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Evaluation of Geopotential and Luni-so1&r

Perturbations by a Recursive Algorithm

G. E. 0. Giacaglia*

The University of Texas at Austin

Abstract

Tii: disturbing functions due to the geopotential and Luni-solar attractions

are linear and bilinear forms in spherical harmonics. Making use of recurrence

relations for the solid spherical 'harmonics and their derivatives, recurrence

formulas are obtained for high degree terms as function of lower degree for

any term of those disturbing functions and their derivative with respect to

any element. The equations obtained are very effective when a numerical

integration of the equations of motion is appropriate. In analytical theories,

they provide a fast way of obtaining high degree terms starting from initial

very simple functions.

*On leave from the University of Sao Paulo.
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Recurrence relations for spherical harmonics

The Associate Legendre Functions of the first kind

PR ( x ) = (1-xz)m/2 d 
Rim

ft	
( x 2 -1) 4	(1)

dx

satisfy well known recurrence relations, namely

(z+1) Pz+1(x) = (2z +1) Ex PR (x)+m(1-x2)1:2 
PR'l(x)] -Zpm 	 (2)

and

xPm (x) = P
m 

_1 (x) + (z-m+l)(1-x2)1/2 P
1R_1 (x )	 (3)

where Pm(x) = 0 for m>z, according to definition (1).

Consider now the solid spherical harmonics

xm = PR (sinf) eimara	 (q)

YR = PR (sing) eima 
R+	 (5)

r

where

r2 = x2+y2+22

x + iy = r cos¢ eta
	 (6)

and	 z = r sinfi .	 (7)

Since 0 < m < z , for any z, recurrence relations are necessary for

a) A given	 m, increasing values of z

b) A given pair (m=9_9), increasing values of R.

i
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These distinct cases are necessary in order to avoid singularities in the

equations we are going to obtain. Such a distinction is not necessary in

(2) and (3) provided the definition PR = 0 (m>z) is assumed.

Thus we shall provide recurrence relations in the triangular scheme

m

0	 1,
I `

1

I	 I	 ^\

2	 +\

I	 I	 I	 `
3	

I	 I	 ^^

Consider first the diagonal recurrence

(z,z) -, (z+t,z+l)

One has

xz+l = r z+l Pz+1 (sin ^) ei(z+1)«
z+1	 e+l

But from (2), with x = sin q

P z+l = (2z+1) cos ^ P 

(8)
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so that

Xz+l = rt+l 
(2z+1) cosh Pz 

eiza eia
P,	 t

or, in view of (6),

Xz+1 - (2z+1)(x+iy) X z 	(9)

Similarly

Yz+1 ' (2z+1) r
( x+iy) Yz	 (10)

Now, let m<z and consider the vertical recurrence

Combining (2) and (3) one finds:

P
z+l	 z ?m+ l x PR IX) - tQm+ Pt-1(X)	

(11)

From (4):

x 
	 rz+l 

Pm eima
z+1	 z+1

and, using (11),

_ zz+1	 _X 
m
z+1 - r

+1 2
z-m+T sink Pz

m	
z- `m
z+m

+ P 

m
t-1]e

ima

_ 2a+1 m 	a+m	 m
z-m+1 r sink Xz	

z-m+l r Xz-1

or, using (7)

m	 2z+1	 m _	 F+m	 m	
(12)X Q+l - t-m+l z XR	p,-m+l r Xa-1

Similarly

m	 2z+1 z m_ z+m 1	 m	 )
Yz+l	 T-­m+ r2 Y z	 z-m+ ^ Yz-1 	 (13



t

',	 I 	C
r {{k

'^I	 5

Equations (9), (10), (12), (13), are the necessary relations to be used later.

Recurrence relations for the cartesian derivatives of spherical Harmonics

The solid spherical harmonics can be defined by (Courant-Hilbert, 1973)

m	 2t+1 (-I ) ' 91
 a lm 	z-ma	

1ri

1 )
x R - r	

(Z-m):	 ax +	 ay) f az ) 	
(14

and

VR - 
( R-M)

"

 (ax +i ay) m [az)¢-m[r)	
(15)

From (14):

m+l _ 2Z+3 (1)x'+1 [—a+ a m+l a l R-m

xR+1-r(R-m): 	fax+1ay)(az)

	

lri,

= r2a+3 (-1) 
^2X 

+i a
y) (ẑ m): (ax +i ay)m 18z)

"-m 

lr)

= r2s.+3 (-1) 

1—;1x 

+i a ) r-2R-1 Xm
a= ay 

_ -r2 
[2_ 

+i 
a

xQ + (2k+1) (x + iy) xR
ax	 ay)

l

a+i 

aYl xx _ -	
xR+1 +	 (2z+1)(x+iy) X11(16)lax

Using (14) again:

xm-1 = r	

ay)

