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ABSTRACT

This report presents a formulation for the development of a finite

element program for the elastic analysis of two-dimensional bodies using

the eight-node isoparametric quadrilateral. The program solves for both

plane stress and plane strain problems.

A general development of the finite element formulation based on

the isoparametric displacement functions is presented.

The program structure is given in the form of flow diagrams with

descriptions of the numerical procedure used to obtain the element

stiffness matrix, and the solution method employed to solve for nodal

displacements.

Three numerical examples, a plate under uniaxial tension, a plate

under pure shear, and a beam under pure bending are presented to illus-

trate the capability and limitations of the element implementation. The

first problem is solved exactly by the element, as predicted by the form

of its displacement functions. However, in the other two problems the

accuracy of the solution is highly dependent upon the slenderness of the

element, the number of elements in the map, and the numerical integration

,scheme used to build the element stiffness matrix.

The report ends with some recommendations concerning map generation,

simplification of the input data, and extensions to solution of plasticity

problems.
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1.	 INTRODUCTION

The advantages of the isoparametric elements over the well-known

constant strain triangle (CST) have been substantially demonstrated in

a	i the last fete years.	 Based on the experience we have gained from the

CST, development of a finite element program for isoparametric elements j

i
is highl y desirable.	 As is described below, among the advantages of the

y!I'4

• isoparametric elements is their ability to be coupled with other iso-

parametric elements which may be convenient in many cases, and furthermore

with other type of elements such as crack-tip elements currently beingi

developed. ,

Among the numberless members of the isoparametric family, the four,

eight, nine, and twelve node isoparametric quadrilaterals are the most

popular for two-dimensional analysis, not only because the high order of

their displacement functions but for their relative low cost in terms of

1	 computer time and input preparation. 	 The efficiency of any particular

element type used will depend on how well the shape functions are capable

of representing the true displacement field. At the time we initiated

this work, very little was known about the differences in accuracy between

the eight and nine node parabolic elements. Primarily because of storage

limitations, in particular in the transition to the elastoplastic version

of the program (currently in process), we chose the eight node quadri-

lateral as the pattern element of the program.

The four node rs.,tril,s;eral (figure l.la) provides a linear displace-

ment distribution. It hari proved to be an efficient element since the

construction of the stiffness matrix can be done in closed form, while 	 A

f,?
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the higher order elements require the use of a numerical integration

procedure. The nine and twelve node quadrilaterals (Figure l.lc and

l.ld) produce parabolic and cubic displacement distributions within

the element, respectively. The latter, although is very accurate in

the handling of a large variety of problems, presents two major draw-

backs. First, it requires a 44 Gauss integration procedure to build

the stiffness matrix, which means both large storage and a high computer

bill. Second, the bandwidth of the master stiffness matrix is usually

larger than that of an eight node isoparametric for a comparable number

of elements, which may provide storage problems, in addition to longer

running time in the solving routine.

These reasons in addition to the results presented here and

elsewhere [1-4]* prove the wise choice with the eight-node isoparametric.

*
Numbers in brackets denote entries in the list of references following
the text.

I
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Figure 1.1 (a) Four-Node Isoparametric Quadrilateral

^

b)) Eight-Node Isoparametric,Quadrilateral
c) Nine-Node Isoparametric Quadrilateral
(d) Twelve-Node Isoparametric Quadrilateral



r

4
F

I

2. OVERVIEW

'j	 The basic step of any direct stiffness finite element analysis

is the unique description of the unknown functions {d}, in this case they

correspond to the displacement field within each element, in terms of n

parameters{d o } given by

	

d	 .

{s} = [N] {so}	 (1)

where	 n = number of nodes for element,

{ so } = vector of nodal displacements, and

[N] matrix of shape functions evaluated at the point in the

element where displacements are desired,

'	 With displacements known at all points within the element, the strains
r	 w

at any point can be determined, resulting in a relationship of the form,

{ E } = [B] {d}	 (2)

where the matrix [B] is conformed by the partial derivatives of the shape

functions given explicitly in Appendix A.

To satisfy equilibrium it is required that the forces acting on an

element lumped as {f} concentrated at the nodes must balance the stresses

within the element. That is,

f [B] T{a}dA - M, = 0
A

where A is the cross sectional area of the element where tractions are

prescribed, and {a} is the stress vector.

