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	J	 CHAPTER I

SUMMARY

W^

A multifluids model 	 to investigate ionospheric dynamics has

been established on kinetic theory.	 Its resultant equations are used

11 to examine the following dynamic problems in the y region of 80- 2000 Km
Y 1^

of the ionosphere:

ii i)	 Propagation of acoustic modes in the 500-2,000 Km of the

^ i ionosphere (two fluid model).

ii)	 The relation between the cross field plasma drift

instabilities and type I and type II ionospheric
w.i

irregularities.

i,
iii)	 Time dependent neutral wind structure and horizontal

{I pressure gradient.

In these studies, we have found out that case (i), the dissipation

of acoustic waves by electrons, 	 is through the viscous and thermal con-

duction effects and ion is through Landau damping in the region of 500-
.,..,

2,000 Km of the ionosphere; the type I 	 ionospheric irregularity (case (ii))

„ can be excited by either temperature gradient or density gradient along

the vertical height, and the type II ionospheric irregularity can only

be generated by temperataNe , gradients; case (iii), the ion drift,

will	 initiate neutral mot!-,,, Iri an early stage of development; how-

ever, the neutrals will	 also dvive the ions in a later stage.
^a

i	 1

1



!^ li
ii n

jj	 CHAPTER II
^n	

TWO-FLUIDS DESCRIPTION OF PROPAGATION OF ACOUSTIC MODES

, I IN THE REGION OF 500-2000 KM IONOSPHERE*

.r

II-1	 General Statement of the Problem

t
Propagation of acoustic waves in the upper atmosphere of the earth reflects the

thermal fluctuations of the motions of the upper atmosphere. The investigation of the

characteristics of the propagation and dissipation of acoustic-mode- waves is of

particular interest to environmental perturbation and to plasma physics laboratory

definition and also in the design and operation of the space shuttle.
Ii	

Y,n
y I The physical properties of the medium in which waves propagate affect the

characteristics of the wave propagation. In particular, wave propagation is

p	 j! governed by the transport phenomena of the medium which depend on collision

effects of particles and waves. 	 As the acoustic modes propagate in the various

altitudes of the atmosphere, the characteristics of the wave propagation vary from

f!
region to region because the physical parameters of the medium also change. In

lii a' ionthe lower altitude re	 the	 here contains more neutral molecules than9^	 ^	 atmosphere

ionized particles.	 As altitude increases, the particle ionization increases. In the

meanwhile, neutral-neutral, ion-neutral and electron-neutral collision frequencies

decrease.	 As the altitude reaches 500 Km, the electron collision frequency

1y is400sec -1, the ion collision frequency is 0.Isec -1, and the neutral collision frequency is

4x 10
-2

 sec-1 (Hanson 1965; U.S. Standard Atmosphere, 1962). 	 In other words,

a_ the effect of neutral particles on the propagation of acoustic waves with wave

periods 0.01 to 10 seconds (or wave frequencies 0.1 	 to 100 Hz) is negligible

y in the altitude above 500 Km.	 Thus, at altitudes above 500 Km, the collision

. effect due to neutral particles disappears, and we have to consider Coulomb

collisions instead of neutral particle collisions.

As we have mentioned earlier, propagation of waves is modified by transport

effects due to either particle collisions or Coulomb collisions. 	 In the lower'altitude

atmosphere where the neutral particles dominate, the transport coefficients of

*A portion of the results are published in the J. of Geophysical Research
}!	 (1975).
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I
viscosity and thermal conduction from kinetic theory (Chapman and Cowling, 1960)

	

" n 	are

1.27
nT

	

hb	 u
n-n

^I
^	 Le

Il = a Cv µ(9 y -5)

	

, tl	 where p, K, n, and T denote viscosity, thermal conductivity, number density

and temperature, respectively, and Cv , y and vn _n denote specific heat at
l constant volume, the ratio of specific heats, and the neutral-neutral collision fre-

quency, respectively. In the collision-dominated regions, such as the D, E, and

I	 by lower F regions of the ionosphere, order of magnitude estimations show that both
I

thermal conduction and viscosity have a negligible effect on the proiw.,gation of
ti waves with periods from 0.01 to 10 seconds. As the altitude increases, the

collision frequency becomes smaller and both thermal conduction and viscosity

become significant. Thus, at the higher altitudes the acoustic modes suffer from

strong dissipation effects due to thermal conduction and viscosity. This implies

	

-	 that the acoustic modes might not propagate very long distances without being

	i 	
damped out. It seems that this conclusion was reached too fast. In

	

j •	order to have a better understanding of the physics of acoustic mode propagation

in the upper atmosphere, particularly in the transitional region from the collisional

to the collisionless situation, a new approach based on kinetic theory should be

considered.

As our primary interest is in investigating the acoustic modes propagation
in the upper atmosphere where particle transition from collisional to collisionless

i^ conditions occurs, our problem is to investigate modes with wave periods from
0.01 to 10 seconds propagating in the altitude region from 500 Km to 2000 Km .

4s In this region, isotropic electrons are in transitional between the collisional to

j collisionless states, while the anistropic ions are in a collisionless state. 	 Our

primary consideration shall be limited to wave propagation in the medium of the

(('; ionized plasma rather than the neutral particles because the effect of neutral

particle collisions is neg ligible in this region.	 The propaga tionFp 9^	 p	 pogo tion of acoustic modes

in the ionized particles has been studied for several years. 	 For the case of wave

propagation ;n a collision-dominated fully ionized plasma, a comprehensive study

3
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was done by Broginskii (1965). For the acoustic mode propagation in a collisionless

fully ionized plasma, interesting results were obtained by Bernstein and Trehon

(1960). In a study of acoustic wave propagation in the medium of ionized particles
without a magnetic field, Bhotnager, Gross and Krook (1954) presented a model of

single species rarefied ionized particles, and Gross and Krook (1956) showed a

model of two-component ionized gas. In the study of the dynamics of rarefied neutral

particles, Hamel (1965) accomplished an investigation of a binary gas mixture and

Holway (1966) proposed a statistical model with a multicomponent gas mixture. To

investigate the acoustic wave propagation in the transitional ionosphere, Tolstoy

(1972) suggested that continuum theory is inadequate and a more sophisticated

treatment based on an adequate molecular model combined with Boltzmann"s

equation should be adopted.

In the present study, we proposa to investigate acoustic made propagation

in the upper atmosphere from 500 to 2000 Km altitude, where electrons behave as if

they are in a transition state between a collisional and a collisionless state,

while the ions act as though they are in a collisionless regime for waves with

periods of 0.01 to 10 seconds. The rigorous approach to the analysis of

transitional electrons from the case of collisional to collisionless by using kinetic

equation is almost impossible. However, it has been shown by Hung and Barnes

(1973b) that a mafhematical similarity exists between the electron viscous damp-

ing and Landau damping as the electrons transition from a collision to a colli-

sionless regime. -in other words, the electron viscous damping changes con-

tinuously into Landau damping as the ratio of wave frequency to electron colli-

sion frequency passes through unity. A similar conclusion was given by Rognlein

and Self (1971) based on the hydrodynamic description, Therefore, in the present

analysis, the dynamical behavior for the transitional elec. i rons can be described

by the fluid-like equations, while the anisotropic ions follow kinetic equations

modified by ion-electron collisions.

Before closing this section, let us discuss the validity of the present theory

in this transitionrtl region. Assuming that ion and electron temperatures are in the

some order, the criteria for the validity of the present theory is

Te—̀
I 7 1'r, Ti
	

(1/

where W, T  and Ti denote wave frequency, electron and ion collision time,

4.

F;



is

ca	 respectively. There arises a question of whether the fluid-like equations are

~	 proper to describe the behavior of electrons under the criteria of validity

mentioned in Equation p). To answer this question, let us look at the conditions

for electrons to be able to satisfy the fluid equation- The criteria for electrons

to behave like a fluid shall satisfy the following conditions:

ca,	 e << w	 (2a)

su	 IkllI ae e << 1	 (2b)*

ux	 where ae and a 
i
, denote electron and ion thermal speed, respectively, and the

subscript 11 implies the component along the geomagnetic field. In the wave-
tap 	 particle interaction problem, it is generally true that u)A -<a e and wA> ai.

Fl >	 By using this characteristic and the condition (2a), e << 1/wi, we may have

Ilk I
Ia

e ^lw land	 lk ll ^e Te _ lw	 a «1	 when waves propagate fairly near

•n12.	 Thus, this deduction gives the conclusion which is essentially the

criteria (2b).	 In the limit JwI Te ^ 1 1 as pointed out by Barnes (private

d^ communications, 1974), the present theory at least gives qualitatively correct

results when Jw I	 e— a few tenths, and the collisionless theory should be

ao qualitatively correct when 	 I w e ? 3.	 Therefore, the similarity between

viscous and Landau damping suggests a continuous transition between the two.

