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ABSTRACT	
141

This report traces square root information estimation,

starting from its beginnings in least-squares parameter esti-

mation, Special attention is devoted to discussions of the

sensitivity and perturbation matrices, computed solutions and

their formal statistics, consider-parameters and consider-

covariances, and the effects of a priori statistics. The

constant-parameter model is extended to include time-varying

parameters and process noise, and the error analysis capa-

bilities are generalized. Efficient and elegant smoothing

results are obtained as easy consequences of the filter

formulation.

The value of the techniques discussed here is demon-

strated by the navigation results that were obtained for the

Mariner Venus-Mercury (Mariner 10) multiple-planetary space

probe and for the Viking Mars space mission.

vi	 JPL Technical Memorandum 33-735
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SEQUENTIAL LEAST-SQUARES
USING ORTHOGONAL TRANSFORMATIONS

I,	 INTRODUCTION

Outer space navigation analyses and orbit determination has relied, in the
main, upon the method of least-squares introduced by Gauss (Refs. S and 12).
In recent years science experiments and mission requirements have become
more stringent, and space scientists have found it necessary to introduce more
precise and sophisticated models, including stochastic process noise effects.
Software specialists y` were at first nonplussed because the new models
involved time-varying parameters and process noise in a way which appeared
to be at odds with the classical constant parameter estimation software then
in use.

There was a reluctance to abandon the least-squares methods in favor of
the Kalman filter, even though the latter technique is flexible enough to accom-
modate time-varying models with process noise. Reasons for this reluctance
included cost, reliability and inertia. The constant parameter estimation soft-

+

	

	 ware that was already developed, checked out, and proven is only a part of the
lengthy and complex orbit determination (OD) process. In this framework the

' I

	

	 constant parameters are referenced to an epoch time, and thus introducing a
current state Kalman filter would require costly modification of the entire OD
process. Furthermore, OD problems generally involve processing thousands

.i

	

	
of data points and, for such situations, the Kalman filter is costly to operate.
Least-squares analyses using or' ..ogonal transformation techniques (Ref. 10)

w	have proven to give reliable and accurate results, while the Kalman filter in
fl process noise free situations exhibits numeric deterioration and instability. In

light of these comments, it is not surprising that software specialists and man-
agers were reluctant to abandon least-squares.

The apparent contrariety between the least-squares parameter estimation
techniques based on orthogonal transformation methods and the Kalman covari-

The remarks and opinions which follow reflect the author's experiences at the
Jet Propulsion Laboratory but are believed to have a more general applicability.

i	 JPL Technical Memorandum 33-735	 1
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ance oriented methods was cleverly resolved by modifying both the model and the

least-squares orthogonal transformation method, cf Curkendall and Leondes

(Ref. 5) and Dyer and McReynolds (Ref. 6). The Dyer-McReynolds filter algo-

rithm, dubbed with the acronym SRIF (Square Root Information Filter) by

I{aminski (Ref, 9), is of primary importance in our estimation developments

and discussions. The work in this report documents estimation techniques used

at the Jet Propulsion Laboratory which have been found to be efficient, have

good numeric characteristics, and which have led to new and improved insights

into the problem of orbit determination.

The intention here is to summarize and highlight the epoch-state model

(see Eq. 3-4) SRIF formulations for filtering, smoothing, and error analysis.

Specializing the results to the epoch-state model greatly simplifies the some-

what intimidating algorithms of Refs, 2, 3, 4, and 9 that were developed for

more general linear models. Our techniques and algorithms are applicable to a

rather broad class of problems even though our development is oriented toward,

and was motivated by, orbit determination applications. The following paragraphs

outline the scope of material that is to be discussed,

In Section II we discuss Golub's sequential solution to the least-squares

parameter estimation problem Through the use of Householder orthogonal trans-

formations ^` (Ref. 7). This method is acknowledged to be numerically stable and

is considerably more accurate than the classical normal equation technique intro-

duced by Gauss (Ref. 10). Various jargon are defined here: the "data equation"

corresponding to an estimate-estimate error covariance pair; "computed" solu-

tions and covariances corresponding to restricted dimension models; "sensitivi-

ties" and "perturbations" corresponding to neglected parameters, and "consider"

covariances which reflect the true error covariance of the computed estimate.

In Section III the "epoch state" model is defined along with a technique for

including time propagation and white process noise. Certain computational

efficiencies and algorithmic simplifications come about when the process noise

entering the time propagation is exponentially correlated.

Smoothing„ discussed in Section IV, is arranged so that it blends with the

material of Sections II and III. Smoothed analogues are developed for the

.Householder orthogonal transformations are discussed in Appendix A.

2	 JPL Technical Memorandum 33-735



"computed" estimate, the "computed" estimate error covariance, and the
I 'sensitivity lt matrix. These results differ from their filter counterparts, which

arise from auxiliary information array computations, in that they are computed

recursively. Commonalities between the filter and smoother algorithm formu-

lations allow for a generalization of the "consider" covariance and of estimate-

covariance pairs corresponding to various order estimation models.

Section V is devoted to error analyses that are related to the SRIF. The

data equation representations lead straight-away to augmented information

array algorithms. The error equation methodology parallels the covariance

error analysis methods that are derived in Ref. 11; but the error analysis algo-

rithms, like the SRIF, differ from their conventional covariance algorithm

counterparts. The error analyses are not completely general but do cover the

principal error sources occurring in orbit determination, including the effects

of incorrect a priori state and process noise covariance statistics, unestimated

parameters, and the effects of incorrect colored noise time constants.

ri
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II. SEQUENTIAL DATA PROCESSING USING ORTHOGONAL
TRANSFORMATIONS

Accurate and stable sequential least-squares data processing methods are

of major importance in orbit determination because OD problems generally have
poor observability characterieticA (are 111-conditioned) and involve large amounts
of data. The normal equation methods, classically used in such problems, have
been supplanted by the orthogonal transformation techniques that were introduced
by Golub (Ref. 7). To see how orthogonal transformations enter into the least-
squares problem, consider the overdetermined* system:

z = A x + v	 (2-1)

F,

where x is an n-vector, z is an m-vector (with m ^ n) and v is assumed to be
scaled so that v eN(0, Im). The least-squares problem is formulated and solved
in the following sequence of equat.ons:

M

	

J Qs(x) _	 v^ _ livil2	 (2-2)
j=1

IIAx - zll 2 	(2-3)

1IQA (Ax - 
Z) 11'	 (2-4)

i,

QA such that 
QA QA ° Im

f!

Y 	 -	 II
J

	

QAAX QAz112	 (2-5)
' [R]

}n	 z nj

QA	 Qz= -
0}m-n `^'	 e I m-n

I1
Only overdetermined problems are discussed here because when a priori infor-
mation is used the estimation problem is of this form.

