General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
MODELS FOR ESTIMATING RUNWAY LANDING CAPACITY WITH MICROWAVE LANDING SYSTEM (MLS)

Prepared by
Vojin Tošić and Robert Horonjeff

September 1975

This report has been prepared for the Aeronautical Systems Office, Ames Research Center, National Aeronautics and Space Administration, under Contract No. NSG-2046. The contents of this report reflect the views of the contractor, who is responsible for the facts and the accuracy of the data presented herein, and do not necessarily reflect the official views or policy of the National Aeronautics and Space Administration.

Institute of Transportation and Traffic Engineering
University of California
Berkeley, California
ACKNOWLEDGMENT

The authors are grateful to Professors A. Kanafani and Sheldon Ross and Dr. Stephen Hockaday for reviewing this report and making helpful suggestions. Thanks are also extended to Mr. Tom Ellison of United Air Lines for contributing input data for the study and to the staff of the Federal Aviation Administration TRACON facility at the Oakland Airport for the use of their facilities. Mr. George Kenyon and Mr. Mark Waters of the Ames Research Center were most helpful in providing data for the study. Finally, the authors are most appreciative of the efforts of John O'Shea of the staff of the Institute of Transportation and Traffic Engineering for editing the manuscript.
ABSTRACT

When using the Instrument Landing System (ILS) all aircraft must follow a single straight line approach path before landing. The Microwave Landing System (MLS) will allow use of differing approach paths and they need not be on a straight line.

The objective of this research is to find out whether the introduction of MLS with its multiple approach path capability can bring an increase in runway landing capacity compared with conventional ILS.

A model is developed which is capable of computing the ultimate landing runway capacity, under ILS and MLS conditions, when aircraft population characteristics and Air Traffic Control separation rules are given. This model can be applied in situations when only a horizontal separation between aircraft approaching a runway is allowed, as well as when both vertical and horizontal separations are possible. It is assumed that the system is free of errors, that is that aircraft arrive at specified points along the prescribed flight path precisely when the controllers intend for them to arrive at these points. Although in the real world there is no such thing as an error-free system, the assumption is adequate for a qualitative comparison of MLS with ILS.

Results suggest that an increase in runway landing capacity, caused by introducing the MLS multiple approach paths, is to be expected only when an aircraft population consists of aircraft with significantly differing approach speeds and particularly in situations when vertical separation can be applied. Vertical separation can only be applied if one of the types of aircraft in the mix has a very steep descent angle.
(i.e. 7.5 degrees) such as an STOL vehicle. When approaching aircraft are separated only horizontally, examples considered in this research show a modest capacity increase of 10 to 15 percent. When both vertical and horizontal separations are applied, capacity improvement can be greater depending on the proportion of steep descent aircraft in the mix.

It was also found that the angles of entry to the extended runway centerline have a significant effect on landing capacity, and they should be optimized.
TABLE OF CONTENTS

1. INTRODUCTION
 1.1 Characteristics of ILS
 1.2 Characteristics of MLS
 1.3 Existing ATC Separation Rules
 1.4 Runway Landing Capacity Model Basic Structure
 1.5 Factors Affecting Arrival Runway Capacity

2. ANALYSIS OF CAPACITY WITH HORIZONTAL SEPARATION ONLY
 2.1 Introduction
 2.2 Types of trajectories to be considered
 2.3 Objective of the horizontal separation model
 2.4 Equations for distance between two aircraft in plane
 2.4.1 The case of fast aircraft followed by a fast aircraft, or slow aircraft followed by slow aircraft
 2.4.2 The case of fast aircraft followed by a slow aircraft
 2.4.3 The case of slow aircraft followed by a fast aircraft
 2.5 Initial Separation
 2.5.1 The case of fast aircraft followed by a fast aircraft, or slow aircraft followed by a slow aircraft
 2.5.2 The case of fast aircraft followed by a slow aircraft
 2.5.3 The case of slow aircraft followed by a fast aircraft
 2.6 Equations for interarrival times at threshold
 2.7 Model for arrival runway capacity when aircraft mix consists of two aircraft types
 2.8 Model for arrival runway capacity when aircraft mix consists of three or four aircraft types

3. APPLICATION OF CAPACITY MODELS WITH HORIZONTAL SEPARATION ONLY
 3.1 Input Data
 3.2 Analysis of Results

4. ANALYSIS OF CAPACITY MODELS WITH HORIZONTAL AND VERTICAL SEPARATIONS
 4.1 Introduction
 4.2 Vertical Separation
 4.3 Model for Arrival Runway Capacity
5. APPLICATION OF CAPACITY MODEL WITH HORIZONTAL AND VERTICAL SEPARATION

5.1 Input Data
5.2 Analysis of Results

6. CONCLUSIONS

7. FIGURES

8. GLOSSARY

9. REFERENCES

10. BIBLIOGRAPHY

APPENDIX

A. Flow Charts
 A.1 Algorithm for \hat{d}_o^{FS}
 A.2 Algorithm for \hat{d}_o^{SF}

B. Program Listing
 B.1 List of variables
 B.2 Subroutines
 B.3 Program CAPSF (Case with two aircraft types)
 B.4 Program CAP3 (Case with three aircraft types)
 B.5 Program CAP4 (Case with four aircraft types)

C. Example outputs
 C.1 Example of CAPSF output (ILS case)
 C.2 Example of CAPSF output (MLS case)
 C.3 Example of CAP4 output (MLS case)
1. Introduction

Improved navigational aids for approach and landing at airports have been under development for many years. One such aid is the Microwave Landing System (MLS) which provides multiple flight paths to the runway rather than a single path defined by the current Instrument Landing System (ILS).

There are a number of advantages cited for the MLS. Among these are (1) curved path approaches can reduce flight over noise sensitive areas, (2) the system is less sensitive to interference from terrain and man made objects, (3) since the system extends much farther from the runway than the current ILS, aircraft have precise guidance over their intended flight paths for a longer period of time before landing, and (4) flexibility in flight paths might increase the landing capacity of a runway.

This research deals with item 4, landing capacity. Models for capacity are developed to reflect the multipath capability of MLS. The models are then applied to hypothetical situations, and the capacities obtainable with MLS and ILS are compared to determine if there are any significant differences.

In this research it is assumed that both the ILS and MLS are free of any errors; that is, that aircraft arrive at points in space when the controllers intend them to be there (e.g., at the entry gate to ILS). Therefore, no buffer is added to interarrival times. It is recognized, however, that in the real world there is no such thing as an error free system.

The objective of this research is, then, to compare in a qualitative manner the ILS and MLS systems to see if there is a significant
difference in their respective capacities, and if so under what conditions.

The term capacity as used in this research refers to the maximum number of landings that a runway can accept when there is a continuous demand for service and a certain specified set of conditions (i.e., aircraft mix, air traffic control (ATC) rules, etc.). These conditions can significantly affect runway landing capacity.

This research focuses on one of the factors that influence capacity: flight path geometry, particularly that geometry which ensures maximum landing capacity for a specified set of the other factors that influence capacity, i.e., aircraft population and mix, length of common approach path, ATC rules.

1.1. Characteristics of ILS

The existing ILS is essentially a straight line in three-dimensional space (see Fig. 1*). This line ends on the runway. Aircraft follow the line and land on the runway. There are three pieces of information that the pilot obtains about the position of his aircraft, with respect to the line leading to the runway and the distance from threshold:

1. position of the aircraft with respect to the alignment of the runway; namely, whether the aircraft is left or right of the centerline of the runway;

2. position of the aircraft with respect to the required height above the runway, referred to as the glide path; namely, whether the aircraft is above or below the glide path;

*All figures are placed in Chapter 7.
3. distance of the aircraft from the runway threshold. Distance information is provided by markers (two or three): one at the beginning of the ILS approach and the other (or two others) nearer to the runway threshold.

With the current ILS (see Fig. 1), landing aircraft follow each other on a common path, ET (E being the "entry gate" and T the runway threshold). Normally there are two markers installed on the common approach path, except for ILS Category II (or lower) weather conditions when a third marker is added. The marker furthest from the runway (about 5 nm) is the "outer marker" (OM); the marker generally closest to the runway (about 0.6 nm) is the "middle marker" (MM); and the sometimes used third marker (about 0.2 nm) is known as the "inner marker" (IM).

1.2. Characteristics of MLS

The MLS provides glide path information up to about 15 degrees elevation and alignment information as much as 130 degrees relative to the runway (65 degrees each side of the center line of the runway). In lieu of markers, continuous information on distance to the runway will be incorporated into the MLS. The MLS is shown in Fig. 2.

MLS gives information on the position of the aircraft relative to the runway in three-dimensional space. The area of coverage can be described as a quasi-pyramid with the runway threshold as the apex (see Fig. 3). The three-dimensional information is continuous and provides a means of describing different paths for aircraft to follow in the space covered by MLS. However, even if the information on the position of aircraft is accurate and the equipment is available to program any type of trajectory inside the pyramid, all described paths cannot
be followed by an aircraft. Several assumptions need then to be made about possible restrictions on the types of trajectories, as follows.

1. It is assumed that aircraft need to fly along the prolongation of the centerline of the runway before landing ($E_i=1,2,3$ to T, Fig. 3). E_i is the "entry gate" for this straight portion of the final approach for aircraft of type i.

2. It is assumed that there are some restrictions to the curved paths because of the minimum turning radius of an aircraft.

3. It is assumed that there are restrictions to the maximum angle of descent.

4. It is assumed that there are sufficient exit taxiways on the runway so that runway occupancy time is always less than the threshold interarrival time which ensures the ATC-required separation of aircraft in the air.

These restrictions, together with air traffic control (ATC) separation rules, limit the number of usefully considered approach paths. As section 2.2 indicates, within these limits rather simple flight paths are chosen, these representing the most desirable paths from the standpoint of runway capacity.

1.3. **Existing ATC Separation Rules**

According to ATC rules, aircraft can be separated vertically and horizontally. Horizontal separation can be expressed in time or distance. It is here assumed that radar coverage is available, and therefore separations are in terms of distance rather than time. Two aircraft approaching the runway should, then, never to closer to each other than the minimum horizontal distance prescribed by ATC.
Another important safety regulation, one that could influence the capacity of a runway, is that two aircraft cannot be on the runway at the same time; the first aircraft has to clear the runway before the second crosses the threshold. (It is assumed that runway occupancy time is always less than that threshold interarrival time, which ensures the ATC required separation of airborne aircraft; therefore, runway occupancy time is not a constraint.)

1.4. Runway Landing Capacity Model Basic Structure

Basic landing capacity models using the current ILS were developed by Dr. Richard Harris of Mitre Corporation and refined and expanded by Peat, Marwick, Mitchell and Co. The landing capacity of a runway is defined as that maximum number of landing operations that can take place on a runway in a unit of time (usually one hour) during which aircraft continually wish to land. This concept of capacity is often referred to as "ultimate" or "saturation" capacity. The maximum number of landing operations on the runway depends on a number of conditions, as follows:

1. minimum separation rules specified by ATC;
2. aircraft mix (i.e., the proportion of different types of aircraft using a runway in a given period of time);
3. location and type of exit taxiways (i.e., if there are an insufficient number of taxiways, the runway occupancy time rather than air separation might be critical);
4. geometry of the approach paths associated with the runway (i.e., multiple paths are available with MLS).

To compute capacity, each of these conditions must be specified.
Runway landing capacity is actually the capacity of a system, consisting of a runway and the airspace adjacent to the runway. The runway is that part of the system where the flow of all aircraft operations converge; consequently, the landing capacity can also be defined as that number of operations in unit time which pass through a point which all aircraft have to pass. In this analysis this point is taken as the runway threshold. To find the capacity it is then necessary to determine t_{ij}, it being defined as follows: t_{ij} = interarrival time at the threshold between aircraft type i (lead aircraft) and aircraft type j (trailing aircraft); t_{ij} should then be such that:

a. aircraft i and aircraft j will not occupy the runway at the same time (i.e., when j passes the threshold i should have cleared the runway);

b. in the air, aircraft i and aircraft j are never closer than the minimum separation specified by ATC rules, then,

$$t_{ij} = \min(a_{ij}, r_{ij})$$

where

a_{ij} = interarrival time at the threshold, dictated by ATC minimum separation rules for airborne aircraft,

r_{ij} = interarrival time at the threshold, dictated by ATC runway occupancy rule: only one aircraft can occupy the runway during any interval time.

Existing models of capacity assume independence, that is, the type of trailing aircraft j is not dependent on the type of leading aircraft i. The proportion of aircraft in the mix over the unit of time being considered (usually one hour) has, however, to be preserved. This
implies the following:

\[p_{ij} = p_i p_j, \]

where

\[p_{ij} = \text{probability of the sequence } ij, \]

\[p_i \}
\[p_j \} = \text{proportions of aircraft } i \text{ and } j \text{ in the mix.} \]

When \(t_{ij} \) and \(p_{ij} \) are found for all \(i \) and \(j \), the expected interarrival time at the threshold can be computed as:

\[\bar{t} = \sum_{ij} t_{ij} p_{ij}. \]

The capacity, assuming independence in the sequence of aircraft but with the restriction that the aircraft mix will remain constant during the unit of time selected (\(p_k = 1 \), where \(p_k = \text{proportion of aircraft of type } k \)), is

\[\lambda = \frac{1}{\bar{t}} \]

where \(\lambda = \text{landing capacity} \)

\[\bar{t} = \text{expected interarrival time between aircraft over the runway threshold.} \]

1.5. Factors Affecting Runway Landing Capacity

If it is desired to maximize \(\lambda \), it is necessary to minimize \(\bar{t} \) (i.e., \(\min \sum_{ij} t_{ij} p_{ij} \)). If sequencing is not applied to the stream of the landing aircraft, with given \(p_k \), all \(p_{ij} \) are fixed. Consec-
sequently, the term that requires analysis is t_{ij}.

As noted, it is assumed that air separation rather than the runway occupancy rule is critical in all landing cases, so that $t_{ij} = a_{ij}$. Two more assumptions are made in the following analysis.

1. All aircraft have uniform velocities when they are on the final approach to the runway.

2. All aircraft of the same type use the same path for approach to the runway.

These two assumptions are critical to an analysis of capacity. Consider a simple case, only two aircraft types, "fast" and "slow." We see immediately that there are four interarrival times:

\[t_{FS} = \text{interarrival time between "fast" followed by "slow"} \]
\[t_{SF} = \text{"slow" followed by "fast"} \]
\[t_{FF} = \text{"fast" followed by "fast"} \]
\[t_{SS} = \text{"slow" followed by "slow"} \]

Cases t_{FF} and t_{SS} are simpler than the other two, because the landing trajectory is the same for both aircraft and the distance between the two aircraft measured along the trajectory is constant. The distance has, however, to be such that during the entire approach the two aircraft never come closer to each other, measured on a straight line in the horizontal plane, than the minimum specified by ATC rules.

The situation for t_{FS} and t_{SF} is more complex. First, the two aircraft might not have a common trajectory, in which case the separation can not be measured along the trajectory but rather by horizontal, vertical or diagonal separation. Second, if part of the trajectory is common to both aircraft (see aircraft 1 and 3 in Fig. 3),
the distance between them measured on the common path is not constant; it depends on the relative speeds of the two aircraft. The distance and corresponding time will increase for \(v_j < v_i \) (aircraft type \(i \) followed by aircraft \(j \)) and decrease for \(v_j > v_i \).

As noted, there are capacity models available for computation of ultimate capacity. These models are, however, primarily applicable to a single trajectory corresponding to current ILS procedures. The structure of these models was briefly described in paragraph 1.4. The method for computing \(t_{ij} \) in these models is shown in Fig. 4.1,2 This figure represents a time-space diagram in the horizontal plane. Time is the abscissa and distance is the ordinate.

Several remarks concerning the procedure for computation of \(t_{ij} \) are in order to develop a better understanding of the assumptions.

Figure 4 shows that all aircraft are fed into the entry gate (E) from the same path, an extension of the current single ILS alignment path which is, in turn, an extension of the center of the runway. An important point is that the state of the system is considered only when \(t > 0 \) (i.e., only for that time after the instant, \(t = 0 \), when the leading aircraft passes through the entry gate).

In the case of sequence FS (fast followed by slow), shown in Fig. 4a, it can be seen that the horizontal distance between the two aircraft, \(d(t) \), is equal to the ATC minimum required horizontal separation, \(\delta \), when \(t = 0 \) and increases thereafter. It can also be seen that the horizontal separation constraint, \(d(t) > \delta \), is violated prior to \(t = 0 \). (See dotted lines in Fig. 4.)

There are three possible explanations how one could have a slow aircraft only \(\delta \) behind a fast aircraft when the fast aircraft is at
the entry gate, E.

The first is to have the approach path unchanged in the horizontal projection and assume that the velocities of an individual aircraft are not uniform during the approach. Velocities of the two aircraft should be at least equal ($v_S \geq v_F$) for $t < 0$. As it is not likely that v_F will be smaller when $t < 0$ than when $t > 0$, v_S has to be increased until it at least equals v_F (see Fig. 5). This increase in speed is not very practical, especially in the case where two approach speeds are very different.

The sequence FS is of particular interest since the interarrival time, t_{FS}, is critical from a capacity point of view since the time gap between F and S opens as they approach the runway along the common path (see Fig. 4a). In addition, if it is assumed that an increase in speed of the slow aircraft (v_S) is possible, the problem of the two aircraft being separated exactly δ when $t = 0$ remains only partially solved; i.e., it is still assumed that both aircraft are on the straight line (a prolongation of the runway centerline) when $t < 0$ and are coming from infinity on this line, continually separated by at least δ. This assumption does not of course fully consider the real world since one of the following events must have occurred before $t = 0$.

1. Aircraft F has overtaken aircraft S (observed in the horizontal projection) on the straight line, indicating that vertical separation was imposed (the fast aircraft went either under or above the slow).

2. Aircraft S joins the straight line path (observed in the horizontal projection) after aircraft F has passed through
the point E_s, this point being where the slow aircraft joins the common path.

A second possibility is that two aircraft can be separated vertically in the approach air space before $t = 0$. Fig. 6 shows how this separation might look using distances which are appropriate to current ATC rules and procedures. It is assumed that when $t = 0$, vertical separation is imposed in such a way that the slow aircraft is above the fast and both are flying level. Two conditions are necessary to ensure the vertical separation shown in Fig. 6.

1. $h \geq \chi$

where h is vertical distance between the two aircraft and χ is the minimum permissible vertical separation. At present ATC rules specify χ as 1,000 ft (305 m).

2. The fast aircraft should be able to perform straight level approach at an altitude equal to threshold elevation plus H, a distance of $2 \frac{d_c}{E_c}$ (see Fig. 5), before intercepting the glide path at the entry gate, E.

In Fig. 7 another possible vertical separation for aircraft approaching the entry gate, E, is shown, when the fast aircraft is at E_s, and the slow one is a distance of δ behind and χ below the fast. Two conditions are necessary to ensure this vertical separation.

1. $(H - \chi)/\sin \theta$ has to be greater than the distance necessary for the slow aircraft to stabilize on the glide path. If this condition is not satisfied, the resulting problem could theoretically be solved by the slow aircraft climbing to intercept the glide path after $t = 0$. The slow aircraft climbs--or climbs and levels--until it intercepts the glide path (see Fig. 7).
2. The second condition is similar to the second condition of the previous vertical separation case (a slow aircraft above a fast); but it is far more difficult to satisfy: the slow aircraft is required to perform straight level approach at an altitude equal to threshold elevation plus $H - \chi$, for a distance of $2 \frac{d}{E_c} - \delta$ before reaching point F. Considering the values of H (shown in Fig. 6) this condition is almost impossible to satisfy since χ is 1,000 ft, i.e., slow aircraft would be required to fly level at a height above the terrain of only 500 to 1500 ft which is not acceptable (see Fig. 7).

The third possibility of having the slow aircraft only δ behind the fast one, when the fast one is at E, is briefly discussed below.

Does, for example, a path leading to E exist, such that, if the slow aircraft is behind the fast on this path separated by distance δ (measured along the path) when the fast passes E ($t = 0$), the distance between the two aircraft (measured as a straight line in the horizontal plane) is never (when $t < 0$ and when $t > 0$) less than δ? (See Fig. 8a.)

To satisfy the condition $d(t) \geq \delta$, $d(t)$ being the distance between the slow and fast aircraft measured along a straight horizontal line, for all values of t, it is also necessary to satisfy this condition when $t = 0$. Obviously, this condition can only be satisfied if the path of the slow aircraft to E is on a straight line leading to E for at least length δ before E is reached. This implies that at the moment when $t = 0$ the slow aircraft should be somewhere on the circle of radius δ which has its center at E (see Fig. 8b).
However, strictly speaking, though the slow aircraft is on this circle when \(t = 0 \), the distance that the slow aircraft has to fly along the path to \(E \) does not equal \(\delta \); in fact, this distance is more than \(\delta \), with the exception of position 1 (see Fig. 8b) for the following reason. The distance that the slow aircraft must fly to reach \(E \) is greater than \(\delta \) because of a change in heading which is required for positions 2, 3, and 4. This change can only be made on a curved path; so the sum of the straight and curved path will always be greater than the radius of the circle. However, even if the slow aircraft is at point 1 when \(t = 0 \), it will violate the condition \(d(t) \geq \delta \) when \(t = -\Delta t \) (see Fig. 4). So we can conclude that strictly speaking the path we were looking for does not exist.

In spite of the shortcomings which have been discussed in this section, existing runway capacity models can be used to find potential sources for an increase in landing runway capacity. Fig. 4 allows us to examine interarrival times, \(t_{FS} \), \(t_{SF} \), \(t_{FF} \) and \(t_{SS} \), and attempt to decrease them, as a way of decreasing mean interarrival time, \(\bar{t} \), and consequently increasing landing capacity, \(\lambda \). For ease of computation, \(v_S \) can be expressed as \(v_S = \mu v_F \), \(0 \leq \mu \leq 1 \).

From Fig. 4

\[
\begin{align*}
\tau_{SF} &= \frac{\delta}{v_F}, \\
\tau_{FF} &= \frac{\delta}{v_F}, \\
\tau_{SS} &= \frac{\delta}{\mu v_F}, \text{ and}
\end{align*}
\]
Possible ways to decrease t_{ij} are then as follows.

1. The most efficient would be to decrease δ, thus simultaneously decreasing all t_{ij}'s.

2. Increase both v_S and v_T, thus ensuring a higher velocity of aircraft stream at the runway threshold which results in a higher flow.

3. Increase μ only, keeping v_T constant. (This can be achieved by requesting slow aircraft to maintain cruise speed as long as possible.)

4. Decrease γ, the common part of final approach.

The implementation of MLS could reduce δ (case 1) and γ (case 4).

In summary, then, this research is concerned with whether the approaches along the curved paths described by MLS will improve the landing capacity of a runway, and, if the answer to this question is positive, what is the value of this increase over that capacity obtained with ILS?

The following analysis of capacity will begin with the assumption that vertical separation within the operating area of MLS is not permitted, i.e., horizontal separation is crucial. The situations governed by this assumption are examined in Chapters 2 and 3. The assumption that vertical separation may be permitted (either horizontal or vertical separation could therefore be employed) governs the situations examined in Chapters 4 and 5.
2. Analysis of Capacity with Horizontal Separation Only

2.1. Introduction

In this chapter the influence of multiple flight approach paths on the landing capacity of a runway is analyzed. It is assumed that all approaching aircraft are on the same horizontal plane, that is, no vertical separation exists.

The procedure for the current ILS is shown in Fig. 9. All aircraft landing in IFR have to pass through a point \(E \) (entry gate), located distance \(\gamma \) (common approach path length) from the landing threshold, \(T \), along the extended runway centerline, and remain on the centerline until they reach the threshold. As shown in Fig. 10, with MLS there is no need for aircraft to use a common approach path of length \(\gamma \). Similarly, all aircraft do not need to pass through the common entry gate, \(E \). Multiple paths are possible. Each path intersects the prolongation of the runway centerline at \(E_i \), and, as noted in Chapter 1, Section 1.5, this path is used only by aircraft of type \(i \). Each intersection of the runway centerline, \(E_i \), is located \(\gamma_i \) from the runway threshold. Each intersection, \(E_i \), can be considered as the entry gate for type \(i \) aircraft.

The objective of the analysis is to develop a model to describe multiple rather than common entry path geometry. The model should represent the two approach path situations (ILS and MLS) shown in Figs. 9 and 10 and determine the ultimate capacities of the two (under given conditions). The model should also be able to determine a geometry (i.e., set of approach paths) which maximizes ultimate capacity for either the ILS or MLS situation. Once the maximum ultimate capacity for each of the two situations has been determined the effect of MLS on
runway landing capacity can be obtained by comparing the two capacities.

Analysis of the effect of geometry on the ultimate capacity, either with ILS or MLS, will concentrate on an aircraft pair consisting of two aircraft types, a fast aircraft, F, and a slow aircraft, S. When analyses of cases involving more than two aircraft types in a population are necessary they can be treated in pairs. These pairs in all cases consist of fast and slow aircraft. This approach of breaking down an aircraft population in couples and dealing with four general case interarrival times, t_{FF}, t_{FS}, t_{SF}, and t_{SS} (i.e., t_{FS} = interarrival time at threshold for a fast aircraft followed by a slow one, etc.) will be used throughout the analysis since any of the interarrival times, t_{ij}, can be represented by one of these four times.

From Fig. 4 we can draw some rough conclusions about aircraft operations with ILS. In conventional ILS all aircraft pass through an entry gate, E, and travel on a common approach path through a distance of Y to the runway threshold. As Fig. 4a illustrates, in the case of a slow aircraft following a fast one, the interarrival time over the threshold, t_{FS}, increases as Y is increased. Similarly, in the case of MLS for a situation involving a fast aircraft followed by a slow, Y_{FS}, the common path for the two aircraft should be considered rather than the single common path, Y, where

$$Y_{FS} = \min(Y_F, Y_S).$$

A new assumption is therefore introduced; it will be used in further analysis; it is

$$Y_F \geq Y_S.$$
This assumption requires that an aircraft with a higher approach speed will need at least as long a final straight approach along the extended runway centerline as an aircraft with a lower approach speed. That is,

\[Y_{FS} = Y_S \]

i.e., the common approach path is equal to the length of the final straight approach for slower aircraft.

Therefore, if \(Y_S < Y \), \(t_{FS} \) is decreased. However, even if \(Y_S = 0 \) (i.e., that a slow aircraft does not need any portion of straight level wing approach before landing) the interarrival time, \(t_{FS} \), remains equal to \(\delta/v_S \) (see Fig. 4a).

Fig. 4 also illustrates that if \(Y \) is reduced the only possible reduction in interarrival times that can be made is a reduction of \(t_{FS} \). The other three times, \(t_{FF} \), \(t_{SF} \), and \(t_{SS} \), will remain unchanged.

Intuitively, it can be expected that an increase in landing capacity will be small if a decrease in \(t_{FS} \) is the only reduction of interarrival time possible. For example, consider the case where an aircraft population is equally divided between fast and slow aircraft, that is, \(p_F = 0.5 \) and \(p_S = 0.5 \). If the sequence of the arrivals is considered as random, then the fraction of slow aircraft following fast aircraft will be 0.25, which is the result of \(p_F \times p_S \). Seventy-five percent of the arrivals will constitute pairs of aircraft with interarrival times, \(t_{FF} \), \(t_{SF} \), and \(t_{SS} \). These times cannot be changed. Therefore, a significant reduction in the mean interarrival time, \(\bar{\tau} \), and consequently, an increase in landing capacity, \(\lambda \), cannot be expected.
This conclusion will be examined in detail in the following sections of this chapter.

As noted in Chapter 1, Section 1.5, in order to decrease t_{PS} a slow aircraft must be brought as close as possible to the threshold when a fast one is over the threshold. Minimum horizontal separation rules must not, however, be violated.

The following examination of the effect of MLS on runway capacity will involve analysis of changes of interarrival times over the threshold, t_{ij}. The first step in this analysis is to see how these changes respond to certain variables.

The variables that affect t_{ij} are as follows:

$v_F = \text{velocity of the fast aircraft}$

$v_S = \text{velocity of the slow aircraft}$

$\mu = \frac{v_S}{v_F}$

$\gamma_F = \text{length of the approach on extended runway centerline of the fast aircraft}$

$\gamma_S = \text{length of the approach on extended runway centerline of the slow aircraft}$

$\delta = \text{minimum horizontal separation required between the two aircraft measured in the horizontal plane.}$

If the values for all of these variables are given, then the effect on capacity of various possible aircraft paths, herein referred to as trajectories, is necessarily the subject of the following analysis.
2.2. Types of Trajectories to Be Considered

The following assumptions and examples will indicate that family of trajectories that will be considered in the later analysis of capacity.

It is assumed that there are no obstacles in the approach area, nor are there any constraints due to noise; therefore, there are no restrictions as to the type of approach paths.

The case of a fast aircraft followed by a slow aircraft will be initially considered since, as noted in Section 2.1, this is the critical sequence.

Assume that a turning radius of an aircraft is zero, that is, its heading can be changed instantaneously. Further, assume that a fast aircraft is at E_S, the entry gate for slow aircraft, where $t = 0$ (as shown in Fig. 11). A useful question is: where should the slow aircraft be to ensure that the interarrival time t_{FS} is as small as possible? Obviously, the two aircraft should be separated at a minimum distance of δ (i.e., the slow aircraft should be somewhere on the circle of radius δ with center in E_S), but the condition of minimum separation has to be maintained until and after the moment the fast aircraft reaches E_S. Assuming that a slow aircraft is always flying toward E_S, Fig. 11 shows that to maintain a minimum separation, δ, its location at $t = 0$ has to be somewhere on the portion of the circle marked with a heavy line (e.g., point A). For any position of a slow aircraft on the light line portion of the circle, the condition $d(t) \geq \delta$ will not be satisfied for $t > 0$, where $d(t)$ is equal to the horizontal distance between two aircraft. The conclusion is, then, that a slow aircraft should approach the point E_S anywhere from the heavy...
line portion of the circle; in other words, from the right side of the line, perpendicular to the extended runway centerline passing through the point E_S.

Consider a slow aircraft at point M and a fast one at E_S (when $t = 0$), as shown in Fig. 12. What kind of a path should the slow aircraft follow between M and E_S? If a slow aircraft must reach E_S as quickly as possible, the desirable path is the straight line ME_S. On the other hand, if it is necessary for some reason to increase the time that the slow aircraft takes to reach E_S, a curved path between M and E_S is one alternative. Another alternative is to require the slow aircraft at $t = 0$, to be at a position, N, this position being further away than M on the same straight line; and then to have the slow aircraft continue on the straight line to E_S. Consequently, it can be concluded that straight line entries to E_S are at least as good as any other family of trajectories. The straight line entries because of their simplicity will be exclusively used in further analysis. A general straight line approach path configuration is shown in Fig. 13.

Before proceeding with analysis of this configuration it is necessary to establish arbitrarily that the index of aircraft type increases with approach speed, i.e., if $i > j$ then $v_i \geq v_j$, where i and j are indices of aircraft types. As noted in Section 2.1, that $Y_F > Y_S$, it follows that $Y_1 \leq Y_2 \cdots \leq Y_n$, where the subscript 1 refers to that aircraft type which needs the shortest straight-line part of the final approach, i.e., that aircraft type that can intersect the extension of the runway centerline closest to the runway threshold.

A useful question, then, in terms of understanding the character-
istics of the family of trajectories that is being considered is, what should be the angles α_1, α_2, \ldots, α_n?

It has been shown earlier in this section that $|\alpha_i| \leq 90^\circ$ for any i, α_i being positive when measured counterclockwise from the extended runway centerline and negative when measured clockwise.

All approaches are assumed to be in a horizontal plane. Therefore, to assure that the two approach paths will not intersect, the following conditions must be met:

$\alpha_i < \alpha_j$ for all i and j such that $i > j$, $\alpha_i > 0$ and $\alpha_j > 0$

$\alpha_i > \alpha_j$ for all i and j such that $i > j$, $\alpha_i < 0$ and $\alpha_j < 0$.

These conditions state that if i and j are a pair of aircraft such that $v_i > v_j$, then when both α_i and α_j are positive, α_i has to be less than α_j. However, if α_i and α_j are both negative, then α_i must be greater than α_j (i.e., the absolute value of α_i is smaller than that of α_j).

The above conditions enable us to use any possible combination of paths and compute t_{ij}, where i can be F or S and j can be F or S, thereby preventing any two paths to intersect before they merge on the extended runway centerline.

If the case of only two aircraft types, fast and slow, is considered, then the necessary geometry of approach paths is shown in Fig. 14. This geometry requires that the following conditions have to be satisfied:

$0 < \alpha_F < 90^\circ$

$-90^\circ < \alpha_F < \alpha_S$.
At the beginning of this section an assumption, "zero turning radii," was introduced. If this assumption were not made the geometry of the approach paths would follow that shown in Fig. 15, rather than that shown in Fig. 14. We will now determine whether the geometry shown in Fig. 14 is a close enough approximation of the geometry shown in Fig. 15.

For the purpose of this determination, even for very unusual conditions (high approach speed, high angle of interception of extended runway centerline, and low rate of change of heading) the straight line paths shown in Fig. 14 give a good approximation of the circular arc paths shown in Fig. 15. For example, if the approach speed of an aircraft is 160 kts and the rate of change of heading is 3° per second, the difference in the length of the approach path measured along the straight line paths and the circular arc is 0.09 nm, if the angle of interception $\alpha = 60^\circ$, and only 0.02 nm if the angle of interception $\alpha = 30^\circ$. These differences in the length of the approach paths are for the purposes of this study negligible.

The conclusion, then, is that the geometry of approach paths that should be considered in further analysis of capacity is that shown in Fig. 14 for the case of two aircraft types, or that shown in Fig. 13 for the more general case.