In this sense, the collisional term is proportional toWT , and the Landau damping

i* term is porportional tote (k 11 a e) I . Thus, the two terms are always comparable
6.

'The ditterence in	 a avior between collisional and collisionless electrons lies
f" in 0)isotropy of electron pressure tensor,	 (2)the heat equation, (3)the

frictional force, and (4) viscosity. 	 Barnes(private communications, 1974)
indicated that only the collision time, not the mean free poth, is relevant for

j" collisional isoiropization; heat conduction along the field lines, which has a
scale 1AII (not 1/k), is the only appreciable heat transport process; the

frictional force (in this case	 vli T a )	 is governed by the length scale 
1AIl a

Thusisotropy, the heat equation, and friction are covered by fluid eauations

If Equation (2b) is satisfied.	 Viscosity is more complicated, but 	 the con-
:: clusion is the same.

Eil
5
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at the time scale of transitional from collisional to collisionless electrons.

As the altitude decreases below thepresent interest, electron-neutrol

and ion-neutral collisions become significant, and we have to treat as a three

fluid model (e.g. Hung and `Nu,l97S.),.,
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f^i

t	 II-2	 Mathematical formulations

	

^t	 To idealize the problem in hand, %ro assume that the plasma and magnetic

field are, on the overage, uniform throughout an effectively infinite volume, that

there is no net average electric current, and that the average electron pressure

tensor, but not the ion pressure tensor, is isotropic. Let v, P, Band err denote

ii velocity, pressure, heat flux, and viscous stress tensor respectively and let sub-

scripts or superscripts of a and i denote electrons and ions for the proper situation,

respectively. E and B represent the electric and magnetic ffelds, a the ion charge,
t ^ the ion or electron mass and c the speed of light. Then the fluid equations

fo )̂ the electrons and the ion velocity distribution f i may be written as follows

(Broginskii, 1965; Hung et al ., 1973);

^! Y'
a

n
e	 +v.(n ve ) = 0	 (3)

at	 e^

dv

	

c	 me ne dt e = v Pe ° V. TT - ene LE + - v x ^) + Re	(4)

3_	 dTe	
e=	 e_ e	 e	

O2 • ne rTt- + P
e 0 v	 -0.^	 v	 5

and

a f.	 a f.
aT + v .v fi+ a (E+ - v  B)	 avN N	 N N

	

•	 I	 N

ina	
(^ f	

T	 a fi	 _	 1	 a fi+ e
	

6
m.T	 av	 i	 m.	 a v )	 m. n. 

R.	 (a v	 )
i e	 ^	 1	 1	 1

where P t n T", PI = n. I , d = a + v . v, T is the electrone	 e e	 t	 I ^	 dt	 a t	 -e 	 e

collision time, and	 °	 R. Is the collisional momentumn transfer from ions to
^-e	 ^1

*Here the unit of T is in erg

7
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electron and vise versa. R is composed of frictional force R  and thermal force

R T, R ° R u + R T . The electron thermal flux qa is composed of analogous parts,

qe - qe* 9e . Finally, of course, the electromagnetic fields must satisfy Maxwell's

equations.

As it stands, Equations (3) - (5) show the governing equaticns of electrons,

and Equation (6) is the governing equation of ions. Equation (4) includes the

collisional momentum transfer from ions to electrons, and we have ignored collisional

energy transfer from ions to electrons in Equation (5). This is because the collisional

ion-electron energy exchange, whose characteristic time is on the order of or greater

thon (m l /me )1/2 T i which is greater than the time scale of present interest)

has been neglected. The right -hand side of equation (6) shows the ion-

electron collision term which is of the some form as the Fokker-Planck collisional

term that describes Brownian motion of particles in a moving medium with temperature

Te . Tile first term of the collision terms describes the collisional energy transfer from

electrons to ions, and the second term implies the collisional momentum transfer from

electrons to ions. Again we are going to neglect collisional energy transfer term

because the time scale of the collisional energy transfer which affects the evolution

of distribution fun ation is on the order of or greater than e(ml/me) or i ( m i /me ) I/2

that is long compared with the timescale of the problem of current interest.

In the present analysis, we are concerned with waves whose circular fre-

quency w is small compared with the ion gyrofrequency, and whose wavelengths are

long compared with the mean ion Larmor radius. Under such circumstances, the
momentum transfer due to collision can be reduced to (Cf. Hung and Barnes ., 1973a;
14736; i973c; Hung et al, 1973 )

R e = -0.71 
neVI Te	 (7)

where the subscripts 11,1 refer to the magnetic field direction e Z = B/ I B I
Similarly, the electron heat flux is

q =- Ke oII Te	 (8)
e

8
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T

li whore f	 is coefficient of electron heat conductivity. 	 Furthermore, under the
e

1 present condition, the stress tensor becomes (Hung at al, 1713)

avz°	 avx	
avz©x

i t
 °
^° _	

2 ^	 _	 1	 + _. +Y
vo [ a z	 3 (ax	 ay	 az )]zz

(9}

i^i
4a

.s

d
°	 a	 °	 a	 °	 °av	 v	 v	 av	 B  °

=	 +	
+

[ a x	 Yy	
g` C a X- 

ovanxxa = nl,Y ^+ 
a zZ

(10)

i	

I

e a

rtw
ry	 {^	 T^	 Tf	 T}

Tr	 °	 N 11	 ° N 11	 ° N 11	 °N1^	 ° /. 't 1.	 °	 N	 L	 ( 1 / .l	 T	 )

= qr
xy	 yx	 xz	 zx	 yz	 zy	 e	 o

<	 1:
i,

rt

where	 = e B / m	 c is the electron gyrofrequency, and under the current
I , e	 a

condition	 ft e T e	 > > 1 ` The zeroth order coefficient of electron viscosity is

1
eTI	 = 0.73 n	 T	 T	 01)

vo	 e	 e	 e
4	 ^

For the ion kinetic equation, the first term on the right-hand-side of Eq.

(6) affecting the evolution of the velocity distribution on the time scale is—
1	 2/T	 (m. /M	 )'	 which is long compared	 to	 time scales of importance for

^r e	 e

the wove, and may therefore be neglected. 	 Hence, From Eq: (1), the right-hand-

side of Eq.. (6) is just (Hung at al,	 1973)
Ito

ln. R.	 a 
v̂ 	 - -	

On.71 _ 
(o II Te }	 afv	 (12)- m.

j

fi

!	 h. order to solve Eqs- (3) - (6), we assume T = <T> t' 6 T (x, t), n =< n> +

RY
6n(,x,,t),P=<P>+6P (N,t), B=<B>+6B(N,t), E=6E(x,t),

E

1 ?
r

	

	 *In the ionosphere, the situation is more favorable to this condition as the
altitude is higher. In the present case, let us choose the lowest limit of
altitude, ay 500 Km, Ste	106 Hz, and e N 2.5 x 10' 3 . Then,

s 1 1	 Q re ..,. 103 which is much greater than unity. Thus, it can be sure
'Aat in the current region of interest, the condition Da is always much
greater than unity.

i	 111;	 9

L 'Y ix,.: ..	 ..

c
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11-'

lŶ:µ

v° = 6 v° (x , t) and fi = <f > + 6 fi ( v , h), where < > denotes ensemble

average. We consider the limit of o small amplitude perturbation, 16 n/< n> l << 1,
etc. If the fluctuations ore sinusoidal, the technique of Fourier-Laploce transfor-
mation is applicable. Following the calculation procedure of Hung and Barnes (1973a,b),

we will be able to obtain !iolocity fluctuations of ions and electrons in terms of the

mobility tensor M.

6 v. _ < c	M	 6E 	 j=corI	 (13)
J	 B>	 J

For the limit of hydromagnetic waves, the displacement current is always negligible.

Then the electric current density may be written as

' a	 K	 6 E	 (d4)4n a	 I

where the dielectric tensor is

K4eni <g> a <n> (M i - Me)	 (15)

Substituting the mobility tensor M 
j 

from Eq. (13)in Eq. (15), the explicit form

of the dielectric tensor is

Kxx	 0	 6'(w/ Q )

K0	 Kyy	 Kyz	 (16)

K	 Kzy	 zz

where the components of the dielectric tensor are

10
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Kxx = - \ 
C

A)2 `\	
- 1 1 2 1y 2 - 1 

J

	

2 0^	
k2	

dl	 ^L	

J(—c
	

CC	
- 11	 -1 +	 2

KyyCA) L\Ol'I	 //2Y?	 kII 2yi III	 ^I(

k_Laewpe2 C 	 2 (3re +i 2 Cv ) 1 .

