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ABSTRACT

The availability of vector processors capable of sustaining computing

rates of 106 arithmetic results per second has raised the question of whether

peripheral storage devices representing current technology can keep such

processors supplied with data. By carefully examining the solution of a large

banded linear system on these computers it is found that even under ideal con-

ditions the processors will frequently be waiting for problem data.
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SYSTEM BALANCE ANALYSIS FOR VECTOR COMPUTERS

1.	 INTRODUCTION

The availability of ve;;'tor processors such as the Control Data Corporation

STAR-100 and Texas Instruments, Inc. Advanced Scientific Computer (ASC) provides

the scientific community with considerably expanded computing power. These

processors are able to approach sustained rates of 108 arithmetic results per

second and this raises the question of whether available peripheral storage

devices can keep such processors supplied with problem data. It is frequently

true that even with a third generation scalar system, central processor

efficiency is limited by the performance of the associated peripheral equip-

ment. However, improved peripheral hardware and improved operating system

performance have made this problem manageable.

A study by Lynch [1974] using a simple model of matrix multiplication as a

representative problem has indicated that conventional rotating bulk storage

probably cannot supply data to vector processors fast enough to keep them from

being idle most of the time. In the present paper a detailed analysis of the

input/output (I/0) requirements for a problem of interest to the scientific

community, that of solving a banded linear system, is given for an algorithm

specifically designed for vector computers. The results obtained show that

even under ideal conditions,guaranteeing an adequate supply of data for the

processor is difficult with present technology.

In the following section the central processor of a vector computer is

described and a model for rotating bulk storage is developed. In Section 3

the particular application problem including the solution algorithm is dis-

cussed. Section 4 includes a timing analysis for the two vector computers

"mentioned above and Section 5 contains several implications of this study.
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2. HARDWARE

2.1 Central Processor

For the purposes of this paper, it is assumed that the arithmetic section
• °s

of a vector computer contains one or more segmented execution units or

"pipelines" which are used for vector arithmetic. 	 A pipeline is functionally

divided into a sequence of subunits or segments, each of which performs only

part of a given arithmetic operation. 	 A vector instruction initiates the

flow of data from one or two source vectors to the pipeline.	 Assuming that

the instruction involves two source vectors, each subunit accepts two elements,

performs its particular function, passes the result, and possibly t!e source

operands, to the next subunit, and receives the next two elements from the

stream of vector operands.	 Thus, because of simultaneous execution in the

- subunits, a set of identical operations may be executed very quickly even

though the time for a particular single result is much larger.
;e

The execution time associated with any vector instruction is composed
f

of two parts.	 The first depends on the hardware status and is assumed here

to be constant; this part is usually known as the "start up" time.	 The second
'i

part is variable and is a function of the length of the vectors involved.

The start up time is the delay which occurs between the issue of the instruc-
t

tion and the appearance of the first result:	 Factors affecting this delay

include the need to read operands from storage before arithmetic can begin, the

fact that the first operands must proceed through all the segments before the

first result appears and hardware housekeeping.	 The variable component of the

execution time consists of a constant 	 "per result"	 time multiplied by the

z
number of elements in the vector.

In general vector instruction execution times may be expressed as:

E=S+PL

-2- 1
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where E = total time, S = start-up time, P = time per result and L =

vector length. Since most pipelines operate synchronously, it is convenient

to express times as multiples of the machine's basic processor cycle. In this

paper it will be sufficient to consider only the operations of addition (compo-

nentwise), multiplication (componentwise), transmit (move a vector within main

storage), and inner product.

2.2 Peripheral Storage

In this analysis it is assumed that the bulk storage device is managed by

a sophisticated satellite processor which operates independently from the cen-

tral processor. In addition, in the interest of efficiency, it is further as-

sumed that the user has complete control of the data layout on the storage device.

For the problem to be described here, and in many large scientific compu-

ting problems, the data bases in use are only referenced sequentially. This

property is frequently used to improve the overall efficiency of the data

transfer operations. In the model of a peripheral device which follows, the

use of only sequential access allows some quantities to be treated as constants

rather than as random variables. Also, the storage device being modeled is

patterned after a disk although adjustment of the parameters allows the modeling

of several devices. For example, setting the parameter corresponding to seek

time equal to zero provides a reasonable model of a drum. Head switching time

is not explicitly considered because it can be regarded as part of the rotational

delay.