4	 JPL Technical Memorandum 33-735
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R
n	 n
x = z (2-8)

X	 z 2J fs(x) as II(- -^ --- ]L`	 (2-^)0	 e

= Ax _ y ii 2 .1 H
e ll 2	(2-7)

Golub pointed out that the orthogonal transformation QA could be simply com-
puted using Householder I s reflections, that in this cz..e R will be a triangular
matrix, and that this reduction of the array [A, z I could be accomplished without
explicitly computing QA. Appendix A reviews the key ideas and formulae
involved with Householder matrix reductions.*

From Eqs. 2-2 and 2-7 it is evident that Jis is minimized for x chosen
such that

r

and that Ile 11 2 is the minimum sum of squares residual error. Statistical signifi-
cance for the solution x is an easy consequence of Eq. 2-1, i, e.

QA  = QAA x + QAv

^

A n f n 

l
c--^ f 0 -1 x+ LveJ

and thus,

A = Rx + v
	

(2-9)

where vcN(O,In), because QAvf.N(O,Im). Combining Eqs. 2-8 and 2-9 gives

^	 ^1 ^X_ x = -R" v

e;cFor more details of this subject the reader is referred to the book by Lawson
and Hanson (Ref. 10) which comprehensively treats the various numeric and
computational aspects of orthogonally computed least-squares solutions.

JPL Technical Memorandum 33-735
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so that

PA s E [(x - x) (x - X)T , = R-1 R-T (2-10)x'`

i

-1Equation 2-10 shows that R is a square root of the error covariance matrix PA.

A
An equation of the form of Eq. 2-9, with R nonsingular, is called a data

equation. From Eqs. 2-8 and 2-10 it is clear that there is an equivalence
between the information array [R, z] and the covariance-estimate pair (PA x).

Information arrays are not unique, but if [R 1 , z 1 ] and [R 2 , z2 ] correspond to the
same covariance-estimate pair, then for some orthogonal rnatrix Q,

[R 1 , z l] = Q [R2 . z21

(This relation is a direct consequence of the data equation representation corre-
sponding to the information array. ) An obvious but important consequence of a
data equation representation for the a priori covariance and estimate is that the
least-squares orthogonalization is recursive. This result is written as
theorem 1.

Theorem 1 (Recursive Least-Squares Measurement Updating)

The data z. = A.x + v., with E(v.
J
) = 0, E(v•, J) = Im. 

1J
6.. can be recursively

	

J	 J	 J	 1 J	 J	 n	 nleast-squares fit as follows. Start with the a priori information array [R O , z0],
and for j = 1, . - -, N, recursively compute:

A	 A	 A —

Q	 RJ-I	 zJ-1 1 =
 

roz
j-1 A 	 z 	 ej

j - 1 + II E JII 2 	 7-0 - 0	 (2-12)

where Qj-1 , orthogonal, is implicitly defined by Eq. 2-11.

o;a
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A
Then, for each j, x given by Eq. 2-13 is the least-squares estimate of x based
on the data Izili = 03..., jf, and Pj is its error covariance:

A-1 n	 n	 -1 n-T
xj - Rj zj	 Pj = raj Rj	 (?-13)

E	 Moreover,

j

j = TIRO xj - Z OII 2 +^ II A: xj Z iII 2 	(2-")

NOTES:
A

(1)

	

	 R  are by construction triangular matrices, generally arranged so

as to be upper triangular. The triangular structure reduces compu-

tations in Eq. 2-I1 and also facilitates the matrix inversion appear-

ing in Eq. 2-13.

P

	

	 The recursion ( Eq. 2-I1) is similar in certain respects to the

normal equation results,

[Ai , dj] = [Aj - 1 - dj-1] +rAJ A
j,,1i zj ]	 (2-15)

In this case the estimate and covariance are given by

xj = Ai 1 di	 Pj = Aj 1	 (2-16)

Equation 2-15 is susceptible to roundoff errors; and not infrequently

one finds that the computed A is singular, cf Refs. 7 and 10.

(3)

	

	 Estimates and covariances (Eq. 2-13) need not be computed for each

j and this allows for certain economies of computation.

(,)

	

	 Equation. 2-12 gives the accumulated residual error corresponding

to the latest estimate; but this computation does not explicitly

involve the estimate.

JPL Technical Memorandum 33-735
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PF-I
	 I

(5)

	

	 The relations in Eqs. i- ic azd ?. - 1 4 are important in residual
analyses problems involving large amounts of data. in such prob-
lems it is inconvenient and costly to reread the previous data
{A., z i li = 1, - - •, j from storage and compute; Eq. 2-14,

!^	 The data equation, as shown in Theorem 1, is a handy vehic16 with which
f	 to express the state of the system. To further explore this representation,

{	 suppose that x is replaced by the partitioned vector 
L
xl and that the data Eq. 2-9

is partitioned consistently. Assuming that R is upper triangular gives: 	 i

Rx RxY [x]	 zx	 vx

0	
R 
	 y	 zY	 vY

x and y are now assumed to be vectors of dimension n  and n  respectively,
Ath n = nx + nY . This partitioned data equation has an interesting and useful
interpretation.

The bottom equation, R y y = Z  - V  is a data equation for y and as such it
implicitly contains the estimate and covariance of y. This point is of importance
when the parameter estimation problem is of large dimension; but one is o ..y
interested in explicitly estimating a small subset of parameters.

Turning ettentiun to 6he upper of Eqs. 2-17, we point out that a
consequence of the triangular construction is that R  and X are independent
of y. This observation is of major importance because it enables one to
analyze the effects of various -y models in a straightforward and insightful
manner. With these comments in mind, Eq. 2-17 is expanded to obtain.

x = R -1 zx + -R-1 
RxY/ 

y -R- 1  vx

(2-18)

xc +(SEN) y- Rz l vx

This innocent looking equation is actually pregnant with implications, which
we now proceed to describe.

8
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I

xc = ^ 1x - zx	SEN = -Rx -1 Rxy	 Pc = Rx -1 Ftx -T (2-19)

whL:e x  is called the computed estimate and corresponds to a model with no
y parameters; SEN is called the Sensitivity; and Pc called the computed cov ariance
will equal EBx - x c ) (x - x c)T] if the model contains no y parameters.

P 
	 = E C(x - xc ) (x - xc)TJc

(2-20)

f I	 = Pc + Sen P  (SEN)T
r

where P  is the a priori covariance of the y parameter vector. Px c is the
!	 actual or true covariance of the estimate x c ; it reflects the estimate error due
j	 to using a filter model that ignores the y parameters.

