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I. Introduction

This is the final report on NASA contract NAS9-14249 which was held

by the Department of Surgery of Harvard Medical School at the Peter Bent

Brigham Hospital, Boston, Massachusetts 0211.5 from July 1, 1974 - June 30,

1975.

The research conducted under this contract investigated the mechanisms

that underlie the circadian (approximately 24 hour) variations in electrolyte

content in body compartments, and examined the significance of these cir-

cadian oscillations for manned spaceflight. The research program utili od

human volunteer subjects and an unanesthetized, chair-acclimatized monkey

preparation which the principal investigator developed in the laboratories

of the Department of Physiology, Harvard Medical School.

II 'Background

i
Circadian rhythms in biological variables are one outward manifestation

of an important evolutionary adaptation to life on a rotating planet: the

3

ability to measure time. This capability enables organisms to predict

the major changes in environmental conditions and the consequent alterations
s

in food supply and predator activity which occur with a 24-hour periodicity

because of the earth's rotation. Thus, for example, adaptive physiological

and behavioral responses which may take several hours to be activated can

be initiated in advance of the predicted environmental challenge, or

events where timing may be critical for survival, such as emergence in

flies, can be timed to occur at the point of maximum environmental advantage.

There is now considerable evidence to indicate that such circadian 	 v

time measurement is the product of an oscillating system within the

organism. The responses of this oscillating system to manipulations in

environmental time cues are now well established, but current knowledge

of the anatomical and physiological organization of the circadian timing

systems within advanced multicellular organisms such as.mammals is still

very limited.



As man ventures out into space, it has become particularly important to in-

vestigate the control of the circadian oscillating system because of its important

adaptive functions under earthbound conditions which no longer apply in space. The

circadian oscillations in physiological functions are normally synchronized to a

strict 24-hour period when man is on the surface of the earth. In space however the

oscillating components of the earth's environment which contribute to the normal ex-

ternal and internal synchronization of the circadian system are no longer present,

unless artificially supplied. It therefore becomes important to examine the effect

of their absence, and to investigate the necessity for supplying circadian oscilla-

tions in the spacecraft environment to achieve optimal physiological functioning.

A system that is particularly important to study in this regard comprises the

circadian oscillations in the body compartmental distribution of electrolytes and

fluids. Fluid and electrolyte balance is subjected to major perturbations in space,

and additional imbalances due to circadian internal desynchronization could have

potentially dangerous consequences. The research performed under this contract

investigated the extent of circadian oscillations in electrolyte distribution be-

tween body fluid compartments and studied the mechanisms which control the oscilla-

tions in order to investigate what effect internal desynchronization in such a 	 l

system would have during manned spaceflight. The studies were performed in man, in

both healthy subjects and inpatients with specific clinical conditions, and in

addition were supported by further studies into the control mechanisms using a

primate preparation, the squirrel monkey ( Saimiri sciureus).

III. Experimental Studies

A. Basic Studies in Akan

Previous analyses of the intercompartmental distribution of potassium in

man have assumed that the system is basically static with zero net fluxes between

compartments except when definable events .cause temporary loss of this steady

state. However, the assumption that there is a homeostatically maintained steady

state has now been challenged by studies of the circadian variation in urinary

potassium excretion.	 Typically the



-3-

rate of urinary potassium excretion has a five-fold variation in each

24-hour day, with minimum rates in the early morning and maximum excretion

around noon. Such a circadian variation might be thought to be a result

of day-nibt differences in dietary intake, activity, posture and sleep.

However, the circadian rhythm of urinary potassium excretion petsists when

all these variables are kept constant throughout day and night or are

manipulated in a non-circadian pattern.

. Accordingly, we examined the inter.compartmental distribution of potassium

in normal men when dietary intake, activity and posture were held constant

throughout each 24-hour day.

Three healthy, normal volunteers were studied for up to 10 days in

the Bartlett Intensive Care Unit of the Peter Bent Brigham Hospital..

Posture, activity and dietary intake was maintained at constant levels

throughout day and night. This was achieved by keeping the subjects on

strict supine bedrest and providing a liquid diet divided into 8 equal

aliquots which were taken at 3-hourly intervals through each 24 hour period.

The room lighting was kept on between 08.00 and 23.00 hr and off from
t

23.00 to 08.00 hr daily (LD 15:9). After the subjects were equilibrated
i

on this regimen, three hourly urine collections were obtained and blood
y

samples were drawn from catheters inserted under local anesthesia into	 j

the radial artery and brachial vein of the non-dominant arm. For

48-hours these blood and urinesamples were obtained with the subject

continuing on his 3 hourly regimen of constant diet, activity and posture. _a

These studies demonstrated that there were marked fluxes of potassium
s

in and out of body compartments over the course of the 24-hour day. A

net flux of potassium was observed out of the body cell mass during the

day and a reverse flux from the extracellular fluid into the body cell

mans during the might. These fluxes were measured as reversing polarity

arterio-venous differences across the resting forearm preparation in. the

volunteers, and also as changes in red blood cell potassium content. The
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net fluxes were simultaneously estimated by following the content of

potassium in the extracellular compartment using arterial plasma potassium

concentration and Br82 extracellular fluid volume measurements to determine

extracellular potassium content.(Fig. 1.)

These fluxes out of the body cell mass into the extracellular fluid

were counterbalanced by a circadian variation in urinary potassium excretion

which reached a maximum in the early afternoon and a minimum during the

early morning hours. The counterbalancing of these two directional fluxes

of potassium resulted in little net change in extracellular potassium content

and in plasma potassium concentration.

The existence of these fluxes of potassium despite the maintenance of a

constant level of posture, activity and dietary intake throughout day and

night for up to 10days indicates that these fluxes are an endogenous feature

of the control of body potassium distribution. It, however, was apparent

that if the two major fluxes of potassium with respect to the extracellular

compartment (the fluxes in and out of the body cell mass) and the flux through

the kidney (which is seen as urinary potassium excretion) became desynchronized

from one another, that major fluctuations in extracellular potassium content 	 j

and therefore plasma potassium concentration could occur. It was calculated
i

that if these two fluxes came 1800 out of phase that plasma potassium concentra-

tion could drop to a calculated value of 2.2 mEq/1 instead of the normal ap-

proximately 4 mEq/1'. (Fig. 2.) Such a transient hypokalemia could quite easily
3

cause cardiac arrhythmias_ and it is well worth considering this as a possible
a

cause of the cardiac arrhythmias that were seen during some of the Apollo

missions. Internal desynchronization of circadian rhythms has been seen in space

in the Biosatellite III mission and if such an event took place in human

astronauts in the Apollo program this mechanism could perhaps account for those

cardiac arrhythmias

This work has been published in the Journal of Applied Physiology
L:



Fig. I. Circadian variation in interccspartacntal W4assium fluxes in
normal man in the absence of diurnal variation in posture,
activity or feeding patterns.
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38 163-170, 7975, a copy of which is attached.

B. Mechanisms of Control of Potassium Rhythms in the Squirrel Monkey

The studies that were undertaken in man of the circadian variation of

intercompartmental potassium fluxes indicated that much more information

was needed on the control of these circadian rhythms, and particularly

the way in which they were synchronized with one another. To examine

these questions an animal system	 was developed which utilized a

chair-acclimatized, unanesthetized squirrel monkey preparation.

The circadian rhythm of urinary potassium excretion in the squirrel

monkey (Saimiri sciereus) were found to have similar characteristics to

those in man. Urinary potassium excretion rose to a maximum during the

afternoon which was four times higher than the nocturnal minimum. The

squirrel monkey is a diurnal animal and this circadian oscillation is

normally synchronized with the environmental light-dark cycle and with the

circadian oscillations of other variables within the animal. 	
i

We were particularly interested in the mechanisms of this internal

synchronization. To explain such "internal synchronization", a single

driving oscillator or "clock" in the brain has traditionally been postulated 	
1

and attempts bw^e been made to demonstrate control pathways from the driving

oscillator to the circadian oscillations in peripheral tissues. The

postulated control pathways have consisted of sets of oscillating variables 	 s

in series,with the circadian oscillation in each variable passively

dependent on the circadian oscillation in the preceding , variable on the

pathway. However, few such pathways have yet been convincingly demonstrated

and it is therefore possible that the wrong model has been used. An

alternative model of internal synchronization was therefore developed and	
s

its applicability demonstrated in studies of the synchronization of

the circadian rhythm o: urinary potassium excretion in the squirrel monkey.

The alternative model was based on the observation that circadian
a

oscillations will persist in isolated tissues in vitro. The model postulated

LAL
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that many different tissues in the body can act as spontaneous circadian

oscillators. The circadian rhythm of urinary potassium excretion, for example,

!.	 would be determined by a potentially independent circadian oscillation in

potassium flux across the luminal membrane of the cells lining the renal

distal tubule.(( Each such oscillator would then be synchronized with the other

tissue oscillators, through nervous and hormonal mediators, by a process

similar to that described for the synchronization of circadian oscillations

by the light-dark cycle.

All experiments were conducted in unanesthetized, trained squirrel

monkeys sitting in a metabolism chair within an isolation chamber. (Fig. 3.)

Urine was collected in two -hourly fractions from a funnel between the animal's

legs. With lights on (300 lux) from 08.00	 20.0;0 hr and off (< 1 lux)

from 20.00 08.00 hr daily, urinary potassium excretion in five monkeys

on ad lib feeding rose to a maximum of 274 + 23^ Eq /hr (mean + SEM) at

17.00 hr and then fell to a minimum_ of 63 +,,V Eq/hr at 05.00 hr. Renal

potassium excretion thus showed a regular fourfold circadian variation. (Fig. 4.)

While on this ad lib schedule all feeding, drinking and activity occurred

during the lights-on period of each 24 hours. Independence of the urinary

potassium rhythm from these patterns of dietary intake and activity was

established by a) depriving; the monkeys of food and water for 24 hours,

and b) training the monkeys to eat one gram of food pellets every two

hours throughout each 24-hour period. Rhythm parameters remained unaltered

in both circumstances.

In the next series of experiments, the synchronization of the cir-

cadian oscillation in renal potassium excretion by the light-dark cycle

was examined. The circadian rhythm of potassium excretion had a 24-hour

period when monkeys were exposed to a light-dark cycle of 12 hours light

alternating with 12. hours of darkness. However, when a monkey was . placed

in isolation with constant light throughout day and night for three weeks

the circadian oscillation in renal. potassium excretion persisted but
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Figure 3: Chair-acclimatized squirrel monkey in metabolism chair

within the isolation chamber. Urine is collected from a funnel

, between the monkeys legs, and passes down to the tubes in the

fraction collector. Catheters and thermistor leads pass out from

under the jacket to the outside of the chamber. Also note the lever

the monkey operates to gain food pellets, and the ultrasound motion

detector above the animal.	 -	 ••
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Fig. 4	 URINARY POTASSIUM EXCRETION IN CHAIR - ADAPTED
SQUIRREL MONKEYS
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demonstrated a regular 25.1 hour free-running period. The renal potassium

rhythm thus appeared to be normally constrained to a 24 hour period by

the light-dark cycle.

When four monkeys were each subjected to 36 hours of continuous

light followed by 36 hours of continuous darkness, the urinary potassium

oscillation continued with an approximately 24 hour period throughout this

regimen ruling out any passive dependence of the rhythm on the light-dark

cycle. However, the synchronization of the circadian oscillation in

urinary potassium excretion by the light-dark cycle was confirmed in

a further study in which four monkeys were subjected to an eight-hour

phaseshift of the light-dark cycle. The urinary potassium oscillation

gradually adjusted over a period of seven days to the new phase of the

lighting regimen. The circadian oscillations in body temperature and act-
ivity however resynchronized in 3-4 days. (rig. S. and 6.)

To evaluate the mechanism by which synchronization pathways might

operate it was necessary to identify one or more oscillating variables

which mediated in the synchronization of the circadian rhythm of urinary

potassium excretion by the light-dark cycle. The potential mediators chosen
i
i

for further study were the adrenal steroids, cortisol and aldosterone.

These hormones were selected because each is known to influence the

rate of urinary potassium excretion and each has been demonstrated to have

a`circadian oscillation of concentration in the plasma which precedes

the urinary po-tassium rhythm by a time period suggestive of a causal-

relationship.

k

Adrenalectomized monkeys were prepared with chronically indwelling
r	 i

arterial and venous catheters.. By administering a daily intravenous
P.

infusion of 5 mg cortisol and 0.001 mg aldosterone through a catheter 	 ( ;

extending outside the isolation chamber, it was possible to reproduce in

adrenalectomized monkeys the circadian patterns of cortisol and aldosterone

secretion found in normal intact animals.

The circadian variation in potassium excretion in adrenalectomized
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monkeys receiving cortisol and aldosterone at 08.00 hr daily was not

significantly different from that found in untreated intact animals.

However, when the same daily replacement dose of adrenal. steroids was given

as a continuous intravenous infusion throughout each 24 hours in three

adrenalectomized monkeys, urinary potassium excretion continued to oscillate

but lost its normally strict phase-relationship with the light-dark cycle.(Fig. 7.)	
i

The renal potassium rhythm oscillated with periods shorter or longer than 	
1

24 hours. The normal synchronization of the urinary potassium rhythm with

the light-dark cycle thus appeared to be mediated by the circadian rhythm

of adrenal steroid secretion.

Phaseshifts of the timing of adrenal steroid administration in

adrenalectomized monkeys provided further evidence forth e synchronization 	 i

of renal potassium excretion by the rhythm of adrenal steroid secretion.(Fi,g. 8.)

When the timing of cortisol and aldosterone administration was phaseshifted

by eight hours in four monkeys, with the light-dark cycle unchanged,the
5

circadian rhythm of urinary potassium excretion phaseshifted by between

4.0 and 4.1 hours. The urinary potassium oscillation, however, d_ed not

immediately respond to the phaseshift of adrenal steroid administration.

The delay of several cycles before the final phase of the urinary potassium

oscillation was reached was similar to the delay in the resynchronization

of the urinary potassium rhythm after a light-dark cycle phaseshift.

These findings suggested that circadian rhythms of 'plasma adrenal

steroid concentration are an important mediator in the synchronization of the 	
a

circadian rhythm of renal potassium excretion with the light-dark cycle.

While the responses of urinary potassium excretion to the changes in the

pattern of adrenal steroid administration were predicted by the model

of internal synchronization which we have proposed they were not

compatible with the traditional model of the passive dependence of

peripheral circadian oscillations on hormonal and nervous mediators

To distinguish between the influences of the circadian rhythms in 	 ;

ffa
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3

aldosteror,,,,e and cortisol administration, adrenalectomized monkeys were

given the same daily 08.00 hr dose of cortisol (5 mg) but with no

aldosterone. The circadian oscillation in urinary potassium excretion was

indistinguishable from that observed when both cortisol and aldosterone

were administered. Similarly, an eight hour phaseshift in the time of

cortisol administration alone resulted in a phaseshif.t in the circadian

rhythm of renal potassium excretion which was similar to that seen when 	 {
1

cortisol and aldosterone were both phaseshifted by eight hours. It was

concluded that the synchronization of the circadian oscillation in urinary
i

potassium excretion is mediated by the circadian rhythm in cortisol

secretion and that aldosterone does not play an essential role in this i

process.

The circadian oscillation in urinary potassium excretion was also

a
shown not to be passively dependent on the circadian rhythm in cortisol

secretion in intact monkeys. Four monkeys were given an infusion of 15

mg cortisol between 20.00 and 23.00 hr on one day. This provided a second

peak+ -of cortisol 12 hours after the normal endogenous peak of cortisol
i

secretion. However, this cortisol infusion failed to induce 'a second 1

peak in urinary potassium excretion.

These responses of the circadian oscillation in renal potassium

excretion to the pattern of cortisol administration in adrenalectomized

monkeys demonstrated that the synchronization of the urinary potassium

rhythm is mediated through the circadian oscillation in cortisol secretion

by the adrenal cortex. The mode of control, however, was not the

traditionally assumed passive dependence of one oscillating variable on

another. Instead the experimental results suggested that the renal distal

tubular cells which control urinary potassium excretion, were acting as

a spontaneous circadian oscillator which was synchronized by the circadian

oscilltions in the plasma concentration of cortisol. Since there is

evidence that membrane potassium fluxes may be a fundamental component
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of cellular circadian oscillators in many species, it is possible that the

synchronization mechanisms described for the circadian potassium flux

across renal distal tubular cells may be common to other systems. This

work has been presented in a Symposium on "Physiological and Biochemical

Aspects of Circadian Rhythms" at FASEB meetings in April, 1975, and has

been submitted in 3 papers to American Journal of Physiology, Federation

Proceedings and Science.

C)	 Development of Models of Internal Synchronization

As a result of this work we have formalized three models of the circadian

aiming system (These are presented in Figure 9.).	 Minor variants of these

models, or combinations of their features are also possible, but the models

presented here emphasize the contrasts between certain possible organizations
y

of the circadian system.

Model I, which has been proposed by Mills but has been assumed in

many other investigations of the circadian timing system, consists of

a network of cellular systems (A,B,C,...,etc.) which passively oscillate

as a forced response to a single self-sustained driving oscillator (D.O.).

Where these cellular units are non-contiguous in a multicellular animal,

the model requires that oscillating levels of physical or chemical mediators

be postulated (a,b,c,...,etc.), with the period of D.O. but not necessarily

the same phase.	 These mediating systems, which would presumably be nervous
I

(neurotransmitter release) or endocrine (hormonal concentration), would
a

transmit the forced oscillating response to D.O. to the various passively

responding cellular units. 	 The entire circadian system would be entrained
i

by environmental time cues via exteroceptive sensory inputs to the driving a.

oscillator.

Model IT. describes a network of cellular units which are each

themselves self-sustained oscillators, able to maintain oscillations with

an independent period in the absence of periodic inputs.	 One oscillator

(D.O.) acts as a pacemaker and is entrained by exteroceptive sensory inputs
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from environmental time cues. As in Model I it is necessary to postulate

oscillating nervous or endocrine mediators which maintain synchronization

within the animal. However, the mediators in this model actively entrain

the self-sustained cellular oscillators in a manner similar to the entrain-

ment of the organism's circadian system by cycles of environmental illumination

(3)

Model III also describes a multioscillator model but in this case

no one oscillator consistently acts as a pacemaker. Instead the various

exteroceptive sensory inputs entrain different oscillators. Internal

synchronization within the system is maintained by the positive and

negative feedback action of mediators (a,b,c,..., etc.) on the separate

oscillating units (A,B,C,...,etc.). As in Model IT, the mediators syn-

chronize the oscillators by active entrainment.

The evidence we have gained from studies of our squirrel monkey

preparation indicate that the circadian timing system is a multioscillator

system (Model II or III) and not a single oscillator system (Model I).

It therefore seems that there are multiple oscillators in the various
a

tissues of the body which are synchronized by hormonal and nervous mediators.

We however as yet have little evidence to clearly indicate whether the

circadian timing system is hierarchical (Model II) or non-hierarchical

('Model III).

There are several further pieces of evidence from other investigators

which support our conclusion that the circadian timing system in advanced

multicellular animals such as mammals, is organized as a multioscillator 	
s

system (:such as Model. II or III) rather than having only a single

independent oscillator (Model I). Firstly, Aschoff"and his colleagues

have demonstrated that although internal synchronization, was normally
r

observed between a wide variety, of circadian rhythmic functions in men

studied. under isolation conditions, 15% of their subjects demonstrated

r,
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internal desynchronization, with various monitored rhythmic variables

oscillating with independent free-running periods within the same subject.

This observation is incompatible with Model I, but is readily predicted.

from Model II or III, since this could occur whenever there was a loss of

the circadian rhythm of a synchronizing mediator. Secondly, several

investigators have been able to demonstrate free-running rhythms in

isolated tissues maintained in vitro under constant conditions; presumably

they have therefore isolated tissue containing self-sustained oscillators

as would be predicted from Model II. Thirdly, it has been repeatedly

observed in advanced multicellular animals that after the abrupt phase-

shift of environmental time cues the various monitored circadian rhythms

take different lengths of time to resynchronize with the new phase of

environmental cues, so that temporary internal desynchronization occurs.

Fourthly, rhythms in many different species have been observed to split

in a manner suggestive of a multioscillator system under certain environmental

lighting conditions and fifthly, the extensive data that 	 has been

accumulated on rephasing of the Drosophila eclosion rhythm by pulses of
a

light can only readly be explained by postulating that there is more than

one independent circadian oscillator in this organism.

Thus our work has shown that the circadian timing system in advanced

a

multicellular animals, such as primates, appears to be organiz(A as a

set of multiple, potentially-independent oscillators which are normally

synchronized with one another through chemical mediators.	 The further

localization and characterization of these oscillators within the animal

will be necessary for the understanding of the function of this timing

system, and will form an essential base for examining the physiological

roles which the ,timing system performs.

D)	 Applications in Man: 	 Internal Desynchronization

With the information we gained from the squirrel monkey system we

,.	 then moved back to study some of these systems in man.	 We were particularly
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interested in applications that were relevant to spaceflight as well as

those which had some clinical applicability.

Some initial studies were conducted in adrenalectomized patients in

whom we administered their replacement adrenal steroids evenly throughout

the 24 hours in order to examine whether free-running rhythms of urinary

potassium excretion were observed in adrenalectomized man as they were

in adrenalectomized squirrel monkeys. In the two patients we have

studied to date, our preliminary findings have shown that there are free-

running rhythms in urinary potassium excretion in these subjects when they

are administered an adrenal steroid replacement regime which provides

no circadian rhythm in plasma cortisol concentration. (Fig. 10.) Thus,

this appears to confirm that the observations that we have made in the squir-

rel monkey are relevant to man.

As has been discussed in section (A) one of the important patho

physiological events which would cause major changes in potassium balance

and in plasma potassium concentration would be internal desynchronization

of the fluxes of potassium which we have observed. Internal desynchronization

of circadian rhythms has been observed in a number of situations which are

correlated with emotional stress. It has been particularly observedin

monkeys who have been subjected to stressful circumstances either in

earth-based studies (Stroebel, 1969) or in space experiments such as

the Biosatellite III experiment. In this orbiting monkey, internal

desynchronization of the various monitored rhythmic functions was observed

and it is possible that this was one feature of the pathophysi.ological

developments which led to his early demise:

Our demonstration that the circadian timing system was-a multioscillator

system with various oscillators in peripheral tissues being synchronized

with one another through circadian rhythms of hormonal and nervous mediators

suggested to us that this might provide an explanation for the internal 	 1

desynchronization that is seen in situaitons of emotional stress. Since
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if
	 events are known to cause elevations of plasma cortisol concen-

tration, it was postulated that intermittent stresses inducing intermittent

bursts of adrenal cortisol secretion might obliterate the circadian rhythm

of plasma cortisol concentration thus inducing those oscillating functions

which are dependent on the circadian rhythm of plasma cortisol concentration

for their syachronization, to become desynchronized. We have proposed

this explanation for circadian internal desynchronization in a paper that

will be presented at the International Society for Chronobiology Meeting

in Washington, D.C. this month. The paper is entitled "Circadian Internal

Desynchronization: Causation by Circadian Arrhythmias in Hormonal Mediators?".

We have tested the proposition that there is a loss in the circadian

rhythm of plasma cortisol concentration in human subjects subjected to

emotional stress by examining the plasma cortisol pattern in patients during

the 24 hours immediately prior to major cardiac surgery and have compared

this pattern with that from normal volunteer subjects with no imminent

anxiety-causing event, but otherwise studied under similar conditions.

We found that in the pre-surgical patients there was a loss of the circadian

rhythm of plasma cortisol, concentration as we had predicted and thus, this

would provide an explanation for the internal desynchronization that is

seen in situations of emotional stress. (Fig, 11.)

Because of the great importance of the pathophysiological consequences

,of internal desynchronization, particularl y as they relate to desynchronization

of potassium fluxes in man, we consider it important to pursue these

investigations further. It is a problem particularly relevant to space
r

flight because of the already increased risk of internal desynchronization

f	 due to confused time cues in the isolated environment of space;

l The results of the study of pre-operative patients were presented

t
r

at the American Psychosomatic Society Meeting, New Orleans on March

22, 1975 in a paper entitled "The Effect of Psychological. Stress in the	 A

Pre-operative Period on the Episodic 24-Hour Plasma 0ortisol Secretion 	 '



Figurell. The nycthemeral pattern of plasma cortisol concentration in a patient

during the 24 hours prior to major elective cardiac surgery. Time

is plotted as hours before and after the time of mean sleep onset

for the preceding week. Events during the pre-operative day are shown:

T=p're-operative teaching, IV=intravenous puncture, E=enema and the

black bar is the time of pre-operative shaving. Also shown (shaded

pattern) is the mean + SD of the plasma cortisol pattern in five

hospitalized control subjects with no expectation of surgery (Reproduced

from CZEISLER et al.).
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Pattern". This paper has also been submitted to the Journal of Clinical.

Endocrinology and Metabolism and has been accepted subject to some minor

.	 revisions. The Journal of Clinical Endocrinology and Metabolism paper is

entitled "Episodic 24-Hour Cortisol Secretory Pattern in Patients Awaiting

Elective Cardiac Surgery".