The following parameters are used:

Ds	The maximum seek delay when reading a large sequential file.

This will correspond to the time required to move a disk head

between adjacent cylinders.

DR	The disk rotation time.

-3-



Y	 That proportion of the rotation time which actually constitutes

a delay when switching tracks. Careful layout of data or

judicious hardware design can cause y to be very small.

R	 The peak transfer rate which can be attained during the transfer

of a single block of data.

d	 That proportion of the transfer rate which can be sustained

during the transfer of a complete track.

M	 The number of bits per track.

C	 The number of tracks per cylinder.

Assuming that a data set consists of B bits which are to be read or

written sequentially, and that the disk arm is correctly positioned as the

transfer operation begins, the time T required to transfer this data to or

from a single device as modeled is approximately:

(2.2.1)	 T = ( 

PC] 
-1)Cs

+ ( r 
M
1 -')CRY

time required to move head between
cylinders

rotational delay

+	 B
Rd

transfer time.

For any given disk drive, the parameters y and d are extremely diffi-

cult to quantify. They are greatly affected by the efficiency of the controlling

software and many other factors. For the purposes of this paper it is assumed

that the entire data file will be used sequentially by the algorithm. It is

further assumed that the independent processor controlling the disk has suffi-

cient capabilities to store and reorder, if necessary, a track of information.

Consequently, in principle, reading a track toad of data may begin anywhere on

-4-



the track; in practice reading will begin at the next available sector. Thus

the maximum rotational delay is the time for one sector to pass tinder the read

head. The estimate of y used here is one half of the sector size as a frac-

tion of the track size.

It is virtually impossible to give a reasonable estimate of S. In this

analysis it is assumed that d = 1 although in practice it will always be less.

3.	 THE APPLICATION PROBLEM

3.1 Choice of Problem

In choosing a particular problem to investigate, two goals were kept

in mind. One was to make a selection which was representative of actual

problems to be solved on vector computers and which might be common to many

different applications. The second goal was to choose a problem for which

the computation and I/O demands were simple enough to permit a meaningful

analysis.

The problem that was chosen is one which is common to the many areas of

science and engineering that require the numerical solution of partial

differential equations; namely, solving a system of linear equations,

Ax = b. The restrictions placed on the NxN matrix A are that it is real,

symmetric, positive definite and banded (i.e., all nonzeros are clustered

near the main diagonal). Because of the interest in the possible inefficiencies

caused by I/O for problems too large for main memory, the order N of the

matrix is assumed to be quite large, perhaps in the range of 5,000 to 50,000:

The bandwidth, 5 (see Figure 1), is usually some fractional power of N; for

example, B is approximately Yr—N  for the problem of solving the Poisson

equation on a square region. For a set of-matrices arising in various practical

problems, it was noted by Gibbs, Poole and Stockmeyer [19741 that the bandwidth

averaged about 3 V-W. These values of a, ,rN" and 3 3-,i; are assumed to be

representative for the purpose of this study.

-5-
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N
The Matrix A

FIGURE 1

3.2 Algorithm and Timing

For the solution of the linear system, Ax = b, a modification of

Gaussian elimination is used. The method of solution can be described

mathematically as follow

(a) factor A = LDLT where L is unit lower triangular and D is

diagonal with positive diagonal elements;

(b) solve Lz = b;

(c) solve Dy = z;

(d) solve L 
T 
x = Y.

On a serial computer, the factors can be found by any of several algorithms,

see, for example, Martin and Wilkinson [1965]. Some of these have been analyzed

for vector computers by Lambiotte [1975]. One of the fastest algorithms for

problems of the size of interest here is a vectorized version of symmetric Gaussian

elimination. For this algorithm it is assumed that the lower half of A is stored

by columns in a (0+1) by N array and will be overwritten by L. Thus the

matrix in Figure 1 will be stored as:

0+14111!	

p_

N
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There are N major stages of the algorithm, one for each column of

the matrix. A flowchart combining the i th stages of parts (a) and (b) is

given in Figure 2.

