomogeneous fields has been strongly suggested by Eatchelor (2)	and by

subsequent researchers 	 [see also Yonin and Yagl.om, reference 	 (4) ^.

(11	 Turbulenc e properties of fluid elements are mainly due to the

eddies whose sizes are of the order of the integral scale. 	 These

eddies are called the "energy-containing" eddies.

3[21	 Behavior of the energy-containing eddies is statistically separated

from that of the smaller eddies which are in statistical equilibrium.

a:
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[3]	 Turbulence properties continuously cascade from the larger to the

smaller eddies across the eddy spectrum and they finally dissipate.- SY

The above collective properties of the eddies implies that the movements

#
^

of the fluid elements are mainly governed by the larger, energy-containing .

_ eddies which may be in nonequilibrium, and by the smaller, equilibrium =_

`i eddies.	 Shear and other turbulence generating mechanisms supply the energy- I^^

r^
containing eddies and, therefore, these eddies may be in nonequilibrium;

t
e

_ that is, these eddies 	 may be non-isotropic and contain preferred memories

imparted to them by the generating mechanisms. 	 Through interactions between

d

the eddies, these Larger eddies become isotropic or random. 	 For the usual s^

situations wherein the eddies are continuously generated, the energy-containing

eddies are in nonequilibrium.

4G"
The sum total effect of the eddies on the movement of the fluid elements

must contain both the nonequilibrium influence of the larger, energy-containing

t eddies, and the completely random influence of the smaller, equilibrium eddies.

With the known eddy properties (1) - E31, the equation to be used to describe

}
the effect of the dynamics of interaction on the movement of the fluid ele-

E

ments is the stochastic Langevin equation,

i

1 dui W	
_ B (u. - <u>.}	 +	 A.(t)	 +	 Y,	 ( II- 1)

dt	 1	 x

In the above equation, the first term on the right side represents the influ-

l^
ence on the fluid element of the energy-containing eddies, which may be in 

;,

nonequilibrium and contain preferred memories. 	 The second term, Ai(t),

represents the randomizing influence of the smaller, equilibrium eddies on
I;

the movement of the fluid element.	 Ki represents the dissipation rate of

4
1

4 4

t
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the fluid momentum caused by the smaller equilibrium eddies, and the effect

of the mean pressure gradient and other: body forces on the acceleration of

the fluid element.	 ¢l is the characteristic equilibration rate of the larger,

energy-containing eddies, and is known 	 to be

<	 >112

	

$l = A 
k2A	

(II-2)

where A is of the order of unity,

The description of the eddy influence on the fluid element by the Lauggvin

equation which separates the influence of the nunequilibrium degrees,

Rl(ui - <u>i), from that of the equilibrium degrees, Ai (t), is possible

because of the eddy property [2].

The generalized Brownian stochasti.cs describe a process which is governed

by a few nonequi.librium degrees of freedom and a sea of equilibrium degrees

of freedom gherein the former are statistically separated from the latter, and

the characteristic times of the former are sufficiently longer than those of

the latter. In the present problem, the eddies represent the degrees of

freedom. The energy--containing eddies represent the nonequilibrium degrees

and the smaller equilibrium eddies represent the equilibrium degrees. It

is very clear that the known properties [lj - [3] satisfy the basic conditions

required for the use of the Brownian stochastics. Detailed discussion of the

Langevin equation is given in references (15) and (24).

We note that Eq. (II--l) is simply an equation which imparts certain

collective properties of the eddies into the description of the behavior of

a fluid element. The collective properties of the eddies we use are those

found from the turbulence structure studies carried out in the classical

statistical theories by use of the Navier-Stokes equation. The present Langevin

11
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equation, Eq. (11-1), is used to describe an entirely different physical

phenomenon from the well known problem of large molecules moving through a

sea of small molecules described by Chandrasekhar.' 	 This difference

between the present turbulent flora problems and the molecular problems has

been explained in the previous section.Hir
I	

ll.C. Derivation of Kinetic Equations

We recognize the fact that, in the present continuum turbulence, theHill

chemical species move as they are being transported by the fljiid elements.

"	 Therefore, the transport velocity of the chemical species is the fluid

element velocity U governed by Eq. (I1-1).

Let us consider the probability density function (henceforth, it will

be called the distribution function after the molecular kinetic-theory

terminology)gy) of a chemical. species, E(t,x,u). This quantity is defined such

that E(t,x,u)du denotes the mass fraction of the chemical species with

velocities between u and u + du at t and X. Then these distribution functions

at two different phase points are related by the integral relationship,

IdF(t + At,x,u) - f 'F(t,x -- upt,u - Au

4.
+ w*(t,X uAt,u - Au)At 	 Mf(t,x - uAt,u - Au)At]

x ^(x -- uAt,u - Au;A u)d(Au) 	 (I1-3)

The function * is the transition probability of the fluid elements

i
i'

^t

^s
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S

of the Langevin equation, Eq. 	 (II-1), to satisfy the boundary condition

that in the limit of time much longer than the charact eristic equilibration

time, 1/0l , and in the absence of, dissipation, the mean pressure gradient,

and the other body forces (K i	0), the velocity distribution function, f,

should be Maxwellian about the local mean turbulence energy, <UkUit>.	 M

denotes the rate of molecular dissipation of the chemical species which will

be defined presently.

With the use of the ' solution of the Langevin equation for y, Eq. (1I-3)

can be manipulated to give the kinetic equation of the chemical species

(see references (15),	 (26-28) for details].

I

at	 +	 u +	 2u	 (x3)-^
 ax,

<U U a	
a 

2 
Vk ca	

[ (u	 - <u5 )F]	 +	 +	 wf + M	 (II-4)

I
au.	 3	 aujau13	 J

- 1 Commensurate with the form of the first term on the right of Eq.'(11--1),

(22)we express for the free shear layers 	 with no body forces



Rv	 A' v
a2

(II--6)

where z is the species concentration, and the characteristic dissipation

rate, 8v, is known to be(l)

16

$V can be related to s through a turbulence Reynolds number. This will be

given in detail in a later chapter. w is the chemical. reaction term, and

the detail of this term is given in references (26) -- (28).

In a turbulent flow field consisting of n-chemical species, we would

have n-equations of the type of Eq. (II-4). That is, we would have Eq. (11-4)

for Fl , F2 , . . . %. The sum of these equations then becomes the kinetic

equation of the fluid elements

of + of	 a	 )

a	 U. ax;	a u i `;

<uU>	 2

— a l. au; C(u^ w <uj>)f 2 +	 ^ 1c	 a
uj

au;	
1 (11-7)

Derivation of the kinetic equation is now essentially complete.

More specifically, an equation for the free shear layers can be derived

for the distribution function for a scalar quantity z (such as temperature or

chemical species) and is given as [the reader is referred to references (15),(32)

and (26--29) for details]

j'
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t
E

i

a(fz) 
+ u, 

a(fz)
at	 axe

SU ^ 7	 2

3u	 [(u3 - au3>)fzj 
+

3 
k	

au^^^l

+ 8v ^u. {(u. - <u.>)fz] - f(z --<Z>)	 + mf	 (11-8)

The moment equations constructed from the present kinetic equations

are termwise comparable to the one-point averaged equations derived from

-

	

	 the Navier-Stokes and species conservation equations. Details of this com-

parison are well presented in previous references. (15,26-28) Some of the

salient features will be explained herein.

The starting point of testing the consistency of the present theor y and

11
	 the conventiona', one-point averaged equations derived from the Navier-Stokes

_I	 and species concentration equations is the kinetic equations given in

ii
Chung (22) which are the generalized version of Eq. (1I-8) including the

i!
effects of the mean pressure gradient and wall. We first multiply the

kinetic equation through by an undetermined tensor function Q(U) and inte-

grate it termwise with respect to the velocity space. This results in the

generalized moment equation: of the present theory. We can then generate

from this equation various particular moment equations by assigning particu-

lar functions for Q.

I
4

First, we set z = 1.	 Then, when we also set Q = 1, there results the

standard averaged continuity equation. With Q = U., we obtain the averaged

momentum equation, Eq. 	 (II-3).	 With Q = UiU3 , we obtain the averaged Reynolds

equation, except it does not contain the diffusion term of the pressure energy.

• Now, we restore z and then set Q = 1,	 The generalized moment equation

i	 1 {

S ^
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then gives the averaged species conservation equation. With Q = T+l i , we,

I
obtain the second order averaged equation, obtainable by multiplying the

•'	 standard species conservation equation by ta i and averaging it. The higher

order moment equations are found to be termwise comparable to the corres-

ponding order one-point averaged equations obtainable from the Navier-Stokes

and standard species conservation equations except for the terms resulting

_J	 from the pressure-energy diffusion tern. For many flow problems of our

i
interest, the pressure energy diffusion is not too large. It is felt that

j
the order of inaccuracy involved with this term may be within the order

of the other approximations of this theory.

The above shows that the present kinetic theory basically satisfies

ttI

	

	 the conservation of the averaged quantities as dictated by the Navier-Stokes

and species conservation equations. Therefore, the present theory is as

consistent in describing turbulent floe as those theories which begin from

the one-point averaged equations.

Further support for the consistency of Chung's theory can be obtained

from the work of Lundgren. 
(16-18) 

Starting from the formalism of statistical

mechanics and employing the Navier-Stokes equation, Lundgren (161 	 derived

an equation governing the distribution function of the fluid element, An

equation similar to Lundgren's equation can be derived for fz using the

Navier-Stokes and species conservation equations [see references (22) and

(32)j. Again, if we express the eddy interaction-effects in Fokker-Planck

fore, we derive the present kinetic equation for fz. Details of these deri-

vations are well presented in reference (32) and (15) and will not be
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the known dynamics of the eddies and the physical arguments for the turbulent

movements of the chemical species.

II.D. 2lultiscale Kinetic Equation

Based on Chung ' s theory, Bywater 
(23) 

with Chung solved two coupled

Langevin equations and derived a kinetic equation for two nonequilibrium

degrees of freedom governing the one--point joint distribution function of

the fluid elements. 'these two Langevin equa tions are given as

dtik
dt	 - ^aCuk - <u

k>] + % ,k(t) + K
a 'I, + O c CUIc - Vkj

(II-9)

dVk	.

dt	 -	 sb[vk - <vk
> 1 + Ab,k ( t ) + Kb,k + ( c (Vk -- UkJ

This time the flow field is assumed to be characterized by two nonequilibrium

families of eddies in addition to the equilibrium eddies. The above two

equations each represent the contribution from each mode of nonequilibrium

families of eddies and many equilibrium eddies on the movement of the fluid

element. These two coupled Langevin equations are formed based on the same

physical reasoning as Chung ' s theory, except that the interaction terms

i acIUJ - V
j 1 are added to take in account the interaction between two non-

equilibrium eddies. The resulting kin^+tic equation for two nonequilibrium

degrees of freedom governing the distribution function of the fluid element

will be presented in the next chapter. The reader is referred to reference

(23) for details of this derivation.
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1^	 CHAPTER III

4	 MIXING AND DECAY OF A TURBULENCE FIELD CHARACTERIZED
BY TWO SIGNIFICtNT LENGTH SCALES

The need to describe length scales in the modeling of a turbulent flow

has been noted by many investigators (Spalding, Chung, Yen, Bywater, et al.).

Man of the important t bYturbulent flow fields are actually characterized by

d	
more than one significant dynamic length scale as mentioned in the previous

chapter. Although Spalding 
(12) 

has proposed an equation governing the length

scale of turbulent flow, its approach is rather traditional and is similar

to that of other equations governing the transferrable physical quantities

of the flow. His formulation is based on the physical reasoning similar to

those employed in the closure of the other moment (averaged) equations.
i1

Instead of closing the moment equation, a more basic and genera?---ia the

sense of generating moments--kinetic theory of turbulence due to Chung (15)

has been developed as described in the previous chapter. Although the

original model, lumped the turbulent flow field Into one nonequil.ibrium degree

of freedom, Chung's theory is found to be general enough to include the

multiscale features of the flora field in its original formulation: Bywater

with Chung 
(23) 

extendedthe theory to include two nonequilibrium degrees of

freedom.

In this chapter, the kinetic equation of two nonequilibrium degrees of

freedom will be employed to study some of•the mixing behavior of a multiscale

turbulence field. The physical problem of interest is the mixing and decay

of an initially uniform and homogeneous turbulence field which is characterized
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1H. A. Governing Equations

• The starting . point of this analysis is the kinetic equation.of two

nonequilibrium degrees of freedom given in reference (23), which is,

d

€ af2 af 2 	 acv>k aft

at
[3<u>k

—	 at	 au
ic 	

+	 at	 W	
+	 (Uk + Vk + <w>k}

7
af2	 a<u>m af2	a<v>m 

a 
f 
2

ark	 —	 ax 	 aum 	attic	 BVm

a	 [U	 +R (U_—v)—x	 ifaUk	 a k	 c	 lc	 a,k	 2
L

+	 a	 [RV	 +R (V	 -U)	 i avk 	b k	 c	 k	 k	 {b,k	 2

Z	 2	 2

aaV	 a aV+	 q	 auk 
au	 +	 2 aU	 f2	

(111-1)
it	

+	 aV
kis	 is	 k

P

tvlhere f2 (t,x,U,V) is the one-point joint distribution function of the fluid

elements affected by two families of nonequilibrium degrees of freedom as

l
1 well as the a ullibrium de reel of freedom	 U	 u	 and <u>	 andV	 v	 and

# 4 g	 k'	 k	 k' k'	 k {	 °..
<v>ic are the relative, absolute, and mean velocity contributions to the 3

1 same fluid element of the two different nonequilibrium degrees of freedom,

respectively.	 Ra and db are the characteristic relaxation rates of the two

nonequilibrium degrees of freedom, respectively.	 As in the previous analysis, s^'

CJ
Ra and Rb are given as

t	 a

f

f



£?l
22 4	 j

<Q \ >^^^ ) :
k k

!
}.

^a
\d

ƒ/ )4 2A
a :

}

]

\)

(III 2)	 |\ \
%

1/2
\:!<§ ¥

k>
!\,

\})
b 2Ab

|
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}
where < 	\>	 e total	 ulence energy, and A . an 6 A. a e,O res pec tively,

\^
\ d
I:]

e characterisLic lengths of the two nonequilibrium degrees of freedom	 i \^)

representing 	 e two families of the nonequilibrium eddies.	 Q an w^ are, )

q \respectively, the relative and absolute  v	 ocities of the  fluid element, and 

these 	 e the vector Sam of the contributions from the two nonequilibrium

|\degrees of freedom (see Figure 1)
^ )

v



23

Thus, 14k and wk are given as

"k= Uk + Vk

(ITT-3)

Wk - <w>k + [`Tk

or

wl^ = ult + vk

6c is the characteristic rate of interaction between the two nonequilibrium

degrees of freedom which, according to Chung and Bywater, is

$a
	

if Aa > A 

^c r
	

(111-4)

6b
	

if Aa<Ab

Equation (III-4) is based on the premise that the larger (therefore, the

lower wave number) fluctuating eddies control the rate of momentum exchange

between the tcao families of eddies.

For the flows with no mean pressure gradient and laminar sublayer, the

molecular dissipation rates V 
k 

and ICb 
k 

are given, analogous to references
7	 i

(26-29), as,

[yak	 - aU
a k

K b k

I
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tai

The right hand side of Eq.'(III-1) describes three major aspects of the

eddy interactions consisting of (1) the relaxation of the nonequilibrium

eddies toward equilibrium, (2) the exchange of momentum between the two

nonequilibrium degrees, and (3) the dissipation. The first two aspects

pertain only to the internal redistribution of the properties, whereas the

dissipation constitutes a sink for the turbulence properties. If a turbu-

lence-energy conservation equation is constructed by taking an appropriate

moment of Eq. (111-1), all terms except those containing Ka,k and %,k should

vanish independently of any particular f2. q is thus defined by Bywater as,

Sa<UkUk> + (0a + 6b )<UkVk> + 6b<VkVk>q =	 --	 12 - (II1-6)

The physical phenomena of present interest are the mixing and decay of a

turbulence field characterized by two nonequilibrium degrees of freedom

representing two families of nonequilibrium eddies. We assume that initially

(t = 0) these two families of eddies are uniformly distributed throughout the

field. We consider that there exists no mean velocity. The solution would

be the same if the mean velocity were non-zero but uniform. We specify,

initially, the contributions of the two families of eddies to the turbulence

energy* of the field as <UkUk> and <VkVk>. The characteristic length scales

A  and Ab are also specified. We then seek the'.3olution of Eq. (III-1), for

t > 0, for <UkUk>, <VkVk>, <UkVk>, and Ae . The apparent length scale, Ae,

represents the length scale of a hypothetical turbulence field characterized

by one family of nonequilibrium eddies wherein the behavior of <14 Wk> is

*Note that since the field is spacially isotropic, the only nontrivial
components of <wiwj > is the turbulence energy ell kWk>.