+' 2 w 2 a2	
^l+	

c	 /J1

e	
\

w 2 Z',	 2w -2-
K ' " (I -A)	 pi I + ___pe_

zz	
a1 

2 k 2	 ae2 

k112 nII	 II

^j
a^

;j

	

_ (Sl
	

klwp ' 2 Z, ' (I ^) - i —P a 3 re*i
2
 v

K Yz.	
1\ dVl 2k II w n i	 wnl	 k II	 C

ww

iI

nt

J ^

iW

P"-
^s

22 k	 i 6C
Kz =^("Ll kIwpi Z,' + ; w ̂  k (1 + C 

v1
Y 	 / 2 kII w n'	 i	 II `	 1

Here 
wp 

i =4n<n(e^e/m(e) r = 1+2 /(3+2i TC )

TITC-kII Ke / (w <ne>)' c = 3(1.71 re - 0.71)-4i Cv
2

	C = 0.73 w T , aft ) = 2 < T 1	 > / m , a 2 = 2<T  > / mv	 e	 i	 ee	 e
II	 it

p^1) = 87T <n> < T`L ) >/< B>2 . U = w/Ikli I CA , k = ( kl. 0, k11)
11	 1.

CA = < B> / (4rrm i <n>) 1/2 Alfven velocity, yi - w /I k l I l 11

A = 2.13 ( r — 1) / c , and Z, = Z (y.) and Z. are the plasma dispersion

function and its first derivative (Fried and Conte, 1961) respectively.
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The requirement that Eq. (14) be consistent with Maxwell's equations gives

the dispersion relations

	

dot I JOT)2 (k k - k 2 11	 K	 = 0	 (17)
 (	 ks

Substituting Eq. (16) in Eq. (17) gives

	

C

- /ckll\2l ^

	 - 

k2 

c2 / \	 - k^c2/
Kxx 	w	 ` KYy	 w2	 Kzz	 w2	

Kyz Kzy = 0

(18)

to lowest order in W/0 i . The first factor is the usual Alfven wave dispersion re-

lation	 2

kk 
II A

and the second factor, which gives the magneto-acoustic dispersion relation, is

(
(	 2 2

\KYY	 kw2c > Kzz - Kzy Kyz = 0
	 (20)

since I Kzz I ^10 I k c% 12 .
By using Eq. (16), we can rearrange Eq. (20) by straightforward calculation

to give

r1+ 2 (al- ail ) -U 2
J 

cot2 0 = S (U , W e)	 (21)

where

	

(Ij0 S	 2(3I' +i2
S (U, W T) = 1+ a'l+ 2 

	
Z' 	 e v 11+	 ae	

vl

	

al	

i	 2
I	 `	

l

i	 4

	

a a^	 al (r-i 4	 2

	

S ) Z ' +2 (r+i	 S) a 
al 

Z'+2(a+i6C
e 11\all	 e	 3	 v	 i	 e	 3 v^ [ ail	 v

	

a	
e(re -  i 3 Sv )Zi ' - 

2 all
(22)

and 0 =
	 G^ ( k , < B >) s e = 8n <n> <Te>/<B> .

^±F	

12

Y
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'j	 ti it

I
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I
^i
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II-3	 Special Cases of Dispersion Relation

fEquation (19) gives the dispersion relation for Alfven waves in a plasma with
anisotropic ions. The rragnoto-acoustic dispersion relation,i.e. Eq. (21),is Iran-,

11 n	 scendental and must generally be solved numerically. In order to look at the physics

j'	
prescribed, it is convenient to consider a few interesting special limits that can pro-

vide insight into the character of the waves without laborious calculations.

A. Propagation Parallel to	 B >

When k I I < B>, cot 2 8 ^o , so that the left-hand side of Eq. (21) be-
comes zero, i .e.,

( 

w	 2

11 A)

or S	 w (U 2 finite), we find from Eq. (22),

I	
G

I	
^°

(23)

(24)Zi 
= 2<T  I >
 <T >e

1
4

e
_

v3

Equation (23) shows that one of the magneto-acoustic modes propagotes as an Alfven

wave when 8 = 0 in a plasma with anisotropic ions. Eq. (24) corresponds to a

j

	

	 compressive wave propagating along < B > . The analogous wave in magneto-

hydrodynamics is the sound wave, and in a collisionless plasma the analogous wave
is the ion acoustic wave which generally undergoes Landau damping (Fried and

Conte, 1961).

In the transitional case, the electron collision frequency is on the some order
of magnitude as the wave frequency, C  is the order of unity. From the result given

by Hung and Barnes 0973b), we found

h1>> i and e^1 	 (25)

13



Y ^!
Under this condition, the dispersion relation can be reduced to (Hung et of ., 1973)

l

- Cs2	 (26)k 1	 m

where C	 denotes ion acoustic velocity, and
i s

Im w	 a	 -0.49 (wTe 	 Csk	 (27b)

or

Im.w x-0.67 CCs k	 (27b)V

Similar to Hung and Barnes	 (1973b),. this result indicates that all ion acoustic

waves propagating parallel to the geomagnetic field are Landau damped, and the

^; damping is weak only if <Te >> <T i>. Particularly, for the case in ionosphere,

j	 L <T > is on the order of <T> which implies that most of the ion acoustic modee i
shall be damped out due to strong Landau damping. Furthermore, Equation (27)also shows

that the dissipation rate is proportional to k under the condition when wTe is on

the order of unity.	 T his result is similar to the collisionless case obtained by Fried

and Gould (1961).
For the collisional case, let us consider when wT e is the order of (<ne/mi).

^^	 F
The dispersion relation for the weakly damped solution becomes

QQ`
i^ w 2_	 25+4nTC2

	 <T e>
(28)

15+15 + 4 T1TC	 mi

211

Rew	
15+4il2TC„.

To be consistent with the collisional assumption, 	 t?TC shall be small compared with

j
( unity.	 Under this assumption, Equations (28) and (29) become

2	 5	 <Te>	 5	 2:1	 _

=r	 Cs	 C30)k / 	 3	 m.	 3

E' lmwar -0.21	 Te ae	 k 2	(31)

!jI^
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Ilk	 which is a sonic wave propagating parallel to <B> . Equation (31) shows that the

dissipation rate is proportional to k 2 under Iho condition when w T is on the order
e

n•	 of (ma/mi ). In other words, the dissipational rate obtained from the collisional

r;	 assumption is equivalent to the collision-dominated case (for example, see 8raginskii,

1965). Strictly speaking, under the condition, when WT  is on the order of

}	 (me/mi), ions are in the transitional from collisional to collisionless, and the

arguments similar to Hung and Barnes 0973c) should be employed.
Equations (27) and (31) show that dissipation rate of acoustic modes gradually

1)1,;
change from the factor proportional to k 2 to k as the dissipation mechanism transit
from Coulomb collisions to Landau damping.

B. propagation Transverse to < B >

	

When kl <B>, Z' 0 andETC	 0 . Under this condition, eN	 N	 '

jbecomes 5/3 and expression (21) simplifies considerably,
)1 l;

i
2

	

1+	 + p	 5- i	 v	 (32)(k CA ) —	 L e	 6	 6

I '	 Therefore, we have
i

( U1 — 2 2 < T̂ 	 5 <T e>	 ^v qe
C	

>` k	
N 

A +	 M.	 + 3	 m. -	 3	 m.
	 (33)

fy

In the transitional case, w e is the order of unity. Equation (33) can be
further reduced under the assumption of weakly damped solution, i .e.,

< i 	 5

(
W)2 Pe C 2+ 2 I> + 3 <Te>

\ k	 A	
m 

2+	 i 2 + 5	 2

	

CA	(al)	
3 Cs

C2
Imw	 0.1216( 2	 i 2	 5	 2 1 12 	 e)k2 (35a)

lCA + (°l) + 3 Cs J

U'	
15

(34)
;I Ii u:»
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a }

E
r '^

f	 r':
or

C 2 S

	

{	
I m w-0.0888	

s	 v k2 	(35b)

	

i	 —	 C2 + (a i )2 + 5 C2 1
	x.	 ^A	 1	 3 sJ

i4 	 For the collisional case,S v is small as w	 is much less than unity. The

dissipation rate becomes

1 m w = —0-122C 2  r k 2	 (36)
s e

Li

It is interesting to note that, under present calculation, the phase velocity

of the transitional case in Eq. (34) is intermediate between the analogous expression
which arises when ions are collisional

2	 <T>+<T>

	

i,	 k =

	

CA 2 + 3	 m, a	 (37)

f	 and that which arises when electrons are collisionless

2	 <Ti> }R e>

	

{ E;	 r k) 	 CA2 + 2	 1 m 1	 (38)J

	

!'` ?ly	 In the meanwhile, the dissipation rate also changes from the factor proportional

to k2 to k asthe wave particle interaction changes from collisional to transitional

cases. In a collisionless plasma, strong Landau damping can occur for 6 slightly

different from rr/2 (Barnes, 1966). However, when k is exactly perpendicular to
)I <B>, this Landau damping vanishes. In the transitional case, the result is different.

I
1	 No matter how small the electron viscosity is, as long as C is not zero, viscousv

dissipation always can be found even when k is exactly perpendicular to <B> .