In summary, therefore, during this 12 month contract we have (1) doc-

umented in man major circadian fluxes of potassium ions between body compact-

ments, (2) have demonstrated the potential for the causation of transient

.f
hypokalemias if these potassium fluxes became desynchronized, (3) have

f;	 demonstrated in a squirrel monkey preparation the role of the circadian

rhythm of plasma cortisol concentration in synchronizing circadian rhythms

of potassium flux, (4) have developed models to describe the functioning of

this circadian system, (5) have demonstrated a potential cause of the de

synchronization of potassium fluxes involving the elimination of the plasma

cortisol rhythm, (6) have demonstrated the applicability of these findings in

adrenalectomized man, (7) and have studied human patients under the influence

of environmental stresses to demonstrate that the circadian rhythm of Plasma

potassium concentration is indeed lost under conditions associated with

internal desynchronization.
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IV. List of Publications

The work performed under this; contract has been published or will

be published in the following papers. Reprints are enclosed.

1. Moore Ede, M.C., Brennan, M.F., and Ball, M.R.: Circadian variation
of intercompartmental potassium fluxes in man. J Appl Physiol 38:
163-170, 1975.

2. Moore Ede, M.C., and Herd, J.A.: Renal electrolyte circadian rhythms:
independence from feeding and activity patterns. Submitted to
Am J Physiol, 1975.

3. Czeisler, C.A., Moore Ede, M.C., Regestein, Q.R., Kisch, E.S., Fang, V.S.,
and Ehrligh, E.N.: Episodic 24-hour cortisol secretary pattern
in patients awaiting elective cardiac surgery. Conditional acceptance,
J Clin Endocrinol Metab, 1975._

4. Moore Ede, M.C., Schmelzer, W.S., Kass, D.A., and Herd, J.A.: Internal
organization of the circadian timing system in multicellular animals.
Submitted to Fed Proc, 1975

5. Moore Ede, M.C., Schmelzer, W.S., Kass, D.A., and Herd, J.A.: 	 Circadian
timing system: organization of multiple oscillators synchronized
by chemical mediators. Submitted to Science, 1975.

6. Czeisler, C.A., Moore Ede, M.C., Regestein, Q.R., Kisch, E.S., Fang, V.S.,-
and. Ehrlich, E.N.: Effect of psychological sttress in the presurgical
period on the episodic 24-hour plasma cortisol secretory pattern.
Presented at the Annual Meeting of the American Psychosomatic Society,
New Orleans, Louisianna, March 22, 1975.

7. Moore Ede, M.C.: Internal synchronization of spontaneous circadian oscillators:
The identification of the hormonal mediator synchronizing a renal
oscillator. Presented at the Symposium on "Physiological and
Biochemical Aspects of Circadian Rhythms: at the 59th Annual Meeting
of the Federation of American Societies for Experimental Biology,
Atlantic City, New Jersey, April 15, 1975.

4

8. Moore Ede, M.C., Czeisler, C.A., Schmelzer, W.S., and Kass, D.A.: Circadian
internal desynchroniztion: causation by circadian arrhythmias in 	 s
hormonal mediators? Presented at the Annual Meeting of the International

Society for Chronobiology, Washington, D.C., August, 1975.(Abstract)

9. Moore Ede, M.C., Schmelzer, W.S., and Herd, J.A.: Plasma cortisol oscillations
synchronizethe circadian rhythm of renal potassium excretion in
the squirrel monkey. Presented at the International Congress on
"Rhythmic Functions in Biological Systems", Vienna, Austria, September
1975. (Abstract)
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V. EQUIPMENT PURCHASED BY NASA GRANT 9610

Pellet Dispensers (5), Ralph Gerbrands Co. 	 $ 642.00

w
Model 20 Incubator (Modified) (3), Forma Scientific Co. 	 2079.60

	r	 Harvard Cumulative Recorder (1), Ralph Gerbrands Co. 	 770.00

6-Pen Event Recorder (3), Ralph Gerbrands Co. 	 500.00
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VI.	 MONTHLY REPORTS
u

1st monthly report August 1, 1974

e

2nd monthly report September 1, 1974
^

a 3rd monthly report October 1, 1974
a

4th monthly report November 1, 1974
9

s 5th monthly report Presented verbally at meeting with Dr. J.A. Rummel

6th monthly report January 1, 1975

7th monthly report February 1, 1975

r
8th monthly report Presented verbally at meeting with Dr. J.A. Rummel

9th nonthiy report April 1, 1975

I
10th monthly report May 1, 1975

11th monthly report Presented verbally at meeting with Dr. J.A. Rummel

i
12th monthly report Included in Final Report

i

r	

^

j

i
i

i

1

i

Y

a

9

s

3

y



`.	 ,-itham F. Hassan. Jr.. Ph.U.
Director

Herbert L. Abrams. M.D.
RadiolnKist•in-Chief

Eugene Hraunwald. M.D.
Physician-in-Chief

GusravnJ. Dammin. M.D.
Pathologist-in-Chief

Samuel Hellman, M.D.
Radiotherapist-in-Chie f

Francis D. Moore, M.D.
surgeon-in-Chief

Clement B. Sledge. M.D.
Orthopedist-in-Chief

Leroy D. Vandam, M.D.
Anesthesiologist-in-Chief

I

I

I

i

rh	 ^,
<	 i.^ S

o6.	 u1	 ^	 ^rt°Z'•^r

'QC TEACH^:.G'

A Tenching bfospitol
of the

Harvard Medical
School

PETER BENT BRIGHAM HOSPITAL
721 Huntington Avenue, Boston, Massachusetts 02115 	 (617) 734-8000

August 1, 1974

John A.'Rummel, PhD
Chief, Environmental Physiology Branch
National Aeronautics and Space Administration
Lyndon B. Johnson Space Center
Houston,'Texas 77058

Dear John,

This letter will serve as the first monthly report of the
progress of our NASA contract NAS9-14249 which started on July 1,
1974.

We have now completed the studies of normal volunteer•
male subjects as were outlined in Sections 4.1-4.3 in the
statement of work. A paper has been prepared.for publication
and has been submitted to the Journal of Applied Physiology.
The paper is titled "Circadian Variation of Intercompartmental
Potassium Fluxes in Man". A copy of the submitted manuscript
is enclosed.

The studies on the squirrel monkey preparation are also
proceeding well. Preliminary evidence suggests that the
circadian rhythm in plasma cortisol concentration may act as
the hormonal mediator in the synchronization of the rhythm of
urinary potassium excretion in the squirrel monkey.to  the
light-dark cycle. I will give you a fuller report on the
squirrel monkey work in my next monthly report

If there is any further information you requireat any time
please do not hesitate to let use know.

With best wishes.

I

a

i

a

Sincerely
i

V41a
i

Partin  C. Moore Ede, M.B., B.S
,

MCME/sr
Enclosures
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September 1, 1974

John A. Rummel, Ph.D.
Chief, Environmental Physiology Branch
National Aeronautics and Space Administration
Lyndon B. Johnson Space Center
Houston, Texas 77058

Dear John

This letter will serve as the second monthly report of the
progress of our NASA contract, HAS9-14249 .

Studies are progressing well with the squirrel monkey model.
Using squirrel monkeys with chronically indwelling arterial
and venous catheters which extend outside the isolation.
chamber, in which the monkey and metabolism chair are placed,lic
have demonstrated that it is possible to reproduce the natural
circadian patterns of cortisol and aldosterone secretion in
adrenalectomized monkeys by the infusion of,these hormones
through the venous line. The monkeys are quite unaware of
the timing of infusions since these are all conducted from
outside the isolation chamber'. With this preparation it
can be demonstrated that the circadian oscillation in urinary
potassium excretion in these animals is synchronized by
the circadian oscillation in plasma cortisol concentration.
When the timing of the artificial circadian rhythm in plasma
cortisol concentration is phase-shifted by 8 hours this
induces a similar phase-shift in the timing of the urinary
potassium excretory rhythm. The circadian oscillation in
plasma aldosterone concentration, however, does not appear to
play an essential role in this synchronization process.

-It is noteworthy that circadian variation in other variables
such as feeding and activity are not influenced by the
phase-shift in the artificial plasma cortisol concentration
rhythm. Thus, we have induced an artificial desynchronization
between the urinary potassium rhythm and the rhythm of food
intake

However, the urinary potassium circadian rhythm does not appear;':
to be passively dependent upon the circadian oscillation in
plasma cortisol concentration,. After the eight hour plasma
cortisol phase-shift in adrenalectomized monkeys, the circadian
oscillation in urinary potassium excretion does not immediately
phase-shift and in fact takes some three or four days to
resynchronize with the new phase of the plasma cortisol rhythm.
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Similarly, when all circadian oscillations in plasma cortisol
and aldosterone are eliminated.by continuously infusing
these substances at -a constant level which is equal to the
mean 24 hour.secretory rate the urinary potassium rhythm
continues to oscillate but now has a free-running period
which is quite independent from the period of the light-dark
cycle to which the animal-is subjected. Thus, in this
situation, artificial desynchronization between the urinary
potassium rhythm and the light-dark cycle and the rhythms
which are dependent upon the light-dark cycleyhas also
been induced.

These findings have lead us to develop a new model of internal
synchronization of circadian oscillations. It resolves some
of the experimental findings which are incompattble with the
classical model of internal synchronization such as that
proposed by Mills (Mills, J,N.: Transmission processes
between the clock and manifestations. In: Biological Aspects
of Circadian Rhythms, editedby Mills, J.N., New York:
Plenum Press, 1973, p. 27-84.) o.wl. model of internal
synchronization enables us to predict situations in which in-
ternal synchronization will occur.. I will give you a more
detailed explanation of this model and'the experimental
findings which support it in the next monthly report.

Do let me know when it is time to gather material together
for your next funding review. This squirrel monkey model
is proving most valuable for studies of internal synchroni-
zation mechanisms in a way not possible with previous prep-
arations. If there is any further information you require
at any time, please do not hesitate to let me know. With
best wishes.
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October 1, 1 973

John A. Rummel, Ph.D.
Chief, Environmental Physiology Branch
National Aeronautics and Space Administration
Lyndon B. Johnson Space Center
Houston, Texas 77058'

Dear John

This letter will serve as the third monthly report of the
progress of our NASA contract, NAS9-14249.

The squirrel monkey studies on the control of circadian
urinary electrolyte oscillations by the circadian rhythms in
plasma cortisol and aldosterone concentration progress well.
Interestingly, all the adrenal steroids can be produced with
cortisol administration alone at physiological doses, and it does
not seem to make any difference whether aldosterone is infused as
well. It, thus, appears that cortisol plays the more important
role in the synchronization of these oscillations. This is not
entirely surprising since Vagnucci and collegues (J Ap2l Physiol
26: 720-731, 1969) have shown that urinary aldosterone and potas-
sium excretion are poorly correlated while urinary potassium and
17-OHCS excretion are relatively well correlated. This is, of
course, in conflict with the classical view that aldosterone is
by far the most important adrenal steroid in the control of renal
potassium excretion. It may be that while aldosterone plays a
role ire the modulation of potassium excretion in response to
homeostatic disturbances the underlying circadian oscillation is
synchronized by the rhythm of plasma cortisol concentration.

fir hori l . u=:.nnS. ht.tl.
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This leads me to comment on your interesting paper on
"Temporal Relationships of Urinary Constituents Before and After
Long Duration Space Flight" which you gave to me when I was
visiting Houston. It is possible that you failure to demonstrate
desynchronization between the urinary variables which you
studied before and after the Skylab missions was due to the se-
lection of variables which are not normally desynchronized from
one another even when other circadian rhythms are desynchronized
within an individual. Our studies in the squirrel monkey are
showing that phaseshifts in the timing of hydrocortisone admin-
istration in adrenalectomized animals results in an equivalent
phaseshift in the rhythms of -sodium, potassium and water excretion.
All the variables, while remaining synchronized with one another,

i	 became desynchronized from such variables as feeding and activity
patterns. This suggests that different control pathways may

#	 be involved in the synchronization process and that you may have
studied in the Skylab mission oscillating variables which do not

i



.J-	 I	 i	 I	 1	 I	 I	 I
s :
	 IIerhert 1 Al:r a :v;. M.U.

RQu ro1';'1 114.1-(:)1 it'f

I	 PJt^siuviti•in- C:hiaf 	 ^

Guita.c 1. Muninin, M.1), !
pnrt,nfailr;i•in•Cluej

i
Santuni Haltto.,n, At.D.
Retlui.!lcrnp, .I-in^Chief

Francis U. Moore, M.D,
Surgeon-in-Chief

' Clement B. Sledge, M.D.
Orthopedist-in-Chief

Leroy U. Vandam, :M.D.
j Anesthesiologist-in-Chief

i

i

!

PETER BENT BRIGHAM HOSPITAL
721 liMitinglon Avenuo, 1loston, N4.n.ssi ititspits 02 115	 (617) 734-8000

normally become desynchronized from on another.
In order to detect desynchronization in space flight, I

believe it essential that multiple variables should be monitor,`
which have circadian oscillations which can be readily shownt._
desynchronize in the laboratory. An animal preparation such as
our squirrel monkey would make such an investigation feasible.
As I mentioned in last month's report, we are now getting a better
understanding of internal synchronization mechanisms and can induce
desynchronization between oscillating physiological variables
in a reproducible manner.

We currently have journal articles in preparation on this
subject and will inform you as soon as they are submitted. We
look forward to seeing you in Boston soon. Do let me know if there
is any further information which would- ;be helpful at this stage.

With best wishes.

Sincerely yours

Martin C. Moore Tide, M.B., B.S., Ph.D.

MCME/sr
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I tY..ink that you will also be interested to know that
Woodland Hastings and I are planning a symposium to be held at
the Federation meetings in Atlantic City in April of next year.
This will be concerned with the recent studies of the control
and synchonization of circadian oscillators. I think it will
bring together some interesting work and give a good review of
where we are in this field right now.

The studies of the effect of cortisol phaseshifts and the
continuous infusion of cortisol in adrenalectomized monkeys
procede according to plan. We aim soon to have four monkeys
who have been exposed to an eight hour phaseshift in cortisol
administration, four monkeys who have been exposed to a phase-
shift of both aldosterone and cortisol and four monkeys in whom

4	 the daily dose of cortisol and aldosterone has been given as a
constant infusion spread evenly over each 24 hour period. The
data from these studies will probably be presented some time in
the spring, probably at the FASEB meeting,

PETER BENT BRIGHAM HOSPITAL
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November 1, 1974

John A. Rummel, Ph. D.
Chief,; Environmental Physiology Branch
National Aeronautics and Space Administration
Lyndon B. Johnson Space Center
Houston, Texas 77058

Dear John

This letter will serve as the fourth monthly report of the
progress of our NASA contract, NAS9-14249.

Iwill be grateful for your guidance as to when is the time
to put together an application for continued support beyond
June 30, 1975. We can of course let you have any further in-
formation or material whenever this is appropriate. I am sure
we should talk more about the potentialities of the squirrel
monkey preparation for space flight, but perhaps this is best
done when you come up to visit us.

With best wishes.
3

Sincerely yours

Y	 4 ^`I

Martin C. Moore Ede, M.B.,B.S.,, 11h.1).
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January 1, 1975

John A. Rummel, Ph.D.
Chief, Environmental Physiology Branch
National Aeronautics and Space Administration
Lyndon B. Johnson Space Center
Houston, Texas 77058

Dear John,

This letter will serve as the sixth monthly report of the
progress of our NASA contract NAS9-14249.

Our studies of the synchronization of the urinary potassium
rhythm in squirrel monkeys by the circadian rhythm of plasma
cortisol concentration continue as scheduled. We have now
extended the studies to adrenalectomized patients using women
who have been adrenalectomized for breast cancer. We find
in the first pilot experiment that the urinary potassium rhythm
persists when cortisone replacement therapy is evenly spread
throughout the 24 hours but the urinary potassium rhythm#
appears to have a free-running period of approximately 22 hours
so that the peak of urinary potassium excretion sequentially
moves earlier each day. By the end of the seven day study
the peak of urinary potassium excretion was 3AM instead of
approximately 3PM.

We are most encouraged by these results which suggest that
the conclusions that we are reaching with our squirrel monkey
preparation are applicable to nlan,^that the squirrel monkey
is an excellent model for studying the synchronization and
desynchronization of adrenal controlled circadian rhythms in man.
-If we can reproduce these findings in subsequent studies we will
have to investigate whether the circadian rhythms in intt^r-
compartmental potassium flux_ desynchronize in such ;a situation
as was predicted in our Journal of Applied Physiology paper.
This paper, incidentally, is due to be published in this month's
Journal of Applied Physiology.

Other activities this month have centered around the teaching
of a course on the cardiovascular and body fluid adaptations to
weightlessness in which our medical students here have shown
great interest. We are trying out as a class exercise the design
of experiments for ` space shuttle missions. I will let you know
if anything of interest develops here.

With best wishes.

Sincerely yours

Martin G_. Mnnra

i
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PETER BENT BR.IGHAM HOSPITAL
721 iluntington Avenue, Botiton, Massachusotts 02115	 (817) 734-8000

February 1, 1975

John A. Rummel, Ph.D.
Chief, Environmental Research Division
National Aeronautics and Space Administration
Lyndon B. Johnson Space Center
Houston, Texas 77058

Dear John
n

This letter will serve as the seventh monthly report of the
progress of our NASA contract NAS9-14249.

Wiliam E. Hassan. Jr.. Ph.D. I

C)irectur
i

IiNr'^rrr 1.. Abrams. NS.D.
Ra viloai5tdn-Chief

Eugene Braunwald, M.U.
Phy+ician-in-Chief

Gustave 1. nammin. M.D.
Potho'o;ist-in-Chief

Samuel Hellman. M,D.
Radiotherapist-in-Chief

Francis D. Moore, M.D.
Su rgeon -i n-Chief

Clement B. Sledge, M.D.
Orthopedist-in-Chief

Leroy D. Vandam. M.D.
Anesthesiologist-in-Chief

tl

l^.

w

A 1vm r	 I ;irl;piUt1

As you know, our studies in the chair-acclimatized squirrel
monkey preparation have shown that when the normal circadian
rhythm of plasma cortisol conr:.entration is eliminated by
the continuous infusion of cortisol. in adrenalectomi.zed
monkeys the rhythm of urinary potassium excretion demonstrates
an apparently free-running period. We have now started to
examine this phenomenon more closely since we believe it
represents some sort of self-sustaining oscillator in the
kidney. We have brought in as a consultant Professor Richard
E. Kronauer, who is professor of Engineering and Applied
Physics at Harvard and has considerable experience in the
analysis of oscillating systems. We have one of his students
working with us for a thesis project and we are examining
the influences of different cortisol input patterns in order
to determine the characteristics of the putative renal oscillator.
I think we are really now beginning to get a grip on the
mechanisms of internal synchronization and the potential
causes of desynchronosis. As you know, desynchronosis was
one of the major problems of the biosatalite III monkey. It
is perhaps significant that when we desynchronize our monkeys'
activity and urinary potassium rhythms from each other that
we get a significant number of fatalities while the monkeys
are in this desynchronized condition. This observation is
based on too few animals to permit a statistical analysis but
it is in line with the observations of mortality induced in
other species by-repeated light-dark phaseshifts -which presumably

_ also cause temporary internal desynchronization. For these
reasons I am sure we should plan to have an experiment which
can investigate changes in the circadiansystem during space
flight in the ,Space Shuttle program. We must get together
and talk about the studies that should be done.

Let me know when you think we need to get together again; you are
welcomed to take up the invitation to visit Boston any time, of course.
With best wishes.

Sincerely yours

Martin C. Moore Ede,_ _B.. S..P}y. D. _.
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PETER BENT BRIGHAM HOSPITAL
721 lluntinoton Avenue, Boston, Massachusetts 0:1115	 (617) 734-8000

April 1, 1975

John A. Rummel, Ph-D
Chief, Environmental Research Branch
national Aeronautics and Space Administration
Lyndon B Johnson Space Center
Houston, Texas 77058

Dear John

This letter will serve as the ninth monthly report on the progress
of our 11ASA contract rAS9-14249.

This month, I would like to bring you up to date with the publications
that have come out of our IASA contracted research during this past
9 months.

1. The paper describing the analysis of intercorlpartmental potassium
fluxes in normal volunteers was published in the Journal of Applied
Physiology in January, 1975. The title was Circadian Variation of
Intercompartmental Potassium Fluxes in Dian by Moore Ede, Brennan,
and Ball, J Ap2l Physiol 33: 163 -170, 1975. Reprint copies are
enclosed.

2. A paper in which disruptions of the circadian pattern of plasma
cortisol concentration under conditions of stress were studied in
pre-operative patients -vies presented at the American Psychosomatic
Society in New Orleans on Saturcay, March 22, 1975. This paper was
entitled "The Effect of Psychological Stress in the Preoperative
Period do the Episodic 24-Hour Plasma Cortisol Secretion Pattern".
A copy, of this paper is enclosed.

3. A ?ccture will be given by myself ..at the Symposium on Physiological
and Biochemical Aspects of Circadian Rhythms at the FASEB meeting
in Atlantic City on April 1Sth. This will be entitled "Internal
Synchronization of Spontaneous Circadian Oscillators: the Identification
of the Hormonal Mediators Synchronizing the Renal Oscillator".
Besides being presented'at the symposium, this paper will be published
in Federation Procedings within the year. As ,soon as a final copy
is available, I will send this on to you.

4. A paper entitled "Circadian Internal De synchronization: Causation
by Circadian Arrhythmias in Hormonal Mediators?" will be presented
by rye at tle International Society of Chronobiology meeting in
Washington, D.C. in August. The abstract of this paper is enclosed
and this abstract will be published in Chronobiologica within the
next few months.

5. A paper entitled "Plasma Cortisol Oscillations Synchronize the
Circadian Rhythm of Renal Potassium. Excretion in the SquirrelMonkey
will be presented at the international Congress on Rhythmic Functions
in Biological Systems in September this year. An abstract of this
paper is also enclosed with this letter.

I ler.irrt L. Abrams, M.D.
Rauit)l<r,.st•iu•Chiaf

E'u t•ne. Braun: ild, M.D.
PhySicinn-in-Chiaf

Gumavo 1. nammin, Nip.
PXhologiA-in•Chief

Samuel Hellman, M.D.
li-td:otharapist-in-Chief

ceaacis D. Moore, M.D.
Surgeon -in-Chief

4

Clement B. Sledge, M.D.
Orthopedist-i n-Chi e f

Leroy D. Vandam, M.D.
Anesthesiologist-in-Chief
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6. A paper entitled "Renal Electrolyte Circadian Rhythms in Squirrel Ulonkey.:
Independence from Feeding and Activity Patterns" will shortly be submitted
-to the American Journal of P1,yai.olo-_ .

7. A paper entitled "Synchronization of Renal Electrolyte Circadian Rhythms
Ey -the Light-Dark Cycle" is also in preparation and will shortly be submitted
to the American Journal of Ph rsiology.

8. A paper entitled "Cortisol Mediated Synchronization of Urinary Po,`assium
Circadian Rhythm in the Squirre:! Monkey" is also in preparation and will
probably be submitted to the American Journal of Physiology.

9. A paper entitled "Episodic 24-Hour Cortisol Secretory Pattern in Patients
awaiting Elective Cardiac Surgery" by Czeisler, Moore Ede, Regestein, Kisch,
Feng and Ehrlich has been prepared and' Is being submitted to the Journal of
Clinical Endocrinology and Metabolism.

In our current research, we are nov moving very rapidly in the , mathematical
analysis of the characteristics of the renal oscillator. We are developing
some very potent tests of the coupling function but are still needing to.
develop our methods of Fourier analysis of the oscillations in the data.

We would therefore much welcome your help with the program you have designed
and would be grateful if it -.,ere possible to have this so that we can use
it as a guide, of course, with full acknowledgement to you. 4 o^Mv_d ^dayy ^'^=^

I 'look forward to hearing from you soon and for your advise on submission of
our next annual contract.

With best wishes.

Sincerely yours

vow

Martin C. Moore Ede, M.B., B.S., Ph.D
Assistant Professor of Physiology

MCiE/ser
P.S. I enclose for your interest my reply to Chuck SJinget when he asked for my
answers to his set of questions as'a follow-up to his recent NASA conference.
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May 1, 1975

John A. Rummel, Ph.D.
Chief, Environmental Research Branch
National Aeronautics and Space Administration
Lyndon B. Johnson Space Center
Houston, TX 77058

Dear John

This letter will serve as the tenth monthly report of the progress of our
NASA contract NAS9-14249.

This month we have been continuing our studies of the synchronization
process by which the putative renal oscillator is synchronized with other
circadian rhythms within the animal. We have been developing the computer
progra'ns necessary to analyze the data in more detail and have been
greatly aided by your program which you kindly sent to us. We are cur-
rently having to revise some of our computer systems to make it possible
to undertake some of this processing. In addition, we have been designing
a revised edition of our isolation chamber which enables greater isolation
of the animal from experiment:,•induced disturbances.

i would welcome your guidance on when we should be proceeding with my
research contract renewal which will be due at the end of June. We will 	 j

have to allow some extra time in this process above that we allowed last
year because I will be transferring the contract from the Peter Bent
Brigham Hospital to the Harvard Medical. School and this involves jumping
some admiistrative hurdles which all have inbuilt delays of up to several
weeks.

^. cry ^'j ^`^

I have also recently received/am k_invirtion to participate in planning the
NASA Life Sciences Program in Space which was just sent out by NASA HQ 	 j
in Washington. As you know, this is asking for suggestions for experiments LIIL'
and encourages investigators to put their names forward as part of the
review process. I would much appreciate you advise on how I should be
responding to this and one whether the internal organizational processes
in NASA have sorted out how the whole Shuttle Program is going to be
organized.