Set a component of vector D to 1/aii:

'	 diF l/ai i	 r

Create a vector T of multipliers:

(tl,...,t0)E— di*(ai+l,i,...,ai+G,i)

Zero the elements (ai+1,i ,. ..,ai+S,i) in

column i of A and update column i+j of A:

Repeat for j from 1 to S:

(ai+j,i+j,...,ai+g,i+j)<--(ai+j,i+j,...ai+S,i+j)

ai+j,i *(tj,...,ta)

Create column i of L = (P,'') stored.i.n,column i of A:

F— (tl,...,ts)

V

'^	 i

Solve Lz = b:

4
1'

... 't 	
b i *(Ri +l,i
	

,Ri+S,i)
5

Produce zi+1 stored in bi+1:

f

Flowchart of i th Stage

€	 FIGURE 2
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Parts (c) and (d) can be implemented in a straight forward manner. For

further detail the reader should see Appendix A which contains a program

for the entire algorithm.

The timing formulas that follow are applicable to any computer that has

the characteristics described in Section 2.1. An outline of the derivation of

the timing formulas is given in Appendix B.

Formula (3.2.1) is for parts (a), (b) and (c) and corresponds to procedure

BANSYG in Appendix A; formula (3.2.2) is for part (d) and procedure UPBSOL.

They are given 411 units of machine cycles. The DA term refers to the time

required to perform the scalar divide and for storage of - 1's in steps such

as (1) and (2) of procedure BANSYG. The start up times for addition, multipli-

cation, transmit and inner product are designated by S A , SM , ST and S 1 , respec-

tively; the per result times are denoted by P A , PM , PT , and P1.

(3.2.1)	 TB (N,3) = .5(PM+PA )N32 + (SM+SA+2.5PM±1.5PA+PT )Na

+ (DA+ZSM+SA+ST+PM )N - .333(PM+PA )g3 - .5(SM+SA+3PM+2PA'Pl`

- .5(SM+SA+2.333PM+1.333PA+PT )O - (SM+SA+ST)'

(3.2.2)	 TU (N,O) = P I NS + (S 1+P 1 )N - .5P 1 02 - .5P 1 0 - (S1+P1).

3.3 Data Management

None of parts (a), (b), (c) or (d) of the algorithm requires that all of

the matrix A be in main memory at one time. By examining step 3 of the flow-

chart in Figure 2, it is clear that for the ith stage of the factorization only

columns i, i + 1,..., i + 3 are required. Furthermore, after step 6 of the

flci;chart is executed, column i is not needed again in parts (a) or (b). Thus

while computation is being performed at the ith stage, the ( •1-1)st column may be

removed from memory and the (i+S+i)st column may be brought in (see Figure 3).

-B-
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N

Data Flow for the Factorization

FIGURE 3

In summary, the requirements on main memory for parts (a), (b) and (c)

consist of an array of size (0+1) 2 for the active columns of A; at least two.

buffers of size S + 1: one for the column of A for which computation has been

completed and one for the column for which computation has not yet begun; two

vectors of length N for D and b; and one of length B for the temporary

vector needed. Thus the minimum main memory required for efficient operation is

(3.3.1)	 (6+1) 2 + 2N + 36 + 2 words.

It is assumed that the data is laid out on the peripheral storage device

in the following manner. Starting with the first column of the matrix, columns

are stored sequentially on a track. Tracks are then filled in sequence. For

a device organized as a set of concentric cylinders, after a track is filled,

the next track on the same cylinder is used. Upon filling an entire cylinder,

the adjacent cylinder is used.

The algorithm effectively treats a column as the logical record size,

although in practice one track of data, perhaps containing more than one column,

would be transferred as a single physical record. This allows maximum device

utilization. It is assumed that the satellite processor which manages the

-9-
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peripheral storage device will reformat the tracks of data into the columns

required by the algorithm.

It should be pointed out that step 3 of the flow chart actually requires

that only two columns of A and a temporary vector be in main memory at one

time; however, this would increase the amount of data to be moved in one stage

of the factorization to 0(0+1) words. The time required to move this amount

of data is at least an order of magnitude larger than the corresponding compu-

tation time. Furthermore, the algorithm used here will work if only the region

above the dotted line in Figure 3 is in main memory; however, this makes it
r

impractical to keep all of the elements of a given column in contiguous storage

locations, a requirement for maximum efficiency of vector operations.

