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ABSTRACT

This report presents a formulation for the development of a finite
element program for the elastic analysis of two-dimensional bodies using
the eight-node isoparametric quadrilateral. The program solves for both
plane stress and plane strain problems. ' | H

A general development of the finite element formulation based on | .
the isoparametric displacement functions is presented. |

The program sﬁructure is given in the form of flow diagrams with
descriptions of the numerical procedure used to obtain the ejement
stiffness matrix, and the solution method employed 10 solve for nodal
displacements. ]

Three numerical examples, a plate under uniaxial tension, a plate
under pure shear, and a beam under pure bending are presented to illus-
trate the capability and limitations of the element implementation. The
first problem is solved exactly by the element, as predicted by the form
of its displacement functions. However, in the other two problems the
accuracy of the solution is highly dependent upon the slenderness of the

element, the number of elements in the map, and the numerical integration
scheme used to build the element stiffness matrix.

The report ends with some recommendations concerning map generatioﬁ,
simplification of the input data, and extensions to solution of plasticity

problems,




1. INTRODUCTION

The advantages of the isoparametric elements over the well-known
constant strain triangle (CST) have been substantially demonstrated in
the last few years. Based on the experience we have gained from the
CST, development of a finite element program for isoparametric elements
is highly desirable. As is described below, among the advantages of the
isoparametric elements is their ability to be coupled with other iso-
parametric elements which may be convenient in many cases, and furtherﬁore
with other type of elements such as crack-tip elements currently being
developed,

Among the numberless members of the isoparametric family, the four,
eight, nine, and twelve node isoparametric quadrilaterals are the most
popular for two-dimensional analysis, not only because the high oraer of
their displacement functions but for their relative low cost in terms of
computer time and input preparation. The efficiency of any particular
element type used will depend on how well the shape functions are capable
of representing the true displacement field. At the time we initiated
- this work, very little was known about the differences in accuracy between
the eight and nine node parabolic elements. Primarily because of storage
limitations, in particular in the transition to the elastoplastic version
of the program (currehtTy in process), we chose the éight node quadri-
lateral as the pattern element of thé progranm,

The four node peadrityceral (Figure 1.1a) provides a Tinear displace-
ment distribﬁtion. It hﬁs proved to be an efficient element since the

construction of the stiffness matrix can be done in closed form, while



the higher order elements require the use of a numerical integration
procedure, The nine and twelve node quadr1lhtera15 (Figure 1.1c and
1.1d) produce parabolic and cubic displacement distributions within
the element, respectively. The latter, although is very accurate in
the handling of a large variety of problems, preéents two major draw-
backs. First, it requires a 4x4 Gauss integration procedure to build
the stiffness matrix, which means both large storage and a high computer
bi11. Second, the bandwidth of the master stiffness matrix is usually
larger than that of an eight node isoparametric for a comparable number
of elements, which may provide storage problems, in addition to longer
running time in the solving routine.

These reasons in addition to the results presented here and

elsewhere [1-41*pr0ve the wise choice with the eight-node isoparametric.

N .
Numbers in brackets denote entries in the 1ist of references following
the text.
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(a)

(b)

| - (d)

Figure 1.1 (a) Four-Node Isoparametric Quadrilateral
ib; Eight-Node Isoparametric Quadrilateral -

- {c) Nine-Node Isoparametric Quadrilateral
(d) Twelve-Node Isoparametric Quadrilateral




2. OVERVIEW

The basic step of any direct stiffness finite element analysis

is the unique description of the unknown functions {8}, in this case they

correspond to the displacement field within each element, in terms of xn

parameters{ﬁo} given by

where n
{60}
[N]

n

i1

{8} = [N] {s,} | (1)

number of nodes for element, :
vector of nodal displacements, and

-matrix of shape functions evaluated at the point in the

element where displacements are desired, |

With displacements known at all points within the element, the strains

at any point can be determined, resulting in a relationship of the form,

{e} = tB] {8} (2)

where the matrix [B] is conformed by the partial derivatives of the shape

functions given explicitly in Appendix A.