2.3. Objective of the Horizontal Separation Model

Consider the case of the two aircraft shown in Fig. 16. The threshold interarrival time,

$$ t_{ij} = \frac{\gamma_{ij}}{v_j} + \frac{\gamma_{ij}}{v_i}, $$
where t_{ij} is increasing with initial separation $i_j^{d_0}$. Initial separation $i_j^{d_0}$ is the distance between two aircraft i and j at the time $t = 0$ (leading aircraft i enters the common path on the extended runway centerline), measured along the trajectory of trailing aircraft j. If for the given situation (aircraft types i and j and a given approach path geometry) one wants to minimize t_{ij}, then the problem could be stated as follows:

$$\min_{i,j} i_j^{d_0}$$

subject to $d_{ij}(t) \geq \delta_{ij}$ for $t \leq \frac{\gamma_{ij}}{v_i}$

where

$$d_{ij}(t) = \text{distance between aircraft } i \text{ and } j \text{ measured on a straight line in the horizontal plane}$$

$$\delta_{ij} = \text{minimum horizontal separation for aircraft } i \text{ followed by aircraft } j, \text{ given by ATC rules.}$$

Condition $t < \frac{\gamma_{ij}}{v_i}$ states that the ATC horizontal separation, δ_{ij}, is required only while both aircraft i and j are airborne. This condition can be released after leading aircraft, i, crosses the runway threshold, at $t = \frac{\gamma_{ij}}{v_i}$. However, the overall objective function of the horizontal separation model is much more complex; it can be stated as follows:

$$\min \bar{t} = \sum_{i,j} t_{ij} p_{ij}$$

subject to $d_{ij}(t) \geq \delta_{ij}$, for $t < \frac{\gamma_{ij}}{v_i}$, for all i and j.
In this situation the geometry is not given, as it was in the previous very simple example. The problem becomes, then, one of finding a geometry which for a given aircraft population and given ATC rules will provide the highest landing capacity.

The next step is to study how the distance between two successively landing aircraft changes with time.

2.4. Equations for Distance between Two Aircraft in a Plane

If the selected geometry of approach paths is that shown in Fig. 14, and if two types of aircraft, fast F and slow S, are considered, there are four possible approach sequences to be studied: FF, SS, FS and SF (where FS refers to fast followed by slow, etc.). It has been noted in Section 2.3 that for the sequence of any two aircraft \(ij \), \(t = 0 \) is the instant in time when the leading aircraft, \(i \), enters the first point of the common path on the extended runway centerline.

All four sequences mentioned above are shown in Fig. 17 at the point when \(t = 0 \). As can be seen, for the sequence SF there are two cases: at the point when \(t = 0 \) and the aircraft S is at point \(E_F \), aircraft F could already be on the extended runway centerline, i.e., aircraft F could have passed through point \(E_F \) (case a) or it could still be on that part of the approach path leading towards \(E_F \) (case b).

The important point here is that in all cases \(d_{ij} \) is the distance between two aircraft when \(t = 0 \), measured along the path of the trailing aircraft, \(j \).

The next step is to analyze interarrival times by studying the distance between two aircraft measured along a straight line in a
horizontal plane, as a function of time. This distance will be denoted by \(d_{ij}(t) \) and will be studied for the four sequences mentioned above. However, as Fig. 17 illustrates, cases 1 and 2 (SS and FF sequences) represent essentially similar cases; they will therefore be studied as one case.

2.4.1. The case of fast aircraft followed by a fast aircraft, or slow aircraft followed by a slow aircraft

From Fig. 18 it can be seen that the function \(d(t) \), the horizontal distance between two aircraft, is a piecewise function of \(t \). Therefore,

1. for \(t < 0 \) (neither of the two aircraft is on the extended centerline yet)

\[
d(t) = \hat{d}_{0} ;
\]

2. for \(0 < t < \frac{\hat{d}_{0}}{v} \) (only the leading aircraft is on the extended runway centerline)

\[
d^2(t) = 2d^2(t) = \{vt + (\hat{d}_{0} - vt)\cos\alpha\}^2 + ((\hat{d}_{0} - vt)\sin\alpha)^2
\]

\[
= 2v^2t^2(1 - \cos\alpha) - 2\hat{d}_{o}vt(1 - \cos\alpha) + \hat{d}_{o}^2 ; \quad (1)^*
\]

3. for \(t > \frac{\hat{d}_{0}}{v} \) (both aircraft are on the extended runway centerline)

\[
d(t) = \hat{d}_{0} . \]

Only equations which are referred to later are enumerated.
2.4.2. The case of fast aircraft followed by slow aircraft

From Fig. 19 it can be seen that the function $d_{FS}(t)$, the horizontal distance between two aircraft (fast followed by slow), is also a piecewise function of t. Therefore,

1. for $t < -\frac{\beta}{v_F}$ (neither of the two aircraft is on the extended runway centerline yet)

$$d_{FS}^2(t) = 1^2 d_{FS}(t)$$

$$= ((\hat{d}_o + \mu v_F t) \cos \alpha_S - \beta + (v_F t + \beta) \cos \alpha_F)^2$$

$$+ ((\hat{d}_o + \mu v_F t) \sin \alpha_S + (v_F t + \beta) \sin \alpha_F)^2$$

$$= t^2 v_F^2 (\mu^2 - 2 \cos(\alpha_S - \alpha_F) + 1)$$

$$+ t2v_F (\beta(1 - \cos \alpha_F) - \mu(\cos(\alpha_S - \alpha_F) - \cos \alpha_S))$$

$$+ \frac{\hat{d}_o}{F_S} \{\cos(\alpha_S - \alpha_F) - \mu\} + \frac{\hat{d}_o^2}{F_S}$$

$$+ 2\beta^2 \hat{d}_o \{\cos(\alpha_S - \alpha_F) - \cos \alpha_S\} + 2\beta^2 (1 - \cos \alpha_F)$$

(2)

2. For $-\frac{\beta}{v_F} < t < \frac{F_S d_0}{v_F}$ (only the leading aircraft is on the extended runway centerline)
\[d_{FS}^2(t) = d_{FS}(t) \]

\[= [d_{FS}^2(t) - uv_F t \cos \alpha_S + v_F t]^2 + [(d_{FS}^2(t) - uv_F t \sin \alpha_S)^2 \]

\[= t^2 v_F^2 (\mu^2 - 2 \mu \cos \alpha_S + 1) \]

\[+ t^2 d_{FS}^2 \hat{d}_o v_F (\cos \alpha_S - \mu) \]

\[+ d_{FS}^2 \hat{d}_o^2 \]

(3)

3. For \(t > \frac{d_{FS}^2(t)}{\mu v_F} \) (both aircraft are on the extended runway centerline)

\[d_{FS}(t) = d_{FS}(t) \]

\[= \hat{d}_o + v_F (1 - \mu) t \]

(4)

2.4.3. The case of slow aircraft followed by fast aircraft

Here two cases can be distinguished:

a. at \(t = 0 \) trailing aircraft is already on the extended runway centerline, as shown in Fig. 20a (\(SF d_o < \beta \));

b. at \(t = 0 \) trailing aircraft is not yet on the extended runway centerline, as shown in Fig. 20b (\(SF d_o > \beta \)).

In both cases, \(d_{SF}(t) \) is the horizontal distance between the two aircraft and is a piecewise function of \(t \). The two cases will be treated separately.
Case a. (See Fig. 20a, $\hat{d}_{SF} < \beta$.)

1. For $t < \frac{SF\hat{d}_o - \beta}{v_F}$ (neither of the two aircraft is on the extended runway centerline yet)

$$d_{SF}^2(t) = l^2_{SF}(t)$$

$$= [v_F t (\mu \cos \alpha_S - \cos \alpha_F) + \hat{d}_{SF} (\beta \cos \alpha_F + \beta)]^2$$

$$+ [v_F t (\mu \sin \alpha_S - \sin \alpha_F) + (\hat{d}_{SF} - \beta \cos \alpha_F)]^2$$

$$= t^2 v_F^2 [\mu^2 - 2 \mu \cos(\alpha_S - \alpha_F) + 1]$$

$$+ t2v_F [\beta [(1 - \cos \alpha_F) - \mu (\cos(\alpha_S - \alpha_F) - \cos \alpha_S)]$$

$$+ SF\hat{d}_o [\mu \cos(\alpha_S - \alpha_F) - 1] + SF\hat{d}_o$$

$$- 2\beta SF\hat{d}_o (1 - \cos \alpha_F) + 2\beta^2 (1 - \cos \alpha_F) . \quad (5)$$

2. For $\frac{SF\hat{d}_o - \beta}{v_F} < t < 0$ (only the trailing aircraft is on the extended runway centerline)

$$d_{SF}^2(t) = 2^2_{SF}(t)$$

$$= [v_F t (\mu \cos \alpha - 1) + SF\hat{d}_o]^2 + [\mu v_F t \sin \alpha_S]^2$$

$$= t^2 v_F^2 [\mu^2 - 2 \mu \cos \alpha_S + 1] + t2v_F SF\hat{d}_o (1 - \mu \cos \alpha_S) + SF\hat{d}_o^2 . \quad (6)$$
3. For $t > 0$ (both aircraft are on the extended runway centerline)

$$d_{SF}(t) = \hat{d}_{SF}(t)$$

$$= SF_{d_0} - v_F(1 - \mu)t . \quad (7)$$

Case b. (See Fig. 20b, $SF_{d_0} > \beta$.)

1. For $t < 0$ (neither of the two aircraft is on the extended runway centerline yet)

$$d_{SF}^2(t) = \hat{d}_{SF}^2(t)$$

$$= [v_F t(\mu \cos \alpha_S - \cos \alpha_F) + (\hat{d}_{d_0} - \beta \cos \alpha_F + \beta)]^2$$

$$+ [v_F t(\mu \sin \alpha_S - \sin \alpha_F) + (\hat{d}_{d_0} - \beta \sin \alpha_F)]^2$$

$$= t^2 v_F^2 [\mu^2 - 2 \mu \cos(\alpha_S - \alpha_F) + 1] +$$

$$+ t 2 v_F [\beta (1 - \cos \alpha_F) - \mu (\cos(\alpha_S - \alpha_F) - \cos \alpha_S)]$$

$$+ \hat{d}_{d_0}^2 [\mu \cos(\alpha_S - \alpha_F) - 1] + \hat{d}_{d_0}^2$$

$$- 2 \beta \hat{d}_{d_0} (1 - \cos \alpha_F) + 2 \beta^2 (1 - \cos \alpha_F) . \quad (8)$$

Note that this $1 d_{SF}(t)$ is the same as in the previous case a.
2. For \(0 < t < \frac{\hat{d}_{SF} - \beta}{v_F} \) (only the leading aircraft is on the extended runway centerline)

\[d_{SF}^2(t) = \frac{d_{SF}^2(t)}{2} \]

\[= [v_F t (\mu - \cos \alpha_F) + (\hat{d}_{SF} - \beta) \cos \alpha_F + \beta]^2 \]

\[+ [-v_F t \sin \alpha_F + (\hat{d}_{SF} - \beta) \sin \alpha_F]^2 \]

\[= t^2 v_F^2 [\mu^2 - 2 \mu \cos \alpha_F + 1] \]

\[+ t 2v_F [\hat{d}_{SF} (1 - \mu \cos \alpha_F) - \beta (1 - \cos \alpha_F)(1 + \mu)] \]

\[+ \hat{d}_{SF}^2 - 2 \hat{d}_{SF} \beta (1 - \cos \alpha_F) + 2 \beta^2 (1 - \cos \alpha_F) \cdot (9) \]

3. For \(t > \frac{\hat{d}_{SF} - \beta}{v_F} \) (both aircraft are on the extended runway centerline)

\[d_{SF}(t) = \frac{d_{SF}(t)}{3} \]

\[= \frac{\hat{d}_{SF} - v_F (1 - \mu) t}{3} \cdot (10) \]
2.5. **Initial Separation**

This section will describe procedures for determining those optimal initial separations which satisfy model requirements.

Initial separation here refers to that distance between two runway approaching aircraft, measured along the trajectory of the trailing aircraft, that exists when the first aircraft intersects the common approach path (see Fig. 16).

Section 2.3 notes that the threshold interarrival time is an increasing function of initial separation. This section also notes that the objective of the model is to minimize initial separation subject to constraints imposed by ATC rules on the required horizontal distance between two approaching aircraft.

As noted in Section 2.4 the horizontal distance between two aircraft is a function of many variables rather than simply a function of time. The function could be written as follows.

\[d_{ij}(t) = d_{ij}(v_i, v_j, \gamma_i, \gamma_j, a_i, a_j, t, i_j d_0) \]

However, \(v_i, v_j, \gamma_i \) and \(\gamma_j \) can be considered as fixed parameters rather than variables, so

\[d_{ij}(t) = d_{ij}(a_i, a_j, t, i_j d_0) \]

To maximize the capacity for a given geometry (i.e., \(a_i, a_j, \gamma_i \) and \(\gamma_j \) are fixed) one wants \(i_j d_0 \) to be as short as possible but still such that the ATC rule, \(d_{ij}(t) \geq \delta_{ij} \), is not violated for any \(t < \frac{\gamma_{ij}}{v_i} \). For this condition and for \(i_j d_0 \) to be minimized, the two aircraft have to be separated exactly \(\delta_{ij} \) when they are closest to each other.
Using a partial derivative of d_{ij} with respect to t, the moment of minimal separation t^* can be obtained, as follows.

$$\frac{\partial d_{ij}}{\partial t} = 0 \Rightarrow t^* = \phi(\alpha_i, \alpha_j, i_j \hat{d}_o) .$$

At the t^* moment the two aircraft should be separated by horizontal separation δ_{ij}, i.e.,

$$d_{ij}(t)|_{t=t^*} = \delta_{ij}$$

$$d_{ij}(t)|_{t=t^*} = \xi(\alpha_i, \alpha_j, i_j \hat{d}_o) = \delta_{ij} .$$

The initial separation $i_j \hat{d}_o$ is then found:

$$i_j \hat{d}_o = \xi^{-1}(\alpha_i, \alpha_j, \delta_{ij}) .$$

Note that δ_{ij} can also be taken for a parameter with a fixed value; initial separation could then be written:

$$i_j \hat{d}_o = \xi^{-1}(\alpha_i, \alpha_j) .$$

As noted, the threshold interarrival time, t_{ij}, is a function of initial separation, $i_j \hat{d}_o$; this function will vary depending on the particular pair of aircraft types to be considered, so that

$$t_{ij} = \begin{cases}
\xi(\alpha_i, \alpha_j) & \text{for } i = j \text{ (two aircraft of same type)} \\
\xi_F(\alpha_i, \alpha_j) & \text{for } i > j \text{ (fast followed by slow)} \\
\xi_S(\alpha_i, \alpha_j) & \text{for } i < j \text{ (slow followed by fast)} .
\end{cases}$$
The functions t_{ij} are included in the objective function of the model, which is

$$\min \sum t_{ij} p_{ij} \quad (p_{ij} \text{ are given})$$

subject to

$$d_{ij}(t) > \delta_{ij} \quad \text{for } t \leq \frac{\gamma_{ij}}{v_i}$$

for all i and j.

The objective function, $\sum t_{ij} p_{ij}$, becomes very complex for the following reasons:

- Summation $\sum t_{ij} p_{ij}$ has n^2 members, when n represents the number of aircraft types in airport population.
- Members are nonlinear functions of α_i and α_j.
- Each member belongs to one of the three types of functions mentioned above:

$$f(\alpha_i, \alpha_j) \quad \text{for } i = j$$

$$f_{FS}(\alpha_i, \alpha_j) \quad \text{for } i > j$$

$$f_{SF}(\alpha_i, \alpha_j) \quad \text{for } i < j$$

However, function f can take two different forms, function f_{FS} four and function f_{SF} even five different forms, depending on the values of input parameters v_i, v_j, γ_i, γ_j and δ_{ij}, as well as on the values of variables α_i and α_j themselves. The several possible forms of the three functions are the result of the fact that $\delta_{ij}(t)$, being a piecewise function of t, could have a global minimum in more...
than one of its segments. For example, the two aircraft could be minimally separated with neither being on the extended runway centerline, or minimal separation could occur when the first aircraft has already entered the extended runway centerline, or, when both aircraft are on the extended runway centerline.

Because, as noted, the objective function is complex and because the constraints are non-linear, it was found necessary to compute initial separations and, consequently, interarrival times and runway landing capacity for fixed α_i and α_j. This computation involves the development of computer programs capable of determining capacities for different discrete values of these intercept angles.

2.5.1. The case of fast aircraft followed by a fast aircraft, or slow aircraft followed by a slow aircraft

This case is shown in Fig. 18 and distance equations are given in Section 2.4.1.

From equations for $d_1(t)$, $d_2(t)$ and $d_3(t)$ it can be seen that the min $d(t)$, i.e., the minimum separation between two aircraft, will occur for $0 < t < \frac{d_o}{v}$, i.e., the minimum will be somewhere on the segment $d_2(t)$ of function $d(t)$. Range $(0, \frac{d_o}{v})$ for variable t represents that time when the leading aircraft is already on the extended runway centerline and when the trailing aircraft is still approaching it.

From equation (1) and for

$$\frac{\partial^2 d^2(t)}{\partial t} = 0,$$

the time when minimum separation occurs can be found by
\[t_2^* = \frac{d_0}{2v} \]

At that time when they are minimally separated the two aircraft have to be separated distance \(\delta \),

\[2d^2(t) \bigg|_{t=t_2^*} = \delta^2 , \]

i.e., if \(t_2^* \) is substituted for \(t \) in equation (1) and the distance is \(\delta \), the following result is obtained:

\[d_{02} = \frac{\delta}{\sqrt{\frac{1}{2} (1 + \cos \beta)}} . \]

Subscript 02 indicates that the initial separation is computed for the case when \(\min d(t) \) occurs on the second segment, \(2d(t) \), of function \(d(t) \).

The graph of function \(d(t) \) is shown in Fig. 21. As can be seen, the initial gap (horizontal separation) between the two aircraft begins to close when \(t > 0 \) and reaches its minimum, which is equal to \(\delta \), when \(t = t_2^* \). The two aircraft are, therefore, always separated more than is required, except at the moment \(t_2^* \). It is possible, however, for the first aircraft to land (e.g., very short \(\gamma \)) before \(t = t_2^* \) (see Fig. 22); in this case, the separation of the two aircraft should be distance \(\delta \) at the moment when the first aircraft lands, if the conditions \(d_{i+}^{1j}(t) \geq \delta_{i+}^{1j} \) is to be satisfied for that period when both aircraft are airborne, i.e.,
\[2d^2(t) \bigg|_{t=\frac{\chi}{v}} = \delta^2. \]

Therefore, from (1) the following quadratic equation is obtained

\[A \hat{d}_0^2 + B \hat{d}_0 + C = 0 \]

where

\[A = 1 \]
\[B = -2 \gamma(1 - \cos \alpha) \]
\[C = 2 \gamma^2 (1 - \cos \alpha) - \delta^2. \]

Consequently, the necessary initial separation is

\[\hat{d}_0 = \frac{-B + \sqrt{B^2 - 4C}}{2}. \]

Finally, the necessary initial separation, \(\hat{d}_0 \), for two aircraft of the same type, depending on which of the two cases shown in Fig. 21 and Fig. 22 one deals with, must be either \(\hat{d}_{02} \) or \(\hat{d}_{05} \).

Subroutines \(SDOFF \) and \(SDROSS \) of the program compute values for \(\hat{d}_0 \) and \(\hat{SS}_0 \). These subroutines are given in Appendix B.2.

2.5.2. The case of fast aircraft followed by slow aircraft

The above case is shown in Fig. 19, its distance equations are given in Section 2.4.2. From these distance equations it can be seen that the first two segments of the functions \(d_{FS}(t) \), \(1d_{FS}(t) \) and \(2d_{FS}(t) \) are square roots of a parabola and, being distances, they are positive square roots of a parabola. The third segment of \(d_{FS}(t) \)-- \(3d_{FS}(t) \)--is a linear increasing function of \(t \). It can be shown
further that the slope of $2d_{FS}(t)$ for $t = \frac{d_{o}}{\mu v_F}$ is always greater than the slope of $3d_{FS}(t)$. A conclusion can therefore be drawn: the function $d_{FS}(t)$ could resemble any of the various shapes shown in Fig. 23a; the following table lists all of the possible shapes of this function.

<table>
<thead>
<tr>
<th>$1d_{FS}(t)$</th>
<th>$2d_{FS}(t)$</th>
<th>min $d_{FS}(t)$ at point</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>c</td>
<td>A</td>
</tr>
<tr>
<td>a</td>
<td>d</td>
<td>A</td>
</tr>
<tr>
<td>a</td>
<td>e</td>
<td>C</td>
</tr>
<tr>
<td>b</td>
<td>c</td>
<td>B</td>
</tr>
<tr>
<td>b</td>
<td>e</td>
<td>C</td>
</tr>
</tbody>
</table>

Whichever of the above forms of the function $d_{FS}(t)$ is encountered the same approach is taken, that is, when the two aircraft are separated by a minimum distance, that distance should be equal to the minimum horizontal separation required by ATC rules. This minimum separation condition is therefore used to find the necessary initial separation.

However, there is another case to be considered in addition to those shown in the above table: the case presented in Fig. 23b. If the minimum distance between two aircraft occurs during the second segment of $d_{FS}(t)$, i.e., at $2d_{FS}(t)$, and if the leading aircraft lands before the gap between two aircraft reaches its minimum, i.e.,

$$\frac{\gamma_S}{v_F} < \frac{t*}{FS2},$$
then, as the argument in Section 2.5.1 suggests, the minimum horizontal separation δ_{FS} should be imposed when $t = \gamma_S/v_F$. In short, the function $d_{FS}(t)$ reaches its minimum at the upper limit of its domain.

Following are solutions of initial separation derived for the cases when $\min d_{FS}(t)$ appears in one of the four points, A, B, C, or D shown in Fig. 23.

Case A: $\min d_{FS}(t)$ at segment $1d_{FS}(t)$, i.e., for $t < -\beta/v_F$

From equation (2) and for

$$\frac{\partial^2 d_{FS}(t)}{\partial t^2} = 0,$$

the time when the minimum separation appears, t_{FS1}^*, can be found:

$$t_{FS1}^* = \frac{\hat{d}_{FS} \cos(\alpha_S - \alpha_F) - \mu + \beta(1 - \cos \alpha_F) - \mu[\cos(\alpha_S - \alpha_F) - \cos \alpha_F]}{\{\mu^2 - 2\mu \cos(\alpha_S - \alpha_F) + 1\} v_F}$$

Using the condition that the minimal distance between two aircraft is exactly equal to the minimum required by ATC rules, i.e.,

$$1d_{FS}(t) \bigg|_{t = t_{FS1}^*} = \delta_{FS},$$

from equation (2) the following is found

$$FS1^A \hat{d}_{01}^2 + FS1^B \hat{d}_{01}^2 + FS1^C = 0,$$

where

$$FS1^A = 1 - \frac{[\cos(\alpha_S - \alpha_F) - \mu]^2}{\mu^2 - 2\mu \cos(\alpha_S - \alpha_F) + 1}.$$
$$F_{S1}^B = 2\beta \{ [\cos (\alpha_s - \alpha_F) - \cos \alpha_S]$$

$$- \frac{[\cos (\alpha_S - \alpha_F) - \mu]([1 - \cos \alpha_F) - \mu(\cos (\alpha_S - \alpha_F) - \cos \alpha_S)]}{\mu^2 - 2\mu \cos (\alpha_S - \alpha_F) + 1},$$

and

$$F_{S1}^C = \beta^2 \{2(1 - \cos \alpha_F)$$

$$- \frac{[(1 - \cos \alpha_F) - \mu(\cos (\alpha_S - \alpha_F) - \cos \alpha_S)]^2}{\mu^2 - 2\mu \cos (\alpha_S - \alpha_F) + 1} \} - \delta_{FS}^2.$$

The necessary initial separation for the A case is therefore,

$$\hat{d}_{FS}^{401} = \frac{-F_{S1}^B + \sqrt{F_{S1}^B^2 - 4F_{S1}^A F_{S1}^C}}{2F_{S1}^A}.$$

Case B: \(\min d_{FS}(t)\) at the limit of segments \(d_{FS}(t)\) and \(2d_{FS}(t)\),

i.e., for \(t = -\beta/\nu_F\),

From equations (2) or (3) and for

\[d_{FS}(t)\bigg|_{t = -\beta/\nu_F} = 2d_{FS}(t)\bigg|_{t = -\beta/\nu_F} = \delta_{FS}\]

the following is found

$$F_{S4}^A \delta_{04}^{a2} + F_{S4}^R \delta_{04}^{d} + F_{S4}^C = 0$$

where

$$F_{S4}^A = 1.$$
\[F_{s4B}^* = -2\beta(\cos \alpha_S - \mu) \]

\[F_{s4C}^* = \beta^2 (\mu^2 - 2 \mu \cos \alpha_S + 1) - \delta_{FS}^2 . \]

The necessary initial separation for Case B is therefore,

\[\hat{d}_{04} = \frac{-F_{s4B}^* + \sqrt{F_{s4B}^*^2 - 4F_{s4C}^*}}{2} . \]

Case C: \(\min d_{FS}(t) \) at segment \(2d_{FS}(t) \), i.e., for \(\frac{\beta}{v_F} < t < \frac{\hat{d}_{04}}{\mu v_F} \)

From equation (3) and for

\[\frac{\partial^2 d_{FS}^2(t)}{\partial t^2} = 0 \]

the time when minimum separation appears, \(t_{FS}^* \), can be found:

\[t_{FS}^* = -\frac{\hat{d}_{04}(\cos \alpha_S - \mu)}{(\mu^2 - 2\mu \cos \alpha_S + 1) v_F} . \]

Using again the same condition as in Case A, i.e.,

\[2d_{FS}(t) \bigg|_{t = t_{FS}^*} = \delta_{FS} \]

and equation (3), it is found that the necessary initial separation for Case C is:
\[
\hat{d}_{02}^{d} = \frac{\delta_{FS}}{\sqrt{1 - \frac{(\cos \alpha_{S} - \mu)^2}{\mu^2 - 2 \cos \alpha_{S} + 1}}}
\]

Case D: \(\min d_{FS}(t)\) at the segment \(2d_{FS}(t)\) but when \(t = \gamma_{S}/\nu_{F}\), i.e., when leading aircraft is landing.

From equation (3) and for

\[2d_{FS}(t) \bigg|_{t=\gamma_{S}/\nu_{F}} = \delta_{FS}\]

it follows that

\[F_{S}^{A} F_{S}^{d_{05}} + F_{S}^{B} F_{S}^{d_{05}} + F_{S}^{C} = 0\]

where

\[F_{S}^{A} = 1\]
\[F_{S}^{B} = 2 \gamma_{S} (\cos \alpha_{S} - \mu)\]
\[F_{S}^{C} = \gamma_{S}^2 (\mu^2 - 2 \mu \cos \alpha_{S} + 1) - \delta_{FS}^2\]

The necessary initial separation for Case D is therefore,

\[
\hat{d}_{05}^{d} = \frac{-F_{S}^{B} + \sqrt{F_{S}^{B}^2 - 4F_{S}^{C}}}{2}
\]

The above solutions to cases A, B, C, and D illustrate how to compute
The question now is which of these four values represents \hat{FS}_0.

The rule governing this choice will be as follows:

$$\hat{FS}_0 = \min_k \hat{FS}_{0k},$$

such that

$$d_{FS}(t) \geq \delta_{FS} \quad \text{for all } t \quad \text{and}$$

$$d_{FS}(t) \bigg|_{t=FS_{k*}} = \delta_{FS}.$$

Algorithm for \hat{FS}_0 is given in Appendix A.1. Subroutine SDOFS which computes \hat{FS}_0 is given in Appendix B.2.

2.5.3. The case of slow aircraft followed by fast aircraft

This case is shown in Figs. 20a and 20b, and corresponding distance equations are given in Section 2.4.3. From the distance equations it can be seen that the first two segments of $d_{SF}(t)$, $1_{SF}(t)$ and $2_{SF}(t)$ are positive square roots of a parabola and that the third segment, $3_{SF}(t)$, is an increasing linear function of t.

As noted in Section 2.4.3, this SF (slow followed by fast) sequence consists of cases a and b; they will be treated here separately.

Case a: $\hat{SF}_0 < \beta$ (See Fig. 20a and Fig. 24a.)

From equation (6) and for

$$\frac{d^2_{SF}(t)}{dt^2} = 0;$$
the time of minimum separation on second segment, \(t_{2}^{*} \), is found to be

\[
SF_{2}^{*} = \frac{SF_{0} (1 - \mu \cos \alpha_{s})}{(\mu^2 - 2 \mu \cos \alpha_{s} + 1)v_{F}}.
\]

It can be seen that \(SF_{2}^{*} > 0 \); the second segment of \(d_{SF}(t) \) is therefore a decreasing function of \(t \) over its entire range (see Fig. 24a).

On the other hand, the third segment of \(d_{SF}(t) \) is a decreasing linear function of \(t \). It can also be shown that the slope of \(2d_{SF}(t) \) when \(t = 0 \) \((t = 0\) being the limit between \(2d_{SF}(t) \) and \(3d_{SF}(t) \)) is steeper than the slope of \(3d_{SF}(t) \).

The above characteristics of the function \(d_{SF}(t) \) can then be said to support the following conclusion: the shape of function \(d_{SF}(t) \) could correspond to one of the alternatives shown in Fig. 24a.

The following table lists all of the possible shapes of function \(d_{SF}(t) \), see also Fig. 24a.

<table>
<thead>
<tr>
<th>(d_{SF}(t))</th>
<th>(2d_{SF}(t))</th>
<th>(\min d_{SF}(t))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>(\text{at point})</td>
</tr>
<tr>
<td>a</td>
<td>d</td>
<td>A</td>
</tr>
<tr>
<td>b</td>
<td>d</td>
<td>D</td>
</tr>
<tr>
<td>c</td>
<td>d</td>
<td>D</td>
</tr>
</tbody>
</table>

Using, then, the argument developed in Section 2.5.2, the solutions for initial separations are derived for the cases when \(\min d_{SF}(t) \) occurs at points \(A \) or \(D \) (Fig. 24a).
Case A: \(\min d_{SF}(t) \) at segment \(\int d_{SF}(t) \), i.e., for \(t < \frac{SF^d_0 - \beta}{v_F} \)

From equation (5) and for

\[
\frac{3}{2} \frac{d^2}{dt^2} d_{SF}(t) = 0 .
\]

The time when the minimum separation appears, \(SF^*_1 \), is then found to be

\[
SF^*_1 = - \frac{SF^d_0 [\mu \cos(\alpha_S - \alpha_F) - 1] + \beta [(1 - \cos \alpha_F) - \mu (\cos \alpha_S - \alpha_F) - \cos \alpha_S]}{\mu^2 - 2\mu \cos(\alpha_S - \alpha_F) + 1} v_F .
\]

Further, from condition

\[
1 d_{SF}(t) \bigg|_{t=SF^*_1} = 0
\]

and from equation (5), the following is found

\[
SF^A_{SF} d^2_{SF0} + SF^B_{SF} d^2_{SF0} + SF^C_{SF} = 0
\]

where

\[
SF^A_{SF} = 1 - \frac{[\mu \cos(\alpha_S - \alpha_F) - 1]^2}{\mu^2 - 2\mu \cos(\alpha_S - \alpha_F) + 1}
\]

\[
SF^B_{SF} = -2\beta [(1 - \cos \alpha_F) + \frac{[\mu \cos(\alpha_S - \alpha_F) - 1][(1 - \cos \alpha_F) - \mu (\cos (\alpha_S - \alpha_F) - \cos \alpha_S)]}{\mu^2 - 2\mu \cos(\alpha_S - \alpha_F) + 1}]
\]
\[
S_{1}^{C} = B^{2} \left(2(1 - \cos \alpha_{P}) - \frac{(1 - \cos \alpha_{P}) - \mu(\cos(\alpha_{S} - \alpha_{P}) - \cos \alpha_{S})}{\mu^{2} - 2 \mu \cos(\alpha_{S} - \alpha_{P}) + 1} \right) \cdot \delta_{SF}^{2}.
\]

The necessary initial separation for Case A is therefore,

\[
\hat{d}_{01}^{SF} = - \frac{S_{F1}^{B} + \sqrt{S_{F1}^{B^{2} - 4S_{F1}^{A}S_{F1}^{C}}}}{2S_{F1}^{A}}.
\]

Case D: \(\min d_{SF}(t) \) at the upper limit of the range of segment \(3_{SF}(t) \), i.e., for \(t = t_{5} = \frac{\gamma_{S}}{\mu_{F}} \) (the time when leading aircraft is landing)

From equation (7) and for

\[
t = t_{5} = \frac{\gamma_{S}}{\mu_{F}}
\]

and using the condition

\[
3_{SF}(t)\bigg|_{t=t_{5}^{*}_{SF3}} = \delta_{SF}
\]

it follows that the necessary initial separation for case D is:

\[
\hat{d}_{03}^{SF} = \hat{d}_{05}^{SF} = \delta + (1 - \mu) \frac{\gamma_{S}}{\mu}.
\]
Case b. $d_{SF}(t)$ > β (See Fig. 20b and Fig. 24b, c, and d.)

The only general conclusion about function $d_{SF}(t)$ is that in case b the third segment, $d_{SF}(t)$, is a decreasing linear function of t.

The possible alternatives for the shape of $d_{SF}(t)$ and the locations of the $\min d_{SF}(t)$ are shown in Figs. 24b, c and d; these alternatives are presented in the following table.