For linear elasticity,the constitutive law between stresses and

strains is

(3)



(6)[k] _ f [B]T[D][B]dA

(7	 5

I'

{a} = [D] ((e) - {co }) + {ao}
	

(4)

where [D] is the elasticity matrix that differs slightly between the

cases of plane stress and plane strain, and {ad and {eo ) are the

initial stresses and strains, respectively. Substituting (2) and (4)

into (3) we obtain for any element that
lk,

{f) = [k]{d}	 (5)

with

Once equilibrium is established at each node, and nodal displacement

continuity is ensured, we may write for the complete structure a load-

displacement relationship of the form,

{F} = [K] {s)	 (7)

where [K] is an ExZ matrix, k being the total number of degrees of

freedom of the structure and is called the overall stiffness matrix.

To select an isoparametric element is to select a determined set

of shape functions, which is not arbitrary. These are three minimum

conditions which must be satisfied [1] in order to ensure convergence

of the solution to the correct results:

(a) The shape functions must be continuous between

elements;

(b) In the limit, as the element size is reduced to

infinitesimal dimensions, the shape functions must

be able to reproduce a constant strain condition

throughout the element. This means that the

unknown function must be able to take in the

limit any linear form throughout the element.
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(c) Rigid body motion is accomplished if every shape

function satisfies the relation,

n
E N(yn i ) = 1

i=1

2.1 Shape Functions for the 8-Node Ouadrilateral

In the isoparametric formulation, the general relationship between

the global cartesian coordinates (x,y) and the local curvilinear

coordinates (g,n) is (Figure 2.1):

x = N l xl + N2x2 + ,,, _ {N}T{xn}

(8)

y = N l yl + N2y2 + ,,, _ {N}T{yd

where N i = f( g ,n) are the isoparametric shape or displacement functions,

and	 {x n }, {yn } are the column vectors of the cartesian coordinates.

For any values of E and n the x and y coordinates can be found once the

functions N are known.

In finite element analysis of two-dimensional stress problems, it

is necessary to define the variation of nodal displacement components

u i and v i in terms of the nodal values of the displacement functions Ni.

Thus we have:

,

u (9,n) = N l u l + N2u 2 + ...	 + Nn un = {N}T{un}

v( g ,n) = N 
1 
v 1 + N 2v 2 + ...	 N 

n 
v n = {N}T{vn}

(9)

For the 8-node quadrilateral, suitable polynomials that describe the
	

I
appropriate variation of the sides can be written as:

	
i

X = a1 + x29 + agn + a49^ + c5ng + a6n2
	

(10)

+ a7E2n + a8 n 9

3J ..v̂v'^tif^
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or

X = [1, E, n, E 2 , En, n 2 , ^ 2n, n2El{an)

which ensures that on the sides where n = + 1 (see Figure 2.1), the

variation may be up to quadratic in E, and likewise when E = + 1 the

variation may be up to quadratic in n.

From (10) we can write:

{x n ) = [Cl{ an }	 (11)

or

{an} = [Cl -1 {xn)	 (12)

Or, in terms of the displacement functions we have:

[N 1 , N2 , N3 .6.N8] = [1, E, n, E 2 , nE, n2 , E 2n, n 2d [cl -1	(13)

Let E i and v i be thecoordinate values of the i-th node in the normalized
curvilinear system (E,n),then the displacement functions for the 8-node

isoparametric quadrilateral are given by:

(a) For corner nodes: i = 1, 3, 5, 7

N i = 1/4(1 + EE i )(1 + nn i )(ui + nn i - 1)	 (14)

(b) For midside nodes, E i = 0: i = 6
N i = 1/ 2 (1 - E 2 )( 1 + nn i )	 (15)

(c) For midside nodes, n i = 0: i = 4,8
N i = 1/2(1 + gg i )(1 - n 2 )
	

(16)

2.2 Stiffness Matrix Formulation

To assemble the master stiffness matrix of a structural system,

the element stiffness matrices are properly superimposed. Thus, we can

write the master stiffness matrix as:

m

[K]	 E [k i l	 (17)

y

3
r
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where m = number of isoparametric elements and Ni ] is the ith-element

stiffness matrix defined by:

[ki ] = f [B]T[0][8]dA	 (18)

with A here defined as the element area.

In the cartesian (x,y) system with corresponding displacement com-

ponents (u,v),the components of strain in terr;s of displacements for

linear elastic plane problems can be written as

_ au

	

ex - ax	
(19-a)

e 
= av

y	
ay	 (19-b)

and

In matrix form we may write:

ex	
a
ax	

u

ey =	 0 2y	 (20)

Yxy	 ? a	 v
ay ax

Hence, for the element strain vector we write: for the isoparametric

formulation

	

{e} = [B]{u}
	

(21)

where:

[B] = [[B l ], LB2],...[Bmil
	

(22)

being m the number of nodal points of the element

and.,

{u} = {u l	v
i
	u2	v2 ... um	vm}T



	

:1 	r
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In terms of the displacement functions N i , the matrices Bi can be

written as:

aNi

	

ax	 0
aNi

[ B i ] =	 0	 ay	
(23)

	

aN i 	aNi

ay ax

Since N i =_ N i (g,n),it is necessary to perform a coordinate transformation

such that:

aN

i 	

Mi

Ti = Tx(^,n)	 9E	
(24)

aN i	aNi

aY - TY(4,n)	 an

where Tx(4,n) and T
Y(Ern) 

are vector transformation functions relating

x and g, and y and n, respectively.