To satisfy equilibrium it is required that the forces acting on an

within the element, That is,

1
: s . |
where A is the cross sectional area of the element where tractions are !
:
prescribed, and {o} is the stress vector. :

For 11near elasticity, the constitutive law between stresses and i

strains is

- element Tumped as {f} concentrated at the nodes must balance the stresses

4; (8] to}dA - {f} = 0 o (3)




{e} = [D] ({e} - {e,}) + (o} (4)

where [D] is the elasticity matrix that differs siightly between the
cases of plane stress and plane strain, and {o,} and {ey) are the
initial stresses and strains, respectively. Substituting {2) and (4)
into (3) we obtain for any element that

{(f} = [k1{s} (5)

with

[kl J; (817 [DIBIdA (6)

Once equitibrium is established at each node, and nodal displacement
continuity is ensured, we may write for the complete structure a load-
displacement relationship of the form,

{F} = [K] {8} (7)
where [K] is an £x£ matrix, £ being the total.number of degrees of
freedom of the structure and is called the overall stiffness matrix.

To select an iscparametric element is to select a determined set
of shape functions, which is not arbitrary. These are three minimum
conditions which must be satisfied [1] in order to ensure convergence
of the solution to the correct results: |

(a) The shape functioné must be continuous between

elements;

(b) In the Timit, as the element sjze is reduced to
infinitesiméT dimensions, the -shape functions must
be able to reproduce a constant strain condition
throughout the element. This means that the
unknown function must be able to take in the

limit any linear form throughout the element.



(c) Rigid body motion is accomplished if every shape

function satisfies the relation,

n
_E N(Eimi) =1

i=1

2.1 Shape Functions for the 8-Node Quadrilateral

In the isoparametric formulation, the general relationship between
the global cartesian coordinates (x,y) and the Tocal curvilinear

coordinates (g,n) is (Figure 2.1):

1]
1

x = Nyxy + Nk, + o {N}T{xn}

(8)

My, }

y My1+Nﬁ2+.”
where N1 = f(¢,n) are the isoparametric shape or displacement functions,
and {xn}, {yn} are the column vectors of the cartesian coordinates.
For any values of & and n the x and y coordinates can be found once the
functions N are known.

In finite element analysis of two-dimensional stress problems, it
is necessary to define the varjation of nodal displacement components
u, and Vs in terms of the nodal values of the displgcement functions Ni‘

i
Thus we have:

u(gsn) = Nqup + Npp + cow b B = (N} Cu)

: (9)
= = [Ny
V(sgn) = N]V] + N2V2 + 'R NnVn - {N} {Vn}
For the 8-node quadrilateral, suitable polynomials that describe the
appropriate variation of the sides can be written as:
_ - ’
X = o + uZE + a3 + a4EC + csnE +'a6n (]0)

2
+ age M + aBn?E



or

2
X = [1s Ey My 52? Ens n2’ 52"’ n EJ{an}

which ensures that on the sides where n = + 1 (see Figure 2.1), the

variation may be up to quadratic in g, and 1ikew1$e when £ = + 1 the

variation may be up to quadratic in n.
From (10) we can write:
{x,} = [Cl{a,}
or
o) = (€17 ixg)

Or, in terms of the displacement functions we have:

[N], N2, NanooNBJ = [1’ E’ My 52’ nE! T‘izs Eznl nzg][c]-.l

(1)

(12)

(13)

Let 51 and nibe the coordinate values of the i-th node in the normalized

curvilinear system (g,n), then the displacement functions for the 8-node

jsoparametric quadrilateral are given by:
(a) For corner nodes: i=1,3,5,7
| Ny = 17801 + £8) (1 + nngd(egy + ang - 1)
(b} For midside nodes, £y = 0: i=6
Ny = 172(1 = €901 + any)
(c) For midside nodes, n; = 0: 1 =4,8

Ny = 1/72(1 + £g;)(1 - n?)

2.2 Stiffness Matrix Formulation

To assemble the master stiffness matrix of a structural system,

the element stiffness matrices are properly superimposed.

write the master stiffness matrix as:

Lk.]

[kl = 1

i

"TTms

Thus, we can

(17)



where m = number of isoparanetric elements and.[k1] is the ith-element

stiffness matrix defined by:
k] = J; (81 [01{B]A (18)

with A here defined as the element area.
In the cartesian (x,y) system with corresponding displacement com-
ponents (u,v), the components of strain in terrs of displacements for

Tinear elastic plane probiems can be written as

= U -
& ~ 3x (19-a)
= 3Y -
€y = 5y (19-b)
and
_u, v ' el
ny =5y + ™ (19-c)
In matrix form we may write:
Ey | %’f 0 u
-1 2
sy = 0 2y (20)
Y 3_ 3 _|1v
XY 3y X

Hence, for the element strain vector we write: for the isoparametric

formulation
{e} = [B]{u} (21)
where:
being m the number of nodal points of the element .
and,
| W= {uy vy Uy Vo oeee VI
1 1 2 2t Vm m



-} -1) 20 -1)

» X,U %x'l !.y]) Xz:yz)

Figure 2.1

In terms of the displacement functions N1, the matrices By can be

written as:

[ AN,
1
% 0
BNi
(8,1=1 0 F (23}
R

Since Ni = Ni(g,n),1t is necessary to perform a coordinate transformation

such that:

aN; aui
® " Tx(gm) C (24)
o M

o

W g,

where TX(Esn) and Ty(g,n) are vector trénsformat1on functions re1a#1ng

x and €, and y and n, respective]y.