I look forward to hearing rom you soon and to getting some clear directiong	 Y	 ^

on these two matters.

With very best wishes.

Sincerely yours,

Martin  C. Moore Ede, M.B., B.S., Ph.D.
Assistant Professor of Physiology

MCME/ser
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Circadian variation of intercompartmental
potassium fluxes in man

MARTIN C. MOORE EDE, MURRAY F. BRENNAN, AND MARGARET R.
Department of Surgery, Harvard Medical School at Peter Bent Brigham Hospital, and
Department,of Physiology, Harvard Medical School, Boston, Massachusetts 02115

MOORE EDE, MARTIN C., MURRAY F. BRENNAN, AND MAR- state of compartmental potassium distribution even when
cAttr•.T R. BALL. Circadian variation of intercompartmental potassium
lures in man. J. Appl. Physiol. 38(1): 163-170. 1975.--Circadian
rhythms of plasma potassium concentration and urinary potassium
excretion persisted in three nor►nal volunteers when diurnal varia-
tions in activity, posture, and dietary intake were eliminated for
3-10 days. Measurements of the arteriovenous difference in plasma
potassium concentration across the resting forearm and of erythro-
cyte potassium concentration suggested that there is a net flux , of
potassium from ICF to ECF in the early morning and a revrse
net flux later in the clay. The total net ICF-ECF fluxes were esti-
mated from the diurnal variations in extracellular potassium con-
tent corrected for dietary intake and urinary potassium loss. The
net fluxes between ICF and ECF were found to be counterbal-
anced by the circadian rhythm in urinary potassium excretion.
Desynchronization of these rhythms would result in marked fluc-
tuations in extracellular potassium content. These findings suggest
that some revision is required of the concept of basal state in potas-
sium homeostasis.

circadian rhythms of plasma and urinary potassium; forearm
arteriovenous plasma potassium difference; erythrocyte potassium
concentration; extracellular fluid, s=Br volume; intercoinpart-
mental potassium fluxes; potassium homeostasis

A FUNDANIrNTAL CONCEPT underlying the principle of homeo-
stasis is the intrinsic steady state, or basal level to which
physiological systems return when there are no externally
induced perturbations. Thus in the analysis of the inter-
compartmental distribution ofpotassium in man (10, 12,
20, 21) it has been assumed that the system is basically
static with zero net fluxes between compartments, except
when definable events cause temporary loss of this steady
state. The assumption of a basically constant distribution
during the course of any 24-h period has now been chal-
lenged by studies of the circadian variation in urinary potas-
sium excretion. Typically the rate of urinary potassium
excretion has a fivefold variation in each 24-h day, with
minimum rates in the early inorning and maximuni excre-
tion around noon (9, 17). Such a circadian variation might
be thought to be a result of day-night differences in dietary
intake, activity, posture, and sleep. However, the circadian
rhythm of urinary potassium excretion persists when these
variables are kept constant throughout day and night or are
manipulated in a noncircadian pattern (18, 19, 22, 30).

'.Chose studies suggest that: there can be no single steady

environmental and behavioral variations are eliminated.
We have examined this proposition and have analyzed the
circadian variation in intercompartmental potassium move-
ments in normal rnan when dietary intake, activity, and
posture are held constant throughout each 24-h period.

METHODS

Three healthy, normal volunteers were studied from 3 to
10 days in the Bartlett Intensive Care Unit of the Peter Bent
Brigham Hospital. Normality was established by clinical
history, physical examination, and biochemical screening.
Signed informed consent was obtained.

Except where otherwise indicated, posture, activity, and
dietary intake were maintained at constant levels through-
out day and night. This was achieved by keeping the subject
on strict supine bed rest and by providing a liquid diet
divided into eight equal aliquots which were taken at 3-h
intervals throughout each 24-h period. The diet provided
100 meq potassium, 150 meq sodium, 500 mg calcium, 70 g
protein, 260 g carbohydrate, 80 g fat, 2,000 calories, and
3,000 ml fluid per 24 h. In one subject (HH) the diet was
altered to give 50 meq potassium and 200 rneq sodium per
24 h but was otherwise kept the same. The room lighting
was on between 0800 and 2300 h and off from 2300 to 0800
h (LD 15:9). Low illumination was used for brief periods
during sample collection at night. The first subject (HH)
was allowed to equilibrate on this regimen for 12 h. The
other subjects, however, were given 4 days to equilibrate so
as to minimize the transients induced by postural changes
and dietary adjustment. During the equilibration period
3-h twine collections were made. Each collection contained
all urine voided during the 3-h period, including i volun-
tary bladder emptying at the end of the period.

At the end of the equilibration period catheters -,were in-
serted under local anesthesia into the radial artery and
brachial vein of the nondominant aril. These were kept
open by a 0.05 inl/min infusion of normal (0.9%) saline
through a Sorenson Intraflo system (Sorenson Research
Corp., Salt Lake City, Utah). A 48-h period Of study was _.
then commenced with the subject continuing on his previous
regimen of constant diet, activity, and posture. Every 3 h
blood samples were taken from both arterial and venous
catheters after the forearm had remained at rest for at least
5 inin. Urine collections were 6btaincd as before. The 3-h

63
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food aliquot was given after the sample taking had been IHK OA

completed. 10

In one subect (AE) the study was re-x atcd under condi- o
tions of daytime activity and nocturnal tied rest. He con- 1G.
sumed the same 3-ll liquid diet as before. Every 3 h from the 20
time of rising from bed (0800 h) until he retired (2300) he 10
went through a moderate exercise routine. This involved
sitting in a chair for the 1st h, cycling at a rate of 50-60
rev/ with a 2-k	 load for 20 min on an exercise bic cle/	 y	 ' 30URINARY

A.E.'

resting on the bicycle for 20 min, followed by a further 20 K zo
i	 min of cycling. The final hour was spent sitting quietly in a EXCRETION

chair before the 3-h specimens were collected. This regimen (TEq /3hrs)	 t0
was followed for an equilibration period of 24 h and then a 0
48-h study period. During this study period the same meas-
urements were made as in the bed-rest studies. 30 A.E.IA)

Potassium estimations. Blood was drawn slowly from the
20

catheter without tourniquet or fist pumping and carefully
mixed with lithium heparin (1,000 U/100 ml blood) in 10

potassium-free glassware. Plasma was obtained by spinning 0
immediately for 20 ruin at 2,700 rpm at 15-cm radius, and day: 1 2 3 a s a
respinning the supernatant plasma for 10 min. 24 06 1218 20 06 12 18 2e 061218 2.061218 24 06 12 IS 24 06 12 18 2A

The plasma was stored in a 4°C refrigerator until analysis TIME of DAY (hn)
within 5 days. Arterial and venous plasma potassium con-.	 y	 p	 p FIG. 1. Circadian variation in urinary potassium excretion (meq/3
centration was analyzed in triplicate in an IL flame pho- h) in each subject during the constant bed-rust and 3-h heal regimen,
tometer model 343 using an internal lithium standard. We Subject Ali was restudied on a rest-activity regimen ("I (A)) while still
have established that the precision of the determination consuming 3-h meals.

of plasma potassium concentration by our standard proce-
concentration (meq/l uncorrected for plasma water). In ourdure is high; a single sample of blood has a coefficient of laboratory the coefficient of variation of this meth yl is I. Ivariation of plasma potassium concentration of 0.39"/e,. This Urine potassium excretion was calculated from the urine

includes the variance due to anticoagulation, plasma separa- volume and the urine potassium concentration. The volumction, and flame photometer estimation. Thus an estimated of each 3-h urine collection was measured. A 20-ml aliquotmean value of plasma potassium concentration of 4.00
meq/1 would have a standard deviation of 0.015 meq/1 due was acidified with three drops of concentrated sulfuric acid

to errors in handling and analysis. Plasma concentrations °Cand then refrigerated at 4within a few minutes of collec-

were corrected to meq/1 of plasma water. Plasma water was tion. Urinary potassium concentration was estimated on the

estimated by drying 1 ml. of plasma at 90°C to constant
IL flarne photometer.

Othir estimations. The extracellular fluid volume was csti-weight (approximately 24 h).
Red blood cell potassium concentration was determined

matey at 3-h intervals by s"-Br isotope dilution (21). A single

from an aliquot of the same blood sample used to estimate
injection of 50 ,uCi 82Br in 50 ml normal saline was given 6 h

the plasma	 potassium concentration.	 This aliquot was
prior to the start of each study period to ensure equilibra-
tion. Thereafter 3-h blood samples were taken and themixed thoroughly by slow rotation for 5 rain. It was divided separated plasma was counted in a deep-well scintillation

into duplicate Wintrobe tubes and, by volurnetric pipctting counter. Aliquots of the 3,h urine samples were also countedof 1-ml portions, into potassium-free test tubes. The Win- and correction for excreted isotope was made. Because the
trobe tubes were centrifuged at 2,800 rpm at 15-cm, radius sequential measurements of 12Br volume were determined
for 55 min. Hematocrit readings were corrected for trapped
plasma by the method of Chaplin and Mollison (8). The

using the same initial 82Br injection, errors in the estimation

test tubes with I ml of whole blood in each were frozen at
of changes in "Br volume exclude the major source of error

— 20°C and then thawed at the time of analysis. Henrolysis
in this determination---the initial injected dose error. The

was completed by diluting the whole blood .with nine
remaining sources of error which apply in this study have a
coefficient of variation in this laboratory of 0.75%.

volumes of distilled water. Whole .blood potassium concen- Arterial. plasma aldosterone and cortisol concentrations
was estimated in the IL flame photometer in the were estimated at 3-h intervals for 48 h in one subject (JG),same manner as plasma potassium concentration. Erythro- The assays t were done by displacement analysis (29).

cyte potassium concentration was calculated from the Analysis of data. A circadian rhythm in a variable y, oscil-formula lating between a maximum value yz and a minimum. value

100 _ H \ yN may be described in terms of several basic parameters.
These	 cycle1H°—°Rx = [W. — (P. X	 J^ are the period of the rhythm, the	 mean (M), the
amplitudes of the maximum (Az) and minimum (A,,,) points

= .where R K 	erythrocyte potassium concentration (meq/1
on the cycle, the phase angles of reference. points such as the
maximum (Oz) and minimum. (0 N) and the contour. The

of cells), H = hernatocrit (%), WK '_ whole blood potas-
siurn concentration (meq/1), and Pi _- plasma potassium A In the laboratory of Dr. Gordon Williams.
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TABLE 1. A nalysts of variance of data from
48-h intensive study period

A) Urinary Potassium	 DF$xcretion ss NIS F

Time of day	 7 1,852,77 264,68 27.15*
Due to regression	 1 1,704.57 1,704,57 174,83*
About regression	 6 148.20 24.70 2,531

Experiments	 3 1,015.91 338.64 34.73*
Experiments X time	 21 382.95 18,23 1.87

of day
4	 Replication (error) 	 32 311.95 9.75

•rABLIs L---Continued

F) ICF-I:CF Net
Potassium Flux DF SS Ms F

Time of day 7 1,571,10 224,44 t),99*

Duc to regression 1 I ,104, 76 1,109.76 49.41-
About regression 6 461 .34 76.89 3.421

Experiments 3 83,31 27,77 1.24
Experiments X time 21 1,(XXi.04 47.91 2,13t

of day
Replication (error) 32 7111.63 22.40

Total 63 3,379,06 53,64

Total
	

63	 3,563.58	 56,56

Regression maximum: 1200-1500 h collection
Proportion time of day SS unexplained: 8.0%

B, Venous Plasma Potassium DF 	 ss	 his
Concentration

Regression Maximum: MW •1200 h period
Proportion time of day SS unexplained = 29.4%

* Statistically significant at 0,01. 	 'I Statistically significant
at 0.05.

F

Time of day 7	 0,6971	 O.VJ96	 5,19* syrnbols used are based oil 	 proposed by Aschoff et al.
Due to regression 1	 0.6425	 0,6425	 :33.46* (3). Becauseof the maintenanceof a strict 1..D 15:9 regimen
About regression 6	 0,0546	 0.0091	 0.47 throughout this study, the circadian rhythins may be as-

Experiments 3	 0.5663	 0.1888	 9,83* sunned to have a period indistinguishable from 24 h, The
Experiments X time 21	 0.7099	 0.0338	 1,76

cycle mean is therefore a 24-h average of the data for anyof day
Replication (error) :32	 0.6157	 0.0102 given 24-h day. Arnplitudes are the maximum absolute

deviations in tither direction front the mean. Thus AZ =
Total 63	 2.58W	 0.0411 Iyz - M I and A,v = I yv - M I. In these ternns tile: circa-

Regression maximum. 1200 h, dian variation in a variable inay be exxpressed as thetotal.
Proportion time of day SS unexplained = 7.8%„ amplitude relative to the nican [(Ax -}- A,v)/M]	 ia. Phase

angles, with 24 h equaling 360' in this case, are calculated
Lt Plasma Potassium

Arteriovenous I)iQcrencc DF	 ss	 +ls	 F 0 	 Thefront the reference point mid n igh t (2400 h = (1 )..
3

_I
Contour is d statement oil 	 shape of the , hychrn,

,

Time of clay 7	 0 1740	 1)•024:)	 1.47 An analysis of variance (ANOVA) was pvt-foruied for])it(- to regression
About regression

I	 0.10811	 1).10011	 6.44t
b	 O.M58	 0.0110	 0.65 cacti variable to partition the variance between individuals, 1

Experiments and days 4	 00982	 0.0246	 1.46 time of day and interaction effects and co examine the data
Residual (error) 28	 0,4741	 0.0169 for significant sources of variance. The tiutc of day effect

was fitted to a simple regression model described by the
Total 39	 0.74w)	 0.0192 equation	 = al + !r, where y is the predicted va)luc of they IRegression maximum: 2100 h
Proportion time of day SS unexplained: 37,7% variable, l is tinnc of nwasurenient expressed in absolute

_ _  hours difference froiu the time when the mean of y is at its -
M um Blond Cell

ConcentrationPotass ium
DF	 ss	 niS	 F il	 is the 	 of the	 >line and b is the pre-nutxnluin value, a	 e s

 ..._-_ dieted maximum value of y. This regression model describes j
Time of day 7	 34.58	 4.94	 :3,21 t a "fig-zag" approximation of the tune of day effect consist-

Due to regression
About regression

1	 30.511	 30„rib	 19.86*
6	 4.00	 0.67	 0.44

-
ing of the regular alternation of a positive slope for 12 h

Experiments 2	 1:31`.134	 65.112	 42.74* rising to a maxiinuni and an equal, but negative:, slope for
Residual (error) 14	 21,55	 1,54 12 h falling to a ntninirnum. The total time ofday effect could

then be Subdivided into variance due to regression and
Total 23	 187.77	 8.16 .variance, about .the.. regression lint.. In	 most u> Lances a ,..

Regression maximum: 0(100 It major portion of the time of day effect could be described ^"s
Proportion time of Jay SS unexplained = I1.6%a by the regression model leaving only a sinall portion tin-

_ accounted for because of the Iiutitations of tine simple anodel
/,1 FxtiaCL'8111:ICPOln55inm

Content DF	 ss	 ms	 F used. h variance ratio tests were applied to determine which f`

partitions were significant contributors of variance to the fof dayTints
Due to regression

7	 352.38	 50.34	 4,01*
I	 2913.46	 296.413	 2:3,134* data, and specifically to test for the significance of variance

About regression 6	 55.92	 9.32	 0,74 attributable to circadian variation. Where there were two
Experiments 3	 4,827.113	 1;609.28	 1211:33* complete days of • data front each experiment the repl ication
Experiments X time 21	 470.7ti	 22.42	 1.79 variance was tised as the denonttinator in tite F test. How-

of day
Replication (error) 32	 401.17	 12,54 ever, when there were less data available the residual, vari-

- ance was used after other sources of variance had }w vn
Total 63	 6,052.14	 W.07 subtracted froin the total stun of squares (SS). The term

"experin tints" in the ANOVA refers to the four intensive
Regression maximuun: 1200 h	 study periods of 411 h each. Two of these. "experinients" areProportion time of day SS unexplained = 15,9 o o

-.._...^
	

from the one subject who was studied twice (AL' and AE(A))..	 ' :I

Lf
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RESULTS

Urinary potassium excretion demonstrated a marked
circadian variation [(Az + AN)/M = 120 — 180°J,r] in all
subjects (Fig. 1) despite the elimination of diurnal varia-
tions in dietary intake, activity, and posture. Table 1A gives
the results of the analysis of variance demonstrating a signifi-
cant (P < 0.01) time of day effect which conformed well
(92.0% of SS) to the "zig-zag" regression model with a
maximum during the 1200--1500 h collection (Oz = 203).
The significant between experiment effect (P < 0.01) is
mostly due to a 60 % reduction in 24-h mean in subject HH
who was given a dietary potassium intake 50% lower than
the other subjects. There was no change in the parameters
of the circadian rhythm of excretion when subject AE was
restudied with daytime activity and night time bedrest
[(A. + AN)/M 120 %, Oz = 158-203°, ON = 45-901,

Plasma potassium concentration also exhibited a circa-
than rhythm [(Az + AN)/M = 7.4-12.3 °Ir] in all st- jects
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Fir. 5. Mean and SEM of extracellular potassium content, ICF-
ECF net potassium flux and urinary potassium excretion from all four
experiments (HH, JG, AF,, and AE(A)),

despite the constant regimen (rig. 2). The analysis of vari- 	 i;.	 TIME of DAY (hoursl	 ance (Table 7 B) determined that the time of day effect was

r►o. 3. Forearm arteriovenous difference in plasma potassium con- significant (P < 0.01) and was well described (92.2 % of SS)
ccntration (mean =I= SEM) across the resting forearm during the by the regression model with the maximum at 1200 h
constant bedrest and 3-h meal experiments (HH, JG, AE).	 (fez = 180°) and the minilnuin at 0000 h (0, 	 0°)

}
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During the equilibration period, prior to the study proper, >0.2
even greater amplitude circadian variations were seen.
Subject AE for example, showed a 35 %, variation in one day
With maximum and minimum concentrations of 4.19 and PLASMA

3.08 nieq/1, respectively. On each day of these studies there KA-V , -

were similar patterns of plasma concentration with a rise in DIFFERENCE

the early morning and a fall in the evening. However, as can tmEa /L
plasma water

be seen in Fig. 2, there were some individual di fferences in
0.7

11

i

rhythm contour. y - -0.045 x +0.143
Since the rhythms of urinary potassium excretion and -	 r = 0,92	 •

plasma potassium concentration are not inversely related, o - 0.0014
movements from other potassium containingcontaining compartments -040	 z	 a	 a	 s	 10
must be looked for to explain the circadian variations. ARTERIAL PLASMA CORTISOL (110m/100ml)
Forearm arteriovenous plasma potassium difference dein- F1G, 7• Relationship between arterial plasma cortisol concentration
onstrated a circadian variation (Fig. 3) which could be and the resting forearm arteriovenous difference of plasma polazeiatol
fitted to the "zig-zag" regression model with it Inaxii -nuln concentration in subject ./G during the constant bed-rest and 3-h trlcal

(positive) value at 2100 h (Oz = 315°) and a minimum
(maximum negative) value at 0900 h (O N = 735°) (Table
1C). The circadian variance described by the regression variance (Table 1D) demonstrated a time of day c(fert

model was significant (P < 0.05). Thus there: was a net flux which was well described (88,4 % of SS) by the regression

of potassiutn from the resting forearm during the morning modelwith a maxinium atU000 It (Oz = 0°) and a minimum

and early afternoon, and a reverse net flux into the forearm at ] 20U h ((4 v = 180°). This effect was significant (/' <

during the evening hours. This was seen in each subject 0.01). Thais during the morning there would appear to be it

although there was some variation in the phase of this movement of potassium front. erythrocytes to plasma and ii

rhythm in the individual subjects with the timing of reversal net flux in the reverse direction later in the day. This pattern

from net efflux to net influx ranging between 1200 h (0 = of potassiuul movement is similar to that observed from the

180°, subj HH) and 2000 h (0 = 300°, subj JG). This ac- forearm in timing and direction.

counted for most of the 37.7 % of time of day SS which were Serial measurement of the extracellular space with a "'Br

unexplained by the "zig-zag" regression model. marker indicated a small circadian variation in die volume of

A further circadian variation in net potassium flux is the extracellular compartment [(Az + Av)/j'V'1 = 2.1 4.5"/,]

apparent front Fig. 4. Red blood cell potassium concentra- With a maximum at inidday (Oz = 180°). A computed

tion shows a circadian rhythm [(Az + A,v)IM = 3.8-5.6 %;} "extracellular potassium content" using the arterial potas-

with a mininium in the middle of the day. The analysis of sium concentration demonstrated a circadian rhythm with
a mean amplitude of 7.2 n1Eq (Fig. 5). The analysis of
variance (Table 1E) demonstrated a significant time of day

4 60	 J c effect (P < 0.01) which could be fitted (84.1 e!, of 5S) to they
a 50 regression model with a maxitnunt at 1200 h (Oz = 1800)

ARTERIAL and a minimum aL 0000 h (0,v = 0°).
PLASMA	 4,10 j

K The mean circadian variations of arterial plasma aldo-
(mEg/L)	 4.30 sterone and cortisol concentration are shown foi- otie subllcl

420	 J (JG) in Fig. 6. The plasma aldosterone concentration was
approximately in phase with the circadian rhythm of ar-

15 r. terial plasma potassium concentration, 	 but the	 plasma
12 cortisol concentration showed a peak phase delay of about

PLASMA	 9 r 110°. However, plasma potassiutn forearm arteriovenous
ALDOSTERONE difference, correlated well with plasma cortisol roncentra-mgiloomn	 a tion (r = 0.92, P < 0.01, Fig. 7) while there was no signifi-

s cant correlation (r = 0.52, /' = 0.18) with plasma iddo-
o	 j sterone concentration.

10 r	 DISCUSSIOtY
a3	

The circadian rhythms of plasma potassium concentra
PLASMA	 6	 tion and urinary potassium excretion are clearly not second-
CORTISOL
(,g/looml) 4  Lary to diurnal variation in activity, posture, or dietary

intake. They persisted in this study even though these
2 ,	 behavioral variables were held strictly constant for up to 8
O L_. r .^ r _ i	 _1 ^.- --	 days. The sleep-wake cycle or the pattern of disturbances
24 Os os E915 to 21 24D

TIME OF DAY tliaurst	 and noise are unlike)y 	 e majorto b 	 determinants of the

Fie. G. ;\lean circadian rhythltis of arterial plasma potassium, observed pattern sine( the subjects tended to nip thrOUgh-
aldosterone, and cortisol concentrations in subject JG during the Cull- out day and night, and noise and activity in the investigative
stint bed-rest and';-h meal regimen.	 unit was evenly spread over each 24 h.

i
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The light-clark cycle (LD 15:9) of the room in which they
were studied was, however, rigidly maintained throughout
this study. Although the lighting regimen does not directly
control circadian rhytluns such as urinary potassium excre-
tion (18) it acts as an important Zeitgeber (synchronizer) in
naan (4, 9, 24, 31) as well as animals (7, 25, 32). Thus when
the light-dark cycle is shifted by several hours, as after
cast-west travel, the circadian rhythm of urinary potassium
excretion persists with its original phase for several days
before adjusting to the new environmental time (13, 28).
This excretory rhythm also persists in subjects confined to
isolation chambers in constant light and with no time clues;
in such conditions it usually has a period slightly different
from 24 h (2). These studies demonstrate solve inherent
stability in the urinary potassium rhythin, and it is often
termed "intrinsic" or "endogenous" (9),

We found that the circadian rhythm of plasma potassium
concentration and urinary potassium excretion were not
180 out of phase with each other. In the constant condi-
tions of the experiments this means that potassium move-
ments between body compartments must underlie the ob-
served circadian variations in urinary and plasma potas-
sium. An investigation of arteriovenous plasma potassium
difference across the resting forearm indicated that there
was an alternation between positive and negative differences
during the course of a 24-h day. Andres ct al. (1) have also
noted the net movement of potassium out of the forearm in
the early morning hours but did not observe the reverse tide
since their studies ended at noon. Our direct measurement
of erythrocyte potassium concentration, an accessible part
of the intracellular compartment, supported the conclusion
that there is an outward tide of potassium from intracellular
to extracellular compartments during the early morning,
and a revtzr et tide in the evening.