In terms of the local coordinates we may write then,
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r

aNi	 rax 3	
afli

ac	

ran 

a&	 ax
_

aN i 	
aNi

an 	 an	 ay

where [J] is the Jacobian matrix, which

of the global cartesian coordinates as:

aNi '

[J]	
ax	

(25)
aNi

ITY

can also be written in Corms

(26)

aN l aN2 aNmn x y 

IJ ] =
ag an

,...,
ag X2 y2

aN l 01 1 Min i yi
an an,...,an

xm
ym

where	 {x i }, {y i } are the global coordinates of the element nodes.

Now we may write:

aNi	 aNi

an	 1 ag
[I][J]

aN i	aNi

ay	 an

where I is the identity matrix,

1 0

0 1
l

[I] _ ^J

In equation (20) all the derivatives,

aN.	 IN.
age and agi

can be obtained by hand from the original displacement functions Ni

for the particular type of element being used (see Appendix A).

Note that independently of the number of element nodes [J] is always a
2x2 matrix, for two-dimensional problems.

(27)

;

[
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Once (26) and (27) are calculated we may substitute after some

manipulation into (25) and obtain the B i 's. Thereafter, the matrix [B]

can be assembled.

Having [B] in terms of the normalized local curvilinear coordinates

1

	

	
l^(g,n), we must express the element of area in (18) in terms of the local

coordinates g and n.

Consequently, we write

dA = dxdy = jil dndg	 (28)

and because we have used normalized local coordinates, the limits of

integration are no; -1 and 1 for both integrals. Thus, we obtain the

element stiffness matrix in t he form:rz	

[ki] = fl 11 [B(^,n)]T[B][B(^,n)] 
101 dgdn	 (29)

2.3 Numerical Integration Procedure

The difficulties of performing a.closed form area integration for

the element stiffness matrix (29) are avoided by use of,numerical

integration techniques. For elastic problems the closed,form Integra-

tion is tedious; for elasto-plastic problems, impossible, as in this

case the constitutive matrix is not available in closed form. Before

attempting any numerical integration, it is a requirement to-know the

degree of accuracy needed to ensure stability and convergence to the

correct result.

If the intc.element forces due to internal element stresses can be

determined exactly by numerical integration for a constant state of

stresses within each element, we can guarantee convergence to the correct

solution. This argument has been discussed In detail by Irons [6],

Zienkiewicz [1], and others.

^. J ^A
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The interelement forces can be expressed as:

{f} _ (f[B]T[D][B]dA){u}	 (30)

Or in terms of the stresses:

{f} = jA [B]T{Q}dA	 (31)

Thus, by numerical integration, we must be able to determine exactly

such intergrals as

- 1 f 1 axi JJJ dCdn

obtained by combining equations (27) and (28).

The integration using Gauss-Legendre quadrature is highly simplified

because of the constant boundary values (-1, +1) that the local normalized

curvilinear coordinates take in each element.

According to Gauss-Legendre quadrature [5] we may write the element

:stiffness matrix given by (29) in the form:

[k] = E	 E CkC^[B(Ck,n^)]T[D][B(Ck,nZ)] I d I	 (32)
k=1 =1

where C k ,CY are the coefficients of the integration points k and e.

CB(C P T'Z )]T and [B(C k )nd] are the matrices evaluated at the Gauss

point (C k ,nt ), and m is the number of integration points used.

In [1] it is argued that 2x2 Gauss quadrature provides an exact

numerical evaluation of the element stiffness of the 8-node quadrila-

teral, independent of the activated terms in the displacement functions.

This is true in tension and shear problems where only terms as high

as 0	 are present in (32) once the internal product is performed. ,
 It

has been documented [7] that 2x2 Gauss quadrature is exact only when terms
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as high as cubic are present in the product form of (32). Several

exercises performed during the development of ISOFINEL and its sub-

sequent testing, showed that in problems such as pure shear, pure

bending, three point bending, etc., with elements having a large

slenderness ratio, much more accurate answers are obtained when using

30 Gauss quadrature.

The program in its actual version contains both features, at the

user's option, both to facilitate the work discussed in this report and

for possible subsequent usage.