<table>
<thead>
<tr>
<th>$d_{SF}(t)$</th>
<th>$d_{SF}(t)$</th>
<th>$d_{SF}(t)$</th>
<th>$\min d_{SF}(t)$</th>
<th>Fig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, $d_{SF}(t)$</td>
<td>2, $d_{SF}(t)$</td>
<td>3, $d_{SF}(t)$</td>
<td>at point</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>e</td>
<td>f or g</td>
<td>A</td>
<td>24b</td>
</tr>
<tr>
<td>b</td>
<td>e</td>
<td>g</td>
<td>D</td>
<td>"</td>
</tr>
<tr>
<td>c</td>
<td>e</td>
<td>g</td>
<td>D</td>
<td>"</td>
</tr>
<tr>
<td>c</td>
<td>e</td>
<td>f</td>
<td>C</td>
<td>"</td>
</tr>
<tr>
<td>d</td>
<td>e</td>
<td>f</td>
<td>C</td>
<td>"</td>
</tr>
<tr>
<td>d</td>
<td>e</td>
<td>g</td>
<td>D</td>
<td>"</td>
</tr>
<tr>
<td>a</td>
<td>h</td>
<td>g</td>
<td>A</td>
<td>24c</td>
</tr>
<tr>
<td>b</td>
<td>h</td>
<td>g</td>
<td>D</td>
<td>"</td>
</tr>
<tr>
<td>d</td>
<td>h</td>
<td>g</td>
<td>D</td>
<td>"</td>
</tr>
<tr>
<td>a</td>
<td>i</td>
<td>f</td>
<td>A</td>
<td>24d</td>
</tr>
<tr>
<td>a</td>
<td>i</td>
<td>g</td>
<td>D</td>
<td>"</td>
</tr>
<tr>
<td>d</td>
<td>i</td>
<td>f</td>
<td>B</td>
<td>"</td>
</tr>
<tr>
<td>d</td>
<td>i</td>
<td>g</td>
<td>D</td>
<td>"</td>
</tr>
</tbody>
</table>

Comparing equations (5) and (7) or (8) and (10) it can be seen that they are identical, but the ranges of functions are different.

However, the initial separations found for the cases when $\min d_{SF}(t)$
occurs at points A or D are the same, for both the a and b cases. Therefore, only the initial separations for the situations when \(\min d_{SF}(t) \) occurs at points B or C have to be found.

Case B: \(\min d_{SF}(t) \) at the limit of segments \(1_{d_{SF}}(t) \) and \(2_{d_{SF}}(t) \), i.e., when \(t = 0 \)

From equations (8) and (9) and for

\[
1_{d_{SF}}(t)|_{t=0} = 2_{d_{SF}}(t)|_{t=0} = \delta_{SF}
\]

the following is found

\[
SF_{4A} \hat{d}_{04}^2 + SF_{4B} SF_{404} + SF_{4C} = 0,
\]

where

\[
SF_{4A} = 1
\]

\[
SF_{4B} = -2 \beta(1 - \cos \alpha_F)
\]

\[
SF_{4C} = 2\beta^2(1 - \cos \alpha_F) - \delta_{SF}^2.
\]

The necessary initial separation for case B is therefore,

\[
\hat{d}_{04} = \frac{-SF_{4B} + \sqrt{SF_{4B}^2 - 4SF_{4C}}}{2}
\]
Case C: \(\min d_{SF}(t) \) at segment \(2d_{SF}(t) \), i.e., when \(0 < t < \frac{SF \cdot d_o - \beta}{v_F} \)

From equation (9) and for

\[
\frac{\partial^2 d_{SF}(t)}{\partial t^2} = 0
\]

the time when minimum separation appears, \(SF t^*_2 \), can be found, as follows

\[
SF t^*_2 = \frac{SF d_o (1 - u \cos \alpha_F) - \beta (1 - \cos \alpha_F) (1 + \mu)}{(\mu^2 - 2 \mu \cos \alpha_F + 1) v_F}
\]

Therefore from equation (9) and for

\[
2 d_{SF}(t) \bigg|_{t=SF t^*_2} = \delta
\]

the following is found

\[
SF^A 2d_{SF}^0 + SF^B 2d_{SF}^0 + SF^C 2d_{SF}^0 + SF^D 2d_{SF}^0 = 0
\]

where

\[
SF^A = 1 - \frac{(1 - u \cos \alpha_F)^2}{\mu^2 - 2 \mu \cos \alpha_F + 1}
\]

\[
SF^B = -2\beta \left(1 - \cos \alpha_F \right) - \frac{(1 - u \cos \alpha_F) (1 - \cos \alpha_F) (1 + \mu)}{\mu^2 - 2 \mu \cos \alpha_F + 1}
\]
The necessary initial separation for case C is therefore,

$$SF_{02}^d = - \frac{SF_{02}^B + \sqrt{SF_{02}^B^2 - 4 SF_{02}^A SF_{02}^C}}{2 SF_{02}^A}.$$

The above solutions to cases A, B, C, and D illustrate how to compute SF_{01}^d, SF_{02}^d, SF_{04}^d, and SF_{05}^d. The question now is which of these four values represents SF_{0}^d.

The rule governing this choice will be as follows,

$$SF_{0}^d = \min_k SF_{0k}^d,$$

such that

$$d_{SF}(t) \geq SF_{0}^d \text{ for all } t$$

and

$$d_{SF}(t) \Big|_{t=SF_{0k}^d} = SF_{0}^d.$$

The algorithm to find SF_{0}^d is shown in a flowchart in Appendix A.2. Subroutine $SDOSF$ which computes SF_{0}^d is given in Appendix B.2.

2.6. Equations for Interarrival Time at Threshold

When all initial separations for the four sequences (FF, SS, FS and SF) are found, the threshold interarrival times for the same sequences should be computed.

Using the expression for t_{ij} given in section 2.3,
\[t_{ij} = \frac{\gamma_{ij} + \hat{d}_{ij} - \gamma_{ij}}{v_j} - \frac{\gamma_{ij}}{v_i} , \]

and the definition of \(\gamma_{ij} \) from Section 2.1,

\[\gamma_{ij} = \min(\gamma_i, \gamma_j) , \]

The interarrival times at the threshold for the four above sequences will be

\[t_{FF} = \frac{\hat{d}_{FF}}{v_F} \]

\[t_{SS} = \frac{\hat{d}_{SS}}{v_S} \]

\[t_{FS} = \frac{\gamma_S + \hat{d}_{FS} - \gamma_S}{v_S} - \frac{\gamma_S}{v_F} \]

\[t_{SF} = \frac{\gamma_S + \hat{d}_{SF} - \gamma_S}{v_F} - \frac{\gamma_S}{v_S} . \]

Subroutine SDOT given in Appendix B.2 computes the values of interarrival times.

In the case when there are more than two aircraft types in a population, the matrix of the interarrival times should be computed in such a way that the aircraft population is considered pair by pair; each pair always consists of a fast and a slow aircraft.
2.7. **Model for Arrival Runway Capacity When Aircraft Mix Consists of Two Aircraft Types**

As noted in Section 2.5, it was decided to compute capacity for the discrete values of angles α_i. The model will then consist of the following steps:

1. Generate angles α_S and α_F;
2. Compute initial separation \hat{d}_o^{FF}, \hat{d}_o^{SS}, \hat{d}_o^{SF} and \hat{d}_o^{FS};
3. Compute interarrival times at threshold t_{FF}, t_{SS}, t_{SF} and t_{FS};
4. Compute mean interarrival times \bar{t};
 \[\bar{t} = \sum_{i,j} p_i p_j = t_{FF} p_F p_F + t_{SF} p_F p_S + t_{FS} p_F p_S + t_{SS} p_S p_S \]
5. Compute landing capacity λ;
 \[\lambda = \frac{1}{\bar{t}} \]
6. Go to 1.

The restrictions for model input parameters as well as the ranges for variables α_S and α_F are given in Fig. 25.

Program computing capacity for the case of only two aircraft types, CAPSF, is given in Appendix B.3.

For the following input:

--- aircraft approach velocities: v_F and v_S
--- necessary straight approach lengths: γ_F and γ_S
--- proportion of aircraft types in the mix: p_F and p_S
--- matrix of horizontal separation rules: $\delta_{ij} = \{\delta_{FF}, \delta_{FS}, \delta_{SF}, \delta_{SS}\}$,
the following output is obtained:

-- matrix of capacities \(\lambda(\alpha_S, \alpha_F) \)
-- matrices of initial separations \(\hat{SF}^d_0(\alpha_S, \alpha_F) \)
\(\hat{FS}^d_0(\alpha_S, \alpha_F) \)
\(\hat{FF}^d_0(\alpha_S, \alpha_F) \)
\(\hat{SS}^d_0(\alpha_S, \alpha_F) \)
-- matrices of indices showing the shape of function \(d_{ij}(t) \) and location of minimum separation (see Appendix A)
\(\text{INDXF}^S(\alpha_S, \alpha_F) \)
\(\text{INDXF}^F(\alpha_S, \alpha_F) \)
\(\text{INDXFF}(\alpha_S, \alpha_F) \)
\(\text{INDXSS}(\alpha_S, \alpha_F) \).

An example of this output is given in Appendix C.1.

2.8. Model for Arrival Runway Capacity When Aircraft Mix Consists of Three or Four Aircraft Types

A procedure similar to that discussed in Section 2.7 is used to compute capacity for these two cases, a difference being that instead of preserving the values of capacity for all combinations of angles generated, the highest \(N \) values for capacity are stored during the computation and then printed, together with the values of the angles which provide those \(N \) maximum capacities. For the purpose of comparison the lowest \(N \) values are preserved and printed as well.

The procedure to determine \(N \) maximum and \(N \) minimum capacities for the case of three aircraft consists of the following steps.*

*Note that the case when a population consists of four aircraft types is not illustrated, since this case is essentially similar to that following three aircraft.
1. Generate angles α_1, α_2 and α_3.

2. Group the aircraft types in couples, i.e.,
 - 1 and 2
 - 1 and 3
 - 2 and 3,

 and treat each of these couples as a pair of slow and fast, S and F.

3. For each of the couples compute initial separations, thus obtaining a matrix of initial separations,

 \[\hat{d}_{ij} \]

4. From the matrix of initial separation, \hat{d}_{ij}, compute the matrix of threshold interarrival times, t_{ij}.

5. Compute mean interarrival time,

 \[\bar{t} = \sum t_{ij} p_i p_j \]

6. Compute landing capacity,

 \[\lambda = \frac{1}{\bar{t}} \]

7. If the capacity found belongs to the set of N highest or N lowest capacity values, store it along with the corresponding angles. If the capacity does not belong to either of these sets, storage is unnecessary.

8. Go to 1.

The restrictions for model input parameters and the ranges of
variables α_i are given in Figs. 26 and 27, for the populations of three and four aircraft types.

Programs computing capacities for the two populations, CAP3 and CAP4, are given in Appendices B.4 and B.5.

For the following input,

-- aircraft velocities v_i for $i = 1, 2, 3$ or $i = 1, 2, 3, 4$
-- necessary straight approach lengths γ_i
-- proportion of aircraft types in the mix p_i
-- matrix of horizontal separation rules d_{ij} for $i = 1, 2, 3$ or $i = 1, 2, 3, 4$

the following output is obtained:

- N maximum values of capacity λ and corresponding angles α_i for $i = 1, 2, 3$, or $i = 1, 2, 3, 4$
- N minimum values of capacity λ and corresponding angles α_i for $i = 1, 2, 3$ or $i = 1, 2, 3, 4$.

An example of output from program CAP4 is given in Appendix C.3.

Value N is arbitrarily set at 40.
3. Application of Capacity Models with Horizontal Separation Only

3.1. Input Data

Data for inputs into the models were obtained from: several references given in the reference list, particularly those concerned with approach speeds and the minimum length of straight final approach; consultation with airlines and aircraft manufacturers; and approach speed studies at the TRACON facility at the Oakland International Airport.

A review of these three data sources indicated that the following tabled inputs will usefully demonstrate the application of the proposed models.

Aircraft Classification

<table>
<thead>
<tr>
<th>Aircraft Type</th>
<th>Description</th>
<th>Approach Velocity v_i (kts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Propeller Driven 1</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>Propeller Driven 2</td>
<td>120</td>
</tr>
<tr>
<td>3</td>
<td>Nonheavy Jet</td>
<td>140</td>
</tr>
<tr>
<td>4</td>
<td>Heavy Jet</td>
<td>150</td>
</tr>
</tbody>
</table>

Minimum Length of Straight Final Approach (γ)

<table>
<thead>
<tr>
<th>Aircraft Type</th>
<th>γ_i (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
Minimum horizontal separation rules for aircraft i followed by aircraft j

a. $\delta_{ij} = 5$ nm when the leading aircraft is aircraft type 4 ($i = 4$) and trailing aircraft is either type 1, 2, or 3 ($j = 1, 2, 3$)

$$\delta_{ij} = 4$$ nm when the leading aircraft is aircraft type 4 ($i = 4$) and trailing aircraft is aircraft type 4 ($j = 4$)

$$\delta_{ij} = 3$$ nm when the leading aircraft is either aircraft type 1, 2, or 3 ($i = 1, 2, 3$)

b. $\delta_{ij} = 3$ nm for all aircraft types

c. $\delta_{ij} = 2$ nm for all aircraft types

Aircraft Mix

<table>
<thead>
<tr>
<th>Aircraft Type</th>
<th>percentage of aircraft type i in mix</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>a</td>
</tr>
<tr>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>80</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
</tr>
</tbody>
</table>

Using ILS, all aircraft have to pass through a common entry gate; therefore, the length of approach along the extended runway centerline is the same for all aircraft types; that is, $\gamma_1 = \gamma = 6$ nm (6 nm is assumed to be the average distance from the entry gate to the runway threshold).

Using MLS, each aircraft of type i enters the extended runway centerline at its own entry gate, E_i, at distance γ_i from the runway threshold (see the table on the previous page).

For both ILS and MLS, the angles of entry to the common approach
path are optimized to provide maximum capacities. These capacities are then compared.

As stated in Chapter 1, this comparison is made assuming that both systems are free of errors: aircraft precisely maintain assigned flight paths and arrive at points in space precisely when they are expected to be there.

3.2. Analysis of Results

The first case involves aircraft mixes that contain only two aircraft types (mixes a, b, c and d), namely, heavy and nonheavy jet airplanes. The results are shown in Fig. 28, and the output tables for Points A and B are given in Appendices C.1 and C.2.

The curves in Fig. 28 correspond to the optimum values of the angles of intersection of the entry path with the final approach path, α_F and α_S. For point A, $\alpha_S = 10^0$ and $\alpha_F = -10^0$ (see table CAPSF, Appendix C.2). The analysis also shows that α_S and α_F can vary considerably and yet provide about the same capacity as long as the geometry of the flight paths is similar.

There are several points that can be made about the angles α_S and α_F which are important when landing capacity is considered (see Fig. 29). One is the value of the relative angle α_R (the angle between the two paths before they enter the extended runway centerline).

$$\alpha_R = |\alpha_S - \alpha_F|.$$

This relative angle is important when the two aircraft have a common entry gate, as in ILS (Fig. 29c and d) or when they have different entry gates, as in MLS (Fig. 29a and b). The optimum range of α_R
depends on the ratio of approach speeds of two aircraft, \(\mu = \frac{v_S}{v_F} \).
The greater is \(\mu \) the smaller is \(\alpha_R \). From table CAPSF, in Appendix C.2, it can be seen that when \(v_S = 140 \text{ kts} \) and when \(v_F = 150 \text{ kts} \), i.e., for a high value of \(\mu \), the optimum range for \(\alpha_R \) is 10-40°.

Another point about path configuration is how well centered \(\alpha_R \) is relative to the extended centerline of the runway. The configurations in which the approach paths are more or less symmetrical relative to the extended runway centerline, as shown in Figs. 29a and 29c, result in larger capacities than those when \(\alpha_R \) is not symmetrical with the extended runway centerline (Figs. 29b and d). This point can be seen in the CAPSF table, Appendix C.2. (The optimal range of angles for \(\alpha_S \) and \(\alpha_F \) is circled in that table.)

Returning to Fig. 28, it can be seen that there is no essential difference in landing capacity between MLS and ILS when the mix consists of aircraft types with similar approach speeds. There is a slight increase in capacity as the proportion of faster aircraft in the mix is increased, when the minimum separation rules for all aircraft types are \(\delta = 2 \text{ nm} \) and \(\delta = 3 \text{ nm} \). This slight increase is to be expected because the average speed of the stream of aircraft increases. When, however, the current \(\delta = 3, 4, 5 \text{ nm} \), separation rules are applied; the capacity decreases as the proportion of fast aircraft increases. This decrease occurs for the following reasons: because the fast aircraft are also the heaviest, therefore, when a heavy aircraft is followed by a light one the pair must be minimally separated a distance of 5 nm; the minimum separation must be 4 nm when a heavy aircraft is followed by another heavy aircraft. In short, the average spacing between approaching aircraft increases when the minimum separation rule
δ = 3, 4, 5 nm is applied, and this has more influence on the capacity than the mentioned increase of average speed of the aircraft stream.

Fig. 30 shows the importance of optimizing entry angles. (The CAPSF tables in Appendices C.1 and C.2 should be consulted for a more detailed treatment of this subject.) Note that the figure's curves were plotted not only for the optimal angles of ±10° (see also Fig. 28 but also for values of α₁ and α₂ of ±40°, ±60°, and ±80°. Decreases in landing capacity of 4%, 11% and 21% were found relative to the optimal configuration. Similar results could be shown for cases when the minimum separation rules are δ = 2 nm or δ = 3, 4, or 5 nm. This implies (compare Fig. 28 and Fig. 30) that under the assumptions of the model and for the aircraft types considered, runway landing capacity is more sensitive to changes in entry angles than to other parameters, such as, for example, the proportion of fast and slow aircraft, or the length of the common approach along the extended runway centerline. As shown in Fig. 28, shortening of the common approach length from 6 nm to 4 nm does not result in any significant increase of landing capacity even for the optimal angles of entry, because the difference in approach speed of the two aircraft is relatively small.

A second case which demonstrates the application of the model involves four aircraft types in a mix (mixes e, f and g from Section 3.1). The results are shown in Fig. 31. (Example output for point C in Fig. 31 is given in Appendix C.3.) From this figure it can be seen that the use of MLS increases landing capacity, and for the given example the increase is about 6-10% when minimum horizontal separation is δ = 3, 4, 5 nm, 7-11% when δ = 3 nm, and 10-16% when δ = 2 nm.

Note that the increase of capacity is greater when the aircraft
mix consists of approximately half fast and half slow aircraft (e.g., \(p_1 = p_2 = .3, p_3 = p_4 = .2 \)) than in the case when one type of aircraft prevails (e.g., \(p_1 = p_2 = .1, p_3 = .6, p_4 = .2 \) which is a mix with 80% of fast aircraft). This point agrees with the conclusion made earlier in this section that the increase of capacity obtainable with MLS is rather small when a population consists of aircraft types with similar approach speeds. This point also agrees with the discussion of expected capacity increase given in Section 2.1.

The capacity increase obtained in the second case (four aircraft types) is significantly greater than that obtained in the first (two aircraft types), for two reasons: first, the differences between the velocities of the aircraft types are much greater in the second case than in the first; second, the decrease of the common path length is greater in the second case (on the average), and particularly because the slow aircraft types enter the intended runway centerline only 2 nm from the runway threshold.

As the model computes capacity for discrete values of angles \(\alpha_i \), it should be noted again (as in the case when there are two aircraft types in the mix) that, for all practical purposes, a group of solutions (rather than a single solution) ensure maximum capacity. This can be seen from the output example for CAP4, Appendix C.3.

Some of the solutions are presented graphically in Fig. 32; all result in about the same capacity. Differences between solutions are the result of: slight changes in some of the entry angles; an interchange of the given trajectories for two similar aircraft types; or a combination of both. It should, however, also be noted that the flight path configurations shown on Fig. 32 are not radically different.
If entry angles radically different from those shown on Fig. 32 are used, the capacity could be reduced by as much as 20% (see the Minimum Capacity table in Appendix C.3).

Some additional examples indicate that further decrease of the length of common straight approach (e.g., γ₁ = 1 nm, γ₂ = 2 nm, γ₃ = 3 nm and γ₄ = 4 nm) will not bring any significant increase in runway landing capacity (see Fig. 31).

4. Analysis of Capacity Models with Horizontal and Vertical Separation

4.1. Introduction

Chapters 2 and 3 have considered a landing capacity model which is governed by the assumption that in accordance with current ATC rules only horizontal separation between aircraft is allowed during approach.

In this (and the next) chapter, runway landing capacity will be analyzed. It will be here assumed that horizontal and vertical separation between aircraft approaching a runway is possible. Landing capacity will be computed using, for each particular aircraft pair, the more efficient of the two possible aircraft separations.

Some preparatory remarks should be made before proceeding. First, no two-segment approach paths will be considered. Second, as the feasible angles of descent under IFR conditions vary from 2.5° to 8-10°, this span of about 7° does not allow for more than two "useful" paths in the vertical plane, useful referring to those paths which provide vertical separations that are more suitable from a capacity point of view than the corresponding horizontal ones; consequently, there is no point in dividing all aircraft types into more than two categories, these categories being determined by the descent angle capabilities of the aircraft type.

These two categories will be: (1) aircraft capable of performing steep descent (STOL aircraft) and (2) the remaining aircraft population (CTOL aircraft). Second category aircraft are assumed to be in the same horizontal plane and are separated by horizontal separation rules. If a vertical separation of only 1000 ft (305 m) were applied (for descent angles of 2.5° or 3°) the resulting horizontal spacings are either greater than the prescribed minimum given by the horizontal
separation rules or are infeasible because of wake vortex separations. The argument in chapters 2 and 3 will apply to the situation when both groups of aircraft appear in the mix. Vertical separation will be examined only for the cases when at least one of the two consecutive landings is performed by an aircraft with steep descent capability.

4.2. Vertical Separation

If a pair of aircraft land one after the other and one of them is capable of performing steep descent, it is assumed that two distinct approach paths in the vertical plane are followed. (This situation is presented in Fig. 33.) These paths are denoted as higher approach, \(H \), and lower approach, \(L \). Similar notations will be used for all aircraft utilizing these paths. It is assumed further than the aircraft using the higher path will have lower approach speeds than those using the lower path, i.e.,

\[
V_H < V_L.
\]

This assumption implies that if only horizontal separation is employed, the aircraft pair landing sequence low followed by high (LH) will be critical from a capacity point of view because it actually represents the fast followed by slow aircraft sequence (FS). This sequence is shown in Fig. 34 at the moment when the landing aircraft, \(L \), crosses the threshold. If the vertical separation, \(\chi \), between the two aircraft produces \(H_\chi \), the horizontal spacing between the two aircraft at that moment—which is less than the spacing required under ATC horizontal separation rules, some gains in capacity can be expected. However, to assure that a vertical separation between the two aircraft of
at least χ is continually preserved before the leading aircraft, L, lands, the following condition has to be satisfied:

$$v_H \sin \theta_H \geq v_L \sin \theta_L$$

i.e., the vertical component of the speed of aircraft H has to be equal to or higher than that of aircraft L. If this condition is satisfied, the vertical gap between the two aircraft continually closes during approach until it reaches χ, the minimum required vertical separation, when the leading aircraft lands.

This condition can also be:

$$v_H \geq \frac{v_L \sin \theta_L}{\sin \theta_H}$$

This variation of the condition suggests, since angles θ_L and θ_H are small, that if the angle θ_H is three times as big as angle θ_L, then v_H has to be greater than one third of v_L. This is an approximation, but it shows that when θ_H is large enough the condition is always satisfied.

An exact solution for the minimum speed of an aircraft on the upper approach path, when $v_L = 150$ kts, $\theta_L = 3^\circ$ and $\theta_H = 7.5^\circ$, is that $v_H \geq 60$ kts. This condition will be satisfied because the aircraft capable of steep descent have expected minimum approach speeds of 70 to 80 kts.

When the necessary vertical separation condition is satisfied the separation between the two aircraft in sequence LH, at the moment when leading aircraft lands, will be
When \(\theta_H = 7.5^\circ \), \(H_X^\ell \) has the following values.

<table>
<thead>
<tr>
<th>(X) (ft)</th>
<th>(H^\ell_X) (m)</th>
<th>(H^\ell_X) (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>305</td>
<td>1.25</td>
</tr>
<tr>
<td>1500</td>
<td>457</td>
<td>1.87</td>
</tr>
<tr>
<td>2000</td>
<td>610</td>
<td>2.50</td>
</tr>
</tbody>
</table>

The table indicates that vertical separation causes some capacity improvement, since the horizontal spacings of vertically separated aircraft are shorter than the minimum required horizontal separations, except when \(\delta_{ij} = 2 \text{ nm} \) and \(X = 2000 \text{ ft} (610 \text{ m}) \).

The sequence under consideration has been LH, an aircraft on a lower path followed by an aircraft on a higher one. However, there are three other possible same pair sequences: HH, HL, and LL.

Sequence HH will require a vertical separation \(X \) when the leading aircraft lands, at which moment (see Fig. 34) the horizontal spacing will be \(H_X^\ell \).

For sequence HL, horizontal separation will be such that when the leading aircraft, H, lands, the trailing aircraft, which has, as noted, a higher approach speed, will be distance \(\delta \) from the threshold.

Sequence LL requires horizontal separation only. The model described in Chapter 2 will be used to compute threshold interarrival time as it relates to horizontal separation.
The requirements for each of the above four approach sequences suggest that the threshold interarrival times for a pair of aircraft using different descent paths are

\[t_{LH} = t_{HH} = \frac{H^2 X}{v_H}, \]

\[t_{HL} = \frac{\delta}{v_L}. \]

\[t_{LL} = \text{to be found using the model for horizontal separation only.} \]

The next section will describe how these interarrival times can be combined and runway landing capacity will be computed.

4.3. Model for Arrival Runway Capacity

The following description of this simple model will consider four differing aircraft types using the same runway. The types are denoted as 1, 2, 3 and 4; speeds ascend from type 1, the slowest, to type 4, the fastest. Only type 1 aircraft are capable of performing steep descent, i.e., they are type H; all other types are type L (see Section 4.2.). The following model parameters are

\[v_i = \text{aircraft approach speed} \quad i = 1, 2, 3, 4, \]

\[\gamma_i = \text{min straight final approach lengths} \quad i = 1, 2, 3, 4 \]

\[p_i = \text{proportion of aircraft type} \quad i = 1, 2, 3, 4 \]

\[\delta_{ij} = \text{min horizontal separation matrix} \quad i = 1, 2, 3, 4; \quad j = 1, 2, 3, 4 \]
\[\theta_i = \text{angle of descent} \quad \theta_1 > \theta_2 = \theta_3 = \theta_4 \]

\[\chi = \text{minimum vertical separation.} \]

To find runway capacity when aircraft type 1 use a steeper angle of descent than the other types, and when vertical separation between aircraft type 1 and the others is applied, the following steps should be made.

1. Check whether the necessary condition for vertical separation (given in Section 4.2) is satisfied, i.e.,

\[v_H > \frac{v_L \sin \theta_L}{\sin \theta_H}, \]

in this case it should read:

\[v_1 > \frac{v_4 \sin \theta_4}{\sin \theta_1}, \]

and \(v_4 \geq v_3 \geq v_2 \) and \(\theta_2 = \theta_3 = \theta_4 \).

If the condition is satisfied vertical separation can be applied.

2. Form the matrix of interarrival times, as follows.

\[
\text{Trailing aircraft} \\
\begin{array}{c|cccc}
& 1 & 2 & 3 & 4 \\
\hline
1 & t_{1,1} & t_{1,2} & t_{1,3} & t_{1,4} \\
2 & t_{2,1} & & & \\
3 & t_{3,1} & t_{L,L} & & \\
4 & t_{4,1} & & & \\
\end{array}
\]
\[t_{1,1} = t_{2,1} = t_{3,1} = t_{4,1} = t_{HH} = \frac{H_X}{v_H} = \frac{X}{v_H \tan \theta_H} = \frac{X}{v_1 \tan \theta_1} \]

\[t_{1,2} = \frac{\delta_{1,2}}{v_2} \]

\[t_{1,3} = \frac{\delta_{1,3}}{v_3} \]

\[t_{1,4} = \frac{\delta_{1,4}}{v_4} \]

\[t_{LL} \]

is computed as the mean interarrival time when the population consists of three aircraft types; computation involves use of a model which assumes horizontal separation only (Program CAP3). All the input values of this model are the same as detailed earlier in this section, except that the proportion of aircraft in the mix is modified in such a way that

\[\sum_{i=2,3,4} p'_i = 1, \text{ where } p'_i \text{ are new proportions and the relation between } p'_2, p'_3, \text{ and } p'_4 \text{ is the same as it was between } p_2, p_3 \text{ and } p_4, \text{ namely,} \]

\[p'_i = \frac{p_i}{\sum_{i=2,3,4} p_i} \]

It should be noted that when obtaining \(t_{LL} \) the optimal horizontal path geometry for aircraft types 2, 3 and 4 will be found.

3. Find the mean threshold interarrival time, \(\bar{t} \).
\[\overline{c} = \sum_{i=1}^{4} t_{ij}^p p_{ij} + \sum_{i=2,4} t_{ij}^p p_{ij} + t_{LL} \sum_{i=2,4} p_{ij} \]

4. Compute runway landing capacity, which is

\[\lambda = \frac{1}{\overline{c}}. \]
5. Application of Capacity Model with Horizontal and Vertical Separation

5.1. Input Data

The second of the two examples given in Chapter 3 will be here modified so that the influence of vertical separation on capacity can be determined.

The example's classification of aircraft types is the same as that given in Section 3.1, page 55, excepting that type 1 aircraft are considered capable of performing steep descent. A corresponding set of descending angles are assumed as follows.

<table>
<thead>
<tr>
<th>A/C type</th>
<th>Angle of descent θ_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.5°</td>
</tr>
<tr>
<td>2</td>
<td>3°</td>
</tr>
<tr>
<td>3</td>
<td>3°</td>
</tr>
<tr>
<td>4</td>
<td>3°</td>
</tr>
</tbody>
</table>

Another exception is that if type 1 aircraft perform a descent where $\theta_1 = 7.5°$ they will have lower approach speeds, so that $v_1 = 80$ kts when vertical separation is applied. Speeds for aircraft types 2, 3, and 4 are the same as those listed in Section 3.1, page 55.

The remaining inputs for the capacity model with horizontal and vertical separation are as follows.

-- Minimum lengths of straight final approach for all four aircraft types are the same as those given in Section 3.1, page 55.
-- Minimum horizontal separation rules are as given in Section 3.1, page 56.
Minimum vertical separation rules are assumed to be the same as given in Section 4.2: \(\chi = 1000, 1500 \) and \(2000 \) ft (305, 457 and 610 m).

Aircraft mixes used in this example are the mixes \(\ell \), \(\ell \) and \(g \) given in Section 3.1, page 56.

In summary, modification of the selected example involves the following assumptions: an aircraft type 1 performs descent at a 7.5° angle with an approach speed of 80 kts; type 1 aircraft are separated vertically; type 1 aircraft are also separated from other aircraft types by vertical separation; a vertical separation between any two aircraft types can be either 1000, 1500 or 2000 ft. Aircraft types 2, 3 and 4 are separated horizontally.

Using the model described in Section 4.3, the results plotted in Figs. 35, 36 and 37 were obtained. Note that in these figures, plots for only horizontal separation are actually those given earlier in Fig. 31.

5.2. Analysis of Results

In Section 4.2, it was noted that for a steep angle of descent, \(\theta_H = 7.5^\circ \); minimum vertical separations of \(\chi \) are 1000, 1500 and 2000 ft (305, 457 and 610 m); horizontal spacings between two aircraft are 1.25, 1.87 and 2.50 nm, respectively, at that moment when the leading aircraft lands and trailing aircraft is on a steep descent path. These spacings are much shorter than the horizontal spacings between two aircraft at the moment when the leading aircraft lands if current ATC horizontal separation rules are applied. Consequently, significant improvements in landing capacity should be expected. An exception is
the case when required horizontal separation is only two nautical miles and vertical separation is either 1500 or 2000 ft; this exception applies particularly when vertical separation of 2000 ft is required and when \(\theta_H = 7.5^\circ \); the resulting horizontal spacing, \(H_X \), equals 2.5 nm; this horizontal spacing is larger than that required by minimum horizontal separation rules; therefore, the use of vertical separation in this case would decrease rather than increase capacity. The greatest improvement should be expected in the case when minimal horizontal separations are in their high range, e.g., 3, 4, 5 nm separation.

Figs. 35, 36, and 37 shows runway landing capacities for ILS and MLS procedures, the latter involving the use of: only horizontal separation, and horizontal and vertical separation. Input values for these capacities are those listed in the previous section.

The single difference in the capacities shown in Figs. 35, 36, and 37 is a result of differing minimum horizontal separation rules.

The minimum horizontal separation rules used in computation of the capacities shown in Fig. 35 require that \(\delta = 3, 4, \) or 5 nm. As this figure indicates, MLS procedures can produce a capacity increase of as much as 40 to 50% when compared under the same aircraft mix conditions with ILS procedures.

Fig. 36 shows the capacities obtained when the horizontal separation rules require that \(\delta = 3 \) nm. The increase in capacity when MLS rather than ILS procedures are used can be as much as 30 to 40%.

The capacities shown in Figs. 35 and 36 indicate that when any of the three vertical separations \((X = 1000, 1500, \) or 2000 ft) are applied higher capacity increases, compared with capacities obtainable when MLS procedures with only horizontal separations are applied, are
obtained. However, when the horizontal separation rules are from a capacity point of view improved, i.e., minimum horizontal separations are shorter, the additional gain in capacity, if any, is, as noted, smaller, see for example Fig. 37. This figure shows that a vertical separation of 1500 ft produces about the same result as a horizontal separation of 2 nm, i.e., the increase in capacity obtainable in both MLS cases (with and without vertical separation) is about 15%, when compared with the capacity obtainable with ILS. The figure also shows that a vertical separation of 1000 ft produces a capacity improvement of 30%, when compared with that obtainable with ILS. In contrast, the figure shows that if type 1 aircraft are separated vertically, from themselves and from other aircraft, by 2000 ft, rather than horizontally, by 2 nm, the effect of vertical separation on the capacity is negative.

Note that the highest obtainable increase in landing capacity when using MLS procedures occurs when the aircraft population consists of roughly equal divisions of fast and slow aircraft. (This point is discussed in Section 3.2.)

In Section 4.3 it was noted that when the capacity model (which responds to both horizontal and vertical separation rules) is applied, it produces optimal horizontal path geometry for aircraft types 2, 3, and 4. Further, in Section 3.2 it was noted that when horizontal separation rules are applied (to either MLS or ILS procedures) more than one optimal configuration results. Fig. 38 illustrates one of these approach paths configurations; this configuration maximizes landing capacity and produces the results shown in Figs. 35, 36 and 37. The paths are as follows.