Estimations may be made of the extent of these tides using
the extracellular potassium content calculated at 3-h inter-
vals from the "Br extracellular volume and the arterial
plasma concentration. The ICF-ECF net potassium flux can
be calculated from the change in ECF potassium content
over each 3-h period, after corrections have been tirade for
urinary excretion of potassium and dietary potassium intake
in the 3-h period. Figure 5 depicts the relationships between
the extracellular potassium content, the ICF-ECF net
potassium flux and urinary potassium excretion. Analyses
of variance on these variables (Table 1, A, E, F) determined
that ^-ach had a significant (P < 0.01) circadian variation
which was well described by the "zig-zag" regression model
with a maximum at 0900--1200 h (0,, = 1511°) for ] CF-ECF
net flux, 1200 h (0;, 180°) for ECF jwiaS.sium vonit-n`

and 1200--1500 h (O = 203°) for urinary potassium.,°%axe-

tion.
It is apparent that changes in ECF potassium content are

minitmized by the counterbalancing of the ci rcadian varia-
tion in ICF-ECF net potassium flux by the rhythm of uri-
nary potassium excretion. The synchronization of the
circadian rhythm of urinary potassium excretion with the
otht:r intercotmpartmental potassium tides is thus essential
to the maintenence of extracellular potassium homeostasis.
The large relative amplitude [Az + AN)IM] % and constant
phase angles (07, 0N) of this rhythm are consistently found
tinder normal conditions (9, 17). However, after time zone

95 NORMAL	 tit
90

65	 i

ECF Ho	
ABSENT

K	 75
CONTENT 70

(mEq)
65	

INVERTED
t,o

55

so

24 01 1,6 19 12 15 18 21 24

TIME OF DAY (Hours)
FIG. 8. Predicted circadian variation in extracellular potassium

content for subject AE when urinary potassium is excreted with ej) the
observed circadian rhythm, b) no circadian variation, and c) a 180`
inversion of the rhythm..

shifts or during isolation, the urinary potassium rhythm
may become desynchronized from circadian rhythms in
other variables such as body temperature and urinary
sodium excretion (2, 13, 28). The possibility of such dc-
synchronization occurring between the circadian rhythms
in the various intcrcompartmen(al potassium fluxes has not
yet been investigated. Nevertheless, it is important to exam-
ine the probable effects of such internal desynchronization,
as the various potassium fluxes between the cxtracellular
space and other body compartments are large compared to
the extracellular potassium content. The predicted effect on
the extracellular potassium content of abolishing the urinary
potassium rhythm or phase-shifting it by 12 h (180°) has
been calculated for sul) ecc AE (Fig. 8). With a 180 reversal
of the urinary rhythm the extracellular potassium content
could theoretically fall by 43 % to a minimum value which
represents a plasma concentration of 2.2 megf 1. Extracellu-
lar potassium content is unlikely to fall as far as this because
of other homeostatic adiustments. However, if such de-
synchronization occurs, it could potentially cause serious
disequilibrium iii potassium distribution.

It is now well established that urinary potassium excre-
tion is principally a function of potassium reabsorption and
secretion by the cells of the renal distal tubule (15). The
synchrony between the circadian rhythuls of [CF-ECF net
potassium flux and urinary potassium excretion suggests
that the renal distal tubular cells may be functioning in a
similar manner to the rest of the body cell mass. During the
morning while- potassium moves from the general cell mass
into the general ECF, potassium would appear to be moving
from the distal tubular cells into a spx cialg t d comparttu^-lr't
of the ECF- the distal tubular fluid—resulting in an in-
crease in urinary potassium excretion. Similarly in the late
evening when there is a net potassium flux into the body cell
amass, a net reabsorption of potassiuma by the distal tubular
cells from the distal tubular fluid is probably responsible for
the ob vrved reduction in It211,ary potassium excretion. Tile
attraction of this hypothesr^ is that it suggests that cornm e n
regulatory mechanisms roidd control the circadian net
fluxes of'potassium from both the distal tubular cells and the
body cell mass in general, thus minimizing desynchrony
between the two major determinants of ECF potassium
content.

The mechanisms of control of these intercompartamental

1
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fluxes are Car from clear. .Diurnal variations in sodium-
potassium activated ATPase activity have been reported in
various tlsittt:5 (5) and could playa role in these rhythms.
The circadian rhythm in plasma cortisol concentration may
be an important determinant, C ortisol promotca the move-
ment of potassium out of the body cell mass (especially
intl,cic) 111) and causes a rise in plasma potassium concen-
tration and increase ill urinary potassium excretion (6, 16).
iII s bicel JG the early morning rise and evening fall in
plasma cortisol concentration correlated well with the net
n1ovement of potassium to and front the resting forearm
preparation (Fig. 7). However, limited studies in adrenal-
ectottlized or Addisonian patients have shown that the
normal circadian rhythm of urinary potassium excretion is
still observed when their replacement steroids and food.
intake are evenly spread over the 24 -h day (14, 123). it is
therefore not possible to postulate the simple dependence of
all the circadian intercompartmental potassium fluxes on
the plasma cortisol rhythm. Whatever the mechanisms of
control it appears that such intercompartmental potassium
fluscs may be fundamental to many systems for they also
play an important role in diurnal leaf movements in plants
(26, 27).

Traditionally homeostasis is viewed as the maintenance of
an internally constant milieu despite the variations in the
external environment. Studies of plants, animals, and than
have shown that when environmental circadian variation is
minimized or absent manycircadian rhythms persist, usually

169

with a periml not givillk different from 24 li {2, 71 'Thits
responses that world be "appropriate." for t11c em iron-
mentalchangeusually 1lccurringat a certain limcof day still
are exhibited when that environmental variation is Sup-
pressed. The rim , in urinary potassium excretion in the
middle of the day might be considered a responec to the
daytime increase in potassium intake from the diet and the
potassium~ released during daytime musculat actiN itv. The
observation that the rhythm of polassimil cxcrotioll persists
despite the apparcia absence of "causal" vmironmental
variation rules out this conclusion. The concept of htatneo-
stasis must be rc-fiord to include cyclical variations in phySio-
logical set points, for the observed circadian rhytltnt, du not
appear to fx: externally produced perutbations Oki homeo-
statically protected hash line.
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ABSTRACT

The interrelationships between urinary electrolyte circadian rhythms and

rhythms of feeding, drinking and activity were studied in six conscious chair-

acclimatized squirrel monkeys (Saimiri sciureus) kept in temperature-controlled

isolation chambers on a light-dark (ID) 12:12 hour cycle. With lights on

(600 lux) from 08.00-20.00 hoc and off (<1 lux) from 20.00-08.00 hr, renal

potassium excretion in monkeys fed ad lib fell to a daily minimum of 64 + 6

,A Eq/hr at 05.00 hr and rose to a maximum of 274 + 23 ,"Eq/hr at 17.00 hr. Sodium

excretion fell to a minimum of 13 + 2 jAEq/hr at 10.00 hr and rose to a maximum

of 43 + 6.,.,Eq/hr at 21.00 hr, while water excretion fell to a minimum of

869 + 63 f,1/hr at 05.00 hr and rose to a maximum of 2307 + 222/,J h at

17.00 hr. Feeding, drinking and activity occurred only during the lights-on

period. Independence of the urinary rhythms fron diurnal variations in feeding,

drinking and activity was established a) by depriving monkeys of food for 24

hours, b) by depriving monkeys of water for 24 hours, and c) by training

.monkeys to perform a two-hourly schedule of feeding, drinking and activity

throughout day and night. None of these three regimens resulted in reductions

of the amplitude, or changes in the phase of the circadian rhythms of urinary

electrolyte or water excretion. These findings indicate that the circadian

rhythms 6f urinary potassium, sodium and water • ^xcretion are controlled by

mechanisms which are independent of the behavioral patterns of feeding,

drinking-and activity.

Index terms

Circadian internal synchronization, behavioral rhythms, urinary potassium,

sndi u m and water excretion. squirrel monkey=

i

I
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Many physiological functions have been shown to oscillate spontaneously

with a period of 24 + 4 hours when an animal is isolated from environmental

time cues (1,2). There is now considerable evidence to suggest that these

circadian rhythms are generated by one or more oscillators within the organism

(3,4) . Such oscillators appear to serve a variety of timing fuctions which

include the control of developmental sequences (5), the initiation of adaptive

changes before the occurrence of a periodic environmental challenge (6) and

the time-compensation of sun orientation mechanisms(7).

When circadian rhythms in several physiological variables are monitored

simultaneously in an individual animal they are usually found to have identical

periods and constant phase-relationships. This "internal synchronization"

can be demonstrated whether the rhythms are synchronized with environmental

time cues or are free-running under constant environmental conditions (1,8,9).

The internal synchronization of circadian oscillations in mutually interdependent

processes appears to be an important feature of physiological organization (10),

and events which promote internal desynchronization are often associated with

deteriorations in psychological and physiological function (11-14).

Little is known about the mechanisms responsible for internal synchronization

in higher animals. This is partly because the extent to which oscillating

physiolcgical variables are dependent upon one another has not been .adequately

examined. The experiments described in this paper were designed to investigate

the interdependence of two sets of endogenous circadian rhythms--the behavioral
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rhythms of activity and dietary intake and the renal rhythms of potassium,

sodium and water excretion., There is evidence to suggest that all these rhythms

are endogenously generated (1,2). However, the internal synchronization that

is seen between these rhythms could be achieved by any of three possible

mechanisms. Firstly, internal synchronization could be a result of the simple

passive dependence of renal excretory rhythms on endogenous rhythms in_those

variables which influence electrolyte excretion, such as dietary intake (15),



and muscular activity (16). Secondly, the behavioral and renal rhythms could

both be passively dependent upon one central driving oscillator. Thirdly,

the behavioral and renal rhythms could be generated by potentially independent

separate oscillators which are normally kept in synchrony with one another.

These questions have been studied using unanesthetized, chair-acclimatized

squirrel monkeys(Saimiri sciureus).

MATERIALS AND METHODS

The studies were performed using six adult male sgs]i.rrel monkeys ( Saimiri

sciureus) weighing 600-900 gm. For periods of up to three weeks, continuous

urine collections were obtained from unanesthetized monkeys, conditioned to

sit in a specially designed metabolism chair. Environmental illumination,

temperature and auditory stimuli were controlled by conducting experiments

within an isolation chamber.

Metabolism Chair. The design of this chair (Figure l) was based upon

the squirrel monkey chairs used in the behavioral experiments of Kelleher and

Morse (17). The monkey sat on a bar and was restrained by a plexiglass sheet

which served as a table around its waist. The space between the table and

the monkey was sealed by a soft rubber waist cuff. The monkey had freedom

of movement about the waist. Below the plexi.glass table, it could either

squat with its feet on a footrest or sit on the perch.

A lever was provided which the animal could operate to obtain food

pellets. Pellets were delivered into a tray directly front of the animal from

a pellet dispenser (Model 11-1, Gerbrands Co., Arlington, Massachusetts).

A raw of colored light bulbs were used to tiiin the monkey to perform certain

desired feeding schedules. Drinking water was provided from a calibrated

water bottle.

A padded funnel, placed between the monkay's legs, enabled the collection

of urine samples uncontaminated by feces and food debris. Urine passed from

the funnel into test tubes within a specially designed autom:-itic fraction



collector. The apparatus which contained slots for 24 test tubes (100 x 15 mm)

was rotated every two hours by a stepping motor (Lede:: 24-step digimotor,

Ledex, Inc., Dayton, Ohio). The fraction collector was covered by a sheet

of plexiglass which both prevented particles from falling into the test tubes

and served as a foot rest for the monkey.

Isolation Chamber. The monkey, chair and fraction collector were housed

in a temperature-controlled isolation chamber (Forma Scientific, Models

12 or 20, Marietta, Ohio). The chamber temperature was monitored by a

continuously recording thermometer (Bacharach Instrument Co., Pittsburgh,

Pennsylvania). To provide ventilation, the fan on the heating-cooling unit

was used to provide a circulation with air from outside the chamber.

A light source within the chamber, yielding approximately 600 lux of

white light,: was switched on each day from 08.00-20.00 hr and off from 20.00-

08.00 hr. When the light was off there was less than'l lux of illumination in

the chamber. The animals were thus subjected to a 24-hour light-dark cycle

(LD 12:12; 600:<1):

The isolation chambers partially attenuated extraneous sounds and a

white noise source was used in addition to provide further muffling. The

white noise was generated by a Grason-Stadler Noise Generator (Model 901-B,

West Concord, Massachusetts). Activities outside the chamber had no discernable

effects on the animal's behavior.

D^perimental Control and Recording Systems. The timing and control of the

experimental system were accomplished by an automatic switchboard. One

section of the switchboard,was controlled by a clock which operated switches

in electrical circuits every two hours thus activating the stepping motor of

the fraction. collector, , the timing record on the continuous paper recorders,

and the counter and switch which controlled the illumination cycle of the

isolation chamber. Another part of the switchboard controlled the

food pullet delivery to the monkey. die ntriber of lever operations to gain a

w_



pellet was controlled by a counter and the time between pellet deliveries was

controlled by an adjustable timer.

Feeding, drinking and movements in the chair were recorded from each monkey

continuously using Harvard C-3 cummulative and 6-pen recorders (Gerbrands,

Arlington, Massachusetts). Physical activity was monitored by an ultrasound

motion detector (Alton Electronics Co., Gainesville, Florida). Drinking from

the water bottle was detected by closure of an electrical circuit between the

perch, the monkey and the water bottle spout. The volume of water consumed

each day was determined by measuring the fluid level according to calibrations

on the water bottle.

Food pellet lever responses and food pellets obtained were also recorded.

Electrical pulses were generated from the automatic switchboard by the food

lever countdown devices and these were used to activate the recorders. An

additional clmmulative counter was used to record the'total pellets obtained.

The twenty-four hour food intake could be read from this counter. By adjusting

the number of responses required to gain a pellet it was possible to ensure

that the monkey would eat all of the food pellets delivered.

Once the monkeys were conditioned they tolerated studies lasting two to

three weeks, and showed no ill effects or loss of agility upon return to their

cages. Ubile in the metabolism chair they behaved normally and maintained body

weight.

Control Ad Lib Feeding and Drinking. Five of the conditioned monkeys were

studied for a period of seven days while seated in the metabolism chair within

the isolation chamber. The monkeys were provided with food and water ad lib

and were maintained on the ID 12:12 hour light-dark cycle, with lights on from

08.00 hr to*20.00 hr daily. Two days were allowed for the monkeys to achieve

stable patterns of feeding, drinking, activity and urinary excretion. The

followingfive days served as the experimental period. urine collections

were obtained throughout the seven days of the experiment as described above.



Urine samples were removed from the chrimber once every one or two lays at

varied times during the animal's activity period.

24-Hour Food Deprivation. Four of the conditioned monkeys were seated in

the metabolism chairs within the isolation chambers as described for the

control experiments. Two days were allowed for acclimatization as before.

They were then studied during one control day of ad lib feeding followed by

a 24 hour period when they were deprived of food. rvinking water remained

available on an ad lib basis. Throughout the experiment the monkeys remained

on the same light-dark schedule (LD 12:12) as in the control experiments.

24-Hour Water Deprivation. After two days of acclimatization in the

isolated metabolism chair, four of the conditioned monkeys were studied during

a'control day of ad lib feeding. This was then followed by a 24 hour period

with the water bottle removed from the chair. Food was available ad lib

throughout. Urine collections and other procedures were carried out as

previously described.

Two hourly (g2h) Feeding Regiman. Four monkeys from the original control

group were trained to operate a lever to gain food pellets whenever a small

green signal light came on. The signal light was mounted in front of the

monkey and provided approximately 5 lux of green illumination. Once every

two hours the green light was turned on for a 10 minute session when the monkey

could obtain up to four pellets (1 g) of food. Operation of the food pellet

lever between sessions did not produce pellets. After two or three days on

this schedule, the monkeys pressed the lever to obtain food only during the

f'
	 10 minute periods when the signal light was on. Water drinking and

movements within the chair mostly occurred during these feeding sessions.

once the monkeys were fully conditioned to this schedule, they were

placed in the metabolism chair in isolation. Three days were allowed to re-

establish the two-hourly pattern of feeding, drinking and activity. Then, for

the next two days urine collections were obtained while the monkey followed
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the two-hourly feeding schedule. The light-dark cycle (YD 12:12) and other

experimental procedures were conducted as before.

Urine Analyses. After the urine samples were removed from the fraction

collector they were acidified with two drops of 25% sulfuric acid and refrigerated

at 4°C. Analyses were completed within one week. The volume of urine in each

tube was measured, and sodium and potassium concentrations were analyzed by

flame photometry (Instrumentation Laboratories, Lexington, Massachusetts).

Urine excretion rates (,,,-Eq/hr) were then calculated for each electrolyte from
G

the volume of each sample, the concentration of the electrolyte and the

length of time over which the sample was collected.

Data Processing. The urinary data was expressed as a smoothed three-point

running mean. This was done by averaging the excretory rate during each two-

hourly period with the excretory rates of the two neighboring two-hourly

collections. This procedure reduced the influence of the monkey's irregularly

timed mictur ritions on the excretory pattern without significantly affecting

the amplitude of any circadian periodicity in the data.

For certain experiments the urinary data was then expressed as percentage	
1

deviation fraan a running 24 hour mean. The 24 hour mean was calculated from

the excretory values for 12 hours on either side of each data point. This

procedure enabled any circadian periodicities to be separated out from occasional

longer term trends in the data. The various computations involved in these

procedures were performed on a Hewlett-Packard 2116B computer.

PZSULTS

Control Ad Lib Feeding and Drinking. The five squjrrel monkeys showed

marked circadian variations in potassium, sodium and water excretion (Figure 2). 	
fY
k

The rate of potassium excretion fell to minimum of 64 + 6 ,&.Fq/hr (mean ± SETO

at 05.00 hr daily and then rose to a maximum of 274 + 23 ,-Eq/hr at 17.00 hr.

This represented a 115% circadian variation about the 24 hour mean. The

reproducibility of the pattern of potassium excretion is illustrated in Figure 3;

d	 w



five consecutive days of data from one monkey are shown.

Sodium excretion fell to a minimum value of 13 _+ 2 1,Bg/hr between 09.00 hr

and 11.00 hr and rose to a maximum of 43 + 6 /-Ecyhr at 21.00 hr; this was

a 1130 circadian variation. There was considerably more fluctuation from day
I!
is to day and more variation between monkeys in the sodium pattern than that of

potassium. Sodium excretion was on average four hours phase-delayed from the

urinary potassium rhythm. However, individual subjects had maxima of sodium
i

excretion that occurred at various times between 17.00 hr and 07.00 hr.

Urinary water excretion also had a marked circadian rhythm reaching a

minimum of 869 + 68 ,j,.1/hr at 05.00 hr and then rising to a maximum of 2307

+ 222 ,A-1/hr at 17.00 hr; an 85% circadian variation. The urinary water rhythm

was approximately in phase with the urinary potassium rhythm, although it had

a smaller amplitude. Urinary water excretion did not show the variability

between subjects that was seen with the sodium excretion pattern.

Feeding, drinking and activity occurred only during the light period of

the 24 hour cycle. Figure 4 shows a representative pattern of food and water

intake from one monkey. The total 24 hour electrolyte intakes are shown in

Table 1.

24-Hour Food Deprivation. The excretory patterns of potassium, sodium

and water from four monkeys are shown in Figure 5 during a control day of

normal ad lib feeding which was followed by a 24 hour period when the monkey

was deprived of food. Despite the absence of feeding and therefore of potassium

or sodium intake, the excretion of potassium and sodium rose to a peak during

the light period with a similar pattern to that observed during control day.

The rhythm of urinary water excretion was also unchanged.

2'4-Hour Water Deprivation. Figure 6 presents the excretory patterns of

the four monkeys who were studied during a control day of ad lih feeding and

drinking, and then during a day of water deprivation. The patterns of urifa.ry

potassium and sodium excretion were unchanged but the urinary water rhythm
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was damped during the 24 hours of water deprivation. The effects of restoring

the drinking water supply after 36 hours of water deprivation are shown in

Figure 7. This had little effect on the rhythm of urinary potassium excretion

although the daily maximum urine flow rates during the four days of this

experiment ranged from 0.6 ml/hr during water deprivation to 12.O ml/hr

on the day that: drinking water was restored.

Two-hourly Feeding Regimen. The four monkeys adapted fully to the two-

hourly feeding regimen. In addition, most of their drinking and movements in

the chair occuxred during the ten minute feeding periods in every two hours . Thus,

the nonnal . .circadian rhythms of .feeding, drinking and activity were eliminated by the

behavioral conditioning. Figure 8 shows that the circadian rhythms of urinary

potassium, sodium and water excretion were not damped by the altered behavioral

patterns of feeding, drinking and activity. There was no change in the pattern

of potassium excretion and the rhythms of sodium and water excretion were

increased in amplitude as compared to the control regimen.

DISCUSSION

All monkeys demonstrated regular circadian rhythms in the rate of urinary

potassium, sodium and water excretion and in the behavioral patterns of feeding,

drinking and activity. Although the monkeys in the control studies had foods

and water continuously available throughout day and night they undertook most

of their feeding, drinking and mvve-itents in the chair during the lights-on

period of each 24 hour day. These findings confirmed previous reports that

the behavior of these animals is strictly diurnal, both in their natural

habitat (18) and in the laboratory (19). The circadian rhythms of potassium

and water excretion also reached their maximum rates during the lights-on

period. Sodium excretion, however, rose to a daily maximum during the first 	 h

part of the dark period, on average four hours later than the maximum for

potassium and water excretion.

This study was designed to investigate whether the circadian rhythm
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of urinary electrolyte excretion are to any extent determined by the diurnal

patterns of feeding, drinking and activity. These urinary rhythms are normally

internally synchronized with the behavioral rhythms with a phase-relationship

suggestive of a direct causal dependence (2,9,20,21). In the rat (20) and

the dog (Moore Ede, Drake and Hotez, unpublished observations) the urinary

electrolyte rhythms are either eliminated or have greatly reduced amplitudes

when food intake is evenly distributed throughout day and night. However,

in man (10,22-24) and in the present studies in the squirrel monkey, the cir-

cadian rhythms of potassium, sodium and water excretion were unaffected when

food and water were withheld for 24 hours,or when the circadian rhythms of

dietary intake and activity were eliminated in regimens where small identical

meals were given at two or three hourly intervals throughout day and night.

Thus, the renal excretory rhythms in human and non -human primates appear to

be independent of the circadian rhythms in the behavioral patterns of feeding,

drinking and activity. The internal synchronization which is normally observed 	 j

between these behavioral and urinary rhythms cannot be explained by any direct

dependenoe of renal function on behavioral patterns.

Two alternate mechanisms by which circadian internal synchronization

could be achieved in primates must therefore be considered. Firstly, the

behavioral rhythms and the renal rhythms could both be passively dependent upon

a central circadian oscillator to which they are separately linked. Alternatively,

the various behavioral and renal rhythms could be controlled by separate potentially 	

j
independent oscillators which are normally kept in synchrony with one another.

Two main lines of evidence make the latter mechanism of internal synchroni-

zation the most probable. Firstly, Aschoff and his collegues (9) have demon-

strated that while internal synchronization is normally seen in human subjects

studied in the absence of environmental- time cues, internal desynchronization'

can occasionally occur. In 15% of their subjects the various monitoi.-ed rhythms

spontaneously begin to free-run with different periods, so that-the rhythmic



functions became desynchronize from one anther. This indicates that there

must be more than one self-sustaining circadian oscillator within an advanced

multicellular animal such as man. A similar conclusion must also be reached

frcm the studies that have been conducted in isolated tissues from rmilti-

cellular animals. Persistent circadian oscillations have been shown to occur

in various isolated tissues maintained in constant conditions. The preparations

in which free-running circadian rhythms have been demonstrated in vitro

include hamster adrenal glands (25-27), cardiac muscle (28) and the

eye of Aplysia (29,30).

These . two sets of observations strongly suggest that the circadian timing

mechanism is organized as a system of multiple, potentially-independent

oscillators in the various tissues of an animal. Internal synchronization

would presumably be achieved in this system through oscillations in hormonal

and nervous mediators. This laboratory is currently engaged in the identification

of the anatomical locations and the mechanisms which synchronize these

putative oscillators. The definition of the properties of these oscillators
1

is important to the understanding of physiological processes such as renal

electrolyte excretion, in which the phase of the circadian cycle is a major

determinant ofiolh	 ical function.
• i	
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FIGURE LEGS

Figure 1. Squirrel monkey seated in metabolism chair within isolation chamber.

Urine passed from a funnel between the animal's legs to the test

tubes in the fraction collector. Food was delivered from the pellet

dispenser in response to operations of the lever in front of the

animal. !be colored light bulbs above the lever were utilized in

conditioning the animal to certain feeding schedules. Movements

in the chair were detected by an ultrasound activity meter above

the animal and water intake was monitored by a dri.nkreter circuit.

Figure 2. Circadian variation in urinary potassium, sodium and water excretion

during the control ad lib feeding studies in ID 12:12 . Mean + SEM

of urinary data fram five monkeys each studied for four days is

plotted on the left side of the figure as rr or ^,L/hr, and

cn the right side as % deviation fran a running 24 hour mean.

Figure 3 Circadian rhythm of urinary potassium excretion in one representative

monkey plotted over five consecutive days of a control ad lib

feeding experiment. The pattern of excretion was highly reproducible

in all animals studied.

Figure 4. Pattern of ad lib food and water intake in a monkey. A continuous

paper tape recorded events associated with feeding and drinking

with each event recorded as a single stroke of the pen. This paper

tape was cut into 24 hour strips and the 24 hour strip from each day

pasted under the previous day's strip for eight consecutive days.

The black bars represent periods of darkness. It can be seen that

all the events associated with feeding and drinking occurred in the

lights-on period of the 24 hours.
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Figure 5. Urinary excretory rhythms during acute food deprivation. The

circadian rhythms of potassium, sodium and water excretion of four

monkeys (mean + SEMI) are plotted during a control clay of ad lib

feeding and a day when the animals were deprived of food, but were

given free access to water. Despite no dietary intake of potassium

and sodium the circadian rhythms in the excretion of these electrolytes

were unchanged.

Figure 6. Urinary excretory rhythms during acute water deprivation. The

circadian rhythms of potassium, sodium and water excretion of four

monkeys (mean + SEH) are plotted during a control day of ad lab

feeding and drinking followed by a 24 hour period when the water

bottle was removed from the chair but food remained available ad lib.