Al'^	 ^.
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the saine as that in the actual field governed by the two nonequilibrium.

families of eddies. 
he 

is defined subsequently in Eq. (III--20). Note that

<14kWk> = <U
kUk> + 2<UkVk

> + <VkVk>

	
(111-7)

where <U11VI1.> evolves for t > 0 through the interaction of the two nonequili-

brium degrees of freedom.

Thus, for the present problem,

a<u> a<u>

0ask at

m
a:ckm 0 at

o (1TIw8)

«,> 0

for all t.

ff Our governing equation, Eq. (III.-1), then simplifies to,

I^l
11 of2 a

at aukRaUk + Rc (Uk - Vk) - a,kIf2

_
+ [sv	 +a

biz	 c
(V	 —u)

k	 k	 ^'
If

{b , lc	 2 -aVk

a2 a2 a2
+

q aUkaUk	
+	 2

au
k
 av

k
+ avkaVk	f2	

(ITT-9)
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III.B. Initial Conditions

For the present physical problem, we have the followir1g initial condi-

tions:

At t = 0

The contribution to the turbulence energy of the family of eddies

denoted by "a":

<UkUk> _ <UkUk>o '	 length scale A 
	 (I1I-9a)

The contribution to the turbulence energy of the family of eddies

denoted by "b":

<VkVk> = <V
kVk>o $	

length scale A 	 (III--9b)

No interaction between the two nonequilibrium degrees of freedom, i.e.,

<UkVk> = <UkVk>o 0.

And the turbulence energy:

<Wk14it 	 <Wk14k> o
	

(III-9c)

Obviously, we have

l._

<WkWk>o - <UkUk>o + <VkVk>o	(III-9d)
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III.C. Generalized Moment Equations

We multiply each term of Eq.' (111-9) by a general 	 function,

Then, the term-wise integration with respect to U and V and

the subsequent manipulation result in the following generalized moment

equation,

at	
f2gdildY - ! f2 2- dudV

f
(20

aUk + 0c (Uic - Vk)3f2 
N dUdV
k

ff [20bVk + c(Vk - U
k) f2 avk

k

 dUdV

+ qf2	 8^1k aUk + ` 8Uk8Vk + 
aV1caVk dUdV

(111-10)

III.D. Averaged Energy Equations

As it has been mentioned, the only nontrivial component of <WiWj > is

the turbulence energy, <w0k.>, which consists of the three constituents shown

in Eq. (111-7). We can directly deduce the governing moment equations for

the turbulence energy and its constituents by substituting the following

particular values for Q in Eq. (111--10) as,

Q = U k U k
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l

IiI.

Q — VkVk

2<VkVk>

	

at	
—	

(48b + 26a) <VkVk> + 2Sa<UkVk> + 6q	 (I11-12)

Q = UkVk

	

at	 - ^a<11Ok> + '
a

<VkVk> -- (4Sa + 2$b ) <11kVk> + 6q	 (I11-13)

Q =WkWk

B<11011. >

	

at	
— 43a<UkUk> — 4 %'<VkVk> — 4(Ra + Sb )<UkUk> + 24q

(111-14)

Substituting Eq. (111--6) into Eq. (111 -14), we obtain

a<WkWk>

2^S

	

at	 -	 a`UkUk> + ( Oa + s
b )<UkVk> + O

b
<VkVk>]	 (I11-15)

	

We let Sa represent the apparent characteristic relaxation rate and Ae	 I_ 3 I
represent the apparent length scale for a hypothetical turbulence field v'

di
characterized by one nonequilibrium family of eddies wherein the behavior

of<WOk> will be the same as that in the actual field characterized by two

nonequilibrium degrees of freedom. The kinetic equation for one nonequili-

brium degree of freedom E

	

g	 , q. (11-7), can be employed to describe this hypo-

thetical turbulence field characterized by one nonequilibrium family of

:S,vx

[I

ri
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eddies. Under the same assumptions as cited in section T11.A.--i.e., that
	 •k

there is no mean velocity, no mean pressure gradient, no laminar sublayer, 	 .3:

and the turbulence is initially isotropic throughout the field----the governing

equation of this hypothetical turbulence field characterized by one nonequili-

brium family of eddies can be obtained, from Eq. (11-7) as,

^ ^ e 
aÊ _ + se ^^^ aW

kaidk

afW. 	 <W W.>	 2

(111-16)

We multiply the above equation by W kWIt and term--wis p: integrate with respect

to W, as,

a<WkWk>

a t	 - ..
 26	 (111-17)(11I--17 )

Analogous to Eq. (11--2), 8 e can be written as

<W W >1/2

^e -	 k2A	
(11I--18)

e

Now, by equating the right sides of Eqs. (121-15) and (III--17), the

apparent relaxation rate, ae , can be written as

<U U > + <U q >	 <V V > + <U V >

a 
w 

S	
kk	 kk } ^	 kk	 lck	 (I11_19)

e	 a	 <S,TkW {>	 b	 <WkWk>

^s
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(III- 18) and (1II-.I9), and can be written as

_	 1	 kk	 kYk	 1	 kk	 kk
Ae	

A 
	 <WIjgk>	 + Ab 	 <Vk>	

{ITT-20)

Equation (1II-20) describes the apparent characteristic length A  in

terms of the two constant dynamic scales A  and A b , and the energies associated

with these scales. The energies in Eq. (111--20) are dependent upon the

solution of the governing equation, Eq. (111-8). The apparent length scale,

Ae , and its variation depend on the solution of the governing equation itself.

This is in basic agreement with the concept proposed by Spalding 
(11,12) 

that

the length scale depen`s on a given problem, and that it should have a

governing equation which must be solved simultaneously with the governing

equations of the other turbulence properties.

Equations (III-11) through (111-15) and Eq. (111--20) are manipulated

and nondinensionalized as,

d 
tLtcWk>	 1/2

dT	 <WkWk>	 - 11<Uk1ik> + Ai<V1CVk>	 {5 + M)<UkVk>	 (III-21a)

d<VV >

dT k = <W 14
 14 >1/2 [<E1kU > - (71i + 4) <VkVk> + (5 + PI} <OkVks ]

(III-21b)

PI

.« .t

r
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dotV >	 \ ;}	 Tk	 _	 Oe112 [3^ j > + (2 + X!	 2Vk> - '( + 3M kV >]	 .^/	? 

(III-21c)
IM 

:	
a}	 ` k ^  	 4 U^	 - 4 <
	 > - (L + 4 )- jj ]

 ^	 ^<	 2 >	 _	 \}

^f \ 

_	 !	 \]
(III-21d)

-.a	
\:

`	 11	 E	 w \\

ck UE +
	

k 
V
k >
	 <V

k Vk > + <k 9k >
	 \,

A	 =	 $^ 	 (111-22)	 \]
- 	c 	 k	 < Y' >	 [j
y 	 \^

- 	^\}where  < > is normalized by <I t >
/ ^	 ^	 ^	 •	 k k o	 \:)

q

< > _	 ` >>	 (III-23)
^	 k k o

11
	 M is the length Scale ratio,

IL
M =	 (111-24 )

0	 .	 ^

The limit t, is n Sai nsionali 2 by Sao/2,
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<Wh^dk>4/2

Sao -
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(III-26)

a

^i
and

n
ne	 -	 (III-27)

n^a
i.

Equations (III--2Ia) through (III-234) and (III-22) are now self-contained

'	 I

s_

and are closed.

gg

III.E.	 'Typical. Numerical Results

^

is

l_ Equations (III-21a) through (III-21d) constitute a system of nonlinear

'i fi;:st order ordinary differential equations. 	 This system is numerically

. integrated to satisfy the initial. conditions, Eqs.	 (III-9a) through (III-9d).

Typical results for three different length-scale ratios are pre:anted ire

{..

Figures 2 through 7.	 These three length-scale ratios are chosen in such a

way that they may represent small, intermediate and large length-scale ratio-.

tt^
Two sets of initial conditions are chosen for each set of calculations for a f.'.

_ given length-scale ratio--one is for <UkUk>o relatively larger than <VkVk>o,

and the other one is for <UkUk>o relatively smaller than <VkV1{>o^ q.^

Figures 2 and 3 give the solution of the decay of <G) i,Wk> for different

,._.,	 ..
Elength--scale ratios and initial conditions. 	 Figures 4 and 5 present the

variation of <UkUk>---the turbulence energy contributed by the group of eddies

with a larger length scale- .-under various given conditions. 	 Figures 4 and 5 also

show the changes of <VkVk>---the turbulence energy contributed by the group of

^ 'l
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P-tidies with a smaller length-scale- -for different length-scale ratios and

given initial conditions. Figures G and 7 indicate the emergence and decay

of the interacting turbulence energy, <U kVk>, under various given conditions.
k:

III.F. Discussion of the Results
^a

5	 Figure 2 shows the decay of <[dka and the variation of the normalized
E

apparent length-scale, Ae/Aa , for different values of the length-scale ratio 	 r r'

`	 bf. The curves in Figure 2 are under the initial conditions of 4U FJ > = 0.8
^	 k k a

and <V1cVk>a = 02 whichwhich indicates that the initial turbulence energy, <WjWk>o,

is mainly contributed by the family of eddies with a larger length scale (na).

^.

	

	 In Figure 2, <jdkGlk> decays approximately in proportion to the inverse of
T, i.e.,

<14>	 1	 (III-28)

^.;	 where To is zero. Equation (III-28) shows the simple power law of the decay

of turbulence energy as studied in the grid -generated homogeneous turbulence. (2)

If the turbulence field has a uniform mean velocity <w>Q , Eq. (111-28) may be
written as

<W Wk> a (Y - xo ) -1	 (111-28a)

where (x x)Q is the down stream distance from the grid. From experimental 	 a:
r:

evidence, (2) Eq. (111 .28a) is further given as (2)

1

3
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H
- .

a
<WkWk>	 a	 1

(X - xo )-	 (111-28b)
2	 D<w> Co

w
where D is the grid size and a is a function of the shape of the grid and the

' 1 grid Reynolds number, <Wk^dk>112D/v.	 Our Figure 2 shows that<WkWk> decays

faster or slower according to whether its corresponding normalized apparent

length scale is smaller or larger. 	 if we would put an equal sign in Eq.

t-	 -- (111-28), the proportionality constant would be a function of the normalized

- apparent length scale.	 Thus, Eq.	 (111-28) may be written as,

<40k>ti	 (T - To )
-1 	(111-28c)

nb
"e

Since the grid size D] is approximately the integral length scale of the

grid-generated turbulence, the meaning of the proportionality constants of

Eq.	 (III-28b). is equivalent to that of Eq.	 (III-28c).

If the apparent length scale is larger, one would expect that. it would

take a longer time for the energy-containing eddies to relax toward equilibrium,

or that the turbulence energy would decay more slowly. 	 These properties are

shown in Figure 2 for the-decay of <14 W
k
 >.

The variation of the normalized apparent length scale !le is given by

Eq.	 (111-22).	 For a given length-scale ratio I CI, the initial value of A 	 is

determined by the initial values of <U kUk>o and 
<VkVk>o, 

which is easily seen

from Eq.	 (111-22), and can-be written as

she --	
[<UkUk>o
	 +	 *VkV >o -1	 (111--29)

..........
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Equation (111-29) gives the starting point of the curve for A  for a given

I	 M and the initial values of 
<UkUk>o 

and <VkVk>o . Men mixin, oll thi. two

families of nonequilibrium eddies begins, T > 0, the normalized a,;p cent

length scale A  varies according to the redistribution of the var	 turbu-

lence energies which appeared in Eq. (111-22). 5inue we do not hale a closed

form solution for each turbulence energy and the normalized apparent length-

scale A 	 is difficult to see the variation of A  in the initial period,

.	 0 < T < 2.5, of mixing and decay. However, after T > 2.5, the normalized

apparent length--scales, A e 's, tend to reach a steady value which is slightly

less than the value of (1/2)(1 + 1/M) as shown in Figures 2 and 3. Since our

turbulence field is characterized by two length scales, the apparent Length

scale of a hypothetical turbulence field characterized b3 one let,gth scale,

Ae , would have a value between A  and Ab . It seems logical to estimate that

Ae has a value which is close to the average value of A  and Ab . This gives

us the normalized length scale A  as approximately equal. to (1./2)(1-- + 1/M) .

Figure 3 shows the decay of <WkWk> and the variation of Ae/Aa with the

initial conditions 
<UkUk o

> = 0.2 and <VkV1c>o = 0.8. The decay of <WkWk>o

in Figure 3 is similar to that in Vigure 2, and the curves of Figure 2 are

discussed in the previous paragraph. This time, the initial turbulence energy

is mainly contributed by the turbulence energy of the group of eddies with a

smaller length scale. 	 From Eq. (111-29), for each M, we can see that the

initial value of the normalized apparent length scale A in Figure 3
t=O

is relati'^y smaller than those in Figure 2. 	 Before Ae reaches its steady

value, 0 < T < 2.5, for any given M, <WkWk> of Figure 3 decays faster than

that in Figure 2.	 This again reflects the same property ghat when the corres-

ponding normalized apparent length stale is smaller, the turbulence energy
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^i

Figure	 presencs the decay of <UkUk> with the initial conditions of

- <Ukok>o = 0. g Lnd <Vzk>o = 0.2.	 Figure 4 shows that the decay of .UO k> is

relatively insensitive to the length scale ratio, M. 	 Since the initial tux--

:I bulence energy of the field is mainly contained in the family of eddies with

a large length scale (<UkUk>), which has a domineering role in the decay of
1

the turbulence field, the behavior of the family of eddies with a smaller

...
Y

initial value (<VkVk>o) 
and a smaller length scale (Ab) would have very little

-((
effect on the behavior of the other turbulent quantities of the field. 	 There-

fore, the decay of <UO,>---the turbulence energy of the family of eddies with

a large initial value and alrge length scale--will be similar to the decay of

the turbulence energy without the presence of the other family of energy- 	 ,	 3

containing eddies of a small length scale.	 in this case, we can see <UkU1t>

decays in a Manner analogous to the decay of <WkWk>.

I The decay of <V1cVk> 
in Figure 4 shows that for large M, <VkVk> decays

faster than that for small M.	 If M is large, which indicates that-initially 	 j

r
the energy-containing eddies of family "b" are located in a farther large

wave number region In the energy spectrum (compared to fhe energy--containing 	 #	 ^

^ eddies of family "a"), then, this group of eddies of Family "b" is smaller in

size compared to that of small M, and tip	decay of family "b" energy-containing
3

eddies takes a shorter time to reach equilibrium. 	 Similar phenomena of the	 p

variations of <V	 whenwhen initial conditions are <TJ Uk>o = 0.2 and <VicVk>o =y
^

0. 8, are shown in Figure 5.

In Figure 5, <UkU1C>	 has relatively small initial values compared to those
F. o

Of 
<VkVk>o.
	 Although two families of energy-containing eddies are presented

in the same field, the family of energy-containing eddies of a larger charac--

- teristic length scale will dominate the relaxation rate of the turbulence?:

-
f_I
r

field.	 The rate of turbulence enetigy trans€ered from the Anergy-containing
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r
;.	 eddies of family "b" (with small length scale A b) to the equilibrium small

eddies, has to be adjusted approximately to the rate of the energy pass-over

Ell
	from the energy-containing eddies of family "a" (with large Length scale)

to the family of eddies "b".

a^ The unbalanced initial distribution of the turbulence energies between

two families of nonequilibrium eddies as assigned to figure 5 will cause a

certain redistribution of turbulence energies between these two families of

nonequilibrium eddies. This redistribution of turbulence energies makes

H	

<UkUk>^--the energy of the family of eddies with a larger length scale but

a very small initial. value--decay slower and sometimes causes it to gain

energy instead of decay in the initial period of musing of these two families

of nonequilibrium eddies. These are shown in figure 5.

r	 Figures 6 and 7 describe the emergence and decay of the interacting

turbulence energy <U
kVic

>. <U1cVk> begins with zero value, because there is

no interaction between the two groups of nonequilibrium eddies before mixing

begins. After missing begins, through the interaction between these two

families of nonequilibrium eddies, the interacting turbulence energy <UkVk>

begins to emerge as shown in the figures. After a certain redistribution of

the turbulence energy between these two nonequilibrium eddies, there will be

less interaction between them and the interacting turbulence energy will

decline. This is also shown in the figures. 	 i

Figures 6 and 7 also show that the interacting turbulence energy <UkVk>

has a larger value when the length-scale ratio X is smaller than that which

occurs when the length-scale ratio, r1, is large. As mentioned before, the

energy-containing eddies with larger length-scale control the dynamic behavior

M
of the turbulence field. When 11 is small the two groups of energy-containing

eddies are closer to each other in wave number space. Then, they will be

u





CHAPTER IV

i	 GREEN ' S FUNCTIONS of THE KINETIC EQUATIONS

E
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one of the immediate problems of the present kinetic theory is to solve

the kinetic equations generated in the theory for the various engineering

flow problems.