-- Aircraft type 1 approaches on a glide slope of 7.5°, performing
either a straight (as shown in Fig. 38) or curved approach.

-- Aircraft types 2, 3 and 4 all approach on a 3° glide slope.

-- Aircraft type 4 approach directly along the extended runway centerline.

-- Aircraft type 3 intercept the extended runway centerline from its left side, at an angle of 20°, 4 nm from the threshold.

-- Aircraft type 4 intercept the extended runway centerline from its right side, at an angle of 30°, 2 nm from the threshold.
6. Conclusions

MLS allows the use of multiple approach path geometry in the final stage of approach, whereas ILS requires use of a common approach path. This research has considered runway landing capacity increases obtainable when MLS rather than ILS procedures are employed. Conclusions are as follows.

1. The approach path configuration shown in Fig. 13 is at least as suitable from a capacity point of view as any other possible configuration, when only horizontal separation is allowed (see Section 2.2).

2. The angles of entry, \(\alpha_i \), to the extended runway centerline have a significant effect on landing capacity; they should be optimized (see Section 3.2).

3. When only horizontal separation is allowed and when an aircraft population consists of aircraft with similar approach speeds, MLS procedures (differing final straight approach path) do not produce any improvement in landing capacity, when compared with capacities obtainable with ILS procedures (a common final approach path). (See Section 3.3.)

4. When only horizontal separation is allowed and an aircraft population consists of aircraft with considerably differing approach speeds, and for mixes of roughly half fast and half slow aircraft landing capacity improvements of 10-15% can be expected, when MLS rather than ILS procedures are employed (see Section 3.2).

5. If both vertical and horizontal separations are allowed during the approach phase, depending highly on the aircraft mix and
the applied minimum vertical separation rules, very significant improvements in landing capacity, as much as 50%, can be achieved, when MLS rather than ILS procedures are employed (see Section 5.2). These improvements are due to the vertical separation.
7. Figures
E Entry Gate
T Runway Threshold
OM Outer Marker
MM Middle Marker
IM Inner Marker

Figure 1
Figure 2
Figure 3
EdC^ dC
Y
E Entry Gate ,
T Threshold
Y Length of Path along Extended
Centerline of Runway
Δ Min. Separation given by ATC Rules
t\text{ij} Threshold Interarrival Time

\[t_{FS} = \frac{\Delta + \gamma \cdot \frac{Y}{v_S}}{v_F} = \frac{\Delta}{v_S} + \gamma \left(\frac{1}{v_S} - \frac{1}{v_F} \right) \]

a. Fast aircraft followed by slow one. \(V_i > V_j \)

b. Slow aircraft followed by fast one. \(V_i < V_j \)

Figure 4
$E^d_C = \delta \frac{V_F}{V_F - V_S}$

d_C = \text{Distance from the threshold where the two aircraft would "collide"}

$E^d_C = \text{Distance from the entry gate where the two aircraft would "collide"}$

t_C = \text{Time of collision}$
Figure 6
Figure 8
Figure 9
Figure 11
Figure 13
Figure 15
\[t_{ij} = \frac{x_{ij} + ij\bar{d}_o}{v_j} - \frac{x_{ij}}{v_i} \]

- \(x_{ij} \): Length of common path along extended runway centerline
- \(t_{ij} \): Threshold interarrival time
- \(ij\bar{d}_o \): Initial separation distance between aircraft \(i \) and \(j \) at \(t=0 \) measured along the path of aircraft \(j \)

Figure 16
Case: (Sequence)

1. SS
 ![Diagram of SS case]

2. FF
 ![Diagram of FF case]

3. FS
 ![Diagram of FS case]

4. SF₀
 ![Diagram of SF₀ case]

5. SF₀
 ![Diagram of SF₀ case]

Figure 17
Leading aircraft

\[d(t) = d_{SS}(t) \text{ or } d_{FF}(t) \]

\[v = v_F \text{ or } v_S \]

\[\alpha = \alpha_F \text{ or } \alpha_S \]

\[\gamma = \gamma_F \text{ or } \gamma_S \]

\[\Lambda = \Lambda_F \text{ or } \Lambda_S \]

\[d_0 = FFd_0 \text{ or } SSd_0 \]

Figure 18
\[
\frac{v_S}{v_F} = \mu \leq 1
\]

\[t < -\frac{\beta}{v_F}\]

Threshold T

Runway

\[2d_{FS}(t)\]

\[d_{FS}(t)\]

\[t = 0\]

\[0 < t < \frac{\Lambda}{FS_{dO}}\frac{\mu}{v_F}\]

\[t > \frac{\Lambda}{FS_{dO}}\frac{\mu}{v_F}\]

\[\gamma_S\]

\[\gamma_F\]

\[\alpha_S\]

\[\beta\]

\[\alpha_F\]

\(< \text{Leading aircraft (fast)} > \]

\(< \text{Trailing aircraft (slow)} > \]

Figure 19
Figure 20b
Figure 21
Figure 22
Figure 23
Figures 24a and b
Figures 24c and d
1. $0 \leq \gamma_s \leq \gamma_F$
2. $v_s \leq v_F$
3. $p_F + p_s = 1$; $p_F \geq 0$; $p_s \geq 0$
4. Angle increments 10°
 except when $\alpha_s = \alpha_F$
 then $\alpha_s - \alpha_F = 5^\circ$

 e.g. $\alpha_s = 90^\circ$ $\alpha_F = 85^\circ$
 $\alpha_s = 90^\circ$ $\alpha_F = 80^\circ$
 $\alpha_s = 90^\circ$ $\alpha_F = 70^\circ$
 etc.

\[0 \leq \alpha_s \leq 90^\circ\]
\[-90^\circ \leq \alpha_F \leq \alpha_s - 5^\circ\]

Figure 25
1. \(0 \leq \gamma_1 \leq \gamma_2 \leq \gamma_3\)
2. \(v_1 \leq v_2 \leq v_3\)
3. \(p_i \geq 0; \Sigma p_i = 1\)
4. Angle increments

\(a.\)

\(20^\circ \leq \alpha_1 \leq 90^\circ\)
\(10^\circ \leq \alpha_2 \leq \alpha_1 - 10^\circ\)
\(-90^\circ \leq \alpha_3 \leq \alpha_2 - 10^\circ\)

\(b.\)

\(10^\circ \leq \alpha_1 \leq 90^\circ\)
\(-90^\circ \leq \alpha_2 \leq -10^\circ\)
\(\alpha_2 + 10^\circ \leq \alpha_3 \leq \alpha_1 - 10^\circ\)

Figure 26
1. \(0 \leq \gamma_1 \leq \gamma_2 \leq \gamma_3 \leq \gamma_4 \)
2. \(v_1 \leq v_2 \leq v_3 \leq v_4 \)
3. \(p_i \geq 0; \sum p_i = 1 \)
4. Angle increments 10°

Figure 27a

- For a:
 - \(30^\circ \leq \alpha_1 \leq 90^\circ \)
 - \(20^\circ \leq \alpha_2 \leq \alpha_1 - 10^\circ \)
 - \(10^\circ \leq \alpha_3 \leq \alpha_2 - 10^\circ \)
 - \(-90^\circ \leq \alpha_4 \leq \alpha_3 - 10^\circ \)

- For b:
 - \(20^\circ \leq \alpha_1 \leq 90^\circ \)
 - \(10^\circ \leq \alpha_2 \leq \alpha_1 - 10^\circ \)
 - \(-90^\circ \leq \alpha_3 \leq -10^\circ \)
 - \(\alpha_3 + 10^\circ \leq \alpha_4 \leq \alpha_2 - 10^\circ \)
\[\begin{align*}
 &20^\circ \leq \alpha_1 \leq 90^\circ \\
 &-90^\circ \leq \alpha_2 \leq -10^\circ \\
 &10^\circ \leq \alpha_3 \leq \alpha_1 - 10^\circ \\
 &\alpha_2 + 10^\circ \leq \alpha_4 \leq \alpha_3 - 10^\circ
\end{align*} \]
\[\delta = 2 \text{ nm} \]

\[\delta = 3 \text{ nm} \]

\[\delta = 3, 4, 5 \text{ nm} \]

\[v_F = 150 \text{ KTS} \]

\[v_S = 140 \text{ KTS} \]

<table>
<thead>
<tr>
<th>(\gamma_F)</th>
<th>MLS</th>
<th>ILS</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 nm</td>
<td>(\gamma_F)</td>
<td>6 nm</td>
</tr>
<tr>
<td>4 nm</td>
<td>(\gamma_S)</td>
<td>6 nm</td>
</tr>
</tbody>
</table>

Proportion of Fast Aircraft in Mix

Figure 28
\[v_1 = 100 \text{ KTS} \]
\[v_2 = 120 \text{ KTS} \]
\[v_3 = 140 \text{ KTS} \]
\[v_4 = 150 \text{ KTS} \]

\[\delta = 2 \text{ nm} \]

\[\delta = 3 \text{ nm} \]

\[\delta = 3, 4, 5 \text{ nm} \]

\[p_3 = \text{proportion of a/C type 3} \]
\[p_1 = p_2 \text{ and } p_4 = 0.2 \]

Figure 31
Figure 32
\(v_1 = 100 \text{ KTS} \) (80 KTS for steep descent)
\(v_2 = 120 \text{ KTS} \)
\(v_3 = 140 \text{ KTS} \)
\(v_4 = 150 \text{ KTS} \)

<table>
<thead>
<tr>
<th>Horizontal Separation</th>
<th>Vertical Separation</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLS</td>
<td>ILS</td>
</tr>
<tr>
<td>(\gamma_1) 2 nm 6 nm</td>
<td>(\theta_1 = 7.5^\circ)</td>
</tr>
<tr>
<td>(\gamma_2) 2 nm 6 nm</td>
<td>(\theta_2 = 3^\circ)</td>
</tr>
<tr>
<td>(\gamma_3) 4 nm 6 nm</td>
<td>(\theta_3 = 3^\circ)</td>
</tr>
<tr>
<td>(\gamma_4) 4 nm 6 nm</td>
<td>(\theta_4 = 3^\circ)</td>
</tr>
</tbody>
</table>

\(\delta = 3, 4, 5 \text{ nm} \)
\(\chi = 1000', 1500' \text{ or } 2000' \)

Figure 35

\(p_3 \) proportion of a/c type 3
\(p_1 = p_2 \text{ and } p_4 = 0.2 \)
Horizontal Separation

<table>
<thead>
<tr>
<th>MLS</th>
<th>ILS</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ_1 2nm</td>
<td>6nm</td>
</tr>
<tr>
<td>γ_2 2nm</td>
<td>6nm</td>
</tr>
<tr>
<td>γ_3 4nm</td>
<td>6nm</td>
</tr>
<tr>
<td>γ_4 4nm</td>
<td>6nm</td>
</tr>
</tbody>
</table>

Vertical Separation

$\theta_1 = 7.5^\circ$

$\theta_2 = 3^\circ$

$\theta_3 = 3^\circ$

$\theta_4 = 3^\circ$

$x = 10\,000', 15\,000' \text{ or } 20\,000'$

$\delta = 3\,\text{nm}$

$\chi = 10\,000'$

$15\,000'$

$20\,000'$

$Landing Capacity (operations per hour)$

$\chi = 100\,KTS$ ($80\,KTS$ for steep descent)

$\chi = 120\,KTS$

$\chi = 140\,KTS$

$\chi = 160\,KTS$

p_3 = proportion of a/C type 3

$p_1 = p_2$ and $p_4 = 0.2$

Figure 36
Figure 37

Horizontal Separation

<table>
<thead>
<tr>
<th>MLS</th>
<th>ILS</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ_1 2 nm</td>
<td>6 nm</td>
</tr>
<tr>
<td>γ_2 2 nm</td>
<td>6 nm</td>
</tr>
<tr>
<td>γ_3 4 nm</td>
<td>6 nm</td>
</tr>
<tr>
<td>γ_4 4 nm</td>
<td>6 nm</td>
</tr>
</tbody>
</table>

Vertical Separation

<table>
<thead>
<tr>
<th></th>
<th>MLS</th>
<th>ILS</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ_1 = 7.5°</td>
<td></td>
<td></td>
</tr>
<tr>
<td>θ_2 = 3°</td>
<td></td>
<td></td>
</tr>
<tr>
<td>θ_3 = 3°</td>
<td></td>
<td></td>
</tr>
<tr>
<td>θ_4 = 3°</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$\delta = 2$ nm

$X = 1000', 1500', 2000'$

$p_3 = \text{proportion of a/C type 3}$

$p_1 = p_2$ and $p_4 = 0.2$

$v_1 = 100$ KTS (80 KTS for steep descent)
$v_2 = 120$ KTS
$v_3 = 140$ KTS
$v_4 = 150$ KTS
8. Glossary

Subscripts

i - aircraft type. This subscript can take numerical values 1, 2, ..., n, where 1 is the aircraft with the lowest approach speed. It can also take values F or S, denoting fast or slow aircraft in the case of only two aircraft types in the population.

ij - aircraft pair, consisting of two aircraft landing one after the other. i is the leading aircraft type; j is the trailing aircraft type. j can take all values that i takes (see the preceding paragraph).

Capital Letters

E - entry gate, point at which aircraft joins final straight approach path before landing.

E_i - entry gate, for aircraft of type i in the case of multiple approach paths.

T - runway threshold.

Small Letters:

d(t) - distance between two aircraft measured on a straight line in horizontal plane. This distance is a function of time.

d_{ij}(t) - distance d(t), for a pair of consecutively landing aircraft (i is the leading aircraft type and j is the trailing aircraft type).

l_{ij}(t) - first segment of function d_{ij}(t).

2d_{ij}(t) - second segment of function d_{ij}(t).
$d_{ij}(t)$ - third segment of function $d_{ij}(t)$.

$d_{ij}^{\delta_0}$ - initial separation between aircraft i and j. This is the separation between the two aircraft at time, $t = 0$ (the moment when leading aircraft i reaches the beginning of the common straight approach path), measured along the path of trailing aircraft.

$d_{ij}^{\delta_{om}}$ - initial separation between aircraft i and j computed under the condition that the minimum of function $d_{ij}(t)$ is located as indicated by subscript m.

$m = 1$ $\min d_{ij}(t)$ occurs at the first segment of the function. $d_{ij}^{\delta_{01}}$ is found from

$$1^{d_{ij}}(t){\bigg|}_t = \delta_{ij}^{t_{ij}}$$

$m = 2$ $\min d_{ij}(t)$ occurs at the second segment of the function. $d_{ij}^{\delta_{02}}$ is found from

$$2^{d_{ij}}(t){\bigg|}_t = \delta_{ij}^{t_{ij}}$$

$m = 3$ $\min d_{ij}(t)$ occurs at the third segment of the function. $d_{ij}^{\delta_{03}}$ is found from

$$3^{d_{ij}}(t){\bigg|}_t = \delta_{ij}^{t_{ij}}$$

$m = 4$ $\min d_{ij}(t)$ occurs at the limit between the first and second segment of the function. $d_{ij}^{\delta_{04}}$ is found from

$$1^{d_{ij}}(t){\bigg|}_t = \delta_{ij}^{t_{ij}}$$

$$2^{d_{ij}}(t){\bigg|}_t = \delta_{ij}^{t_{ij}}$$
m = 5 \min d_{ij}(t) \text{ occurs at the upper limit of the domain of the function for } t = t_{ij5} \text{ (i.e., leading aircraft } i \text{ lands) } i_j d_{05} \text{ is found, therefore, from}

\left. \frac{d_{ij}(t)}{t=t_{ij5}} \right| = \delta_{ij}

\begin{align*}
p_i &= \text{proportion of aircraft type } i \text{ in the population.} \\
p_{ij} &= \text{probability of the pair } ij \text{ aircraft occurring in the vehicle stream, i.e., aircraft type } j \text{ landing after aircraft type } i. \\
t &= \text{time} \\
\text{Note: } t = 0 \text{ indicates for any pair of consecutively landing aircraft the time when leading aircraft reaches the first point on the common straight approach path (on the extended runway centerline).} \\
t_{ij} &= \text{interarrival time at the runway threshold (time separation over the threshold) between leading aircraft of type } i \text{ and trailing aircraft of type } j. \\
a_{ij} &= \text{time separation over the threshold dictated by the minimum separation rules in the air.} \\
r_{ij} &= \text{time separation over the threshold dictated by the runway occupancy time.} \\
\tau &= \text{expected interarrival time at the threshold.} \\
i_{ij1} &= \text{time at which } 1d_{ij}(t) \text{ reaches minimum.} \\
i_{ij2} &= \text{time at which } 2d_{ij}(t) \text{ reaches minimum.} \\
i_{ij3} &= \text{time at which } 3d_{ij}(t) \text{ reaches minimum.}
\(i_{j1} \) - time at which \(d_{ij}(t) \) reaches minimum, computed for
\[i_{j0} = i_{j01}. \]

\(i_{j2*} \) - time at which \(d_{ij}(t) \) reaches minimum, computed for
\[i_{j0} = i_{j02}. \]

etc.

\(i_{j3} \) - time at which \(d_{ij}(t) \) reaches minimum, computed for
\[i_{j0} = i_{j03}. \]

in general

\(i_{j4*} \) - time at which \(d_{ij}(t) \) reaches minimum, computed for
\[i_{j0} = i_{j0k}. \]

\(i_{j4} \) - time limit between the first and the second segment
\((d_{ij}(t) \text{ and } d_{ij}(t)) \) of function \(d_{ij}(t) \).

\(i_{j5} \) - time at which first of two aircraft in an aircraft pair lands

\[t_{ij} = \frac{\gamma_{ij}}{v_i} \]

\(i_{j6} \) - time limit between the second and the third segment
\((d_{ij}(t) \text{ and } d_{ij}(t)) \) of function \(d_{ij}(t) \).

\(v_i \) - approach speed of aircraft of type \(i \).

Greek Letters

\(\alpha_i \) - angle of entry of the aircraft of type \(i \) to the extended runway centerline measured relative to that line. Positive anti-clockwise, negative clockwise.

\(\alpha_R \) - relative angle of entry for two aircraft of different types.
\[\alpha_R = |\alpha_i - \alpha_j| \quad i \neq j \]
e.g.,
\[\alpha_R = |\alpha_S - \alpha_F| \]

- \(\beta \) - difference in the necessary lengths of straight final approaches along the extended runway centerline for fast (F) and slow (S) aircraft

\[\beta = Y_F - Y_S \]

- \(\gamma \) - length of the straight common final approach along the extended runway centerline, for ILS case.

- \(Y_i \) - necessary length of straight final approach for aircraft type \(i \).

- \(Y_{ij} \) - length of the common straight final approach for aircraft type \(i \) and type \(j \), for MLS case.

\[Y_{ij} = \min(Y_i, Y_j) \]

- \(\delta_{ij} \) - minimum horizontal separation between aircraft type \(i \) followed by aircraft type \(j \), required by ATC rules.

- \(\theta_i \) - angle of descent in the final approach of aircraft of type \(i \).

- \(\lambda \) - runway landing capacity.

- \(\mu \) - ratio of approach speeds of slow (S) and fast (F) aircraft.

\[\mu = \frac{v_S}{v_F} \leq 1 \]

- \(\chi \) - minimum vertical separation between two consecutively landing aircraft.
9. References

10. Bibliography

Appendix
A. Flow Charts
A.1 Algorithm for \hat{FS}^d_0
Notes

1. It can be shown by geometrical proofs that all of the exits from the algorithm shown as "ERROR" cannot occur, if the input values of the variables and parameters are correct. However, such exits are preserved in the programs to facilitate location of eventual errors in programming or errors in the input data.

2. Index "INDX" describes the shape of the function $d_{F5}(t)$ and shows the range of this function where minimum separation between the two aircraft occurs. The key to values of "INDX" is given in the two following figures.
Function \(d_{ps}(t) \)
Detail of $d_{FS}(t)$ -- 2120
A.2 Algorithm for S_{Pd_0}
\[\hat{\phi}_{03} \]

\[\hat{\phi}_4 = \frac{\hat{\phi}_{03} - \delta}{v_F} \]

\[\hat{\phi}_4 > 0 \]

\[SF_2 \]

\[SF_2 > SF_4 \]

\[SF_1 \]

\[SF_1 > 0 \]

\[SF_0 = SF_{03} \]

\[SF_{0} = SF_{03} \]

\[INDX = 3112 \]

\[SF_{0} = SF_{03} \]

\[INDX = 3122 \]

\[SF_{0} = SF_{03} \]

\[INDX = 3111 \]

\[SF_{0} = SF_{03} \]

\[INDX = 3121 \]
\[x^2 + y^2 = r^2 \]
7

$3^*_{SF^t_1}$

$SF^t_1 > SF^t_4$

YES

$SF^d_0 = SF^d_03$

INDX = 3011

$1^dSF(SF^t_1)^{3*}$

$1^dSF(SF^t_1)^{3*} > \delta_{SF}$

YES

$SF^d_0 = SF^d_03$

INDX = 3021

SF^d_01

\[SF^t_4 = \frac{SF^d_01 - \beta}{v_F} \]

$SF^t_4 > 0$

NO

$SF^d_0 = SF^d_01$

INDX = 1021

8
Notes:

1. 2', 2'' and 2''' are exactly the same as 2 but with changed error indices as follows:

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>2'</th>
<th>2''</th>
<th>2'''</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1001</td>
<td>1005</td>
<td>1013</td>
<td>1020</td>
</tr>
<tr>
<td>2</td>
<td>1002</td>
<td>1006</td>
<td>1014</td>
<td>1021</td>
</tr>
<tr>
<td>3</td>
<td>1003</td>
<td>1007</td>
<td>1015</td>
<td>1022</td>
</tr>
<tr>
<td>4</td>
<td>1004</td>
<td>1008</td>
<td>1016</td>
<td>1023</td>
</tr>
</tbody>
</table>

2. See note 1, Appendix A.1, page 136.

Function $d_S(t)$
B. Program Listing
B.1. List of Variables
All Subroutines

COAS \cos \alpha_s

COAF \cos \alpha_F

COASAF \cos(\alpha_s - \alpha_F)

AMAS \mu^2 - 2\mu \cos \alpha_s + 1

AMAF \mu^2 - 2\mu \cos \alpha_F + 1

ANASAF \mu^2 - 2\mu \cos(\alpha_s - \alpha_F) + 1

AMI \mu

VF v_F

VS v_S

GAMAF \gamma_F

CAMAS \gamma_S

BETA \beta

IAFAR \alpha_F \text{ in degrees}

IASAR \alpha_S \text{ in degrees}

DOSF \hat{d_{

DOFS \

DOSS \

DOFF \

INDXFS INDEX for \ d_{FS}(t)

INDXSF INDEX for \ d_{SF}(t)

INDXSS INDEX for \ d_{SS}(t)

INDXFF INDEX for \ d_{FF}(t)

TSF t_{SF}

TFS t_{FS}

TSS t_{SS}
<table>
<thead>
<tr>
<th>Subroutine SDOSSF</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DOSF1</td>
<td>$\hat{\delta}_{01}^S$</td>
</tr>
<tr>
<td>DOSF2</td>
<td>$\hat{\delta}_{02}^S$</td>
</tr>
<tr>
<td>DOSF3</td>
<td>$\hat{\delta}_{03}^S$</td>
</tr>
<tr>
<td>DOSF4</td>
<td>$\hat{\delta}_{04}^S$</td>
</tr>
<tr>
<td>V1S1</td>
<td>δ_{11}^S</td>
</tr>
<tr>
<td>V2S1</td>
<td>δ_{12}^S</td>
</tr>
<tr>
<td>V3S1</td>
<td>δ_{13}^S</td>
</tr>
<tr>
<td>V4S1</td>
<td>δ_{14}^S</td>
</tr>
<tr>
<td>V1S2</td>
<td>δ_{21}^S</td>
</tr>
<tr>
<td>V2S2</td>
<td>δ_{22}^S</td>
</tr>
<tr>
<td>V3S2</td>
<td>δ_{23}^S</td>
</tr>
<tr>
<td>DV2S1</td>
<td>$d_{12}^S(\delta_{12}^{2*})^S$</td>
</tr>
<tr>
<td>DV3S1</td>
<td>$d_{13}^S(\delta_{13}^{3*})^S$</td>
</tr>
<tr>
<td>DV1S2</td>
<td>$d_{21}^S(\delta_{21}^{1*})^S$</td>
</tr>
<tr>
<td>DV3S2</td>
<td>$d_{23}^S(\delta_{23}^{3*})^S$</td>
</tr>
<tr>
<td>DV1S3</td>
<td>$d_{13}^S(\delta_{13}^{1*})^S$</td>
</tr>
<tr>
<td>DV2S3</td>
<td>$d_{23}^S(\delta_{23}^{2*})^S$</td>
</tr>
</tbody>
</table>

Subroutines have names of variables which they compute with letter S as the first letter, e.g., SDOSSF is subroutine which computes DOSF.
DV4S3 \[3^{d_{SF}}(\frac{t}{3}) \]

DOD03 \[2^{d_{SF}}(0) \] computed using \(SF^0 \).

Subroutine DOFS

<table>
<thead>
<tr>
<th>Subroutine DOFS</th>
<th>(d_{FS})</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOFS1 (\hat{d}_{01})</td>
<td>(d_{01})</td>
</tr>
<tr>
<td>DOFS2 (\hat{d}_{02})</td>
<td>(d_{02})</td>
</tr>
<tr>
<td>DOFS4 (\hat{d}_{04})</td>
<td>(d_{04})</td>
</tr>
<tr>
<td>DOFS5 (\hat{d}_{05})</td>
<td>(d_{05})</td>
</tr>
<tr>
<td>T1S1 (T_{1^*})</td>
<td>(T_{1^*})</td>
</tr>
<tr>
<td>T2S1 (T_{2^*})</td>
<td>(T_{2^*})</td>
</tr>
<tr>
<td>T4S1 (T_{4^*})</td>
<td>(T_{4^*})</td>
</tr>
<tr>
<td>T5S1 (T_{5^*})</td>
<td>(T_{5^*})</td>
</tr>
<tr>
<td>T1S2 (T_{1^*})</td>
<td>(T_{1^*})</td>
</tr>
<tr>
<td>T2S2 (T_{2^*})</td>
<td>(T_{2^*})</td>
</tr>
<tr>
<td>T4S2 (T_{4^*})</td>
<td>(T_{4^*})</td>
</tr>
</tbody>
</table>

DT2S1 \(T_{2^*} \)	\(T_{2^*} \)
DT5S1 \(T_{5^*} \)	\(T_{5^*} \)
DT1S2 \(T_{1^*} \)	\(T_{1^*} \)

CAPSF

<table>
<thead>
<tr>
<th>SUBROUTINE</th>
<th>(d_{FS})</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOOSF (d_0) (matrix)</td>
<td>(d_{SF})</td>
</tr>
<tr>
<td>DOOFS (d_0) (matrix)</td>
<td>(d_{FS})</td>
</tr>
<tr>
<td>DOOSS (d_0) (vector)</td>
<td>(d_{SS})</td>
</tr>
<tr>
<td>DOOFF (d_0) (vector)</td>
<td>(d_{FF})</td>
</tr>
<tr>
<td>INXSF INDEX for (d_{SF}(t))</td>
<td>(d_{SF}(t))</td>
</tr>
<tr>
<td>INXFS INDEX for (d_{FS}(t))</td>
<td>(d_{FS}(t))</td>
</tr>
<tr>
<td>INXSS INDEX for (d_{SS}(t))</td>
<td>(d_{SS}(t))</td>
</tr>
<tr>
<td>INXFF INDEX for (d_{FF}(t))</td>
<td>(d_{FF}(t))</td>
</tr>
</tbody>
</table>
CAP3 (Similar is for CAP4)

VKT v_i approach speed in knots (vector)

GAMA γ_i (vector)

P p_i (vector)

PP p_{ij} (matrix)

DELTA δ_{ij} (matrix)

TT t_{ij} (matrix)

IALF1 α_1

IALF2 α_2

IALF3 α_3

values producing optimal N configurations

CAPAC optimal N capacities

CAPMIN the lowest N capacities

IALFM1 α_1

IALFM2 α_2

IALFM3 α_3

values producing the lowest N capacities
B.2. Subroutines
SUBROUTINE SDOSF
DIMENSION DELTA(5,5)
COMMON /SF/,
1COAS,COAF,COASF,AMAS,AMAF,AMASAF,AKI,VF,GAMAS,GAMAF,BETA,DELTA,
2IAPAR,IASAR,DOSF,DOSF,DOSS,DOFF,INDXSF,INDXFS,INDXSS,INDXFF,
3TSF,TFS,TSS,TFF
4,DELTSS,DELTFF,DELTSF,DELTFS
COMMON /SF/
2DOSSF1,DOSSF2,DOSSF3,DOSSF4,V1S1,V2S1,V3S1,V4S1,V1S2,V2S2,V3S2,
3DV2S1,DV3S1,DV1S2,DV3S2,DV1S3,DV2S3,DV4S3,DOD03
CALL SDOSF1
PT12=(DOSSF3-BETA)/VF
IF (PT12) 700,700,100
100 CONTINUE
CALL SV3S2
IF (V3S2-PT12) 200,200,105
105 CONTINUE
CALL SV3S1
IF (V3S1) 115,115,110
110 CONTINUE
INDEXSF=3111
DOSF=DOSSF3
GO TO 995
115 CONTINUE
CALL SDV3S1
IF (DV3S1-DELTSF) 125,125,120
120 CONTINUE
INDEXSF=3121
DOSF=DOSSF3
GO TO 995
125 CONTINUE
CALL SDOSF1
CALL SV1S1
IF (V1S1) 135,135,130
130 CONTINUE
INDEXSF=1
DOSF=0.
GO TO 995
135 CONTINUE
CALL SV1S2
PT12=(DOSF1-BETA)/VF
IF (V1S2-PT12) 155,155,140
140 CONTINUE
CALL SDV1S3
IF (DV1S3-DELTSF) 150,150,145
145 CONTINUE
INDEXSF=1121
DOSF=DOSF1

GO TO 995
150 CONTINUE
INDXSF = 2
DOSF = 0.
GO TO 995
155 CONTINUE
IF (V1S2) 185, 185, 160
160 CONTINUE
CALL SDV1S2
IF (DV1S2 - DELTSF) 180, 180, 165
165 CONTINUE
CALL SDV1S3
IF (DV1S3 - DELTSF) 175, 175, 170
170 CONTINUE
INDXSF = 1122
DOSF = DOSF1
GO TO 995
175 CONTINUE
INDXSF = 3
DOSF = 0.
GO TO 995
180 CONTINUE
INDXSF = 4
DOSF = 0.
GO TO 995
185 CONTINUE
INDXSF = 50
DOSF = 0.
GO TO 995
200 CONTINUE
IF (V3S2) 400, 400, 203
203 CONTINUE
CALL SDV3S2
IF (DV3S2 - DELTSF) 300, 300, 205
205 CONTINUE
CALL SV3S1
IF (V3S1) 215, 215, 210
210 CONTINUE
INDXSF = 3112
DOSF = DOSF3
GO TO 995
215 CONTINUE
CALL SDV3S1
IF (DV3S1 - DELTSF) 125, 125, 220
220 CONTINUE
INDXSF = 3122
DOSF = DOSF3
GO TO 995
300 CONTINUE
CALL SDOSF2
CALL SV2S2
PT12=(DOSF2-BETA)/VF
IF (V2S2-PT12) 310,310,305
305 CONTINUE
INDEXSF=9
DOSF=0.
GO TO 995
310 CONTINUE
IF (V2S2) 315,315,320
315 CONTINUE
INDEXSF=10
DOSF=0.
GO TO 995
320 CONTINUE
CALL SV2S1
IF (V2S1) 340,340,325
325 CONTINUE
CALL SDV2S3
IF (DV2S3-DELTSF) 335,335,330
330 CONTINUE
INDEXSF=2112
DOSF=DOSF2
GO TO 995
335 CONTINUE
INDEXSF=11
DOSF=0.
GO TO 995
340 CONTINUE
CALL SDV2S1
IF (DV2S1-DELTSF) 360,360,345
345 CONTINUE
CALL SDV2S3
IF (DV2S3-DELTSF) 355,355,350
350 CONTINUE
INDEXSF=2122
DOSF=DOSF2
GO TO 995
355 CONTINUE
INDEXSF=12
DOSF=0.
GO TO 995
360 CONTINUE
GO TO 125
400 CONTINUE
CALL SV3S1
IF (V3S1) 600,600,405
405 CONTINUE
 CALL SDOSF3
 IF (DOD03-DELTSF) 415, 415, 410
410 CONTINUE
 INDXSF=3113
 DOSF=DOSF3
 GO TO 995
415 CONTINUE
 CALL SDOSF2
 CALL SV2S2
 PT12=(DOSF2-BETA)/VF
 IF (V2S2-PT12) 425, 425, 420
420 CONTINUE
 INDXSF=17
 DOSF=0.
 GO TO 995
425 CONTINUE
 IF (V2S2) 500, 500, 320
500 CONTINUE
 CALL SDOSF1
 CALL SV1S1
 IF (V1S1) 540, 540, 505
505 CONTINUE
 CALL SDOSF4
 CALL SV4S1
 IF (V4S1) 510, 510, 515
510 CONTINUE
 INDXSF=24
 DOSF=0.
 GO TO 995
515 CONTINUE
 IF (V4S1) 525, 525, 520
520 CONTINUE
 INDXSF=25
 DOSF=0.
 GO TO 995
525 CONTINUE
 CALL SDV4S3
 IF (DV4S3-DELTSF) 530, 530, 535
530 CONTINUE
 INDXSF=26
 DOSF=0.
 GO TO 995
535 CONTINUE
 INDXSF=4113
 DOSF=00SF4
 GO TO 995
540 CONTINUE