1

r



j
}1	 14	 €

3. SOLUTION PROCEDURE
A

The master stiffness matrix [K] in (18) is a square, symmetric and

positive-definite matrix. The solution of the linear equations related

to the finite element analysis takes a large fraction of the total CPU

time. Furthermore, the storage space occupied by the complete matrix is

_.	 sometimes so large that medium size problems are insoluble if

access to tapes or peripherial storage is not provided. However, at

this point, we are interested in saving storage at the expense of time.

The master stiffness in structural problems is banded when precau-

tions have been taken in the nodal numbering 	 scheme.	 Therefore, the

storage of the complete matrix is unnecessary and is avoided by assembling

"af K in a rectangular form at the same time it is constructed.	 The number

tt of rows may correspond to the number of equations to be solved, and the

number of columns equal to the maximum semi-bandwidth.

t Before proceding to solve the system of equaticr:s, the boundary

conditions are applied.	 In the actual version, admissible boundary

3	 conditions are the following:

- prescribed non-zero nodal displacements in the x-direction

I^

- prescribed non-zero nodal displacements in the y-direct ion

- prescribed nodal forces in the x-direction

- prescribed nodal forces in the y-direction

- zero nodal displacements in the x or y direction.

The program makes use of the Gauss 	 elimination procedure [6] to

solve for the nodal displacements of the expression

{F) = [K] {6)
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4. PROGRAM STRUCTURE

The ISOFINEL computer code has been developed having in mind two

major premises. First, the main body of the program should remain intact

once plasticity is implemented. For this reason, some parts have been
	

i

partitioned into different subroutines that at first glance would look

ti	 superfluous. Second, eventually the same program will host special

crack-tip elements for the elasto-plastic analysis of stress fields at

the vicinity of cracks. Thus, many parameters, such as number of element

nodes, number of Gaussian integration points, etc., have been left in

terms of variables subject to be changed via input.

In the following pages a flow diagram of the main program and its

subroutines is presented. It is not the purpose here to expand into the

particular aspects of the coding;some diagrams of subroutines whose

contents are self-explanatory are omitted.

4.1 ISOFINEL: Main Program

4.1.1 Description of Terms:

NEL = number of elements

NPROB = number of problems

ICONT = actual problem number (from 1 to NPROB).

NRD = total number of degrees of freedom.

4.1.2 Description of Subroutines Not Accompanied by Flow Diagrams:

START: Reads material properties- geometry, dimensions, boundary

conditions, etc., and print them.

ZEROS: Initialize arrays for
r

(a) Stiffness Matrix, E Q

i-^



(b) Derivatives Matrix, [B]

L }.

(c) Displacement Vector, {6}

(d) Force Vector, {F}

DISFUN: Contains in explicit form the shape functions and their

derivatives. Calculates them at Gaussian integration

points for either the 2x2 G.I. option or the 34 G.I.

STRSTR: Calculates the elements of the elasticity matrix, D,

for either the case of plane stress or plane strain.

BOUCO: Applies boundary conditions and modifies master stiffness

matrix such that is in the correct form for the solution

procedure. Ponsible boundary conditions are:

- prescribed x or y nodal displacements

- prescribed x or y nodal forces

- zero nodal displacements.

GAUSEL: Solves for the nodal displacements by using the Gauss

Elimination Procedure.

NODFOR: Performs the matrix multiplication

[K] {s}

to return the generalized nodal forces.

OUTPUT: Prints out all information:

(a) Nodal Displacements, {a)

(b) Nodal Forces„ {F}

(c) Strains at Gauss Points, {E}

(d) Stresses at Gauss Points, {a}

(e) Stresses and Strains at the Elements Centroid

(f) Principal Stresses

(g) Coordinates (x,y) of Gauss Points

(h) Execution time of Each Subroutine.

r.^	
C
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4.2 Flow Diagram

17
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4.3 STIFEL: Stiffness Matrix Subroutine

t	 4,3.1 Description of Terms:

NGA2 = 9 for 3x3 Gauss integration; 4 for 2x2 Gauss integration

NEL8 = NEL*8

NOEL = number of nodes for element (8, for present case)

NDF = number of degrees of freedom per node (2, for

present case)

NBW = Bandwidth of master stiffness matrix

INOEL = NRD*NOEL

NM(I) = array of nodal configuration,	 (I = 1, NEL8)

XYM(J) = array of nodal coordinates,	 (J = 1, NRD)

XJAC(I,J)	 = Jacobian matrix,	 (I = 1,2; J = 1,2)

DDF(L,K) = array of derivatives of displacement functions,
1	 ,

(L = 1,	 NGA2;	 K = 1,	 INOEL)

BM(I,J,K,L) = array for B-matrix,	 (I = 1, NEL; J = 1,2:

K = 1, NOEL; L = 1,	 NGA2)

TEMPK(I,J) = array for element stiffness matrix, 	 (I = 1, INOEL;

J = 1,	 INOEL)

STIF(K,L) = array for master stiffness matrix, (K = 1, NRD;

L = 1, NBW)

4.3.2 Description of Subroutine Not Accompanied by a Flow Diagram

MATMUL: Performs the matrix multiplication [B] T[D][B] and returns

i	 the upper symmetric part of the element stiffness matrix.