Ordinarily the factorization and the lower solve are organized as separate

modules because of their independence; this requires two complete passes through

the data. However, in the flowchart, the lower solve is embedded in the

factorization module so that only one pass is necessary.

Part (d) of the algorithm requires another pass through the matrix with

the columns required in reverse order, one at a time. It should be pointed out

that under the assumptions of Section 2.2, this causes only minor problems for

the satellite processor since data management can take place in its own storage.

Thus the reverse order requirement is met by reading the tracks in reverse order

and using a buffer to sort out the data taken from a given track.

4.	 RESULTS FOR TYPICAL COMPUTERS

The various assumptions made on hardware in Section 2 are satisfied by the

CDC STAR-100 and the TI ASC.• The only assumption made about system software is

that it does not interfere with the user's control of relevant hardware features

as described in Sections 2 and 3. In particular there are no other active tasks

competing for resources.

-10-



This section includes detailed timings of computation and I/O for the two

computers. These are based on the procedures BANSYG and UPBSOL found in Appendix

A. Procedure BANSYG corresponds to parts (a), (b) and (c) of the algorithm given

in Section 3.2; procedure UPBSOL corresponds to part (d). For the sake of sim-

plicity-the procedure names are used throughout this section.

4.1 CDC STAR-100

• The STAR-100 central processing unit (CPU) is equipped with two arithmetic

pipelines although the user has no control over how they are utilized fora partic-

ular instruction. Table 1 contains timing information from Control Data Corpo-

ration [1974A] for the instructions pertinent to this study. The times are in

CPU cycles and are for 64 bit operands.

SA = 94	 PA =31

S  = 156	 PM = 1

ST =90	 PT= z

S I - 100	 PI =.4

STAR-100 Instruction Timings
(In CPU cycles of 40 nanoseconds)

TABLE I

Based on scalar instruction timing, DA is estimated to be 106. If these

times are used in expressions (3.2.1) and (3.2.2), the following timing

formulas are obtained for the procedures BANSYG and UPBSOL respectively:

TB (N,B) = .75NO2 + 253.75NO + 603N - .55 3 - 127.2562 - 126.755 - 340

TU (N,S) = 4NB + 104N - 26 2 - 26 - 104

Table 2 presents the time required for computation for the two procedures for

various values c° N and S. It should be emphasized that the times are based

on. manufacturer's documentation rather than on actual compute

-11-
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B A N S Y G U P B S 0 L

Computation
Input/Output

Computation
Input/Output

N	
B

844 819 844 819

5,000 70 4.38 4.73 0.70 0.076 4.73 0.70

5,000 210 16.93 14.07 2.09 0.185 14.07 2.09

10,000 100 13.32 13.47 2.01 0.201 13.47 2.01

10,000 300 56.69 40.17 5.99 0.514 40.17 5.99

25,000 160 60.19 ' 53.72 8.02 0.742 53.72 8.02

25,000 480 291.82 160.50 23.96 2.006 160.50 23.96

50,000 225 190.84 150.82 22.52 2.004 150.82 22.52

50,000 675 1018.73 451.13 67.36 5.571 451.13 67.36

Computation and Input/Output Times (in seconds) for STAR-100

TABLE 2

Two disk drives are available for use with the STAR-100. They are

CDC models 844 and 819, and for these drives the values of the parameters used

in the model of section 2.2 are given in Table 3, as taken from Control Data

Corporation [19746].

844 819

Ds 10 ms. 15 ms.

DR 33 ms. 33 ms.

R 6.8x106bps. 38x106bps.

M 9.8x104bits 52.4x104bits

C 19 10

STAR-100 Disk Characteristics

TABLE 3

n

-12-
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An 844 disk track is divided into 3 sectors; thus y is taken to be 1/6.

An 819 disk track consists of 16 sectors and y is taken to be 1/32.

It is assumed that separate dedicated disks and associated controlling

equipment are available for the input of the matrix A and for the output of

the matrix L of the factorization. This permits the data to be transferred

with minimal disk arm movement. The times required in seconds in terms of N

and B are given by the following expressions obtained from formula (2.2.1).