Not infrequently one includes y parameters in the model, not because they
are of special interest, but because excluding them may lead to poor estimates
of the x parameters. Equation 2-20 separates out that portion of the error
covariance that is due to the omitted y parameters. In this context the compo-
nents of y are called consider parameters and Pxc is nailed a consider
covariance.

In the special but important case where the y a priori covariance is diag-
onal, one can get further useful information about the effects of the individual
components of y. In this case, the columns of I -SEN Diag (y(1),...,Py(ny))
are, so to speak, error perturbations of the estimate error; and perusal of 11 is
helpful in determining which y parameters contribute most or least to uncertain-
ties in particular components of the estimate. This information is a valuable
aid in identifying major error sources.

The importance and utility of the SEN matrix does not end here; it appt,ars
in the optimal least-squares estimate and covariance results. From Eq. 2-18
it follows that

,	 A

x = x  +SEN y
	

(2-21)

JPL Technical Memorandum 33-735
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A
where P  =R Y Ry Furthermore, from Eqs. 2-18 and 2-21 it follows that

where A= RY 1 zy and

t

P  = E r(x - x) (x - x)TJ
(2-22)

= P  +SENPy(SEN)T
c

SEN = ax = 8(x - z)

ay	 a(Y - y)

(2-23)

and thus SEN is a sensitivity matrix which measures the sensitivity of the esti-
mate to the y parameters.

These formulae involving the sensitivity matrix point up its key role in
parameter estimation analysis. Although these estimation formulae are easily
and simply implemented, their flexibility and utility is enhanced by noting the
following:

(1) Systematically increasing the x parameter set can be done with but
a modicum of effort. The necessary equations follow from the
accompanying matrix identity:

-1

Rx	
Rxy	 RX1	

r R x 1 
Rxyl Ryl

0	 R	 0	 `	 R-1
Y	 Y

(2) SEN is independent of the y a priori and this simplifies certain
analyses.

(3) The triangular structure of R  makes it a simple matter to delete
the lowermost y's and examine models with a smaller number of
parameters.

(4) One need not cammit to a prespecified arrangement of the y param-
eters; i, e. , it is possible to omit any subset of parameters from the

10
	 JPL Technical Memorandum 33-735
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model. In the general case, one should permute the columns of R
v

and SEN corresponding to the desired y-parameter arrangement

and then use an orthogonal transformation to retriangularize RY

To illustrate the kind of analysis that can be performed using the ideas

just described, consider the following hypothetical but typical problem. Formu-

lation of the problem involves, say, 150 parameters; but we are interested in

estimates for perhaps 10 of these, and they are designated x. Most of the

remaining parameters came about because of our efforts to precisely model the

problem. Based on our knowledge of this problem, we arrange the parameter

name list so that those parameters believed to be most significant are at the top

of the list. There are 3000 data points and these are orthogonally transformed

to an upper triangular form, cf Eq. 2-11. The sensitivity matrix is formed,

cf Eq. 2-19, and is 10 by 140. A perturbation matrix, r, is computed using

nominal y-parameter a priori standard deviations, and the columns are

inspected. This suggests a rearrangement of certain of the y's, i, e. , moving

to the end those y's that appear to have negligible significance. The columns of

SEN and R  are rearranged accordingly, and R  is orthogonally triangularized

and the y a priori is included. It is possible now to exhibit estimates and esti-

mate error covariances based on, say, 50, 60 and 70 y-parameter models. If

the higher order y's are truly less significant, the estimate and covariance

should be relatively unaffected by increasing the model order. By redefining

the x and y namelists, or by partitioning and expanding the appropriate equations,

one could examine the effects of estimating the first n y1 parameters, considering

the effects of the next nY2 parameters and ignoring the rest. For a problem

with this structure, we would be perusing Px c where xT and yT represent

(xT' yl' • • •, yn ) and (yn +1'	 ' y
n +n ) respectively.

y l 	 yl	 yl y7
The data analysis options described in this section are standard compo-

nents of JPL's Orbit Determination Program.

JPL Technical Memorandum 33-735 	 11
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III. MAPPING AND THE INCLUSION OF PROCESS NOISE

The discussions of the previous section were directed at constant

parameter estimation. Fortunately, and not coincidentally, mast of the key

results and notions of that section extend to the time varying , problem,

X
j+1 = 0 1 

X i + G 
i 
w 

1
	 (3-1)

where ( 01 ) are nonsingular and (w j ) is a white noise sequence. The nature of

our orbit determination problems motivates us to partition X, and we write

p	 M	 0	 0	 p	 wj

x	 = ^xp	 ¢x 	 41xy	 x + 0	 (3-2)

y j+l	 0	 0	 I. j y j	 0

where the ^ elements are transition matrix elements 
^xp 

(j+l, J), etc. The

vector p is colored process noise and y are constant parameters. In this

formulation M, assumed to be diagonal, may be singular; and thus, we allow

for white noise inputs to x. The model of Eq. 3-2, while somewhat special-

ized, is quite adequate for our applications. Spacecraft related p parameters

are generally random accelerations; viz solar pressure, altitude control jet

gas leaks, or satellite drag effects. OD related p parameters may reflect

ephemeris variations or Deep Space Network Station location position

uncertainties.

Previous orbit determination analyses which did not involve process

noise were cast as parameter estimation problems by referencing the time-

varying parameters to an epoch time. We retain this practice because such a

formulation is compatible with existing OD software (at JPL) and because our

estimation computations are somewhat simplified in this framework. Thus, we

define the epoch state variable 71, so that

x  = 0x(j, 0) R  + 0xy ( j , 0 ) y	 (3-3)

xj are called epoch state variables because when ^xp(j+l,j)pj 	0, R  reduces

to the epoch state x0 . When 
R  

is substituted into Eq. 3-2, one obtains the

simplified propagation representation (Eq. 3-4),

12	 JPL Technical Memorandum 33-735
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rA 	-1

P,	 M	 0 0	 p	
w 

x	 = VP 	1	 0	 x + 0	 (3-4)

y j+1	 0	 0	 I j y j	 0

where V P0) _ ^ -1 0+1, 0)^ 0+1, D.

Let us turn now to the business of constructing the SRIF mapping algorithm
corresponding to the dynamic model (Eq. 3-4). The mapping process consists
simply of constructing a data equation for Xj+1 , given an a priori data equation
for X.. Thus, suppose we are given an a priori data equation in the following
form

A	 A	 A	 A	 A

R P 	Rpx	 R Py	 ^^j	
zP	

V 

A	 A	 A	 _	 A	 A	 :+

RxP	
Rx	 Rxy	 xj = zx	 vx	 (3-5)

0	 0	 Fly	 y	 zy	 vy

NOTES:
(1) In the interest of notational economy we omit the j subscript on R

and z, and rely on the symbol "A" to indicate the values of R and z
at the start of the mapping.