In terms of the local coordinates we may write then,



13 ET--13 X 9X

= = [J] (25)
MY o oay] (M 2y
an an  9n EX; 8y |

where [J] 1s the Jacobfan matrﬁ>f, vhich can also be written in teyms

( P
SN P
Ny o, an ] %1 Y

of the global cartesian coordinates as:

n
' Yoo vy Xo ¥
[y = |27 %8 TTTTes ( 2 (26)
3l aly N, 1
mo wmeeomd )L
ixm ym
[,
where {xi}, {yi} are the global coordinates of the element ncdes.
Now we may write:
ax . R KL
= [1]{0] (27)
oy an

where I is the identity matrix,

o[
| =1y
In equation (20) all the derivatives,

aN. aN.
1 1
3 and 3E

can be obtained by hand from the original displacement functions N

for the particular type of element being used {see Appendix A).

*Note that independently of the number of element nodes [J] is always a
~ 2x2 matrix, for two-dimensional probiems.

10



Once (26) and (27) are calculated we may substitute after some
manipulation into (25) and obtain the Bi‘s. Theveafter, the matrix [B]
can be assembled.

Having [B] in terms of the normalized local curvilinear coordinates
(£,n), ve must express the element of area in (18) in terms of the Tocal

conrdinates £ and n.

bonsequently, we write
dA = dxdy = [d] dndg (28)
and because we have used normalized local coordinates, the limits of
" integration are now -1 and 1 for both integrals. Thus, we obtain the

element stiffness matrix in the form:

]

LI - . ' _
kil = f [, ((£,n) 1 [DI[B(&,n)] |d] dedn (29)

2.3 Numerical Integration Procedure

| The difficulties of performing a.closed form area integration fbr‘
the_eiementistiffness matrix (29) are avoided by usé of numerical |
integration techniéues. For eiastic péob]ems the closed,form integra-
tion is tedious; for elasto-plastic problems, impossibie, as in this
case the constitutive matrix is ndt available in closed form. Before
~attempting any numerical integration, it is a réﬁuiremént to-kﬁdw the
degree of accuracy needed to ensure stability and convergence to the
correct result.

If the intn;e]emént forces due to inteinal element stresses can be
determined exactiy by numerical integration.for a_constant state of
strésses within each element, we can guarantee convergence to the correct
solution. This argument has been discussed in detail by Irons [6],

Zienkiewicz [1], and others.

11
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The interelement forces can be expressed as:

(f} = (";; [837[DI[B]dA) (u) (30)

Or in terms of the stresses:

if} = JA (81" {o}dA (31)

Thus, by numerical integration, we must be able to determine exactly
such intergrals as

T
f] _fI 131 dedn

obtained by combining equations (27) and (28).
The integration using Gauss-Legendre quadrature is highly simplified
because of the constant boundary values (-1, +1) that the local normalized : %
curvilinear coordinates take in each element. .
According to Gauss-Legendre quadrature [5] we may write the element
stiffness matrix given by {29) in the férm:
m

m
(K= T 5 GLL8(E )1 T0IB(Eny)] 9] (32)

- where €, ,Cp are the coefficients of the integration points.k and £.
[B(ék,nﬂ)]T and [B(gk’"zj] are the matrices evaluated at the Gauss
po1nt (sk’”ﬂ)' and m is the number of integration points used, ’
In [1] it is argued that 2x2 Gauss quadrature provides an exact
numerical evaluation of the element stiffness of the 8-node quadrila-
teral, independent of the activated terms in the displacement functions.
This is true in tension and shea? probiems where only terms as high é
as €3 are present in {32) once the 1nterné1 product is performed. It | '

has been documented [7] that 2x2 Gauss quadrature is exact only when terms
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as high a3 cubic are present in the product form of (32). Several
exercises performed during the.deve1opment of ISOFINEL and its sub~
sequent testing, showed that in problems such as pure shear, pure
bending, three point bending, etc., with elements having a Targe
slenderness ratio, much more accurate answers are obtained when using
3x3 Gauss quadrature.