1`844(N,B) = (r(3.44x10-5 )N(B+1)j - 1)(10-2)

+ (r(6.53x1O-4 )N(Q+1)1 - 1)(5.5x10- 3 ) + (9.41x10-6)N(0+1)

1`819(N,B) = (r(1.22x10 -5 )N(S+1)j - 1)(1.5x10-2)

+ (r(1.22x10- 4 )N(S+1)1 - 1)(1.03x10- 3 ) + (1.68x10-6)N(a+1)

Table 2 contains the total I/O time for the two procedures.

In Table 2, the I/O times for the 844 disk exceed the computation times for

procedure BANSYG in some cases. Furthermore, these I/O time estimates may be

overly optimistic because of the ideal conditions assumed about the secondary

storage environment (e.g., 6=1 in (2.2.1)). One approach to handling this proba-

ble I/0-computation imbalance is multiprogramming. However, the limited amount

of main memory available on the STAR-100 (either 524K or 1048K words) may make

multiprogramming impractical: for most of the cases shown in Table 2, the main

memory requirement of procedure BANSYG is a significant portion of the smaller

memory. For the larger memory, multiprogramming is more feasible for handling

several of the smaller problems.

If 819 disk drives are used, the question of multiprogramming is not as

important for procedure BANSYG since the columns of the matrix can be read or

written at a rate which exceeds the computation by a reasonable margin. Care-

ful buffering will permit the I/O operations to totally overlap the processing.

However, it must be noted that separate drives may still be needed for each of

the two data streams in order to avoid disk arm movement.

-13-
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The main storage requirement of procedure UPBSOL consists of just one

row of the matrix and one vector, N + S + 1 words. Thus this phase uses rela-

tively little processor time or main memory but the data input requirements are

the same as for procedure BANSYG. The entire matrix must be read sequentially

into main storage with the rows in reverse order as the processing proceeds.

Even the 819 disk unit is too slow by an order of magnitude on this procedure.

If multiprogramming involving processes of this type is to be used to increase

processor utilization then sufficiently many independent high performance disk

drives must be available to permit each process to have dedicated drives.

4.2 TI ASC

The central processor of the ASC is available with up to four pipelines and

in this analysis a four pipeline configuration is assumed. In addition the way

in which the pipelines are used on a given sequence of instructions is deter-

mined by the programmer (or compiler). A single vector instruction may be exe-

cuted by a single pipeline, or the operand vectors may be split and shared

between the pipelines. In this analysis, it is assumed that all vector instruc-

tions are shared. With this assumption, the timing of vector instructions in

terms of CPU cycles for 64 bit operands is shown in Table 4. This data is from

Texas Instruments, Inc. [1973A].

SA = 109	 PA = 7/16

S  = 110	 PM = 3/4

ST = 109	 PT = 7/16

S I = 120	 P I = 1

ASC Instruction Tinings

(In CPU cycles of 60 nanoseconds)

TABLE 4

-14-
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Based on scalar instruction timing, DA is estimated to be 27. If

these times are used in expressions (3.2.1) and (3.2.2), then the follow-

ing timing formulas are obtained for the procedures BANSYG and UPBSOL

respectively.

TB (N,0) _ .594NO2 + 221.969NO + 465.75N - .39663

- 111.28102 - 110.8850 - 328

TU (N,B) = NO + 121N - .502 - •50 - 121

Table 5 presents the time required for computation for the two procedures for

various valu e s of N and 0. Again, the times are not based on actual computer

timings. It should be noted that the same algorithm is used for the ASC as for

the STAR. Because the relative speeds of instructions may vary from computer

to computer, the algorithm used here may not be the fastest for the ASC. Con-

sequently, nr conclusions regarding the relative speeds of the two computers

should be drawn from the data of Tables 2 and 5.