CALL SVIS2
PT12=(DOSF1-BETA)/VF
IF (VIS2-PT12) 560, 560, 140
560 CONTINUE
IF (VIS2) 570, 570, 160
570 CONTINUE
INDEXSF=1123
DOSF=DOSF1
GO TO 995
600 CONTINUE
CALL SDV3S1
IF (DV3S1-DELTSF) 610, 610, 605
605 CONTINUE
INDEXSF=3123
DOSF=DOSF3
GO TO 995
610 CONTINUE
CALL SDOSSF1
CALL SVIS1
IF (VIS1) 620, 620, 615
615 CONTINUE
INDEXSF=30
DOSF=0.
GO TO 995
620 CONTINUE
CALL SVIS2
CALL SDV1S3
IF (DV1S3-DELTSF) 635, 635, 630
630 CONTINUE
INDEXSF=1123
DOSF=DOSF1
GO TO 995
635 CONTINUE
INDEXSF=31
DOSF=0.
GO TO 995
640 CONTINUE
PT12=(DOSF1-BETA)/VF
IF (VIS2-PT12) 650, 650, 645
645 CONTINUE
INDEXSF=32
DOSF=0.
GO TO 995
650 CONTINUE
CALL SDOSSF2
CALL SV2S2
IF (V2S2) \text{CONTINUE}
\text{INDXSF}=33
\text{DOSF}=0.
\text{GO TO 995}

\text{IF (V2S2-PT12) \text{CONTINUE}}
\text{INDXSF}=34
\text{DOSF}=0.
\text{GO TO 995}

\text{GO TO 995}

\text{CALL SV2S1}
\text{IF (V2S1) \text{CONTINUE}}
\text{INDXSF}=35
\text{DOSF}=0.
\text{GO TO 995}

\text{CALL SV2S1}
\text{IF (DV2S1-DELSF) \text{CONTINUE}}
\text{INDXSF}=36
\text{DOSF}=0.
\text{GO TO 995}

\text{CALL SDV2S3}
\text{IF (DV2S3-DELSF) \text{CONTINUE}}
\text{INDXSF}=37
\text{DOSF}=0.
\text{GO TO 995}

\text{CALL SV3S1}
\text{PT12}=(\text{DOSF3-BETA})/VF
\text{IF (V3S1-PT12) \text{CONTINUE}}
\text{INDXSF}=38
\text{DOSF}=0.
\text{GO TO 995}

\text{CALL SDV3S1}
\text{IF (DV3S1-DELSF) \text{CONTINUE}}
715 CONTINUE
 INDEXSF=3021
 DOSF=DOSF3
 GO TO 995
720 CONTINUE
 CALL SDOSFI
 PT12=(DOSF1-BETA)/VF
 IF (PT12) 725,725,800
725 CONTINUE
 INDEXSF=1021
 DOSF=DOSF1
 GO TO 995
800 CONTINUE
 CALL SV1S1
 IF (V1S1) 810,810,805
805 CONTINUE
 INDEXSF=38
 DOSF=0.
 GO TO 995
810 CONTINUE
 CALL SV1S2
 IF (V1S2) 815,815,820
815 CONTINUE
 INDEXSF=1123
 DOSF=DOSF1
 GO TO 995
820 CONTINUE
 PT12=(DOSF1-BETA)/VF
 IF (V1S2-PT12) 830,830,825
825 CONTINUE
 INDEXSF=1121
 DOSF=DOSF1
 GO TO 995
830 CONTINUE
 CALL SDV1S2
 IF (DV1S2-DELT SF) 840,840,835
835 CONTINUE
 INDEXSF=1122
 DOSF=DOSF1
 GO TO 995
840 CONTINUE
 CALL SDOSF2
 CALL SV2S2
 IF (V2S2) 845,845,850
845 CONTINUE
 INDEXSF=39
 DOSF=0.
 GO TO 995
SUBROUTINE SDOSF1
DIMENSION DELTA(5,5)
COMMON /SSFFS/ ICOAS,COAF,COASAF,AMAS,AMAF,AMASAF,AMI,VF,GAMAS,GAMAF,BETA,DELTA,
2IASAR,IASAR,DOSF,DOPF,DOSS,DUFF,INDEXF,INDEXFS,INDXF,INDXSF,INDXS,
3TSF,IFS,TSS,TFF
4,DELTSS,DELTFF,DELTSF,DELTFS
COMMON /SF/
2DOSF1,DOSF2,DOSF3,DOSF4,V1S1,V2S1,V3S1,V4S1,V1S2,V2S2,V3S2,
3V2S1,DV3S1,DV1S2,DV3S2,DV1S3,DV2S3,DV4S3,DV4S3,DUD03
ASF1=-(1.—AMI*COASAF)**2./AMASAF
BSF1=-2.**BETA*{(1.—COAF*(AMI*COASAF-1.))*(1.—COAF-AMI*/
1(COASAF-COAS))/AMASAF)
CSF1=BETA**2.*{(2.*BETA-1.-(1.—COAF)-1.-(COAF-AMAF)*(COASAF-COAS))**2/
1AMASAF)
CSF1=CSF1-DETSF**2
DETSF1=BSF1**2-4.*ASF1*CSF1
IF (DETSF1) 10,20,30
10 CONTINUE
PRINT 100,IASAR,IASAR,DETSF1,DETERMINANT NEGATIVE *,3X,
1*ALFAS =*,10,3X,*ALFAS =*,10,3X,*DETSF1 =*,F10.5/
GO TO 40
20 CONTINUE
DOSF1=BSF1/(2.*ASF1)
GO TO 40
30 CONTINUE
DOSF1=(-BSF1-SQRT(DETSF1))/(2.*ASF1)
DOSF1=DOSF1
40 CONTINUE
RETURN
SUBROUTINE SDOSF2
DIMENSION DELTA(5,5)
COMMON /SSFSS/ COAS, COAF, COASAF, AMAS, AMAF, AMASAF, AMI, VF, GAMAS, GAMAF, BETA, DELTA,
2IAFAR, IASAR, DOSF, DOFS, DOSS, DOFF, INDXSF, INDXFS, INDXSS, INDXFF,
3TSF, TFS, TSS, TFF
4, DELTSS, DELTFF, DELTSF, DELTFS
COMMON /SF/ 2DOSF1, DOSF2, DOSF3, DOSF4, V1S1, V2S1, V3S1, V4S1, V1S2, V2S2, V3S2,
3DV2S1, DV3S1, DV1S2, DV2S2, DV3S2, DV1S3, DV2S3, DV3S3, DOD03
ASF2=C1SF2-C2SF2-DETSF2**2 *(1-AM*I)**2/AMAF
CSF2=DOSF2=-BETA*(1.-COAF-(1.-AMI*COAF)*(1.-COAF)**2*(1.+AMI)**2./AMAF)
CFSF2=CSF2**2-DETSF2**2-4.*ASF2*CSF2
IF (DETSF2) 10120,30
10 CONTINUE
PRINT 100, IASAR, IAFAR, DETSF2
100 FORMAT (/SUBROUTINE SDOSF2, DETERMINANT NEGATIVE *, 3X,
ALFA =, 13, 3X, *ALFAF =*, 13, 3X, *DETSF2 =*, F10.5/)
GO TO 40
20 CONTINUE
DOSF2=-BFSF2/(2.*ASF2)
GO TO 40
30 CONTINUE
DOSF2=(-BFSF2-SORT(DETSF2))/(2.*ASF2)
DOSF2=2DOSF2
40 CONTINUE
RETURN
END

SUBROUTINE SDOSF3
DIMENSION DELTA(5,5)
COMMON /SSFSS/ COAS, COAF, COASAF, AMAS, AMAF, AMASAF, AMI, VF, GAMAS, GAMAF, BETA, DELTA,
2IAFAR, IASAR, DOSF, DOFS, DOSS, DOFF, INDXSF, INDXFS, INDXSS, INDXFF,
3TSF, TFS, TSS, TFF
4, DELTSS, DELTFF, DELTSF, DELTFS
COMMON /SF/ 2DOSF1, DOSF2, DOSF3, DOSF4, V1S1, V2S1, V3S1, V4S1, V1S2, V2S2, V3S2,
3DV2S1, DV3S1, DV1S2, DV2S2, DV3S2, DV1S3, DV2S3, DV3S3, DOD03
DOSF3=DELTSF+(1.-AMI)*GAMAS/AMI
RETURN

END
SUBROUTINE SDOS74
DIMENSION DELTA(5,5)
COMMON /SSFS/
 ICOAS, COAF, COASAF, AMAS, AMAF, AMASAF, AMI, VF, GAMAS, GAMAF, BETA, DELTA,
 IAFAR, IASAR, DOFS, DOSS, DOFF, INDXSF, INDXFS, INDXSS, INDXFF,
 TSF, TFS, TSS, TFF
4, DELTSS, DELTFF, DELTSF, DELTFS
COMMON /SF/
2 DOFS1, DOFS2, DOFS3, DOFS4, VI51, V2S1, V3S1, V4S1, V1S2, V2S2, V3S2,
 3DV2S1, DV3S1, DV1S2, DV3S2, DV1S3, DV2S3, DV4S3, D0D03
ASF4=1.0
BSF4=—2.*BETA*(1.–COAF)
CSF4=2.*BETA**2.*(1.–COAF)
CSF4=CSF4—DELTSF**2
DETSF4=BSF4**2—4.*ASF4*CSF4
IF (DETSF4) 10,20,30
10 CONTINUE
PRINT 100, IASAR, IAFAR, DELTSF4
100 FORMAT (/3*SUBROUTINE SDOSF4, DETERMINANT NEGATIVE */, 3X,
 1*ALFAS = */, 13, 3X, *ALFAF = */, 13, 3X, *DETSF4 = */, F10.5/)
GO TO 40
20 CONTINUE
DOFS4=—DOFS4/(2.*ASF4)
GO TO 40
30 CONTINUE
DO1SF4=(—BSF4—SQRT(DETSF4))/(2.*ASF4)
DO2SF4=(—BSF4+SQRT(DETSF4))/(2.*ASF4)
DOISF4=(DO1SF4—DO2SF4)
40 CONTINUE
RETURN
END

SUBROUTINE SVIS1
DIMENSION DELTA(5,5)
COMMON /SSFS/
 ICOAS, COAF, COASAF, AMAS, AMAF, AMASAF, AMI, VF, GAMAS, GAMAF, BETA, DELTA,
 IAFAR, IASAR, DOFS, DOSS, DOFF, INDXSF, INDXFS, INDXSS, INDXFF,
 TSF, TFS, TSS, TFF
4, DELTSS, DELTFF, DELTSF, DELTFS
COMMON /SF/
2 DOFS1, DOFS2, DOFS3, DOFS4, VI51, V2S1, V3S1, V4S1, V1S2, V2S2, V3S2,
 3DV2S1, DV3S1, DV1S2, DV3S2, DV1S3, DV2S3, DV4S3, D0D03
V3S1=(DOFS1*(AMI*COASAF—1.0)+BETA*(1.–COAF—AMI*(COASAF—COAS)))/
 (AMASAF*VF1)
SUBROUTINE SV2S1
DIMENSION DELTA(5,5)
COMMON /SSFFS/
COAS, COAF, COASAF, AMAS, AMAF, AMASAF, AMI, VF, GAMAS, GAMAF, BETA, DELTA,
21AFAR, IASAR, DOSF, DOFS, DOSS, DOFF, INDXSF, INDXFS, INDXSS, INDXFF,
3TSF, TFS, TSS, TFF
4, DELTSS, DELTFF, DELTSF, DELTFS
COMMON /SF/
2DOSF1, DOSF2, DOSF3, DOSF4, V1S1, V2S1, V3S1, V4S1, V1S2, V2S2, V3S2,
3DV2S1, DV3S1, DV1S2, DV3S2, DV1S3, DV2S3, DV4S3, DOD03
V2S1 = - (DOSF2*(AMI*COASAF-1.)+BETA*(1.-COAF-AMI*(COASAF-COAS)))/ (AMASAF*VF)
RETURN
END

SUBROUTINE SV3S1
DIMENSION DELTA(5,5)
COMMON /SSFFS/
COAS, COAF, COASAF, AMAS, AMAF, AMASAF, AMI, VF, GAMAS, GAMAF, BETA, DELTA,
21AFAR, IASAR, DOSF, DOFS, DOSS, DOFF, INDXSF, INDXFS, INDXSS, INDXFF,
3TSF, TFS, TSS, TFF
4, DELTSS, DELTFF, DELTSF, DELTFS
COMMON /SF/
2DOSF1, DOSF2, DOSF3, DOSF4, V1S1, V2S1, V3S1, V4S1, V1S2, V2S2, V3S2,
3DV2S1, DV3S1, DV1S2, DV3S2, DV1S3, DV2S3, DV4S3, DOD03
V3S1 = - (DOSF3*(AMI*COASAF-1.)+BETA*(1.-COAF-AMI*(COASAF-COAS)))/ (AMASAF*VF)
RETURN
END

SUBROUTINE SV4S1
DIMENSION DELTA(5,5)
COMMON /SSFFS/
COAS, COAF, COASAF, AMAS, AMAF, AMASAF, AMI, VF, GAMAS, GAMAF, BETA, DELTA,
21AFAR, IASAR, DOSF, DOFS, DOSS, DOFF, INDXSF, INDXFS, INDXSS, INDXFF,
3TSF, TFS, TSS, TFF
4, DELTSS, DELTFF, DELTSF, DELTFS
COMMON /SF/
2DOSF1, DOSF2, DOSF3, DOSF4, V1S1, V2S1, V3S1, V4S1, V1S2, V2S2, V3S2,
3DV2S1, DV3S1, DV1S2, DV3S2, DV1S3, DV2S3, DV4S3, DOD03
V4S1 = - (DOSF4*(AMI*COASAF-1.)+BETA*(1.-COAF-AMI*(COASAF-COAS)))/ (AMASAF*VF)
SUBROUTINE SV1S2
DIMENSION DELTA(5,5)
COMMON /SSFFS/ 1COAS,COAF,COASAF,AMAS,AMAF,AMASAF,AMI,VF,GAMAS,GAMAF,BETA,DELTA,
2IAFAR,IASAR,DOSF,DOFS,DOSS,DOFF,INDXF,INDEXS,INDXSS,INDXFF,
3TSF,TFS,TSS,TF
4,DELTS,F,DELTF,DELTSF,DELTS
COMMON /SF/
2DOSF1,DOSF2,DOSF3,DOSF4,V1S1,V2S1,V3S1,V4S1,V1S2,V2S2,V3S2,
3DV2S1,DV3S1,DV1S2,DV3S2,DV1S3,DV2S3,DV4S3,DOD03
V3S2=(DOSF1*(1.-AMI*COAF)-BETA*(1.-COAF)*(1.+AMI))/(AMAF*VF)
RETURN
END

SUBROUTINE SV2S2
DIMENSION DELTA(5,5)
COMMON /SSFFS/ 1COAS,COAF,COASAF,AMAS,AMAF,AMASAF,AMI,VF,GAMAS,GAMAF,BETA,DELTA,
2IAFAR,IASAR,DOSF,DOFS,DOSS,DOFF,INDXF,INDEXS,INDXSS,INDXFF,
3TSF,TFS,TSS,TF
4,DELTS,F,DELTF,DELTSF,DELTS
COMMON /SF/
2DOSF1,DOSF2,DOSF3,DOSF4,V1S1,V2S1,V3S1,V4S1,V1S2,V2S2,V3S2,
3DV2S1,DV3S1,DV1S2,DV3S2,DV1S3,DV2S3,DV4S3,DOD03
V2S2=(DOSF2*(1.-AMI*COAF)-BETA*(1.-COAF)*(1.+AMI))/(AMAF*VF)
RETURN
END

SUBROUTINE SV3S2
DIMENSION DELTA(5,5)
COMMON /SSFFS/ 1COAS,COAF,COASAF,AMAS,AMAF,AMASAF,AMI,VF,GAMAS,GAMAF,BETA,DELTA,
2IAFAR,IASAR,DOSF,DOFS,DOSS,DOFF,INDXF,INDEXS,INDXSS,INDXFF,
3TSF,TFS,TSS,TF
4,DELTS,F,DELTF,DELTSF,DELTS
COMMON /SF/
2DOSF1,DOSF2,DOSF3,DOSF4,V1S1,V2S1,V3S1,V4S1,V1S2,V2S2,V3S2,
3DV2S1,DV3S1,DV1S2,DV3S2,DV1S3,DV2S3,DV4S3,DOD03
V3S2=(DOSF3*(1.-AMI*COAF)-BETA*(1.-COAF)*(1.+AMI))/(AMAF*VF)
RETURN
END
SUBROUTINE SDV2S1
DIMENSION DELTA(5,5)
COMMON /SSFFS/
1COASF, COAF, COASAF, AMAS, AMAF, AMASAF, AMI, VF, GAMAS, GAMAF, BETA, DELTA,
2IAFAAR, IASAR, DSOF, DIFS, DOSS, DOFF, INDXS, INDXXS, INDXXF,
3TSF, TSS, TRF,
4DELTS, DELTFS, DELTSF, DELTFS
COMMON /SF/
2DSOF, DSSF, DSSF, V1S1, V2S1, V3S1, V4S1, V1S2, V2S2, V3S2,
3DV2S1, DV3S1, DV1S2, DV5S2, DV1S3, DV2S3, DV4S3, DOSF3, DOFS3
ASF1=1-(1-A1*COASAF)**2./AMASAF
BSF1=-2.*BETA*(1.-COAF+(AMI*COASAF-1.)*(1.-LOAF=1/A1*COAF-
1/(COASAF-COAS))/(AMASAF)**2/
1AMASAF)
C1SF1=BSF1**2.*(2.*(1.-COAF)-(1.-COAF=AMI*(COASAF-COAS))))**2/
1AMASAF)
A=DSOF3**2.*ASF1+DSOF3*BSF1+C1SF1
IF (A) 10, 20, 20
10 CONTINUE
PRINT 100, IASAR, IAFAAR, A
100 FORMAT (/,*SUBROUTINE SDV2S1, SO, ROUTE ARGUMENT NEGATIVE *,3X,
GO TO 40
20 CONTINUE
DV2S1=SQRT(A)
40 CONTINUE
RETURN
END

SUBROUTINE SDV3S1
DIMENSION DELTA(5,5)
COMMON /SSFFS/
1COASF, COAF, COASAF, AMAS, AMAF, AMASAF, AMI, VF, GAMAS, GAMAF, BETA, DELTA,
2IAFAAR, IASAR, DSOF, DIFS, DOSS, DOFF, INDXS, INDXXS, INDXXF,
3TSF, TSS, TRF,
4DELTS, DELTFS, DELTSF, DELTFS
COMMON /SF/
2DSOF, DSSF, DSSF, V1S1, V2S1, V3S1, V4S1, V1S2, V2S2, V3S2,
3DV2S1, DV3S1, DV1S2, DV5S2, DV1S3, DV2S3, DV4S3, DOSF3, DOFS3
ASF1=1-(1-A1*COASAF)**2./AMASAF
BSF1=-2.*BETA*(1.-COAF+(AMI*COASAF-1.)*(1.-LOAF=1/A1*COAF-
1/(COASAF-COAS))/(AMASAF)**2/
1AMASAF)
C1SF1=BSF1**2.*(2.*(1.-COAF)-(1.-COAF=AMI*(COASAF-COAS))))**2/
1AMASAF)
A=DSOF3**2.*ASF1+DSOF3*BSF1+C1SF1
IF (A) 10, 20, 20
10 CONTINUE
PRINT 100, IASAR, IAFAR, A
100 FORMAT (/*, SUBROUTINE SDV3S1, SQ. ROUTE ARGUMENT NEGATIVE *, 3X,
ALFAS =, I3, 3X, *ALFAR =*, I3, 3X, *SQT. ARG. =*, F10.5/) GO TO 40
20 CONTINUE
DV3S1=SQRT(A)
40 CONTINUE
RETURN
END

SUBROUTINE SDV1S2
DIMENSION DELTA(5,5)
COMMON /SSFBS/
1COAS, COAF, CDAASAF, AMAS, AMAF, AMASAF, AMI, VF, GAMAS, GAMAF, BETA, DELTA,
2IAFAR, IASAR, DOSF, DOFS, DOS5, DOFF, INDEXSF, INDEXFS, INDEXSS, INDEXFF,
3TSF, TFS, TSS, TFF
4, DELTSS, DELTFF, DELTSF, DELTFS
COMMON /SF/
2DOFS1, DOFS2, DOFS3, DOFS4, V1S1, V2S1, V3S1, V4S1, V1S2, V2S2, V3S2,
3DV2S1, DV3S1, DV1S2, DV3S2, DV1S3, DV2S3, DV4S3, DD0S3

ASF2=1-(1.-AMI*COAF)**2./AMAF
BSF2=-2.*BETAF*(1.-COAF-(1.-AMI*COAF)*(1.+AMI)/AMAF)
C1SF2=BETA**2.*F2.*(2.*(I.-AMAF)**2.;(1.+AMI)**2./AMAF)
D2SF=1.-(1.-AMI*COAF)**2./AMAF

IF (A) 10,20,20
10 CONTINUE
PRINT 100, IASAR, IAFAR, A
100 FORMAT (/*, SUBROUTINE SDV1S2, SQ. ROUTE ARGUMENT NEGATIVE *, 3X,
ALFAS =, I3, 3X, *ALFAR =*, I3, 3X, *SQT. ARG. =*, F10.5/) GO TO 40
20 CONTINUE
DV1S2=SQRT(A)
40 CONTINUE
RETURN
END

SUBROUTINE SDV3S2
DIMENSION DELTA(5,5)
COMMON /SSFBS/
1COAS, COAF, CDAASAF, AMAS, AMAF, AMASAF, AMI, VF, GAMAS, GAMAF, BETA, DELTA,
2IAFAR, IASAR, DOSF, DOFS, DOS5, DOFF, INDEXSF, INDEXFS, INDEXSS, INDEXFF,
3TSF, TFS, TSS, TFF
4, DELTSS, DELTFF, DELTSF, DELTFS
COMMON /SF/
2DOFS1, DOFS2, DOFS3, DOFS4, V1S1, V2S1, V3S1, V4S1, V1S2, V2S2, V3S2,
3DV2S1, DV3S1, DV1S2, DV3S2, DV1S3, DV2S3, DV4S3, DD0S3
ASF2 = 1.0 - (1.0 - AMI * COAF) ** 2.0 / AMAF
GSF2 = -2.0 * BETA * (1.0 - AMI * COAF) * (1.0 - AMI) / AMAF
C1SF2 = BETA ** 2.0 * (2.0 * (1.0 - AMI) * (1.0 - AMI) / AMAF)
A = DOSF3 ** 2.0 * ASF2 + DOSF3 * BSF2 + C1SF2
IF (A) 10, 20, 20
10 CONTINUE
PRINT 100, IASAR, IAFAR, A
100 FORMAT (/*SUBROUTINE SDV3S2, SG. ROUTE ARGUMENT NEGATIVE */)
10 CONTINUE
GO TO 43
20 CONTINUE
DV3S2 = SQRT (A)
43 CONTINUE
RETURN
END

SUBROUTINE SDVIS3
DIMENSION DELTA (5, 5)
COMMON /SSFFS/
1 COAS, COAF, COASAF, AMAS, AMAF, AMASAF, AMI, VF, GAMAS, GAMAF, BETA, DELTA,
2IAFAR, IASAR, DOSF, DOFS, DOSD, DOFF, INDXSF, INDXFS, INDXXS, INDXXF,
3TSF, TFS, TSS, TFF
4, DELTSS, DELTFF, DELTSF, DELTFS
COMMON /SF/
2 DOSF1, DOSF2, DOSF3, DOSF4, V1S1, V2S1, V3S1, V4S1, V1S2, V2S2, V3S2,
3DV2S1, DV3S1, DV1S3, DV2S3, DV4S3, DODO3
DV1S3 = BETA + (DOSF1 - BETA) * AMI - VF * (1.0 - AMI) * (GAMAS / (AMI + VF) -
1)(DOSF1 - BETA) / VF)
RETURN
END

SUBROUTINE SDV2S3
DIMENSION DELTA (5, 5)
COMMON /SSFFS/
1 COAS, COAF, COASAF, AMAS, AMAF, AMASAF, AMI, VF, GAMAS, GAMAF, BETA, DELTA,
2IAFAR, IASAR, DOSF, DOFS, DOSD, DOFF, INDXSF, INDXFS, INDXXS, INDXXF,
3TSF, TFS, TSS, TFF
4, DELTSS, DELTFF, DELTSF, DELTFS
COMMON /SF/
2 DOSF1, DOSF2, DOSF3, DOSF4, V1S1, V2S1, V3S1, V4S1, V1S2, V2S2, V3S2,
3DV2S1, DV3S1, DV1S3, DV2S3, DV4S3, DODO3
DV2S3 = BETA + (DOSF2 - BETA) * AMI - VF * (1.0 - AMI) * (GAMAS / (AMI + VF) -
1)(DOSF2 - BETA) / VF)
RETURN
END
SUBROUTINE SDV4S3
DIMENSION DELTA(5,5)
COMMON /SSFFS/
1COAS,COAF,COASAF,AMAS,AMAF,AMASAF,AMI,VF,GAMAS,GAMAF,BETA,DELTA,
2IAFAR,IASAR,DOSF,DOFS,DOSS,DOFF,INDXSF,INDXFS,INDXSS,INDXFF,
3TSF,TSF,TSS,TFF
4,DELTSS,DELTFF,DELTSF,DELTFS
COMMON /SF/
2DOSF1,DOSF2,DOSF3,DOSF4,V1S1,V2S1,V3S1,V4S1,V1S2,V2S2,V3S2,
3DV2S1,DV3S1,DV1S2,DV1S3,DV2S3,DV4S3,DOD03
DV4S3=BETA+(DOSF4-BETA)*AMI-VF*(1.-AMI)*(GAMAS/(AMI*VF)-
1)(DOSF4-BETA)/VF)
RETURN
END

SUBROUTINE SD0003
DIMENSION DELTA(5,5)
COMMON /SSFFS/
1COAS,COAF,COASAF,AMAS,AMAF,AMASAF,AMI,VF,GAMAS,GAMAF,BETA,DELTA,
2IAFAR,IASAR,DOSF,DOFS,DOSS,DOFF,INDXSF,INDXFS,INDXSS,INDXFF,
3TSF,TSF,TSS,TFF
4,DELTSS,DELTFF,DELTSF,DELTFS
COMMON /SF/
2DOSF1,DOSF2,DOSF3,DOSF4,V1S1,V2S1,V3S1,V4S1,V1S2,V2S2,V3S2,
3DV2S1,DV3S1,DV1S2,DV1S3,DV2S3,DV4S3,DOD03
DOD03=DOSF3**2.-2.*DOSF3*BETA*(1.-COAF')+2.*BETA**2.*(1.-COAF)
RETURN
END

SUBROUTINE SD0FS
DIMENSION DELTA(5,5)
COMMON /SSFFS/
1COAS,COAF,COASAF,AMAS,AMAF,AMASAF,AMI,VF,GAMAS,GAMAF,BETA,DELTA,
2IAFAR,IASAR,DOSF,DOFS,DOSS,DOFF,INDXSF,INDXFS,INDXSS,INDXFF,
3TSF,TSF,TSS,TFF
4,DELTSS,DELTFF,DELTSF,DELTFS
COMMON /FS/
1DOFS1,DOFS2,DOFS4,DOFS5,T1S1,T2S1,T4S1,T1S2,T2S2,T4S2,T2S1,DT2S1,DT1S2
2,T5S1,DT5S1
T12=-BETA/VF
CALL SD0FS1
CALL ST1S1
IF (T1S1-T12) 100,100,120
100 CONTINUE
CALL ST1S2
IF (T1S2-T12) 105,105,110
105 CONTINUE
DOFS=DOFS1
INDXFS=1010
GO TO 995
110 CONTINUE
CALL SDT1S2
IF (DT1S2-DELTFS) 120,120,115
115 CONTINUE
DOFS=DOFS1
INDXFS=1020
GO TO 995
120 CONTINUE
CALL SD0FS2
CALL ST2S2
IF (T2S2-T12) 300,300,125
125 CONTINUE
IF (T2S2) 130,130,200
130 CONTINUE
CALL ST2S1
IF (T2S1-T12) 140,140,135
135 CONTINUE
DOFS=DOFS2
INDXFS=2010
GO TO 995
140 CONTINUE
CALL SDT2S1
IF (DT2S1-DELTFS) 150,150,145
145 CONTINUE
DOFS=DOFS2
INDXFS=2020
GO TO 995
150 CONTINUE
DOFS=0.
INDXFS=1
GO TO 995
200 CONTINUE
T5=GAMA3/VF
IF (T2S2-T5) 205,205,240
205 CONTINUE
CALL ST2S1
IF (T2S1-T12) 215,215,210
210 CONTINUE
DOFS=DOFS2
INDXFS=2110
GO TO 995
215 CONTINUE
CALL SDT2S1
IF (DT2S1-DELTFS) 225,225,220
220 CONTINUE
DOFS=DOFS2
INDXFS=2120
GO TO 995
225 CONTINUE
DOFS=C.
INDXFS=2
GO TO 995
240 CONTINUE
CALL SDOFS5
CALL ST5S1
IF (T5S1-T12) 250,250,245
245 CONTINUE
DOFS=DOFS5
INDXFS=5110
GO TO 995
250 CONTINUE
CALL SDT5S1
IF (DT5S1-DELTFS) 260,260,255
255 CONTINUE
DOFS=DOFS5
INDXFS=5120
GO TO 995
260 CONTINUE
CALL SDOFS1
DOFS=DOFS1
INDXFS=1030
GO TO 995
300 CONTINUE
CALL SDOFS4
CALL ST4S1
CALL ST4S2
IF (T4S1-T12) 320,320,305
305 CONTINUE
IF (T4S2-T12) 310,310,315
310 CONTINUE
DOFS=DOFS4
INDXFS=4000
GO TO 995
315 CONTINUE
DOFS=0.
INDXFS=3
GO TO 995
320 CONTINUE
IF (T4S2-T12) 325,325,330
325 CONTINUE
DOFS=0.
INDXFS=4
GO TO 995
330 CONTINUE
DOFS=0.
INDXFS=5
GO TO 995
995 CONTINUE
RETURN
END

SUBROUTINE SDOFS1
DIMENSION DELTA(5,5)
COMMON /SSFFS/
1 COAS, COAF, COASAF, AMAS, AMAF, AMASAF, AMI, VF, GAMAS, GAMAF, BETA, DELTA,
2 IAFAR, IASAR, DOFS, DOSS, DOFF, INDXSF, INDXFS, INDXSS, INDXFF,
3 TSF, TFS, TSS, TF
4, DELTSS, DELTFF, DELTSF, DELTFS
COMMON /FS/
1 IDOFS1, DOFS2, DOFS4, DOFS5, T1S1, T2S1, T4S1, T1S2, T2S2, T4S2, DT2S1, DT1S2
2, TSS1, TSS5
AFS1 = -(COASAF-AMI)**2/AMASAF
BFS1 = 2.*BETA*((COASAF-COAS)-(COASAF-AMI)*((1.-COAF)-AMI*
1(COASAF-COAS))/AMASAF)
CIFS1 = BETA**2*(2.*(I- COAF)-((I- COAF)-AMI*(COASAF-COAS))**2/
1 AMASAF)
CDFS1 = CIFS1-DELTFS**2
DETFS1 = BFS1**2-4.*AFS1*CDFS1
IF (DETFS1) 10,20,30
10 CONTINUE
PRINT 100, IASAR, IAFAR, DETFS1
100 FORMAT (//,*SUBROUTINE SDOFS1, DETERMINANT NEGATIVE *,3X,*ALFAS=*
1,13,3X,*ALFAF=*,13,3X,*DETFS1=*,F10.5/)
GO TO 40
20 CONTINUE
DOFS1 = BFS1/(2.*AFS1)
GO TO 40
30 CONTINUE
DO1FS1 = (-BFS1+SQRT(DETFS1))/(2.*AFS1)
DO2FS1 = (-BFS1-SQRT(DETFS1))/(2.*AFS1)
DOFS1 = DO2FS1
40 CONTINUE
RETURN
END

SUBROUTINE SDOFS2
DIMENSION DELTA(5,5)
COMMON /SSFFS/
1COAS,COAF,COASAF,AMAS,AMAF,AMASAF,AMI,VF,GAMAS,GAMAF,BETA,DELTA,
2IAFAR,IASAR,DOFS,DOFF,INDEXSF,INDEXFS,INDEXSS,INDEXFF,
3TFS,TFF,TSS,TFF
4,DELTSS,DELTFF,DELTSF,DELTFS
COMMON /FS/
1DOFS1,DOFS2,DOFS4,DOFS5,T1S1,T2S1,T4S1,T1S2,T2S2,T4S2,DT2S1,DT1S2
2,T5S1,T5S1
A=-(COAS-AMI)**2/AMAS
IF (A) 10,10,20
10 CONTINUE
PRINT 100,IASAR,IAFAR,A
100 FORMAT(/*,SUBROUTINE SDOFS4, ROUTE ARGUMENT NEGATIVE *,3X,
1*ALFAS =*,13,3X,*ALFAF =*,13,3X,*SQR*ARG. =*,F10.5/)
GO TO 40
20 CONTINUE
DOFS4=-DELS/SQRT(A)
40 CONTINUE
RETURN
END