1Y ^	 Kvs
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II-4 Conclusions

In the present study, we have investigated the mechanism of acoustic

mode propagation and the characteristics of wave dissipation in the region

of the upper atmosphere in which the transport phenomena are transitional

from Coulomb collisions to Landau damping. The results from the current

analysis are helpful to understand how the acoustic modes propagate and

dissipate in the upper atmosphere from ionosphere to magnetosphere, which

is significant in the environmental perturbation studies.

As shown in Tables I and II, the present study of acoustic-modes

propagation, based on a theoretical model of the upper atmosphere from

500 to 2000 Km altitude, shows that the dissipation rate changes from a

factor proportional to the square of the wave vector to a factor only pro-

portional to the wave vector as the altitude becomes higher. These results,

approaching the collisional-limited case, are similar to the collision-

dominated case (Brapinskii, 1965) in which the dissipation rate is proportional

to the square of the wave vector, while the limit approaching the collisionless

case is similar to the collisionless case (Fried and Gould, 1961) in which

the dissipation rate is proportional to the wave vector. Thus, the

dissipation rate changes gradually from a factor proportional to the square

of the wave vector to the wave vector as the wave-particle collisions change

from collision-dominated to collisionless situations. Physically, the

dissipation mechanisms are also different. In the current transition model,

acoustic wave dissipation by electrons is through viscous and thermal

conduction effects, and by ion particles through Landau damping (wave-

particle resonance interactions); while in the collision-dominated case,

it is simply due to viscous and thermal conduction effects, and in the



i u6

collision-free case it is due to Landau damping. For the waves propagating

along the magnetic field, two extreme examples are given for the transitional

model, namely the collisional-limited case with wre on the order of (me /mi)

^Y	 and the transitional-limited case with w T  on the order of unity. The

ik	 collisional-limited case of the transitional model shows that the square of

^-	 the characteristic phase velocity of acoustic waves in square of ion acoustic

velocity multiplied by 5/3 or y (where y is the ratio of constant Not_sure

specific heat to constant volume specific heat) which looks quite similar

to the collision-dominated model in which square of the phase velocity is

the square of ordinary sound wave speed, yP/p (where p = men e + m i n i + mnnn).

In the transitional-limited case of transitional model phase velocity is

n--
{Y	 equivalent to ion acoustic velocity which is exactly corresponding to the

phase velocity in collisionless case. In other words, change of the phase

velocity of acoustic modes from collisional to collisionless cases are from

a factor of y or 3 to a factor of unity. Thus, it is expected that the

phase velocity of acoustic wave decreases gradually from collisional to

f`	 collisionless cases if the temperature keeps a constant value. Similar

results are also shown for waves propagating transverse to magnetic field.

Finally, we may conclude from these studies that the long wavelength

rr	 acoustic mode is a much less damped wave for the collisional than the
f+ is

`	 collisionless cases, and the short wavelength acoustic mode is more easily

observable iii the collisionless than in the collisional cases since the
G->

dissipation rate of the acoustic mode changes from a factor proportional to

the square of the wave vector to the wave vector as the altitude increases

in the transitional region of the ionosphere. In the meantime, the physical

mechanisms and phase velocities are also different for collision-dominated

qq'
	 transitional and collisionless cases.
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3^ !	 CHAPTER III

THREE FLUIDS DESCRIPTION OF THE CROSS FIELD PLASMA

DRIFT INSTABILITIES AND EQUATORIAL SPORADIC E*
k ♦

III-1	 General Statement of the Problemif	Y	
Triggering mechanisms of sporadic E, in general, depend on the

i

geomagnetic latitudinal location. For example, sporadic E in the high

latitude region and the impinging of energetic particles through magneto-

	

I L	 spheric cleft, is considered to be responsible for the mechanism. In

the middle latitude, it is believed that the redistribution of ionized

particles caused by the wind shear may be responsible for the creation

of sporadic E. Concerning the equatorial region, Matsushita (1951),

suggested that the equatorial sporadic E (Es-q) can be related to the

equatorial electrojet. Since then, intense study of the irregularities of

equatorial electrojet has been carried out by employing the Jicamarca

VHF radar echoes. In the present study, our interest is mainly limited

to the case where the sporadic E occurs near the geomagnetic equator.

The equatorial electrojet is a strong current embedded in a

slightly ionized ionospheric plasma in the E lay^3r near the geomagnetic

t
equator.	 This current is a flow of electrons, motivated by E z x B

drift, across geomagnetic field lines through ions and neutrals, where

Ez is the induced electric field along vertical height and B is the

^^ geomagnetic field.	 By using radar backscatter, extensive investigations

1 have made it possible to elucidate physical processes for the formation

i=. and movement of irregularities. 	 Balsley (1965; 1969a, b) classified the

*Part of the results are published in the Proceedings of International
Conference on Recent Advances in the Physics and Chemistry of the E
Region ( Ed. by S. Matsushita and L. G. Smith) August 1974.
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irregularities into types I and II. The instabilities driven by the
Mtl

electrons drifting through ions across the magnetic field that was proposed

k'	 by Farley (1963a, b) and Buneman (1963) are generally accepted as the

jY

generation mechanism of this type I irregularities, Type II irregularities

are considered to be generated by a plasma density gradient in crossed

}	 electric and magnetic fields.
Y^

The analysis of VHF radar echoes from electron concentration

irregularities in the equatorial electrojet by Balsley (1969a) has

indicated that there are two distinct types of irregularities in the

region. Also,Cohen (1973), by using the spectral decomposition of the

power spectrum of radar echoes at 50 MHz from the equatorial electrojet,

found out that the phase velocity of type I irregularities is comparable

to the ion-acoustic speed, and the electron drift velocity can exceed

the ion-acoustic speed. The indication of experimental results that the

electron drift velocity in the equatorial electrojet can be supersonic

is contrary to some existing theoretical opinions (e.g., Sato, 1973).

For the type II irregularities, the -xperimental results showed that

both phase velocity of irregularities and electron drift velocity are

smaller than the ion-acoustic speed.

The theoretical treatment of the problem of growth of t_pe I

and type II irregularities in the electrojet has been examined extensively

by Rogister (1971, 1972), Rogister and d'Angelo (1970), and Sudan, et al.

(1973). However, their theoretical models were limited to the two fluid

model (i.e., ion and electron fluid) and no neutral interaction was

considered. Furthermore, they did not cooperate the energy transport in

their studies and treated only the problems of the density gradifPyits in

their models. The problem of temperature gradients was considered by

Cunnold (1972). However, he also used the two-fluid approach and did

24
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not consider convective motions for both ions and electrons. In the present

study, we propose an inhomogeneaus three fluid model to investigate the

unified theory of type I and H electrojet irregularities which may be

relevant to the mechanism of equatorial sporadic E. Particularly, we are

interested in physical mechanisms of type I and type II irregularities and

how the electron particles are accelerated due to EZ x D drift in the electrojet.

Thus, we have examined the density gradients and temperature gradients for

three species and both as the driven mechanism for the electrojet. The

results of computer computations based on the present model have been

compared to the experimental observations with reasonably good agreements.
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1II-2	 Mathematical Formulations

This study is concerned with the propagation of ionospheric

disturbances through the inhomogeneous medium which includes the species

of electron, ion and neutral particles. Thus, a three-fluid model is

proposed to investigate the characteristics and instabilities of the

propagation of waves and particles.

Let n, v, T, P and v denote number density, velocity, temperature,

pressure and collision frequency, respectively, and let superscripts and

subscripts e, i and n denote electrons, ions and neutral species,

respectively. Let E and B be the electric and magnetic fields, a the ion

charge, m the mass, and c-the :,peed of light. Then the governing equations of

particles and fields may be written as follows:

anjq j	 i+ v - (n j v j ) = 0	 j= e, i and n	 (1)

dMn

mnn
n dt = - o Pn - mn n n vni(vn _vi)	 (2)

^..!	 dye 	 1
^I. mene dt - - V P e - ene (E + c ve x B)

	

_ menevei 
(Me - Xi)  - meneven (Me _Yd	 (3)

dv -	 1

q
I mini

i

M - - 0 Pi + en i (E + I v i x B)

	

m.n.v.	 (v. - Me) - mini'.	 (v. - v )	 (4)
^ i ie -i ^e	 i i in	 i	 n

dT.

7e
	 3 

nj d + Pi D • v i = 0	 with j = e, i and n	 (5)
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ii
where d/dt = 2/Ht + (v •v). Finally, of course, the electromagnetic fields

must satisfy Maxwell's equations.

In the present study, the time scale of interest is on the order

of 0.1 second. Under this condition, momentum exchange through particle

collisions between neutral-ion, electron-neutral, electron-ion, ion-

neutral, and ion-electron, but not neutral-electron, plays the significant

role in our analysis. Energy exchange through collision has be gin ignored

in the present model because the time scale of interest of energy exchange

through collisions is much longer than the time scale of interest in the

present study.