B A N S Y G U P B S 0 L

Input/Output Input/ Output
Computation Computation,

PAD HPT PAD	 HPT
N	 0

5,000 70 5.63 4.73 1.52 0.057 4.73 1.52

5,000 210 21.46 14.07 4.51 0.098 14.07 4.51

10,000 !	 100 17.07 13.47 4.32 0.132 13.47 4.32

10,000 300 71.05 40.17 12.87 0.250 40.17 12.87

25,000
i
i	 160 76.50 53.72 17.21 0.421 53.72 17.21

25,000 480 361.55 160.50 51.40 0.895 160.50 51.40

50,000 225 240.79 150.82 48.31 1.036 150.82 48.31

50,000 675 1252.12 451.13	 1 144.49 2.374 451.13 144.49

Computation and Input/Output times (in seconds) fc

TABLE 5
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The two disk drives available with the ASC are the Head Per Track Disk (HPT)

and the Positioning Arm Disk (PAD). They have the following parameter values (see

Texas Instruments, Inc. [1973(3]):

PAD	 HPT

DS	10 ms.	 0

DR,	 33 ms.	 34 ms.

R	 6.8x106 bps.	 15x106 bps.

M	 9.8x104 bits	 5.2x105 bits

C	 19	 NA

ASC Disk Characteristics

TABLE 6

Each track of the PAD disk is divided into 3 sectors; thus y is taken to

be 1/6. An HPT disk track is divided into 256 sectors and y is taken to be

1/512. Note that DS is zero for the HPT disk so that the first term of expres-

sion (2.2.1) vanishes.

If it is assumed that the data is transferred in a continuous stream with

two independent dedicated disk units, then the time required in terms of N and

6 is given by the following expressions for the PAD and HPT disks respectively.

TPAD(N'R) = (r(3.44x10-5 )N(0+1)1 - 1)(10-2)

+ (r( .6.53x10-4 )N(o+1)1 	1)(5.5x10-3)

+ (9.41x10-6)N(S+1)

THPT(N,6) = (r(1.23x10-4 )N0+1)1 -1)(6.6410-5)

+ (4.27x10-6)N(S+1)

Table 5 contains the total I/O times for the two procedures.

The overall results are similar to those obtained for the STAR-100. A

major difference however is the availability of much larger main storage sizes

for the ASC. It can be delivered with up to 8 million 64 bit words which exceeds

-16-
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the maximum STAR-100 memory by a factor of 8. This has two important implica-

tions. first, multiprogramming of large scale scientific programs is much more

feasible; and secondly, for the smaller values of N and a, the entire factored

matrix can be held in main storage. The latter alternative eliminates the need

for the output stream for procedure BANSYG and the input stream for procedure

UPBSOL. Because it is procedure UPBSOL which is severely limited by its input

requirements, if the entire matrix is available in storage that phase can proceed

uninterrupted.

5.	 CONCLUSIONS

Achieving adequate input/output rates is a significant problem with high

performance vector computers.	 The analysis presented above indicates that

currently available disk units are able to provide data at a sufficient rate

only in cases when a sizable amount of computation is performed with each item

of data. For instance, in procedure BANSYG OW computations are performed with

each element of the matrix, whereas there are only 2 computations per element in

procedure UPBSOL. In the general mix of jobs at a scientific computing facility,

one might encounter many problems whose order of computation is similar to that

of UPBSOL.

An approach to handling the I/O imbalance for third generation computers is

multiprogramming. It was indicated in Section 4 that multiprogramming the

STAR-100 is not always practical for the problems considered here, whereas it

may be fruitful for these problems on the ASC because of the availability of a

much larger main memory.

Another possible solution is the use of multiple disk drives for each

data stream. Since only sequential files need be considered here, the necessary

synchronization is possible in principle. A longer term solution may be offered

I
y memories using the newer technologies such as magnetic bubbles.

Perhaps an even greater problem than supplying the central processor with

data is that of supplying the entire system. Once the computations have been

completed for sets of data residing on disks, new data sets must be transferred

-17-
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to the disk system from other peripherals. For example, ten of the above problems

with N = 10,000 and S = 300 will fill an 819 disk, yet all computation will

be completed in approximately ten minutes. Loading new data sets onto an 819

will take considerably longer than this. Very little attention seems to have

been given to this question.