(2) A pragmatically important advantage accruing to a formulation
with the p variables uppermost is that when RxP = 0, the formulae
of Section II are valid and need no modifications.

Using Eq. 3-4 it is easy to replace R  by xj+1 , i. e.,

A	 ARp - 
RPxV P Rpx 	 R Py	 pJ	 z 	 V 

Rx - RxV p	 Rx	 Rx	 x.+ 1 = z	 Ax -	 vx	 (3-6)
P	 i	 Y	 J

0	 0	 Ry	 y	 zy	 vy

FGenerally the R terms are the result of data processing, and in this care R xP = 0.

JPL Technical Memorandum 33-735 	 13	 N
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To complete our construction of the data equation at (j+1), we have to
replace pj by pj+l , and this is done in the following way. Recall from Eq, 3-4
that the colored process noise terms satisfy

( 3 -7)

1

(3-8)

Pj+l = Mpj + wJ

and that the statistics of w  can be written in data equation form

R  w  = z  - vw

(zw = 0 when E(wj ) = 0. )

Equations 3-6 through 3-8 are combined by considering an augmented

state rector, one that contains p j and Pj+1'

- R w M	 R 	 0	 0 Pj zw vw

RP	
f.PXVp	

0	 RPx	 R Py
A

z

n

Pj+l VP

RxP 	 RXV P	 0	 Rx	 Rxy xj+l z V 

0	 0	 0	 Ry y zy vy

(3-9)

To obtain the desired data equations from this result one has only to orthogonally

eliminate pj from the bottom equation; and, in information array form, the

result is:



n 
r

+ nx I Spn p

nx ny

i	 S	 i Sx	 i y

1°	 terse le^'iwe x
	

Pj 	 Pj +1 	 3Zj+1	 y	 z
- ------------------------------------- ----------------

	

R*	 '	 R''`	 '	 R*	 '	 11 *	'	 z'`	 n

	

P	 PP	 i	 Px	 py	 i	 P	 I P

	

0	
iSp	 i	 Sx	 i	 Sy 	 i	 Sz	 I np + nx

-R M
w

I
i

R
w i

0 0
zw I 

nP

=Q RP
R PxVP

-
 i 0

i

i

A

RPX i
A

RPY i
AzP

InP

Rxp - RxVp
i

i
0

i Rx i RxY i Lx I nx
(2-10)

where i^5, orthogonal, is chosen to partially triangularize the information array
and the S notation represents the time updated information array

NOTES:

N
1 R

P

S	 -z

Rxp

N	 N	 ,y
R	 R	 z
Px	 PY P

R R zA	 xy x

(3-11)

(1) The top row of Eq. 3-10 corresponds to a data equation

R''`p. + R''` p.	 + R''` x.	 + R''` y = z''` - v''` ,	 (3 - 12p	 pp 1+1	 px 1+1	 py	 p	 p	 )
and this equation is of major importance in smoothing, cf
Section 1V.

(2) The y information array Py ; zy l is unchanged by the mapping.
(This is as it should be since the

Y] is
parameters are time-

invariant,)

(3) Appendix B contains an efficient and compact FORTRAN mech-
anization of the mapping (Eq. 3-10). This mechanization makes
maximal use of the special structure of our problem formulation.

(4) Dyer and McReynolds (Ref. 6) describe how to time update an
information array cor-isponding to the general dynamic
model (Eq. 3-1).

b	 JPL Technical Memorandum 33-735 	 15
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IV, SMOOTHING;

Most orbit determination involves nonreal time or postflight data
reduction and, as a result, there is an interest in smoothing, i.e. trajectory
estimation based on the entire data history. In this section we show that
smoothed estimates can be computed with but a modicum of computational
cost. We also present smoothed analogues of the computed estimate, computed

a ^

covariance, the sensitivity matrix, and the consider covariance. These gener-

alizations are important because the formulae are consistent with the constant
parameter results of Section II; and thus the software developed for that
problem can be applied to this problem as well, furthermore, OD engineers
familiar with constant parameter estimation can better relate to the smoothing
problem when it is couched in a familiar framework.

To see how the smoothed state estimates come about, suppose that
smoothed estimates of pj+1, xj+l and y have been computed and that these are
labeled with a 11 *11 . Smoothed estimates for p  and 

R  
are a direct result of the

mapping, Eq. 3-4, and the key portion of the data equation, Eq, 3-12, Define,

cf Eq. 3-12,

(L i L i L i L 1 = R.,:-1
 [R* p

iR ,:
;R 
	

^:l(4-1)LP, x i Y	 z	 P 	 P : pX	
z

PY , p

and note that the smoothed estimate satisfies the data equation with the v term
set to zero, i.e. ,

Pi = Lz - Lp Pj+1 - Lx x1+1 - Ly y'	 (4-2)

Xi = x j+l	 V  p 
i
^	 (cf Eq. 3-4)	 (4-3)

Equations 4-2 and 4-3 establish the desired smoothing recursions.

bb
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NOTES:

(1)	 The reader is reminded that the L terms and V  are j dependent.

t(2)	 The smoothing recursion, which is backward in time, is initialized

t

	

	 with the filter estimates of the terminal time point. Smoothed esti-
mate error covariance recursions could be obtained in the usual
fashion (Ref. 11) by differencing Eqs. 4-2 and 4-3 with Eqs. 3-4
and 3-12, squaring (multiplying by the transpose), and applying the
expectation operator.

r,•

	

	 An alternative and better formulation of the smoothing solution results if
the algorithm is arranged in a form that is analogous to the SRIF solution for
the filtering problem with a computed estimate and error ---variance and a
sensitivity matrix. With this in mind, we decompose the p-x ver,'or as

[p]	 pc	 SEN''`
P

x	 x * SEND 
y	 (4-4)

): ti	 c	 x

where the "c" subscripted variables are independent of y. Substituting this
decomposition into Eqs. 3-4 and 3-12 leads to

PC
 (j)= Lz - Lp p c (j + l ) - Lx x c 0+1) - 

RP - 1 vP
(4-5)

xc (j ) = xc 0 +1 ) - V  Pc(j)

SENP(j) = -LP SENP (j+l)- LX SENX(j+l)- Ly

(4-6)
SENX (j) = SENX(j+l.)- VpSEN*0+1)

$a
The smoothed state recursion for p c and xc follow from Eq. 4-5 by setting V 
equal to zero;

JPL Technical Memorandum 33-735 	 17
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r	 Ys