4he remainder of this dissertation is devoted to the method of solution

of the kinetic equations via construction of the appropriate Green = s functions

We shall first consider the solution of the kinetic equations describing the

turbulence field characterized by one family of nonequilibrium eddies. We

shall then consider that for the field characterized by more than one family

of the nonequilibrium eddies.

In the past, the bimodal method has been employed to solve the kinetic

equations [see references (26 - 31)). 	 In this method, all distribution

functions are a priori assumed to consist of two half-Maxwellian functions---

one for v > O • and the other for v < o.	 Into these assumed forms of the

r functionsdistribution functions, an appropriate number of undetermined	 are

imbedded. Appropriate moments of the kinetic equations are then employed to

determine these imbedded functions.

As it was expected [ see Chapter I and references (26 - 31)], the solution

showed that the two half-Maxwellian functions are dissimilar and they together

constitute a completely non-Maxwell.ia^.. distribution function of chemical

species for the chemically reactive problems analyzed.

We now confine ourselves to the free shear flow problems governed by the

kinetic equations (II-8).
1

for the moment, if we discard the explicit reaction term wf, then Eq.

(IIW8) for f, obtained by setting z to one, and the subsequent equations

Pf^

4
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3

for the z's (or F's) are all linear if we assume that the average quantities i

;. LEI <U > and <UkU > are known.	 Then we can construct the Green's functions

(fundamental solutions) of these kinetic equations satisfying certain source

conditions.

Utilizing this fact,	 the solution of a	 flowwe construct	 given	 problem

in the following manner.	 We first assume the values of <u >  and < UkUk>.
t.	 r

Then, by appropriately summing the Green's functions, we construct a solu-

tion satisfying the initial and boundary conditions of the problem for f

_ and F's.	 From these distribution functions, we evaluate <u 3 > and < UkUk> and

repeat the process until a suitable convergence is attained.

Now let us return to the chemical reaction term ref. 	 We confine our g

f
discussion to the chemical reactions which are either frozen or in equi p.- .

brium.	 Of course, wf = 0 for the frozen case. 	 When the reaction is in

l equilibrium, one can define as set of new variables comprised of certain

} combinations of z's, such that the set of the Eqs. 	 (II-8) can be replaced

,a

by a new set of equations, fur the new variables, whose forms are identical

to Eqs.	 (II-8), but which do not explicitly contain the reaction term.	 In

this set, the reaction term degenerates to a separate algebraic equation

[after Chung, reference (27)]. 	 Therefore, the equilibrium reaction case can
s

be solved in the manner described in the preceding paragraphs. 	 These;'
^

details will be presented in the next chapter.

IV.A.	 Green's Function of the Kinetic Equations Governed by One Nonequilibrium
Degree of Freedom

The mathematical problem at hand is to obtain a set of fundamental

solutions (Green's functions) of the equations of the form of Eq. (11-8)

with its Last term deleted. 	 These solutions can be then er..ployed to Construct
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the solutions for f and fz's of a variety of the flow problems with either

frozen or equilibrium chemical reactions.

On the right side of Eq. (II-8), if we ignore 4z> in the term

a"f (z - <z>) then this term $" f(z - <z>) can be approximated by the

term —0"(a/au. X fz(uj - <ui>)]. This approximation does not change the

moment equations for z through the second order [see reference (27),

Eq. (10)]. If we further define a new parameter S as

$1 + $^	 for equation of f

al + 2$V for equation of fz

then the equation for F = fz will be identical in form to that for f, This

will be shown in the following manner. Using the above mentioned approxima-

tion and employing the notation 0 as defined in Eq. (IV-1), Eq. (II-8) can

be written (without Chemical reaction term) as,

BE + u ar	
2

- $	 [(u: - <u >)F] 	+	 ^. <u u > -- F	 (IV-2)
at	 axe	 auk	 3 k k auaauj

1

We see that Eq. (TV--2) stands for the equation for fz (- T) and also, by

setting z = 1, stands for the equation for f, and both are identical in form.

In order to obtain the fundamental solution of Eq. (IV-2), we will

transform Eq. (IV-2) into a simpler form. We first rewrite it in the

following manner:

;-I
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2 f

a 	 +	 (kj —`^j ) au.	 +	 nj ate.	 UP	 +	 qI au. au.	
(IV-3)

A".. ! where 

k 	 O <uj>

(IV-4)
f

1
_	 <u u }

ql 	 3	 1	 k k

We will snake two transformations on Eq.	 (IV-3). The first transformation

:°^ is made to eliminate the first term on the right side of Eq.	 (IV-3).	 We let a
tl

F( ,u,t)	 F(x,u?t)e3$t (IV-5) 1

Equation (IV-5) implies the following relations:

s

ar	
-	

3 gt	 aF
ej

-	
e	

ax.axj

1 aE	 aFeast
au

j	au3
(IV-6)

L.
W

ar	 y	 3^e3StP'	
+	 e30t	 av

at	 at

;A	 -

a2F	 a2re3$t
auj au j	 auj au j

With the aid of Eqs.	 (IV-6) and (IV-5), Eq.	 (IV--4) is transformed into the

following form.

7;
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ti	 2y

a + (it - 
Ou3) 

V Du + ua ax r q l 2u. au .	
(IV-7)

a 3

du.

d = - $u^ + kj

dx

d
-= U.

The ",:!qP4 transformation is undertaken to eliminate the first order

derivatives (except with respect to t) in Eq. (TV--7). The six subsidary

equations of Eq. (1V-7) are readily seen as,

(IV-8)

I

As mentioned before, we assume < u? and <%,U,,> are known in Eq. ( lV-2)3

I, hence, Eq, (IV-2) is linear and the solution will be obtained by iterating

on <u
J
5 and <TJkUk>. 	In this scheme, 61 and Sv as defined on Eqs. 	 (I1-2)

and (11-6) cari also be considered as known. Therefore, a, as given in

Eq.	 (IV-1), and k3 (^ $<wj >) in Eq. (TV-8) are considered as kno• *n values.

The transformation is then constructed as

y

^. 3	 S

X 2.
(IV-9)

k.
R	 - (x	 + 	 t)

^1^
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L^
The Jacobian of the above transformation is found as

a(T	 ) get

a(tr.,; ) r 
e	 (IV-10)

i
which implies that our tra

The function P(u,x,t)

manner:

I
a^	 ail	 ^:.
at J	 aRj 	 at

asformation has a one to one correspondence.

is transformed into F I (T,R;t) in the following

+	 ary L ,^ a-p

at )aT^ at	
( ati)(Tt

ak	
ail (

aTk	
aF,	 aRk

) 

a 
3	

aTk	 auk	 +	 aRk	 auk

a
	 ( . ,7 l

	

( IT,^ 	 ( 17r,) ( IR,)

a"	 aT	 ax . + aRk ax

?I
i.

Ai	 , 7,	 aTi	 aTi£	 a-F 	 IR,	 ITS,
 (

au au.	 aT. aT	 au	 au.	 }	 ak	 au	 au
XJ	 J

r

	

aTk	 of i
-F

	

auk auj	
DT 

	

a Fl	 iV.	 aRk 	a2Fi	 aR	 I't

	

} aT a, R	 Zu j ( au	 BR. @Rk	au	 au

2 

k) 3	 9



!	 _	 4i	 j

k	 From Eq.	 (IV-10) we see that
F

^_	 ..

	

. 7.

axi-
	 S	 eat	 a	 (1 j ^}	 (IV-12)

.	 ;	 .

Du	 au	 kj

(	 2T	

2

4	 a	 a
-,..	 au ate.	 0	 a^ a..	

o	 (IV-^^)

i^

Hence, Eq. (IV-$) is transformed into

9F1	 -	 a21	 a21	 a F y`r^4)ip_..,.	 at	
_	 a	

aTkaTk	
-{-	 2h	 aTJ k	

+	 c	
aRkaR k	

q1

where, by the aid of Eqs. 	 (W--11), (IV--12) and (IV-13), we have

2 0ta	 ^	e 

^	 4

b	
e$t	

(IV-15)

9

c

W	
^Z

The fundamental solution of Eq. (IV-14) can be obtained by employing.

Lemma, II in reference (24).	 This Lemma II states: 	 If a diffetential equation

is given in the form
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ap	
2	 2	 2

at = 
ml(t) 8x2 + 2m2(0) 32P + m (t) 2 2

Y

where P = P (x ,y , t ), then the fundamental solution satisfying an initial

condition

P(x,y,t/xo ,yo ,t0) = S(x - xo ) S(Y - yo)	 at t = to

is given as

G(x - xo ) 2 + 2H(x - xo ) (Y - yo ) + F (y - yo-
-	 -^

I'(x, Y >t/xo1Yo: ro)	

exp 

2(FH-H2) 

l/2

27r (FG - H2)

(D~l1" )

where S represents the Dirac delta function and (x a ,yc) is the initial

position (x,x) at 4 = tu.

Coefficients F, G and H are defined as

t

' = 2 J
	

ml(g)dg
to

I
t;

ft
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We see that Eq. (IV-14) is a diffusion type equation and its variables

can be separated into three parts which are (TI ,RI ,t), (TV R21 t 2) and

(T3 ,R3,t). The solution of Fl (T,R,t) can be expressed as,

	

711(Tl'11't )
12(T21K2,t)F13(T3,R3,t)
	

(IV-16)

The expression Eq. (IV-16) can be easily 'verified by taking Fourier transform

of Eq. (IV-14) and by solving the -esulting first order differential equation

with respect to the independent variable t. Then, when we take an inverse

transform of the resulting solutions the property of the separable variables

becomes self-evident. This detailed process is shouni in Appendix III where

we have extended Lemma-II to the higher orders. In Appendix III it can be

also seen that each explicit expression of T lj (Tl ,P,1 , t), 712(T, , R,,t) and
4	

F13(T3,R3,t) are derivable from Lemma-I1. Thus, the fundamental solution

^--	 r Eq. (IV-14) satisfying the initial conditionv

710,R,t To ,?,a , t0 a 6(T - T0)S(R o)	 at t to

is obtained as,
t;
E

-^ 4.	-^-
1`1(T,R,t/To,Ro,ta)

^_ I

1	 Cc IT — To E + 2B (T --1a),(1 - 1. + A ER — Rai 23
exp

8nAC E	 2 AC ^- B(	 )	 (	 )

(IV-17)

Fl (T, , t}

t



4.
and (ToR0) is the initial position, (T,R), at t = tO.

From Eq. (IV-9), Toj and Roj can be expressed as

k

Toa	
(uoj -	 ) e^to

(IV-19)

û . .,	 touj	 xoj

Finally, with the aid of Eqs. (1V-5), (TV-9) and (TV-19), all independent

4.

F

	

	 variables of Eq. (TV-17), (T,R,tlT0 , a,t0),are transformed back to the

original, variables, (x,u,tjXO , a,t0). We thus obtain the Green's function

(fundamental sol.uti.an) of Eq. (1V-2) as,

1 e R (3St) -
G»(X.u.tIx .0 ,t ) =	 - -
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i

F

Here we use the notation G  to represent the Green's function or the fundamental

solution of the kinetic equation, Eq. (IV-2), governing the turbulence field

,.'	 describable by one nonequilibrium degree of freedom.

IV.B. Green's Function of the Kinetic Equation Describing the 'turbulent
Field Governed by Two Nonequilibrium Degrees of Freedom and the
Equilibriums Degrees of Freedom

In this chapter, we will obtain the Green's function of the kinetic

equation, Eq. (III-1), which describes a turbulent field characterized by

two significant dynamic length scales.

For our convenience in subsequent description (in this chapter) we will

refer to the Green's function obtained in the previous section as the "single-

mode G-function" and the Green's function of Eq. (III-1) (to be obtained in

this section) as the "multi-mode G-function."

The multi-mode G-function will not be employed to solve any real physical

problem in this dissertation. However, the single-mode G-function will be

used to solve a specific physical problem in the next chapter.

As mentioned in previous chapters, many important turbulent flow fields

are actually characterized by more than one significant dynamic length

scale. Although we will not apply the multi-mode G-function to solve any

physical problem in this dissertation, the determination of the multi-mode

G-function is still within our interest for future application of the present

(Chung's) theory for the solution of the multiscale turbulent flow problems.

In this section, we will employ a technique similar to that used in

4 i	 the previous section in obtaining the Green's function of Eq. (III-1). We

will also make assumptions similar to those made in section N.A., viz.,

<v >
1 

<u j
> ' <UkDlc> 

° <D1cVk> and <VkV
k
> are known so that Eq. (III-1) can be 	

11 a
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i

considered as a linear equation. In the future, if we apply the multi-mode

G-function to solve multiscale turbulent problems, we will have to iterate

on 
<v3>, 

<uj>, <UkUk>, <UkVk> and <VhVk> when we try to obtain the associated

momentum quantities. lie will further assume that the problem is of the free

shear layer turbulent flow type with negligible mean pressure gradients.

Ka,'k 
and
 

Kb k in Eq. (III-1) can thus be given as in Eq. (III -5). The charac-

r ' }	 teristic dissipation rates,^a , ^b and ac , according to the previous analysis

b Chun and B	
(15,23,26)

y	 g	 Bywater	 are given as in Eq. (III-2).

In order to obtain the Green's function of Eq. (111-1), we have to

transform Eq. (III-1) into a simpler form. We first make a change of inde-°

-+ -+ -1-

pendent variables, U, V, x, t of the function f 2 , into the same function,

f2 , of new independent variables, u, v, sue.', t. Chain rules associated with

this variable change are listed in Appendix I. With this change of indepen-

dent variables, Eq. (III -1) becomes, after a little manipulation.

aft	 aft	 aft

at + (!`aj	
Eau j) au  + (kbj - Ebvj) avj

af t	af^

+ uj — + vj 
ax	

3(B + Ub)f2j	 i

a2	
a2	 a2

+ q	 auj 
au j + 2 au

j 
avj + av j avj	 f2

f2 = f2(t-,v,x,t) (IV-21)
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where

\\
] \.
{»

jd<

)d^

)dve}2,
J2^

\ \`

A
ej]

}\
^ \

}

±w«dJy.

)\^
}\^

\^

ka,j	 2a a < j > + c < i > c j>

kb,] = 2 < j > +	 c j> - 6c< j>
ƒ

aG

:

^

(IV-22)as = 2 O +

= 20 +

S < k > + <9kVk > + 
(Oa

 + )c kVk>

12

Next, a transformation is undertaken 	 der to eliminate the first term on

e right hand Side of Eq. (IV-21). We 1e

£2 © )2e B ct ( -2])

where S = ](B a + B ).

With the aid of Eq. (IV-23), Eq. (IV-21) is then transformed into

af	 a£,	 aft

at + (k̀	 - 
B u ) 5u\ + (k ,j - v ) j

^

^

ƒ

^

9
^

ƒ!

q

^

q

q

q

q

^
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Detailed transformation from Eq. (1V-21) into Eq. (IV--24) is given in

Appendix 11.

The nine subsidiary equations of Eq. (IV--24) are readily seen as

du.:

d a= - Bu . + kasj:

dv. .	
s,

d = - B b	 .v i- k	 (TV-25)	
1j	 ,j

dx

T.	 l

dt = 
uj + vj

1

As mentioned before, <vj >, <U >, <U Uk>, <U^^Vk> and <VkVk> are assumed to be

known values. Wherefore, k, kb j , B sand Bb as defined by Eq. (IV--23), 	 s

a'j

	
a

can be considered as known values in Eq. (IV--25). A transformation of

variables is then constructed as,

Taff r (uj - kB ) e Bata

Tb , j - (vj	 B	
) eBbt

b

(IV-26)

j -	 x^	 -^-	 -	 +	 '	 tR	 g+	 el

a	 b	 a	 Bb

The Jacobian of the above transformation is found as

a(T,* ,R)
a b	 Y e3(Ba + Bb)t

a (u, v,X)
(IV-27)
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which implies that our transformation has a one -to-one correspondence,

°•	 i_
With the above transformation, Bq. (IV-26) 1 Eq. (IV-24) is transformed into

the following form °I ,

a? (Ta,Tb,R,t)
a2f2(Ta'Tb'R,t) a2f2(Ta%Tb'R$t)

at	 - Q a2	 aTa^ aTaa +	 b Z	 aTbi aTb j 3:

71

a
2-	 -r	 4-

o f	 T IT 	 R' t)
2w	 4.

a	 (T	 T	 R t

2	 aR3 aR. 2	 aTaj aTb

82F(Ta ,Tb ,R,t) a2f2(Ta,Tb,R,t)
+ 2e2	

aT a^ a> ,	 + 2g2 	 aTb^ aR
(IV-28) a

where

-H

a2 = exp (2Bat)

b2 = exp(2Bbt)

2

c2 =
a 

+ B
 b)

I

d2 = exp ((Ba + Bb)tl

(IV-29)

z'd

B +B
e2 = B Bb ) exp (Bat)

a b

Ba 
+ Bb

92	 B B	 exA(Bbt)ab

H
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u	
Detailed processes of the transformation from Eq. (IV-24) into Eq. (IV-28)

are given in Appendix II.
t.