Finally,since there is an excess of computing power and a lack of I/O

capabilities, it would behoove the designers of numerical algorithms to consider

techniques which reduce I/O requirements at the, perhaps considerable, expense

of extra computation. For example,by examining Table 2, one sees that an I/O

decrease of 50% and a computation increase of fivefold would halve the total

time required by procedure UPBSOL on the STAR-100. Note that the I/O time

requirements were reduced by 1/3 simply by organizing the factorization and

the lower solve into one module, thus eliminating the need for a third pass

through the matrix.
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APPENDIX A. PROGRAM FOR ALGORITHM

The algorithm is presented in a new programming language called

SL/1 which is being developed explicitly for the CDC STAR-100. The details

of SL/1 may be found in Basili and Knight [1975]; however, pertinent points

are included here so that the reader.may follow the algorithm.

All declarations in SL/1 are explicit and are similar to those in ALGOL.

Thus

REAL VECTOR [2..BETA+1] T;

is the declaration of a vector named T with BETA real components subscripted

from 2 to BETA + 1. The lower subscript bound may be omitted in which case

it defaults to one.

The other declaration of interest in SL/1 is used to describe an array

of vectors:

REAL VECTOR [BETA+1] ARRAY (N) A;

This declaration describes a data structure named A consisting of N vectors

of real numbers each of length BETA + 1. SL/1 also permits the user to

reference subvectors and subarrays; thus, for example

A(I) [2..N-1+1]

refers to elements 2 through N - I + 1 of the I th vector of array A.

The only nonstandard arithmetic operator of SL/1 used here is the inner

product. Thus the statement:

B[I] := -U(I)[1..N-I+1] .DOT. B[I..N]

stores the inner product of the negative of the first N - I + 1 components

of the I th vector of the array U with the I through N th elements of the

vector B in the I th location of vector B.

The program is divided into two procedures: BANSYG implements parts (a),

(b), and (c) of Section 3.2 and UPBSOL corresponds to part (d). It should be

pointed out that both procedures consist almost entirely of vector operations,

and are thus extremely well suited fora vector processor.

-20-

w



♦.!u'.i$a'+L(?iWi.irr wr>v:. wnu.wR'. iirt^i :YR'+!.0 	a.raa ..'.x

PROCEDURE BANSYG;

/*THIS PROCEDURE PERFORMS AN LDLT FACTORIZATION OF THE GIVEN SYMMETRIC,

POSITIVE DEFINITE, N BY N MATRIX A WITH (SEMI) BANDWIDTH BETA, IT ALSO

SOLVES LZ = B AND DY =,Z. THUS TO COMPLETE THE SOLUTION OF AX = B,

ONE MUST SOLVE LTX = Y.

THE LOWER PART OF A IS STORED BY COLUMN, THE LOWER TRIANGLE, L, IS

COMPUTED A COLUMN AT A TIME AND IS STORED OVER A. THE VECTOR D

CONTAINS THE INVERSES OF THE DIAGONAL ELEMENTS OF THE MATRIX D. UPON

EXIT, THE VECTOR B CONTAINS THE ELEMENTS OF Y, OVERWRITING THE RIGHT

HAND SIDE OF THE ORIGINAL LINEAR SYSTEM.*/

REAL VECTOR [BETA+1] ARRAY (N)	 A;

REAL VECTOR [N]	 B,D;

REAL VECTOR [2..BETA+1] 	 T;

INTEGER	 BETA,I,J,N;

/*FIRST PERFORM THE ELIMINATION FOR COLUMNS 1,2,-••,N-BETA-1 */

FOR I FROM 1 TO N - BETA - 1 DO

(1) D[I] := 1.0/A(I)[1];

(2) A(I)[1]	 -1.0;	 /* REDEFINE DIAGONAL ELEMENTS

FOR USE IN PROCEDURE UPBSOL */

(3) T := D[I]*A(I)[2..BETA+1];	 /* CREATE THE MULTIPLIERS */

FOR J FROM 1 TO BETA DO 	 /* MODIFY RELEVANT ELEMENTS */

(4) A(I+J)[I..BETA-J+1] := A(I+J)[1..BETA-J+1]

- T[J+1..BETA+11*A(I)[J+11;

ENDF	 J;

(5) A(I)[2..BETA+1] := T;

(6) T := B[I]*A(I)[2..BETA+1];
	