The circadian rhythms of potassium and sodium excretion were unaffected

by water deprivation. The amplitude of the circadian rhythm in

water excretion was decreased from 101% to 72% relative to the

24 hour mean.

Figure 7. The circadian rhythms of urinary potassium, sodium and water excretion

during one control day of ad lib feeding and drinking, 36 hours of

water deprivation and 36 hours with the water supply

returned to the monkey. Despite water excretion rates which ranged

fran 0.6 ml/hr during water deprivation to 12 ml/hr on the day after

the water supply was returned, the circadian rhythm of urinary

potassium excretion remained unchanged. In contrast, the circadian

rhythm of sodium excretion varied markedly in amplitude and a

natriuresis accompanied the high urine flow rates on Day 3
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Figure 8. Urinary excretory rhythms during ad lib and two-hourly (q2h)

feeding. The patterns of urinary potassium, sodium and water

excretion are shown during ad lib feeding (shaded pattern) and in

the same four monkeys during a two-hourly (q2h) feeding regimen.

The rhythm of urinary potassium excretion was uninfluenced by the

change in feeding pattern, but the circadian oscillations of

urinary sodium and water excretion had increased amplitudes.
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Table 1. Average Daily Intakes for Five Monkeys During Control Ad Lib Feeding Schedule_,

Monkey Pellets* Potassium Sadiron Calcium Magnesiun NitKo2gcn

#/day MEq/day mEq/day mEq/day mWday g/day

A 127 4.78 1.79 6.36 1.73 0.98

S. 172 6.47' 2.43 8.62 2.34 1.33

C 200 7.52 2.82 10.02 2.72 1.54

D 114 4.29 1.61 5.71 1.55 0.88

E 157 5.90 2.21 7.87 2.14 1.21

Mean 154 5.79 2.17 7.72 2.09 1.19

+ SD + 35 + 1.30 +0.49 +1.73 +0.47 +0.27

*Each pellet contained 37.6 .,Fq potassium, 14.1/,Fq sodium, 50.1 /f 'calcium,

13.6 .,,-Eq magnesium, and 7.7 mg nitrogen.
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ABSTRACT

The 24-hour pattern of plasma cortisol concentration in four patients

on the day before major elective surgery was compared with that of five

similarly hospitalized control subjects to study the effect of the expectation

of surgery on the secretion pattern. Using an indwelling venous catheter

which extended outside the patient's roan to collect blood samples every

20 minutes for 24 hours, it was found that cortisol was _secreted episodically

in both control subjects and presurgical patients. The nychthemeral patterns

of plasma cortisol concentration in the two groups were indistinguishable

for most of the day despite the occurence of intermittent events which

appeared to cause anxiety in the presurgical patients. However, between

9 P.M. and 11 P.M., while each presurgical patient was being preoperatively

prepared (body shaving, wash and enema), a major pulse of cortisol secretion

occurred, raising the plasma cortisol concentration to between 6.9-10.5

standard deviations above the control subject mean for that time of day.

We conclude that 1) expectation of a major surgical procedure for

several weeks does not result in chronic activation of the pituitary-

adrenocortical axis, 2) many discrete anxiety-provoking events do not evoke

cortisol secretory episodes, 3) most episodes of cortisol secretion are

part of an endogenous cyclical pattern with a circadian distribution and are

not a direct result of environmental stinuli, and 4) preoperative preparation

evokes a major cortisol secretory response in patients awaiting surgery..

Whether that release of cortisol is a response to the physical manipulations

or psychological implications of that stimulus is presently unknown.
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	 Anxiety, and particularly the apprehension of personal injury, is

generally onsidered to be ay y	 ,potent stimulus to ACTH and cortisol secretion

(1-5). Yet attempts to correlate elevations in either plasma cortisol

concentration or urinary 17-hydroxycorticosteroid excretion with psychological-

ly stressful situations (both contrived and real) have often failed to

demonstrate a consistent relationship in man (6-13). Such variability in
i

the cortisol secretory response to a given situation among and within

individuals has been explained in several ways. When falling plasma cortisol

concentrations have been observed in the face of apparent stress some investi-

qators have concluded that the psychoendocrine response was being masked by

a concurrent diurnal fall of plasma cortisol concentration (12,13). other authors

have suggested that personality type was the overriding factor in cortisol

output (14-16) or that increased cortisol secretion was only seen when

an individual's psychological defenses were inadequate to cope with a situation

(7,8,10,17).

While such explanations may yet prove to be valid, another reason for

the lack of a consistent correlation between anxiety-provoking situations and

elevated plasma cortisol concentrations has became apparent fran the

demonstration by Weitzman and colleagues that cortisol is secreted episodically

in man (18,19). Their use of frequent (20 minute) plasma sampling has

demonstrated that cortisol secretion is limited to short pulses with no

obvious secretion between those pulses (20,21), although the average nych-

themeral pattern of cortisol concentration still demonstrates the previously

reported circadian variation (2--24) This episodic 24-hour pattern of

cortisol secretion explains why attempts to show a precise correlation between

infrequently monitored plasma cortisol concentrations and psychologically

stressful situations have had little success. Accurate definition of any

psychoendocrine response which is superimposed upon a complex, pulsatile _
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secretory cycle is simply not possible when only a few blood samples are

taken on each day of study.

one naturally occurring situation which is associated with anxiety is

the prospect of major surgery(25). Patients awaiting elective cardiac surgery

were chosen for this study sinee most such patients feel that the operation

poses a significant threat which they consent to undertake in the hope of

a successful relief of their symptoms. Consequently, such patients might

be expected to demonstrate a major adrenocortical response (1,2). This

paper reports a study which compared the 24-hour patterns of plasma co'tisol

concentration measured at 20 minute intervals in four patients during the

24-hour period just prior to undergoing open-heart surgery with the 24-hour

cortisol patterns of five control subjects who were similarly hospitalized.

MATFRTATS AND METHODS

Control Subjects. Five healthy, normal male subjects (A,B,C,D & E), 21-43

years of age (mean--26.3 years), were studied in the Clinical Research Center

of the Peter Bent Brigham Hospital. Eadn subject was a personal acquaintance

of one of the authors (C.C.). Normality was established by clinical history,
1

physical examination and routine clinical biochemical screening. Signed

informed consent was obtained from each subject.

Each subject received several hours of instruction prior to the

investigation in order to minimize the possible effects of uncertainty

about the experimental procedures (11). For at least one week prior to

the study, each subject kept a daily reoord of their estimated times of

sleep onset and waking. A clinical psychiatrist (Q.R.), interviewed each

subject for between one to three hours. Without prior knowledge of the

endocrine data, he ranked each subject according to manifest display of

emotional responses on a scale from the overt expression of emotionality to

a tendency towards inhibition of emotional responses. This was done in
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conformity with studies using similar clinical methods (15,26). on that

scale (overt expression to inhibition) the subjects ranked in the following

order: A,D,E,B,C.

The subjects were admitted to the Clinical Research Center on the day

prior to the study in order to foster adjustment to the hospital environment.

They were provided a normal diet containing 100 mEq potassium and 150 mEq

sodium per 24 hours. The subjects were restricted to light activity or

bedrest during the adaptation and experimental days. Lights were switched

out at 11 P.M. and switched on at 7 A.M. daily (LD 16:8).

Venipuncture was performed on each of the control subjects three days

prior to the study in order to reacquaint them with that procedure (27). In

order that the reported adrenocortical secretory response to intravenous

catheterization (28) would not confound the results of the control studies,

such catheterization was performed at least 12 hours before the 24-hour

blood sampling procedure was begun. A sterile teflon catheter was inserted

into a forearm vein and connected to a 12 foot long section of polyethylene

tubing (1.14 mm ID) which extended out into the hall adjacent to the subject's

room. The tubing was insulated with larger diameter transluscent tubing to

prevent the subject from sensing temperature changes as blood was drawn through

the line. This intravenous line was kept patent with a mcrodrip infusion

of heparinized saline (500 J sodium heparin and 0.45 g NaC1 per 100 ml)
i

at a rate of 12 ml/hr. Frequent blood samples could thus be obtained from

outside the subject's room without his being aware of the procedure (19).

Blood sanples (1.5 m1) were withdrawn from the extended indwelling catheter
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every 20 minutes, starting at 7 A.M. on the day after admission to the

hospital and continuing for the subsequent 25 hour period. The subjects
	

1

reported that they slept normally throughout the period of darkness (11 P.M.-

7 A.M.) .	 3
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The degree of anxiety or apprehension was subjectively assessed

using a 1-5 rating scale (13;29), at twenty minute intervals, throughout the

period of the experiment. In . addition, a detailed log was kept of events

which occurred during the day of the experiment.

Presurgical Patients. Four patients age 36-59 (mean=44 years) were studied

during the 24 hour period immediately prior to elective coronary artery bypass

graft surgery. Three patients were men (W,Y & Z) and one was a woman (X).

They had slept 3 to 8 nights in the hospital just prior to their studies.

Except for a previous history of myocardial infarction in X,Y and Z, and

significant occlusion of one or more coronary arteries as determined by

coronary angiography in all cases, each patient had no other medical abnor-

malities. No patient had any endocrine or metabolic disorder, and specifically

there was no evidence of congestive heart failure, hypertension, hyper- or

hypothyroidism, Cushing's or Addison's disease, or recurrent angina pectoris

although all reported the experience of angina pain on strenous physical

exertion. No episodes of angina occurred at any time during these studies.

One of the patients (Y) had undergone the same operation one year before.

None of the pitients were receiving any medication with the following

exceptions: all were given sodium methicillin (Staphcillin, l g) prophylactically

at midnight; Y received isosorbide dinitrate (Isordil Tembids, 80 mg/day);

W, X and Y consented to forego the usual preoperative sleep medication,

but Z received glutethimide (Doriden, 0.5 g), a non-barbiturate hypnotic,

at midnight.

All of the patients before cardiac surgery in this study were intellectually

aware of the risks of major cardiac surgery. They each talked about their

fears of the operation repeatedly during the day of study and described them-

selves as anxious.

Blood sampling from outside of the patient's roam was accanplished at
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20 minute intervals through an indwelling catheter as described above for the

control subjects, from 6 A.M. on the day before surgery until 7 A.M. on the

day of surgery. For the patient's comfort, the catheter was not placed until

prior to sampling. During the day of the study the patients engaged

in light. activity or bedrest similar to that of the normal volunteers. The

degree of anxiety and apprehension was estimated as described for the normal

subjects, and a log was kept with particular attention paid to the timing

of potentially stressful events during the day--such as diagnostic procedures,

venipuncture, etc.

Plasm Cortisol Assay. After each blood sample had been collected in a heparin-

ized tube it was centrifuged and the plasma aliquot frozen.for subsequent

biochemical assay. Zhe cortisol concentration in each of the 670 plasma

samples drawn in the study was assayed in duplicate using the competitive

protein binding technique in a modification of the method of Murphy-(30) after

Rosenfield et al. (31). The interassay coefficient of variation was 7%.

Presentation of Data. An average time of sleep onset for each subject was

calculated from his record of the seven nights prior_ to the study. This

was used as the zero point of the time scale for plotting his cortisol data.

This time of reported mean sleep onset (MSO) for the previous werk was chosen

as a common reference point rather than the actual time of "lights out" on

the night of the experiment because the circaclian cortisol secretory pattern

has been shown to persist with unaltered phase for several days after a

phaseshift of the light-dark or sleep wake cycles (32,33). The actual clock

times of sleep onset and waking on the experimental days are shown in Figures

1 and 3 by downward and upward arrows respectively.'

For purposes of statistical analysis, the 24--hour sleep-wake cycle was

divided into the following 4 phases: Phase I=4 hours before until 2 hours

after MSO, Phase II=2 to 4 hours after MSO, Phase III=4 to 9 hours after

i



MSO and Phase IV=15 to 4 hours before MSO. These divisions are similar to

those outlined by Weitzman et al. (19), as were the criteria for defining

secretory episodes. Comparisons of the cortisol data between the two experi-

mental groups were made using Student's t test, and linear regression analysis

was used to test for correlations between anxiety ratings and cortisol concen-

tration.

IFISULTS

Control Subjects. The patterns of plasma cortisol concentration for the 24-

hour study period in the five normal subjects are plotted in Figure 1. The

mean plasma cortisol concentration, range of values, number of secretory

episodes and the longest period when the cortisol concentration did not

rise above the mean are presented in Table 1. In each subject the concentra-

tion of cortisol fluctuated widely during the day in a manner suggesting

discrete episodes of cortisol secretion. In the period from 4 hours before

to 2 hours after mean sleep onset (MSO) there were no secretory pulses which

rose above the 24-hour mean level in the normal subjects. This dormant
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,iced regularly ended between 2 and 3 hours after MSO, with the initiation

o. a series of major secretory pulses which continued throughout the remainder

of the slc,-i^p period. Maximum concentrations were reached about 7 hours after
I

MSO. A fall in plasma cortisol concentration was then seen in 4 out of the

5 subjects during the morning (16 to 13 hours before MSO). During the

middle of the day, several secretory pulses were observed in each subject;

none of these reached the values observed during the late sleep period. Day-

time ratings of anxiety in these control subjects rarely rose above 2 on a scale

of 1 low to 5 high. No incidents occurred which produced significant affective

response; even mild apprehension about events in the environment was rare. The

plasma concentration of cortisol was not significantly correlated with anxiety ratings

in the twenty minutes immediately before blood sampling in the control subjects

(p > .05). There was also no significant rank-order correlation between

the mean plasma cortisol ooncentration (Table l) and the psychiatric rating

of these subjects c  the scale of manifest display of awtional responses.



Figure 2 shows the mean pattern of plasma cortisol concentration in

the 5 normal subjects. The circadian variation is readily apparent (at the

expe:»us.e of obscuring the pulsatile nature of the secretion) with a maximmn

plasma cortisol concentration of 16.9 + 3.9/g/100 ml (mean ± SD)'at 7'hours

after MSO and a ndxdmzn level of 1.0 + 1.8 9/100 ml at 1 hour after MSO.

Thus, although cortisol was secreted episodically, the average pattern of

this group of individuals demonstrated a circadian rhythm.

Presurgical Patients. The patterns of plasma cortisol concentration in the

four preoperative cardiac surgery patients are shown in Figure 3. Super-

imposed on each individual pattern is the mean pattern (+ SD) of the normal

subjects (from Figure 2) . For most of the day the patterns of plasma

cortisol concentration in the preoperative patients were very similar to those

seen in the normal subjects, with a similar number of secretory episodes

(Table 1). However, in Phase I, coincident with preoperative preparation

(consisting of a complete chest, abdomen and leg shaving, antiseptic wash

and enema--indicated in Figure 3 by a black bar with an "E" at the time of

the enema) each patient had a major e pisode of cortisol secretion. Plasma

cortisol concentration reached values that were between 6.9 and 10.5 standard

deviations above the mean level for the control subjects at the corresponding

time of day. The mean concentration for the presurgical patients during 	 3

Phase I (7.1pg/100 ml) was 3.7 times higher (p < .001) than that of the 	
i

normal subjects (1.9 4g/100 ml) (Table 2). The difference in Phase I

maxhmmi concentrations (16.4 vs. 4.0 /gg/100 ml) was also highly significant

(p <.001), as was the difference between the two groups in the length of the

dormant period (p < .001) (Table 1) . 	 )

The elevations in plasma cortisol concentration coincident with pre-

operative preparation appeared to represent a discrete pulse of cortisol



secretion followed by a period of several hours with no further cortisol

secretory pulses while the plasma concentration fell. The secretory pulse

associated with preoperative preparation occurred during the period of the

day when cortisol secretion was at a minimum in the control subjects.

It is difficult to separate out the influence of the different components

of the presurgical preparation. For example, in one patient (W), the cortisol

secretory episode associated with preoperative preparation proceeded the

enema, whereas in the other patients the enema either just proceeded, or

was coincident with the pulse of secretion. While a secretory episode always

began during the period of preparation, no single component of that pre-

operative preparation (shaving, enema or antiseptic wash) showed a consistent

temporal relationship with the timing of the secretory response.

Another major pulse of cortisol secretion appeared to be associated in -

patient X with the preoperative teaching procedure (shown by a "T" in

Figure 3) im which the patient was instructed about the intensive care

situation in which she would awaken after the operation. However, patients

W and Z also experienced a :similar preoperative teaching procedure and no

major pulse of cortisol secretion immediately followed in either case, al-

though patient W, who had that experience earlier in the day, did have a minor

pulse afterward. Patient Y received no preoperative teaching because he

had previously undergone the same operation a year earlier. It is interesting

to note that he had the smallest peak of cortisol secretion in response to the

preoperative shaving procedure.

Other pulses of cortisol secretion which occurred during the day could

not be related consistently to potentially stressful events. For example,

the insertion or reinsertion of an intravenous catheter (for this study or

for laboratory tests which were performed on the patients--indicated in

the Figures by the letters "IV") was occasionally, but not consistently,
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followed by a pulse of cortisol secretion, but such pulses were unremarkable

since cortisol concentration in those cases never rose above 2 standard deviations

fran the control subject mean. Similarly, times of high anxiety ratings
1

could sometimes, but not consistently, be related to secretory episodes and

no significant correlation could be detected between anxiety rating and

plasma cortisol concentration (p >.05). Secretory episodes of similar

magnitude and timing often occurred in both the control subjects and presurgical

patients with no apparent psychogenic stimulus. In fact, inspection of the

patterns either visually (Figures 1 and 3) or by phase statistics (Table 2)

shows that the patterns of the presurgical patients were indistinguishable

from those of the controls at all times except duringpreoperative preparation.

DISCUSSION

The twenty minute sampling procedure revealed an episodic 24-hour

cortisol secretory pattern in both the control subjects and presurgical

patients. The 24-hour patterns in the control subjects were consistent with

previously published patterns of frequent plasma cortisol measurements in

normal subjects (18-20,34,35).

The pattern of plasma cortisol concentration in the presurgical patients

remained within the limits established for the normal controls for most of

the preoperative day. This was in spite of (1) the mean age differences

which existed between the two groups; (2) the fact that those in the control

group were personal acquaintances of one of the authors whereas the presurgical

patients were not; (3) differences in the time of catheter placement between

the two groups; (4) the few medications noted in the methods section that

were taken by the presurgical patients, but not the control subjects; and
z

(5) most importantly, the many incidents during the presurgical studies which

provoked overt and often verbal expressions of apprehension and anxiety	 t

relating to the patient's upcoming surgery. Furthermore, these patients who
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had been facing the threat of the operation for some weeks did not have the

kind of psychoendocrine activation of the adrenocortical axis which Sachar

et al. have demonstrated in depressed patients (29). The presurgical patients

neither had markedly elevated plasma cortisol concentrations throughout the

day nor an increased number of daily secretory episodes (Table 1). This

suggests that neither the discrete emotional stresses associated with the

immediate presurgical situation nor the longer tern anticipation of upoming

surgery resulted in hyperactivation of the hypothalamo-pituitary-adrenoeortical

axis. Most episodes of secretion than were observed in both the normal

subjects and the presurgical patients could not be reliably correlated with

environmental stimuli. These findings thus support the concept that even

during the waking period, the episodic pattern of plasma cortisol concentration

is part of an endogenous cyclical functioning of the pituitary-adrenocortical

axis rather than a series of responses to intermittent environmental stimuli (19).

In contrast, there was a single event during the late evening that

was consistently related to a major pulse of cortisol secretion in the

presurgical patients. Preoperative preparation, which consisted of complete

chest, abdanen and leg shaving, antiseptic wash, and an enema, induced a

major pulse of cortisol secretion which raised the cortisol concentration

between 6.9 and 10.5 standard deviations above the control subject mean

values for that time of day. This response of the pituitary-adrenocortical

axis occurred at whatever time in the evening each patient was preoperatively

prepared. It therefore appears to have been induced by either the psychological 	 n

or physiological components of that complex stimulus, since none of the

differences between the two subject groups which were noted in the preceeding

paragraph could account for such a temporally related change in cortisol
;x

secretion.

It is possible that on the evening before open-heart surgery, body shaving



could provoke the acute focusing of diffuse and unconscious anxieties about

an approaching surgical procedure, thus seriously challenging and perhaps

temporarily overwhelming a patient's psychological defenses by confronting

him with the reality and the inanediacy of his forthcoming operation. This

explanation would be consistent with previous observations on the parents of

fatally-ill children during an acute challenge to psychological defenses (8).

Alternatively, the preoperative preparation could act as a physiological

stimulus since considerable non-specific sensory stimulation was involved

although previous work has suggested that other late evening sensory stimuli

do not always result in an increase in cortisol secretion (36). In either

event, it would appear that while the normal pattern of episodic oortisol

secretion is generated by an endogenous mechanism, additional secretory

episodes can be specifically induced by episodes of stress.

The present study has shown that secretory episodes induced by

environmental events during periods of normally minimal cortisol secretion

can result in considerable disruption of the normal circadian distribution
i

of plasma cortisol pulses. This finding may provide an explanation for

the occurence of circadian rhythan internal desynchronization'in monkeys
5

subjected to various stressors (37), and human subjects with a high

neuroticism index who are placed in isolation (38). Moore Ede (39) has

recently demonstrated that the circadian rhythm of plasma cortisol concen-

tration plays an essential role in synchronizing circadian rhythms of

electrolyte metabolism with the circadian rest-activity cycle. When the

plasma cortisol circadian rhythm is eliminated by the continuous infusion

of replacement corticosteroids in adrenalectomized human or animal subjects,

circadian rhythms such as renal potassium excretion became desynchronized

from the rest-activity cycle, and oscillate with their own free-running

period. Environmentally-induced stresses which cause the circadian distribution

of secretory episodes to approach a continuous series of secretory episodes
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thus might cause the loss of the synchronizing cue normally provided by

the plasma cortisol circadian rhythm. In this situation, those circadian

oscillations in physiological variables which are normally synchronized by the

plasma cortisol rhythm would begin to free-ran, while other variables

with circadian rhythms which are not dependent on the plasma cortisol rhythm

would remain normally synchronized with environmental time cues. This

postulated mechanism for the initiation of circadian internal desynczronization

clearly requires further experimental test # but it is possible that this

may be an important process in the pathophysiology of stress.

Another important conclusion from the present study is that frequent

blood sampling for at least 24 hours must be used to define the influence

of environmental variables on the pituitary-adrenal axis. The lato evening

pulses of secretion demonstrated herein would probably have been overlooked

if samples had been taken infrequently or over limited periods of time. This

explains why earlier studies of plasmacortisol concentration measured once

or twice daily in presurgical patients (40-42) yielded inconsistent results.

In the present study, the 8 AM mean cortisol concentration in our four

preoperative patients was 11. 5/Ag/100 ml (range 8.4 to 16.2), whereas the

8 AM mean of the nozmal volunteers was 14.5 g/100 ml (range 10.5 to 18.0)-

statistics which fail to reflect the consistent differences which did exist 9

between the two groups at a later time of day. Similarly, the 24-hour

mean plasma cortisol levels did not indicate the differences between the two

groups. Furthermore, it is clear that adequate analysis of the results of

such frequent blood sampling must include statistical comparisons with a

true control group at corresponding times of day; failure to do so adequately

in an earlier study of multiply-sampled presurgical patients by Wise et al.

led them to overlook the consistent and significant changes demonstrated in

our study, which also, in retrospect, appear to have occurred in their patients

before surgery (43).	 ;

ILJ.	 IA



-13-

In summary, in this study it has been Fossible to clarify the influence

of envirortmental stimuli on the 24-hour secretion pattern of plasma cortisol

by using the multiple frequent blood sampling technique. We have shown that

the circadian pattern of plasma cortisol concentration consists of a sequence

of episodic pulses which are normally unrelatL4 to specific environmental

stimuli, even in a situation in which there were many anxiety provoking e•,rents.

However, major secretory pulses can reliably be superimposed on the endogenous

cyclical pattern by certain acute envir ry ental stimuli, such as preoperative

surgical preparation.

I
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mean ± so Min Max Mean ± SD Min Max Mean ± M Min( Max ^ Mean + SD Min Max

A 1.2 + 0.6 0.2 2.5 5.6 + 5.2 1.0 12.3 11.9 + 2.6 8.5 17.3 6.1 + 1.5 2.6 9.0
B 0.3 + 0.6 0.0 2.1 6.6 + 5.0 0.0 12.7 11.6 + 1.6 8.4 13.3 7.0 + 3.6 0.3 13.9
C 3.5 + 1.0 0.4 5.3 9.5 + 6.0 3.2 17.4 12.4 + 6.6 4.5 21.5 8.9 + 2.7 4.7 14.6
D 2.7 + 2,3 0.0 7.2 9.1 + 4.5 4.7 15.4 13.6 + 2.8 9.1 18.6 6.4 + 3.1 0.4 13.7
E 1.6:; 1.1 0.0 3.1 5.0 + 3.1 0.8 13.3 16.4 + 1.4 13.3 18.0 8.5 + 3.E 3,2 15.5

Mean 1.9 + 1.3 0.1 4.0 7.2 + 2.0 1.9 14.2 13.2 + 2.0 8.8 17.7 7.4 + 13 2.2 13.3

W 8.1 + 5.6 2.1 20.5 7.1 + 5.7 2.1 16.8 15.0 + 3.2 9.3 19.0 8.3 + 2.0 4.5 13.1
X 10.3 + 3.3 6.2 17.6 6.4 + 1.1 5.2 7.9 13.9 +_ 6.3 4.6 27.2 8.2 + 2.5 5.9 1646
Y+ 4.5 + 1.9 3.1 11.3 (7.7 + ) (11.5) 8.1 + 2.3 4.3 14.1
Z 5.4 + 3.9 0.0 16.8 10.5 + 3.8 6.6 16.1 9.9 + 3.2 5.4 15.4 7.9 + 2.1 2.6 12.7

Mean 7.1 + 2.3 2.9 16.6 7.9 + 1.8 4.6 13.6 12.6 + 2.3 6.4 20.5 8.1 + 0.2 4.3 14.1

p value 1.001 x.05 4001 NS NS NS NS NS NS NS NS I	 NS

*Hours before and after mean sleep onset (MSO)
NS--not significant (p ^ .05)
+ See footnote about missing samples for "Y" in Table 1.
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Figure 1. 24-hour plasma cortisol concentration patterns in five control

subjects. Time of mean sleep onset during the preceding week is

shown as zero hours on the time scale. The actual time of lights

out and lights on of the experimental day are shown by downward

and upward arrows, respectively, along with the clock (E.D.T.)

time at those points.