In order to obtain the fundamental solution of Eq. (IV-28), two mathe-

matical lemmas will be proposed next. These two lemmas are the extension of
E

Lemma I and Lemma II in reference (24), which will provide the fundamental

solutions of certain types of diffusion equations. The differential equa-

tion cited in Lemma I of reference (24) has the form
i^

2

at _ (t) 2xax

We will refer to Eq. (L-I-1) as the "single-direction with non-coupled" diffu-

sion equation. Equation (L-II-1) in the previous section (Lemma IT) will be

referred to as the "single-direction with two coupled" diffusion equation,

and Eq. (IV-14) can be called the "three-direction with two coupled" diffusion

equation. Lemma I and Lemma Il of reference (24) give the fundamental.

^i	 solutions of Eq. (L-I-1) and Eq. (L-II-1). Lemma III will give the funda-

mental solution of a "single-direction with three-coupled" (so to speak)

'I
I	 diffusion equation and Lemma 111-A will provide the fundamental solution of

4 j	 a "three-direction with three-coupled" diffusion equation. These two Lemmas

fw
will be presented in the following.
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i

2	 2	 2

at — 1 W axI axI + O (t) ax2 ax2 + 0 3 (t) ax3ax3

2	 2	 2

	

+ 
20 2 (t) ax ax + 2013 (t) ax 8x + z` 23 8x ax	 (I.-^--^ )

I 2	 1 3	 2 3

in which Y = Y(xl ,x2 ,x3 ,0, the fundamental solution of Eq. (h-TLT-I) which

1
	

satisfies the initial condition

Y(:t
l) x2' x3' t) 1 t=t 	

d(xl - xlo)6(x2 - x2o ) d(x3 - x 3	 (I^-ITY-Ia)

0

is given as

1
Y (XI ' x2'x3' c Ix^.o' x2o' x3o' t) T (27r)3/2A1/2

^3
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X23
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,. M	 M
31	 32

_ in which
3

t n

M11 _1ty)d^	 X22	 ft
2 ()d	 > )d

X33	 =	 f	
3

t
a

t
0

t
0

^^2 -	 MZ1	 -
	 ftt ^12(g)dg M13	 =	 m

r
It ¢13(E)dC

0 1	 0

M23
"32	 f$23(0dc (L-IIZ-5)ta
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i

Lemma III-A

If the differential equation is given in the form

f

^-

- A
ay	 a2Y	 a2Y a2Y
a_	

(t)	
a	

+	 (t)	
a

at	 i	 axlj ax1 	2	 ax2 j ax
2j

a
+	 ^ (t)3	 ax j ax3 jj

AF

a2Ya	 a2Ya a2Ya
+	

2^'i2 (t) 	 ax	 ax	 +	 2`^13 (t)	 ax	 ax	 2^23(t) .~a
lj	 2j	 lj 3j 2j 3j

R

_

^u

G where j is the cartesian tensor index, j =1, 2, 3.
€	 a,

The fundamental solution of Eq.	 (I.-III»b) satisfying the initial condition
4

+
E

y

a	 1	 2	 3	 t-t	 11	 110	 12 120	 13 13a0

 )S(x	 — )! 8(x	 x	 MX
21	 210	 22

- - x ,
2_0	 23

x
230

1

8(x	 -- x	 )8(x
31	 310	 32

- x	 )S(x	 -.
320	 33

x	 )
330

f
j

(L--III--7)	 .'

where

(xij )	 = xijo

t^to

U
is given as

1

:. 'Al
,f
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a

..p
r^
f

ae

r

_H

I
5$

z	 ^I ^j

i

i-

Ir -r 4-	 a	 4-	 1
Y -

	

a (xl' x2 ' x3' t1X10 ,x2o ,) x30 : 0	 r (2n) 9/2 	 A3/2
--3

	

r	 4	 2	 -r	 y	 2	 }	 -r 	2
All I x1 - x10 ( + 0221'{2 - x 2o i + 

X33 3 w x30 k

+ 2A
4.

- xlo }•(Y2 - x2o } +2A13 ("l - x1a } •(x3 - ^'3o)

+ 2623 (x2 - X2o ).(x3 - X3o)
exp	 -

2A3

{L-III-9)

where A 3 and Ai 
3 
are the same as in Eq. (L-1II -4).	 Lemma III and Lemma III--A

are verified in Appendix III.

From Lemma III-A, the Green's function of Eq. (IV-29) is readily obtained

as

r r	 -r	 -r	 -).	 1

G2 (I a' Tb' R ' tITao' Tbo' R0 to) -	 9/2,3/2
( 27T) 

9/2,3/2

l]111Ta - Tao 2 + a22 ,Tb - 
TboI2 + A 33 1R - Ro2

	

+ 2Al2 a	 ao	 b(T - T)•(T - Tb0) + 2G 13 (Ta - Ta0)•(R - R0)

+ 2A23 (TIN - Tbo )-(R - 0)
exp.	 -

2A3

(IV-3D)





G2(u,V,tIu0,v0, ta}
eBct

(2w)9/2 3/2	
x

s

C11 (u - Ba ),Bat - (U - B )e
$ toa -

a	 a

+ d22 (v -	 )eBbt - {v0 -- B )eBb
ta

b	 b

s.
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f

Finally, the independent variables in Eq. (IV-31) are transformed back

to the original variables. By employing relations (IV-23) and (IV-27), the

Green's function of Eq. (IV-21) is obtained as,
.

r^

i

r

-} -r 	-}
u	 -r	 y 2

k
-^

+	 X33 (x -
}	 U
xo ) 

+ Ba -
O	 V	 a

B^	
+	

Bb - B	
-

c3	 13
ri Ba 

+ Bb	
(t -- to}

+ 26	 -
12 (

u ) eBat -
Ba

(uo -	 } eBato}'^
Ba

kb{v -	
)eBbt

a a b

tb kb -}	 ka.	 Mato	
a

_
(V Bb to

)e	 }	 +)e r } _	 Ba t
2A13( (u	 )e

_	 -	
)e(uoBb

B
a
B 
a

u- u v- v k	
k

'^	 } -
(X	 xa }

o
{	

Ba	
+

o _	 -
(t	 t

Bb	
o)
^^^

Ba +. Bb

k k,
+	 2p23 ^(v

- Ba 
) eBat - (vo -- BJ ) e bt01•

b b

u- u v- v k
r
C(x ^ ^0} + B	 o+ B	 o - (t — t0) (Bab + Bba a

2A

(IV-33)	 -...°.

i^

1

i

exp

1

where u, v, k , lcb are vectors, and (x ,u ,v
a o a ,ko )
	 (x,u,v,t) t=t in the phasea	 i....'::0

space,il
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CHAPTER V
i.

SOLUTIONSPECIFIC

k1

Y

The single-mode Green's function obtained will be employed to solve a
4

i^ two parallel stream turbulent shear flow problem with and without chemical

u
reactions.

As mentioned in the previous chapter, the kinetic equations for f and

tiT for F [Eq.	 (IV-2)]	 are linear if we assume <u.> and <U1CU1L> are known.

S	 w4 'The Green's function of Eq.	 (IV-2),	 without considering chemical reaction

tern, mf, is then obtained as described it Chapter IV. 

The following simple chemical reaction will be considered in this chapter

.: for chemically reactive flow:

a	 +	 b	 ---	 d (V-'1)

' fuel	 oxidant	 product `=	 7

3

	

E	 a b	 '+
Wa	

kap(

	

eX^ 
z 	

Zr z
s	(V-la)

4

In the above, the subscript a represents either of the subscripts t, r, s,

(	 or p, which denote the temperature, fuel, oxidant and combustion product,

E

respectively. By introducing new variables, the kinetic equations (IV-2)

for the F's can be manipulated into two equations which are identical to

S

that of Eq. (IV- 2) without the chemical reaction term. Also, in the limit

of an infinitely fast chemical reaction rate, the chemical reaction term

of Eq. (IV-2) can be degenerated into a set of algebraic equations. There-

£ore, the obtained single-mode G--function, in which the chemical reaction

3
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r	 ^ term was not considered, can be employed to solve the infinitely fast chemically

(26,27)
reactive flow problems. This Method was derived by Chung and details

5
_

f

of this process will be given later in this chapter.

E Since we assumed that solving for<u^> and <UkUIL> are known when we were

the Green's function of the kinetic equation, we will first assume the value

T {	 'i of <u,> and <UkUk>.	 Then, by appropriate summing of the Green's functions

,. according to the flow conditions of the given physical problem, we will con-

struct. a solution for f and F's. 	 From these distribution functions, we

evaluate <u.> and <U U > and repeat the process until a suitable convergence

is attained.	 This detailed process will be shown later in this chapter.

i

The physical problem given here is similar to a pair of parallel streams

_ flowing out continuously at the x = 0 plane with given mean velocities and

i
° turbulence energies.	 (See Figure 8.)	 The upper stream contains fuel and the

lower stream contains oxidant and inert s,iecies. 	 The temperature is given as

uniform at the x = 0 plane.

The above mentioned flow problem has been of interest since the late

1880's.	 MostMost former researchers (34r43) only investigated the momentum

flow field without considering chemical reactions. 	 The analytical work of

{ (37)	 (39)	 (40)	 (41)	 (38)
Tallmein,	 Goertler,	 Lessen,	 Ehiarulli	 and Lin g et al.	 in

one way or the other employed a Bousinesq	 relationship.	 Among these investi-

gations of the turbulent mixing problem which are based on the idealized

initial velocity profiles (figure 8), the main difference in the analyses has

- been in the expression chosen to represent the eddy viscosity in the mixing

region.	 Tollmein,
(37)

 in 1926, first obtained the analytical solution by

using Prandtl's mixing-length theory. 	 His solution shows that the second

order derivatives of mean velocity are discontinuous at the edges of the

H

mixing layer and the velocity in the mixing region does not asymptotically

n
1

r
rC, ^
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43
approach the Free stream values. Liepmann and Laufer	 demonstrated that

Fr
their experimental results could be brought into reasonable agreement with

the mean velocity distributions obtained from either the solution of Tollmein

ci+ or that of Gaertler. However, turbulent stress measurements and back calcula-

tions of the mixing length and the exchange coefficient showed that both

varled across the mixing region. Thus, they concluded that neither Prandtl's

ti mixing-length hypothesis nor the exchange coefficient hypothesis adequately

_	 describes the turbulence characteristics of the mixing region. Schlichting(44)

L^	 pointed out that Tollmein's discontinuity solution is a general property of

Ur.	 all solutions based on Prandtl's mixing-length hypothesis and called this an

esthetical deficiency of the hypothesis. The inadequacy of the gradient-type

approach of turbulent momentum transport has been fairly described in Chapter 11.

Possibly because of a lack of proper expression for Reynold's stress in

the mixing region, Baker and Weinstein's
(46,47)

 experimental and analytical

studies of this problem in 1968 did not give any curve of Reynolds stress in the

mixing region.

The analytical solutions of the momentum field obtained by former investi-

gators are usually adjusted by changing the already embedded parameter when

they employed Prandtl's approach or by adding new parameters in order to com-

pare the experimental data. The analytical results of T'ollmein, Goertler and

others 
(44-46) 

show that there exist similarity solutions of the momentum field.

These are evidenced by experimental results. Experimental data of this type

of problem of a uniform density fluid has been taken by Albertson, (48)

Reichardt, 
(49) 

Liepmann and Laufer, 
(43) 

Baker and Weinstein 
(47) 

and others,

and most recently by Spencer. 
(50) 

Spencer has conducted the most complete

and .horou h experimental studies of this turbulent mixing problem.g	 p	 g p

Our main interest is in employing Chung's theory to solve chemically
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reactive flow problems. In order to assure our calculations, the momentum

field to be obtained later in this chapter will be compared with Spencer's

experimental data. However, the experimental combustion data of the present

problem analyzed is not available now.

Chung's model is the only existing kinetic theory for turbulent chemically

reactive flow. The solutions to be obtained in this chapter will reconfirm

some salient features of Chung's theory which have mostly been revealed in pre-

vious analyses 
(26-31) by the bimodal method. The present Green's function method

only provides a more refined method for applying Chung's theory. Although the

previous bimodal method embedded certain discontinuities in the distribution

function and so resulted in discontinuities at the flame edges of the mean

quantity profiles, the assumed two half-Mangellian functions are dissimilar and

together they constitute a completely non-Maxwellian distribution function of

chemical species for the chemically reactive problems analyzed. This is what

we would expect, since the 'Maywelli.an distribution implies a completely homo-

geneous, isotropic field which is of little interest to engineers.

The conventional approach has been the use of one-point averaged equations

derived from the Navier-Stokes equation, and the species and energy conserva-

tion equations, which are not closed. The closure techniques, of the above

mentioned equations are mainly based on noussinesq's relationship or Prandtl's

approach, which are basically inadequate to describe turbulent transport as

pointed out first by Chung 
(15) 

and later by Spa lding, (ll " and tLese have been

explained in Chapters I and 11. Not only is the mean-gradient type closure

technique, which ascribes the turbulent transport a ,s analogous to laminar trans-

HI	port and results in a flame sheet solution in the turbulent combustion flame,

inadequate, but also the basic physics of the problem, concerning the mixing

and reactions, cannot be described successfully by the moment equations alone.

I
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These basic physical descriptions of mixing and reactions will be briefly

mentioned herein.

We will repeat a portion of the physical description given earlier by

Chung. (26,15,22,27) As an illustration, let us consider the turbulent mixing

of two groups of fluid elements containing two different chemical species,

say the fuel and oxidant, across the plane A-A' in Figure 9. As far as the

transport of the momentum, energy, and the chemical species in the absence

of chemical reaction are concerned, this fluid-element transport (eddy trans-

port) completely describes the mixing. This mixing of the fluid elements,

however, will not allow chemical reaction between the two chemical species.

Chemical reaction is a molecular process, and the chemical species must mole-

cularly mix between the two groups of the fluid elements before a reaction can

commence. Crossing of the fluid elements across the plane A-A' in itself does

not necessarily imply mixing as far as the chemical processes are concerned.

The molecular mixing between the fluid elements (dissipation) takes a

finite amount of time. Therefore, the chemical reaction zone of the two

initially unmixed reactants of Figure 9 should be of finite thickness even

in the limit of an infinitely fast reaction rate [Kf }	 in Eq. (V- 1)]. In

spite of this fact, if one employs Prandtl's approach, discussed previously

for the nixing and reaction problem at hand, one obtains an infinitesimally

thin combustion sheet (diffusion flame sheet) in the limit of K  ->
	

as it

is in the laminar flame [see, for instance, Libby (1962), reference 53].

There have been several experimental results published in the past which

tried to allude to this fact, such as Hawthorne 
(54) 

et al., Wooldridge and

Muzzy, 
(55) 

and Vranos (56) et al. Figure 10 shows the early experimental

results of Hawthorne et al., who established a diffusion flame between a

turbulent hydrogen jet and the surrounding air. These results show that the

q^_

a	 =
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flame (combustion zone) wherein both the reactants co-exist in the average

is of finite thickness, and the flame structure is basically different from

that predicted by Prandtl's theory. These points have been pointed out

and discussed by Chung. (15,26,27,32)

Let us consider, again as an illustration, the idealized cases shown

in Figure 11. Consider that point B is being alternately occupied by the

fluid elements containing either the species r or s, whereas point B' is being

occupied in tandem by the fluid elements containing various molecular mixtures

of the two species. We further consider that the concentrations of the species

r and s in the fluid elements occupying B and those comprising the molecular

mixtures of the fluid element occupying B' are such that the mean concentra-

tions of r and s observed at & are equal respectively to those observed at B'.