L	 peI)) = LZ - LP p 
e;e
c(J 4' 1 ) - Lx x*c(.1+1)

x^(J) = x^(J +1 ) - Vp PC(J)

(4-7)

t +

	

	 To obtain a covariance recursion for the pc and x  estimate errors, we differ-

ence Eqs, 4-5 and 4-7:

E pp 
c

-L	 -L
P	 x c

I[4p c
e;o_l ^;

 RPvP (4-8)
pxc VpLpI+VpLx px -VP

J .. j+l

where p pc = pc - pc and Axc = xc - xc . From this, the covariance recursion is

seen to be:

P c "	 pC* -L	 -L Pce	 Pc T
p	 px P	 x p	 px P x

P VL	 I+VL P VL I+VL
\PPx/	

x
j

p p	 p x
\PPx/	

x
\	 /	 .j+l	

P	 P p x

-P	 pVP
T

+
1	 -T

1	 ^p ° R p	 Rp (4 -9)
At	 o'a	 T

VP P	
VPV Vp

From the way that x"t , Pc):C and SEN *, have been defined, it follows thattheforrru - 
Lae of Section II are applicable, 	 i.e. ,

i

PX = P c* +SEN*P y (SEN." ) T	(cf Eq. 2-20) (4-10)
c

x = xc +SENX y' (cf Eq,	 2-21) (4-11)

Pxq, = PX' +SENX P r (SENX) T	(cf Eq. 2-22) (4-1.2)

JPL Technical Memorandum 33-73518
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7

SEN* - 8(x x )
x 8(y_y>)

(cf Eq. 2-23) (4-13)

NOTE; When p is a scalar, the filtering and smoothing computationo reduce
considerably. This observation is exploited in the FORTRAN mech-
anizations given in Appendix B, where the algorithms are arranged
so that the effects of a vector p are included one component at a tame.

A
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V. ANALYZING THE EFFECTS OF THE A PRIORI STATISTICS

Engineers and scientists who choose to apply linear estimation technology
are often perplexed about what values to use for the a priori statistics that
appear in the estimation algorithms. One generally has only an order of 	 j
magnitude knowledge of the a priori uncertainties and, because of this, there

a + !

	

	 may be doubts about the reliability of the results. Examples of the kinds of
questions that should be answered in order to intelligently apply estimation
software to meaningful problems are:

(1) How would doubling or halving the a priori state vector variances
effort the estimates and estimate error covariances?

(2) Suppose that the measurement errors were actually larger (or
smaller) than assumed. How would this affect the estimates and

'	 covariances?	 i
(3) Process noise and correlation times ai a mathematical fictions

designed to compensate for various modeling errors and physical 	 t

phenomena. How sensitive is the estimation algorithm to these 	 a
1	 terms?

Answers to questions of this nature aid in filter design and create an
atmosphere of confidence. The effects of bias parameters are best analyzed
in terms of the sensitivity matrix and the consider covariance, and these have
been discussed in Section II. In this section, we concentrate on the process
noise effects and, to keep the notation from becoming cluttered, we omit the
constant y parameters from this discussion (note that their omission is only
for expositional simplicity; the mathematics is not at all complicated by their
inclusion).

To analyze the effects of incorrect a priori statistics in the data equation
estimation formulation (Eq. 2-9) one need only maintain a knowledge of the
covariance of the v error term. To better understand what is meant by this
statement, and to initialize the filter error algorithm, suppose that

i	 X= LpJ , is assumed to have an a priori estimate error covariance,
1PX - RX R} T but that the actual error covariance is PX = \

RX / -i 1RX
If we now write

/-T
`

t
A	 k

z  - R  X + vX ,	 z  - R X X

f	
20	 JPL Technical Memorandum 33-735	
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then v  will not have an identity covariance. Instead,

4 Wi

,

\	 -1

E (vXvT)= AXAX,	 AX RX (Ra

A

because the true data equation for the estimate X is

r	 T

RX X = RX X + v jt ,	 E LvX (vX)	 I

and comparing Eq. 5-1 with Eq. 5-3 gives v X = AX Va . Thus, AX is a
square - root of E(vX vX^. Note that one can recover the actual covariance
PX from a knowledge of AX and RX, i. e. ,

(5-Z)

(5-3)

11 (R-'A TPX = (RXLAX/	 XX)	 (5-9)

The error analysis technique for the filtering algorithm is to sequentially
update the augmented array

L RX	 Z,	 AX1
	

(5-5)

To see how AX is updated when data is addended suppose that 	
,

1

Z =AX+v

is to be included with the a priori:

Rv l RvT

E(v vT ) _ f
(R v )

-1
 (Ra T

(5-6)

assumed

(5-7)

actual
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then the SRIF algorithm would compute Rx; 
zXJ 	

from

!1	 n	 RX 	 X	
n	 zX 	n	 vt	 J	 Q 

a	 RvA	 Rvz	 Rv
X

v

( 5 -8)
A

R 
	 zx	 vx

0

a

n
It is easy to show that A X, the updated vX square root covariance, can be
obtained from

A	 A  ;	
0	

r 	 rxv

	

--------:---------	 -	 -------:------	 (5-9)

0	 a 1 1
Rv(R v )

The r array is a square root of E (vxvX), but it is rectangular. For reasons
of storage, it is preferable to compress r with  triangular form:

AI X I 0,	 Lrx rxv
l
^ Qv	 (5-10)

where Qv orthogonal is chosen to triangularize the r array. It is clear that

AX obtained this way is such that Ax AX = rxrx + rXvrXv'
The importance of Eq. 5-9 is that it shows that the r terms can be

obtained as addended columns to the filter algorithm, i.e.,



i

RX	 z 	 ; AX 	 0
r	 r	 r

A	 r	 1	 I
a'---	 " ------------------

I	 1	 r
I	 1	 1	 -1

R vA	 Rvz	 0	 i Rv(R^)

A 
1	 A	 ,	 1

Rx	
f	 zx	 I	

r,x	
r	

I 
Xv

I	 1	 1

-	 -	 -----	 ------	 ------
1	 I	 1
I	 I	 I

0

(5-11)

6
iy

The time propagation portion of the SRIF algorithm is handled in the same way
as was depicted in Eqs. 5-10 and 5-11, i. e.,

R -I R-T	 assumed
w w

	E(wwT ) =	 (5-12)
 -'r

(R
a)- ' (Ra	 actual
W	 w)

and the combined time propagation algorithm is (cf Eq. 3-10)

	

R* 	 R*	 '	 R* 	 z'^

	

p	 ;	 Pp	 ;	 px 1	 p	 I	 I

	

1	 I	 1	 1	 1

	

1	 1	 I	 1	 1
-	 1	 r	 r	 I	 1

	

I	 I	 1	 1	 I

	

I	 I	 I	 1	 I	 NN

	

0	 ;	 Sp	 ;	 sx ;	 Sy 	 ;	I'x	 i	 rXw.