L_	 U



4.4 Flow Diagram	 4

i DO 1 L = 1,NGA2

DO 2 I = 1,INOEL

DO 2 J = 1,INOEL	 ZERO ELEMENT

TEMPK(I,J) = 0.0	 STIFFNESS MATRIX

2 CONTINUE

DO 2 K	 1,2

DO 2 I = 1,2	 ZERO JACOBIAN

XJACK(K,I) = 0.0	 MATRIX, J

3 CONTINUE	 I .

DO 4 II = 1,INOEL

I = 2*II - 1

IK = NOEL*(KEY - 1) + I

J = NDF*NM(IK) - 1	 CALCULATES THE

XJAC(1,1) = DDF(L,I)*XYM(J)	 JACOBIAN MATRIX, J

XJAC(1,2) = DOF(L,I)*XYM(J + 1)

XJAC(2,1) = DDF(L,I+1)*XYM(J)

XJACk2,2) + DDF(L,I+1)*XYM(J + 1)

4 CONTINUE

A
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DO 20 JK = 1,NOEL

KDI = NOEL*(KEY = 1) + JK

s	K = NDF*(NM(KDI) • — 1) + 1

EPS(KEY,1,l,) = EPS(KEY,1,L)

+ BM(KEY,I,JK,L)*DF(K)

EPS(KEY,2,L) = EPS(KEY,2,L)

+ Bt4(KEY,2,JK,L)*DF(K + 1)

EPS(KEY,3,L) = EPS(KEY,3,L)

+ BM(KEY,2,JK,L)*DF(K)

+ BM(KEY,I,JK,L)*DF(K + 1)

20 CONTINUE

CALL STRESS(L)

15 CONTINUE

CALCULATES STRESSES AND

STRAINS AT ELEMENT CENTROIDS

10 CONTINUE

RETURN



4.5 STRAIN: Strains and Stresses Subroutine

4.5.1 Description of Terms:

EPS(I,J,K) = Array of strains, e x ,eylyxy , (I = 1,NEL;

J = 1.3; K = 1,NGA2)

-A:
	 SIG(I,J,K) = Array of stresses, ax ,Uy ,Txy , (I = 1,NEL;

J = 1,3; K ,, 1,NGA2)

DF(L) = Array of nodal displacements, (L = 1,NRD)

4.6 Flow Diagram

DO 5 I = 1,NEL

DO 5 J = 1.3	 ZERO ARRAYS

DO 5 K = 1,NGA2	 FOR STRAINS

EPS(I,J,K,) = 0.0	 AND STRESSES

SIG(I,J,K) = 0.0

5 CONTINUE

DO 10 KEY = 1,NEL

15 L = 1,NGA2

,v

A

k.
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DEW = XJAC(1,1)*XJAC(2,2) 	 DETERMINANT OF

	

XJAC(1,2)*XJAC(2,1) 	 J MATRIX
a,	

F

CHANGE = XJAC(1,1)

X11 = XJAC(2,2)/DETJ	 CALCULATES THE

X12 = -XJAC(1,2)/DETJ 	 ELEMENTS OF [J]-1

X21 = -XJAC(2,1)/DETJ

X22 = CHANGE/DETJ

DO 5 IJ = 1,NOEL

J= I J* 2- 1

K=J+1

	

BM(KEY,I,IJ,L) = X11*DDF(L,J) 	 CREATES THE

	

+ X12*DDF(L,K)	 B-MATRIX

BM(KEY,2,IJ,L) = X21*DDF(L,J)

+ X22*nDF(L,K)

5 CONTINUE
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B

1

CALL MATMUL(TEMPK,L)

ASSEMBLY ELEMENT

STIFFNESS, TEMPK

INTO MASTER

STIFFNESS

r'
	

1 CONTINUE

RETURN

.END

V
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5. NUMERICAL. RESULTS

To test the capability and limitations of the program, two

problems are solved:

- Uniaxial Tension

- Pure Shear

- Pure Bending

They are solved using both 2x2 and 3x3 Gauss integration. As it was

4	 described earlier, the displacement and strain solutions of these

problems are contained in the shape functions of the eight-node iso-

parametric quadrilateral. Hence, it is expected that they may be solved

exactly by a single element.