2a+3	 (-1)a+1
	 a+ a m-1 
	
R-m a 2	 1

R+l	
(R-m+2):	 (ax 	 I _81Z)	 a	 (r)

1

^4
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But one has

D2	 1	 1+ 3 x2 	2	 - 3 2^+z2

=- I ax	 a
y
 J lrJ	 - l ax-+'-

 aYJ tax	 ^yJ lrJ

so that

X	
_ r2x+3 ^L— I

a— 
-i a 1 la +i 

a ̂ m f? R-mR
+I 

	

(A-m+2).	 ax	 ay ax	 ay laz I	 Il

= r2a+3	 (n-m):	 a	 i a	 r-2R-1 Xm =

	

(a-m+2):	 ax	 ay^	
R

2	 1	 a	 a	 m_ (2R+1)(x-iy)Xo

- 
r	

-^(z-m+2)(z-m+1) (ax	 ay) XR 	(z-m+2)(a-m+l)

a	 i a 	Xm = (R-m+2 'w-m+1 Xm-1 + 2z+1	 m

a	 a+1	
(x-iy) X^	 (77)

ax	 ay	 r	 r

Adding and subtracting (16) and (17), one has

2 Xz = - 7 XR+l + 2rZ %z-m+2)(a-m+1) XR+1 +
ax	 2r	 2r

+ x2 (2a+1) XR	 (18)r
i

a	
m =	 i	 m+1 + i	 m-1

X	 X
ay z	 m+l	 (s-m+z)(R-m+l) XP,+1 +	 I

	

+ yr
 
(2Q+1) j	 (19)	 1!;

r

i
1

15
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Equations (18) and (19) give the derivatives with respect to x and y.

In order to find the z-derivative consider again Eq. (14) with 01:

Xm = 
r2s+3 (-1)

R+1 	 a +i	 m a R-m a 1=

z+1	
(z+1-m): (ax	 ay) faz,	 az r

= rzz+3	 -1) (R-m)	 a	 r -2R-1 Xm =

(W-m):	 az	 R

_r2	 1 — aXM, + 2z+1	
z Xm

a-m+l	 az	 u-m+1	
&

a m =	a-m+1 m	 z	 m
X a 	 XR+1 + (2Q+1) —^- X z 	(20)

az	 r	 r

In order to obtain the derivatives for the Y mz	harmonics, one operates as for

the XR and find

a	 m_	 l m+1	 1	 m-1
— Yz	- 2 Yz+1 + 2 (Z-m+l)(R-m+2) Yz+1
	

(21)

ax

D	 m = i m+l	 i	 m-1

ay 
Yz	 2 YR+1 + 2 (R-m+1)(a-m+2) YR+1	 (22)

I
	

YR = - (R-m+1) Yms+1	 (23)

3z
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Disturbing function for geopotential and derivatives

It is given by

R =	 p- a Py (sin ^) [cm cos m a+ sm sin m a]
ce2 m=0 r

where

X = a - o

a = right ascension

o = Greenwich right ascension

= declination

and the other quantities have the usual meaning.

The cartesian coordinates satisfy the relations

x + iy = r cosh eia

z=r sin fi

x - iy=r cos ^e-ia

Let

ua ^'

RQ 

=Y,

 Pp (sin y) (Cm cos ma + sR sin mX)
r

so that

R = I X Rmt

z:s2 m=0

Considering that a = a-e, one finds

(24)

(25)
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CQ Cos m a + SR sin In 	 = (Cn Cos in 0- SIn sin In o) cos m a +

+ (CR sin m o + SR cos mo) sin m a =

=AR cos ma+Bm sin In

where

Az =	 CZcosme - SRSinmo

(25)
BR =	 Cmsinmo +SR sin mo

Also, let us define , from Eq. (5)

YR = Um+ i VR (27)

Thus

jj	 RR = uae (AR Um + BR Vm) 	(28)

I'

ii
Terms RR can now be generated in succession starting from Ro = r

by the diagonal and vertical relations (10) and (13),
i'

From (10) one finds

R+l	 2R+1	 9,	 R1 !.	 ;

i4

and	 (29)

V W = 2R+1 (x v
x + Uz

R+1	 ^ k Y z)

where, using orbital coordinates, one has

x = r cosh cosa = r [cos(w+f) cosh - cos I sin (w+ f) sing]

and	 (30)

y = r cosy cosa = r [cos(w+f) sine + cos I sin(w+f) cost]
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Combining (29) and (28), one has the diagonal recurrence

R
R+1 = `^ a R+1 21+1 ÂR+1 (xUR yV

R ) + G +1 (xVR + yUR)]
R+1	 a	 R+1	 R	 R	 R+1	 R	 R

or, more conveniently,

	

R
R+I = uaR+l 2R+1 C

(
XAR+I + y6 R+1) U

R + (xBR
+I _ yAR+I) 

VRJ	

(31)
R+1	 e - (. R+1	 R+1 R	 R+1	 1+1 RJ

where x,y are defined by (30), when necessary, and AR+1' BR+1 
by (26).