The program in its actual version contains both features, at the
user's option, both to facilitate the work discussed in this report and

for possible subsequent usage.
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3. SOLUTIOM PROCEOURE

The magter stiffness matrix [K] in (18) is a square, symmetric and
positive-definite matrix. The solution of the linear equations related
to the finite element analysis takes a large fraction of the total CPU
time. Furthermore, the storage space occupied by the complete matrix is
sometimes so large that medium size problems are insoluble if
access to tapes or peripherial storage is not provided. However, at
this point, we are interested in saving storage at the expense of time.

The master stiffness in structural problems is banded when precau-
tions have been taken in the nodal numbering scheme. Therefore, the
Storage of the complete matrix is unnecessary and is avoided by assembling
K in a rectangular form at the same time it ié constructed, The number
of rows may correspond to the number of equations to be solved, and the
number of columns equal to the maximum semi-bandwidth.

Before proceding to solve the system of equatictis, the boundary

conditions are applied. In the actual version, admissible boundary

conditions are the following:

prescribed non-zero nodal displacements in the x-direction

prescribed non-zero nodal displacements in the y-direction

prescribed nodal forces in the x-direction

presciribed nodal forces in the y-direction

zero nodal displacements in the x or y direction.

The program makes use of the Gauss elimination procedure [6] to

solve for the nodal displacements of the expression

{F3 = [K]ts}
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4. PROGRAM STRUCTURE

The ISOFINEL computér code has been developed having in mind two
major premises. First, the main body of the program should remain intact
once plasticity is implemented. For this reason, some parts have been
partitioned into different subroutines that at first glance would look
superfluous. Second, eventually the same program will host special
crack-tip elements for the elasto-plastic analysis of stress fields at
the vicinity of cracks. Thus, many parameters, such as number of element
nodes, number of Gaussian inteqration points, etc., have been left in
terms of variables subject to be changed via input.

In the following pages a flow diagram of the main program and its
subroutines is presented., It is not the purﬁose here to expand into the
particular aspects of the coding; some diagrams of subroutines whose

contents are self-explanatory are omitted.

4.1 ISOFINEL: Main Program

4.1.1' Description of Terms:

NEL = number of elements

NPROB = number of problems |

ICONT = actual problem number (from 1 to NPROB),
NRD = total number of degrees of freedom.

4,1.2 Description of Subroutines Not Accompanied by F]dw Diagrams:

START: Reads material properties- geometry, dimensions, boundary
conditioné, etc., and print fhem. | |

ZEROS: Initialize arrays for

(a) Stiffness Matrix, [K] -



DISFUN:

STRSTR:

BOUCO:

GAUSEL:

NODFOR:

OUTPUT:

16

(b) Derivatives Matrix, [B]
(c) Displacement Vector, {5}
(d) Force Vector, {F}
Contains in explicit form the shape functions and their
derivatives. Calculates them at Gaussian integration
points for either the 2x2 G.I. option or the 3x3 G.I.
Calculates the elements of the elasticity matrix, D, *
for ejther the case of plane stress or plane strain. |
Applies boundary conditions and modifies master stiffness
matrix such that is in the correct form for the solution
procedure. Pogsible boundary conditions are:
- prescribed X or y nodal displacements ,
- prescribed x or y nodal forces
- zero nodal displacements,
Solves for the nodal displacements by using the Gauss
Elimination Procedure.
Performs the matrix multiplication
[K] {8}
to return the generalized nodal forces.
Prints out all information:
(a) Nodal Displacements, {s)
(b) Nodal Forces, {F}
(c} Strains at Gauss Points, {e}
(d) Stresses at Gauss Points, {o}
(e) Stresses and Strains at the Elements Centroid a

(f) Principal Stresses

{g) Coordinates (x,y} of Gauss Points

(h) Execution time of Each Subroutine. . ' ' _ |



4.2 Flow Diagram

q

q__

CALL DISFUN:>

!

CALL STRSTR:)

!