/* NOW SOLVE LZ	 B FOR Z[I+1] */

-21-



(7)	 B[1+1..I+BETA] := B[I+1..I+BETA] -.T;	 /* Z[I+1] IS IN B[I+1] */

ENDF	 I;

/* NEXT PERFORM THE ELIMINATION OF THE DENSE TRIANGULAR BETA+1 SYSTEM

IN THE LOWER RIGHT CORNER */

FOR I FROM N - BETA

(8) D[I] := 1.0/A(I)[1l;

(9) A(I)[1] := -1.0;

(10) T[2..N-I+1] := Dfl)*

FOR J FROM I + 1 to

(11) A(J)[l..N-J+1]

TO N - 1 DO

A(I)[2..N-I+1];

N DO

A(J)[l..N-J+ll

T[J-I+1..N-I+1]*A(I)[J-I+1];

ENDF	 J;

(12) A(I)[2..N-I+1]	 T[2..N-I+1];

(13) T[2..N-I+1] := B[I]*A(I)[2..N-1+1];

(14) B[I+1..N] := B[I+1..N] - T[2..N-I+1];

ENDF	 1;

(15) D[N] := 1.0/A(N)[1];

(16) A(N)[1] := -1.0;

/* FINALLY SOLVE DY = Z */

(17) B := D*B;

ENDP BANSYG;

-22-
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PROCEDURE UPBSOL;

/* THIS PROCEDURE SOLVES THE UNIT UPPER TRIANGULAR SYSTEM UX=B.

STORAGE IS SIMILAR TO BANSYG. THE RESULT, X, IS OVERWRITTEN ON B.

REAL VECTOR [BETA+Il ARRAY (N) 	 U;

REAL VECTOR [N]	 B;

INTEGER	 BETA,I,N;

/* FIRST SOLVE DENSE LOWER RIGHT CORNER TRIANGLE

FOR I FROM N - 1 TO N - BETA + 1 DO

(1)	 B[Il := -U(I)[l..N-I+ll DOT. B[I..N]; 	 /*'U(I)fll CONTAINS -1.0

ENDF	 1;

/* NEXT SOLVE REMAINING BAND

FOR I FROM N - BETA TO 1 DO

(21	 B(I) := -U(I) DOT. B[T..BETA+Il;

ENDF	 I;

ENDP UPBSOL;

I
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APPENDIX B. TIMINGS OF PROCEDURES

This appendix contains an outline of the derivation of the timing

formulas (3.2.1) and (3.2.2). T i represents the timing of statement i

in procedure BANSYG.

B.I. Timing of BANSYG

T1+T2=DA

T3 = S  + PMB

T4 = S  + PM (R-J+1 ) + SA + PA($-J+1)

T5=ST+PTS

T6 = S  + PMB

T
7 

= SA + P 

T8 + Tg = DA

TIO - S  + PM(N-i)

T11 = S  +

T12 ='ST +

T13 =SM+

T14=SA+

T15 + T16

T17=SM+

PM (N-J+1) + SA + PA(N-J+1)

PT(N-i)

PM(N-i)

PA(N-i)

DA

PMN
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Thus the total computation time required by BANSYG is

N-B-1	 B
TB 01,5) _	 T1+T2+T3+(^T4/ +T5+T6+T7

i = 1	 j=1

+	 T8 + T9 + T10 + l	 T11 , + 
T
12 + T13 + 14

i =N-S	 j=i+1

+ T15 + T16 + T17 . .

After considerable manipulation, it can be shown that

TB (N,S) = .5(PM+PA )NS2 + (SM+SA+2.5PM+1.5PA+PT)NB

+ (DA+2SM+SA+S.T+PM )N - :333(PM+PA)03

- .5(SM+SA+3PM+2PA+PT)02

..5(SM+SA+2.333PM+1.333PA+PT )O - (SM+SA+ST).

B.2 Timing of UPBSOL

Nr
TU (N,B) =	

L

-6+1	 1
S1 + P 1 (N-i+l) + z S 1 + P 1 (S+1)

1i=N-1	 i=N-S

= P
I
 N$+ (S 1+P 1 )N - .5P 1 g2 = .5P I O - (S1+P1),
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