SUBROUTINE SDOFS4
DIMENSION DELTA(5,5)
COMMON /SSFFS/
1COAS,COAF,COASAF,AMAS,AMAF,AMASAF,AMI,VF,GAMAS,GAMAF,BETA,DELTA,
2IAFAR,IASAR,DOFS,DOFF,INDEXSF,INDEXFS,INDEXSS,INDEXFF,
3TFS,TFF,TSS,TFF
4,DELTSS,DELTFF,DELTSF,DELTFS
COMMON /FS/
1DOFS1,DOFS2,DOFS4,DOFS5,T1S1,T2S1,T4S1,T1S2,T2S2,T4S2,DT2S1,DT1S2
2,T5S1,T5S1
AFS4=1.
BFS4=-2.*BETA*(COAS-AMI)
CIFS4=BETA**2*AMAS
CFS4=CIFS4-DELTFS**2
DETS4=BFS4**2-4.*AFS4*CFS4
IF (DETS4) 10,20,30
10 CONTINUE
PRINT 100,IASAR,IAFAR,DETS4
100 FORMAT(/*,SUBROUTINE SDOFS4,DETERMINANT NEGATIVE *,3X,*ALFAS =*,
113,3X,*ALFAF =*,13,3X,*DETS4 =*,F10.5/)
GO TO 40
20 CONTINUE
DOFS4=-BFS4/(2.*AFS4)
GO TO 40
30 CONTINUE
SUBROUTINE SDOFS4
DIMENSION DELTA(5,5)
COMMON /SSFFS/
1CODAS, COAF, COASAF, AMAS, AMAF, AMASAF, AMI, VF, GAMAS, GAMAF, BETA, DELTA,
2IAFAR, IASAR, DOFS, DOFS4, DOFF, INDEXF, INDEXFS, INDEXSS, INDEXSF,
3TSF, TFS, TSS, TFF
4, DELTSS, DELTFF, DELTSF, DELTFS
COMMON /FS/
1DOFS1, DOFS2, DOFS4, DOFS5, T1S1, T2S1, T4S1, T1S2, T2S2, T4S2, DT2S1, DT1S2
2, TSS1, DTTSS
AFS4=1.
BFS4=GAMAS*(COAS-AMI)*2.
CFSS=GAMAS*2*AMAS
CFSS=CIFSS-DETFSS/2.
DETFSS=BFS4**2-4*CFSS
IF (DETFSS) 10,20,30
10 CONTINUE
PRINT 100, IASAR, IAFAR, DETFS4
100 FORMAT (/S*SUBROUTINE SDOFS4, DETERMINANT NEGATIVE *, 3X, *ALFAS =*
GO TO 40
20 CONTINUE
DOFS4=-BFS4/2.
GO TO 40
30 CONTINUE
DOFS4=(-BFS4+SQRT(DETFSS))/2.
40 CONTINUE
RETURN
END

SUBROUTINE ST1S1
DIMENSION DELTA(5,5)
COMMON /SSFFS/
1CODAS, COAF, COASAF, AMAS, AMAF, AMASAF, AMI, VF, GAMAS, GAMAF, BETA, DELTA,
2IAFAR, IASAR, DOFS, DOFS4, DOFF, INDEXF, INDEXFS, INDEXSS, INDEXSF,
3TSF, TFS, TSS, TFF
4, DELTSS, DELTFF, DELTSF, DELTFS
COMMON /FS/
1DOFS1, DOFS2, DOFS4, DOFS5, T1S1, T2S1, T4S1, T1S2, T2S2, T4S2, DT2S1, DT1S2
SUBROUTINE ST2S1
DIMENSION DELTA(5,5)
COMMON /SSFFS/
1COAS, COAF, COASAF, AMAS, AMAF, AMASAF, AMI, VF, GAMAS, GAMAF, BETA, DELTA,
2IAFAR, IASAR, DOFS, DOFS, DOSS, DOFF, INDXSF, INDXFS, INDXSS, INDXFF,
3TSF, TFS, TSS, TFF
4, DELTSS, DELTFF, DELTSF, DELTFS
COMMON /FS/
1DOFS1, DOFS2, DOFS4, DOFS5, T1S1, T2S1, T4S1, T1S2, T2S2, T4S2, DT2S1, DT1S2
2, T5S1, DT5S1
T1S1 = -(DOFS1*(COASAF-AMI)+BETA*((1.-COAF)-AMI*(COASAF-COAS)))/
1(AMASAF*VF)
RETURN
END

SUBROUTINE ST4S1
DIMENSION DELTA(5,5)
COMMON /SSFFS/
1COAS, COAF, COASAF, AMAS, AMAF, AMASAF, AMI, VF, GAMAS, GAMAF, BETA, DELTA,
2IAFAR, IASAR, DOFS, DOFS, DOSS, DOFF, INDXSF, INDXFS, INDXSS, INDXFF,
3TSF, TFS, TSS, TFF
4, DELTSS, DELTFF, DELTSF, DELTFS
COMMON /FS/
1DOFS1, DOFS2, DOFS4, DOFS5, T1S1, T2S1, T4S1, T1S2, T2S2, T4S2, DT2S1, DT1S2
2, T5S1, DT5S1
T4S1 = -(DOFS4*(COASAF-AMI)+BETA*((1.-COAF)-AMI*(COASAF-COAS)))/
1(AMASAF*VF)
RETURN
END

SUBROUTINE ST5S1
DIMENSION DELTA(5,5)
COMMON /SSFFS/
1COAS, COAF, COASAF, AMAS, AMAF, AMASAF, AMI, VF, GAMAS, GAMAF, BETA, DELTA,
2IAFAR, IASAR, DOFS, DOFS, DOSS, DOFF, INDXSF, INDXFS, INDXSS, INDXFF,
3TSF, TFS, TSS, TFF
4, DELTSS, DELTFF, DELTSF, DELTFS
COMMON /FS/
1DOFS1, DOFS2, DOFS4, DOFS5, T1S1, T2S1, T4S1, T1S2, T2S2, T4S2, DT2S1, DT1S2
L2, TSSI

\[DT5SI = \frac{-DOFS*(COASAF-AMI) + SETA*((1.-COAF)-AMI*(COASAF-COAS))}{AMASAF*VF} \]
RETURN
END

SUBROUTINE ST1S2
DIMENSION DELTA(5, 5)
COMMON /SSFFS/
1COAS, COAF, COASAF, AMAS, AMAF, AMASAF, AMI, VF, GAMAS, GAMAF, BETA, DELTA,
2IAFAR, IASAR, DOFS, DOFS, DOFF, INDXSF, INDXS, INDXFF,
3TSF, TFS, TSS, TFF
4, DELTSS, DELTFF, DELTSF, DELTFS
COMMON /FS/
1DOFS1, DOFS2, DOFS4, DOFS5, T1S1, T2S1, T4S1, TIS2, T2S2, T4S2, DT2S1, DT1S2
2, T5S1, DT5S1
TIS2 = DOFS1*(COAS-AMI)/(AMAS*VF)
RETURN
END

SUBROUTINE ST2S2
DIMENSION DELTA(5, 5)
COMMON /SSFFS/
1COAS, COAF, COASAF, AMAS, AMAF, AMASAF, AMI, VF, GAMAS, GAMAF, BETA, DELTA,
2IAFAR, IASAR, DOFS, DOFS, DOFF, INDXSF, INDXS, INDXFF,
3TSF, TFS, TSS, TFF
4, DELTSS, DELTFF, DELTSF, DELTFS
COMMON /FS/
1DOFS1, DOFS2, DOFS4, DOFS5, T1S1, T2S1, T4S1, TIS2, T2S2, T4S2, DT2S1, DT1S2
2, T5S1, DT5S1
TIS2 = DOFS1*(COAS-AMI)/(AMAS*VF)
RETURN
END

SUBROUTINE ST4S2
DIMENSION DELTA(5, 5)
COMMON /SSFFS/
1COAS, COAF, COASAF, AMAS, AMAF, AMASAF, AMI, VF, GAMAS, GAMAF, BETA, DELTA,
2IAFAR, IASAR, DOFS, DOFS, DOFF, INDXSF, INDXS, INDXFF,
3TSF, TFS, TSS, TFF
4, DELTSS, DELTFF, DELTSF, DELTFS
COMMON /FS/
1DOFS1, DOFS2, DOFS4, DOFS5, T1S1, T2S1, T4S1, TIS2, T2S2, T4S2, DT2S1, DT1S2
2, T5S1, DT5S1
T4S2 = DOFS4*(COAS-AMI)/(AMAS*VF)
SUBROUTINE SDT2S1
DIMENSION DELTA(5,5)
COMMON /SSFS/
1.COAS,COAF,COASAF,AMAS,AMAF,AMASAF,AMI,VF,GAMAS,GAMAF,BETA,DELTA,
2.IAFAR,IASAR,DOFS,DOFS2,DOSS,DOFF,INDXSF,INDXSF,INDXSS,INDXFf,
3.TSF,TFS,TSS,TFF
4.,DELTSS,DELTFF,DELTSF,DELTFS
COMMON /FS/
1.DOFS1,DOFS2,DOFS4,DOFS5,TIS1,T2S1,T4S1,TIS2,T2S2,T4S2,DT2S1,DT1S2
2.,TSS1,DTSS1
AFS1=1-((COASAF-AMI)**2/AMASAF
BFS1=2*BETA*((COASAF-COAS)-(COASAF-AMI)*((1.-COAF)-AMI*(COASAF-
1.COAS))/AMASAF)/AMASAF
CIFS1=BETA**2*(2*(1.-COAF)-((1.-COAF)-AMI*(COASAF-COAS))**2/
1.AMASAF)
A=DOFS2**2*AFS1+DOFS2*BFS1+CIFS1
IF (A) 10/20/2010 CONTINUE
PRINT 100,IASAR,IAFAR,A
100 FORMAT (/*/SUBROUTINE SDT2S1,SO ROUTE ARGUMENT NEGATIVE *,3X,
1*ALFAS =*,13,3X,*ALFAF =*,13,3X,*SORT,ARG,=*10.5/)
GO TO 40
20 CONTINUE
DT2S1=SQR(A)
40 CONTINUE
RETURN
END

SUBROUTINE SDT5S1
DIMENSION DELTA(5,5)
COMMON /SSFS/
1.COAS,COAF,COASAF,AMAS,AMAF,AMASAF,AMI,VF,GAMAS,GAMAF,BETA,DELTA,
2.IAFAR,IASAR,DOFS,DOFS2,DOSS,DOFF,INDXSF,INDXSF,INDXSS,INDXFf,
3.TSF,TFS,TSS,TFF
4.,DELTSS,DELTFF,DELTSF,DELTFS
COMMON /FS/
1.DOFS1,DOFS2,DOFS4,DOFS5,TIS1,T2S1,T4S1,TIS2,T2S2,T4S2,DT2S1,DT1S2
2.,TSS1,DTSS1
AFS1=1-((COASAF-AMI)**2/AMASAF
BFS1=2*BETA*((COASAF-COAS)-(COASAF-AMI)*((1.-COAF)-AMI*(COASAF-
1.COAS))/AMASAF)
CIFS1=BETA**2*(2*(1.-COAF)-((1.-COAF)-AMI*(COASAF-COAS))**2/
1.AMASAF)
A=DOFS5**2*AFS1+DOFS5*BF51+CF51
IF (A) 10,20,20
10 CONTINUE
PRINT 100,IAS1,IAF1,A
100 FORMAT (/,*SUBROUTINE SDT5S1,S0, ROUTE ARGUMENT NEGATIVE *,3X,
1*ALFAS =*,13,3X,*ALFAF =*,13,3X,*SQT*ARG. =*,F10.5/)
GO TO 40
20 CONTINUE
DTSS1=SQRT(A)
40 CONTINUE
RETURN
END

SUBROUTINE SDT5S1
DIMENSION DELTA(5,5)
COMMON /SSF5S/
1COAS,COAF,COASAF,AMAF,AMAS,AMASAF,AMI,VF,GAMAS,GAMAF,BETA,DELTA,
2IAF1,IAS1,DOFS,DOFS,DOSS,DOFF,INDXSF,INDXFS,INDXSS,INDXFF,
3TSF,TF5,TSS,TF
4,DELTSS,DELTFF,DELTSS,DELTFF
COMMON /FS/
1DOFS1,DOFS2,DOFS3,DOFS4,DOFS5,T1S1,T2S1,T4S1,T1S1,T2S2,T4S2,DT2S1,DT1S2
2,TS51,DTSS1
A=1.-(COAS-AMI)**2/AMAS
IF (A) 10,20,20
10 CONTINUE
PRINT 100,IAS1,IAF1,A
100 FORMAT (/,*SUBROUTINE SDT1S2,SQ, ROUTE ARGUMENT NEGATIVE *,3X,
1*ALFAS =*,13,3X,*ALFAF =*,13,3X,*SQT*ARG. =*,F10.5/)
GO TO 40
20 CONTINUE
DT1S2=DOFS1*SQRT(A)
40 CONTINUE
RETURN
END

SUBROUTINE SDOSS
DIMENSION DELTA(5,5)
COMMON /SSF5S/
1COAS,COAF,COASAF,AMAF,AMAS,AMASAF,AMI,VF,GAMAS,GAMAF,BETA,DELTA,
2IAF1,IAS1,DOFS,DOFS,DOSS,DOFF,INDXSF,INDXFS,INDXSS,INDXFF,
3TSF,TF5,TSS,TF
4,DELTSS,DELTFF,DELTSS,DELTFF
DOSS1=DELTSS/SQT(*5+5*COAS)
TIS1=DOSS1/(2.*AMI*VF)
TS=GAMAS/(AMI*VF)
I = (T1SI - T5) 10, 10, 110

10 CONTINUE
DOSS = DOSS1
INDXSS = 1000
GO TO 200

110 CONTINUE
AS55 = 1.
BS55 = -2. * GAMAS * (1. - COAS)
C1SS5 = 2. * GAMAS ** 2 * (1. - COAS)
CSS5 = C1SS5 - DETSS5 ** 2
DETSS5 = BS55 ** 2 - 4. * CSS5
DOSS5 = (-BS55 + SQRT(DETSS5)) / 2.
DOSS = DOSS5
INDXSS = 1000

200 CONTINUE
RETURN
END

SUBROUTINE SDOFF
DIMENSION DELTA(5, 5)
COMMON /SFFS/
COAS, COAF, GAMAS, AAF, AMAF, AMASAF, AMI, VF, GAMAS, GAMAF, BETA, DELTA,
AFAR, ISAR, DOSS, DOFS, DOSS, DOFF, INDXSF, INDXFS, INDXSS, INDXFF,
TSF, TFS, TSS, TFF
DELSSF, DELTFF, DELTFS, DELTF5
DOFF1 = DELTFF / SQRT(5 + 5 * COAF)
TISI = DOFF1 / (2 * VF)
T5 = GAMAF / VF
IF (TISI - T5) 10, 10, 110

10 CONTINUE
DOFF = DOFF1
INDXFF = 1000
GO TO 200

110 CONTINUE
AFF55 = 1.
BF55 = -2. * GAMAF * (1. - COAF)
C1FF5 = 2. * GAMAF ** 2 * (1. - COAF)
CFF5 = C1FF5 - DETFF5 ** 2
DETF5 = BF55 ** 2 - 4. * CFF5
DOFF5 = (-BF55 + SQRT(DETF5)) / 2.
DOFF = DOFF5
INDXFF = 4000

200 CONTINUE
RETURN
END
SUBROUTINE DOT
DIMENSION DELTA(5,5)
COMMON /SSFFS/
COAS,CDAF,COASAF,AMAS,AMAF,AMASAF,AMI,VF,GAMAS,GAMAF,BETA,DELTA,
IAPAR,IASAR,DOFS,DOSS,DOFF,INDXF,INDEXF,INDEXSS,INDEXFF,
TSF,TFS,TSS,TF,
DELTS,TETF,DELSF,DELTFS
TSS=DOSS/(AMI*VF)
TFF=DOFF/VF
TSF=(GAMAS+DOFS)/VF-GAMAS/(AMI*VF)
TFS=(GAMAS+DOFS)/(AMI*VF)-GAMAS/VF
RETURN
END
B.3. Program CAPSF (Case with two aircraft types)
PROGRAM COMPUTING CAPSF

PROGRAM CAPSF (INPUT, OUTPUT)
DIMENSION ISAR(10,19), IFAR(10,19), DDOSF(10,19), INXSF(10,19),
1 DDOFS(10,19), INXFS(10,19), DDOSS(10), INXSS(10), DOFF(10,19),
2 INXXSF(10,19), CAPAC(10,19),
3 DELTA(5,5)
COMMON /SSFFS/
1 COAS, COAF, COASF, AMAS, AMAF, AMASF, AMI, VF, GAMAS, GAMAF, BETA, DELTA,
2 IASAR, IASAR, DDOF, DDOFS, DDOSS, DOFF, INDEXSF, INDEXFS, INDEXSS, INDEXXF,
3 TSF, TFS, TSS, TFF
4, DELTSS, DELTFS, DELTSF, DELTFS

DO LOOP TO REPEAT THE WHOLE PROGRAM WITH NEW INPUT DATA
9999 CONTINUE

INPUT DATA

Palf=1.57077
DALF=0.17453
PALF=90
IDALF=10
3010 FORMAT(2F10.5)
3015 FORMAT(4F10.5)
READ 3010, VF, VS
READ 3015, GAMAF, GAMAS
READ 3010, DELTSS, DELTSF, DELTFS
READ 3010, PF, PS

INITIAL DATA CONVERSION

VS=VS/3600.
VF=VF/3600.
AMI=VS/VF
BETA=GAMAF-GAMAS
PFF=PF*PF
PSS=PS*PS
PFS=PS*PF
PSF=PS*PF

PRINT INPUT DATA

PRINT 3110, VF
3110 FORMAT(1H1, 10X, *VF =*, F7.2/)
PRINT 3120, VS
3120 FORMAT(10X, *VS =*, F7.2/)
ANGLE MATRIX GENERATION

DO 999 I=1,10
 E11=FLOAT(I-1)
 AS=PALF-DALF*E11
 IASAR=IPALF-IDALF*(I-1)
 DO 998 J=1,19
 IF (I-J) 2120,2110,2120
2110 CONTINUE
 AF=AS-0.5*DALF
 IAFAR=IASAR-IDALF/2
 GO TO 2130
2120 CONTINUE
 EJ1=FLOAT(J-1)
 AF=PALF-DALF*EJ1
 IAFAR=IPALF-IDALF*(J-1)
2130 CONTINUE
 ISAR(I,J)=IASAR
 IFAR(I,J)=IAFAR

PREPARATION FOR SUBROUTINES

COAS=COS(AS)
COAF=COS(AF)
COASAF=COS(AS-AF)
AMAS=AMI**2,-2,*AMI*COAS+1.
AMAF=AMI**2,-2,*AMI*COAF+1.
AMASAF=AMI**2-2*AMI*COASAF+1.

C MAIN PROGRAM

CALL SDOSF
DOOSF(I,J)=DOSF
INXSF(I,J)=INDXSF
CALL SDOSF
DOOSF(I,J)=DOSF
INXSF(I,J)=INDXSF
CALL SDOFF
DOOFF(I,J)=DOFF
INXFF(I,J)=INDXFF
CALL SDOSF
DOSSS(I)=DOSS
INXSS(I)=INDXSS
CALL DOT
TAR=SF*PSF+TFS*PFS+TFF*PFF+TSS*PSS
CAP=3600.*TAR
CAPAC(I,J)=CAP
998 CONTINUE
999 CONTINUE

C PRINT TABLES

PRINT 4700
4700 FORMAT(1H1,20X,*CAPSF*//**/
PRINT 4805,(ISAR(I,J),I=1,10)
DO 4810 J=1,19
IANGF=100-10*J
PRINT 4711,IANGF,(CAPAC(I,J),I=1,10)
4711 FORMAT(16,4X,10F10.3/
4750 CONTINUE
 PRINT 4805,(ISAR(I,J),I=1,10)
DO 4810 J=1,19
IANGF=100-10*J
PRINT 4811,IANGF,(DOOSF(I,J),I=1,10)
4810 CONTINUE
 PRINT 4820
4820 FORMAT(1H1,20X,*INDXSF*//**/
PRINT 4805,(ISAR(I,J),I=1,10)
DO 4830 J=1,19
IANGF=100-10*J
PRINT 4812,IANGF,(INXSF(I,J),I=1,10)
4830 CONTINUE
4835 FORMAT(10X,10I10/
4811 FORMAT(I6,4X,10F10.5/)
4812 FORMAT(I6,4X,10I10/)
PRINT 4840
4840 FORMAT(1H1,20X,*DDOFS*///)
PRINT 4805,(ISAR(I,J),I=1,10)
DO 4850 J=1,19
IANGF=100-10*J
PRINT 4811,(IANGF,(DDOFS(I,J),I=1,10)
4850 CONTINUE
PRINT 4860
4860 FORMAT(1H1,20X,*INDXFS*///)
PRINT 4805,(ISAR(I,J),I=1,10)
DO 4870 J=1,19
IANGF=100-10*J
PRINT 4812,(IANGF,(INDXFS(I,J),I=1,10)
4870 CONTINUE
PRINT 4880
4880 FORMAT(1H1,20X,*DINOS*///)
PRINT 4805,(ISAR(I,J),I=1,10)
PRINT 4881,(DDOSS(I),I=1,10)
4881 FORMAT(10X,10F10.5/)
PRINT 4882,(INDXSS(I),I=1,10)
4882 FORMAT(10X,10F10.5/)
PRINT 4890
4890 FORMAT(1H1,20X,*DDOFF*///)
PRINT 4805,(ISAR(I,J),I=1,10)
DO 4900 J=1,19
IANGF=100-10*J
PRINT 4811,(IANGF,(DDOFF(I,J),I=1,10)
4900 CONTINUE
PRINT 4910
4910 FORMAT(1H1,20X,*INDXXF*///)
PRINT 4805,(ISAR(I,J),I=1,10)
DO 4920 J=1,19
IANGF=100-10*J
PRINT 4812,(IANGF,(INDXXF(I,J),I=1,10)
4920 CONTINUE
GO TO 9999
STOP
END
B.4. Program CAP3 (Case with three aircraft types)
PROGRAM COMPUTING CAP3

PROGRAM CAP3(INPUT,OUTPUT)
DIMENSION VKT(5),GAMA(5),P(5),PP(5,5),DELTA(5,5),TT(5,5),
 IALF1(50),IALF2(50),IALF3(50),CAPAC(50),CAPMIN(50),
 IALFM1(50),IALFM2(50),IALFM3(50)
COMMON /SSFFG/,
I,COAS*COAFtCOASAFlAMAS*AMAF,AMASAF*AMAF,AMASAF,AMI,VF,GAMAS,GAMAF,BETA,DELTA,
IALFAR,IALFAR,DOSF,DOPF,DOSF,DOPF,INDXSF,INDXSS,INDXFF,
3TSF,TFS,TSS,TFF
4,DELTSS,DELTFF,DELTSF,DELTFS

DO LOOP TO REPEAT THE WHOLE PROGRAM WITH NEW INPUT DATA

9999 CONTINUE

INPUT DATA

M=3
NM=40
READ 3010,(VKT(I),I=1,M)
3010 FORMAT(3F10.5)
READ 3010,(GAMA(I),I=1,M)
READ 3010,(P(I),I=1,M)
READ 3010,(DELTA(I,J),J=1,M),I=1,M)

PRINT INPUT DATA

PRINT 3111
3111 FORMAT(1H1,10X,*INPUT DATA*//)
DO 3110 I=1,M
 PRINT 3112,I,VKT(I),I,GAMA(I),I,P(I)
3112 FORMAT(11X,*VKT*,I1,*,=*,F7.2,3X,*GAMA*,I1,*,=*,F7.2,3X,*P*,I1,
 1* =*,F4.2/)
3110 CONTINUE
PRINT 3120
3120 FORMAT(/,11X,*DELTA MATRIX*//)
PRINT 3130
3130 FORMAT(20X,*TRAILING A/C*/)
PRINT 3131(J,J=1,M)
3131 FORMAT(19X,3(I1,9X),/)
DO 3140 I=1,M
 PRINT 3132,I,(DELTA(I,J),J=1,M)
3132 FORMAT(9X,12,3F10.2,/)
3140 CONTINUE

INITIAL DATA PREPARATION
C

DO 4010 I=1,M
DO 4009 J=1,M
PP(I,J)=P(I)*P(J)

4009 CONTINUE
4010 CONTINUE
DO 4020 N=1,NM
CAPAC(N)=0.
CAPMIN(N)=9999.
IALF1(N)=0
IALF2(N)=0
IALF3(N)=0

4020 CONTINUE
PALF=1.57077
DHF=0.17453
IPALF=90
IDALF=10

MAIN PROGRAM

CASE A

ANGLES GENERATION

DO 2495 I1=1,8
E11=FLOAT(I1-1)
A1=PALF-DALF*E11
IAL1=IPALF-IALF*(I1-1)
I1PLS1=I1+1
DO 2490 I2=I1PLS1,9
E21=FLOAT(I2-1)
A2=PALF-DALF*E21
I2AL1=IPALF-IALF*(I2-1)
I2PLS1=I2+1
DO 2485 I3=I2PLS1,19
E31=FLOAT(I3-1)
A3=PALF-DALF*E31
I3AL1=IPALF-IALF*(I3-1)

AIRCRAFT 1 AND 2

VS=VKT(1)/3600.
VF=VKT(2)/3600.
AMI=VS/VF
GAMAF=GAMA(2)
GAMAS=GAMA(1)
BETA=GAMAF-GAMAS
DELTSS=DELTA(1,1)
DELTFF = DELTA(2, 2)
DELTSF = DELTA(1, 2)
DELTFS = DELTA(2, 1)
AS = A1
AF = A2
IAR = A2A
IASAR = A1A
COAS = COS(AS)
COAF = COS(AF)
COASAF = COS(AS - AF)
AMAS = AMI**2 - 2*AMI*COAS + 1
AMAF = AMI**2 - 2*AMI*COAF + 1
AMASAF = AMI**2 - 2*AMI*COASAF + 1
CALL SDOFS
CALL SDOFF
CALL DOT
TT(1, 1) = TSS
TT(1, 2) = TSF
TT(2, 1) = TFS
TT(2, 2) = TFF

C C
AIRCRAFT 1 AND 3
VS = VKT(1)/3600.
VF = VKT(3)/3600.
AMI = VS/VF
GAMAF = GAMA(3)
GAMAS = GAMA(1)
BETA = GAMAF - GAMAS
DELTSS = DELTA(1, 1)
DELTFF = DELTA(3, 3)
DELTSF = DELTA(1, 3)
DELTFS = DELTA(3, 1)
AS = A1
AF = A3
IAR = A3A
IASAR = A1A
COAS = COS(AS)
COAF = COS(AF)
COASAF = COS(AS - AF)
AMAS = AMI**2 - 2*AMI*COAS + 1
AMAF = AMI**2 - 2*AMI*COAF + 1
AMASAF = AMI**2 - 2*AMI*COASAF + 1
CALL SDOFS
CALL SDOFF
CALL SDOS
CALL SDOS
CALL DOT
TT(1,3) = TSF
TT(3,1) = TFS
TT(3,3) = TFF

AIRCRAFT 2 AND 3

VS = VKT(2)/3600.
VF = VKT(3)/3600.
AMI = VS/VF
GAMAF = GAMA(3)
GAMAS = GAMA(2)
BETA = GAMAF - GAMAS
DELTSS = DELTA(2,2)
DELTFF = DELTA(3,3)
DELTFS = DELTA(2,3)
AS = A2
AF = A3
IASAR = IAR2AR
IAFAR = IAR3AR
COAS = COS(AS)
COAF = COS(AF)
COASAF = COS(AS - AF)
AMAS = AMI**2 - 2.0*AMI*COAS + 1.0
AMAF = AMI**2 - 2.0*AMI*COAF + 1.0
AMASAF = AMI**2 - 2.0*AMI*COASAF + 1.0
CALL SDOSF
CALL SDOSFS
CALL SDOSF
CALL SDOS
CALL DOT
TT(2,3) = TSF
TT(3,2) = TFS

MEAN INTERARRIVAL TIME AND CAPACITY

TBAR = 0.
DO 2420 I = 1, M
DO 2410 J = 1, M
TBAR = TBAR + TT(I, J) * PP(I, J)
2410 CONTINUE
2420 CONTINUE
CAP = 3600.*TBAR
N = NM
IF (CAP.LT. CAPAC(N)) GO TO 2470
DO 2450 NI = 1, N
IF (CAP - CAPAC(N1)) CONTINUE
2450 CONTINUE
NN = N1
GO TO 2455
2450 CONTINUE
2455 CONTINUE
NMINNN = N - NN
DO 2460 NOP = 1, NMINNN
N2 = N - NOP
N2P1 = N2 + 1
CAPAC(N2P1) = CAPAC(N2)
IALF1(N2P1) = IALF1(N2)
IALF2(N2P1) = IALF2(N2)
IALF3(N2P1) = IALF3(N2)
2460 CONTINUE
CAPAC(NN) = CAP
IALF1(NN) = IA1AR
IALF2(NN) = IA2AR
IALF3(NN) = IA3AR
2470 CONTINUE
N = NN
IF (CAP .GT. CAPMIN(N)) GO TO 2472
DO 2474 N1 = 1, N
IF (CAP - CAPMIN(N1)) CONTINUE
2474 CONTINUE
2475 CONTINUE
NMINNN = N - NN
DO 2476 NOP = 1, NMINNN
N2 = N - NOP
N2P1 = N2 + 1
CAPMIN(N2P1) = CAPMIN(N2)
IALFM1(N2P1) = IALFM1(N2)
IALFM2(N2P1) = IALFM2(N2)
IALFM3(N2P1) = IALFM3(N2)
2476 CONTINUE
CAPMIN(NN) = CAP
IALFM1(NN) = IA1AR
IALFM2(NN) = IA2AR
IALFM3(NN) = IA3AR
2478 CONTINUE
2479 CONTINUE
2480 CONTINUE
2485 CONTINUE
2490 CONTINUE
2495 CONTINUE

MAIN PROGRAM
CASE B

ANGLE GENERATION

DO 2595 II=1,9
 E11=FLOAT(II-1)
 A1=PAF-DAF*E11
 IA1AR=IPAF-IDAF*(II-1)
 I1PLS1=II+1
 DO 2590 I2=11,19
 E21=FLOAT(I2-1)
 A2=PAF-DAF*E21
 IA2AR=IPAF-IDAF*(I2-1)
 I2MINI=I2-1
 DO 2585 I3=I1PLS1,I2MIN1
 E31=FLOAT(I3-1)
 A3=PAF-DAF*E31
 IA3AR=IPAF-IDAF*(I3-1)

AIRCRAFT 1 AND 2

VS=VKT(1)/3600.
VF=VKT(2)/3600.
AMI=VS/VF
GAMAF=GAMA(2)
GAMAS=GAMA(1)
BETA=GAMAF-GAMAS
DELS=DELTA(1,1)
DELTFF=DELTA(2,2)
DELTFS=DELTA(1,2)
DELTFS=DELTA(2,1)
AS=A1
AF=A2
IFAAR=IA2AR
IASAR=IA1AR
COAS=COS(AS)
COAF=COS(AF)
COASAF=COS(AS-AF)
AMAS=AMI**2-2.*AMI*COAS+1.
AMAF=AMI**2-2.*AMI*COAF+1.
AMASAF=AMI**2-2.*AMI*COASAF+1.
CALL SDDSF
CALL SDOFS
CALL SDOFF
CALL SDOSS
CALL DOT
TT(I1,1)=TSS
TT(I1,2)=TSF
TT(2,1) = TFS
TT(2,2) = TFF

AIRCRAFT 1 AND 3

VS = VKT(1)/3600
VF = VKT(3)/3600
AMI = VS/VF
GAMAF = GAMA(3)
GAMAS = GAMA(1)
BETA = GAMAF - GAMAS
DELTSS = DELTA(1,1)
DELTFF = DELTA(3,3)
DELTFS = DELTA(1,3)
DELTFF = DELTA(3,1)
AS = A1
AF = A3
IAFAR = IAA3AR
IASAR = IAA1AR
COAS = COS(AS)
COAF = COS(AF)
COASAF = COS(AS - AF)
AMAS = AMI**2.2*A M I*C OAS+1
AMAF = AMI**2 - 2.1*AMI*COAF+1
AMASAF = AMI**2 - 2.1*AMI*COASAF+1
CALL SDOSF
CALL SDOSF
CALL SDOSF
CALL SDOSF
CALL SDOSF
CALL DOT
TT(1,3) = TSF
TT(3,1) = TFS
TT(3,3) = TFF

AIRCRAFT 2 AND 3

VS = VKT(2)/3600
VF = VKT(3)/3600
AMI = VS/VF
GAMAF = GAMA(3)
GAMAS = GAMA(2)
BETA = GAMAF - GAMAS
DELTSS = DELTA(2,2)
DELTFF = DELTA(3,3)
DELTFS = DELTA(2,3)
DELTFS = DELTA(3,2)
AS = A2
AF = A3
IASAR=IA2AR
IAFAR=IA3AR
COAS=COS(AS)
COAF=COS(AF)
COASAF=COS(AS-AF)
AMAS=AMI**2-2*AMI*COAS+1
AMAF=AMI**2-2*AMI*COAF+1
AMASAF=AMI**2-2*AMI*COASAF+1
CALL SDOSF
CALL SDOFFS
CALL SDOFF
CALL DOT
TT(2,3)=TSF
TT(3,2)=TSF

C C

C MEAN INTERARRIVAL TIME

TBAR=0.
DO 2520 I=1,M
DO 2510 J=1,M
TBAR=TBAR+TT(I,J)*PP(I,J)
2510 CONTINUE
2520 CONTINUE
CAP=3600./TBAR
N=NM
IF (CAP.LT.CAPAC(N)) GO TO 2570
DO 2550 N1=1,N
IF (CAP.CAPAC(N1)) 2550,2550,2550
2540 CONTINUE
N=NN
GO TO 2555
2550 CONTINUE
2555 CONTINUE
NMINN=N-NN
DO 2560 NOP=1,NMINN
N2=N-NOP
N2P1=N2+1
CAPAC(N2P1)=CAPAC(N2)
IALF1(N2P1)=IALF1(N2)
IALF2(N2P1)=IALF2(N2)
IALF3(N2P1)=IALF3(N2)
2560 CONTINUE
CAPAC(NN)=CAP
IALF1(NN)=IALF1
IALF2(NN)=IALF2
IALF3(NN)=IALF3
2570 CONTINUE
N=NM
IF (CAP.GT.CAPMIN(N)) GO TO 2578
DO 2574 N1=1,N
IF (CAP-CAPMIN(N1)) 2572,2574
2572 N=NN
GO TO 2575
2574 CONTINUE
2575 CONTINUE
2576 CONTINUE
NMINNN=N-NN
DO 2576 NOP=1,NMINNN
N2=N-NOP
N2P1=N2+1
CAPMIN(N2P1)=CAPMIN(N2)
IALFM1(N2P1)=IALFM1(N2)
IALFM2(N2P1)=IALFM2(N2)
IALFM3(N2P1)=IALFM3(N2)
2576 CONTINUE
CAPMIN(N)=CAP
IALFM1(N)=IA1AR
IALFM2(N)=IA2AR
IALFM3(N)=IA3AR
2578 CONTINUE
2585 CONTINUE
2590 CONTINUE
2595 CONTINUE
GO TO 9999
STOP
END
8.5. Program CAP4 (Case with four aircraft types)
PROGRAM COMPUTING CAP4