Figure 2. Mean and standard deviation of plasma oartisol conoentrati.on at

20 minute intervals for a 24-hoer period in five control subjects.

Figure 3. 24-hour plasma eortisol concentration patterns in four patients

on the day prior to elective coronary artery bypass graft surgery

superimposed over the mean pattern (+ SD) fr+ pm the control subjects

(of Figure 2). Time of mean sleep onset is used as the common

time reference, as in Figure 1; the times of lights out and waking

are also similarly indicated. Symbols beneath each graph indicate

the time utien certain events occurred: "IV"-insertion of an
a

intravenous catheter; "T"-preoperative teaching, which involved

instruction designed to acquaint patients with vhat they should

expect after surgery. The time of presurgical preparation is in-

dicated by a horizontal bar, with the letter "E" specifically

denoting the time of the preoperative enema.
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ABSTRACT

Three models of the organization of the circadian timing system in

multicellular animals are presented. Each can account for the observed

internal synchronization of the various circadian rhythms within the

organism and each is also compatible with the known responses of circadian

systems to manipulations of environmental time cues. one is a single

oscillator system (Model I) while the other two are multioscillator systems'

arranged inn-a hierarchical (Model II) or non-hierarchical (Model III)

manner. Experiments which test the predictions of the different models

are reviewed. These indicate that the circadian timing system in mammals

is or„anized as a multioscillator system with oscillating concentrations of

chemical mediators (nervous or endocrine) internally synchronizing the

various potentially-independent oscillators by an entrainment mechanism.

However, as yet, there is insufficient evidence to indicate whether the

oscillators are arranged with a predominantly hierarchical (Model II) or

non-hierarchical (Model III) organization.

a
Key Words: Circadian rhythms, internal synchronization, model's, biological

oscillators, nervous and endocrine mediators 	 s
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Circadian rhythms in biological variables are one outward manifestation

of an important evolutionary adaptation to life on a rotating planet: the

ability to measure ,time. This capability enables organisms to predict the

major changes in environmental conditions, and the consequent alterations in

food supply and predator activity, which occur with a 24 hour periodicity

because of the emeth's rotation (9). Thus, for example, adaptive physiological

and behavioral responses which may take several hours to be activated can be

initiated in advance of the ;predicted environmental challenge, or events

where timing may be critical for survival such as emergenceiin flies, can

be timed to occur at the point of'maximum environmental advantage (23).

There is now considerable evidence to indicate that such circadian

time measurement is the product of an oscillating system within the organism.

(25,15). The .responses of this oscillating system to manipulations in

environmental time cues are now well established (24,3), but current knowledge

of the anatomical and physiological organization of 'the circadian timing

system within advanced multicellular organisms such as mammals 'is still

very limited.

In most Studies of the responses of the circadian timing system to environ-

mental periodicities the assumption has been made that the system acts as a

single self-sustained oscillator and that an endogenous_ circadian rhythm

in any single physiological variable may be used. as a marker for the

response of the system. Thus, the response of only one variable, such as

the rest-activity rhythm (3), has often been used in attempts to define

the properties of the oscillating system.

This assumption has usually been accepted 	 because in most steady-

state situations within an individual subject the various oscillating

physiological variables with a circadian period are "internally synchron-

ized" with one another. This means that they demonstrate identical periods

-and stable phase relationships as if they were generated by a single oscillator.
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For example, in Figure 1 the phase-relationships of the circadian rhythms of ^iy l
urinary potassium excretion and body temperature are plotted for one human

subject who was entrained -by a normal 24-hour environmental regimen (26) and.

for another subject who was demonstrating free-running rhythms in the absence

of environmental time cues (S). In both subjects the various circadian

rhythms which were monitored under a given set of environmental conditions

demonstrated identical periods and stable phase relationships.

Mills has suggested (17,18) that the phenomenon of internal synchron-

ization implies that the circadian timing system consists of a single self-

sustained oscillator, and that circadian rhythm,, represent passive responses

of physiological 'systems to an oscillating driving force transmitted from

the driving oscillator, or "circadian clock". However, it is not necessary

to conclude that there is only one oscillator. A multioscillator system

would also be compatible with the observed properties of the circadian

system provided that the various oscillators were coupled with one another

to that internal synchronization was maintained. It is the purpose of

this paper to review three alternative models of the circadian timing system

which can account for the phenomenon of internal synchronization while

at the same time being compatible with the known responses of circadian

systems in multicellular animals to manipulations bf environmental time
	 s	 9

cues.

ALTERNATIVE MODELS OF THE CIRCADIAN TIMING SISTEMi	 I

Three models ofthe circadian timing system are presented in Figure 2.

Minor variant's of these models, or combinations of their features are also 	 F(J
possible, but the models presented here emphasize the contrasts between certain

possible organizations of the circadian system.

.	 7 8	 h	 b	 d	
FModell, which has been, proposed by Mills (1 ,1 ) but as een assume

in many other investigations of the circadian timing system,, consists of

a network. of cellular systems (A,B,C,...,etc.) which passively oscillate as

J



a, forced response to a single self-sustained driving oscillator (D.O.).

Where these cellular units are non-contiguous in a multicellular animal,

the model requires that oscillating levels of physical or chemical mediators

be postulated (a,b,c,...,etc.), with the period of D.O. but not necessarily

the same phase. These mediating systems, which would presumably be nervous

(neurotransmitter release) or endocrine (hormonal concentration), would

transmit the forced oscillating response to D.O. to the various passively responding

cellular units. The entire circadian system would be entrained by environ-

mental time cues via exteroceptive sensory inputs to the driving oscillator.

Model II describes a rietwork of cellular units which are each themselves

self-sustained oscillators, able to maintain oscillations with an indpendent

period in the absence of periodic inputs. One oscillator (D.O.) acts as

a pacemaker and is entrained by exteroceptive sensory inputs from environmental

time cues. As in Model I it is necessary to postulate oscillating nervous

or endocrine mediators which maintain synchronizatign within the

animal. However, the mediators in this model actively entrain the self- 	 9

sustained cellular oscillators in a manner similar to the entrainment of the

organism-Ts circadian system by cycles of environmental illumination (3).

{ Model III also describes a multioscillator model but in this case no

{

	

	 one oscillator consistently acts as a pacemaker. Instead the various

exteroceptive:sensory inputs entrain different oscillators. Internal

synchronization within the system is maintained by the positive and negative

feedback action of mediators (a,b,c,...,etc.) on the separate oscillating

units (A,B,C,...,etc.). As in Model II, the mediators synchronize the
i
I	 oscillators by active entrainment.

a

SINGLE OR NSULTIOSCILLATOR SYSTEPI?

There are several ways in which it is possible to differentiate between

the single oscillator system (Model I) and a multiple oscillator system

(Models II or III). The evidence is strongly suggestive that the circadian_

timing function is a product of a multioscillator system.
LA°

r
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There are two mainA. SRontaneous Internal Desynchronization.

situations in which internal desynchronization between different circadian

rhythms in the same animal have been observ&% Firstly, in both experimental

animals and man, rhythms in certain physiological variables take longer to

resynchronize after a phaseshift of the environmental light-dark cycle
i

than do others (10,12,14), so that the various monitored circadian rhythms

demonstrate different transient periods and altered phase relationships

during resynchronization and'hende are temporarily internally desynchronized.

Secondly, Aschoff and his colleagues (5) have demonstrated that while internal

synchronization is normally observed between a wide variety of circadian

rhythmic functions in men studied under constant isolation conditions with

no"time cues, 15% of their subjects demonstrate spontaneous internal de-

synch onization with the different rhythmic variables oscillating with

independent free-running periods within the 'same subject. An example of

•

	

	 this phenomenon is illustrated in Figure 3. In this subject the circadian

rhythms of rest-activity and urinary calcium excretion spontaneously began'.

to oscillate with a period of 32.6 hours while the rhythm of body temperature,

urinary potassium and water excretion continued to oscillate with a period

of 24.7 hours. Thus, the circadian rhythms in these two group"s".of,variables

became spontaneously desynchronized from one another. These demonstrations	 "s

of internal desynchronization between the circadian rhythms within an organism

are incompatible with a single oscillator model but would be'predicted by

G

	

	 a'modeh such as II or III in Figure 2, to occur whenever the coupling

information between individual oscillators was 1os..

6

	 B. Mode of Synchronization by Chemical Mediatore. Both the single
I

oscillator system and the multiple oscillator systems require the postulation

that there are oscillating concentrations of chemical mediators which

synchronize the potentially-independent oscillators in non-contigwnus

tissues. However, the characteristics of the mediating process in Model I

differs considerably from that__which; Xould__be predicted in Models 11 and III,



and this offers a critical test between the models.

Model Z as defined by Mills (17,18) predicts that the oscillating

chemical output "e" of cell unit, "B", which& is forced by the oscillation "b"

will have the following characteristics: 1) that a change in the level of

"b" must induce an equivalent change in "e" at any time in the 24-hour day;

2) that "e" must cease to oscillate if "b:' is maintained at a constant

level; 3) phaseshifting "b" will produce an equal and immediate phaseshift

in "e"; 4) the normal variations in "b" over the course of the 24 hour day

must be appropriately large to induce the .circadiau'variation' in. "e".

'In contrast, Models II or III would predict that: 1) changes in the

level of "b" will have variable effects on "E'.' (and, hence, "e" )• depending

on the circadian phase of the change (i.e., there will be a characteristic

phase-response function); 2) if "b" is maintainei at a constant level,

oscillator • "E". will yield a free-running rhythm in "e" which is no longer'synchionize

•

	

	 to other circadian rhythms; 3) a phaseshift in "b" will result in a' phase-

shift in "e" but only after a transient response; 4) the normal daily

variations'.in "b" will not necessarily be of -a-size sufficient to pas§ively

induce variations in the level of "e".

To examine these predictions of the single oscillator and multioscillator

models, we have studied the process by which the circadian rhythm in plasma	 ,	 ?
•

tortisol concentration synchronizes the circadian rhythm of urinary

potassium excretion.in the squirrel monkey (Saimiri sciureus)(20,21). In

adrenalectomized, chair-acclimatized s quirrel, monkeys maintained in isolation

it was demonstrated that a phaseshift. in the time of administration of

physiological doses of cortisol resulted in a phaseshift of the rhythm of

urinary potassium excretion (Figure 4). Thus, the plasma cortisol rhythm ^.

appeared to be the dominant synchronizer of the urinary potassium rhythm in

this animal. However, it can be seen that the phase of the urinary potassium

rhythm did not immediately reset to the new phase of the plasma cortisol
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rhythm. Instead, there was a transient period while the urinary potassium

rhythm resynchronized slowly over approximately 5 days. This finding

suggests that the rhythm in urinary potassium excretion does not

passively follow	 the oscillations in plasma cortisol concentration,

but instead is generated by a system which is capable of oscillating

spontaneously, although normally . actively entrained by the cortisol cir

cadian• ihythm..'

To examine this question further a bolus of 15 mg cortisol was given

between 20.00 and 23.00 hr to squirrel monkeys with intact adrenal glands

.(Figure 5). This dose, wb..ich was sui£icient to raise the plasma cortisol 	 9
concentration to a level comparable or higher than the normal morning

maximum of plasma cortisol concentration, did not induce'a second elevation

in urinary potassium excretion on the day of treatment. This again would

indicate that the oscillation in urinary potassium excretion does not

passively respond to the daily fluctuations in plasida cortisol concentration;.

The final critical test was-to eliminate all circadian oscillations in
i
i

the mediator. In Figure6 the circadian rhythms of 'urinary -potassium

excretion for three adrenalectomized monkeys are plotted during two control

days of cortisol and aldosterone treatment at 08.00 hr daily and then for

up to 7 days of infusion of the same' 24 hour dose of cortisol

and aldosterone, continuously administered. throughout day snd night. According

to Model I this should result in the elimination of the urinary potassium

rhythm, but according to Models II and III this would result in the ap-

pearance of a. f ree-running oscillation -in urinary potassium excretion. In

each of these animals urinary potassium excretion continued to oscillate

with an independent period which was clearly different from 24 hours.

Fourier analysis has demonstrated this free-running period is always shorter

than 24 hours; for example, in monkey g this period was approximately 14

hours.

A
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Taese studies indicated that the circadian rhythm of urinary potassium

excretion appears to be generated by a potentially-independent self-sustained

oscillator which is synchronized with the light-dark cycle and with other

oscillators within the animal through entrainment by the circadian rhythm

in plasma cortisol concentration. These results were not compatible with

a sing-le oscillator system proposed in Model I and were instead suggestive

of a multiple oscillator system as outlined in Models II and III.

C. Isolation. of Circadian Oscillators in Vitro. If there are circadian

oscillators in peripheral tissues which are organized in the manner suggested

in Models II or III, then it -should be possible to demonstrate free-running

circadian oscillations in tissues maintained in vitro. This ' has now been

achieved by several investigators. For example, free-running rhythms have'

been demonstrated in vitro In isolated adrenal glands (1;23), cardiac mus&le•

(31) and liver (27). In Figure 7, the circadian rhythm of corticosteroidD
^ 7

secretion by isolated hamster adrenal glands in vitro maintained under constant 	 1

levels of ACTR is shown. In the lower two panels of Figure 7 it can be seen
j

that the rhythm can be phaseshifted by a pulse of ACTH when it is applied

at certain phases of the circadian cycle but not when applied at others. 	 j

This is suggestive of a phase -response relationship of the adrenal cortex

to ACTR administration. This would be predicted as a general feature of

the entrainment of any self-sustained oscillator and has been demonstrated

for the response of circadian oscillatory systems :•;to manipulations of

environmental lighting regimens (3).

HIERARCHICAL OR NON-HIERARCHICAL SYSTEM?

The evidence presented in the previous section indicates that the

circadian timing system is a multioscillator system, as depicted in Models

11 or III, rather than a single oscillator * system as described.' in Model I.

Unfortunately, only limited evidence is availablewhich can help us differen

tiate between Models II and III.

1

1 !

r;
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The essential difference between Model II and Model" III is that the

former is a hierarchical system with a single oscillator, or synchronous

group of oscillators in a single anatomical location, acting as a pacemaker

to the system, whereas the latter has no such single pacemaker and instead

relies on the mutual , synchronization of a number of self-sustained oscillating

systems, in various anatomical locations, which determine the timing of the

circadian system within the organism.

One testable prediction, which would differentiate between Models II-

and III, is that the hierarchical model (II) requires that-all exteroceptive

sensory inputs from environmental time cues, be routed through the driving

oscillator. The period and phase of the driving oscillator, which would

thus be influenced by external time cues, would then determine the period

and phase of the other spontaneous oscillators within the animal. In Model

III, however,.the various exteroceptive inputs would entrain separate oscil-

lators within the organism. Thus, it should be possible, if Model III were

correct, to entraindifferent oscillators, by separate time cues, such as

the environmental rhythms in illumination (24), temperature (28), sound (16),

social cues (4), or food availability (22). If this were so, then the

individual oscillators might be manipulated separately by controlling the

phase and period of the different environmental cues. The-effectiveness 	 ,t

of this approach would depend--on the strength of the coupling between

environmental cycles and internal oscillators, versus the strength of the

mutual coupling between the various internal oscillators.
r

There is yet little evidence to indicate whether separate oscillators

within an organism can.:be entrained by different time cues. Experiments 	
r,

where the coupling influences of more than one environmental time cue (such

as environmental temperature and lighting cycles) have been examined have

usually only monitored one rhythmic variable within the organism (8). Where

rhythms in several variables have been monitored simultaneously there is
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some evidence that the phase of certain circadian rhythms are synchronized

by one zeitgeber (such as the rhythm of corneal mitosis by the light-dark

cycle) while other circadian rhythms within the same animal are synchronized

by another (such as the circadian rhythm of serum corticosterone by the

feeding regimen)(22). However, in such studies it has not been demonstrated

how much of the '.:synchronization" is a passive response and how much is due

to entrainment by an exogenous zeitgeber. It will be necessary to demonstrate

that the new phase-relationships of the separately-synchronized variables

persist for at least several 'cycles after the periodicities in the individual
zeitgebers are eliminated.

Another approach to the differentiation between Models II • and III is to

attempt to identify the driving oscillator (D.O.), or "pacemaker' which

Model II requires. Several investigators have tried to locate central

nervous system oscillators which control an anfmal's circadian rhythms (6,

r	 7,11,13,19,30). However, usually only one or two rhythmic variables have

l	 been monitored simultaneously and attempts. have not been made to investigate

r	 whether internal desynchronization occurs between the various oscillating

j

	

	 systems in the animal after lesions are placed. It is possible that studies,

such as those of Stephan and Zucker (30), which demonstrated that supra-

{
chiasmatic lesions in rats cause the loss of the rest-activity rhythm,

o	 ,
may have located the site of the oscillators which control only the

circadian rhythms in rest and-activity. More elaborate studies will have

to be done before the presence or absence of a driving oscillator can be 	
3

asserted with any certainty.

In conclusion, although a single oscillator system may be ruled out,

i	 it is not possible with currently available evidence to differentiate

between the alternatate multioscillator systems described in Models II and

III. Direct studies must be designed to answer this question. In addition,

the localization and characterization of the individual oscillators within

i	 the organism must be accomplished before the morphology and physiology of



the intact circadian. tiw! ;ri$ system can bob
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FIGURE LEGENDS

Figure 1 The cummulative phaseshifts of the circadian rhythms in body temperature-and

urinary potassium excretion in a) a normal human subject demonstrating

free-running circadian rhythms (o,,&) while isolated from environmental time

cues, and b) a normal subject studied while synchronized to a 24-hour environ-

mental cycle (o,A ).	 Replotted data from Aschoff (5) and Reinberg (26) with

permission.

Figure 2 Three alternative models of the mammalian circadian timing system. 	 The

symbol (f represents an active cellular unit capable of maintaining a self-
sustained oscillation with its own independent period; E l represents a cellular

unit that responds passively to an oscillating driving force;	 indicates

the oscillating concentration of a chemical mediator; -- ? indicates the

entrainment of a. self -sustained oscillator by a phase-response mechanism;

and	 is the direction of flow of passive responses to an oscillating

driving force.	 Hodel I is therefore a single oscillator system whereas the

other models are multioscillator systems arranged in a hierarchical (Model II)
i

or non-hierarchical (Model III) manner.
i

Figure 3 Internal de synchronization of the circadian rhythms of a human subject studied

in the absence of environmental time cues. 	 From Day 3 the timing of the

activity rhythm (black bar) and the maxima of the rhythm of urinary calcium

excretion (0) demonstrated a spontaneously free-running period of 32,6 hours,

whereas the maxima of the rhythms of body temperature. (a), urinary potassium

excretion (o) and urinary water excretion (x) demonstrated a 24.7 hour period,

From Aschoff (2) with permission; copyright 1965 by the American Association
Y

for the Advancement of Science.

Figure 4 Phaseshifts of the rhythms of urinary potassium excretion (solid littte) and

feeding (interrupted line) in response to an eight-hour phase-delay of the

time of cortisol administration in adrenalectomized squirrel monkeys. 	 The

light-dark cycle phase . was kept unchanged throughout the experiment. 	 All



animals continued to feed with a rhythm synchronized to the light-dark cycle,

but the rhythm of urinary potassium excretion resynchronized with the new

` phase of cortisol administration.

Figure 5 Mean + SEM response of urinary potassium excretion in four intact squirrel

monkeys to the administration of 15 mg cortisol between 20.00 and 23.00

hrs on Day 2.	 No second peak in urinary potassium excretion was seen which

i was comparable to the normal circadian maximum between 13.00 and 17.00 hrs.

Figure 6 Rhythms of urinary potassium in three adrenalectomized monkeys which received

5 mg cortisol and 0.001 mg aldosterone administered intravenously each day.

Initially, the cortisol and aldosterone were administered in a single injection

at 08.00 hr and then from Day 3 onward were given throughout the whole. *day

and night in a continuous intravenous infusion. 	 In each monkey urinary

potassium excretion began to oscillate with a period of less than 24 hours

when cortisol and aldosterone were given continuously.

Figure 7 Persisting rhythms of corticosteroid secretion by isolated hamster adrenal.

glands studied in vitro.	 The top panel displays the rhythm in untreated

control glands whereas the lower two panels present the data from glands"

treated with a single pulse of 1.0 i.u. ACTH at the times indicated by

arrows.	 Note that a phaseshift of the corticosteroid rhythm. was; only obtained t

when ACTH was administered at a certain phase of the adrenal cycle, just.

before the maximum of adrenocortical secretion. 	 From Menaker (15) with

permission (M.I.T. Press) after Andrews.
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Abstract

The circadian rhythm of renal potassium excretion in the squirrel

monkey (Saimiri sciureus) is normally synchronized with the light-dark

cycle and with other circadian rhythms in the animal via the circadian

rhythm in the plasma concentration of a hormonal mediator, cortisol. In

the absence of circadian oscillations in the mediating hormone, renal

potassium excretion demonstrates independent free-running oscillations

significantly different from 24 hours. These findings suggest that the

circadian timing system in primates consists of an organization of

multiple, potent ally independent oscillators synchronized by hormonal,
.	

8	 a

and possibly nervous, mediators.	
a
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Circadian (0 24 hour) .rhythms in many physiological variables are

generated within the organism by a self -sustained oscillating system (1)

which serves a variety of essential timing functions (2). The responses

of this circadian timing system to manipulations of environmental time cues

have received considerable attention (3) but the determination of the

anatomical and physiological organization of the oscillating system within

the organism has lagged behind. This report is concerned with the question

of whether the circadian timing system in advanced multicellular animals

is composed of one or of several spontaneously oscillating units, or

"oscillators", which will demonstrate an independent period in the absence

of; periodic inputs. Evidence will be presentdd from studies in a non-

human primate which suggests that the circadian timing system consists of

an organization of multiple potentially independent oscillators in various

tissues which are synchronized with one another by hormonal and possibly

nervous mediators.

Investigations of the response of the circadian timing system to

manipulations of envirormen tal time cues have usually treated endogenous	
j

circadian rhythms as the pro duct of a single self-sustained oscillator
y

within the organism (4). This approach has been adopted because circadian

rhythms in diverse physiological functions in an indivudual animal are

usually found to have identical periods and stable phase-relationships (5)

whether the animal is synchronized with environemtnal time cues, or has its

rhythms "free-running" with a period significantly different from 24 hours

(6). This phenomenon of "internal synchronization" does not necessarily

imply, however, that circadian rhythms in all physiological variables are

passive responses to a single, self-sustained driving oscillator. It is	 P
i

	

	
also possible that circadian rhythms are generated by several potentially

independent oscillators provided that these are coupled in such a way that

k	 internal synchronization is normally maintained.

Figure 1 presents models of the organization of single (Model 1) and

t



multiple (Model II) oscillator systems. These can account for the phenomenon

of internal synchronization in multicellular animals and are at the same

time compatible with the known responses of the circadian timing system to

environmental time cues. Variants of these models, combinations of their

features, or a non-hierarchical version of Model II are also possible,

but the two models in Figure 1 were selected because they emphasize the

contrasts between single and multiple oscillator systems.

In both single (Model I) and multiple (Model II) oscillator systems it

is necessary to postulate oscillating intermediates (a,b,c,....,etc.) which

would presumably be endocrine (hormone concentration) or nervous (neuro-

transmitter release) in nature: The characteristics of the -cellular-systems

(AB,C,...,etc.) which mark the difference between Models I and II will

also be manifested in the properties of the chemical intermediates. These

can be more easily monitored and can be manipulated in order to perform

critical tests between the models.

Model I, which was proposed,by Mills (7), predicts that the oscillating

chemical output "e" of cell unit "E", which is forced by the oscillation in

"b" will have the following characteristics: 1) that a change in the level

of "b" must induce. an equivalent change in "e" at any time in the 24-hour

day; 2) that "e" must cease to oscillate if "b" is maintained at a constant

level; 3) phaseshifting "b" will produce an equal and immediate phaseshift

in "e"; 4) the normal variations in "b" over the course of the 24 hour

day must be appropriately large to induce the observed circadian variations

in ner^

In contrast, the second model would suggest that: 1) changes in the

level of "b" will have variable effects on "E" (and, hence, "e",) depending

on the circadian phase of the change, (i.e., there will be a characteristic

phase-response function); 2) if "b" is maintained at a constant level,

oscillator "E" will yield a free-running rhythm in "e" no longer synchronized

to other circadian rhythms; 3) a phaseshift in "b" will result in a



phaseshift in "e" but only after a transient response; k) the normal daily

•	 variations in "b" will not normally be of a size sufficient to passively

induce the circadian variations in the level of "e".