We now see that the chemical reaction of Eq. (V Y-1) is prohibited at B whereas

it can proceed at B' even though

<z r > B = <zr >BT

<zs>B - <zs >BT 	(V-2)

<zr>B <z s } B = <zr>B'<zs >pT

What is different between B and B' is the simultaneous probability of finding

the species r and s. This probability is zero.at B, whereas it is finite at

B 1 , and, therefore, <z r z s > B = 0 whereas <zrz s >B , # 0.

Now, let us consider for B' that the temperatures of the fluid elements

are substantially different from each other, which is usually the case in

combustion. Then the chemical reaction rate in each fluid element will be

given by Eq. (V-la) where z  is the temperature of that fluid element and is

3.
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A.

not directly related to the average temperature <z t> which one would observe

at B'. The average chemical reaction rate observed at B' will simply be the

average of the chemical reaction rates in the fluid elements, <K0(exp(-E/zt)•

z azs >. Replacement of this quantity by Kaexp(-E/z t ) <zr> a<zs >b as is done in

the conventional approach of turbulent chemically reactive flow is not

physically meaningful.

The above illustrations show the fact that each averaged quantity in a

chemically reacting flow implicitly embodies specific information of a certain

process taking place in the flow field. Therefore, replacement of a particular

higher order average by a collection of certain lower order averages--that is,

direct modeling between the averages--could lead to an erroneous consequence.

Chung's theory is statistically more general in the sense of generating

moments. The solutions to be obtained in this chapter will reflect more

evidence of the physical phenomena described before.

In the subsequent analysis, we will assume that the momentum flow field

will not be affected by chemical reactions.

t!

V.A. Governing Equations

Our governing equation is the kinetic equation, Eq. (TV--2). The chemical

reaction to be considered is given as Eq. (V--1).

K  in Eq. (V-1) is the specific rate coefficient which is given as

where K  is a constant. AE, R and z  denote the activation energy, the gas

constant, and the absolute temperature, respectively. K in Eq. (V-1a) is

<:	 s	
-
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given as

K = k ` d--2 _) a+b-1 ex L - 

pb L
o ` 

nfapjb 
f p	 p	 Rz	 (V-4)

'r s

where zt represents the mean chemical equilibrium value at one of the flame

edger.

The instantaneous rates of generation of the fuel W r , the oxidant ws,

and the temperature wt by chemical reaction are related to those of the

combustion product mp , by the relationship

M

	

wr	 -	
a ( 

rip 
) ^P

	

MS-
W	 - d (S	 ) 

w 
P	

(V--5)
P 

	

W	
_

 (Ah0)

 wpt

where Alia and c  are the heat of combustion and the specific heat, respectively.

For convenience of later reference, we repeat the kinetic equation,

Eq. (IV-2)

aZF3FQ	a"	

B 
a	

(F U.) + 
1 

<U u n	
k 

+
at	 + uj axe =	

^

au 	 k a	 3	 k k aui au3	kf

where Fk = fzV

The symbol k represents either of the following functions

(IV-2)

( r fuel
	

p product

Q =	 s oxidant
	

c	 inert species
	

(V-6)

t temperature

-T

V



^i
when £ represents c, w C = 0.

Equation (IV-2) will be manipulated to eliminate the chemical reaction

e ,^
	

term in the following manner. We first define the nondimensional variables

C
h = \ o z t

ph 

d____L-
m = 01r z 

dM
n	

- 1 zs

(V-7)

and

a = m + h

(V`$)

$ = n + h

Now we rewrite Eq. (IV-2) in terms of the new variables h, a and 0, and we

obtain the following equations,

;Fa 	 ara 	
a	 S1<UOk>	 a2Fa

+ u	 = ^	 (F U.)at axi	 au 	 a 7	 3	 au  auk

ap 	aF<U U >	 a 
2 
F

at 	
+ u dx

j
	auk (F RU3 } +	

1 
3k 

1`	
au au 	 (V-10)

aFh 	a -	
a	 a <U1tUk>	

a2 
h

+ u
	 =	 U) +	 + w f	 (V-11)

at axe	 auk 
(F 
h i	 3	 au. au 4	p
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BF aF a <U 
Uk >1	 k

a2F
mM

of
+	 u.

3 axe
m

$ a (F U.)	 +
auk	 m	 3

..	 m f	 (V-12)
auk auk	 f

aF aF 01<UkU 
c'

l

a^ Fn

atn
+	 uJ

ax
_	

au.	 (FnUj )	 +	 3 au.au,	
wpf	 (V-13)

where

Y Fo a£ , Fs	 -	 of

^j
FM

=	 mf Fn of (V-14)

Fh h f

We notice that Eqs. (V-9) and (V-10) have the same form as that of Eq.

(IV--2) without the chemical reaction term. The single-mode G-function

obtained in the previous chapter can be used for solutions fqr Fa and F 	 if

we further define (Fm) i and (Fd i as Fm and Fn without chemical reactions,

from_Eq. (IV-2) with the aid of Eqs.	 (V-12) and (V-13)	 we can readily see
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The governing equations have now become the set of equations (V-9) through

(V-13).	 Equation (V-11) will be degenerated into a set of algebraic equations

in the limit of K -> - (or K 	 ->- -).	 With the aid of Eq. (V-7), the equation

for wp , Eq.	 (V-la), can be written as,

j
a	 M	 a	 }b rr

cep 	-	 K	 exp	 -	 1)]	 (

M	 b
m a n 

b
Ms

(V-16)
Rz	 d !	 M	 1

t	 P p

Hence, we have

i	

E 
(a s Mr a b b M 

b 1-a-b a b
^►pf -- K exp I-Rz tj\d l \ Mp \ d)d^ f	 FmEn	

(V-17)

1

Substituting Eq. (V-17) into Eq. (V-11) and dividing each term by K, we

obtain

V i

1 a^
n 	aEn	

a	
$1	 Fn

K # at	 + u3 ax .	 au (EhUi )	 3	 kUk^ au , au .

	

]	 j	 j J

a M a	 b M d
a b	 pE YA) ( r 1 b	 s	 1-a-b

TmFn exp- Rz t  d ` dip / d	 Md	
f	 {p- 18 )

	1	 In the above, when the chemical reaction rate is infinitely large, i.e. K -1, co,

we get the following equation

f

	

i i	 Emrn
	 (V-19)
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FmFn - 0	 (V- 20)

^.	 t	 The above equation gives us some explanation of the physical phenomena

of mixing and reaction, in the limit of K 4 ^, as described earlier in this

chapter. We would like to recall that the definition of Fm (or Fn) is the
P

probability density function of finding the fluid element containing species

a
< ± r (or s) with concentrations m (or n) [dimensionless form of z (or zA	 _	 r	 s

having the velocities between u and u + du in velocity space. As mentioned	 4 .
R 

before, chemical reaction is a molecular process which takes a certain time
I

for two different chemical species (in our case they are originally contained.:.

in different fluid elements) to diffuse into each other (between fluid

1	 elements) in the course of turbulent mixing (eddy transport) so that the

chemical reaction can happen. In the limit of K	 as soon as two different

species r and s appear in the same fluid element--5o that they are in the

1	 same probability cell in the velocity space---the combustion will take place 	 Ai
and complete simultaneously. Thus, Eq. (V-20) describes the prohibition of

the coexistence of the two species r and s in the same fluid element (which

occupies the same 	 f• `^	 p	 probability cell in the velocity space).

The existence of one of the species r or s at a given phase point (x,u}

can be determined if the amount of the species appearing in the fluid element,

I
less the amount of that species required for a complete chemical reaction, is

positive.

For the convenience of later calculations we will let

air	bMs
0.5	 (V-2l)

dM	 dM 
p	 p

ll^
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r	 1hus, an equal amount of two species r and s is required for a complete
t

: r chemical reaction of Eq. (V-1)..

^	 3
Equation (V--20) will be further degenerated into the following algebraic

equations. We first divide the velocity space into two domains as,

U s Cu ) m

1 u
c

(u)n

if	 Pm) i - (Fn) 
it > 0

(V-22)

if	 I(F d i
 - (F n)

i
l e 0

?.	 According to our explanations in previous paragraphs on Eq. (V-20), F m and

F can be determined as follows,
n

F	 = {Fm}i -- (F	 forfor u e 
(u)M	

n
M

F = 0
n

i

" r•	 - 0

{

{	 Fn = (Fn) i	 (Fm}i	 for u t (u)nf ^	 ,

Thus, our governing equations finally become Eqs. (V-9), (V-10), (V-23)

and (V-24) .

(V-23)

(V-24)
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r

II` V. B. Properties of the Greens Functions

The kinetic equations we employed previously are homogeneous. The
^	 ) Z I

4	 Fokker-Planck type equation such as Eq. (IV--2) is a diffusion type equation.

The fundamental solutions obtained in the previous chapter are the instan-

taneous point source soli-titi s. These solutions are similar to that of an	
j

r

ordinary diffusion equation.

in a mass diffusion field, if C represents the mass concentrations, its

diffusion equation is given as

2c.	 D a2C
	

(V-25)
at	

ax 
	

4

fr _t
t
i

z

^E
o. !

i

The Green's function of Eq. (V-25) is viell known as a Gaussian kernel,

which is

P -	 l	
ex	

(7 - xo) 2

	

2aD	
)	 p I- 2D(t - t0)

0

P is exactly the solution of Eq. (V-25) representing the solution of an

instaritaneous point source with unit intensity given at x = x  when t = to

P as well as G are delta functions at t = t0 , at a given physical point xo,

^
or at the phase point (

-r
xo ,uo ). Obviously, froin t ie conservation of mass, P

satisfies the following relation

(V-2G)

(V-27)P(x,tIx ,t )dx W 1
0 0
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1

1•

riff
Similarly, the Green's function which represents the unit intensity

point source solution of Eq. 	 (IV--2)	 has the following property

i
^

J
f	 `i'

i

^^ ft

00	 00

f1I_^_^ Gl (x,u,tjxo ,uo ,to )dxdu	 -	 1	 (V-28)

of Equation (V-28) is easily verified by first considering the integral

Fl (T:R a t,Tp ,Ro ,to )dTdR	 1	 (V-29)
J -^	 -^

whit'. is self-evident.	 Then, by employing Eq. (IV-5) 	 the left hand side

-
E

of Eq.	 (V-29) can be written as

--35t	 a(T,R)	 -^ -}
Gl {x,u,tlxo ,uo ,to) e	 dudx	 (V-30)

°{ 'R)	 e,^gt 	 Eq.	 (V-30) readily gives the result of.ace the Jacobian
L. u X

3

Eq.	 (V-28).

V.C.	 Source Conditions

The flow conditions at x = 0 of the present physical problem are idealized

- as shown in Figure 8.	 The velocity profiles at x = 0 are so-called plug4

velocity profiles.	 In the real physical picture, one should have a certain

mechanism. for supplying fluids flowing continuously in the x < 0 region, and

0	 be leapt	 Inthe two streams separated at the y = 	 plane should	 unmixed.	 many

- experimental studies such as Baker's and Spencer's experiments, in their wind

tunnel the section before Lhe test section, i.e., the x < 0 region, the two
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streams are separated by a smooth plate which usually causes certain boundary

layers on both sides of the plate. They both tried to minimize these boundary

layers by smoothing the separating plate and by reduking the free stream

turbulence energiei to as low as possible. However, after a certain distance

	

7,	 downstream, the effects of the original boundary layers near x = 0 on the

other momentum quantity is no longer important.

The flow region of interest is in the region of x > 0 where turbulent

mixing and reaction take place.

	

f ab,
	

In the present analysis, we will idealize that the fluids flowing out

7 from the x = 0 plane have plug velocity profiles with given turbulent energies^

A

for both streams which are originally unmixed.

5 The kinetic equation considered in the present analysis is linear and

- i
F homogeneous, Eq.	 (IV-2).	 The Green's function obtained in the previous chap-

ter is an instantaneous point source solution of the kinetic equation. 	 If

we properly define the distributions of the sources according to the flow

{ conditions of the	 recent	 h sical	 the Duhamel principle can bep	 physical

P
applied to superimpose all solutions caused by these Sources,̂

!	 - In order to utilize the Green's function---the single-mode G-function---

which is an instantaneous point source solution of the kinetic equation, Eq.

(IV-2), we have to specify the distributions of the sources which will

suitably describe the given flora conditions of the present physical problem.

i_ As far as the probability density function of the fluid elements, which carry

i

` ,,,the chemical species	 z	 are concerned	 the distributions of the sources-- 

according to the flow conditions mentioned in the previous paragraph--can be

j
E

considered as continuous probability density fluxes (at the x = 0 plane) per

unit area per unit time with Gaussian intensities.	 These are Gaussian sources
f

•	 ^ with respect to their otart mean velocities and turbulence energies.. The condi-

i
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(	 <UkUk>o+) LLL
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Y	 0.:2 <lj0k> ff.

A
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fu}p)	

-
of

I
2(uo - <u> 2 + vo + w-m)

E -	 --1	 --
2	 3/2	

e^p
} 
y < fl

2i
(3 " `UkUk'o-)

<
3	 UkUk>o-

..
(V-32)

I and
_

I	 u	 > 0
11	 _	 °(u ) (V-33)

0	 u	< 0:

i °

z  denotes the species concentration given at the sources.	 All subscripts o

denote the quantities given at the source. I1(u
0
) denotes that only those

fluid elements with positive uo values can go into the region of x > 0 where

mixing and reaction take place.

In the present analysis we will let <UO
k
>o+ and <Uok>o-	 be signifi-

2
cantly small compared to <U>90 	 the subsequent analyses we will let

r



(V-37)

The value of u  is given as

u - <u>	 + U	 (V-35)
a	 ±^	 a

which can be approximately written as

f(uo) ti 0 unless luo - <u>m i < <UkUk>1/2	 (V-3b)

From Eq. (V--32) we see that most fluid elements given at x = 0 have the

x-component velocities of the value of <u>,, (or <u>-m). Under the condition

of Eq. (V--32). we also can see from E1. (V-30) that the probability of finding

the fluid elements with negative values of u
a 

is exponentially very small.

Therefore, Eq. (V-31) is approximated as,

The above approximation will simplify some manipulations in later analyses.

In the case of chemically frozen flow, we will let z o = 1 in Eq. (V-31).

When the chemical reactions are undertaken we assume that the upper stream

(y > 0) contains fuel (r) and the lower stream (y < 0) contains oxidant (s)

and inert species (c), in the present analysis, these chemical species con-

^p ^	 ^
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' f1a

E

'^^-

centrations at the source are given as follows.

E Ff	 .

in the upper stream (y > 0, x < 0):

z
r
	1.0 }

o (V--38)

t}
h	 -	 0.50

In the lower stream (y < 0, x > 0)

z	 0.7
so

zc	 -	 0.3 (V-39)
j

a

of_

ho	 -	 0.5

We should notice that from Eqs. (V-5) and (V-21), we have

z 	 -	 2 m

11

l
(V_40)

zs	 -	 2 n

Therefore, the m	 and n	 at the source are readily given as
o v -

mo	-	 2.0,	 y > 0, x < 0

n	 _	 0
O

(V•-41)

M	 -	 0
O

no	 I.4	 y < 0, x < 0
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V.D. Solutions

We will use the Green's function--the single-mode G-function--to construct

the solutions for f and F's.	 As mentioned in the previous section, the kinetic

} s equation employed is linear and homogeneous, and its solution can be obtained

by properly summing up the sources distributed in the physical space. 	 With#

rl
the distributions of the sources specified in the previous section and by

employing the Duhamel principle, the solution for F and f can be constructed

as follows (without chemical reaction).

tE'(u,x,t) 	 - ft
dto 	 dvo f oz duo f

0
..,,dw°

_^	 -^dz0
-0 

I_^dxo
J

dyo G1 (x,u,tlx-^	 °' uo ,to) S° (V-42)

and f is obtained by setting all z's equal to 1.

f	 -	 (F) z=l (V-43)

Since the fluids are continuously flowing out at the x W 0 plane, after a

certain considerable time, i.e., t >> 1, all the solutions to be obtained in

the region - > x > 0 will reach their steady state. 	 in our subsequent calcula-

tion we will tend to obtain steady state solutions.

The integrations on the right hand side of Eq.	 (V-42) and Eq. (V-43) can

be evaluated by suitable application of integration taales and little manipula-
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ti	 ^j
f

correlation functions can readily be obtained. 	 Let Q(u) represent the general

Lh momentum quantities.	 The averaged Q(u) can be obtained as follows,

1

^^
<q^	 1	

m	
Qf(u,x)du	 (V-44)

f-^

In later calculation we will let Q W u and UkU,, , which are essentially needed
,a

for further calculation of combustion diffusion flame.