In general, physical parameters in the upper atmosphere are in-

homogeneous. Particularly, the inhomogeneities of number densities and

temperatures for three species of particles along the vertical height is

significant. As shown in Figure is we choose a Cartesian coordinate

system as a geometry for the magnetic equator, where e  is vertically

upward, ex is eastward, and e  is northward. The inhomogeneities of

number densities and temperatures are assumed to be much smaller than

their average values respectively so that Taylor series expansion with

respect to the inhomogeneity is applicable (Mikhailovskii, 1967; Hung

and Liu, 1971), i.e.,

nj = <ni
> (1 + kn

i
 • dz) + dni

I ^'	 Tj 	 <T
i
> (1 + kT^	 dz) + 6TH

v	
,

l	
with i = e, i and n

t

27
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where

*	 1	 d<nd > j	 *	 l
knj = < n^	 dz	 -Tj - <T j>

z = zo

and < > the average value and 6 the small fluctuation

The limit of small amplitude fluctuations, 16n

considered for the calculation of dispersion relation.

are sinusoidal, i.e., proportional to

exp [i (k • x - wt)]

equations (1) - (5) become,after substituting equations (6) - (7) and

linearization,

dn•

<	 = w (k + i k nj ) • 6vj 	j = e, i and n	 (8)

J

z

6vn (1 + i vn-a}) = 2a2 [(k- i 2 kTn) • 6vn] (i knn+k)
5w

3a 

5w2 
[(k + i knn) • 6vn] (i tTn - k)

+ i "ni ay.	
(g)

V 	 3a?
dv. ° +i inl=	 t	 2— (k-i 9 k* ) • 6v	 (k+i k* )

0 i / 52 i {[3m -	 2 -Ti	 -i^	 -ni

+[I (k +i kn i ) • 6v i I (k - i k*i)1 +i <6>6E

+ i 6v i x ey + i 
'in 

6vn	(10)
Pi
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of physical parameters.

kn>1<< 1, etc„ is

If the fluctuations
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where ,ty isa unit vector in »d retie, which is along  #o@a% ,#b,

a = (&m< 9\ is the gam 7,=e,^ d y species a ands

et\c is the cyclotron frequency of species J.

By using  equations @>- (12)  together with  Ma 9% equations,

we can obtain be following solutions:
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The expressions of /x /, /, /, /, /, \, /. and\ .m _y

complicated, tBre e, we We skip the results given & &«0974).

R is e% interesting to point out that the neutral wind  s
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(13),  a have

x
`%xzMn
	 n	 Mnxx	 , ^x

an _ <
yx	

fy «y Hg

z
^n Mn	 Mn
	 n

x	 y	 \z ®z
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EqaerOgshows how neutral wind is accelerated by 	 electromagnetic

fields  brf ion-neutral collisions.

Now tB electric current density, @,electric conductivity ten_,

a,and dielectric tensor, K, are defined a

y=e#>(@,-«/	 R/

5a =	 a\	 (18)

and

Kg=a *iW %a
	 (19)

By _bete@ equations OA,HW,Od, and Om in gag e (19), we

have the expression R dwse%t mrKg4eha_e&Hz,tB

material constant of ionosphere, i.e.,

\	 .



where mpe = 4%<n>  e2/me.

As is well known, the requirement that equation (20) be consistent

with Maxwell's equations gives the dispersion relation

det [(W)2 (k k-k2 1) +K] = 0	 (21)

The dispersion relation which governs the behavior of wave-like

disturbances in the ionosphere is quite complicated. The numerical

computation is generally requested to solve this problem.
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III-3 Preliminary Results of Numerical Computation and Conclusions

As mentioned earlier, the purpose of the present study is to

investigate the plasma drift instabilities in which the growing drift

waves propagating across the field lines may contribute to the triggering

mechanism of sporadic E in the region of magnetic equator. Since the

dynamics of wave propagation is solely governed by the dispersion relation,

equation (21) which is quite complicated, the numerical computation is

a necessity to the present investigation.

At an altitude of 110 Km, the parameters with T e = T i = Tn = 250°K,

yen = 2.88 x 10" sec- 1 , vin = 8.9 x 10 2 sec- 1 , vei = 1.8 x 10 7 sec -1,

vne = 8.9 x 10- 4 sec- 1 , vni = 3.2 x 10- 5 sec- 1 , and n i = 1.5 x 10 2 sec
"I

are chosen. All the other values of physical parameters under non-disturbed

conditions are chosen from U. S. Standard Atmosphere (1962, 1966). In

order to have a better comparison with existing models of type I and type

II irregularities, calculations are proceeded in the following three

cases:

(1) Case A: Electrojet Without Density Gradients

In this case, we assume that k nj -* 0 and kTj # 0.

The date of temperature gradients for th=ree species are

chosen from U. S. Standard Atmosphere (1962, 1966).

Three roots with positive growth rate were obtained

for this case from dispersion relation (eq. 21).

Table I shows the result of this case. Westward

drift waves with phase velocities from 303 m/sec to

384 m/sec are excited. Growth rates of the excited

waves (.Im w/Rew) range from 0.06 to 0.17. This
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kind of instability resembles type I irregularities.

(2)	 Case B:	 Electrojet Without Temperature Gradients

In this case, we assume that kTj	* 0 and knj # 0.	 Again

II the data of density gradients for three species are chosen

from U. S. Standard Atmosphere (1962, 1966). 	 Four roots

with positive growth rate were obtained for this case from

dispersion relation (eq. 21).	 Table 2 indicates this

result.	 Again westward drift waves with phase velocities
jf

from 329 m/sec to 395 m/sec are excited.	 Growth rates

11
of the excited waves (Imw/Rew) range from 0.04 to 0.12.

Similar to Case A, this kind of instability resembles
a^

type I	 irregularities.

(3)	 Case C:	 Electrojet With Density and Temperature Gradients(i

_.^ In this case, both kTj # 0 and knj # 0.	 Again data for

both temperature and density gradients for three species

are chosen from U. S. Standard Atmosphere (1962, 1966).

Nine roots with positive growth rate were obtained from

dispersion relation	 (eq.	 21) for this case. 	 Table 3

shows this result. 	 Westward drift waves with phase

velocities from 180 m/sec to 307 m/sec are excited.

In this case, none of the waves, which propagate faster

than ion acoustic speed, are excited. Growth rates of thn

ry excited waves are generally very high, ranging from 1 to 3.

This instability resembles type II irregularities.

W.,
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r Comparing the results in Tables 1 to 3, some interesting points

are discovered.	 Type I irregularities of equatorial electrojet in lur

model can be generated in the inhomogeneaus medium along the vertical

height if either the temperature gradient or density gradient vanishes.
it

In the meanwhile, type II irregularities can be excited if neither the

temperature gradient nor the density gradient vanishes. 	 Furthermore,

)i
the growth rate of irregularities obtained from the calculation suggests

that the wave-wave nonlinear interaction should be taken into account for

i^
type II irregularities while it may be proper to proceed linearized theory

for type I irregularities.	 In other words, turbulent mechanism, which is

different from the present model, may be the characteristic of type II

i irregularities, while the laminar theory is applicable to type I

•, irregularities.

}}^^ Sugiura and Poros (1969) suggested that the motion of east-west'l
electron electrojet drift velocity dve can be determined as

({

{ dve	 <B> 6Ez (z) '	 (22)

In our expression, 	 e and ge, in equation (15), are practically	 lible

since Ee and gea re several orders smaller than Cz . Therefore, we have

dve -	 ^e 
dEz	

(z) '	 (23)<B>r

I
IL

i

In our case, numerical computation shows that !z is practically

}( on the order of unity which also agrees with equation (22). 	 Since the

vertical polarization field varies from 20 mV/m in the daytime to -20mV/m
{(X

at night (Kato, 1973; Lee and Kennel, 1973), change of direction of electron

I drift in the equatorial electrojet from westward during daytime to east-

ward during night hours can be fully explained based on this mechanism.
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To check the observations made by Cohen (1973) that the

a. horizontal electron velocity in the equatorial electrojet may exceed

r
the ion acoustic speed, numerical computations are also made by employing

equation (15) to calculate the westward electron velocity in the electro-

jet for the type I irregularities.	 The results show that the westward

velocity of electrons may reach 450 m/sec, which exceeds the ion acoustic

ry speed, for vertical polarization electric field being 18 mV/m and west-

ward polarization electric field being -1 mV/m. 	 This result agrees with

the experimental observations made by Cohen (1973).