PROGRAM CAP4 (INPUT, OUTPUT)
DIMENSION VKT (5), GAMMA (5), P (5), PP (5, 5), DELTA (5, 5), IT (5, 5),
1 ALF1 (50), ALF2 (50), ALF3 (50), ALF4 (50), CAPAC (50), CAPMIN (50),
2 ALFM1 (50), ALFM2 (50), ALFM3 (50), ALFM4 (50)
COMMON /SSFFS/ 1COAS, COAF, COASAF, AMAS, AMAF, AMASF, AMI, VF, GAMAS, GAMAF, BETA, DELTA,
2 IAFAR, IASAR, DDSF, DOFS, DQSS, DOFF, INDFS, INDXS, INDXX, INDXFF,
3 TSF, TSF, TSF, TFF
4, DELTSS, DELTFF, DELTSF, DELTFS

DO LOOP TO REPEAT THE WHOLE PROGRAM WITH NEW INPUT DATA

9999 CONTINUE

INPUT DATA

M = 4
NM = 40
READ 3010, (VKT (I), I = 1, M)
3010 FORMAT (4F10.5)
READ 3010, (GAMA (I), I = 1, M)
READ 3010, (P (I), I = 1, M)
READ 3010, ((DELTA (I, J), J = 1, M), I = 1, M)

PRINT INPUT DATA

PRINT 3111
3111 FORMAT (1H1, 10X, *INPUT DATA*, ///)
DO 3110 I = 1, M
PRINT 3112, I, VKT (I), I, GAMMA (I), I, P (I)
3112 FORMAT (1I2, 2X, V4(F7.2, 3X, GAMA*, 11, =*, F7.2, 3X, P*, I1, I1)
1* =*, F4.2/)
3110 CONTINUE
PRINT 3120
3120 FORMAT (///, 11X, *DELTA MATRIX*///)
PRINT 3130
3130 FORMAT (21X, *TRAILING A/C*///)
PRINT 3131, (J, J = 1, M)
3131 FORMAT (18X, 4(I1, 9X), ///)
DO 3140 I = 1, M
PRINT 3132, I, (DELTA (I, J), J = 1, M)
3132 FORMAT (7X, 12, 2X, 4(F10.2), ///)
3140 CONTINUE

C INITIAL DATA PREPARATION
C
DO 4010 I=1,M
DO 4009 J=1,M
PP(I,J)=P(I)*P(J)
4009 CONTINUE
4010 CONTINUE
DO 4020 N=1,NM
CAPAC(N)=0.
CAPMIN(N)=9999.
IALF1(N)=0
IALF2(N)=0
IALF3(N)=0
IALF4(N)=0
4020 CONTINUE
N=I3
CAPAC(N)=0.
CAPMIN(N)=9999.
IALF1(N)=0
IALF2(N)=0
IALF3(N)=0
IALF4(N)=0
CO
MAIN PROGRAM CASE A
ANGLES GENERATION
DO 2195 I1=1,7
E11=FLOAT(I1-1)
A1=PALF-DALF*E11
IALF1=IALF2=IALF3=IALF4=0
A1AR=IALF=IALF=IALF=IALF=0
I1PLS1=I1+1
DO 2190 I2=1,I1PLS1,8
E21=FLOAT(I2-1)
A2=PALF-DALF*E21
IALF1=IALF2=IALF3=IALF4=0
A2AR=IALF=IALF=IALF=IALF=0
I2PLS1=I2+1
DO 2185 I3=1,I2PLS1,9
E31=FLOAT(I3-1)
A3=PALF-DALF*E31
IALF1=IALF2=IALF3=IALF4=0
A3AR=IALF=IALF=IALF=IALF=0
I3PLS1=I3+1
DO 2180 I4=1,I3PLS1,19
E41=FLOAT(I4-1)
A4=PALF-DALF*E41
IALF1=IALF2=IALF3=IALF4=0
A4AR=IALF=IALF=IALF=IALF=0
C
AIRCRAFT 1 AND 2
VS=VKT(1)/3600.
VF=VKT(2)/3600.
AMI=VS/VF
GAMAF=GAMA(2)
GAMAS=GAMA(1)
BETA=GAMAF-GAMAS
DELTSS=DELTA(1,1)
DELTFF=DELTA(2,2)
DELTFS=DELTA(1,2)
DELTFS=DELTA(2,1)
AS=A1
AF=A2
IAFAR=IA2AR
IASAR=IA1AR
COAS=COS(AS)
COAF=COS(AF)
COASAF=COS(AS-AF)
AMAS=AMI**2-2.*AMI*COAS+1.
AMAF=AMI**2-2.*AMI*COAF+1.
AMASAF=AMI**2-2.*AMI*COASAF+1.
CALL SDOSS
CALL SDOFS
CALL SDOFF
CALL SDOSS
CALL DOT
TT(1,1)=TSS
TT(1,2)=TSF
TT(2,1)=TFS
TT(2,2)=TFF

AIRCRAFT 1 AND 3

VS=VKT(1)/3600.
VF=VKT(3)/3600.
AMI=VS/VF
GAMAF=GAMA(3)
GAMAS=GAMA(1)
BETA=GAMAF-GAMAS
DELTSS=DELTA(1,1)
DELTFF=DELTA(3,3)
DELTFS=DELTA(1,3)
DELTFS=DELTA(3,1)
AS=A1
AF=A3
IAFAR=IA3AR
IASAR=IA1AR
COAS=COS(AS)
COAF=COS(AF)
COASAF=COS(AS-AF)
AMAS=AMI**2-2.*AMI*COAS+1.
AMAF = AMI**2 - 2 * AMI * COAF + 1.
AMASAF = AMI**2 - 2 * AMI * COASAF + 1.

CALL SDOSF
CALL SDOFF
CALL SDSSF
CALL DOT
TT(1, 3) = TSF
TT(3, 1) = TFS
TT(3, 3) = TFF

C C A I R C R A F T 1 A N D 4

VS = VKT(1) / 3600.
VF = VKT(4) / 3600.
AMI = VS / VF
GAMAF = GAMA(4).
GAMAS = GAMA(1)
BETA = GAMAF - GAMAS
DELTSS = DELTA(1, 1)
DELTTSF = DELTA(1, 4)
DELTFS = DELTA(4, 1)
AS = A1
AF = A4
1AFAR = IA4AR
IAR = IA1AR
COAS = COS(AS)
COAF = COS(AF)
COASAF = COS(AS - AF)
AMAS = AMI**2 - 2 * AMI * COAS + 1.
AMAF = AMI**2 - 2 * AMI * COAF + 1.
AMASAF = AMI**2 - 2 * AMI * COASAF + 1.
CALL SDOSF
CALL SDOFF
CALL SDSSF
CALL DOT
TT(1, 4) = TSF
TT(4, 1) = TFS
TT(4, 4) = TFF

C C A I R C R A F T 2 A N D 3

VS = VKT(2) / 3600.
VF = VKT(3) / 3600.
AMI = VS / VF
GAMAF = GAMA(3)
GAMAS = GAMAF - GAMAS
BETA = GAMAF - GAMAS
DELTSS = DELTA(2, 2)
DELTFF = DELTA(3, 3)
DELTTSF = DELTA(2, 3)
DELF = DELTA(3, 2)
AS = A2
AF = A3
IASAR = IA2AR
IAPAR = IA3AR
COAS = COS(AS)
COAF = COS(AF)
COASAF = COS(AS - AF)
AMAS = AMI**2 - 2 * AMI * COAS + 1
AMAF = AMI**2 - 2 * AMI * COAF + 1
AMASAF = AMI**2 - 2 * AMI * COASAF + 1
CALL SDOSF
CALL SDOFF
CALL SDFF
CALL SDOSS
CALL DOT
TT(2, 3) = TSF
TT(3, 2) = TFS

AIRCRAFT 2 AND 4

VS = VKT(2) / 3600
VF = VKT(3) / 3600
AMI = VS / VF
GAMAF = GAMAF
GAMAS = GAMAS
BETA = GAMAF - GAMAS
DELTSS = DELTA(2, 2)
DELTFF = DELTA(3, 3)
DELTTSF = DELTA(2, 3)
DELF = DELTA(3, 2)
AS = A2
AF = A3
IASAR = IA2AR
IAPAR = IA3AR
COAS = COS(AS)
COAF = COS(AF)
COASAF = COS(AS - AF)
AMAS = AMI**2 - 2 * AMI * COAS + 1
AMAF = AMI**2 - 2 * AMI * COAF + 1
AMASAF = AMI**2 - 2 * AMI * COASAF + 1
CALL SDOSF
CALL SDOFF
CALL SDFF
CALL SDOSS
CALL DOT
TT(2, 3) = TSF
TT(3, 2) = TFS
CALL SDOFF
CALL SDOSF
CALL DOT
TT(2,4)=TSF
TT(4,2)=TFS

C C C C A I R C R F A C T 3 3 A N D 4
C
VS=VKT(3)/3600.
VF=VKT(4)/3600.
AMI=VS/VF
GAMAF=GAMA(4)
GAMAS=GAMA(3)
BETA=GAMAF-GAMAS
DELTSS=DELTA(3,3)
DELTFF=DELTA(4,4)
DELTFS=DELTA(3,4)
AS=A3
AF=A4
IASAR=IA3AR
IAFAR=IA4AR
COAS=COS(AS)
COAF=COS(AF)
CGASAF=COS(AS-AF)
AMAS=AMI**2-2.*AMI*COAS+1.
AMAF=AMI**2-2.*AMI*COAF+1.
AMASAF=AMI**2-2.*AMI*CGASAF+1.
CALL SDOSF
CALL SDOSF
CALL SDOFF
CALL SDOFF
CALL DOT
TT(3,4)=TSF
TT(4,3)=TFS

C C C C M E A N I N T E R A R R I V A L T I M E
C
TBAR=0.
DO 2120 I=1,M
DO 2110 J=1,N
TBAR=TBAR+TT(I,J)*PP(I,J)
2110 CONTINUE
2120 CONTINUE
CAP=3600.*TBAR
N=NM
IF (CAP.LT.CAPAC(N)) GO TO 2170
DO 2150 N1=1,N
IF (CAP-CAPAC(N1)) 2150, 2150, 2140
2140 CONTINUE
NN=N1
GO TO 2155
2150 CONTINUE
2155 CONTINUE
NMNINN=N-NN
DO 2160 NOP=1,NMINNN
N2=N-NOP
N2P1=N2+1
CAPAC(N2P1)=CAPAC(N2)
CAPAC(N2P1)=CAPAC(N2)
IALF1(N2P1)=IALF1(N2)
IALF2(N2P1)=IALF2(N2)
IALF3(N2P1)=IALF3(N2)
IALF4(N2P1)=IALF4(N2)
2160 CONTINUE
CAPAC(NN)=CAP
IALF1(NN)=IA1AR
IALF2(NN)=IA2AR
IALF3(NN)=IA3AR
IALF4(NN)=IA4AR
2170 CONTINUE
NNM
IF (CAP.GT.CAPMIN(N)) GO TO 2173
DO 2174 N1=1,N
IF (CAP-CAPMIN(N1)) 2172, 2174, 2174
2172 NN=N1
GO TO 2175
2174 CONTINUE
2175 CONTINUE
NMNINN=N-NN
DO 2176 NOP=1,NMINNN
N2=N-NOP
N2P1=N2+1
CAPMIN(N2P1)=CAPMIN(N2)
IALFM1(N2P1)=IALFM1(N2)
IALFM2(N2P1)=IALFM2(N2)
IALFM3(N2P1)=IALFM3(N2)
IALFM4(N2P1)=IALFM4(N2)
2176 CONTINUE
CAPMIN(NN)=CAP
IALFM1(NN)=IA1AR
IALFM2(NN)=IA2AR
IALFM3(NN)=IA3AR
IALFM4(NN)=IA4AR
2178 CONTINUE
2180 CONTINUE
MAIN PROGRAM CASE B

ANGLES GENERATION

DO 2295 I1=1,8
E11=FLOAT(I1-1)
A1=PALF-DALF*E11
IA1AR=IPALF-IDALF*(I1-1)
I1PLS1=I1+1
DO 2290 I2=I1PLS1,9
E21=FLOAT(I2-1)
A2=PALF-DALF*E21
IA2AR=IPALF-IDALF*(I2-1)
I2PLS1=I2+1
DO 2285 I3=11,19
E31=FLOAT(I3-1)
A3=PALF-DALF*E31
IA3AR=IPALF-IDALF*(I3-1)
I3MIN1=I3-1
DO 2280 I4=I3MIN1,I3MIN1
E41=FLOAT(I4-1)
A4=PALF-DALF*E41
IA4AR=IPALF-IDALF*(I4-1)

AIRCRAFT 1 AND 2

VS=VKT(1)/3600.
VF=VKT(2)/3600.
AMI=VS/VF
GAMAF=GAMA(2)
GAMAS=GAMA(1)
BETA=GAMAF-GAMAS
DELTSS=DELT(1,1)
DELTFF=DELT(2,2)
DELTSF=DELT(1,2)
DELTFS=DELT(2,1)
AS=A1
AF=A2
IAFAR=IA2AR
IASAR=IA1AR
COAS=COS(AS)
COAF=COS(AF)
COASAF=COS(AS-AF)
AMAS = AMI**2 - 2 * AMI * COAS + 1
AMAF = AMI**2 - 2 * AMI * COAF + 1
AMASAF = AMI**2 - 2 * AMI * COASAF + 1

CALL SDOSF
CALL SDOPS
CALL SDOFF
CALL SDOSSS
CALL DOT
TT(1,1) = TSS
TT(1,2) = TSF
TT(2,1) = TFS
TT(2,2) = TFF

C AIRCRAFT 1 AND 3

VS = VKT(1) / 3600
VF = VKT(3) / 3600
AMI = VS / VF
GAMAF = GAMA(3)
GAMAS = GAMA(1)
BETA = GAMAF - GAMAS
DELTSS = DELTA(1, 1)
DELTFF = DELTA(3, 3)
DELTFS = DELTA(3, 1)
AS = A1
AF = A3
IAFAR = IA3AR
IASAR = IA1AR
COAS = COS(AS)
COAF = COS(AF)
COASAF = COS(AS - AF)
AMAS = AMI**2 - 2 * AMI * COAS + 1
AMAF = AMI**2 - 2 * AMI * COAF + 1
AMASAF = AMI**2 - 2 * AMI * COASAF + 1

CALL SDOSF
CALL SDOPS
CALL SDOFF
CALL SDOSSS
CALL DOT
TT(1,3) = TSF
TT(3,1) = TFS
TT(3,3) = TFF

C AIRCRAFT 1 AND 4

VS = VKT(1) / 3600
VF = VKT(4) / 3600
ANTI=VS/VF
GAMAF=GAMA(4)
GAMAS=GAMA(1)
BETA=GAMAF-GAMAS
DELTS=DELTA(1,1)
DELTFF=DELTA(4,4)
DELTSF=DELTA(1,4)
DELTFS=DELTA(4,1)
AS=A1
AF=A4
IASAR=IA2AR
IASAR=IA3AR
COAS=COS(AS)
COAF=COS(AF)
AMASAF=COS(AS-AF)
AMAS=AMI**2-2.*AMI*COAS+1.
AMAF=AMI**2-2.*AMI*COAF+1.
AMASAF=AMI**2-2.*AMI*COASAF+1.
CALL SDOSF
CALL SDQFS
CALL SDOFF,
CALL SDOSS
CALL DQ:
TT(1,4)=TSF
TT(4,4)=TFF

ACAFT 2 AND 3

AMI=VS/VF
GAMAF=GAMA(3)
GAMAS=GAMA(2)
BETA=GAMAF-GAMAS
DELTS=DELTA(2,2)
DELTFF=DELTA(3,3)
DELTFS=DELTA(2,3)
DELTFS=DELTA(3,2)
AS=A2
AF=A3
IASAR=IA2AR
IASAR=IA3AR
COAS=COS(AS)
COAF=COS(AF)
AMASAF=COS(AS-AF)
AMAS=AMI**2-2.*AMI*COAS+1.
AMAF=AMI**2-2.*AMI*COAF+1.
\begin{verbatim}
AMASAF=AMI**2-2.*AMI*COASAF+1.
call sdoosf
call sdoFs
call sDOFF
call sDOSS
Call dot
TT(2,3)=TSF
TT(3,2)=TFS

C AIRCRAFT 2 AND 4

VS=VKT(2)/3600.
VF=VKT(4)/3600.
AMI=VS/VF
GAMAF=GAMA(4)
GAMAS=GAMA(2)
BETA=GAMAF-GAMAS
DELTSS=DELTAX(2,2)
DELTFF=DELTAX(4,4)
DELTFS=DELTAX(2,4)
AS=A2
AF=A4
IASAR=IA2AR
IAFAR=IA4AR
COAS=COS(AS)
COAF=COS(AF)
COASAF=COS(AS-AF)
AMAS=AMI**2-2.*AMI*COAS+1.
AMAF=AMI**2-2.*AMI*COAF+1.
AMASAF=AMI**2-2.*AMI*COASAF+1.
call sdoosf
call sdoFs
call sDOFF
call sDOSS
Call dot
TT(2,4)=TSF
TT(4,2)=TFS

C AIRCRAFT 3 AND 4

VS=VKT(3)/3600.
VF=VKT(4)/3600.
AMI=VS/VF
GAMAF=GAMA(4)
GAMAS=GAMA(3)
BETA=GAMAF-GAMAS
DELTSS=DELTAX(3,3)
\end{verbatim}
DELTFF = DELTA(4,4)
DELTSSF = DELTA(3,4)
DELTFSF = DELTA(4,3)
AS = A3
AF = A4
IASAR = IA3AR
IAFAR = IA4AR
COAS = COS(AS)
COAF = COS(AF)
COASAF = COS(AS - AF)
AMAS = AMI**2 - 2. * AMI * COAS + 1.
AMAF = AMI**2 - 2. * AMI * COAF + 1.
AMASAF = AMI**2 - 2. * AMI * COASAF + 1.
CALL SDOSF
CALL SDQFS
CALL SDOFF
CALL SDQSS
CALL DOT
TT(3,4) = TSF
TT(4,3) = TFS

C MEAN INTERARRIVAL TIME

TBAR = 0.
DO 2220 I = 1, M
DO 2210 J = 1, M
TBAR = TBAR + TT(I, J) * PP(I, J)
2210 CONTINUE

2220 CONTINUE
CAP = 3600. / TBAR
N = NM
IF (CAP .LT. CAPAC(N)) GO TO 2270
DO 2250 N1 = 1, N
IF (CAP .LT. CAPAC(N1)) 2250, 2240, 2240
2240 CONTINUE
NN = N1
GO TO 2255
2250 CONTINUE
2255 CONTINUE
NMINNN = N - NN
DO 2260 NOP = 1, NMINNN
N2 = N - NOP
N2P1 = N2 + 1
CAPAC(N2P1) = CAPAC(N2)
IALF1(N2P1) = IALF1(N2)
IALF2(N2P1) = IALF2(N2)
IALF3(N2P1) = IALF3(N2)
IALF4(N2P1) = IALF4(N2)
2260 CONTINUE
 CAPAC(NN)=CAP
 IALF1(NN)=IA1AR
 IALF2(NN)=IA2AR
 IALF3(NN)=IA3AR
 IALF4(NN)=IA4AR
2270 CONTINUE
 N=NM
 IF (CAP.GT.CAPMIN(N)) GO TO 2271
 DO 2274 N1=1,N
 IF (CAP.GT.CAPMIN(N1)) 2272,2274
 2272 NN=N1
 GO TO 2275
2274 CONTINUE
 NMINNN=N-NN
 DO 2276 NOP=1,NMINNN
 N2=N-NOP
 N2P1=N2+1
 CAPMIN(N2P1)=CAPMIN(N2)
 IALFM1(N2P1)=IALFM1(N2)
 IALFM2(N2P1)=IALFM2(N2)
 IALFM3(N2P1)=IALFM3(N2)
 IALFM4(N2P1)=IALFM4(N2)
2276 CONTINUE
 CAPMIN(NN)=CAP
 IALFM1(NN)=IA1AR
 IALFM2(NN)=IA2AR
 IALFM3(NN)=IA3AR
 IALFM4(NN)=IA4AR
2278 CONTINUE
2280 CONTINUE
2285 CONTINUE
2290 CONTINUE
2295 CONTINUE

C C C
C MAIN PROGRAM CASE C
C ANGLES GENERATION
C
DO 2395 I1=1,8
E11=FLOAT(I1-1)
A1=PALF-DALF*E11
IALAR=IPALF-IDALF*(I1-1)
I1PLS1=I1+1
DO 2390 I2=1,19
E21=FLOAT(I2-1)
A2=PALF-DALF*E21
IA2AR=IPALF-IDALF*(I2-1)
I2MIN=I2-1
DO 2385 I3=I1PLS1,9
E31=FLOAT(I3-1)
A3=PALF-DALF*E31
IA3AR=IPALF-IDALF*(I3-1)
I3PLS1=I3+1
DO 2380 I4=I3PLS1,12MIN1
E41=FLOAT(I4-1)
A4=PALF-DALF*E41
IA4AR=IPALF-IDALF*(I4-1)

C C AIRCRAFT 1 AND 2

VS=VKT(1)/3600.
VF=VKT(2)/3600.
AMI=VS/VF
GAMAF=GAMA(2)
GAMAS=GAMA(1)
BETA=GAMAF-GAMAS
DELTSS=DELTA(1,1)
DELTFF=DELTA(2,2)
DELTFS=DELTA(1,2)
DELTFS=DELTA(2,1)
AS=A1
AF=A2
IAFAR=IA2AR
IASAR=IA1AR
COAS=COS(AS)
COAF=COS(AF)
COASAF=COS(AS-AF)
AMAS=AMI**2-2.*AMI*COAS+1.
AMAF=AMI**2-2.*AMI*COAF+1.
AMASAF=AMI**2-2.*AMI*COASAF+1.
CALL SDOSF
CALL SDDSF
CALL SDOFF
CALL SDDSS
CALL DOT
TT(1,1)=TSS
TT(1,2)=TSF
TT(2,1)=TFS
TT(2,2)=TFF

C C AIRCRAFT 1 AND 3

VS=VKT(1)/3600.
VF = VKT(3) / 3600
AMI = VS / VF
GAMAF = GAMA(4)
GAMAS = GAMA(1)
BETA = GAMAF - GAMAS
DELTS = DELTA(1, 1)
DELTFF = DELTA(4, 4)
DELTFS = DELTA(4, 1)
AS = A1
AF = A4
IAFAR = IA4AR
IASAR = IA1AR
COAS = COS(AS)
COAF = COS(AF)
COASAF = COS(AS - AF)
AMAF = AMI**2 - 2 * AMI * COAF + 1
AMAS = AMI**2 - 2 * AMI * COAS + 1
AMASAF = AMI**2 - 2 * AMI * COASAF + 1
CALL SD05F
CALL SD09F
CALL SD0FF
CALL SD0SS
CALL DOT
TT(1, 3) = TSF
TT(3, 1) = TFS
TT(3, 3) = TFF

C C C
AIRCRAFT 1 AND 4
C

VS = VKT(1) / 3600
VF = VKT(4) / 3600
AMI = VS / VF
GAMAF = GAMA(4)
GAMAS = GAMA(1)
BETA = GAMAF - GAMAS
DELTS = DELTA(1, 1)
DELTFF = DELTA(4, 4)
DELTFS = DELTA(4, 1)
AS = A1
AF = A4
IAFAR = IA4AR
IASAR = IA1AR
COAS = COS(AS)
COAF = COS(AF)
COASAF = COS(AS - AF)
AMAS = AMI**2 - 2 * AMI * COAS + 1
AMAF = AMI ** 2 - 2 * AMI * COAF + 1
AMASAF = AMI ** 2 - 2 * AMI * COASAF + 1

CALL SDOSF
CALL SDOFS
CALL SDOFF
CALL SDSSS
CALL DOT
TT(1,4) = TSF
TT(4,1) = TFS
TT(4,4) = TFF

AIRCRAFT 2 AND 3

VS = VKT(2) / 3600
VF = VKT(3) / 3600
AMI = VS / VF
GAMAF = GAMA(3)
GAMAS = GAMA(2)
BETA = GAMAF - GAMAS
DELTSS = DELTA(2, 2)
DELTFF = DELTA(3, 3)
DELTFS = DELTA(2, 3)
DELFSS = DELTA(3, 2)

AS = A2
AF = A3
IASAR = I2AR
IAFAR = I3AR
COAS = COS(AS)
COAF = COS(AF)
COASAF = COS(AS - AF)
AMAS = AMI ** 2 - 2 * AMI * COAS + 1
AMAF = AMI ** 2 - 2 * AMI * COAF + 1
AMASAF = AMI ** 2 - 2 * AMI * COASAF + 1

CALL SDOSF
CALL SDOFS
CALL SDOFF
CALL SDSSS
CALL DOT
TT(2, 3) = TSF
TT(3, 2) = TFS

AIRCRAFT 2 AND 4

VS = VKT(2) / 3600
VF = VKT(4) / 3600
AMI = VS / VF
GAMAF = GAMA(4)
GAMAS = GAMA(2)
BETA=GAMAF-GAMAS
DELTSS=DELTA(2,2)
DELTFF=DELTA(4,4)
DELTSF=DELTA(2,4)
DELTFS=DELTA(4,2)
AS=A2
AF=A4
IASAR=IA2AR
IAFAR=IA4AR
COAS=COS(AS)
COAF=COS(AF)
COASAF=COS(AS-AF)
AMAS=AMI**2-2.0*AMI*COAS+1.0
AMAF=AMI**2-2.0*AMI*COAF+1.0
AMASAF=AMI**2-2.0*AMI*COASAF+1.0
CALL SDOSF
CALL SDOFS
CALL SDOFF
CALL SDOSs
CALL DOT
TT(2,4)=TSF
TT(4,2)=TFS

AIRCRAFT 3 AND 4

VS=VKT(3)/3600.
VF=VKT(4)/3600.
AMI=VS/VF
GAMAF=GAMA(4)
GAMAS=GAMA(3)
BETA=GAMAF-GAMAS
DELTSS=DELTA(3,3)
DELTFF=DELTA(4,4)
DELTSF=DELTA(3,4)
DELTFS=DELTA(4,3)
AS=A3
AF=A4
IASAR=IA3AR
IAFAR=IA4AR
COAS=COS(AS)
COAF=COS(AF)
COASAF=COS(AS-AF)
AMAS=AMI**2-2.0*AMI*COAS+1.0
AMAF=AMI**2-2.0*AMI*COAF+1.0
AMASAF=AMI**2-2.0*AMI*COASAF+1.0
CALL SDOSF
CALL SDOFS
CALL SDOFF
CALL SDOSS
CALL DOT
TT(3,4)=TSF
TT(4,3)=TFS

C MEAN INTERARRIVAL TIME

TBAR=0.
DO 2320 I=1,M
DO 2310 J=1,M
TBAR=TBAR+TT(I,J)*PP(I,J)
2310 CONTINUE
2320 CONTINUE
CAP=3600./TBAR
N=NM
IF (CAP.LT.CAPAC(N)) GO TO 2370
DO 2350 N1=1,N
IF (CAP-CAPAC(N1)) 2350,2350,2340
2340 CONTINUE
NN=N1
GO TO 2355
2350 CONTINUE
2355 CONTINUE
NMINNN=N-NN
DO 2360 NOP=1,NMINNN
N2=N-NOP
N2P1=N2+1
CAPAC(N2P1)=CAPAC(N2)
IALF1(N2P1)=IALF1(N2)
IALF2(N2P1)=IALF2(N2)
IALF3(N2P1)=IALF3(N2)
IALF4(N2P1)=IALF4(N2)
2360 CONTINUE
CAPAC(NN)=CAP
IALF1(NN)=IALF1
IALF2(NN)=IALF2
IALF3(NN)=IALF3
IALF4(NN)=IALF4
2370 CONTINUE
N=NM
IF (CAP.GT.CAPMIN(N)) GO TO 2378
DO 2374 N1=1,N
IF (CAP-CAPMIN(N1)) 2372,2374,2374
2372 NN=N1
GO TO 2375
2374 CONTINUE
2375 CONTINUE
NMINNN=N-NN
DO 2376 NOP=1, NMINNN
N2=N-NOP
N2P1=N2+1
CAPMIN(N2P1)=CAPMIN(N2)
IALFM1(N2P1)=IALFM1(N2)
IALFM2(N2P1)=IALFM2(N2)
IALFM3(N2P1)=IALFM3(N2)
IALFM4(N2P1)=IALFM4(N2)
2376 CONTINUE
CAPMIN(NN)=CAP
IALFM1(NN)=IA1AR
IALFM2(NN)=IA2AR
IALFM3(NN)=IA3AR
IALFM4(NN)=IA4AR
2378 CONTINUE
2380 CONTINUE
2385 CONTINUE
2390 CONTINUE
2395 CONTINUE

MAIN PROGRAM CASE D

ANGLES GENERATION

DO 2495 I1=1,9
E11=FLOAT(I1-1)
A1=PALF-DALF*E11
IA1AR=IPALF-IDALF*(I1-1)
I1PLS1=I1+1
DO 2490 I2=12,19
E21=FLOAT(I2-1)
A2=PALF-DALF*E21
IA2AR=IPALF-IDALF*(I2-1)
I2MIN1=I2-1
DO 2485 I3=11, I2MIN1
E31=FLOAT(I3-1)
A3=PALF-DALF*E31
IA3AR=IPALF-IDALF*(I3-1)
I3MIN1=I3-1
DO 2480 I4=I1PLS1, I3MIN1
E41=FLOAT(I4-1)
A4=PALF-DALF*E41
IA4AR=IPALF-IDALF*(I4-1)

AIRCRAFT 1 AND 2

VS=VKT(1)/3600.
VF = VKT(2) / 3600.
AMI = VS / VF
GAMAF = GAMA(2)
GAMAS = GAMA(1)
BETA = GAMAF - GAMAS
DELTSS = DELTA(1,1)
DELTFF = DELTA(2,2)
DELTTSF = DELTA(1,2)
DELTFS = DELTA(2,1)
AS = A1
AF = A2
IAFAR = IA2AR
IASAR = IA1AR
COAS = COS(AS)
COAF = COS(AF)
COASAF = COS(AS - AF)
AMAS = AMI**2 - 2 * AMI * COAS + 1
AMAF = AMI**2 - 2 * AMI * COAF + 1
AMASAF = AMI**2 - 2 * AMI * COASAF + 1
CALL SDOFS
CALL SDOFF
CALL SDOSS
CALL DOT
TT(1,1) = TSS
TT(1,2) = TSF
TT(2,1) = TFS
TT(2,2) = TFF

AIRCRAFT 1 AND 3

VS = VKT(1) / 3600.
VF = VKT(3) / 3600.
AMI = VS / VF
GAMAF = GAMA(3)
GAMAS = GAMA(1)
BETA = GAMAF - GAMAS
DELTSS = DELTA(1,1)
DELTFF = DELTA(3,3)
DELTTSF = DELTA(1,3)
DELTFS = DELTA(3,1)
AS = A1
AF = A3
IAFAR = IA3AR
IASAR = IA1AR
COAS = COS(AS)
COAF = COS(AF)
COASAF = COS(AS - AF)
AMAS = AMI ** 2 - 2 * AMI * COAS + 1
AMAF = AMI ** 2 - 2 * AMI * COAF + 1
AMASAF = AMI ** 2 - 2 * AMI * COASAF + 1
CALL SDOSF
CALL SDOFF
CALL SDOSS
CALL DOT
TT(1,4) = TSF
TT(4,1) = TFS
TT(4,4) = TFF

C AIRCRAFT 1 AND 4

VS = VKT(1) / 3600.
VF = VKT(4) / 3600.
AMI = VS / VF
GAMAF = GAMA(4)
GAMAS = GAMA(1)
BETA = GAMAF - GAMAS
DELTSS = DELTA(1,1)
DELTFF = DELTA(4,4)
DELTTSF = DELTA(1,4)
DELTSTFS = DELTA(4,1)
AS = A1
AF = A4
IAFAR = IAAAR
IASAR = IAAAR
COAS = COS(AS)
COAF = COS(AF)
COASAF = COS(AS - AF)
AMAS = AMI ** 2 - 2 * AMI * COAS + 1
AMAF = AMI ** 2 - 2 * AMI * COAF + 1
AMASAF = AMI ** 2 - 2 * AMI * COASAF + 1
CALL SDOSF
CALL SDOFF
CALL SDOSS
CALL DOT
TT(1,4) = TSF
TT(4,1) = TFS
TT(4,4) = TFF

C AIRCRAFT 2 AND 3

VS = VKT(2) / 3600.
VF = VKT(3) / 3600.
AMI = VS / VF
GAMAF = GAMA(3)
GAMAS = GAMA(2)
BETA = GAMAF - GAMAS
DELTSS = DELTA(2, 2)
DELTFF = DELTA(3, 3)
DELTFS = DELTA(2, 3)
DELSF = DELTA(3, 2)
AS = A2
AF = A3
IASAR = IA2AR
IAFAR = IA3AR
COAS = COS(AS)
COAF = COS(AF)
COASAF = COS(AS - AF)
AMAS = AMI^2 - 2 * AMI * COAS + 1
AMAF = AMI^2 - 2 * AMI * COAF + 1
AMASAF = AMI^2 - 2 * AMI * COASAF + 1
CALL SDOSF
CALL SDOFF
CALL SDOFS
CALL SDOSS
CALL DOT
TT(2, 3) = TSF
TT(3, 2) = TFS