Three different maps containing 1,4 and 10 elements are tested. Each

map is tested for three different element sizes. Figure 5.1 shows the

co,lfiguration of each map.

5.1 Uniaxial Tension

The uniaxial tension problem is solved by prescribing uniform

y-displacements at the nodes on the surface y = L, and by preventing

vertical motion of the nodes on the surface y = 0. Being the solution

of this problem contained in the displacement functions of the element, it

is not strictly necessary to prevent rigid body motion. However, it is

done by restraining the middle node at the origin to move. For all maps,

the prescribed displacements correspond to 1% of the original length of

the plate. The solutions obtained for both displacements and stresses

are in excellent agreement (less than 0.001% error) with the expected

theoretical values. No differences are observed between the two integra-

tion procedures studied.

i'^	

_
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L	 b -^

MAP 1
(Outer Quadrangle)

MAP 2
(	 )

MAP 3
(-------)

Case	 a /b Case a /b L/b Case a3/b L/b

1A	 1.0 2A 0.25 1.0 3A 0.1 1.0

1B	 10.0 2B 2.50 10.0 3B 1.0 10.0

1C	 20.0 2C 5.00 20.0 3C 2.0 20.0

Figure 5.1
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5.2	 Pure Shear

The pure shear problem is solved by prescribing linear varying

x-displacements at the boundary nodes. 	 The x-displacements are given

by the relation,

ax = (y/L)dn

where ao is the displacement prescribed on the surface 1 = L. 	 For each ^+	
.

map, ao is 1% of the plate length, L.

Several results are studied, Figures 5.2 and 5.3 show the variation

of the normalized shear stress,(T xy /T o), with T o being the theoretical
stress,versus the element ratio (a/b),for the 2x2 and 3x3 Gauss integration

procedures, respectively.	 The value of Txy chosen for each case is that

at the Gauss point that differs more from tho theoretical value. 	 Values

at Gauss points very close to the surface, where horizontal displacements

are prescribed, are not taken in consideration because of local effects. j

These effects are only detected in Map 3, where Gauss points are closer to 1

the boundaries, but they die out rapidly.	 Maps 2 and 3 present excellent I

agreement in both cases, being negligible the difference between the two a

integration procedures.	 However, for Map 3, Case C, there is a large 5

improvement when 3x3 G.I. is used, since for an element ratio of a/b = 1.0

there is a 4.25% error in stresses in the 2x2 G.I. compared with a 0.001%

error in the 3x3 G.I.	 When a/b = 2.0, the errors are 5 and 4.25%,

respectively.	 Figures 5.4 to 5.7 present the variation of the normalized

shear stress along the direction perpendicular to the plane of shear for

a constant x/b.	 The value of x/b is determined by the position of the

integration points within each element.	 In this case, x/b attains the

values of 0.2887 and 0.3873 for the 2x2 and 3x3 G.I. procedures, respectively.
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Maps 1, 2 and Case 3A of Map 3 provide solutions that are in excellent

agreement with the existing solution. Neglecting the error introduced

by the local effects at the plane of shear, the error in the shear stress

for cases 3B and 3C is summarized in Table 5.1 below.

Case 2x2 G.I. 3x3 G.I.

Max.	 Mean Man.	 Mean
Error	 Error Error	 Error

3B 1.4%	 0.2% 1.5%	 0.2%

3C 2.0%	 0.6% 3.0%	 0.6%

Table 5.1

It is observed that both procedures produce highly comparable results

with a slight advantage of the 2x2 G.I. In this particular problem,

the difference is due more to the numerical error introduced by the

larger number of operations that take place in the assembling of the

stiffness matrix in the 3x3 G.I. case.

As it is known from the theoretical solution, the stresses ox and

ay are both zero for the case of pure shear. However in the numerical

computation, the true value of these stresses is related among others to the

element ratio, numerical integration scheme, and of course type of dis-

placement functions used. In the present case we are interested only in

the former two. Figures 5.8 and 5.9 are plots of the variation of the

"amplified zero-stress" along the axis perpendicular to the plane of shear.

The numerical values of ax are chosen arbitrarily since the values obtained

for ay are comparable. An amplification of 10 3 is chosen, since from the

engineering viewpoint any pair of stresses with a difference in order of

magnitude below this quantity is usually considered. From these two graphs

r^
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it is appreciated the advantage of using 3x3 G.I. in more complex problems.