Note that, in general

r(xAm + y BR) = Cm [c os(w+f) cos(n-mo) - cos I sin(w+f) sin(n-m')]+

+ SR [cos(w+f) sin(a-me) + cos I sin(w+f) cos (n-mo)](32)

and

I(xBR - YAM )_	 -dm [cos (w+f) sin(ri-me) + cos I sin(w+f) cos(a-mo)]+

+ SR [cos(w+f) cos (n-me) - cos I sin(w+f) sin(n-me)1(33)

The vertical recurrence relations are also easily found. From (13) it follows

that

1+ 1

	 2R+1	 z
UR
1

m

-	

R+m	 UR-1	 (34)

Vm 

	 ^
Vm

R-m+l	
TVm

R-1R+1 R

where we should remember that U
m
 VR 	 = 0	 if	 m>R-1. Considering (28),

jJ,

one finds

tE

it
^z



Rm = ua z+l (Am Um + Dm V 	 )
t+1	 R+1 9+1

where UDR+1, VR+1 are given by (34). Also, when orbital elements are used,

z = r sin	 = r sin I sin (W+f). 	 (36)

Where using cartesian coordinates, the cartesian derivatives of Rm give directly

the equations of motion, that is,

x
	

x + aR +X	 (37)
	r3
	

ax

where X is a nonconservative force (X, Y, Z), and similarly for y, z. When

using a set of elements ai (i=1,2,3) and ai(i=1,2,3), let

w = coe ( x, y, z, x, ,v, z)

Y = cok ( al' a2 , a3 , al l 02 1 03)

and J the state transition matrix

aY.

J = aW	 JiJ = aw^	 (33)
J

Define

	

0	 I	 '

E_

	

-I	 0

where 0, I are the 3x3 null and identity matrices respectively.

Lagrange's equations are

Y = J E ^(aw)1 - (p)^	 (39)	
a

e

^99

^'	 g

^1	 ,

(35)
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where

Fr +R-(K2+y2+i2)	 (40)

and

(Q) = cot (X, Y, Z, 0, 0)	 (,41)

One sees that given the cartesian derivatives, Lagrange's equations are easily

written for any set of elements, provided the state transition matrix J is

known, for a Keplerian orbit. Or else, one can consider that

DR = DR ax + aR ay + aR az
aa i 	ax aa i ay aai	 az aai

and similar equations for p i . Whatever the form used, if one knows the

cartesian derivatives of R, the equations are easily constructed by straight

matrix multiplication.

Using Eqs. (21), (22), and (23) one finds

Um	 Um+l	 Um-1

a	 R1	 z+1	 + 1 (R-m+1)(R-m+2)	 R+l	 (42)
ax Vm = - 'f ^Vm+1^	 2	

Vm-1

Um	-Vm+1
	 1	 -Vm-1

a	 a	 _	 1	 z+1 + 2 (R-m+1)(R-m+2)	 t+i	 (43)
ay m	 2	 m+1	 m-1

LIP,
	Um ,

DZ 
VR	 VR+1
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Thus ,

	

m	 m	
m+ s	

m

=

	

aRR	
ua^ Am	

aVp	 (45)

a(x,Y,Z)	
e	 k	

BUZ.

a(x,Y,Z)	 R a(x,Y,Z))

can be written by recurrence using equations (42), (43), and (44) together

with (29) and (34). For the geopotential, the recurrence scheme is therefore

complete.

Disturbing function for Luni-solar perturbations and derivatives

For lunar or solar attractions the disturbing junction is given by

2

R' = R^2 m^0
 RP 	 (46)

where

RRm = Gm' rr^lem z-m)! Pm (sine) PR( sin ^') cos m (a-a')	 (47)

where	 G	 = gravitational constant

m'	 = mass of the disturbing body

em = 1 (m=0) or 2 (00)

declination and right ascension of the disturbing body

r'	 = rdrth-moon or earth-sun distance.

r,^,a= spherical equatorial coordinates of the satellite

Let, from Eq. (4),

xM = WR + izm	(48)

ll

i



so that

and
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WR = rR Pm (sink) cos m a
P.