KEY = 1,NEL

i

C

CALL STIFELj)

? (S;)

17



< 0

( CALL OUTPT )
TCONT = ICONT + 1)

IF

QDNT - NPROB)

20
\/

S

18
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4,3 STIFEL: Stiffness Matrix Subroutine

4,3,1 Description of Terms:

NGA2 = 9 for 3x3 Gauss integration; 4 for 2x2 Gauss integration
MEL8 = NEL*8
NOEL = number of nodes for element (8, for present case)
NDF = number of degrees of freedom per node (2, for
present case)
NBW = Bandwidth of master stiffness matrix
INOEL = NRD*NOEL
NM(1) = array of nodal configuration, (I = 1, NELS)
XYM(J) = array of nodal coordinates, (J = 1, NRD)
XJAC(1,3) = Jacobian matrix, (I = 1,2: d = 1,2)
DDF(L,K) = array of derivativeé of displacement functions,

(L =1, NGA2; K = 1, INOEL)
BM{I,J,K,L) = array for B-matrix, (I = 1, NEL; J = 1,2:
K=1, NOEL; L = 1, NGA2)

TEMPK(I,J) = array for element stiffness matrix, (I = 1, INOEL;
J =1, INOEL) .
STIF(K,L) = array for master stiffness matrix, (K = 1, NRD;

L =1, NBW)

4,3.2 Description of Subroutine Not Accompanied by a Flow Diagram

MATMUL: Performs the matrix multiplication [B]T[D][B] and returns

the upper symmetric part of the element stiffness matrix.



‘ 4.4 Flow Diagram

START

\v4
DO 1 L = 1,NGA2

v

DO 2 I = 1,INOEL

DO 2 J = 1,INOEL

TEMPK(I,d) = 0.0
2 CONTINUE

DO 2 K
00 2 1
XJIACK(K,1
3 CONTINUE

l
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[ -l

,2
s2

= 0.0

po 4 II = 1,INOEL

I = 2%I1 - 1

IK = NOEL*(KEY - 1) + I

J = NDF*NM(IK) - 1

XJAC{1,1) = DDF(L,IY*XYM(J)

XJAC(1,2) = DDF(L,I)*XYM{J + 1)

XJAC(2,1) = DDF(L,I+1}*X¥YM{J)

XJAC(2,2) + DDF(L,I+1)*XYM(J + 1)
4 CONTINUE

ZERQ ELEMENT
STIFFNESS MATRIX

ZERQ JACOBIAN
MATRIX, d

CALCULATES THE
JACOBIAN MATRIX, J



DO 20 JK = 1,NOEL
KDI = NOEL*(KEY = 1) + JK
K = NDF*(NM(KDI) - 1) + 1
EPS(KEY,T,L) = EPS(KEY,1,L)

+ BM(KEY,1,JK,L)*DF (K)
EPS(KEY,2,L) = EPS(KEY,2,L)

+ BM(KEY,2 ,0K,L)*DF (K + 1)
EPS(KEY,3,L) = EPS(KEY,3,L)
BM(KEY,2,JK,L )*DF (K)
BM(KEY,1,JK,L)*DF (K + 1)

+ +

20 CONTINUE

q.___ ]

(EALL STRESS(L) :)

-
\—/

CALCULATES STRESSES AND
STRAINS AT ELEMENT CENTROIDS

q.__

(:_10 conrrnus._:) |

4.__

(. RETURN )

21



4,5 STRAIN: Strains and Stresses Subroutine

4,5,7 Description of Terms:

EPS(1,J,K) = Array of strains, €y 2Ey
J = 1.3; K= 1,NGA2}

SIG(I,J,K) = Array of stresses,
J = 1,33 K= 1,NGA2)

DF{L) = Array of nodal displacements, (L =

4.6 Flow Diagram

&

ngﬂy"rxy

\/
D051 =1,NEL
D05J=1.3
DO 5 K = 1,NGA2

EPS(1,0,K,) = 0.0
s16(1,J,K) = 0.0
5 CONTINUE

DO 10 KEY = 1,Né;)

22

s‘fxy’ (I = ],NEL‘,
= 1'NEL;

1,NRD)

ZERO ARRAYS
FOR STRAINS

~ AND STRESSES



DETJ = XJAC(T,1)*XJAC(2,2)
~ XJAC(1,2)*XJAC(2,1)

l

CHANGE = XJAC(1,1)
X11 = XJAc(2,2)/DETY
X12 = -XJAC(1,2)/DETJ
X21 = -XJAC(2,1)/DETJ
X22 = CHANGE/DETJ

DO 5 1J = 1,NOEL

J = 1J%2 - 1

K=d+1

BM{KEY,1,1d,L} = X11*DDF(L,J)

+ X12*DDF (L ,K)

BM(KEY,2,1J,L) = X21*DDF{L .,J)

5 CONTINUE

+ X22*DDF(L,K)

\/

DETERMINANT OF
J MATRIX

CALCULATES THE

ELEMENTS OF [9]7!