(5-13)

	

-R M	 ;	 R	 0	 z	 0	 A	 )n
w	 I	 w	 I	 I	

w	
1	 r	 w ) p

I	 I	 I	 1	 1
I	 1	 I	 I	 r

I	 1	 I	 r	 r
A	 A	 r	 r	 A	 1	 A	 1	 A	 I

	

S -s v	 ;	 0	 ss	 A	 '
p	 x p	 I	 ,	 x 1	 z	 x	 0	

ynp +nx
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where A	 R R 
a)	

and
w w w

1 01 = Px r	 Q
x	 xw]

with Q w 
urthogonal.

NOTE: The entries designated with a "40 ' represent square root error

covariance terms that contribute to the actual smoothing covariance.

k

	

	 One need not derive additional equations to evaluate the effects of using

the wrong colored noise, i. e. , using colored noise terms in the filter model

which have different time constants from those of the actual model. One

merely includes the variables in question twice, labeled say as p, and p a . The

pf variables assume the filter values and have zero variances* in the actual

model; the p 
a 
variables are assumed to have zero variances).' 4 in the filter

formulation. This simple state augmentation procedure avoids burdensome

additional software.

A 
x 

included in the filter algorithm as just described includes 01e effects

of using an incorrect initial covariance, incorrect measurement a priori,

incorrect process noise a priori, and mismodeling of the colored noise in the

filter model. Studying these kinds of effects promoteu insight into the filtering

process, reveals limitations of the algorithms, and most importantly it influences

filter design.

*Information filter formulations can not accomodate zero variances. In
practice, small values (based on engineering ^judgement and computer word-
length considerations) are used; the results have been quite satisfactory.
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APPENDIX A
	 II

PROPERTIES OF HOUSEHOLDER ORTHOGONAL TRANSFORMATIONS

One could use a variety of orthogonal transformations to effect the various

matrix triangularizations that have been referred to in this paper. In this

appendix we discuss a class of orthogonal transformations (Householder

reflections) which have been quite adequate for our purposes. Householder

transformations have the form Q(u) = I-2(3uuT; p-I = u Tu where the components

of u are generally chosen to null out certain components of some predetermined

vector; this point is amplified in properties A-i and A-2, below.

The matrix Q(u) plays no explicit role in our estimation work. However,

the following list of properties are key to successful application of these

tranA formations

(A-1) If u is chosen to zero all but the first component, a l , of

vector "a' i , then one can take ui = ai for i ? 2, and u I = al

+ sgn (a,) vraTa,

In this case Q(u)a = (-sgn (a l ) Va`a. 0,	 0)T.

(A-2) If u  = 0, then Q(u) acting on any vector b (i, e. Q(u)b) leaves b 

unchanged.

(A-3) The matrix Q(u) is an implicit quantity; Q(u)b is expressed

directly in terms of b and u as Q(u)b = b-Xu, where X = 2(i(uTb).

(A-4) If b is orthogonal to u then Q(u)b = b.

(A-5) Q(u) = QT(u) and Q2(u) = I; i.e. Q(u) is a symmetric and

orthogonal matrix.

These Properties enter into matrix triangularization of a matrix A by

applying a sequence of these elementary transformations. At the jth stage,

one chooses a vector u(j) whose first j-1 components are zero and which zeros

out all elements of column i (of the (j-1)st transformed matrix A
(I-1) ) 

that are

below j. The jth transformed matrix is A(j) = Q(u(j) ) A(j 1) . Observe that

Q(u0) ) has no effect on the first j-1 columns of A0-0 , 
because they are

orthogonal to u(j). Also, the first j-1 rows of A(j-1) are left unchanged because

of property A-2. Thus, Q(u(j) ) acts only on the lower matrix partition of A(j-1)
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composed of the last m-j rows and n-j columns, (A(m, n)), and it zeroes out
all elements but the first in the first column of this subarray. This method is
illustrated in the FORTRAN mechanizations given in Appendix B.

The triangularization procedure applied to

Ax = z-v

where v has unit covariance, is analogous to a Gaussian elimination process that
preserves the unit covariance characteristic of v.

;^—,,

'I

II
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APPENDIX B

EPOCH STATE FILTER/SMOOTHER FORTRAN MECHANIZATION

The filter/smoother algorithms described in Sections Ii - IV are FORTRAN
mechanized in this appendix. The main reason for including FORTRAN mech-
anizations is that in this way we can best show how compact and efficient our
algorithms are.

Essentially all the filtering computations take place within an array
S (np + n  +m, n  + n  + ny + 1) and a vector R y [n y (n y + 3)/2] where np ,

'	 nx, n y and m are the respective dimensions of p, x, y and the number of
measurements.

NOTE: The FORTRAN descriptions to follow do not correspond to exact pro-
gramming conventions. Greek symbols, lower case letters, square
root and inequality symbols, etc. , were purposely used in an endeavor
to make the code more readable.

I,	 FILTER: MEASUREMENT UPDATING

Inputs

S(Npx +m, Npxyl); where Npx = n  + n  and Npxyl = Npx + n y + 1. The
upper Npx rows of S contain the a priori array corresponding to Eq. 3-11;
and the bottom m rows correspond to the m measurements, each with unit
variance.

R  [ny (ny + 3)/2,, a vector stored upper triangular matrix, which con-
tains the a priori 'y information array.

Outputs

The updated SRIF information array occupies the upper Npx rows of S,
and the vector R  contains the updated SRIF information array for the y
parameters.



<<

----

	 I-

t	 ^

^, I

S
----^ — ^ Npx
	 —	 S

A	 mQ
RY	

I 
ny	RY

i

f,,.,
DO 40 J=1, Npx

T = z	 @z = zeo

DO i 0 I=J, L	 @L = Npx + m

w(I) = S(I, J)	 @w(Npx): work vector

S(I, J)=z

10	 Cr = P + w(I)**Z

If ((r <_ z) go to 40

c If v equals zero, col. J is zero and this

c step of the reduction is omitted

v = %/v

If [w(J) > z] v = -(r

S(J, J) = v

WV) = w(J)-T

T = one / [v;c w(J)1	 @one = 1.

JP1 = J+1
1.