In closing, the following conclusions are made from the present

L. study;	 (1) triggering mechanism for the sporadic E near magnetic

.1 equator is due to the inhomogeneous medium (gradients of densities and

temperatures in three species of particles along the vertical height)

Hihich create cross-field plasma irregularities imposed on westward

electrojet;	 (2) type I irregularities of equatorial electrojet can be

excited in the inhomogeneous medium along the vertical height if either

the temperature gradient or density gradient of three species of

particles vanishes;	 (3)	 type II	 irregularities of electrojet can be

excited for the existence of both temperature and density gradients

of three species along vertical 	 height;	 (4) strong growth rate of type

1.. II irregularities suggests that turbulent mechanism may be the main

structure for the type II irregularities; 	 (5) rather weak growth rate

(1
in type I	 irregularities indicates that linearized theory may be

applicable for type I 	 irregularities; 	 (6) vertical	 polarization field

which shifts from positive in daytime to negative at night indicates

trii
L'. horizontal electron drift in electrojet change from westward in daytime

i
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to eastward at night; (7) the westward electron drift velocity in electrojet

can be on the order of or exceeds ion acoustic speed for type I irregularities.

Finally, we have shown that the three-fluid model can be used to

predict both type I and type II irregularities by introducing proper physical

mechanisms; namely, density gradients and temperature gradients of the three

species.
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FIGURE CAPTION

Figure 1	 Geometry of Cartesian Coordinate System Near Geomagnetic
Equator.
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APPENDIX

PARTICLE VELOCITIES AND MOBILITY TENSORS IN

l^

	
INHOMOGENEOUS THREE-FLUID 140DEL

yc

lf"

n.

I^a
i3

L

Li

Dynamics of particle acceleration and wave excitation are governed

by the fundamental equations of three-fluid model shown in equations (1)-

(5). If we assume that the inhomogeneities of temperatures and densities

for three species of particles are mainly along the vertical height, we

have the expressions equations (6) and (7). If we consider only the

small amplitude fluctuations which are sinusoidal, fundamental equations

can be rewritten as equations (8) - (12) after substituting' equations

(6) and (7) and linearization. To solve the equations (8) - (12) together

with Maxwell's equations, let us assume that the waves are mainly propa-

gating in north-east plane. Then, the velocity of neutral particles can

be obtained in terms of the velocity of ion particles

dvn
	 ^n	 En	 ^n	 dvi

d= nn	 nn	 nz	 6vi	 (A-1)

dvn	 4n	 Cn	 Cn	 6vi

where

gx = i	 1	 vni
r

I (1 + i	
vni 2	 *	 *- 6 an k

Tn k nn l (1 + i vni

2	 2

an_ _n Dn w ILLL w 5w 	 J w w2

r

2	
S.eJ

2

+ gam ll k* -k* k* -2k
*

25 w"	 ( Tn	 nn) ( Tn	 5 nn)]

i
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I	 ^j

11s
y	 1 Joni g a^

I

k ll 	*	 *	 *	 2
Fn -	 Dn w	 25wy	 (kTn - knn ) kTn- 3 knn)

y;

an' 
kl k  I (	 vni	 6 an kTn knn 1
w 	 \1 + w -	 5w 

!I

l	 z _ 1 vni 3 an ki (kTn - knn)vni
^n -Dn W	

2	 C1 +i w)
5w

x =	 1 vni	 g an 
k ll k1 (kTn - knn )	 *	 2

nn 	i Dn w	 -	
5w4	

kTn - 3 knn)

z *	 *

i y	 + an

2
 ^l k ll ( 1 + i vni _ 6 an 2n knn

 
)l

	

V	 V	 a2 k 2	 V
n^ _ -i Dn wi I (1 + i w^	 nwz 1 ) (1 + i wi

	

2 *	 *	 y 2_ 6 an 
kTn knn) + 

g an kl 
kTn " knn ) ^ k*	 2 k*

5w 2 	/	 5w"	 Tn - 3 nn)]

r

'd

2	
*	 *

nz = 1 vni 3 an kII(kTn -
 

knn ) (1 + i vni )

n Dn w	 5 W2	 w

r-

x 	 1 vni 3 a
2 k	

/ *
	 *	

//	
v

J('	 ^n	 Dn w	 5w21 \
kTn	 3 knn \1 + i wi^

z

y	 1 vni 3 a n k Il	 *	 2 *	 vni

	

^n _ _ Dn w	 5 w2	
Nn - 3 knn ) ^ 1 + i w)

lql
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and

v	 v	 v	 a 2 k2

6 Z = i 1	 ni (1 + i ni ) (1 * i ni _ n2 )

n	 Dn w	 w	 w	 w

V	 6 a 2 k* k*	v	 a 2 k 2	a2 kV
D = \1 + i ni _	 n Tn nn ) (1 + 2i ni - n	 _ i n	 ni
n	 \	 w	 5w2	 `	 w	 w 2	 w^

vni	 18 an ki k^l (k* - k
* ) (k* - ? k* )

w2 )	 25wc	
Tn	 nn	 Tn	 g nn

dvi ^i	 ^i	 Ei dEX

6vi C= < ni	 n;	 ni 6Ey

6vi 4i	 4 6EZ

4+ 9 an

	 Tn - knn ) (kTn - 3 knn)
 [^2(1+i25wavwi)

_ 2 an 
k  

Iki^w2

Here, subscripts 1 and 11 denote the components perpendicular and parallel

to the geomagnetic field, respectively. In the present model, subscripts

1 and 11 particularly imply the components along east and north directions,

respectively.

Velocity of ion particles can be solved in terms of mobility tensor,

i.e.,

(A-2)
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J
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az kz J
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vi n
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Finally, velocity of electron particles also can be solved in terms

of mobility tensor, i.e.,

x	 x	 Y	 z 6Edve 	 ^e	 ^e	 ^e	 x

Ij
d e = <B>	 ne	 ne	 ne	 dEy	 (A-3)

z	 x	 y	 z
Eve	^e	 ^e	 4e	 8Ez
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CHAPTER IV

u.	 TIME-DEPENDENT NEUTRAL WIND STRUCTURE
IN THE AURORAL E REGION*

H•

IV-1	 Introduction

Recently, Brekke, et al. (1973) presented neutral winds in the

auroral E Region, deduced from measurements of the ion drift velocity

at different altitudes by the incoherent scatter radar facility at

Chatanika, Alaska. Because of experimental limitations, only two

data points per profile, corresponding to 110 km and 167 km, lie

approximately within the E Region. These values are weighted averages

over severai tens of kilometers in altitude so that no structure between

these al ti tudes  is available. In this study a theoretical model is

constructed in an attempt to determine the neutral wind structure in

this region.

i

A	 IL-.

}n'

ij

*This work was done by S. T. Wu and R. H. Comfort. Portions of the
results are published in the Proceedings of International Conference
on Recent Advances in the Physics and Chemistry of the E- Region (Ed.

by S. Matsushita and L. G. Smith), August 1974.
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IV-2	 AnalL iA

The model developed is based on electric fields as the primary

driving force for the ions, with momentum transferred from the ions to

the neutral gas through collisions driving the neutral wind. Both Fedder

and Banks (1972) and Heaps (1972)have demonstrated that viscosity in the

neutral gas is important, even at E Region altitudes, in redistributing

d, momentum vertically; viscosity is therefore included in the neutral

ii equation of motion. 	 In addition, Heaps (1972) has shown that the

coriolis force is important in changing the direction of the neutral

wind over the time scale of interest (several	 hours); this force is

also included in the neutral	 equation of motion.	 In this initial

state of model development pressure gradient terms are neglected, as

are the continuity and energy equations. 	 Model values are used for
ti.

the densities and temperatures governed by these equations. Gravi-

tational forces are assumed to be balanced by vertical pressure gradients

i - in the static diffusion models from which model values are obtained;

^•
t

therefore, as a first approximation, gravity and the vertical pressure

" gradient are not included explicitly in the vertical equations of motion.
a.

With these assumptions, the governing equations for the present

problem are the ion equation of motion

+
V.

e
2t =
	 (+E + e x) - vin (

 
vi - vn )	 (1)

mi

and the neutral equation of motion

_•	 avn _	 1 
V , 

T - v (vn - vi )+	 zvn xn E	 (2)
Pn	 ni

^P
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e

where i is the stress tensor, given by
^s

f

Ti3 _ 
-n

evi	
laaye + Biel

2
+ 3 n	 3ij D
	 V.	 (3)

^r

"° In equations	 (1) - (3) vi and vn are the ion and neutral wind velocities

'+
m. in 

and 
vni 

are average ion-neutral and neutral-ion collision frequencies,

it
E and B are the electric and geomagnetic field strengths, m i and Pn are

the mean ion mass and neutral mass density, n is the coefficient of

absolute viscosity, a and c are the electronic charge (magnitude) and

^• speed of light and S1, is the earth's angular velocity vector. Horizontal

gradients in these quantities are assumed to be negligibly small.