IV

F

I

5	

tl

Z= r  PR( sin0 sin m a.
Zll

It is easily seen that

RR

,m 
= Gm' a	

R-m): 
[Wm

R 
U ,

R
m + Zm

R R 1
V,ml

m ( z+m ) i L 

where URm and VRm are the Um  VR functions defined over the coordinates of
the disturbing body, that is

URm = r7
1	

PR( sink') cos m a'

and
	

(50)

VRm 
=

r 

1 PR (sino') sin m a'

Again, any term R 
	

can be generated by lower degree terms by recurrence.

In the equations of motion for the satellite, only cartesian derivatives of Wm

and ZR are used. Recurrence relations for U Rm, VRm are the same than for

the Um	 m VR , that is, given by equations (29) and (34) by "priming" all

variables.

The recurrence relations for WR, ZRa re easily obtained from Eqs. (9) and

(12), by considering definition (48). One finds, from (9)

WR+1 = ( 2R+1)(x WQ - y ZR)
ZR+1 = (2R+1)(x Zx + Y WR)

(49)
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where x, y are given by (30) when orbital elements are used. Also, from

(12),

WTWR+1	
2R+1	

R+1	 _ R+m	 Wz-1

Zm	 - R=m+I z Zm	 R--.m+T r 
Zm	 (52)

R+1	 R+1	 R-1

where z is given by (36) when orbital elements are used.

The cartesian derivatives of W R ,ZR are found from (18), (19), and (20),

that is,

+1
a	 W sm	 - -	

1

	

Wk+1	 +	 1 (R-m+2)(R-m+l) el +
a'x	 m	 2r	 m+1	 2r	 1

	

ZR	
ZR+1	

ZR
+1

+ x
	

(2R	
W

+1)	
Zm	

(53)

R

	

Wm	 Zm+11	 _Zm-1

Ty

	 m	 P, I	 + —,f ( R-m+2) (R-In+l )	
R+1	 +

	

ZR	2r	 WR+1i	 2r	 WR
+1

m
+	 (2R+1)	 WR	 (54)

r	 Zm

	

M

	 m
U	 WR	 _ k-m+1	 WR+1	 +	 z (2R+1)	 (55)
az m - 2 m	 2	 m

	

ZR	r	 ZR+1	 r	 ZR
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In the above equations the recurrence relations (51) and (52) should be used

in order to obtain all the derivatives, up to any degree and order, by

recurrence.

Therefore,

aRRm 	 (z-m):	 m awe	 m azR	

1	
(56)

a x,Y, Z
 - G m em	

P,	
CUR	

a x,Y ,Z 
+ VR	

a x,Y,Z J

can be written be recurrence using Equations (53), (54), (55) together with

(51) and (52) for the satellite terms and using Eqs. (29) and (36) for the lunar

and solar terms. Obviously, the disturbing function (49) can be obtained by

recurrence using Eqs. (51), (52), (29), (34).

Calculation procedure for geopotential

a) Disturbing function

RO = u
0	 r

Find

Rl , R2, R3, .... by (31)
Find

RO, R2, R0,	 R4,	 ....

R2, R3, R4>	 ....

R3, R4, R5,	 ....

............. by (35)

1
tf

.^ 3
f ^ {

{

^i 4
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b) Derivatives

0

a xOY,z	 I	 rr	 '	 ^

Find gradient of RR using (45) plus (42), (43), (44), plus (29), (34).

Calculation procedure for luni-solar

a) Disturbing function

R ,0 = Gm'
0	 ri

Find R'
l
	 R'2, R'3, .... by (51) and (29).

Find

R'l, R'2,	 R'3, R'4, ....

R' l , R 11 9 3'	 4

R' 2 , R'2,

..........	 by (52) and (34).

b) Derivatives

a R'D

a x,Y,z	
= [0,0,0]

Find gradient of R IM using (56) plus (53), (54), (55), plus (51), (52), (29),

(34), for recurrence.

General comments

If numerical integration is to be used, the best equations are those

in cartesian coordinates. The right-hand numbers of the equations

t

(i
:_
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st =- uX. + aR + r + aRO

r	 ax	 ax	 ax

etc., can be computed numerically and sequentially by recurrencL. Note that

repeated application of the formulas developed for the cartesian derivatives

allow partial derivatives up to any order to be quickly computed by recurrence.

These might be necessary either for construction of variational equations or

for the integrating process to be used if it requires values of derivatives

up to a certain order, as in a Runge-Kutta method.

If an analytical theory is to be developed, the recurrence relations

can be used with great advantage to generate both the disturbing function

and its cartesian derivatives by recurrence. If a computer algebraic formula

processor is available then the right hand member to very high order in analytic

form can be evaluated very quickly and stored in tape for further manipulation.
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