'

	

	 DO 30 K = JP1, Ntot	 @Nt(

b = z

i
DO ZO I=J, L

ZO	 b = b +S(I, K);:w(I)

b = 6*T

Z8

A = Npx +ny+1

JPL Technical Memorandum 33-735
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IF lirrwr^wree	 '^sywM.yrrillllyMllM+lR

DO 30 I=J, L

30 S(I, K) = S(I, K) + 6ecw(I)

40 Continue

c

C This completes the S portion of measurement processing

C

c Begin y-reLated portion of measurement processing

c

KK = 1

DO 90 J = 1, Ny

v = Ry(KK)*,IQ

DO 50 I= 1,m

50	 Q = a:+  S(Npx +I, Npx + J)* :2

If(v = z) Oo to 90

c' _ 4F

If [Ry(KK) > z] v = -v

b = Ry(KK)-Q

Ry(KK) = v

P = one/(u-*b)

JJ = KK

L = J

JP1 = J+l

JPL Tecimical Memorandum 33-735

@Ny = n 

@Ry = R 

29



F
	 ,

j,,

DO 80 K = JP 1, NY 	 @Nyl = NY + 1

JJ = JJ + L

L = L+1

Q = 6*Ry(JJ)

DO 60 I = 1, m

60	 Q = v + S(Npx + I, Npx + J)e,,S(Npx + I, Npx + K)

If (v = z) Go to 80

a- = (r*Beta

Ry(JJ) = Ry(JJ) + a*6

DO 70 I = 1, m

70	 S(Npx + I, Npx + K) = S(Npx + I, Npx + K) + ve;,S(Npx + I, Npx + J)

80	 Continue

90 KK = KK+J +1

Both segments of the computer code are of interest. The first part, with

n  = 0 can be applied to trian'gularize a system of Npx + m equations in Npx

variables; the latter part can be used, with Npx = 0, for recursive triangulariz-

ation of an overdetermined system where the results are stored in vector form

to economize on storage.

II. FITTER: TIME UPDATING (FROM T TO T + DT)

The time updating uses an efficient and compact algorithm that utilizes p

only one component at a time; i, e. , by considering n  separate mappings

Xk+1 = x  + vp(k)Pn(k)

k = 1,	
n 
	 (B-1)

pn+1(k) = Mkp n(k) +wn(k)

where

X1 = x  and X  +1 = xn+1' see Eq. 3-4•
P

Ip i
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The data equation for smoothing corresponding to Eq. 3-12 turns out to be

n - k

	

Q (k)p^ l (k) +	 S ^( k , J) pn (k + j)

j

n 

	

+	 S (k, j) pn+1 (k + j - nh)

j=n - rl
P

Npx

+ E 
S ( k , j) X k+l (j - np)

j=Np +l

k = 1,--.,np

n

+	 RPy(k, j) yj = z
p
(k) - v*(k)

(B-2)

Inputs

n p , n x , n y , n d ; are Ene aimensions of p, x, y ana cne nurnoer ui uyncim-

ically occurring p co-riponents.

T(n p ): Time c-instants for the colored noise parameters

V p (n x , n d ): Th.. first nd columns of the Vp matrix correspond to the

dynamic parameters. The last n  - n d columns are omitted because they are

in theory zero.

R
w 

(n p ): Process noise standard deviation reciprocals.

S (Npx + n p , Ntot ): Ntot = Npx + n  + 1; the bottom n  rows of S will be

used to store the smoothing related data equation terms.
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4 . 1

Outputs

S(Npx + np , Ntot): The time updated S information array occupies the
upper Npx rows of S, and tl,e lower n rows involve data equation information

>;<	 P
for smoothing, v (np ): Vector of smoothing related output terms.

DO 100 J = 1, Np	 @Np = n 

If [T(J) x zl	 D(J) = EXP[ DT/T(J)] 	 @z = zero

100 Continue

c Colored noise transition terms are set

DO 106 J 1 = 1, Np

If (J1 > Nd) Go to 102

DO 101 I = 1, Npx

DO 101 K = 1, Nx

101	 S(I, 1) = S(I, 1) - S(I, Np +K)* Vp(K, Jl)

102 X _ -Rw(Jl)*D(J1)

Q = ,a,c2

DO 103 K = 1, Npx

w(K) = S(K, 1)

103	 T = o' + w(K),c,c2

T =NrT

- P

v(J1) = v

T = one/(u',cx)

DO 105 J2 = 2, Ntot

6 = z

@Nd = n 

@Nx = n 

@w(Npx): work vector

@one = 1.
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• If (J2 = Ntot) 6 = X;kzw(J1)

• Colored noise is generally zero mean; thus z  is zero

• in most cases.

DO 104 I = 1, Npx

104	 6 = 6 + S(I, J2)*W(I)

6 = 6ocv

L =J2-1

If (J2 > Np) L = J2

S(Npx +J1, L) = 6*X	 @Used for smoothing

DO 105 I = 1, Npx

105	 S(I, L) = S(I, J2) + 6*w(I)

c S(Npx +J1, Ntot) = S(Npx +J1, Ntot) + 6*z w(J1)	 @Used for smoothing

c

6 = X)) Rw(J1 )$av

S(Npx +J1, Np) = Rw(J1) + 6*%	 @Used for smoothing

DO 106 I = 1, Npx

106	 S(I, NO = 6*w(I)

III. SMOOTHING

Suppose that smoothed values for the computed estimate, X c , compuLed
covariance, P

c

, and the sensitivity, SEN D, corresponding to the augmented vector
X = I p I have been obtained at time T + DT. Smoothed values for these terms,
at time T, are obtained in the following way. Start with the previously stored
smoothed array [a-"(Np) j S'"(Np, Npxy) zp(lQp)] , (cf Eq. B-2), where

Npxy = n  + n  + n y , and the transition eleenents V  (nx , nd ). To facilitate
algorithm implementation the columns of Eq. (B-2) are rearranged so that the
terms p  (n, referring to time T) displace those for pn+1' i. e.,
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ISS )k (k, nP - k + 1), ... S* (k,	
/

k^ np)^ S* (k^ 1), ... S * (k, np - h)JL	

k = l 
.. . 'n	 (B-3)

P

e +
This arrangement is better suited for the backward computation of

p
* ( np ), - - -, p* (1). The backward smoother computations which are documented

more thoroughly in Re[. i are summarized as followk4

-^'	 For k = n	 ,
P	

1 recursively cycle through Eqs, B-4 through B-15:
! 

y: = l /P) '` (k)	 (B -4)

,
S * (k, j)Y ,	 j = 1, ... Npx

Npx

b: =	 v(j)Xc(j)
j=1

X* (ic) = zP(k)Y - b

if (Ic < n 

(B-5)

(B-6)

(B-7)

Xc (nP +j):	 X c (nP + j^ - V P 0, 1-) X(10	 j = 1, • • • , Nx

At the end of this sequence of n steps, X^ at time T + DT has been
,^,	 P

replaced by X^ at time T. Compare this with Eq. 4-7.