CREATES THE
B~MATRIX

23



Y,
(:EﬁLL MATMUL(TEMPK,L):)

ASSEMBLY ELEMENT
STIFFNESS, TEMPK
INTO MASTER
STIFFNESS

24
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5. NUMERICAL RESULTS

To test the capability and 1imitations of the program, two
problems are solved:

- Unjaxial Tension

- Pure Shear

- Pure Bending
They are solved using both 2x2 and 3x3 Gauss integration, As it was
described earlier, the displacement and strain solutions of these
problems are contained in the shape functions of the eight-node iso-
parametric quadritateral. Hence, it is expected that they may be solved
exactly by a single element.

Three different maps containing 1,4 and 10 elements are tested. Each
map is tested for three different element sizes. Figure 5.1 shows the

configuration of each map.

5.1 Uniaxial Tension

The uniaxial tension problem is solved by prescribing uniform
y-displagements at the nodes on the surface y = L, and by preventing
“verticdl motion of the nodes on the surface y = 0. Being the solution
of this problem contained in the displacement functions of the element, it
is not strictly necessary to prevent rigid body motion. However, it is
done by restraining the middle node at the origin to move. For all maps,
the prescribed displacements correspond to 1% of the original length of
the plate. The solutions obtained for both displacements and stresses
are in excellent agreement {less than 0.001% error} with the expected
theoretical values. No differences are observed between the two integra-

tion procedures studied.

t
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Figure 5.1
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5.2 Pure Shear
The pure shear problem is solved by prescribing linear varying
x-displacements at the boundary nodes. The x-displacements are given
by the relation,
8, = (y/L)s,

where 60 is the displacement prescribed on the surface y = L. For each
map, §, is 1% of the plate length, L.

Several results are studied, Figures 5.2 and 5.3 show the variation
of the normalized shear stress,(rxy/rOL with 1, being the theoretical
stress, versus the element ratio (a/b), for the 2x2 and 3x3 Gauss integration
procedures, respectively. The value of Tyy chosen for each case is that
at the Gauss point that differs more from the theoretical value. Values
at Gauss points very close to the surface, where horizontal displacements
are prescribed, are not taken in consideration because of local effects.
These effects are only detected in Map 3, where Gauss points are closer to
the boundaries, but they die out rapidly. Maps 2 and 3 present excellent
agreement in both cases, being negligible the difference between the two
jntegration procedures. However, for Map 3, Case C, there 1is a large

- improvement when 3x3 G.I1. is used, since for an element ratio of a/b = 1.0
there is a 4.25% error in stresses in the 2x2 G.I. compared with a 0.001%
error in the 3x3 G.I. When a/b = 2.0; the effors are 5 and 4,25%,
respe;tive]y. Figures 5.4 to 5.7 present the variation of the normalized
shear stress along the direction perpendicular to the plane of shear for
a constant x/b. The value of-x/b is determined by the position of the

integration points within each element. In this case, x/b attains the

values of 0.2887 and 0.3873 for the 2x2 and 3x3 G.I. procedures, respectively.
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Maps 1, 2 and Case 3A of Map 3 provide solutions that are in excellent
agreement with the existing solution. MNeglecting the error introduced
by the Tocal effects at the plane of shear, the error in the shear stress

for cases 3B and 3C is summarijzed in Table 5.1 below.

Case 2x2 G.1. ' 3x3 G.1I.

Max. Mean Man. Mean
Error Error Error Error

38 1.4% 0.2% 1.5% 0.2%
3C 2.0% 0.6% 3.0% 0.6%

Table 5.1
It is observed that both procedures produce highly comparable resuits
with a slight advantage of the 2x2 G.I. In this particular problem,
the difference is due more to the numerical error introduced by the
larger number of operations that take place in the assembling of the
stiffness matrix in the 3x3 G.I. case.
As it is known from the theoretical solution, the stresses o, and

X
¢, are both zero for the case of pure shear. However in the numerical

czmputation, the true value of these stresses is related among others to the
“element ratio, numerical integration scheme, and of course type of dis-
placement functions used. In the present case we are interested only in

the former two. Figures 5.8 and 5.9 are plots of the variation of the
"amplified zero-stress" along the axis perpendicular to the plane of shear.
The numerical values of o, are chosen arbitrarily since the values obtained
for o, are compargb]e. An amp]ification'of 10% is chosen, since from the

engineering viewpoint any pair of stresses with a difference in order of

magnitude below this quantity is usually considered. From these two graphs
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it is appreciated the advantage of using 3x3 G.I. in more complex problems.
Figure 5.8 shows for the 2«2 G.I. scheme, Cases 3A and 3B, that half
distance away from the plane of shear the “"assumed-zero stresses" start
increasing in magnitude even that before being one-fourth of plate length
close to the plane of shear have already attained values comparable to

the shear stress. For Case 3C the same phenomena is observed well befive a
section half plate length away from the plane of shear., When the 3x3 G.I.
scheme is used, this effect disappears in the first half section of the
plate and is highly reduced in the rest.