Figure 5.8 shows for the 2x2 G.I. scheme, Cases 3A and 3B, that half

distance away from the plane of shear the "assumed-zero stresses" start

increasing in magnitude even that before being one-fourth of plate length

close to the plane of shear have already attained values comparable to

the shear stress. For Case 3C the same phenomena is observed well before a

section half plate length away from the plane of shear. When the 30 G.I.

scheme is used, this effect disappears in the first half section of the

plate and is highly reduced in the rest.

5.3 Pure Bending

The pure bending problem is solved by applying linear varying ^-

displacements on the surface y = L with a line of symmetry at x = 0.

The prescribed displacements are given by

ay = (x/b)so

where So is the displacement prescribed at the corner nodes and corresponds

to 1% of the plate length. Figures 5.10 and 5.11 show a variation of the

normalized bending stress ( ay/ao ) with the element ratio for the 2x2 and
34 G.I. schemes respectively. It is observed that by performing a 30 G.I.,

the stress results improve enormously for Maps 1 and 2, but little is

gained on Map 3. Figures 5.12 and 5.13 present the variation of the

bending stress along the axial direction of the plate for Map 1. Although

the maximum error in stress is only about 1.3% for the Case 1C of 2x2 G.I.,

the error is reduced to 0.001% when 3x3 G.I. is used (Figure 5.13). Similar

results are observed in Figures 5.14 to 5.17 for Maps 2 and 3. It is

observed, however, that by moving to a 30 G.I., the improvement in the

stresses is only of the order of 40%. These results are summarized in

Table 5.2.
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Case 2x2 G.I. 3x3 G.I.

Max. Mean Max. Mean
Error % Error % Error % Error %

lA 0.0010 0.0005 0.0010 0.0005

1B 0.0100 0.050 0.0010 0.0005

1C 1.3000 0.6250 0.0010 0.0005

2A 0.0010 0.0005 0.0010 0.0005

2B 0.0300 0.0150 0.0200 0.0100

2C 0.3250 0.1600 0.2500 0.1250

3A 0.0010 0.0005 0.0010 0.0005

3B 0.0250 0.0125 0.0100 0.0150

3C 0.2500 0.1050 0.1900 0.0800

Table 5.2

Similarly as is done in the pure shear problem, a study of the

"assumed zero-stresses" is made for the pure bending problem. From the

analytical solution, the stresses a
x 
and Txy are zero. In the finite'

element results, these stresses are not exactly zero, but are related

to the element ratio and integration scheme used, among others. Fig-

ures 5.18 to 5.23 present the variation of the shear stress Tx y , along

the y-axis, for the 3 maps and the two integration schemes studied. The

choice of Txy instead of ax is arbitrary since the variation pattern of

both is essentially the same. An amplification factor of 10 3 is again

used. It is observed that while the error in the 2x2 G.I. scheme

monotonically decreases along the y-direction, for the 3x3 G.I. scheme,

the error decreases harmonically in the same direction. Table 5.3

presents a comparison of the "assumed-zero stress!' error between the two
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Case 2x2 G.I. 34 G.I.

Max.
Error %

Mean
Error %

Max.
Error %

Mean
Error %*

lA 0.001 0.001 0.001 0.001

1B 5.000 2.750 3.000 1.500

1C 56.000 37.000 90.000 50.000

2A 0.001 0.001 0.001 0.001

2B 17.000 13.000 15.000 10.000

2C 100.000+ 100.000+ 70.000 45.000

3A 0.001 0.001 0.001 0.001

3B 18.000 13.000 18.000 12.500

3C 85.000 64.000 70.000 40.000

,

integration schemes studied. From the figures, it is observed that for

cases A and B or any map, the difference between the two integration

schemes is minimal. However, for case C, specially Maps 2 and 3,

there is a considerable improvement of the 30 G.I. over the 2x2 G.I.

scheme. It is interesting to note that the upper peaks of the curves

of cases 2B, 2C, 3B, and 3C of the 3X3 G.I. scheme correspond to data

provided by the same Gauss integration point of each element in the map.

r

*
The mean absolute error is being considered; that is

n
% ME = 1/n E ^x.l 100

i=1	 x

Table 5.3

5.4 Execution Times

As a final comparison between the two integration schemes, the

i
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execution times for each map obtained with the UNIVAC 1108 are studied.