	

v (j ) : = R(I"j)Y,	 j = 1 ... ny	 PY	 y

(B-8)

(B-9)
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fQW,

Npx

6: _ E v (j )SEN 0 , m ) + vy(m)
j=1

SEN
VI` (k, m): _ -6
	 M = 1,...,ny

SEN 4` (np + j, m): = SEN * (n p + j, m)
	 .. ..

+ V p 0 1 k)b 1	 j = 1, .. , nx

(B-10)

Compare this with Eq. 4 -6.

Npx

z(j):_ -	 P*0, a)v(a)	 j = 1, Npx
	

(B-11)
a=1

Of the equations involving P 	 this one involves the lower part of P^,
In the computer implementation only the upper part of PC is used.

P*(m , k ): = z(m)

	

P c (m , np + j ): = P c (m, np + j)	 j = 1, nx	 m = 1, • .. , Ic - 1

	

- z(m)Vp (j , k )	 (wl.^,n k <_ nd)

(B-12)

Npx

P^(k,it): = Y 2 -	 v(j)z(j)	 (B-13)
j=1
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Pc 
o;< 

(Icr j ): = z(j)	 j = k + 1,	 , np	 (B-14)

e4	 7$

P^(k, np +a ; = z(np + a) - P c (k, k,Vp (a, k)

P '(j ' np + a); = Pc (j , np +a) - z (j ) Vp (a , k),

j = k+1, —, np

a = 1, -' -, Nx
P'C+j,np+a): = P^(np+j,nn+a^

C (np

- Vp(j, k)P* (k, np + a^

- z(np + j)Vp(a, k)

(B-15)

(Of course, lu the computer implementation, Eq. B-15 must be modified when
!( > nd , because V  is only implicitly zero for these values of k. )

The FORTRAN mechanization which follows is, in fact, the mechanization
currently employed in the JPL Orbit Determination Program. The apparent
complication of the algorithm Eqs. (B-4) - (B-16) belies the compactness and
efficiency of the FORTRAN realization,

Inputs

X*(Npx): smoothed computed estimates of p and x (independent of y).

P 
:I 
(Npx, Npx): smoothed computed error covariance for the augmented

vector X'. The lower triangular portion of P C is not explicitly used in any of
the computations.
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SEN 
Y,: 

(Npx, Ny):	 smoothed sensitivity matrix (Ny = ny).

Vp (Nx,Nd):	 Transition matrix elements corresponding to the Nd dynami-

( cally occurring colored noise variables (Nx = nx , Nd = nd).

i^ v (Np), S (Np,Npxyl): 	 Data equation coefficients that were stored during
t the time propagation portion of the filter algorithm.	 Npxyl = Npx +Ny + 1; the

last column of S° is zp.

X c , P 4 and SEN ge came from the previous smoothing step (or the filter
);:	 :$

values if this is the first step). 	 Vp ,	 v	 and S	 were stored during the time

propagation portion of the filter algorithm and are now read back.

Smoothing Outputs: P*, SEN *	X*

d

,

DO 200 K = Np, 1, -1

C

F

L = Np - K	 @,,

If (L = 0) Go to 110

DO 102 J = 1, Np

102	 v(J) = S*(K,J)

DO 104 J = 1, K	 @"^`^` Eq. B-3

104	 S^,;(K, J) = v(J + L)

DO 106 J = 1, L	 @^Y`

- 106	 S*(K, J h K) = v(J)	 @^`

^ c

110	 y	 g<(k)	 @Eq. B-4

SUM = 0.

DO 115 J = 1, Npx

S I (K, J ) = S* (K , J)*y
	 @Eq. B- 5
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1 11

115 SUM = SUM +5^C(K,J);.tXc(J) @Eq. B-6

X c (K) = S* (K,Npxyl),:y -SUM @Eq. B-7

If (K > Nd) Go to 125

DO 120 J = 1, Nx

120 XA(Np + J) = X*(Np	+ J) - Vp (J, K)>;:X (K) @Eq. B-8

125 If (Ny = 0) Go to 150

DO 130 J = Npxl, Npxy @Npxl = Npx + 1

V 130 S (K, J) = S (K, J)*y @Eq. B-9

If (K > Nd) Go to 150

C

DO 140 L = 1, Ny @'`

SUM = S' (K, Npx + L) @ `*

' DO 135 J = 1, Npx @^`^`^`

135 SUM = SUM +S 
):C 

(K,  J) :SEN^'C (J, L) @*y`** Eq. B-10

SEN' (K, L) _ -SUM @***

DO 140 J = 1, Nx

SEN D (Np + J, L) = SEN"(Np + J, L) + V p(J, K) 4`SUM &-t

150 If (KS = FALSE) Go to 200 @KS = True (nominally)

c

	

	 KS = TRUE if P C is to be computed

DO 160 J = 1, Npx

V(J) = 0.

DO 155 L = 1, J

155

	

	 V(J) = V(J) - PC(L, J) S5^ (K, L)

I = J + 1

DO 160 L = I, Npx
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160 v(J) = v(J) - P * (J, L),,S * (K, L)

c

c 160 loop in '6q. B-11, using only the top part of P
o;<

c

c

r JJ = K-1

I.S (JJ = 0) Go to 180

+ DO 170 L = 1, JJ @*
R

If (K > Nd) Go to 170 @ ° F '° Eq.	 B-12

DO 165 J = 1, Nx @'^

165 P*(L, Np + J) = P*(L , Np + J) - v(L):;:Vp(J, K) @'

170 Continue @'^

180 P* (K,K) = y**Z

1- DO 182 J = 1, Npx

182 P*(K, K) = P*( K, K) - S* (K, J):;:v(J) @Eq. B-13

If (K = Np) Go to 186

JJ = K 1 1

DO 184 J = JJ, Np

184 P *(K,J) = v(J) @Eq. B-14

C

186 DO 198 L = 1, Nx
tl IJ = Np + L

P* (K : IJ ) = v(J)

If (K > Nd) Go to 198
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, +

If (K = Np) Go to 194

DO 192 J = JJ, Np

192	 P*(J, IJ) = P (J,IJ) - v(J)>;cVp(L,K)
o;c	 e;:	 Y,a

194 P c (K,IJ) = P c (K,IJ) - P c	p(K,K)ecV(L,K)

DO 196 J = 1, L

196 Pc(Np +J,IJ) = P*( Np +J,IJ) - Vp (J,K)gcP*(K ,IJ) - v(Np +J)*Vp(L,K)

198 Continue

C

c The 198 loop is Eq. B-15

200 Continue

Smoothed estimates and covariances and smoothed consider covariances
can be obtained by applying Eqs, 4-10 through 4-12,
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