AIRCRAFT 2 AND 4

VS = VKT(2) / 3600
VF = VKT(4) / 3600
AMI = VS / VF
GAMAF = GAMA(4)
GAMAS = GAMA(2)
BETA = GAMAF - GAMAS
DELTSS = DELTA(2, 2)
DELTFF = DELTA(4, 4)
DELTFS = DELTA(2, 4)
DELSF = DELTA(4, 2)
AS = A2
AF = A4
IASAR = IA2AR
IAFAR = IA4AR
COAS = COS(AS)
COAF = COS(AF)
COASAF = COS(AS - AF)
AMAS = AMI^2 - 2 * AMI * COAS + 1
AMAF = AMI^2 - 2 * AMI * COAF + 1
AMASAF = AMI^2 - 2 * AMI * COASAF + 1
CALL SDOSF
CALL SDOFS
CALL SDOFF
CALL SDOSS
CALL DOT
TT(2,4)=TSF
TT(4,2)=TFS

C AIRCRAFT 3 AND 4

VS=VKT(3)/3600.
VF=VKT(4)/3600.
AMI=VS/VF
GAMAF=GAMA(4)
GAMAS=GAMA(3)
BETA=GAMAF-GAMAS
DELTSS=DELTA(3,3)
DELTFF=DELTA(4,4)
DELTSF=DELTA(3,4)
DELTFS=DELTA(4,3)
AS=A3
AF=A4
IASAR=IA3AR
IAFAR=IA4AR
COAS=COS(AS)
COAF=COS(AF)
COASAF=COS(AS-AF)
AMAS=AMI**2-2.*AMI*COAS+1.
AMAF=AMI**2-2.*AMI*COAF+1.
AMASAF=AMI**2-2.*AMI*COASAF+1.
CALL SDOFS
CALL SDOFF
CALL SDOSS
CALL DOT
TT(3,4)=TSF
TT(4,3)=TFS

C MEAN INTERARRIVAL TIME

TBAR=0.
DO 2420 I=1,M
DO 2410 J=1,M
TBAR=TBAR+TT(I,J)*PP(I,J)
2410 CONTINUE
2420 CONTINUE
CAP=3600./TBAR
N=NM
IF (CAP.LT.CAPAC(N)) GO TO 2470
DO 2450 N1=1,N
IF (CAP-CAPAC(N1)) 2450,2450,2440
2440 CONTINUE
NN=N1
GO TO 2455
2450 CONTINUE
2455 CONTINUE
NMIN=1=N-1
NMIM=N=NN
DO 2460 NOP=I,NMINN
N2=N-NOP
CAP(N2)=CAPAC(N2)
IALF1(N2)=IALF1(N2)
IALF2(N2)=IALF2(N2)
IALF3(N2)=IALF3(N2)
IALF4(N2)=IALF4(N2)
2460 CONTINUE
CAPAC(NN)=CAP
IALF1(NN)=IA1AR
IALF2(NN)=IA2AR
IALF3(NN)=IA3AR
IALF4(NN)=IA4AR
2470 CONTINUE
N=NM
IF (CAP.GT.CAPMIN(N)) GO TO 2478
DO 2474 N1=1,N
IF (CAP-CAPMIN(N1)) 2472,2474,2474
2472 NN=N1
GO TO 2475
2474 CONTINUE
2475 CONTINUE
NMIM=N-NN
DO 2476 NOP=1,NMINN
N2=N-NOP
N2P1=N2+1
CAPMIN(N2)=CAPMIN(N2)
IALFM1(N2)=IALFM1(N2)
IALFM2(N2)=IALFM2(N2)
IALFM3(N2)=IALFM3(N2)
IALFM4(N2)=IALFM4(N2)
2476 CONTINUE
CAPMIN(NN)=CAP
IALFM1(NN)=IA1AR
IALFM2(NN)=IA2AR
IALFM3(NN)=IA3AR
IALFM4(NN)=IA4AR
2478 CONTINUE
2480 CONTINUE
CONTINUE
CONTINUE
CONTINUE

PRINTING RESULTS

PRINT 4050
4050 FORMAT(1H1, ///, 13X, *MAXIMAL CAPACITY-OPTIMAL ANGLES*, ///)
PRINT 4100
DO 4150 NP = 1, NM
PRINT 4151, NP, CAPAC(NP), IALF1(NP), IALF2(NP), IALF3(NP), IALF4(NP)
4151 FORMAT(5X, IS, F10.3, 4110)
4150 CONTINUE
PRINT 4250
4250 FORMAT(1H1, ///, 13X, *MINIMAL CAPACITY-THE WORSE ANGLES*, ///)
DO 4260 NP = 1, NM
PRINT 4261, NP, CAPMIN(NP), IALFM1(NP), IALFM2(NP), IALFM3(NP), IALFM4(NP)
4261 FORMAT(5X, IS, F10.3, 4110)
4260 CONTINUE
GO TO 9999
STOP
END
C. Example outputs
C.1. Example of CAPSF output (ILS case)
VF = 150.00
VS = 140.00
WI = 4.93333
GAMAF = 6.00
GAMAS = 6.00
BETA = 0.
DELTSS = 3.00
DELTSF = 3.00
DELTFS = 3.00
DELTFF = 3.00
PF = 0.60
PS = 0.40
<table>
<thead>
<tr>
<th>CAPSF</th>
<th>90</th>
<th>80</th>
<th>70</th>
<th>60</th>
<th>50</th>
<th>40</th>
<th>30</th>
<th>20</th>
<th>10</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>35.215</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>80</td>
<td>36.000</td>
<td>37.996</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>70</td>
<td>37.384</td>
<td>38.705</td>
<td>40.054</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>60</td>
<td>38.539</td>
<td>39.944</td>
<td>41.108</td>
<td>41.608</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>50</td>
<td>39.482</td>
<td>40.958</td>
<td>42.183</td>
<td>43.189</td>
<td>42.730</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>40</td>
<td>39.950</td>
<td>41.462</td>
<td>42.718</td>
<td>43.749</td>
<td>44.581</td>
<td>43.432</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>30</td>
<td>40.285</td>
<td>41.823</td>
<td>43.101</td>
<td>44.151</td>
<td>44.998</td>
<td>45.553</td>
<td>43.954</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>20</td>
<td>40.518</td>
<td>42.074</td>
<td>43.368</td>
<td>44.432</td>
<td>45.290</td>
<td>45.957</td>
<td>46.061</td>
<td>44.306</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>10</td>
<td>40.656</td>
<td>42.223</td>
<td>43.526</td>
<td>44.597</td>
<td>45.462</td>
<td>46.134</td>
<td>46.616</td>
<td>46.385</td>
<td>44.493</td>
<td>-1</td>
</tr>
<tr>
<td>0</td>
<td>40.701</td>
<td>42.272</td>
<td>43.573</td>
<td>44.652</td>
<td>45.519</td>
<td>46.193</td>
<td>45.676</td>
<td>45.424</td>
<td>46.530</td>
<td>44.519</td>
</tr>
<tr>
<td>-10</td>
<td>40.656</td>
<td>42.223</td>
<td>43.526</td>
<td>44.597</td>
<td>45.462</td>
<td>46.134</td>
<td>46.616</td>
<td>46.866</td>
<td>46.951</td>
<td>46.499</td>
</tr>
<tr>
<td>-20</td>
<td>40.519</td>
<td>42.074</td>
<td>43.368</td>
<td>44.432</td>
<td>45.290</td>
<td>45.957</td>
<td>46.435</td>
<td>46.663</td>
<td>46.770</td>
<td>46.797</td>
</tr>
<tr>
<td>-30</td>
<td>40.285</td>
<td>41.823</td>
<td>43.101</td>
<td>44.151</td>
<td>44.998</td>
<td>45.657</td>
<td>46.129</td>
<td>46.374</td>
<td>46.459</td>
<td>46.489</td>
</tr>
<tr>
<td>-40</td>
<td>39.950</td>
<td>41.462</td>
<td>42.718</td>
<td>43.749</td>
<td>44.581</td>
<td>45.227</td>
<td>45.690</td>
<td>45.930</td>
<td>46.014</td>
<td>45.042</td>
</tr>
<tr>
<td>-50</td>
<td>39.482</td>
<td>40.958</td>
<td>42.183</td>
<td>43.189</td>
<td>43.999</td>
<td>44.628</td>
<td>45.079</td>
<td>45.313</td>
<td>45.394</td>
<td>45.421</td>
</tr>
<tr>
<td>-60</td>
<td>38.539</td>
<td>39.944</td>
<td>41.109</td>
<td>42.362</td>
<td>42.331</td>
<td>43.427</td>
<td>43.853</td>
<td>44.075</td>
<td>44.152</td>
<td>44.178</td>
</tr>
<tr>
<td>-70</td>
<td>37.384</td>
<td>38.705</td>
<td>39.797</td>
<td>40.691</td>
<td>41.409</td>
<td>41.966</td>
<td>42.365</td>
<td>42.571</td>
<td>42.643</td>
<td>42.667</td>
</tr>
<tr>
<td>-80</td>
<td>36.000</td>
<td>37.223</td>
<td>39.232</td>
<td>39.097</td>
<td>39.718</td>
<td>40.231</td>
<td>43.596</td>
<td>42.786</td>
<td>43.952</td>
<td>40.874</td>
</tr>
<tr>
<td>-90</td>
<td>34.364</td>
<td>35.476</td>
<td>36.392</td>
<td>37.139</td>
<td>37.735</td>
<td>38.198</td>
<td>38.527</td>
<td>39.698</td>
<td>39.757</td>
<td>38.777</td>
</tr>
<tr>
<td>90</td>
<td>80</td>
<td>70</td>
<td>60</td>
<td>50</td>
<td>40</td>
<td>30</td>
<td>20</td>
<td>10</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>4.21723</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>4.05947</td>
<td>3.92039</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>3.79769</td>
<td>3.79769</td>
<td>3.68948</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>3.59420</td>
<td>3.59420</td>
<td>3.59420</td>
<td>3.51050</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>3.43770</td>
<td>3.43770</td>
<td>3.43770</td>
<td>3.43770</td>
<td>3.42857</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>3.42857</td>
<td>3.42857</td>
<td>3.42857</td>
<td>3.42857</td>
<td>3.42857</td>
<td>3.42857</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>80</td>
<td>70</td>
<td>60</td>
<td>50</td>
<td>40</td>
<td>30</td>
<td>20</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>----</td>
</tr>
<tr>
<td>90</td>
<td>2112</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>80</td>
<td>2112</td>
<td>2112</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>70</td>
<td>2112</td>
<td>2112</td>
<td>2112</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>60</td>
<td>2112</td>
<td>2112</td>
<td>2112</td>
<td>2112</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>50</td>
<td>2112</td>
<td>2112</td>
<td>2112</td>
<td>2112</td>
<td>3112</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>40</td>
<td>3112</td>
<td>3112</td>
<td>3112</td>
<td>3112</td>
<td>3112</td>
<td>3112</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>30</td>
<td>3112</td>
<td>3112</td>
<td>3112</td>
<td>3112</td>
<td>3112</td>
<td>3112</td>
<td>3112</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>20</td>
<td>3112</td>
<td>3112</td>
<td>3112</td>
<td>3112</td>
<td>3112</td>
<td>3112</td>
<td>3112</td>
<td>3112</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>10</td>
<td>3112</td>
<td>3112</td>
<td>3112</td>
<td>3112</td>
<td>3112</td>
<td>3112</td>
<td>3112</td>
<td>3112</td>
<td>3112</td>
<td>R</td>
</tr>
<tr>
<td>0</td>
<td>3112</td>
</tr>
<tr>
<td>-10</td>
<td>3112</td>
</tr>
<tr>
<td>-20</td>
<td>3112</td>
</tr>
<tr>
<td>-30</td>
<td>3112</td>
</tr>
<tr>
<td>-40</td>
<td>3112</td>
</tr>
<tr>
<td>-50</td>
<td>3112</td>
</tr>
<tr>
<td>-60</td>
<td>2112</td>
</tr>
<tr>
<td>-70</td>
<td>2112</td>
</tr>
<tr>
<td>-80</td>
<td>2112</td>
</tr>
<tr>
<td>-90</td>
<td>2112</td>
</tr>
<tr>
<td>DOFS</td>
<td>90</td>
<td>80</td>
<td>70</td>
<td>60</td>
<td>50</td>
<td>40</td>
<td>30</td>
<td>20</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>---</td>
</tr>
<tr>
<td>90</td>
<td>4.10360</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>80</td>
<td>4.10360</td>
<td>3.78884</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>70</td>
<td>4.10360</td>
<td>3.78884</td>
<td>3.69892</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>60</td>
<td>4.10360</td>
<td>3.78884</td>
<td>3.54451</td>
<td>3.69892</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>50</td>
<td>4.10360</td>
<td>3.78884</td>
<td>3.54451</td>
<td>3.54555</td>
<td>3.69892</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>40</td>
<td>4.10360</td>
<td>3.78884</td>
<td>3.54451</td>
<td>3.54558</td>
<td>3.20852</td>
<td>3.69892</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>INDEXFS</td>
<td>90</td>
<td>80</td>
<td>70</td>
<td>60</td>
<td>50</td>
<td>40</td>
<td>30</td>
<td>20</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>---------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>---</td>
</tr>
<tr>
<td>90</td>
<td>2120</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>80</td>
<td>2120</td>
<td>2120</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>70</td>
<td>2120</td>
<td>2120</td>
<td>1020</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>60</td>
<td>2110</td>
<td>2120</td>
<td>2120</td>
<td>1020</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>50</td>
<td>2110</td>
<td>2110</td>
<td>2120</td>
<td>2120</td>
<td>1020</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>40</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2120</td>
<td>2120</td>
<td>1020</td>
<td>1020</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>30</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2120</td>
<td>1020</td>
<td>1020</td>
<td>1020</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>20</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>1020</td>
<td>1020</td>
<td>1020</td>
<td>1020</td>
<td>R</td>
</tr>
<tr>
<td>10</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>1020</td>
<td>1020</td>
<td>1020</td>
<td>1020</td>
</tr>
<tr>
<td>0</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>1010</td>
<td>1010</td>
<td>1010</td>
</tr>
<tr>
<td>-10</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>1010</td>
<td>1010</td>
</tr>
<tr>
<td>-20</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>1010</td>
<td>1010</td>
</tr>
<tr>
<td>-30</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>1010</td>
<td>1010</td>
</tr>
<tr>
<td>-40</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>1010</td>
<td>1010</td>
</tr>
<tr>
<td>-50</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>1010</td>
<td>1010</td>
</tr>
<tr>
<td>-60</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>1010</td>
<td>1010</td>
</tr>
<tr>
<td>-70</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>1010</td>
<td>1010</td>
</tr>
<tr>
<td>-80</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>1010</td>
<td>1010</td>
</tr>
<tr>
<td>-90</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>1010</td>
<td>1010</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>80</td>
<td>70</td>
<td>60</td>
<td>50</td>
<td>40</td>
<td>30</td>
<td>20</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
</tr>
<tr>
<td>1000</td>
<td></td>
</tr>
</tbody>
</table>

DQSS, INDXSS
<table>
<thead>
<tr>
<th>DOFF</th>
<th>90</th>
<th>80</th>
<th>70</th>
<th>60</th>
<th>50</th>
<th>40</th>
<th>30</th>
<th>20</th>
<th>10</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>INDEXFF</td>
<td>90</td>
<td>80</td>
<td>70</td>
<td>60</td>
<td>50</td>
<td>40</td>
<td>30</td>
<td>20</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>---------</td>
<td>----</td>
</tr>
<tr>
<td>90</td>
<td>1000</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>80</td>
<td>1000</td>
<td>1000</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>70</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>60</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>50</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>40</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>30</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>20</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>10</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>R</td>
</tr>
<tr>
<td>0</td>
<td>1000</td>
</tr>
<tr>
<td>-10</td>
<td>1000</td>
</tr>
<tr>
<td>-20</td>
<td>1000</td>
</tr>
<tr>
<td>-30</td>
<td>1000</td>
</tr>
<tr>
<td>-40</td>
<td>1000</td>
</tr>
<tr>
<td>-50</td>
<td>1000</td>
</tr>
<tr>
<td>-60</td>
<td>1000</td>
</tr>
<tr>
<td>-70</td>
<td>1000</td>
</tr>
<tr>
<td>-80</td>
<td>1000</td>
</tr>
<tr>
<td>-90</td>
<td>1000</td>
</tr>
</tbody>
</table>
C.2. Example of CAPSF output (MLS case)
VF = 150.00
VS = 140.00
MI = .93333
GAMAF = 4.00
GAMAS = 4.00
BETA = 0
DELTSS = 3.00
DELTSF = 3.00
DELTFS = 3.00
DELTFF = 3.00
PF = .60
PS = .40
<table>
<thead>
<tr>
<th>CAPSF</th>
<th>90</th>
<th>80</th>
<th>70</th>
<th>60</th>
<th>50</th>
<th>40</th>
<th>30</th>
<th>20</th>
<th>10</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>36.000</td>
<td>37.996</td>
<td>-I</td>
<td>-I</td>
<td>-I</td>
<td>-I</td>
<td>-I</td>
<td>-I</td>
<td>-I</td>
<td>-I</td>
</tr>
<tr>
<td>70</td>
<td>37.384</td>
<td>38.705</td>
<td>40.054</td>
<td>-I</td>
<td>-I</td>
<td>-I</td>
<td>-I</td>
<td>-I</td>
<td>-I</td>
<td>-I</td>
</tr>
<tr>
<td>60</td>
<td>38.539</td>
<td>39.944</td>
<td>41.108</td>
<td>41.608</td>
<td>-I</td>
<td>-I</td>
<td>-I</td>
<td>-I</td>
<td>-I</td>
<td>-I</td>
</tr>
<tr>
<td>50</td>
<td>39.482</td>
<td>40.958</td>
<td>42.183</td>
<td>43.189</td>
<td>42.887</td>
<td>-I</td>
<td>-I</td>
<td>-I</td>
<td>-I</td>
<td>-I</td>
</tr>
<tr>
<td>40</td>
<td>40.226</td>
<td>41.759</td>
<td>43.033</td>
<td>44.080</td>
<td>44.925</td>
<td>43.867</td>
<td>-I</td>
<td>-I</td>
<td>-I</td>
<td>-I</td>
</tr>
<tr>
<td>30</td>
<td>40.659</td>
<td>42.226</td>
<td>43.530</td>
<td>44.601</td>
<td>45.466</td>
<td>46.032</td>
<td>44.400</td>
<td>-I</td>
<td>-I</td>
<td>-I</td>
</tr>
<tr>
<td>20</td>
<td>40.897</td>
<td>42.483</td>
<td>43.802</td>
<td>44.888</td>
<td>45.763</td>
<td>46.445</td>
<td>46.591</td>
<td>44.759</td>
<td>-I</td>
<td>-I</td>
</tr>
<tr>
<td>10</td>
<td>41.037</td>
<td>42.634</td>
<td>43.963</td>
<td>45.057</td>
<td>45.939</td>
<td>46.626</td>
<td>47.118</td>
<td>46.882</td>
<td>44.951</td>
<td>-I</td>
</tr>
<tr>
<td>0</td>
<td>41.084</td>
<td>42.584</td>
<td>44.016</td>
<td>45.112</td>
<td>45.997</td>
<td>46.686</td>
<td>47.179</td>
<td>47.433</td>
<td>47.030</td>
<td>44.977</td>
</tr>
<tr>
<td>-10</td>
<td>41.037</td>
<td>42.634</td>
<td>43.963</td>
<td>45.057</td>
<td>45.939</td>
<td>46.626</td>
<td>47.119</td>
<td>47.373</td>
<td>47.451</td>
<td>46.973</td>
</tr>
<tr>
<td>-20</td>
<td>40.897</td>
<td>42.483</td>
<td>43.802</td>
<td>44.888</td>
<td>45.763</td>
<td>46.445</td>
<td>46.933</td>
<td>47.186</td>
<td>47.275</td>
<td>47.301</td>
</tr>
<tr>
<td>-30</td>
<td>40.659</td>
<td>42.226</td>
<td>43.530</td>
<td>44.601</td>
<td>45.466</td>
<td>46.138</td>
<td>46.620</td>
<td>46.970</td>
<td>46.958</td>
<td>45.987</td>
</tr>
<tr>
<td>-40</td>
<td>40.226</td>
<td>41.759</td>
<td>43.033</td>
<td>44.080</td>
<td>44.925</td>
<td>45.581</td>
<td>46.251</td>
<td>46.295</td>
<td>45.381</td>
<td>45.409</td>
</tr>
<tr>
<td>-50</td>
<td>39.482</td>
<td>40.958</td>
<td>42.183</td>
<td>43.189</td>
<td>43.939</td>
<td>44.628</td>
<td>45.079</td>
<td>45.313</td>
<td>45.334</td>
<td>45.421</td>
</tr>
<tr>
<td>-60</td>
<td>38.539</td>
<td>39.944</td>
<td>41.108</td>
<td>42.052</td>
<td>42.831</td>
<td>43.427</td>
<td>43.553</td>
<td>44.075</td>
<td>44.152</td>
<td>44.173</td>
</tr>
<tr>
<td>-70</td>
<td>37.384</td>
<td>38.705</td>
<td>39.797</td>
<td>40.691</td>
<td>41.439</td>
<td>41.966</td>
<td>42.365</td>
<td>42.571</td>
<td>42.643</td>
<td>42.667</td>
</tr>
<tr>
<td>-80</td>
<td>36.000</td>
<td>37.223</td>
<td>38.232</td>
<td>39.057</td>
<td>39.714</td>
<td>40.231</td>
<td>40.596</td>
<td>40.786</td>
<td>40.852</td>
<td>40.874</td>
</tr>
<tr>
<td>-90</td>
<td>34.354</td>
<td>35.476</td>
<td>36.392</td>
<td>37.138</td>
<td>37.735</td>
<td>38.198</td>
<td>35.527</td>
<td>38.693</td>
<td>38.757</td>
<td>38.777</td>
</tr>
<tr>
<td>Angle</td>
<td>0</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>70</td>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>--------</td>
<td>----</td>
</tr>
<tr>
<td>90</td>
<td>4.21726</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>80</td>
<td>4.05947</td>
<td>3.92039</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>70</td>
<td>3.79769</td>
<td>3.79769</td>
<td>3.69948</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>60</td>
<td>3.59420</td>
<td>3.59420</td>
<td>3.59420</td>
<td>3.51060</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>50</td>
<td>3.43770</td>
<td>3.43770</td>
<td>3.43770</td>
<td>3.43770</td>
<td>3.37477</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>40</td>
<td>3.32135</td>
<td>3.32135</td>
<td>3.32135</td>
<td>3.32135</td>
<td>3.32135</td>
<td>3.23571</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>DOFS</td>
<td>90</td>
<td>80</td>
<td>70</td>
<td>60</td>
<td>50</td>
<td>40</td>
<td>30</td>
<td>20</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
</tr>
</tbody>
</table>
INXFS

<table>
<thead>
<tr>
<th>R</th>
<th>80</th>
<th>70</th>
<th>60</th>
<th>50</th>
<th>40</th>
<th>30</th>
<th>20</th>
<th>10</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>2120</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>80</td>
<td>2120</td>
<td>2120</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>70</td>
<td>2120</td>
<td>2120</td>
<td>1020</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>60</td>
<td>2110</td>
<td>2120</td>
<td>2120</td>
<td>1020</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>50</td>
<td>2110</td>
<td>2110</td>
<td>2120</td>
<td>2120</td>
<td>1020</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>40</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2120</td>
<td>2120</td>
<td>1020</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>30</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2120</td>
<td>2120</td>
<td>1020</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>20</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2120</td>
<td>1020</td>
<td>1010</td>
<td>R</td>
</tr>
<tr>
<td>10</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2120</td>
<td>1010</td>
<td>1010</td>
</tr>
<tr>
<td>0</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>1010</td>
<td>1010</td>
</tr>
<tr>
<td>-10</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>4000</td>
<td>1010</td>
</tr>
<tr>
<td>-20</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>4000</td>
<td>4000</td>
</tr>
<tr>
<td>-30</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>4000</td>
<td>4000</td>
</tr>
<tr>
<td>-40</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>4000</td>
<td>4000</td>
</tr>
<tr>
<td>-50</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>4000</td>
<td>4000</td>
</tr>
<tr>
<td>-60</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>4000</td>
<td>4000</td>
</tr>
<tr>
<td>-70</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>4000</td>
<td>4000</td>
</tr>
<tr>
<td>-80</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>4000</td>
<td>4000</td>
</tr>
<tr>
<td>-90</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>2110</td>
<td>4000</td>
<td>4000</td>
</tr>
<tr>
<td></td>
<td>DOSS, INOXSS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>80</td>
<td>70</td>
<td>60</td>
<td>50</td>
<td>40</td>
<td>30</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>1000</td>
</tr>
<tr>
<td>DOFF</td>
<td>90</td>
<td>80</td>
<td>70</td>
<td>60</td>
<td>50</td>
<td>40</td>
<td>30</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>90</td>
<td>4.06899</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>80</td>
<td>3.91618</td>
<td>3.78139</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>70</td>
<td>3.66230</td>
<td>3.66230</td>
<td>3.55705</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>60</td>
<td>3.46408</td>
<td>3.46408</td>
<td>3.46408</td>
<td>3.38213</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>50</td>
<td>3.31012</td>
<td>3.31012</td>
<td>3.31012</td>
<td>3.31012</td>
<td>3.24717</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>40</td>
<td>3.19253</td>
<td>3.19253</td>
<td>3.19253</td>
<td>3.19253</td>
<td>3.19253</td>
<td>3.14558</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>INDEXFF</td>
<td>90</td>
<td>80</td>
<td>70</td>
<td>60</td>
<td>50</td>
<td>40</td>
<td>30</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>--------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>90</td>
<td>1000</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>80</td>
<td>1000</td>
<td>1000</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>70</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>60</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>50</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>40</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>30</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>20</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>R</td>
</tr>
<tr>
<td>10</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>0</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>-10</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>-20</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>-30</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>-40</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>-50</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>-60</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>-70</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>-80</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>-90</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
</tbody>
</table>
C.3. Example of CAP4 output (MLS case)
INPUT DATA

\[
\begin{align*}
VKT1 &= 100.00 & GAM\alpha_1 &= 2.00 & P1 &= 0.20 \\
VKT2 &= 120.00 & GAM\alpha_2 &= 2.00 & P2 &= 0.20 \\
VKT3 &= 140.00 & GAM\alpha_3 &= 4.00 & P3 &= 0.40 \\
VKT4 &= 150.00 & GAM\alpha_4 &= 4.00 & P4 &= 0.20 \\
\end{align*}
\]

DELTA MATRIX

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
</tr>
<tr>
<td>2</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
</tr>
<tr>
<td>3</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
</tr>
<tr>
<td>4</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
</tr>
</tbody>
</table>
Maximal Capacity-Optimal Angles

<table>
<thead>
<tr>
<th>Capacity</th>
<th>Alfa1</th>
<th>Alfa2</th>
<th>Alfa3</th>
<th>Alfa4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>39.887</td>
<td>-30</td>
<td>10</td>
<td>-10</td>
</tr>
<tr>
<td>2</td>
<td>39.897</td>
<td>-30</td>
<td>10</td>
<td>-10</td>
</tr>
<tr>
<td>3</td>
<td>39.824</td>
<td>-30</td>
<td>10</td>
<td>-10</td>
</tr>
<tr>
<td>4</td>
<td>39.822</td>
<td>-30</td>
<td>10</td>
<td>-10</td>
</tr>
<tr>
<td>5</td>
<td>39.742</td>
<td>-30</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>39.779</td>
<td>-30</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>39.750</td>
<td>-30</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>39.743</td>
<td>-30</td>
<td>-10</td>
<td>30</td>
</tr>
<tr>
<td>9</td>
<td>39.724</td>
<td>-30</td>
<td>10</td>
<td>-10</td>
</tr>
<tr>
<td>10</td>
<td>39.719</td>
<td>50</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>39.713</td>
<td>50</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>39.707</td>
<td>50</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>39.705</td>
<td>50</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>39.604</td>
<td>-20</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>39.701</td>
<td>-30</td>
<td>-20</td>
<td>10</td>
</tr>
<tr>
<td>16</td>
<td>39.691</td>
<td>-30</td>
<td>-20</td>
<td>10</td>
</tr>
<tr>
<td>17</td>
<td>39.686</td>
<td>-30</td>
<td>-20</td>
<td>10</td>
</tr>
<tr>
<td>18</td>
<td>39.662</td>
<td>-30</td>
<td>-20</td>
<td>10</td>
</tr>
<tr>
<td>19</td>
<td>39.671</td>
<td>-30</td>
<td>-20</td>
<td>10</td>
</tr>
<tr>
<td>20</td>
<td>39.662</td>
<td>-30</td>
<td>-20</td>
<td>10</td>
</tr>
<tr>
<td>21</td>
<td>39.666</td>
<td>-30</td>
<td>-20</td>
<td>10</td>
</tr>
<tr>
<td>22</td>
<td>39.666</td>
<td>-30</td>
<td>-20</td>
<td>10</td>
</tr>
<tr>
<td>23</td>
<td>39.649</td>
<td>-30</td>
<td>-20</td>
<td>10</td>
</tr>
<tr>
<td>24</td>
<td>39.647</td>
<td>-30</td>
<td>-20</td>
<td>10</td>
</tr>
<tr>
<td>25</td>
<td>39.644</td>
<td>-30</td>
<td>-20</td>
<td>10</td>
</tr>
<tr>
<td>26</td>
<td>39.643</td>
<td>-30</td>
<td>-20</td>
<td>10</td>
</tr>
<tr>
<td>27</td>
<td>39.642</td>
<td>-30</td>
<td>-20</td>
<td>10</td>
</tr>
<tr>
<td>28</td>
<td>39.639</td>
<td>-30</td>
<td>-20</td>
<td>10</td>
</tr>
<tr>
<td>29</td>
<td>39.639</td>
<td>-30</td>
<td>-20</td>
<td>10</td>
</tr>
<tr>
<td>30</td>
<td>39.629</td>
<td>-30</td>
<td>-20</td>
<td>10</td>
</tr>
<tr>
<td>31</td>
<td>39.627</td>
<td>-30</td>
<td>-20</td>
<td>10</td>
</tr>
<tr>
<td>32</td>
<td>39.634</td>
<td>-30</td>
<td>-20</td>
<td>10</td>
</tr>
<tr>
<td>33</td>
<td>39.603</td>
<td>-30</td>
<td>-20</td>
<td>10</td>
</tr>
<tr>
<td>34</td>
<td>39.601</td>
<td>-30</td>
<td>-20</td>
<td>10</td>
</tr>
<tr>
<td>35</td>
<td>39.603</td>
<td>-30</td>
<td>-20</td>
<td>10</td>
</tr>
<tr>
<td>36</td>
<td>39.599</td>
<td>-30</td>
<td>-20</td>
<td>10</td>
</tr>
<tr>
<td>37</td>
<td>39.589</td>
<td>-30</td>
<td>-20</td>
<td>10</td>
</tr>
<tr>
<td>38</td>
<td>39.597</td>
<td>-30</td>
<td>-20</td>
<td>10</td>
</tr>
<tr>
<td>39</td>
<td>39.587</td>
<td>-30</td>
<td>-20</td>
<td>10</td>
</tr>
<tr>
<td>40</td>
<td>39.587</td>
<td>-30</td>
<td>-20</td>
<td>10</td>
</tr>
</tbody>
</table>
Minimal Capacity - The Worst Angles

<table>
<thead>
<tr>
<th>Capacity</th>
<th>α_1</th>
<th>α_2</th>
<th>α_3</th>
<th>α_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>32,284</td>
<td>90</td>
<td>80</td>
<td>-90</td>
<td>-80</td>
</tr>
<tr>
<td>32,574</td>
<td>90</td>
<td>-90</td>
<td>80</td>
<td>-80</td>
</tr>
<tr>
<td>32,574</td>
<td>90</td>
<td>80</td>
<td>-90</td>
<td>70</td>
</tr>
<tr>
<td>32,588</td>
<td>90</td>
<td>80</td>
<td>-90</td>
<td>70</td>
</tr>
<tr>
<td>32,719</td>
<td>90</td>
<td>10</td>
<td>-90</td>
<td>-80</td>
</tr>
<tr>
<td>32,741</td>
<td>90</td>
<td>70</td>
<td>-90</td>
<td>-80</td>
</tr>
<tr>
<td>32,810</td>
<td>90</td>
<td>80</td>
<td>-90</td>
<td>60</td>
</tr>
<tr>
<td>32,810</td>
<td>90</td>
<td>80</td>
<td>-90</td>
<td>60</td>
</tr>
<tr>
<td>32,853</td>
<td>90</td>
<td>-90</td>
<td>80</td>
<td>-70</td>
</tr>
<tr>
<td>32,944</td>
<td>90</td>
<td>80</td>
<td>-90</td>
<td>70</td>
</tr>
<tr>
<td>33,031</td>
<td>90</td>
<td>10</td>
<td>-90</td>
<td>-70</td>
</tr>
<tr>
<td>33,046</td>
<td>90</td>
<td>80</td>
<td>-90</td>
<td>-70</td>
</tr>
<tr>
<td>33,053</td>
<td>90</td>
<td>70</td>
<td>-90</td>
<td>40</td>
</tr>
<tr>
<td>33,072</td>
<td>90</td>
<td>80</td>
<td>-90</td>
<td>-80</td>
</tr>
<tr>
<td>33,092</td>
<td>90</td>
<td>90</td>
<td>-90</td>
<td>35</td>
</tr>
<tr>
<td>33,102</td>
<td>90</td>
<td>80</td>
<td>-90</td>
<td>-30</td>
</tr>
<tr>
<td>33,120</td>
<td>90</td>
<td>80</td>
<td>-90</td>
<td>-60</td>
</tr>
<tr>
<td>33,185</td>
<td>90</td>
<td>80</td>
<td>-90</td>
<td>20</td>
</tr>
<tr>
<td>33,197</td>
<td>90</td>
<td>10</td>
<td>-90</td>
<td>-20</td>
</tr>
<tr>
<td>33,246</td>
<td>90</td>
<td>-90</td>
<td>80</td>
<td>10</td>
</tr>
<tr>
<td>33,246</td>
<td>90</td>
<td>-90</td>
<td>80</td>
<td>-10</td>
</tr>
<tr>
<td>33,259</td>
<td>90</td>
<td>10</td>
<td>-90</td>
<td>-60</td>
</tr>
</tbody>
</table>