^ P7 in Eq.	 (V- 44) is the normalization factor, tahictt is

f ^
a
i

N	 -	

too

f{u,x}du	 (V-45)

!E

N is sometimes called the particle density. 	 When we defined the conditions of

#
our sources we made certain approximations which took a very little amount of

^ k

the fluids with negative u	 velocities at x = 0 into our solutions.	 Ideally,
o

€r y N should be exactly 1.	 In our calculation for the given original turbulence
_ d

energy and approximation made before, the result of N in the free-stream has

# E F } the value of 1,440104, and with little variation in the mixing region. 	 We

3

count N as the particle density and all the calculations are normalized by N.

The necessary parameters and iteration scheme on <u.> and <U kUk> will be given
a<

and discussed later in this chapter.

1
As we have assumed before, the momentum field will not be affected by

j ch emical • reactions. k
I f

Once the distribution functions, F's, are determined as given by Eq. 	 (V-42),
,

the various quantities of mean species concentration and their mean turbulent

transport can be easily determined.	 This will be given subsequently. ^-

Me determination ofF (u) and F (u) is given by Eqs. (V-23), (V-24) and #,,
M	 n 3	

..

r
(V-42).	 Equation (V-20) prohibits the coexistence of the fuel and oxidant .

tit `I

fifi
l
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in the same fluid element which has been explained in Section V.A.	 Our

physical problem gives the two separated streams with one stream containing

ei
j fuel and the other one containing oxidant and inert species. 	 These two

streams are originally unmixed. 	 The intermixing between these two streams

and the associated interdiffusion of oxidant and fuel between fluid elements,

which originally contained different species, will be mainly undergone

through vertical mixing and transport.	 We then approximate that the require-

H } meat, in the limit of K 	 ^, that the two chemical species, fuel and oxidant,

f	 l be "in phase" in velocity space #AJti i-	 1Ij4 t oE--ik	 is necessary only in i
;^1

the vertical direction.	 Thus, Eq.	 (V-20) is approximated as follows,

7

1t
-	

(V-4GF	 F	 0	 \	 )m,vn,v 3

:^ where
{

F f	 F (u)dwdu	 (V-47)
m,v  m 3

F_	
fa,

F (u)dwdu	 (V-48)
n,v	 n

Equation (V-46) prohibits the coexistence of fuel and oxidant appearing in the

t: probability density cell on the vertical velocity v-axis.	 Equation (V-lib) can

S

j

^^

be further written as,

For	 [ (F)	 >	 (	 )	 ,	 v	 E	 v	 (V--49)

and

Ifl
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-	 i
`0
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I
^

--	
( Fm^v	 -	 (Fm ^ v) i	-	 (rn,u)i

_
E

(V-50)

}.
Fn V	 -	 0

#

r3^

3

f
For	 [(F

nlIv
) i >	 (FM,V) i ]	 ,	 v	 e	 vn (V-51)

and
3 ^	 ^

 i	 M. 	 in,v	 n

(V-52)

F	 - 0
m,v

where

ju

III	 [l

7

tra	 w

(Fm,V) i - -. L ( M idwdu

(Fn,v)i `" f-'
. TO, (Fn)idwdu

(V-55)

The expressions of Eqs. (V-49) through (V-52) are equivalent to Eqs. (V--22)

through (V-24) in section V.A. We only-reduce the velocity domain of interest,

), to that of the v-component, v (or Jn)um (or u 	 .

We would like to mention here again that the single-mode G-function, Gl,

is the Green's function of Eq. (IV--2) without the chemical reaction term.

The solutions for the F's givan by Eq. (V-42) can be used for F a , Fa , ( M) i and

Un)i.
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With the aid of Eq.	 (V-42) and Eqs.	 (V-49) through (V--52), the various

quantities of the mean species concentration can be readily defined as follows,

F	 dv
m,v

vm

(V-54)

<zr >	 - 2

tt' `̂.

<n>	 -
fv

F	 dv^.,

n
(V~55)

4

<n>

Czs > 2

<Z >	 _ F^(u,x) du (V-56)_

4C

From the conservation of species, <z > can be obtained as follows:
P

• y

q	 r	 s	 c
I;

a

Since the kinetic equations for Fa and F S do not contain chemical reaction 1

terms, the solution for the F's given by Eq.	 (V-42) can be used for Fa and F8.

Thus, <m> and <$> can be readily obtained as

10

	

	
F a(u5x)du

W

9
(V-58)
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Z 1

F 6 (u,x)du	 (fir-59)1

F ^ i

and
A. +

i
<h>	 _	 <a>	 -	 <m>

or	 (V-60)

<h>	 -	 <a>	 -	 <n>

7

art	 bM

7'!1,
In Eq.	 (V-21) we let	 dr	 - dMs

 = 0.5, i.p., equal amounts of the mass

of fuel (m) and oxidant (n) are required for a complete chemical reaction.

In the domain of v e v m , all the oxidant appearing (before chemical read-

ti,on occurs) in the fluid element will be totally committed to combustion and

1
will become product.	 Therefore, Fthe distribution function for the species

P' V'

of the product can be readily obtained as	 [from Eqs.	 (V-49) through (V-52)1,

(rn v) i ,	 v e m'

E F	 -	 (V-61)
E P'v {

(F)	
v e v

M v	
n }

l

Therefore, <z > can also be determined as follows,
P

_	 (V-62)'<z >	 F	 dv_
p	

-^	
P'v

In our later calculation, the results of <z > calculated from Eq. (V-62)
p

' and Eq.	 (V-57) are almost identical.

From Eqs .	 (V-49) through (V-52) and Eq. (V-61), the mean turbulent trans-

port of various species can be obtained as follows,

..	 ...-------
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\ }^	 < m>	 =	 VF 	 ^a^
f

\ \)

d'! V	 ,	 .	 }?!.	 ]	 m	 ro

\^)	 & (V-63)	

\ }
\ I\
\ j<	 z >	 _	 <V >

u	 &2^

\	 )	 Z . 	/ 2 ^
, \	 <NFn >_	 ƒ	 VF	 dv	 )r )

`	 v	 ^^	 )]	 n
\ U-64)

^ )
`S>n>\ /	 d	 } \,,

\ ^j	^	 72

z \	 y and

\ \ ®

./ \	 `V @>	 VF ,^
	 (V-65)

 	 \<
\	 ;	^ 

^ ^  ]	 /)

\ \	 2 If we define wh	e dimensionless  t	 p tar to due	 chemical reaction,  	 \.	! 

^ )	2 
/ )	 (	 we may write, from Eq.  (V 7),	 \

^	 4	 :	 \ )
C

\	 q	 _ ( -'-0) w t	(V 66)	
\:	 l	 A	 .

^ \	 ^	 -	 .- \.	 B comparing  	 s.	 (V-66) 	 d (V- 5), we have
 J.

W	 ©	 W 	
(V-67)	 .

which gives

-	
]	 Sp	 =	 n@	 V	 Vd	 <	 p >	 _	 <	 > -§a)	 |\\\\

**:̂   	 E ,^

\^ ~	
» \	 y\r...

	 ....
 \\\\\ 	 -	 ?»	 .. 	 :^ a « »»<.::	 --	 -	 -	 ---	 ..	 -
2	`^ \^ \^^ \^^\\^^^ ^°^ \/ «\\\\ 	 ^   ©,^ :^ » x a .  	 - © , 	 ww « » ». a.=:<...©»»s2w 	 a«a:>®.	 .	 -.
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-- where hp is the dimensionless temperature (product) due to chemical reaction.

if h, represents the dimensionless temperature of the flow field for a

chemically frozen case, then h can be written as

1
^ a3

h	 =	 hi 	+	 h (V-69)
j

6q

and the vertical turbulent transport is

' 1

§ J
<Vh>	 <Vh >	 +	 <Vh > (V-70)_

i	 p

s

4-	 Since we have originally uniform temperature, h o = 0.5 for all y at x = 0,

there will be no net heat transfer under chemical frozen conditions. Therefore,

1	 we have

<Vhi> = 0	 U-71)

With the aid of Eqs. (V-68) and (V-71), Eq. (V-70) becomes
i

<Vh> = <Vz >	 (V--72)
p
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rV.E. Determination of Parameters and the Similarity Solutions

As mentioned in the previous chapter, our solutions will be iterated on
A

j	 <u.> and <IJ Uk> until a certain convergence is attained. In our present
J

C1	 physical problem, as described earlier, the mean velocities given at x = 0

It;-
ji	 (source) are only in the x-direction, i.e., <v> ., = 0 1 <w>m = 0. Even in

the mixing region <w> = 0, which results from the nature of the problem being

{

	

	 two-dimensional. <w> = 0 is also shown in our calculations. .£n the mixing	 ° ~

layer there is <v>, which is relatively very small compared to <u>

(<v>/<u> u 0.005).	 Also, our preliminary calculations show that the
<u>

calculated <u> is relatively insensitive to that of the assumed and the

chosen <U U >. Even when we merely assumed <u> _	 (<u>	 + <u> )y thek k 2	 ..^

resulting <u> is very close to the error function and comparable to the

experimental data.	 In the subsequent analys',s the iteration of <u .> will.
3

be simplified on <u> only.

There are some parameters, associated with the guessing of <u> and

Q U >, which will be discussed subsequently. 	 Later in this section we willk k s
also see that by properly defining the integral length scale in the mixing

Al

layer we will obtain similarity solutions. 	 Similarity solutions of the pre- ^.
!S	

1

(33 ' 38,45}sent problem have been given before	 and were also shown by experi-

^`.
^,)

mental results.
(47 ' 48 '^^	 However, the present approach is quite different i

from the conventional 
ones(38,39,45) 

and the former investigators were f

restricted to obtaining the momentum field only.

E:

a

First, 5 has to be determined.	 is given as the sum of Rl and aV

Which are given by Eqs.	 (11-2) and (11-6).	 Ol and ^	 can be related by

` introducing the turbulent Reynold's number which is

r	 ,.
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(V--73)

From Eq,s. (11-2), (11-6) and (V-68), v can be written in terms of 01 as

L.4

^.	
SV T b^$x
	 (V-74)

where

b'	 2 i a	 ReA	 (V-74a)

Therefore, a becomes

_l

(I + 2b) 01  for F

^l	 a

(1 + bT) sl , for f

urv---
	

Analogous to $1 , we define 0 as

<UJk'i'2
2h'

(V-7s)

(V-76)
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^

A = R x
S

(V-77)

where k and £5 are constants to be determined later.

The two dimensionless spatial variables appearing in our solution are

in the x-direction x' = x/A', and in the y-direction y' = y/A'. By using

A' as a linear function of x, r' and y' become

j-	
x	 l

x	
A'	 !^ t

(V-78)

_	 Y	 y	 1
y x	 Q'

S

4

The above functions of the dimensionless spatial variables automatically give
1

us the similarity solutions with the similarity variable

TI	 = (V-79)
X

1

Thus, all the quantities to be obtained will be functions of n only.

Many investigators (Tollmein, Goertler, Maker, Spencer, at al.) defined

the similarity parameter 	 as

where o is a constant to be determined by experiments-which also will indicate.

how fast the mixing la y er	 'g	 rows.y	 g
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 k

..	 Goertler's error function of mean velocity profiles gives the dividing
3

line--where the mean velocity is the average mean of the free stream's

velocities--as being on the x--axis.	 This dividing line given by Goertler
14

does not agree with the experimental results.	 if we properly add one para-

meter no which will adjust the dividing line in Joertler's error function,

the mean velocity distributions of both Baker's and Spencer's data are very 	 t

close to the following form.

<u>-.
<u> 	 1 + erf [a (n ~ n) }	 +	 l - erf [a (n - n) l	

..

::.	 <u >CO	 2	 a	 }	 <u>0	 o
I

(V--81)

<U.>`m

^

i	 ail	 The velocity ratio <u^ will be chosen as 0.3.	 From Spencer's experi-
I	 m

,	 4	 mental data, those parameters, a, A, X, ReA, and b, needed for our calculation

are as follows

<u> j

For	 cu>w^	 0.3

n©	 u	 ReA	 b'	 A

-0.02 .	 20.43	 3.26	 1600	 0.012	 0.044(x w xo)
ti

where xo is the virtual origin point of Spencer's experiments and has a very

small negative value.	 As we can see from the above list of parameters, b is

relatively small as compared to 1, and we approximate A t as

A `	--	 0.044x	 [i.e., V = 0,044 in Eq.	 (V--77)]	 (V~82)

r

l,'
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r i
<UkUk> _ E e-I,(n-ri0)2

<u>2	 m
(V-83)

fl,
3V

1.

9
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By using the above parameters, the calculated <u> is almost identical

to that given by Eq. (V-81). These results of <u> and their comparison

with Spencer's data will be given in the next section.

In calculating <UkUk> we need more iteration work. From both Spencer's

and Baker's (Baker only measured the turbulent intensity, <U 2 >1/2 , instead

of the turbulent energy profile) data, we propose the fallowing formula for

the turbulent energy profiles

where t is a constant parameter to be determined later. E m is the maximum

value of <UkUk> which is given by the experimental data. Equation (V-83) is

evolved based on Baker's turbulent intensity profile and Spencer's turbulence

	

profiles. Finally, 	
<u>

energy P	 ya	 proper choice of p = 1.4 {for <u>	 = 0.3) 3.s

found to have very good agreement between both the given and the calculated

values.	 The results of <UkUk> which will be compared with Spencer's experi-

mental data will be given in the next section.

V.F. Results of the Iteration on <u> and <UkUk>

<UkUk>
T­ --' h 1 1 _z "- ---A " -------- -_.. mot-	 '---- ---1 ._L._ __ y - ' -I _,._A



<U>-Co

0.3

i

<u> co

n = y/x Ep E UK <U>/<U>.

0.06 0.00062 0.0004168 0.9927 0.9978

0.05 0.00200 0.00232 0.9849 019900

0.04 0.00420 0.0054721 0.9729 0.9709

0.03 0.008074 0.008797 0.9480 0.9501

0.02 0.01347 0.013652 0.9138 0.91325

0.01 0.02027 0.0201724 0.8648 0.8724

0.0 0.02715 0.027106 0.8028 0.8125

-0.01 0.03235 0.0325176 0.72957 0.7403

-O.02 0.03430 0,034707 0.650 0,6613

-0.03 0.03235 0.033013 0.5703 0.5827

-0.04 0.02715 0.028117 0.4372 0.5121

-0.05 0.02027 0.0217065 0.43513 0.4557

-0.06 0.01347 0.01582 0.3867 0.410

-0.07 0.0080 0.0100 0.352 0.371

-0.09 0.00196 0.00181 0.3151 0.3115

-0.10 0.00082 0.00072 0.3072 0.3043
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With the solution cited in section v.D. and the calculation scheme
<UU>

of <u> and <UkUk> given in section V.G., the results of u>^	 and ^<u>„

are given in Figures 12 and 13. 	 These figures show that the comparison
8

with Spencer's experimental data has a very good agreement.
Y^

^.j Once the momentum field is determined, no further iteration is needed

for further calculation of the combustion data. 	 The distribution functions

F	 and F	 of fuel and oxidant species in the combustion zone at 	 differ-
m,v	 .	 n,v

ent positions n are given in Figures 14 and 15.	 These two figures show

the non-Gaussian nature of the distribution functions of the different

species in the mixing layer.

The combustion diffusion flame structure is given in Figure 16. 	 Figure

16 presents the various mean species concentration profiles and also shows

KH the finite thickness of the diffusion flame which is approximately of the

order of half of the mixing layer thickness.

Finally, the mean turbulent transport of various different species is

given in Figure 17. 	 Figure 17 shows that in some region of the mixing layer,

the heat transfer direction does not depend on mean temperature gradients.

All the results will be discussed in the next section.

V.H. Discussion of the Results
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From the results shown in Figures 12 and 13, it seems that the present

Green's function method is satisfactorily accessible in applying Chung's

theory.

For the present two dimensional shear flow problem, the mean velocity

distribution car well be described by certain error functions. These have

been shown by many former investigators (37-48) both analytically and experi-

mentally. Although the present Kinetic approach is totally different from

the former conventional approach, the error function distribution of the

mean velocity profiles can be seen from our solution, one step before we

integrate with respect to time. This error function distribution of the

mean velocity can be considered as the nature of the problem.

The present similarity solutions are automatically obtained after suit-

ably choosing the expression of the integral length scale A'. We do not

intend to obtain similarity solutions in the beginning of the present analysis.

Since a is a constant (to be determined by experiments) our present similarity

variable, q = Y/x, and the similarity variable defined by others, (39,47)

^ = ay/x, function in the same manner.