^. Average collision frequencies v in and v 
n i 

are evaluated in the following

way:

T 1
in -	 nr urs vrs

-	

Pi
• vni	 pn vin

where r and s range over all 	 ion and neutral	 species respectively, It

is the reduced mass, and v	 is the ton-neutral collision frequency for
rsL

momentum transfer as given by Banks (1966).

t'4 For convenience in performing the calculations, the ion equation

• is treated in the "plasma" coordinate system (Figure la) and the neutral

equation in a local geographic coordinate system (Figure lb). 	 The
i

transformations between these coordinate systems for an arbitrary vector

q are:
r7
{j E (i)	 From plasma coordinates 	 (1,	 2,	 3) to local	 geographic

coordinates	 (x, y, z)

61
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'^ I

qx =
q2 sin6 - cos6 (q l sin I + q3 cos I) (4a)

n qy = q2 cos6 + sin6 (q l sin I + q3 cos I) (4b)

qz =
ql cos I - q3 sin I (4c)

u^
(ii)	 From local geographic coordinates (x, y, z) to plasma

ti. coordinates (1, 2, 3)

q l = qz cos I - sin I (q x cos6 - qy sin6) (5a)

-` q2 = q 	
sin6 + q 	 cos6 (5b)

q3 =
-qz sin I - cos I	 (qx cos6 - q 	 sin6) (5c)

J

L.

i,

' t
A'
tj

The angles I (magnetic dip angle) and 6 (magnetic declination angle)

are defined by Figure lc. All results are presented in the local

geographic coordinate system.

Because of the high conductivity along magnetic field lines,

the electric field t is assumed to have no component parallel to the

magnetic field. and E is assumed to be mapped down the field lines

without loss or rotation to all altitudes of interest. Brekke, et al.,

(1973) provides data for the E x and E  components of electric field.

The assumption of no parallel electric field (E 3 = 01 allows equation

(5c) to be solved for Ez , giving

E  = - cot I (Ex cos6 - E  sin6)	 (6)

Since E is used only in the plasma coordinate system (1, 2, 3), equation

(6) is used together with equation (5) to express E l and E2 in terms

of the Ex and E  data.

In early numerical tests, using an explicit finite difference

technique, it was determined that the ion equations of motion come

62
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is

into a steady state with constant driving forces within a few collision

times (1/v in ). For the models used, these collision times vary from

-10- 4 sec at 90 km to -1 sec at 250 km. Hence, at all altitudes of

ka interest the ions achieve a steady state with driving forces within a

few seconds, providing the driving forces vary only slightly during
i4

this time. In this problem, the driving force is an electric field

{.
	

which varies significantly only over a period of several minutes (values
{ c.

presented by Brekke, et al. (1973) represent at least 10 minute averages).

The time-dependent ion equations can therefore be replaced by the time-

j '	 8vi	 1
independent equations	 at = 01 with little loss of accuracy. Ion

component equations in plasma coordinates then have the customary form

i
i	 2

w 	 w

E"4vil	
- 2 vnl +	

(i^t c+vn2 + 	B c(7a)
 i	 2

1 + (wi /;in )	 "in	 \^in^ —

f

1	 wi	 2	 1	 wi 2

v i2 -	 2 vn2 + - (E

	 El

B c - vnl J 	 B c	 (7b)

l + (wi /yin ) in	 ("in) —

VU = v0
	(7c)

#	 where m i = (eB)/(m ic) is the mean ion gyrofrequency. The time dependence

4

of vi is now implicit in the time dependence of t and vn.

The coupled set of time-independent ion momentum equations (7a)-

(7c) and neutral momentum equations (2) is solved numerically, using an
i

explicit finite difference technique, by prescribing a value of the

} J	 electric field at each time step. As initial conditions, all neutral
r

velocity components are taken to be zero. Boundary conditions at 90 km

63
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are the vanishing of all neutral velocity components, and at 250 km,

8vn
tiei =0. These boundary conditions, while not strictly correct, have

little effect in the region of interest, 100 km to 200 km. Two different

t sets of electric field values are considered, a constant electric field

and electric field values inferred by Brekke, et al., from data taken

with the incoherent scatter radar at Chatanika, Alaska. 	 Model neutral

parameters used are obtained from a Jacchia-71 model atmosphere at a

constant exospheric temperature of 1000 degrees. 	 Ion densities, both

day and night values, are taken from Brekke, et al.	 (1973).	 Crude

ion composition models for day and night have been formed based on the

rocket data of Kopp, et al.	 (1973). The only time variation associated

with these models in the calculations is the use of the night model

during hours of darkness for the calculation using Chatanika data,
r

while using the daytime model for all other times.	 With these models,

in ° w
i at 122 km.

IV-3	 Results

In order to understand more clearly how the •ion-neutral	 system

responds to electric fields, a simple case is considered initially. A

constant electric field of 20 mV/m is applied for five hours in the

e: + x (south) direction, followed by three hours of zero field. 	 All

geometric parameters correspond to the location of Chatanika, Alaska

(next example), and daytime model values are used. 	 Figure 2 shows

the ion and neutral velocity components as functions of time at

altitudes of 115 km, 125 km, and 150 km.	 The difference in magnitude

t}` of the ion components at these altitudes clearly displays the effects

of increased collisional coupling with the neutral	 gas at lower

,
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altitudes. In addition, the inertia of the neutral gas is evident at

T = 5 hours, when the electric field driving force is terminated; the

"coasting" neutral wind then becomes the driving force for the ions.

To see the altitude structure of the velocity fields, altitude

profiles of all velocity components are shown for T = 5 hours in Figure

3a. The same calculation has been performed with the coriolis term

set to zero in order to determine the effect of that term on the calcu-

lation; resulting profiles are shown in Figure 3b " Comparison with

Figure 3a shows clearly that the coriolis force is primarily responsible

for the magnitude of the vertical components. This force is also seen

to cause a redistribution of momentum among the horizontal neutral velocity

components, with consequent effects on the ion velocity. A similar

calculation setting the viscous terms to zero gives results (not shown)

very similar to Figure 3a. The primary effects of viscous terms are

found to be a small damping of the vertical components and a minor

smoothing of the altitude profiles.

For more realistic time variations, electric fields determined

by Brekke, et al. (1973), from incoherent scatter radar observations

at Chatani ka, Alaska (L=5.7, A = 65*,  I=76 . 5°, 6= 29 0 ) for July 10 -11 ,

1972, are used. These electric field values are shown in Figure 4a (note

that here +x is  south, while Brekke, et al. (1973), used positive

values for north). Determination of electric field values was made

from high altitude ion drift measurements, while lower altitudeion

drift measurements were used to deduce neutral winds. The technique

for the latter determination, described in detail by Brekke, et al.

(1973), results in a weighted height-integrated value for neutral winds

YY

{



.au

ua

with the primary weighting in the 110 km to 120 km region, but varying
u^

rw with the ion density profile.	 These neutral wind values frovi; 8rekke,

U a
et al.	 (1973) are shown in Figure 4b.

Time variation of ion and neutral wind components, calculated

as described above for the electric field of Figure 4a, is shown in

Figure 5 for altitudes of 115 km, 125 km, and 150 km. 	 Ion velocity
a.

temporal structure parallels that of the electric field while the

neutral components vary smoothly, almost sinusoidally in time. Altitude

effects are particularly noticeable in the y components.	 Representative

examples of the altitude structure are shown in Figure 6.	 All ion and

a neutral velocity components are shown as functions of altitude for
Yi

0800 hours UT in Figure 6a and for 1030 hours UT in Figure 6b.	 These

^ y
d, profiles, as those in Figure 3, are characterized by large gradients in

the 110 km to 130 km region, and in some cases, a reversal of direction

there.	 Above 140 km the velocity components change rather slowly with

altitude, reflecting the reduced collisional coupling in this region.
e.

A comparison of the neutral velocity components in Figure 4b

with those in Figure 5, while not strictly appropriate quantitatively,

is nevertheless instructive. One notable difference is the relative

lack of temporal structure in the calculated components. This

71 R	 qualitative discrepancy should have a physical explanation. If the

calculated values for 115 km are used in the comparison, the peak

magnitudes agree and the general directions of the x components agree;

however, agreement between the y components is rather poor. If a

YR
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higher altitude is picked for the calculated y component, agreement in

n,

71e

general direction is improved - at the expense, however, of agreement

in general magnitude.
4a

With this comparison as a background, several shortcomings of

these calculations can be examined qualitatively. 	 In the present

treatment only two representative ion density altitude profiles are

used (for day and night conditions), whereas the data analysis of

Brekke, et al.	 (1973) employed profiles measured simultaneously with

the ion drift measurements. 	 The high variability of these profiles
i

is illustrated in data presented by Banks, et al. 	 (1974).	 Although

inclusion of this variability (through v ni ) in the neutral equation

of motion could izvjdify the calculated neutral winds somewhat, the

result would probably be similar to that due to electric field

variations, which enter the neutral equations through ion velocity

variations in the collision term. 	 Figure 5 demonstrates that such

t. short period variations are effectively filtered out of the neutral

i
components, due to the large inertia of the neutral gas relative to

the ion gas.	 Furthermore, the tendency of electric fields and E region

ionization densities to be anticorrelated (Banks, et al., 1974) would

have a compensating effect in the collision terms of the neutral•

i;

i

equations, reducing the effective magnitude of variations in these terms.