5.3 Pure Bending

The pure bending problem is solved by applying linear varying y-
displacements on the surface ¢y = L with a line of symmetry at x = Q.
The prescribed displacements are given by

Gy = (x/b)&o

where-ao is the displacement prescribed at the corner nodes and corresponds
to 1% of the plate lTength. Figures 5.10 and 5.11 show a variation of the
normalized bending stress (uy/oo) with the element ratio for the 2x2 and
3x3 G.I. schemes respectively. It is observed that by performing a 3x3 G.I.,
the stress results improve encrmously for Maps 1 and 2, but Tittie is

gained on Map 3. Figures 5.12 and 5.13 present the variation of the

bending stress along the axial direction of the plate for:Map 1. Although
the maximum error in stress is only about 1.3% for the.Case 1C of 2x2 G.I.,
the error is reduced to 0.001% when 3x3 G.I. is used (ngure 5.13), Similar
results are observed in Figures 5.14 to 5.17 for Maps 2 and 3..rIt is
observed, however, that by moving to a 3x3 G.I., the improvement in the
stresses is only of the order of 40%. These results are summarized in

Table 5.2.
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Case | 2x2 6.1, 3x3 G.1.
Max. Mean Max. Mean
Error % Error % Error % Error %
1A 0.0010 0.0005 0.0010 0.0005
18 0.0700 0.050 0.0010 0.0005
1C 1.3000 0.6250 0.0010 0.0005
2A 0.00710 0.0005 0.0010 0.0005
2B 0.0300 0.0150 0.0200 - 0.0100
2C 0.3250 0.1600 0.2500 0.1250
3A 0.0010 0.0005 0.0010 0.0005
3B 0.0250 0.0125 0.0400 0.0150
3C 0.2500 0.1050 0.1900 0.0800
Table 5.2

Similarly as is done in the pure shear problem, a study of the
"assumed zero-stresses" is made for the pure bending problem. From the
are zero., In the-finite‘

analytical solution, the stresses g_ and Ty

X Y
-element results, these stresses are not exactly zero, but are related
to the element ratio and integration scheme used, among others. Fig-

ures 5,18 to 5.23 present the variation of the shear stress r_,, along

X
the y-axis, for the 3 maps and the two integration schemes stujied. Thé
choice of Tyy instead of oy is arbitrary since the variation'pattern of
both is essentially the same. An amplification factor of 103 is again
used. It is.observed that while the error in the 2x2 G.I. scheme
.monotonfca11y decreases along the y-direction, for the 3x3 G.I. scheme,
the error decreases harmonically in the same direction. Table 5.3

presents a comparison of the “assumed-zero stress.' error between the two

L
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integration schemes studied. From the figures, it is observed that for
cases A and B or any map, theﬂdifference between the two integration
schemes is minimal. Howaver, for case C, specially Maps 2 and 3,

there is a considerable improvement of the 3x3 G.I. over the 2x2 G.I.
scheme. It s interesting to note that the upper peaks of the curves
of cases 2B, 2C, 3B, and 3C of the 3x3 G.I. scheme correspond to data

provided by the same Gauss jntegration point of each element in the map.

Case 2x2 G.1. 3x3 G.1.
Max., Mean Max. Mean
Error % Error % Error % Error %
1A 0.001 0.001 0.001 0.001
1B 5.000 2,750 3.000 1.500
¢ | 56.000 37.000 90.000 50. 000
2 0. 001 0,001 0.001 0.001
28 | 17.000 13.000 15.000 10.000
2¢c  [100.000" | 100.000" | 70.000 45.000
3A 0.001 0.001 " 0.001 0.001
38 | 18.000 13.000 18.000 12.500
3c 85.000 64.000 70.000 40.000