To test between a single oscillator system (Model I), on the one hand,

and a multiple oscillator network (Model II) on the other, an effort was

madd to identify a mediator which synchronized a circadian rhythm in a

physiological variable and which could be continuously monitored for many

successive cycles in an. individal animal. When it was found that the phase

of the circadian rhythm of urinary potassium excretion was determined by the

phase of administration of physiological doses of cortisol in adrenalectomized

squirrel monkeys (Saimiri sciureus) it was decided to use this system to

differentiate between the single oscillator (I) and multiple oscillator (II)

models.

Adult:male monkeys weighing 600-900 g were prepared at least two weeks

prior to the studies with chronically implanted arterial and venous catheters.

They were conditioned to sit in a special metabolism chair, restrained at

the waist. Urine was collected with a funnel between the monkey's legs. The

urine passed to a fraction collector which aliquoted samples into 2-hourly

collections. The monkey had a Never which it was trained to operate to

•s
gain food pellets and drinking water was also continuously available.

Studies were conducted within an isolation chamber with the arterial and
3

venous catheters led outside via extension tubing. Blood sampling and hormonal 	 a

infusions could thereby be conducted from outside. the chamber without

disturbing the monkey. Within the isolation chamber temperature was maintained

at 25° + 1°C., external auditory stimuli were muffled by noise sources

(91 dB, RE: 20,,kN/m2) within the chamber and illumination was provided at

600 lux from 08.00-20.00 hr and < 1 lux from20.00-08.00 hr (LD 12:12) daily.

The monkeys rapidly became accustomed to sitting in the metabolism chair and

repeated studies of up to three weeks in length were well tolerated with

no ill effects (8).
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Four adrenalectomized monkeys when infused with 5 mg cortisol and 0.001

mg aldosterone between 08.00 and 09.00 hr daily demonstrated circadian rhythms

of urinary potassium and 17-hydroxycorticosteroid excretion which were

- similar in mean, phase and amplitude to those of intact control animals (8).

Similarly the adrenalectomized animals in this regimen demonstrated circadian

rhythms of feeding, drinking and activity which were identical to those in

intact controls. When the time of cortisol administration was phaseshif ted

by 8 hours (so that it was-infused between 16.00-and 17.00 hr daily) the

circadian rhythm of urinary potassium excretion phaseshifted by 5 to 8 hours

although the phase of the light-dark cycle was unchanged (Figure 2a).

The circadian rhythm of feeding, however, did not phaseshift and remained

synchronized with the light-dark cycle. Although the phase of cortisol

administration determined the phase of the circadian rhythm of urinary

potassium excretion it was apparent that the synchronization was not

achieved by the passive dependence of the rhythm in urinary potassium excretion

on the rhythm in plasma cortisol concentration. Instead, the urinary

potassium rhythm took approximately five days to resynchronize with the new

phase of cortisol administration, a response predicted for a rhythm generated_

by an actively oscillating unit as described in Model II but not compatible_

with the passive cellular units of Model I.

The conclusion that cortisol synchronized-the.urinary potassium rhythm

by an active entrainment process was confirmed by two further studies.

4 rirstly, a bolus of 15 mg cortisol was infused into four intact monkeys

between 20.00 and 23.00 hr, the time of the circadian minimum of plasma

a► OP cortisol concentration, thus inducing a second maximum in plasma cortisol

p	 concentration in a single 24 hour. day. This was found to have little
C's a

influence on the circadian rhythm of urinary potassium excretion and

produced no second daily 'maximum of potassium excretion which was comparable to

the normal daily maximum between 13.00 hnd • 17.00 hr. Thus, the rate of urinary

potassium excretion was shown not to be passively dependent on plasma

cortisol concentration. In the second, and critical study, 5 mg
1
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cortisal and 0.001 mg aldosterone per 24 hours were continuously infused

into, adrenalectomized monkeys for up to 7. days (figure 2b), As predicted

by Model II but not by Model I, urinary potassium excretion continued to

oscillate with free-running periods which were demonstrated by period analysis

(9) to be significantly different from 24 hours. There was some evidence

of an initial 24.0 hour component but this faded out within approximately 3 days.

These results suggest that the circadian rhythm of urinary potassium

excretion is generated by a potentially independent peripheral oscillator

E	

-or synchronous group of oscillators. These are synchronized with the light-dark

cycle and with other oscillators in the animal by the circadian rhythm in

plasma cortisol concentration s through an active entrainment process (10). The

most probable site for this oscillator, or synchronous group of oscillators,

would be the distal tubular cells of the kidney, since these are known to

determine renal potassium excretion largely independently of plasma potassium

concentration, glomerular filtration rate or proximal tubular function (11).

This conclusion, however, will require verification by further direct studies

of renal distal tubular function.

It is rtoteworthy.-that cortisol rather than the more potent mineralo-

cor ticosteroid aldosterone appears to act as the hormonal mediator synchronizing

the circadian rhythm of renal potassium excretion with-the light-dark cycle.

When the 8 hour phaseshift experiment (Figure 2a) was repeated with the time

of both cortisol and aldosterone administration phaseshifted together, the

resynchronization of the urinary potassium, rhythm with the new phase of

adrenal steroid adminstration was no more rapid or more complete than when

cortisol was pbaseshif ted alone. That aldosterone administration at doses

equal to the normal 24 hour adrenal secretion rate does not appear to play

an essential rule in synchronizing the urinary potassium rhythm may be

because the high plasma cortisol concentrations normally seen in the squirrel

monkey (10) and reproduced in these experiments, were sufficient to induce 	
rx 9

a maximal "mineralocorticoid" effect (11). However, Vagnucci et al., (12)



have shown in man that the circadian rhythm of urinary potassium excretion is

well correlated with the rhythm of urinary 17-hydroxycorticosteroid excretion,

but is ;poorly correlated with rhythms in the urinary excretion of aldosterone.

"Thus, while aldosterone may act as a'po tent • mineralocorticoid under the usual

test situations, the slower. time-course changes in distal tubular function

such as are involved in circadian rhythm syndhronization may be induced by

the glucocorticoid effects of cortisol (10).

The circadian oscillation in plasma cortisol concentration, however,

may not be the only mediator synchronizing the circadian rhythm of urinary

potassium excretion. A 24.0 hour component persisted for 3 days irE the os_ai.l-

lations of urinary potassium excretion when adrenal steroids were infused at

a constant rate throughout day and night, and the phase-delay of cortisol

administration failed to induce an equally complete phase-delay in the

urinary potassium; rhythm in all monkeys (Figure 2a). 'these findings both

suggest that some other minor synchronizing mediator which continued to

influence urinary potassium excretion'.may be operating to a variable extent.

The nature of -this alternate synchronizing pathway is at the moment a matter

for speculation.

There are several further pieces of evidence which support our con-

elusion that the circadian timing system in advanced multicellular animals,

such as mammals, is organized as a multiple oscillator system (such as in

Model II) rather than as a system with only a single independent oscillator

"(Model I). Firstly, Aschoff and his colleagues (15) have demonstrated that

although internal synchronization was normally observed between a wide

variety of circadian rhythmic functions in men studied tinder isolation

conditions, 15% of their subjects demonstrated internal desynchroni.z.ation,

with various monitored rhythmic variables oscillating with independent

f ree-running periods within the same subject. This observation is iniz-ompatible

with Model I, but is readily predicted from Model II, since this could occur

whenever there was a loss of the circadian rhythm of a synchronizing mediator.
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Secondly, several invesCigators (16) have been able to demonstrate free-running

rhythms in isolated tissues maintained in vitro underconstant conditions;

presumably they have therefore isolated tissue containing self-sustained

oscillators as%would be predicted from Model R. Thirdly, it has been

repeatedly observed in advanced multicellular animals (17) that after the

abrupt phaseshif t of environmental time cues the various monitored circadian

rhythms take different lengths of time to resynchronize with the new phase
i

F of environmental cues, so that temporary internal desynchronization occurs.

Fourthly, activity rhythms iu many different species have been observed to

"split" under cextain,lighting conditions in a manner suggestive of a multiple oscil-

lator system (18) and fifth%y, the extensive data that has been accumulated on the

rephasing of the Drosophila eclosion rhythm by pulses of light can only

readily be explained by postulating that there is more than one independent

circadian oscillator in this organism (19).

This report has shown that the circadian timing system in advanced

multicellular animals, such as primates, appears to be organized as a set

of multiple, potentially independent oscillators which are normally synchronized

with one another through chemical mediators. The further localization and

characterization of these oscillators within the animal will be necessary

for the understanding of the function of this timing system, and will form

an essential base for examining the physiological roles which the timing

system performs.
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Figure Legends

t ,	 ..-Figure l• : Models.of single (Model I) and multiple (Model II) oscillator systcmF.

k

which could describe the circadian timing system in advanced

multicellular animals. Both .represent networks-of cellular systems

(A,B,C,...,etc.) which are either passively oscillating as a forced

response to a single self-sustained driving oscillator (D.O.) (Model I),
r

or are themselves potentially independent oscillators with their

own individual characteristics which are normally entrained by a

f	
driving oscillator acting as a pacemaker (Model II). Where these

[

	

	 cellular units are non-contiguous in a multicellular animal each

model requires that oscillating levels of physical or chemical

mediators with the period of the driving oscillator but not

necessarily the same phase, be postulated (a,b,c,...,etc.). These

mediators,which would presumably be nervous ar hormonal, would

either transmit the forced response from the driving oscillator

to the various passively responding cellular units (Model T) or

would actively entrain the self-sustained cellular oscillators to
a

the driving oscillator by a mechanism similar to the entrainment
i

of circadian rhythms by the light-dark cycle (Model II). Each
i

l
circadian timing system would be entrained by environmental time

cues via exteroceptive sensory inputs to the driving oscillator.

It:should be noted, however, that the multioscillator system

(Model II) does not necessarily require a driving oscillator. Tha

multiple oscillators could be arranged in a non-hierarchical manner

with the different exteroceptive sensory inputs impinging on

different oscillators, and internal synchronization being a product

of mutual coupling between oscillators through positive and

negative feedback. The predictions which are made of the behavior

of the oscillating chemical mediators in such a system are

similar to those made from Model II and therefore they will not

I LI	 be considered separately.
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Figure 2 2a) The response of the circadian rhythms of urinary potassium

.. excretion and feeding. to- an 8 hour phase delay of the time of

administration of cortisol in adrenalectomized monkeys. The

rhythm of urinary potassium resynchronized with the new phase of

cortisol administration over a 5 day period, but the feeding rhythm

remained synchronized to the phase of the light-dark cycle.

2b) When circadian oscillations=in cortisol and aldosterone

administration were eliminated by infusing these steroids at a

constant rate throughout day and night the urinary potassium

excretion began to oscillate independently with free-running

periods of greater or less-than 24 hours in each animal studied.

A least squares period analysis (9) revealed that the significant
	

t

periods (p `C .05) were for monkey D, 18.0, 16.0 and 12:4 hours;

for monkey E, 25.8 and 18.2 hours; and for monkey F, 38.4924.6,

12.4 and 10.0 hours. ' In addition, in each animal there was a transiently

persisting 24.0 hour component which faded town insignificant

amplitude after the first three flays of continuous adrenal
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Extensive evidence indicates that cortisol secretion

increases in response to anxiety and particularly to the threat of

personal injury. Yet investigators in the field have encountered a

Bret deal' of variability and apparent inconsistency in their

results. On inspection of many earlier studies which are currently

cited as evidence of the "highly sensitive response" of the hypothalamic-

pituitary - adrenal axis to psychological stress, it becomes clear

that although the evidence shows that the system is not unresponsive

it fails to show pre.dictably when or how the system does respond. Such

variability in the cortisol secretory response to a given situation

among and within individuals has been explained in several ways.

Falling plasma cortisol concentration observed in the face of apparent

-. stress have led some investigators to conclude that the psychoendocrine

°response was being masked by a concurrent diurnal fall of plasma cortisol

concentration- in the morning, when those studies were done Others

ha-e concluded that personality type was the overriding factor in

cortisol output or that increased cortisol'secretion was only seen when
were

an indivirlualh . psychological defenses , / 1 inadequato.ao, cope with a.

situation.

While such explanationsmay yet prove to the valid, the demon--
'
l	 sttution by Weitzman-and colleagues at the Montefiore I•lospli tal in New

York that cortisol is normally secreted episodically in man has made

it obvious that infrequent plasma sampling is a wholly inadequate 	 s

technique for such investigations. By taking blood samples every 20
e
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minutes for an entire day, they demonstrated that cortisol secretion

is limited to brief episodes which are distributed throughout the day.

That episodic nature of the secretion explains why attempts to show

precise correlation between infrequently monitored plasma cortisol

levels (such as 1 or 2 per day) and psychologically stressful situations

have yielded confusing results.

The purpose of the present study was to see how the apprehen-

sion cf a major life threatening surgical procedure would affect the -

24-hour secretion pattern of cortisol. In order to do so, four patients

during the 24-hours just prior to coronary artery bypass graft surgery

were compared with 5 similarly 'hospitalized normal control subjects in no

apparent distress. Blood sampling was accomplished every 20 minutes

for 24 hours 'in each subject by means o^- an indwelling intravenous

-catheter, inserted 16 hours before the study began in the normal control

i

1

subjects. The catheter extended outside his room in.-order to alloy

G	 the frequent ' blood sarpling without the subject's awareness. To
i`

minimize uncertainty of the procedure I briefed each of the subjects

(who were all personal acquaintances) for several hours about the

procedures involved in the study.

A clinical ` psychiatrist interviewed each subject and without

. prior knowledg(- of the endocrine data ranked them on a scale of overt

expression of emotional responses to see if there were any obvious

correlations with the data in this necessarily small study population.
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A detailed log was also kept of events which occurredduring the

course of each experir,.ent. The 670 plasma samples were assayed in

duplicate by the pompetitive protein binding irethod.

The following slides will illustrate the results first in

the normal subjectsand then in those awaiting surgery.

. SLIDE I

In these and subsequent graphs plasma cortisol concentration,

.is plotted on each vertical axis and the time of day —referenced to

the time of mean sleep onset for the seven days prior to this study -

is on the horizontal 'axis. As expected, cortisol was.. secreted in

episodes in each of the five subjects. Those episodes- appeared to be

part of an endogenous rhythm of cortisol secretion since they could

not be correlated with environmental stimuli. Furthermore, -the mean

.daily cortisol level did not correlate with the psychiatric rating of

the subjects on a scale of overt emotionality.1

You will notice that the pulses of secretion have 'a circadian

distribution, with most of them occurring-in the latter half of sleep

(3 a.m. to S . 3.m.) and very few during the late evening. Those

trends are perhaps illus tree d more clearly on the nest slide, which

shows the mean and standard deviation of the cortisol concentrtions

in each of the five • normal subjects throughout the day. This slide

shows the highly reproducible circadian rhythm in these subjects.

Each of them had a 9 hour period here when the level never once rose

above the daily mean and, in fact, consistently fell to a cortisol 	 f
1

concentration at or near zero.
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This stipled area of normal control mean t stanuara aevi.atxon

was used as 'a background for comparing each of the presurgical patients
f

in the next slide. (Slide 3, please) . There are several things I

would like to highlight here. l) For most of the day (with the exception

of the late evening) the patterns of concentration in these four pre-

surgical patients fell closely within the normal range in spite of

many incidents which provoked overt and often verbal expressions of

apprehension and anxiety relating to the patient's upcoming surgery.

2) These patients, who had been facing the threat of operation for some

weeks, did not have the kind of psychoendocrine activation of the

adrenocortical axis which Sachar and others demonstrated in depressed

patients. That is to say, these presurgical: patients neither had

markedly elevated plasma cortisol concentrations throughout the day 	
3

nor an increased number of'secretory episodes per day. This su.Mests

that neither the discrete emotional stresses associated with the

immediate presurgical situation nor the longer term anticipation of

upcoming surgery resulted in a•general hyperactivation of the hypothalmo

pituitary-adrenocortical axis.'- 3) While most episodes of secretion
1

that were observed in the presurgical patients could again not be

reliably correlated with environmental stimuli

there w :a. s, L n.-.contrast,... a single event during the late evening

that was consistently related to a major pulse of cortisol secretion

in the presurgical patients:	
t

In this normal- period of secretory quiesca.nce in the late

evening each patient was preoperatively prepared, a procedure which
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consisted of body shaving, antiseptic wash and enema and which is

indicated in this figure by the black bar below the time'axis. As

you San see, each patient had a major episode of cortisol secretion.

plasma cortisol concentration reached values that were between 7 and

11 standarddeviations above the mean level for the control subjects at

the corresponding time of day. That Highly unusual pulse of secretion

resulted in a very significant drop in the average length of the

quiescent period from 9 hours in the control subjects to only 5 hours
1

in the presurgical.patients

(i.IGHTS ON PLEASE)

The question then U;: Was this response of the pituitary-adrenocortical '

axis induced by the psychological or.physiologli cal components of that

complex stimulus. It is possible that on the evening before surgery

'hody shaving could provpke the acute focusing of diffuse and unconscious

anxieties about app*ggghing surgery, thus seriously challenging and perhaps

temporarily oveg<ahelmi:ig a patient's psychological defenses by confronting

him with the reality and the immediacy of his operation.

Alternatively, the preoperative preparation could act as a

physiological stimulus since considerable non-specific sensory

stimulation was involved.

The next slide illustrates very recent preliminary results

from a study I am currently conducting at Stanford in collaboration

faith Dr, Elliott weitzman_ to investigate that question. These are the

results from a normal control subject who was not in anticipation of

•	 __^_.,__  s 
urgery but who nonetheless was subjected (at-the same time of clay)^
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to the same physical stimulus of presurgical perparation (that is,

body shaving, antiseptic wash & Enema). As you can see, our first

resufts indicate that the physical stimulus alone (shown here at this

black bar) was not enough to induce an episode of secretion. That

would suggest that the episodes of secretion which were consistently

observed in the presurgical patients when they were shaved were

related to anxiety, about the operation which the shaving procedure

consistently prompted.

An, important implication of the present study is that

frequent blood sampling for'at least 24 hours must be used to define

the influence of environmental, vairables on the pituitary-adrenal axis.

The late' evening pulses of secretion demonstrated herein would probably

f	 have been overlooked if samples had been taken infriequently or over

limited periods of time This' explains why earlier studies of plasma

cortisol concentration measuied once or twice daily in presurgical

patients yielded inconsistent results.

Similarly, the 24 hour mean plasma cortisol levels were not

significantly different between the two groups, so the significant

differences in the secretion.patterns demonstrated here would have been

overlooked by measurement of-24 hour urinary excretion rates of cortisol

m etabolites .

In summary, we conclude; 1) that the pituitary-adrenocortical-

axis is not chronically activated by a prolonged period of psychological

stress, 2) that it was not significantly perturbed by most emotional

stressors, 3) that spontaneous , episodes of secretion were part of the

3
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\	 endogenous pattern and could not be reliably correlated with environ-

ment4l stimuli, 4) that the adrenocortical axis responds actively.and
E

consistently to the stimulus of preoperative preparation id patients
Y'

Waiting major surgery.

i
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Today I would like to discuss some of our recent work on the control of

circadian rhythms in primates. I will present evidence which suggests that cir-

cadian rhythms in such animals are generated by an internal timing system

consisting of multiple tissue oscillators which are normally kept synchronized

with one another through circadian oscillations in hormonal and nervous mediators.

In particular, I will be discussing how the circadian rhythm of renal potassium

excretion appears to be generated by an oscillator or synchronous group

of oscillators within the kidney. Furthermore, I will show that this oscillator

is normally synchronized with other circadian oscillators within the animal, 	
i

as well as with the environmental time cues such as the light-dart: cycle.

This synchrnization is mediated by the pituitary-adrenal .axis via circadian

oscillations in plasma cortisol concentration.

As research in this field progresses we are becoming more and more aware

that rhythms in biological variables are but one outward manifestation of the

internal timing systems that living organisms have evolved. Those have many

essential functions, ranging from the precise timing of the transcription of

genetic information during development through the chronometry necessary for

the effective functioning of phyiiological pumps such as the heart, to the

control of seasonal adaptive processes such as hibernation.

The circadian rhythms with which we are particulary concerned in this
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Symposium are an outward manifestation of an important evolutionary adaptation

to life on a rotating planet. The time-span we know as 24 hours is an important

unit of time for living organisms because of the major changes in environmental

conditions that occur with this periodicity due to the earth's rotation. It

appears that the ability to measure time, which is afforded by an internal circa-

than timing_system,is important to living organisms because it enables them to

predict when periodic environmental changes and dependent alterations in food

supply and predator activity will occur. This temporal *.prediction capability

may be essential for survival especially when the adaptive physiological or

behavioral response takes several hours to be activated and thus must be initiated

well in advance of the environmental challenge.

Dr. Menaker-and Dr. Aschoff have already reviewed many of the properties

of these circadian timing systems and the circadian rhythms in physiological

variables which are generated by them. Work from many laboratories has demonstrated

that living organisms, ranging from unicellular algae to man have endogenous

circadian oscillators with well defined properties. Dr. Aschoff, for example,

has already described his elegant studies of these self-sustained oscillators in

man and has demonstrated their free-running characteristics in the absence,of

external time cues, and has shown how they are normally synchronized by certain

environmental circadian periodicities.

There are many fascinating physiological questions which are raised; by the

work of Dr. Aschoff and his associates, but many of them unfortunately cannot

be answered directly in man. Like students of the respiratory center and cardiac

pacemaker, we would like to know 1) where the oscillators are located within

the organism,, 2) how they are synchronized_ with one another, 3) the physiological

and biochemical mechanisms that generate the self-sustained circadian rhythms,

and 4) how the oscillators drive the. various timed physioloiical functions. Unlike

students of the respiratory and cardiac oscillators, we also have to be concerned



with how the internal oscillators are synchronized with cyclical environmental

variables.

While I do not plan to and obviously could not answer all these questions

today, I will tell you something about how circadian oscillators are organized in

primates and will particularly discuss the mechanisms that are responoible for

internal synchronization. We have conducted our studies in squirrel monkeys

because they have circadian rhythms with many similar properties to thosein

man, as well as having the advantage that physiological interventions are more

readily performed.

But first, before discussing the evidence from studies in primates, I would

like to consider one important clue as to the organization of circadian

oscillators which comes from the work of Aschoff, Wever and associates in man.

They have shown when circadian rhythms in several physiological variables such

activity, body temperature and urinary potassium excretion are monitored

simultaneously in an individual subject, the various rhythms are usually internally

synchronized with identical periods and constant phase relationships whether the

animal is synchronized with environmental time cues or has all its rhythms
i

free-running in isolated constant conditions.

This is illustrated on the first slide.

FIRST SLIDE (#I--Internal synchronization of U,,IV and temperature in man)

This slide shows the progressive changes incircadian rhythms phase in two

human subjects over the course of 24 days of study. This is estimated by measuring

on each cycle the time of day that a defined part on the cycle, such as maximum or

minimum, occurs. One subject was studied by Drs. Aschoff and Wever in constant light

and had all his monitored circadian rhythms free-running with a period of approximately

24.8 hours. Thus we can see the circadian rhythms of body temperature and urinary'

potassium_ excretion phaseshifted on average of 0.8 hours per day. The other,
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with open symbols, wa a studied by R`inberC in a normal 24-hour light-dart, cycle

and was found to be synchronized to the 24 hour day. On this slide the phase of

the rhythms of body temperature and urinary potassium excretion did not shift

over the consecutive days of, each experiment. You will note that whether the

subject was free-running or synchronized to the 24 hour day, the two rhythms	 a

remained synchronized with each other with identical periods and constant phase-

relationships.	 In this experiment many other variables were simultaneously

monitored, such as rest-activity cycle and the urinary excretion of various other
f	 j

metabolites and ions. 	 The regression of the phaseshiftsof the circadian oscillations

in all these variables could be superimposed upon the body temperature and

urinary potassium phaseshifts plotted here.	 This phenomenon has been demonstrated

in other species and is known as " internal synchronization".

ITT SLIDE (#2-- Possible mechanisms of internal synchronization.)

There are several ways in v7hich circadian oscillator y could be organized

to account for the phenomenon of internal synchronization. Firstly, some in-

vestigators such as Mills in England have proposed that there could be one

central self-sustaining oscillator (labelled here as D.O. for driving oscillator)

and that all circadian rhythms in various physiological varibles	 are passively

dependent upon that oscillator, presumably through sequences of oscillating

variables with each oscillating variable passively dependent upon the previous

oscillation in the _sequence.	 Thus; for example, the circadian rhytha in plasma,

cortisol concentration would be passively dependent upon that of ACTH, which in

turn would be passively dependent on the circadian rhythm of CRF release from

the hypothalamus. 	 Thus, the circadian oscillation in body temperature might be

at the end of one sequence, and the rhythm of urinary potassium excretion as the r

end of another. Each would be synchronized with the driving oscillator by

separate sequences of oscillating variables.

The second possible mechanism depicted here is that there are multiple
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potentially :independent circadian oscillators in various tissues depicted in the

diagram as A,B,G,D & E. However, the central driving oscillator (D.O.) which

normally acts as a pacemaker would synchronize the other oscillators in the body

via circadian oscillations in chemical, hormonal or.nervous mediators. These

oscillators would be potentially-independent and if the synchronizing cue were

insufficient the peripheral oscillator would be capable of free-running with an

independent period. An analogous system to this is the pacemaker control of

cardiac contractions, where ventricular muscle contraction can free-ran with

an independent period when the conducting pathway is damaged in heart block.