Another omission of the present calculation is horizontal pressure

gradients.	 It is reasonable to expect large short term variations in

such pressure gradients associated with corresponding large variations

i in Joule heating in the auroral oval.	 However,	 no data is available

j; to pr6vide information on these pressure gradients for the time and

,>
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•.	 location treated. There is also little theoretical work to suggest how

;;	 far from the source region significant pressure gradients might extend.

I
In addition to the large variable pressure gradients associated with

Joule heating, smaller pressure gradients due to diurnal thermal tides

would bias the results, particularly when electric fields are small.

For the present calculation, this effect is not expected to modify
i

the results to a large extent.

Based on the comparison of Figure 0 and 5 above, it appears

that the effective altitude of the measurement may be varying. Since
4.

it is the ion drift which is measured, the altitude structure of the

ion velocity components must enter into the weighting which determines

u	 the altitude region contributing most significantly to the measured

results. Figures 3 and 6 show that below 110 km velocities are small,
t

increasing rapidly with altitude to about 130 km and less rapidly above

r,	 that. In addition reversals of velocity component directions in the

L;	 110 km to 130 km region would effectively cause cancellations in the lower

altitude contributions to the integrated results, further raising the

effective contributing altitude region. If these shifts occur within the

^a
region of large vertical gradients, it appears that significant differ-

ences in the Aighted integrated results could occur. Examination of

Figure 5 indicates that ion velocity altitude structure can change very

rapidly in response to changing electric fields. This.variability

coupled with the variability of ion density altitude profiles, both

a,•' which affect the altitude weighting of the integrated velocit y9	 9	 Y

measurement, could be factors in explaining the temporal structure of

the neutral velocities deduced from measured ion velocities (Figure

f'	 4b). These qualitative arguments require quantitative support;

`IT ^
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calculations of this nature are in progress.

i?
Finally, the vertical velocity components of loo m/s or more,

evident in all of the calculated results (Figures 3, 5 and 6), require

i'	 comment. Comparison of Figures 3a and 3b has established that the

coriolis term is	 a	 primary source of these velocities. 	 However,

'i
I

measured ion vertical velocities are typically less than 50 m/s (Banks,

R et al. 1974; Rieger, 1974). 	 The assumption of total cancellation

between the vertical pressure gradient and gravitational acceleration

^1! is clearly not a good one for the dynamic case. 	 Order of magnitude

estimates indicate that in the ion equation, these terms are smaller

than those included by factors of 10 2 to 105 .	 However, in the neutral

equation, the gravity term is 10' times larger than the terms included,

so that even a small perturbation of the hydrostatic pressure can have

ii a very significant affect on vertical velocities. 	 Pressure perturbations

due to vertical driving forces must therefore be included in a realistic

treatment of vertical winds; and this requires inclusion of the con-

Sri
tinuity and energy equations in the set of equations to be solved. The

i
,

qualitativcly significant result remains, however: large horizontal

winds mean significant vertical driving forces are present.

IV-4	 Conclusions
u	

Over time scales of several hours, the coriolis force plays a

`	 significant role in redirecting the neutral wind, including drivingii

l	 a vertical component; for these time scales this force should be

j
included in the neutral equations of motion. Ion velocities respond

rapidly to changing electric fields at all altitudes so that vertical

structure of these velocities can change quickly. Resulti!;g changes

69

L,'v



n.

i jj

b

in the neutral velocity altitude structure, however, require one to

two hours, due to the greater neutral gas density. In these calculations,

ion and neutral velocities are small(below 110 kml, increase in magnitude

rapidly with altitude to about 130 km, and change more slowly with

altitude above. This variability of ion velocity altitude structure

may complicate the interpretation of weighted height-integrated ion

velocity measurements. Realistic treatment of vertical velocities

requires explicit consideration of pressure perturbations resulting

from vertical motion; in general this will require inclusion of the

continuity and energy equations in the system of equations.

Finally, we may conclude from the present calculation that

the effects of coriolis force are clearly indicated. A strong shear

layer appeared in the neutral wind profiles. However, the Richardson

number may still very well be in the laminar flow region.
7.
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FIGURE CAPTIONS

Figure IV-1	 Definitions of coordinate systems used in the calculation
and the angles relating them.

Figure IV-2 Ion and neutral velocity components as functions of time
for altitudes 115 km, 125 km and 150 km for the constant
electric field: Ex = 20 mV/m, Ti 5 hours; E x = 0,

T > 5 hours; Ey = 0, all T.

Figure IV-3	 Altitude profiles of ion and neutral velocity components
at T = 5 hours for the electric field defined for Fig. 2:
(a) all terms in equation (2); (b) omitting coriolis
term from equation 2).

Figure IV-4	 Data determined from observations by the incoherent scatter
radar at Chatanika, Alaska, on 10-11 July 1972 (from Brekke,
et al. 1973). (From 9730 to 0900 hours UT, no data was
reported; electric fields for that period are sketched in
graphical) for continuity in -the calculation.) (a) electric
fields; (b) neutral wind velocities.

Figure IV-5	 Calculation ion and neutral velocity components as functions
of time for altitudes 115 km, 125 km, and 150 km due to
electric fields of Fig. 4a,

Figure Iv-S	 Representative calculated altitude profiles of ion and
neutral velocity components due to electric fields of Fig.
4a. (a) for UT = 0800 hours; (b) for UT = 1030 hours.

P.

i

ti.

J	 ..

u,

1

u;

', i2

mm
i



73

re.M•

Ra

I r	 «

r
F	

^y

l

i`

1
i

i.

i
IR

t

r-

i

k	 F

1	

yy

r	 ^^Y

U

v

N
dz
0K0
v
V
S ^

^ v

O
W
C7

50
J

N
uj
Has
d
OC

i.i

^ v
s

Y

onY

r

H

NL7
Q1

LL

W

N d

OC O
o v
S r^

o ^

O

<i

m
Y

m

L)	 u

S W O
40	 c^3 x

CD
L-3	

tmi

b

c^

^T H

4x



\ §

^ \

\ \
. \

\ :

}	 )^

^	 }}

. /

\	 }^

\ }^

} /

\ \

\ /i..
\ C
\ 6

74

Q	 Q	 °

4

.(	 @ O

(

:Fi /

cm

cli



`w
0

0

i	 1

1

	

^	 1

	I	 r,

t

	

it	
1I

it

Y

9

1

i
I

IT
ti
fl

i

{

	

4	 t,

c
C
O
O.

O

rr

I
I

L

o .o

v nl
r

I
H

d)
L
t
rn
•rLL

N

0

75

/	 I
1 /

I

LO 	 /

	

r.	 I f
I

r	 ^

I	 rl)

1 N

	u \ 	
IY

\

i

IL—

N	 O

(s/w COL)

r

C

1

N
1

O

V
Y



..

I N
D

^ N
O ^	 r

^G	 y
v
Y

F
yZ
O
CL

N

CV)
N	 r

//

f

1

I

1

IN
^v

Inc

1

1
1

1
1
1
1

\I

1
1
1

\1

1
1
1

(s/W 000

76

i!

9{

!1

i	 Q

f

I

' 	

11
s

r

f

v,.
i

'y

1

ty

i	 y

,4	

'I

f	
4

i;
E

dI

F

W

1

LO

r I(
I^

f	 tD
c	 Ŷ
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- CHAPTER V

CONCLUDING REMARKS

In this study we have presented a multifluids plasma model 	 for

the ionosphere in the region of 90-2,000 Km. 	 The wide range of density

- and temperature distributions will lead to a wide-range distribution of

the collision frequencies among the species (i.e., electrons, 	 ions and

neutrals) at different altitudes.	 Thus,	 the physics of the dynamical

behavior in this region can be classified based on these parameters

(i.e., density,	 temperature and collision frequency). 	 Subsequently,

the proper equations to govern the physical phenomena can be obtained.
9

In the present study, we have presented only three examples

demonstrating the theory developed which will enable us to study the

wide range dynamical phenomena in the upper atmosphere (90 -2,000 Km),

including the lower part of the magnetosphere.	 Again, there are many

interesting problems observed in the ionosphere and magnetosphere

f regions.	 We sha l l mention a few which form a basis for future study.

These are:

4- i)	 Utilize the present model to study the joule heating

i^
effects in relation to the upper atmospheric dynamics.

ii)	 The detailed examination of the instability mechanism

j as an altitude dependence should be very interesting;

it could be possible to shed some light concerning

j. the triggering mechanism of the ionospheric irregularities.

iii)	 All	 the examples presented are limited to the local

L.i
coordinate system.	 It is important to extend the present

model	 to the global	 scale.
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