- J
The mean absolute error is being considered; that is

n
9ME=1/n = X 100
i=1} X

Table 5.3

5.4 Execution Times

As a final comparison between the two integration schemes, the

L]
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execution times for each map obtained with the UNIVAC 1108 are studied.
Since the only difference among the thrze cases of any map is the

relative size of the elements, an average time of the three cases of

each map is taken. Figures 5.24 to 5.26 present the variation of
execution time with map size for the two integratjon schemes studied

and the three problems chosen. It is observed that for Maps 1 and 2 of
the uniaxial tension and pure shear problems, the execufion time is

almost the same, but for Map 3 the difference is considerably larger. For
the pure bending problem the pattern is different, Although for Map 1

the time is the same, for Map 2, the time for the 3x3 G.I. scheme in-
creases in 30%, but for Map 3 the differenau'is only of 17%. Note that
the major difference in the three problems in terms of the finite element
setup, is the prescription of the boundary conditions. O0Of course they
affect the number of zero terms in the stiffness matrix and consequently the
time of the routine that solves for the nodal displacements. From these
time results we conclude that larger maps are necessary for better time
comparisons between the two integration schemes. In [4] a time study of

these integration procedures is presented for the cantilever beam problem.

o oo e
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6. CONCLUSINNS AND RECOMMENDATIONS

It is concluded in the report that the eight-node isoparametric
quadrilateral presents many of the features of the high-order elements
with the advantage that there is no need to resort to expensive and
complex integration schemes.

It is shown that although the element contains in its formulation
the exact solution for tension, shear and pure bending problems, the
actual results are highly dependent upon the slenderness of thé element
in a given map, as well as the numericail integration scheme used. As
more terms of the displacement functions of the element enter in the solu-
tion of a problem (1inear terms for tension; quadratic terms for shear;
cubic terms for pure bending, etc.) these effects must be carefully con-
sidered in the accuracy of the solution.

The results studied show that although the 2x2 G.I. scheme provides
adequate solutions, the penalty of using 3x3 G.I. instead 1is not high
in terms of storage and computation time, but the benefit is substantially
higher. This is particulariy true in problems containing more complex
‘geometry and loading, where the displacement solution is not contained in
the element formulation. The same is valid for elasto-plastic problems
where the location and size of the yielding zone is important, and where
the construction of the stiffness matrik of an element that has yielded
requires a higher-drder integration procedure.

In the transition to solve plasticity prob1éms, apart from reserving

some storage aréa for quantities such as accumulated forces and displace-

-




ments, plastic strain energy, plastic stresses and strains, the major
change Ties on the constitutive matrix, [D]. This matrix is direct
function of the'state of loading, once yielding has occurred. This
analysis is based on the theory of elasto-plastic flow described in
detail in [8,9]. At any particular Gauss point where yieilding has

taken place the stress-strain matrix [D] must be updated at each loading
step according to the current level of stress at that point. Hence,
essentially only the assembly of the e]emeﬁt stiffness matrix gets
changed since a different constitutive matrix might be needed for each
Gauss point.

Looking toward a general stress program for large computers, which
would apply to realistic nonlinear material behavior of cracked structures,
it is considered convenient tc make the program capable to accept other
element configurations, such as special crack-tip elements, or even
other isoparametric elements. Furthermore, it should be possible to
think in a quadrilateral having a cubic response along one side which
contains four nodes, linear response along other side with only two corner

nodes, and quadratic along the other two. The coupling of a higher order '

‘element to Tower elements may be accomplished by constraining the coupling

surface of the higher order element to displace in accordance to the Tower
order element.

Finally, a desirable feature of any large computer programis an
internal map generation algorithm. Because of the midside node in the
isoparametric quadrilateral, the data preparation is considerably reduced
by writing into the program an algorithm which interpolates the positions

of midside node coordinates if the sides are straight. Only when the

59
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particular side is required to follow a curved boundary is it necessary
to specify all intermediate nodes. However, algorithms for circum-

ferential element profiles are easy to implement.
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The partial derivatives of the displacement functions for the
8-Node isoparametric quadriiataral are the following:

(a) Corner Nodes i=1,3,5,7

In &:

;gi'= 178 £, (1 + nng)(ggy + nny = 1) + 17400+ £6,) (1 + nnyley
Or, ;gi = 1/4 £,(1 # nny) (268, + nny) (A1)
In n:

aN.
3.ﬁl = 1/4 n1(1 + g;i)(ggi + oy - 1) + 17401 + 551)(1 + nni)ni

aN,
Or, "5';1"—‘- 1/4 n1(1 + 551)(551 + 2rm1) (AZ)

(b) Midside Node, £; = 0; i=2,6

In &:
BNi
T g(1 + nni) ‘ (A3)
In n:
Ny 2
(¢) Midside Nodes, ng =05 1=4,8
In g:
Ny 2,
% - 1/2 51(1 - ") (A5}
In n:
aN,
;
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