In the real physical picture, as mentioned before, there is a separating

plate between the two streams in the region of x < 0, and the resulting

boundary layers do affect the velocity profile and turbulence energy profiles

- in the initial part of the mixing region.	 In between these two regions,

'.' both Baker's and Spencer's experimental results show that the measured turbuw
 1 -

lent intensity, <U2>`
1 
^and the turbulence energy distribution are constants

on the centerline, n_rh o , and the mean velocity profiles are nearly similar.

However, our present analysis has assumed ideal plug velocity profiles at

x = 0 and no wall effects of the wind tunnel; therefore, our solutions are

similar everywhere (along the x axis).

F. b
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From Figure 12, we see that the deflection point of the mean velocity

profile is near n=rh o , which gives the maximum shear stress near that

point.	 Since our original turbulence energy given at x = 0 (source) is

negligibly small, the turbulence energies are produced by shear stress in

the Mixing Layer.	 The maximum turbulence energy as shown in Figure 13 is

near the region of n = q 	 which corresponds to the deflection point (maximum

shear stress) near the region of n = n 	 in Figure 12.
0

The distribution functions of F 	 and F	 at two different positions' m,v	 n,v

of n in the mixing Layer are given in Figures 14 and 15.	 As it was explained

^^
in sections V.A. and V.C. of this chapter, the governing set of fundamental

1 solutions for this problem consists of single-made G-functions and an alge-

braic equation which is the degenerate of the reaction term, wf. 	 This

algebraic equation, Eq.	 (V-46), prohibits the coexistence of the fuel and

oxidant in the same fluid element since K 	 demands the immediate combus-

tio7i of all molecularly mixed reactants until one of the reactants disappears.

This fact manifests itself in the present solution, as the prohibition of

coexistence of the fuel and oxidant within the same velocity,cell for a given

t and x.	 The above phenomena are evident in the distribution functions of

the chemical species shown in Figures 14 and 15.	 in these figures, the 	 l'.

completely non-Maxwellian nature of the distribution functions is evident 	 1
': 3

in these results.

Figure 16 shows the structure of the combustion diffusion flame. 	 As we

expected, the flame is of finite thickness, and its thickness is close to

one half of the mixing layer thickness (local integral scale). 	 `these features 	 5

1 of the combustion diffusion fame have been revealed in the previous analy-

(26-31)ses	 by using the bimodal	 As	 havemethod.	 we	 explained before, chemical]

reaction is a molecular process, and the chemical species must molecularly
{{
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diffuse into each other (they are originally contained in different fluid

elements) so that the chemical reaction can commence. The molecular diffu-

sion of chemical species between the fluid elements has to take a finite

amount of time, and, therefore, the combustion zone must be of finite

thickness even in the limit of K 	 As a matter of fact, the existing

experimental results 
(53-55) of the turbulent diffusion flames bear out the

above mentioned aspect of combustion.

Since the chemical species are carried by the fluid elements, the rate

of momentum mixing (eddy transport) will control the rate of mixing and,

meanwhile, the interdiffusion of two different chemical species. The rate

of momentum mixing is B l , and in a complete momentum mixing the fluid element
c

will travel a distance of the order of the integral length scale. Therefore,

the complete combus°lion of the reactants will take place in a flame whose

thickness is of the order of A.	 This is shown in Figure 16.

We also see that the maximum <z > appears near n - no = -0.02. Since
p

the species from both streams have to cross the centerline region, n = no'

in the course of mixing and reaction, the area near the centerline region

would have a better chance of more complete Mixing and chemical reaction

b- rween these two chemical. species. Therefore, the maximum <z 
p
> appears

in this region, n - no = 0. However, the mass rate of supply of fuel from

the upper stream is faster with larger momentuma than that of the oxidant

from the lower stream. We see that the maximum value of <z p> is located

near n -- no = --0.02 which is slightly lower than the centerline n - rt o = 0.

Figure 17 presents the mean turbulent transport of various chemical

species and the mean temperature distributions, <h>. Our source conditions

specify that we have originally uniform temperature in both streams. The

heat production (or temperature increase) in the mixing layer is mainly
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contributed by the heat of combustion. Therefore, the profile of <h> is

distributed in a manner analogous to that of <zp>.

In Figure 17 we also can see that <nV> has positive-values and <mV>

has negative values. Since the oxidant is supplied from the lower stream

and the fuel is coming from the upper stream, the former species have to

move upward while the latter have to be transported downward in order to

particpate in the mixing and reaction in the mixing region,

From the curves of < 2p> and <h> we can see that much of the production

appeared in the core region of the mixing layer. The vertical transport of

Z  and h, i.e., <Vzp> and <Vh>, will emanate from this region to both the

upper and lower directions. These are shown on the curve of <Vz p> and <Vh>

in Figure 17.

As mentioned earlier, the original two streams have uniform temperature.

The temperature increase or the heat production in the misting layer are

mainly obtained from chemical reaction. Therefore, the immediate turbulent

transport of z  and h would behave in the same manner. This is shown in

Figure 17,

One interesting phenomenon which has also been revealed by the previous

bimodal method, as shown in Figure 17, is that in some region of the combustion

zone, heat transfer, <Vh>, takes place against the conventional negative mean

temperature gradient. In the region of -0.02 < n -no < -.005, <Vh> has negative

values which implies that heat transfer is taking place in the - (n - n0)

direction, while the mean temperature profile, <h >, has negative gradient

values along the + (n - n0 ) direction. This manifests the inadequacy of

the conventional gradient--type approach in which turbulent transport has

been analogous to laminar transport and is in terms of local mean properties.

The inadequacy of the mean gradient-type approach and the insufficiency of the

F^

a

ai-



99

one-point moment equation in describing the turbulent mixing and combustion

have been well explained before and will not be repeated here.

IS Most of the salient features of Chung's theory of turbulent chemically

reactive flow as discussed in the previous paragraphs have been revealed

in the previous analyses by the bimodal method. (26-31)
	 Thepresent solutions

do not show the discontinuities in gradients of the mean concentrations at

the two flame edges seen in the bimodal solutions.	 It seems logical that

such discontinuities should be a natural consequence of the bimodal approxi-

mation.	 As it was explained in Chapter IV, in a bimodal approximation, all

distribution functions are a priori approximated by two dissimilar half--

^ Maxwellian functions. 	 Therefore, for the completely non-Maxwellian combustion

problems, the distribution functions have imbedded discontinuity at v = 0.

Ll Furthermore, in Lhe bimodal method, one divides the fluid elements into two

families in velocity space with one for v > 0 and the other one for v < 0,

e' respectively.	 All reactants s in v > 0, for instance, are considered to be

molecularly mixed and may react simultaneously, 	 No distinction is possible

among the fluid elements and the chemical species with varying positive

values of v.

Obviously, all chemical species s moving with the positive v (see Figure.

9) will not molecularly mix with r at the same rate. 	 Ones with greater v

i
will mix before those with smaller v.	 Therefore, the beginning or end of a

flame zone is reached in a continuous manner and not discontinuously. 	 A

description of these detailed phenomena, however, has been precluded in a

bimodal approximation, and the discontinuities in the mean profile gradients

i
' resulted.

^!1

H
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CHAPTER VI

CONCLUDING REMARKS

!	
A study of turbulent mixing and combustion according to the kinetic

	

y

};	 theory due to Chung has been presented in this dissertation. A further

study of the multiscale turbulent kinetic theory generated from Chung's

theory has also been studied.

We first thoroughly reviewed Chung's theory, its basic physical standing

and its engineering-wise applicability which distinguishes Chung's theory

from the conventional phenomenological and classical statistical theories.

In Chapter III, the extended kinetic equation from Chung's theory

	

yJ	
characterized by two-length-scales was employed to analyze the behavior of

the mixing and decay of a multiscale turbulence field. The decay and inter-

action of the two nonequilibrium degrees and the behavior of the apparent

	

l	 length scale representing the hypothetical turbulence field characterized

	

.^	 by one length-scale was studied through the kinetic theory approach for

1

the first time. The relaxation of a multiscale turbulence field is found

1E
to be in basic agreement with that analyzed in the classical statistical

theories that the group of energy-containing eddies with a larger length

	

,I	 scale controls the relaxation rate of the turbulence field. The variations

IN

of the apparent length scale are quantitatively revealed during the dec,^y

of a multiscale turbulence field. The apparent length scale is found to

tend to reach a steady value, for large T, of approximately the average value

of the two given length scales. We also found that the interaction between

the two nonequilibrium degrees is stronger when they are closer in wave

space in the energy spectrum.

The analysis presented in Chapter IV provides the mathematical scheme

F ' 1
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I
of finding the fundamental solutions of the kinetic equations given by

Chung's theory. In principle, i f one should find it necessary to seek

for t%e higher order (more than two) kinetic equations according to
s

Chung's theory (only at the expense of mathematical complications) the

mathematical techniques are 3.mpliC 4 t3.y given in Chapter IV, and the

generalized fundamental solutions can be obtained by extending the mathe-

matical lemmas given in Appendix III.

The results in Chapter V show that the present Green's function method of

applying Chun	 s theory improves	 y the results obtained b 	 he gf	 y	 P	 qualitatively	 y t

T
former bimodal method.	 The present solutions removed the discontinuities

of the mean gradient quantities in the diffusion flame structure which are

caused by the approximation of the bimodal method in the previous analy-

n (26-31)
ses.	 Our solutions reconfirm the finite thickness of the diffusion

flame, and they reconfirm that the flame thickness is of the order of the

E integral length scale, both of which have been revealed by the bimodal method
d

in previous analyses. 
(26-31)	 We also noticed that the heat transfer could

take place against the negative mean tcmperature gradient in certain regions of

combustion zone.All these salient features of turbulent chemically reacting

flow mentioned above enlightened the present kinetic theory approach of

turbulent chemically reacting flow.

It is our main purpose to study Chung's theory of turbulent chemically

reacting flow.	 None of the other existing kinetic theories of turbulence

are modeled for chemically reacting flow. 	 We have provided a better method

and improved the results in applying Chung's theory.	 We also studied the

i
decay of a multiscale turbulence field and.we do realize the need for a

multiscale turbulence theory, which enables us to have an equation to describe

the length scale,but there is no 	 chemical species equation for a multiscale
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APPENDIX I
1

Changes of Independent Variables of f2

The following chain rules are employed -.n order to change the independent

variables from f2 (U,V,x,t)	 to f2(u,v,x,t).

(U,V,hst) . '-'3	 (u,x,vst) (AIMI) 3

' ^, a	 }
a t

aua	 k	
O-V-̂)^ auic ^^	 a t

avk +	 t
a t	 a t

(AI-2)

3

V x .o	 .+,-3._}	 ,	 -^	 ^

v'X't	
'V, x 	 u,xt.	 U V,x	

u'v,t
Y.

'-^
):

r	
a	

auk	
8

+auk ^-^	 axe	 a°k
av̂-k

 ^ + a-^ -^	 axe 	 y (AI-3)

!!^

j 

U,V,t V$X t	 ,V,t
e

u,X,t	 U,V,t	 u,v,t

Du
0 i

au
l

r 	 au 1	 aUk	 +	 avk a -r	 3 
-̂} lc

l

}
f
	 /̂_X,

(AI-4)

V,X,t v,x,t	 Vsx^ 
t

u,x,t 	 t

U
{ av

k 	
auk

IV. ^ 	r 1 8vj^ 	8V^	 auk)-r	 a	 '- -r
	(AI-5)

U,X,t 	 V,]{st 	 3 t%,u,X,t	 uXs

It should be noted that

cu>i	 ff uJ.f2dudv
W-6)

<V>l - ff Vif2dudv
 '

M,
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ui 
_ 

ui - <ui>	 "i = vi '" Cpi> (AI-7)

Since f2 is a function of x and t as well as a and v, the integrals in Eqs.

(AI-6) and, Dance, <u> i and <v>i , are also functions of x and t. Obviously

from Eq. (AI-7), it also show:, that u  and vi are functions of x and t,

rf.

1.

f
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t

r

avk

ay.
a

axk

ax. - 	 ski

With the above expressions, those for the derivatives final ly became:

a	 _ a	 +	 k (2--)

	

at^^	 at auk
x,	 s	 t,x,v

a "^'ka
+ as t avk - -^

t,x,u

aa<u>k

O -} -r	 axi	 +	 iuk ) -r -r
t, U,V	 t,u,v	 t,x,v

a<v>k (j_
axi	avk

t,x,u

au

Ix	 'X2V

(AI-10)
aVi r 

t,X,^	 t,x,u

Second order terns follow in a straightforward manner from the last two terms..

Using (AI—]A), Eq. (III--1) was changed to Eq. (1V-21),

}



125

;- APPENDIX II

rf:
Verification of the Transformation from Eqs. (IV-21) to.(IV-2$)

- Froia Eq. (111-23) we have

af2(u,v,x,t) a^2(u,v,X,t)
Bet

—	
e

a at

n

+	 BC a BCt
	

2(U v X , t)

ILI

afx af?	 a2f2 aftBe t
au	 -	

e	 c au.	 '	 au as	 -	
e B tc	 au Du 	 (AIT-1)

af2
	 B t af 2	 a2f2 B t	 af2

ov^	
—	 e

ay.	 '	 av av	
a

av3 av .

2
a f2

2—
af2

—
Bct

auk av^ auk av3

Ll
By using relation (IV-23) and (All-1), Eq. 	 (111-21) becomes

a

1	 -	 '	 f
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f

eBct 
aft	

+	 eBct f (u,v,x, t}	 +	 ^B^t (k	 -- B u } 
af2

2	 a	 au

r

at	 c a,j
3

- Bbv3 )+	 e e (1b , -
afZ	 aft

+av	 +	 u^ 
ax

aft	
B tv axe	 e C

j j
J

^^
2	 2

a	 a
2

a	 ^^
r	 Bch	 2 + ;U au.

+ 	 z 
auk av, +	 ay .av3 f2

(AII-2)

}l ]}

By canceling eBct (eBct ¢ 0) and the common term B eBctf on both sides of

i

-

C:1 the equal sign, Eq. 	 (AII-2) reads: 3i

3

of	 of2	 2 of 2 of 2
i3

+	 ( Ik	 +Bu)	 +
at	 a,^	 a j	 au

(kb	 ..gv}	 +
,j	 b 3	 ay.

(u	 +v)
3	 ax .

J

az	 a2 a2
q	 au j 

auJ	 +	
2 

auk av +	 ay . av^ ?2 (All-3)

Now, we will use relation (IV-26) to change Eq.	 (All-3) into Eq. (IV-28).

i Obviously, we are malting the transformation f 2 {usy sx : t ) -^ ^20, t ), whichaA,

we shall designate as Eq. (All-4)

i`	 Ik f _

j^
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0

Chain rules of changes of variables are as follows:

D	
—

a	
aT_ +	 a aT +	 a DR.

au1 3T	 au aui aTb,3 Du. a . du.

a a	 aTaa7 + a aT
a a.

avi aTa,j
	

avi aTb ay . DR. avi

a	 r a	
BTa,j a aTb j_+ D aR^

axi aTa,j
	

axi aTb,j axi DR  axi

a- a	
aTa

^	
a

aT T̂
a_ 

DR.	
a

+	 ^at aT 
a., 	

at aTb
a3

at DR at	 at

We see from Eq.	 (IV-26) that we have

T
a-	 z-,^» =	 e at

T
a	 ' - -- Q a 

T
a' -
	 ad '

	
Sat

B
auk ay. ' at

-	 u	 e
a	 Bai

(All-5)

a1
p

aT
b 1 eBbC

3T
v.B	 v. ---	 eBbt

DUk avi at b	 Bb

J

aT
, a q

aT
b j = p,

aR
.^...	 _	 g

DR.
-. -2.	 Z a

ax. au.
a

,	 zavi	
Bb]

aR.
a

F

kATI-5a)at E :sb

With the aid of Eq. (All-5), the left hand side of Eq. (All-3) can he written as,



I

C7 2(TaA'4-t)	 aft2+ — +
I

DTa. 1( U	 + vi) 1at	
BT a,j

at i 	 ax

af t F IT b

axL	 at

+	 (k
a ' i

ab	 IT 
bj

B u	
+	 (k	 B v

a i	 au.	 b i	 b i	 ay.
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r.

Hal

0
H,
0

R.

H

	

If	 aR
2	 + (U + vi) !R—j + (k	 B . :a

	

+ -DR	 at	 i 	 ax	 a'i - au)i 3u

	

+ (k	
aR.L

- B v ) —b,i	 b i avi

Hl
Substituting Eq. (AII-5a) into the above, we have,

	

-1-	 4.
(T T R,t)	 a f	 If	 Df

	

2 a b	 2	 2	 2

	

at	
(0) +	 (0)	 DR (0)

	

a sJ	 'Tb,j

a? 2(Ta"b' R,t)
(AI I--6)

at

Now we look at the right hand side of Eq. (All-3).