The third possibility represented on this diagram is that there might be

multiple potentially independent oscillators but without any one oscillator consistently

acting as a pacemaker. The oscillators would be mutually synchronized through

circadian oscillations in nervous and hormonal mediators, but the system

would be non-hierarchial as opposed to the hierarchical system described in

alternative T-42.

Our approach to the investigation of circadian oscillator organization in

higher animals such as the primates was to identify the synchronizing mediators
i

which it is -.necessary to postulate for each , of the three models. By manipulating

a synchronizing mediator once it is identified one can test the predictions of

the three models. For example ; the elimination of oscillations in a synchronizing

mediator in alternative #1 would result in the immediate elimination of all the

rhythms in physiological variables further down the synchroniztttion pathway.

However, in alternatives 2&3 the elimination of a rhythm in a synchronizing

mediator would enable the normally synchronized but potentially- independent

oscillator to free -run with respect to the other oscillators in the animal. In

order to differentiate be'Veen alternatives 2&3 it ;would be necessary to identif •
y

several synchronizing mediators and their normally synchronized but potentially-

independent oscillators and investigate the inter-relationships.

Today I kill describe how we have demonstrated that the circadian rhythm

of plasma cot-tisol concentration acts as the internal mediator synchronizing

the circadian enythm of urinary potassium excretion in the squirrel mon_tiey. Studies 	
Aj
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!	 of the mode of synchronization have sug-ested that the circadian rhythm of urinary

potassium excretion is generated by potentially-independent intra-renal circadian

oscillators, and that although these are synchronized by the plasma cortisol
i

1	 r'gythm, the renal potassiuma rhythms is not passively dependent on the mediator.

POCT SLIDE ( 163--Monkey ba metabolism chair)

These studies have been conducted using the squirrel monkey ( Saimiri scureus)

'	 a small South ,American primate weighing 600-900 g or approximately 1100th
t

the body weight of man. This is a strictly diurnal animal confining all of its

activity and feeding to the daytime and resting at night,. We have conditioned

male monkeys to sit in a special metabolism chair restrained at the waist.

Urine is collected with a funnel between the monkey's legs. The urine passes

to a fraction collector containing test tubes which collect urine samples as two-

hour fractions. The monkey has a lever which it was trained to operate to	 r

gain food pellets and also had drinking.water available. An ultrasound activity

monitor, above the animal, records activity.

IMPT SLIDE (614 --hill set up photo-chair and chamber and recorders)

The chair and monkey are placed in a temperature-controlled isolation
1

chamber which enabled the control of environmental illumination, temperature

and auditory stimuli. The lighting of the chamber p rovided 600 lux of illumination
3

from 8 AM to 8 FM daily with less than one lux of illumination at night The

system was controlled by standard svitchi.ng circuitry outside the chamber end

}

	

	 continuous recording was made oP food pellets gained, water drunk, activity

recorded by the ultrasound motion detector and body temperatuare recorded from
i

indwelling retroperitoneal thereistors . For some experiments, the monkeys i.ere

also prepared at least two weeks previously with chronically implanted arterial

and venous catheters, which were protected by a nylon mesh jacket. Daring

experic:ents, these catheters wre connected to extension tubing leading; outside

the chamber. Blood sampling,, and hormonal and electrolyte infusions could thereby 	 ^



be underta-Ren without the monkey being distueoed. 11:e animals repidly became

conditioned to sitting in the Metabolism chair end the studies of up to three

weeks in' length were ,,ell tolerated.

hOCi SLIDE @15 --Control data on UKV, TpC., etc.

The squirrel monkey has highly reproducible circadian rhythms in many

physiological variables. In order to examine internal synchronization mechanises

we. chose to examine in particular the circadian rhythms in feeding, activity,

body temperature and renal potassium excretion.

In this slide, I have shown the characteristic patterns of urinary potassium

excretion, body temperature, feeding and activity in a monkey studied under

a 24 hour light-dark cycle with lights on from 8 AM to 8 Pt4 and off from 8 PM

to 8,AM. Urinary potassium excretion rises to a maximum of approximately

270 /,Eajhr during the last part of the lights-on period and then falls to a

minimaun of approximated' 60 ^uEaJhr during the last part of the dark period daily.

This is plotted on this slide as a percentage deviation from the 24 hour mean.

Body temperature demonstrates a20 C.circadian variation beginning to rise before

the time of lights-on and then reaching a plateau level during the lights-on

period before falling during the dark to a second plateau level some 2°C.

lover. Feeding and activity were confined to the lights-on period of the 24

hours

IM= SLIDE Cr' 6 -a 2h feeding exner tment )

Since the squirrel mon1hey confines all its feeding and hence, all its dietary

potassium intake, to the lights-on period of the 24 hours and the maximum oc" the

urinary potassium excretion occurs at the end of that period of feeding. it was

necessary to establish i4hether the urine-,7 potassium ehytbm was to any. e;d;erat

directly dependent on the pattern of feedir.L. To do this four monleys i.ere

trained to oaerate'the food pellet lever only when a low intensity green signal

light came on. It yeas found that the monkeys could be trained to work for and

consume an identical number of food pellets every tvo hours throughout day and
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night. Thus di ►rinb this regimen they. evenly; distributed their feeding, drinking

and most of their activity throughout the 24 hours instead of confining it to

the lights on period. However, when the patterns of urinary potassium excretion

are compared during ad lib daytime feeding and during the 2-hourly feeding regimen

the urinary potassium excretory rhythms are virtually identical. Thus, the

pattern of potassium intake does not influence the circadian rhythm of potassium

excretion.

NEXT SLIDE (#7--Richter slide of blinded monkey 3 years)

In the squirrel monkey, free-running circadian rhythms have been

demonstrated to persist for considerable periods of time in monkeys deprived of

time cues from the light-dark cycle. This may be achieved by placing the animal

in constant light environments or by blinaino the animal by optic nerve section

as eras done . to the Monkey whose results are sho,,n on this slide. 	 The activity

pattern of a squirrel monkey in a light-dark cycle of twelve hours of light and

twelve hours of dark is plotted. In June, 1964 this animal was blinded and then

continued to be kept in the 24 hour light-dark cycle. Shortly after blintlinr,,

a free--running period was observed with the monkey beginning its activity on

average 46 minutes later each day that vhen each 24 hours of record is placed
}

under the previous 21+ hours a strip pattern is observed. This f ree -rennin- period
i

continued throughout the length of this experiment right throu,"h until Septe^'aber

1,067 more than 3 years later. The free-running period was so precise that cne

could practically predict that time the monkey was going to ,ake up the na;tt

Christmas raosnirg. ThcGe exTeriments hsve been repeated several tin, res . So, te

a ?imis free-run with a period less than 24 hours and others : pith xeriods of

greataz t21M 211, hour3.

NEXT SLIDE 08--Internal synchronization betweca K2nkcy rhythms)

This slide demonstrates the progressive phaseshifts of the rhythms of urinary 	 }.

potassium and water excretion and feeding of a monkey in constant light. As was

seen before from Dr. Ascboff's data in man internal synchronization is observed

^	 J

between the rhythms whether they are fie-running in constant light orare
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I.BXT SLIDE (19 --8 hour LD shift raw data)
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The appearance of a free-running period in constant light suggests th.e

norm,11 light-dark cycle is the dominent environmentel synchronizer in this an ml.

We have confirmed this in our preparation by studying the response of monteys to

a light-dark cycle phaseshift. In this slide, the patterns of urinary potassium

excretion, body temperature, feeding, activity and drinking are shown before

and after light-dark cycle is phase-delayed by 8 hours. The rhythms of. feeding,

drinking and activity can be seen to resynchronize with the new light-dark

cycle within approximately 2-3 days as does the rhythm of body temperature.

The urinary potassium rhythm also can be:seen to resynchronize but this occurs

more slowly. To measure the rate of phseshift, the movement of defined points

of the rhythms was measured vrith respe ^t to the 24 hour time scale. The defined

points chosen in the studies described in the remainder of this talk will be

the times of mean crossing upi-cords and dotimwards each,cycle.

NEXT SLIM (10 -Body temnzrature phaseshift plot)

Mi.s slide shows the phaseshift of the body temperature rhythm. Before the

light-dark cycle phaseshift at time 0 the body temperature rhythm was closely

synchronized with the light-dark cycle. Then after the abrupt 8 hour phase

delay, plotted here as a +8 hour phaseshift, they body temperature rhythm resyn-

chronized in 2-3 days, so that it finally resumed its original phase-relationship

vith the light-dark cycle. Similar rates of resynchronization were observed for

feeding; drinking and activity rhythms.

IMET SLIDE (,Jill--UKV phaseshift plot)

In contrast, the urinery potassium enythm took 7 days to resynchronize Frith

the light-dark cycle. It did not start to resynchronize until approximately

24 hours after the light-dark cycle phaseshift and phase-delayed significantly

more slowly until resynchronization was finally achieved.

Thus, there was a temporary desynchronization between the rapidly resyn

chronizing circadian rhythms like body temperature and the more slowly resyn-

'	 chronizing rhythms such as urinary potassium excretion. The time interval



when temporary internal desynchronization occurs between circadian rhythms such

as these has been postulated to underly the deterioration in performance that

has been demonstrated in man after rapid travel across time zones which is

commonly known as-"jet-lag".

NEXT SLIDE (#1 2--LD disruption)

The relative stability of the urinary potassium circadian rhythm can be

demonstrated in another way. In this experiment, four :monkeys were subjected

to a disrupted light-dark cycle which consisted of 36 hours of continuous

darkness followed by 36 hours of continuous light. The urinary potassium

rhythm, shown in the---top portion of this slide, demonstrated an unchanged

amplitude and phase and was not disrupted by the acute manipulations of the

light-dark cycle.

NEXT SLIDE (#13--Schematic representation of circadian oscillators in primate)

Thus, we have developed a physiological preparation in which we can examine

the organization of circadian oscillators and the mechanisms by which they are

internally synchronized in primates. This slide schematically represents the

physiological system in which we have studied the effects of input oscillations

in environmental illumination on several oscillating physiological variables.

We have demonstrated that a phaseshift in the environmental illumination pattern

can result in a phaseshift over a period of several days in the feeding, body

temperature and urinary potassium rhythms although the urinary potassium rhythm

will take considerably longer to resynchronize than the other two. Similarly,

we have demonstrated that all the functions will oscillate with the same period

and constant phase relationships, i.e., they will be internally synchronized

when the animal is placed in a constant level of illumination. We know very

little however about the internal physiological machinery that is responsible

for the generation of these rhythms. Thus, next we turned our attention to

the investigation of whether there is a single oscillator upon which all

L
a

J ­­_ ­ _'. ­­­ ­ - 	.­_ -functions are passively dependent or wheher there are multiple potentially
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independent oscillators, with-or.without a central pacemaker. Because it is

the most easily isolatable function, our next series of studies were aimed at

investigating how the circadian variation of renal potassium excretion was

synchronized with the other circadian oscillations which we monitored in this

animal. Our aim was firstly to identify which oscillating physiological functions

were responsible for synchronizing a rhythm generated in the kidney.

NEXT SLIDE 015--Possible routes of synchronization of kidney)

Clearly there are many potential influences on the kidney. This slide

depicts the oscillating physioloiical variables which could act as synchronizing

mediators in the control of the circadian rhythm of renal potassium excretion.

These include plasma potassium concentration, body core temperature, plasma

concentration of various hormones such as aldosterone, cortisol and ADH, the

activity of the autonomic nervous innervation of the kidney, including both

cholinergic and/or andrenergic components, bemodynamic variables such as blood

pressure, renal blood flow and GFR and, in addition, many other blood constituents

including glucose, hydrogen ion, protein, osmolarity and electrolytes.

We first examined the role of circadian rhythms in plasma concentration

of the adrenal hormones aldosterone and cortisol. These hormones were chosen

because each is known to influence the rate of potassium excretion and each

hormone has a circadian oscillation of concentration in the plasma which reaches

the maximum at a time prior to the-urinary potassium rhythm that is ;suggestive

of a causal relationship.
	 d

NEXT SLIDE (#16--Control 8 AM cortisol and aldosterone urinary rhythms)

Monkeys were adrenalectomized and maintained by cortisol and aldosterone

administered intravenously between 08.00 and 09.00 hr daily. By using implanted

catheters with extensions 'which led outside the isolation chamber it was possible

to _administer the steroids in any pattern we wished without the monkeys being

aware of the time of administration. This slide shows the circadian rhythm of
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urinary -l7-hydroxycorticosteroid, potassium and water excretion in 3 monkey's

before adrenalectomy (mean and SEM represented by shaded tii •ea) and again after

adrenalectomy (represented by the black: line) when cortisol and aldosterone were

being provided intravenously between 08.00 and 09.00 hr daily. The doses chosen

were equivalent to the normal daily adrenal output of these hormones in intact

animals. As can be:.seen from this slide, the circadian rhythm of urinary po-

tassium excretion and that of urinary water excretion were virtually indistin-

guishable in intact monkeys and in adrenalectomized monkeys on this adrenal

steroid replacement regimen. The urinary rhythm of 17-hydroxycorticosteroid

excretion indicates that a pattern similar to normal was achieved by the adrenal

steroid administration.

NEXT SLIDE (617--Possible mechanisms of internal synchronization, same as #3)

Because we-.:are able to reproduce the circadian rhythms of cortisol and

aldosterone secretion by the artificial infusion of these hormones in adrenal-

ectomized animals, we can test whether these hormones are involved in the

synchronization of the circadian rhythm of renal potassium excretion.

If this rhythm marked "R" is renal potassium excretion then if cortisol

or aldosterone is the rhythm marked "Q" we ought to be able to phaseshift "R"
1

by phaseshifting Q. The manner in which it is phaseshifted will give further
i

information on whther "R", the renal potassium rhythm, is passively dependent

on "Q" or whether I. is controlled by an independent oscillator (marked here as

"E"). We sill thus be able to test whether the mechanisms of alternative 1 or

those of 2 and 3 are more applicable.

NEXT SLIDE 01 --Responses of R to Phaseshift in Q)

Thus, if R is passively' dependent on Q which directly controls it a phase- 	 a

shif t in Q will cause in an immediate phaseshift in R while other rhythms that

are synchronized as before. If Q plays no role in the synchronization on the

rhythm in R, then the phase of R will remain unchanged when Q is phaseshifted.
T
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However, if Q synchronizes R in the manner the light-darn: cycle synchronizes the

body temperature and other rhythms but does not actually control it, then we

will probably see a more slow phaseshift of R over several days so that eventually

-resynchronizes with Q. This would suggest that renal potassium excretion is

controlled by potentially-independent oscillators. Other possible situations

might be envisaged, including one where there is more than one synchronizing

pathway acting on R and, hence, the phaseshift of one pathway would result in

only a partial phaseshift in the synchronized rhythm R. The extent of the

phaseshift would depend on the relative strengths of the couplings of the

two synchronization pathways.

NEXT SLIDE (418 --Cortisol 8 hour phaseshift)

Accordingly, four adrenalectomiz,ed monkeys were subjected to an 8 hour

phaseshift of the time of cortisol administration so that cortisol was given at-

16:00 hours after than 08:00 hr. The light-dark cycle was kept unchanged. As

can be seen from this slide the urinary potassium rhythm resynchronized with

the new phase of cortisol administration. This resynchronization was not quite

complete in all animals and this suggests that there may be some other minor

synchronizing influences which are competing with the plasma cortisol rhythm.

On this slide ie also shown the phase of the feeding rhythm throughout this

experiment and it can be seen that the rhythm of feeding remained synchronized

with the light-dark cycle while the urinary , potassium rhythm was resynchronizing

with the cortisol )-hythm. Thus, we have induced an internal desynchronization

of these circadian rhythms.

This same response was seen whether the monkeys were given cortisol and

aldosterone and both were phaseshifted or whether the monkeys were only given

cortisol and the cortisol was phaseshifted. This suggests that aldosterone

does not playa essential role in the synchronization process

One interesting feature of the resynchronization of the urinary potassium

E	
rhythm with the rhythm of cortisol administration was that it took several days

,.



before resynchronization was complete. The urinary potassium phase did not

immediately jump to the new phase of the cortisol rhythm, suggesting that although

cortisol acted as a synchronizing agent the .urinary potassium rhythm was not

passively dependent on the plasma concentration of cortisol.

NEXT SLIDE (1119 --Evening infusion of cortisol)

To test whether urinary potassium excretion was passively dependent on

plasma cortisol concentration in intact monkeys, animals were given a bolus of

cortisol between 20.00 and 22.00 hrs at the time that plasma cortisol concentra-

tion is normally at a minimum. Thus, these monkeys had within one day, two

successive maxima of plasma cortisol concentration. Despite the two peaks

of plasma cortisol concentration approximatley 12 hours'apart, the urinary

potassium rhythm was virtually unaffected and showed only a minor change in

response to the cortisol infusion. This again confirms that plasma cortisol

concentration does not directly control urinary potassium excretion although

it is a potent synchronizing agent.

NEXT SLIDE (#20--Possible responses to elimination of oscillation)

There is one further test that can be performed in the examination of

the role of plasma cortisol concentration as a synchronizing agent. Again, we

are looking at the synchronization of a rhythm R by a hormonal mediator Q. w

If one can control Q, or plasma cortisol concentation in this case, then one

can eliminate the oscillation in'Q and test whether R continues with an

independent oscillation or whether it is passively dependent on Q. The first

possibility. is that the elimiaation of Q results in the total elimination of R.

This would occur if R is passively dependent on Q. The second possibility is

that Q does not influence R and__R continues oscillating with a 24 hour period

which is synchronized with other circadian rhythms within the animal. The

third possibility is that Q synchronizes R but R is not passively dependent on

Q. In this situation, one would expect to find free-running oscillations in R.
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This is the possibility that we particulary wish to examine since the other,

experiments are strongly suggestive of such a synchronizing mechanism. If

there were an alternate synchronization pathway such as Y then one might see

simply a phaseshif t in the rhythm of R but then R would regain a 24 hour period

now synchronized entirely by Y.

NEXT SLIDE Q2 .1--Continuous cortisol plus aldo infusion)

Adrenalectomized squirrel monkeys were therefore given for four days

their routine 08.00 hr cortisol and aldosterone infusions through remote

catheters outside the isolation chamber. Then after the first 2 days shown on

this slide, a continuous inusion of aldosterone and cortisol was given so that

the same 24 hourdosage was administered but was evenly spread over':the 24 hours

with no circadian rhythm of administration. When this continuous infusion of

aldosterone and cortisol infusion was given the urinary potassium rhythm did not

damp out. Instead the oscillations persisted, but demonstrated free-running

periods shorter than 24 hours. Thus, the circadian rhythm of renal potassium 	
i

i	 excretion lost its strict phase relationship with the light-dark cycle.

l %	 NEXT SLIDE (#22--Fourier analysis of S-557)

A Fourier analysis of the urinary potassium rhythm of the first monkey

demonstrated a free-running rhythm with two period components--one of approxi-

mately 13 hours and the other of approximately 15 hours. It appeared that the

second monkey had similar length periods although there was insufficient data
	 I

for complete Fourier analysis, and the third mon	 studied had a circadian rhythm

of around 20 hours

NEXT SLIDE ,(123--Postulated major pathway)

We therefore wish to propose that the circadian rhythm of urinary potassium

excretion is generated by potentially independent oscillators which are probably

intrarenal. These are synchronized with the light-dark cycle and with other

circadian rhythms within the animal via the circadian oscillation in the 	 i
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plasma concentration of a hormonal medistt-or, cortisol. The release of this

hormone is known to be under the control of ACTT{ which demonstrates a similar

circadian rhythm and this, in turn, is under the release of corticotropi.n

releasing factor which originates from the hypothalamus. Thus, it is possible

to postulate that the pituitary-adrenal axis plays an essential role in

synchronizing the circadian rhythm of renal potassium excretion. We are

currently examining the control at other levels of this pathway. There is

evidence that similar mechanisms of synchronization may apply at other levels.

LIGHTS" PLEASE

Is this model of internal synchronization compatible with other evidence

on the organization of circadian oscillators? The answer appears to be

There are two main pieces of evidence which would suggest that our model describes

the general mode of operation of these circadian timing systems in higher

animals.

Firstly, Dr. Aschoff has already pointed out that internal desynchronization

occurs in some 15% of his human.subjects isolated under constant conditions.

He found that some of the monitored physiological variables spontaneously began

to oscillate with different frequencies so that in one example body temperature

oscillated with a 25 hour period while the rest-activity cycle oscillated*with

a 33 hour period. This is strongly suggestive that there is more than one

potentially independent oscillator in primates.

Secondly, several groups 'have shown that certain mammalian tissues maintained

in vitro will demonstrate continued circadian r:iythmicity, and will function

although they are kept under constant conditions. For example, Andrews has

kept hamster adrenal glands in culture for up to 10 days and has demonstrated

persistent circadian rhythms in corticosteroid production in these isolated

glands. David Rintoul later in this Symposium will report on work in isolated

liver cells maintained in vitro which show a continued circadian rhytht'of enzyme

L

i
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activity. These lines of evidence suggest that individual tissues and maybe

even individual cells, may contain separate potentially-independent circadian

oscillators. Thus, the circadian timing system would appear to consist of a

k
large number of potentially independent oscillators which are synchronized
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97. Moore Ede M. C., Czeisler A.*, Schmelzer W. &*, Kass D, A *:Depts of Physio-
logy and Surgery, Harvard Medical School, Boston, Mass., U.S.A.

Circadian internal desynchronization., causation by circadian
arrhythmias in hormonal mediators?

Vhen circadian rhythms in several physiological variables are monitored 'simultaneously
in an animal, internal synchronization is usually observed. The monitored circadian
rhythms have constant phase relationships whether they are synchronized with envi-
ronmental time cues or free-running under constant conditions. However, internal
desynchronization may occasionally occur in animals and man, particularly when the
subject is in isolation. Predisposing factors include environmentally-induced stresses,
psychopathology and age. We have demonstrated that the circadian rhythm of plasma
cortisol concentration acts as the mediator synchronizing the circadian rhythm of renal
potassium excretion with other rhythms. Internal desynchronization of the renal potas-
sium rhythm from the activity and feeding rhythms can be .induced in adrenalectomized
monkeys by either a) phase-shifting the time of cortisol administration or b) by giving
a continuous infusion of cortisol so that the renal potassium rhythm becomes free-
running, To investigate whether such alterations of the circadian rhythm of plasma
cortisol concentration occur in stressful situations, eleven hospitalized human subje7"s
were studied. Blood samples were taken at 20-min intervals for 24 hts from an m-
dwelling venous catheter from four patients anticipating cardiac surgery within 24 hrg,
two patients 72 lhrs after surgery and five similarly hospitalized control subjects. Plasma
cortisol concentration demonstrated an episodic pulsatile pattern with a circadian distri.
bution in the control subjects, with maximum pulse frequency and plasma concentration
1-h before waking. In contrast, the pre- and post-operative patients demonstrated
additional pulses of secretion which tended to result in an even distribution of cortisol
pulses rhroughout the 24 hrs. These findings lead us to propose that - internal desyn-
chronization of circadian rhythms in situations of stress and psychopathology may be
the tesult of circadian arrhythmias in hormonal synchronizing mediators.
Supported by NASA 14249 and NIH Hi. 13S72.
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P=M CORTISOL OSCILUTIOUS SY1.1C0.0= TIM, CiR_
=1AN F=24 OF RE= POM, SSIUM EXCRETION -IN TBE
SQUI11REL 11101NM
Martin C. Moore Ede, Wendy S. Schmelzer, and J.
Alan Herd, DeDartuments of PhysioloV, Surgery and
Psychiatry, Harvard Medical School, Boston, MA USA

The rate of urinary potassium excretion demon
strates a circadian rhythm in the conscious chair-
acclimatized saui rrel mor2key (Saimiri sciur-eus)
maintained in isolation on ad lib feeding at 250C.
In five monkeys studied in an U-12:12 (600:41 lux
light-dark cycle urinary-potassium excretion oscil
lated between a maxinnur n 

of 274 t 23/A.Eq/h-r. (mean
+ SM), at 09-00 hr CT and a minimum of 64 t 6 / L^Eq/
hr at 21.00 hr CT. This xlVthm was synchronized
by the light-dark cycle since it a) free-ran in
constant light and b) responded to an 8 hour
phase-delay of the LD 12:12 light-dark cycle by
resynchronizing in 7 days frith the new LD phase.
. 

I To investigate -whether synchronization with
the LD cycle was med-iated by the pituitary-adrenal
axis, adrenalectormized monkeys ,ere studied. The
control urinary potassium rbytha could be repro-
duced by intravenously infusing 5 rag cortisol at
00.00 hr CT daily.' When the time of cortisol ad-
minLatration -was phase-delayed by 8 hours the
urinary potassium rhythm 'responded irith a 6-8 hour
phase delay within 3-6 days although the LD phase
remained unchanged. This finding, together- vith
the observation that , free-running oscillations in
urinary potassium excretion appeared when cortisol
-;,-as given as a continuous infusion in adrenalecto-I
mized moi-Lzeys sugge ŝts 'that the renal potassium,
circadian rhythm is synchronized by, but not pasC
sivejy dependent on the circadian -rhythm of plasma
cortisol concentration. Presented by 14.C4
Moore Ede., Section 11-4.
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