+	 Since the only difference among the three cases of any map is the

relative size of the elements, an average time of the three cases of

each map is taken. Figures 5.24 to 5.26 present the variation of

execution time with map size for the two integration schemes studied

E	 and the three problems chosen. It is observed that for Maps 1 and 2 of

I
the uniaxial tension and pure shear problems, the execution time is

almost the same, but for Map 3 the difference is considerably larger. For

the pure bending problem the pattern is different. Although for Map 1

the time is the same, for Map 2, the time for the 3x3 G.I. scheme in-

creases in 30%, but for Map 3 the differentAA is only of 17%. Note that

the major difference in the three problems in terms of the finite element

f`	 setup, is the prescription of the boundary conditions. Of course they

affect the number of zero terms in the stiffness matrix and consequently the

time of the routine that solves for the nodal displacements. From these

time results we conclude that larger maps are necessary for better time 	 1

comparisons between the two integration schemes. In [4] a time study of 	 1

these integration procedures is presented for U'he cantilever beam problem.	 I

1
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6. CONCLUSIONS AND RECOMMENDATIONS

It is concluded in the report that the eight-node isoparametric

quadrilateral presents many of the features of the high-order elements

with the advantage that there is no need to resort to expensive and

complex integration schemes.

It is shown that although the element contains in its formulation

the exact solution for tension, shear and pure bending problems, the

actual results are highly dependent upon the slenderness of the element

in a given map, as well as the numerical integration scheme used. As

more terms of the displacement functions of the element enter in the solu-

tion of a problem (linear terms for tension; quadratic terms for shear;

cubic terms for pure bending, etc.) these effects must be carefully con-

sidered in the accuracy of the solution.

The results studied show that although the 2x2 G.I. scheme provides	 i

adequate solutions, the penalty of using 3x3 G.I. instead is not high

in terms of storage and computation time, but the benefit is substantially

higher. This is particularly true in problems containing more complex

geometry and loading, where the displacement solution is not contained in

the element formulation. The same is valid for elasto-plastic problems

where the location and size of the yielding zone is important, and where

the construction of the stiffness matrix of an element that has yielded

requires a higher-order integration procedure.

In the transition to solve plasticity problems, apart from reserving

some storage area for quantities such as accumulated forces and displace-

1

3
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ments, plastic strain energy,-plastic stresses and strains, the major

change lies on the constitutive matrix, [D]. This matrix is direct

function of the state of loading, once yielding has occurred. This

analysis is based on the theory of elasto-plastic flow described in

detail in [8,9]. At any particular Gauss point where yielding has

taken place the stress-strain matrix [D] must be updated at each loading

step according to the current level of stress at that point. Hence,

essentially only the assembly of the element stiffness matrix gets

changed since a different constitutive matrix might be needed for each

Gauss point.

Looking toward a general stress program for large computers, which

would apply to realistic nonlinear material behavior of cracked structures,

it is considered convenient to make the program capable to accept other

element configurations, such as special crack-tip elements, or even

other isoparametric elements. Furthermore, it should be possible to

think in a quadrilateral having a cubic response along one side which

contains four nodes, linear response along other side with only two corner

nodes, and quadratic along the other two. The coupling of a higher order

element to lower elements may be accomplished by constraining the coupling

surface of the higher order element to displace in accordance to the lower

order element.

Finally, a desirable feature of any large computer program'is an

internal map generation algorithm. Because of the midside node in the

isoparametric quadrilateral, the data preparation is considerably reduced

by writing into the program an algorithm which interpolates the positions

of midside node coordinates if the sides are straight. Only when the 	 8

8

i



particular side is required to follow a curved boundary is it necessary

to specify all intermediate nodes. However, algorithms for circum-

ferential element profiles are easy to implement.

60
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a

4	 The partial derivatives of the displacement functions for the

8-Node isoparametric quadrilateral are the following:

(a) Corner Nodes	 i = 1,3,5,7
1

s;• I	 In g:

ai = 1/4 C i (1 + nn i )( C i + n n i - 1) + 1/4 C1+ 4 g i )(l + nni)Ei

aN.
4	 Or,	

any
 = 1/4 E i (1 + nn i )(299 i + nn i )	 (Al)

In n:

aN.
t	

,^	 an' = 1/4 n i (1 + gg i )(6E i + nn i - i) + 1/4(1 + g C i )(1 + nni)ni

aN.

Or,	 an' = 1/4 n i (1 + 99 i )Cg E i + 2nn i )	 (A2)
I	 p

i
(b) Midside Node, Ci = 0; i = 2,6

In E:

!Ni _

BE	 - ^(1 + nn i )	 (A3)

In n:

aN y.

an = 1/2 n i C1 - E2 )	 (A4)

(c) Midside Nodes, n i = 0; 1 = 4,8

f	 i	 In C:

I	 age = 1/2 g i (1 - n2 )	 (A5)

_In n:

aNi
an = -n(l + EEO	 (A6)

I.
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