U
H1
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L-J

w

i
i

Bu au.	 ta"a	 au^	 aTa.^ aa } ^^ ^aR^au
ai	 b^.	 i

^aâ ^^ au^k^ `` aTa ,^^ au ' ^iJ ^' ^V
luj)ak

a2	 a	 aTa,a	 aT	 a	 aRi !
au. av	 aT . ^^ t^..	 + ^ 

a	 b,.
a ^ A au 	^ ^ a^ ^au. 1^

as	 i	 i

x 
\8T a ^av'kI ^aT ^( aay. .^ ^a ^a^`^

ak	 bk	 Eks	 ^	 s	 J

(All-7)

a 2 	 _ ( a /aTa a i	
a	 3T  i1 

r a 
YaR

Dv . av	 1$TaJ^ av . + 2Tb 	av l +
	

As	 s3	 ^

OT  !^ av^k^ + \aT a aav}k) 
+ 

\ a My I
a k	 b k	 R1c

	

s	 ^	 s	 ^	 ^

If we substitute Eq. (ATE.-5a) into Eq. (Ail-7), and after mxnov manipulation,

I _^
Eq. (All-7) becomes

a 2	 e2B t	 a2	 + ,Bat	 a2	 +	 a2

au au, J	
a 

aTa aTa 	 Ba 
aTa . aR,	 B2 aR. aR.

3	 .3	 s3

	

aJ	 a	 a

2	 (B +B )t	 a2	 a^	 $bta l 	 1	 a2
au.ay . y	

a b aT
a :aTb } (TF'j aTbj) '^

	

 B	 +Sa + Bb ^aR aR.)

ii

a2	 W e2Bb t	 a2	 eBbt	 a 2	 1:	 a2
av ay .	 aTb .aTb	Bb 

(Wb , j SR)	
B2 ^R aR	

(AIi—$)

bJ)

0
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By the aid of Eq.	 (AII--7) and Eq. 	 (AII-8), the right hand side of Eq.	 (AZT-3)

is changed to the following:

:. 2 2a
2 2a

.' q [a2 DT. DT a	 -
a >]

+	 b2
(3Tb jaT  h

I 	 a^

+	
c2 `aRjaRj 2d2 a'Ia	

3b

+	 2e, 2a	 +.,(aaR
`

-	 -	
2

2g	
a

2^ahs3^
f	 (^	 ,R:t)	

:.

2	 ha

E: (AIT--9)^

where

i.

2(B t) 1	 1 Bbt i	
a

r ^

a	 b

-

b2 e2Hbt	 e2	 = (L-+!-)eBta (AII-^10)
b	 a

c	
^

2
!BL)'(IT

(B+Bb)t
d	

e	 a
2 ^2 a

Finally, by Putting Eq. (All-6) and (AII-9) together we get:

af2(Ta,b,l^,t)	 a2	 a2	 82
at	 - q	 a2 BTa , jaTa ,j 

+ b2 
'Tb,3aTb,j + c2 a

Q2	 a2
+ zd2 a'j 

DT 
A + 2e2 

aka
:^ aRj

az
+ 292 aT	 aR.	

f2(Ta,xb,R)t)

which is exactly as Eq. (IV-28),

(AII•-11)

l^
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APPENDIX III

ir

.F

ij	

3

Verification of Lemma III and Lemma III-A

in reference (24) similar lower order mathematical lemmas were developed

i
by Chandrasekhar.	 Both Lemma I and Lemma II were ,verified by substituting

the solution into the original equations. 	 In order to solve the present
11

kinetic equations, the higher ordsr extensions of these mathematical lemmas

are needed.	 We shall derive Lemma III and Lemma III-A in a more direct wanner

with the purpose of generalizing the lemmas.

III.A.	 Verification of Lemma III
i

_ We begin with Eq. 	 (L3-1),

l

2	 2air	 a	 a '	 a
()	 +	 (t)	 +( )at	 ll	

ax2	
22	 ax2ax2	 33	 ax3ax3

j.
2	 2	 2

+	 2^12 (t) ax ax	 +	 2 1-4	 ax ax	 +	 2`^23 (t) ax ax	
(L-III-I)

l	 2	 1	 3	 2	 3
1
1

where Y = Y (xl ,x2 sx3 s t ) •`:

We assume Y(x1
,x21 x31 t) is piecewise differentiable

	 and also a

f^^	 [Y[ dxldx2dx3	(AIII-l)

is , finite. 3.
i

For our interest, Y represents a probability density function, such as Pl e

i
k
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Due to the properties peculiar to the probability density function (distribu-

tion Functions) such functions obviously satisfy condition (AI:I:I-1) 	 "the

convergence of the distribution function is well described in refer . ;" :.e (36),

Chapter 4. It is also obvious that the velocity probability densii 	 ^r.^r_ti6ri

which is the subject .matter of our kinetic equation is continuous it , phase

space. Therefore, we may take a Fourier transform of this type of function.

We make an integral transform of 'Y(x l ,x2 , x35 0 as

	

Ll	
i(Elxl+E2x2+E3x3)

	

i	
y3(^VE2'gVt) 	 fff  X(x t)e	 dxIdx2dx3	 (AIII-2)

where1121 and 3 are auxiliary variables in transformer) space. By making

this transformation, Eq . (L-II1--1) becomes:

	

^.	
2t3 - ^ E ^11 (t) ^^ + ^z2 (t)& 2 + 033(0t3 + 2^192012(t)

+ 29IY13 (t) + 2E 2Y23 (t) ] " Y3	 (AIIIM3)

Solution of Eq. (AIII--3) is easily obtained as:

C2 jt ^ (R)dT + CZt	 ^2(T)d't + 2 

fto
c (T)dr

	

a	 a
y3 ^ ^3o exP

	

+ 2^1^2	
^12(T)d T + 2^ 1 3 f	 13(T)dr

	

t	 t

	

0	 0

+ g2 3 f
t 

23(T)dT

	

°	 (AIII-4)
i

J.	
-
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t

r- where Y3o = Y3 ( 11^2'E3:t)t=t

We know from Eq. (L--1II-1a) that ('Y) t=to is a Dirac delta funetion^	 t `--

^ F

which is

t

(Y) tWt	--	 &(x1 M LloMx2 - x2aMx3 - x3o)	
(L-TII-Ia)	 .

With the aid of Eq.	 (AIII-2), Eq.	 (L-111-1a) becomes
1

e

as

i(glxl+ 2x2+ 3x3)
t

A

M

_

Y3o (Y)t-- 	
1dx2dx3	 (ATII-5)

fff 0

Therefore,

-i Qlxlo+92x2o+C3x3o)
;. Y3o	= 3

a3

'i

Substituting Eq. (AIII-6) into Eq. (ATII-4), and by taking an inverse integral

transform of the resulting equation, we have (where M.= ^ to^i3 (T)dT has been

employed)

Y(Y
	 7-2 ,
	 *t'	 ,	

7k	 !tto	 20	 30	 o

w

~	

1 fff e-Gill	 -f-^S22 2-f i33	 -2M1291^2+2%91C3+2M23^293)r

(2 1r) 3

;^ 4

X	 i f^l(xl-xlo)+C2(x2-x24)+03(x3-x3o)I d 1d 2d 3	 (ATII-7)



Y =	
a11(xl - x lo ) 2 + A 22 (x2 - x2a) 2 + A33 (x3 - 

x3o)2

^
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where Eq. (AIII-6)has also been employed. The right hand side of Eq.

(AIII-7) can be readily evaldated. After some manipulation, there results,

Y(xl'x2' x3' t/x lo , x2o'x3o'to)

7

1

?1

t1

fxl - xlo) 2 (M2P33 - M23 )	 {x2 -x2o) 
2 

("11`33 - "13 )

+ 
(x3 -x3o) 2 

(111"22 - M12) w 2 (xl - xlo) (ti23M
12- 'Lrt23)

{21}3 (R)
3 exp	 2(x1 - 

x lo ) (x2 - x2o)(m22V'l3 - M12M23)

- 2(x2 - X20) (X3 - x3o) (M2'23 61213)

4 Qt222M33 + 2rx12^ IP23 "' ri22M13 ^i223 -- i33r^12)

(M1P22133 - 2M1P13"23 - "223 - M2P13 - 1i33 12 J2

(AIII-8)

Equation (AIII-8) is already the solution of Eq. (L-111-1). It is our inten-

tion to find a formal solution of the general diffusion-type equation described

earlier. We see from Eq. (AIII-8), that one may write
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z.

'	 where	 1^.

t n.

f i;

^3 	-	
23	 I	 M; j	I 1 k 

j	 !! Mz•	 ^^ is the determinant composed of Mi
J	 j

w

r	 ^	
r-

--^'	

Aij	
the cofactor of	 Mz3	

23 for the ith row and the jth column 	 if

element
c

^t
IiI.S.	 Verification of Lemma-Ill-A

i

Lemma III is easily extended to Lemma-III--A. 	 This is shocm in the

':nf	 following.	 We first rewrite Eq.	 (L-III--6) as follows.

axa (xl 	 , x2	 ,x3	 ,t)	 a2Ya	 22Ya
,1 at -j
	

s	
^l(t) ax y^ax	 + YO ax ax1	 ],	 2 sj	 2,J

a 2Y 	 a 2Ya	 a
+	 YO ax	 ax	 +	 2 ^12 (t) ax	 {a

-	 3,j	 3,j	 ^7J	 2 , j	 }

d	
a2Ya	

azYa

i 	 1

I	 !`	 +	
2^13 (0	 axls
	 ax3 ^ 	 2s^+	

2`^ 23 (t)
	
ax	 Ox
	 a

^^^	 (L-x1I-6)
^A

where j is the cartesian tensor index. 	 A,
1

n,	 Again, we require that Ya be at least piecewise differentiable and

2,^
its.integral be finite in all domains. 	 Then we make an integral transform as, 	

)°
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-iUl,0l,1r+g2,kx2,1C 
F^ 3,k x 

3 g k)Y 3a __fif Y a e	 dx I dX 2 dr 3	 (AIII-10)

1
i

31	 By this transformation, Eq. (L-111-5) becomes

4. 4DY 3(C1l&2'C3pt) 	 C	 + ^	 9	 9	 (0 

^^i
at 	 I l ' j 111	 2(t) 2,j 2,j + ^3	 3,jC 3,j

+	 2^ 12 (0 ^ Ili C2,j + 2^ 
13(0^1'jC3,j + 2 ^23(0^2,J^3,jl

and	 are auxiliary variables.where j	 1, 2, 3, and l,k' C 2 k f	 g3,,
The solution of Eq.	 (AIII-11) is readily obtained as,

Y3 ( 	) ^ J l g	 Z	 1 9 1	 3 ,t1 10	 2o'E3o'to

Y	 exp3o (T) d-c +	 (T)d-r
l'j	 Ili	 it	 I	 2,j	 2 li	 it	 2

0	 0

+	 C	 (T)dT&	 (T)dT	 2F,3,j 3,j it	 3	 Ili	 2lj it	 12
0	 0

+	 2C	 9 3 	^ 13 (T)dT	 2^ 2 1i ^ 3,j

i

t
0 23 (T)d	 (AIII-12)

t
0

where

Y	 U	 -13)3ao	 Y 3a	 1 1 2'z3't ) t=t	 (AIII

".q

7	 7.,-

r.

4
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j

{

Y3ao denotes the initial condition of Y 
3 

in the transformed space. The

original function Y  at t = t  is given by Eq. (L-1II--7), as,

(Y)	 d(X1 _ xlo)`̂ (x2  X2o)^(x3 - x3n}	 (L-Lxx--7)

a 

t°td

A	 I^	 jI

trhaze x l , 1:lo , etc., are vectors.

By the same transformation of (II1-10), Eq. (L_III-7) becomes 	 r

Y	 e-{ l,j xlo + j+ 2,jx20,j 3,jx3o,j)	
(A?I1-1^+}Sao

By substituting Eq. (AIII-14) into Eq. (A111-12) and by taking an inverse

integral transform of the resulting equation, we obtain
I

Y3a (xl.  x2'x3' t 'xIo' x2o'x3o'to)

	

OD	 f

Er

	

l	
exp- 

(Mll ^^3^1^^	 M27 ^ 2 , j 2'j + M33^3'j^3'7

	

(21T)	 fff

+ 2 E
 1,j 2,jM12 + 2M131^ 3,j + 2M

23 2,j 3,j^

^..	 -	 -
exp	 i{ 1 ^ {xIA	xlo, j ) ^ ^2A 2A	 x2o, j)	

i .
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i

Y3a	
-	

(x1sx2'x3st/xlo'x2osx3o'to)

-

"

GT

1 J
co

ex	 -- [M 2 	+ M	 2	 + M	 2	 + 2M
3	 fff	 p	 11 1,1.	 22 2,1	 33 3,^	 12 1,1 1,2

+ 2^^3^1,1^3,1 + 
2
"23 E2 1^3,11^	

}.

t exp	 -	 ^ 1 I (x1 1 - x10 1) +	 2 1 (x2 s 1 - x2a 1 )	 S
e	 s	 s	 ,

- i
+	 3,1 (x3,1	 x3o,1)I J	 dc1,1d2,Id3,1

1_.

1 

3	
exp
	 - EMII 1 2 + M

22 2 2 + M3 34, 2 + 2M12&1, 22, 2(2-n)	 s	

s

_^v.. + 2M	 + 21113 1,2 3,2	 23 2,2 3,2^
3

exp	 1,2(X1,2 - x lo,2 ) +2,Z(x2,2 .. x2a,2)

+	 (x	 - xd^	 dE	 dt3,2	 3,2	 3o,2}
	

1,2	 2,2	 3,2	 s

(2u) 3
fff
 exp <- 

[Xjj1	 3 + r^2292^ 3 + M33^ =3 + 2Mi2 1 ^ 3 ^^3
t

+ 2M	 + 2ti
13 1,3 3,3	 23 2,3 3,3 }

exp	 1	 (x	 - x	 ) +	 (x	 - x	 }
1,3	 1,3	 1a,3	 2,3	 2,3	 2o,3

+	 333 (x3,3 - x3o,3)1 1	 d 1,3d 233d^3,3

(A111-1G)

I
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sets of parentheses becomes functions

(x1,2,x2,2,x3,2,tix1o^2,x2o,2,x3o,2,t

s^xl0 s 3' x20 3'x30 31
to), respectively.

t

i

of (x1,1,x2,1"3,1"I3los1"2o,2,X3o,3,to)s

D), and (x 1,3,x2,3,x3,3,t!

Therefore, Y 3 can be expressed in

z

I

Each parenthesis on the right hand side of Eq. (AIII-16) is identical

in form to that of Eq. (AIII-7). After going through the integration in each

parenthesis, { ;, on the right hand side of Eq. (AIII-16), each one . of the

the following manner

Y 3 - Y3al(xI'l,X2,1'x3,1.'tlxlo,llx2o,l'x3o,l'to)

Y3a2 (X1,2' x2,2' x3,x' t,xlo,1"2o,1 "3o,l "o)

Y3a3(X1,3'x2,3'x3,3'tjxl.o,3'^`2o,3'x3o,3'to}

Ft.

(AZII-17)

f^.

i;

The above equation, Eq. (AIII-17), shows that in the solution of Eq.

4.
(L-III-6), its variables can be separated into three parts. If we let x 3 = 0

in Eq. (L-III-6), then the equation is reduced to the type similar to

Eq. (IV-14)--that is, three--directional with two-coupled diffusion equation--

and its solution can be expressed by setting x 3 = 0 and 
x 
3 = 0 in Eq.

(AIII-17) , as

Y 2 a __ Y2a2(x1,1'x2,I'tIxlo,IIX2o,11to)Y2a2(x1,21x2,2:tIxlo,21"2o,21to)

U
	

Y2a3 (x1,3 sx2,3 ,t1xlo,3 ,x20,3 ,ta )
	

(AIII--17a)

T
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Equation (A-III-17a) gives the a planation of the expression given by

Eq. (IV-16).

By comparing Ea. (A-III-16) and Eq. (A-III-7) we notice that each function,

Y3allY3a2' and '3a3, 
in Eq. (A-III-17) stands for the solution as given in

Lenvna III . Therefore, with the aid of Eqs . (AIII--7) , (AIII-8) , (A-111-16)

and (A-III-17), the solution of Eq. (A-III-6) is readily obtained as given

in Eq. (L-III-9).
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