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ABSTRACT

The performance of a single-can JT8D combustor was investigated
with a number of fuels exhibiting wide variations in chemical composi-
tion and volatility. Performance parameters investigated were combus-
tion efficiency, emissions of CO, unburned hydrocarbons and NOX, as
well as liner temperatures and smoke. At the simulated idle condition
no significant differences in performance were observed. At cruise,
liner temperatures and smoke increased sharply with decreasing hydrogen
content of the fuel. No significant differences were observed in the
performance of an oil-shale derived JP-5 and a petroleum-based Jet A
fuel except for emissions of NOx which were higher with the oil-shale
JP-5. The difference is attribiited to the higher concentration of
fuel-bound nitrogen in the vil-shale JP-35.

——— el




E-8454

| |

EFFECT OF FUEL PROPERTIES ON PERFORMANCE OF A
SINGLE AIRCRAFT TURBOJET COMBUSTOR

by Helmut F, Butze and Robert C. Ehlers
Lewis Research Center

SUMMARY

The performance vf a JT8D single combustor was determined at simu-
lated idle and cruise conditions with a number of petroleum based fuels
exhibiting wide variations in volatility and chemical composition. In
addition, one fuel obtained from oil-shale and refined to JP-5 specifi-
cations was tested. The petroleum-based fuels and fuel-blends were
chosen to represent the classes of chemical compounds that might be found
in aviation fuels obtained from oil-shale and coal-derived crudes and to
investigate the effects of widened fuel specifications. Performance
parameters investigated were combustion efficiency, pollutant emissions
including smoke, liner temperatures, and combustor blowout., Hydrogen
content of the fuels investigated ranged from 11.0 to 15.3 percent.

At the simulated idle condition no significant differences in com-
bustor performance were observed. Combustion efficiency values ranged
from about 90 to 93 percent and increased slightly with increasing hydro-
gen content of the fuel. At the simula.ed cruise condition combustion
efficiency values were 99.9 percent and above. However, smoke numbers
and combustor liner temperatures increased sharply as the hydrogen con-
tent of the fuel decreased. Comparison of an oil-shale derived JP-5 and
a petroleum-based Jet A showed no significant differences in performance
except for emissions of NOy. The oil-shale JP-5 which contained a high
percentage of fuel-bound nitrogen produced significantly higher emissions
of NOy than the Jet A fuel. Combustor blowout tests, which were con-
ducted at ambient combustor-inlet temperatures, showed no significant
differences in blowout pressure among the various fuels tested.

INTRODUCTION

An experimental investigation was conducted to determine the effect
on combustor performance of a number of fuels with properties simulating
those that might eventually be found in fuels derived from nonpetroleum
sources Additionally, one fuel obtained from oil-shale syncrude and
refined to JP-5 specifications was investigated

Present U.S. consumption of liquid fuels is significantly greater
than domestic petroleum crude-oil production. As a result, the U.S. has
to import about 30 percent of the petroleum crudes used in this country.
This is an undesirable situation, both from the standpoint of national
security and of economic stability.
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In the future aviation turbine fuels may be produced from a variety
of sources including petroleum, tar sands, shale oil, and coal syncrudes,
* Since the properties of fuels derived from these various sources may
differ significantly due to practical limitations in the degree of refin-
ing, such as hydrotreating, it is desirable to explore the range of fuel
properties that might be utilized in aircraft gas turbine combustors,
: Accordingly, the test fuels were chosen to give wide variations in chem-
5\§§§f ical composition, such as paraffins, aromutics, and naphthenes as well as
g in volatility.

o The investigation was conducted with a single JT8D combustor at

- simulated idle and cruise conditions. Combustor performance with the

ﬁzl' various fuels was judged primarily on the basis of -ombustion efficiency,
T pcllutant emissions including smoke, flame radiation as evidenced by

-~ changes in combustor liner temperature, and combustor blowout.

TEST FACILITY

The tests were conducted with a single JT8D combustor housed in a }
- closed-duct test facility capable of supplying the required air-flow j
rates at the specified combustor-inlet pressures and temperatures with i
- nonvitiated air., A more detailed description of the test facility can
| be found in Ref. 1.

COMBUSTOR INSTALLATION AND INSTRUMENTATION ;

A JT8D combustor liner, retrofitted to reduce smoke emissions
(Ref. 2) and utilizing a standard Duplex fuel nozzle, was installed as
shown in Fig. 1. An existing circular combustor housing was modified
to accommodate the JT8D liner. Although this installation did not pro-
vide the actual engine combustor-inlet and exit geometry, it was felt
that this expedient would not compromise the combustor performance
parameters of interest in this investigation, especially since the |
tests were primarily comparisons between the standard Jet A fuel and i
the various other fuels tested. |

The combustor instrumentation stations are shown in Fig. 1. Inlet-
alr temperatures were measured at station A-A with 5 chromel-alumel
thermocouples while exit temperatures were measured at station B-B with i
8 five-point chromel-alumel thermocouple rakes. Combustor-inlet and ‘
exit static pressures were determined at stations A-A and C-C, respec-
tively,

Exhaust-gas samples for gas analysis were obtailned by means of four
steam~-cooled sampling probes located at station C-C. Each probe had five
sampling ports located at the centers of equal areis; the gases collected
o from all 20 ports were connected tu a common manifold and from there

g were passed through steam-heated lines to a gas-analysis console, shown
| in Fig. 2. The exhaust gas was analyzed for concentrations of COz, CO,
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unburned hydrocarbons and oxides of nitrogen in accord with the recom-
mendations set forth in Ref., 3.

Smoke content of the exhaust gas was determined by passing metered
volumes of gas through a filter paper with resultant deposition on the
paper of the soot particles contained in the gas. The darkness of the
stain on the paper, as determined by optical means, is a measure of the
concentration of the soot in the sampie. The smoke measurement technique
is in accordance with SAE recommended practice, as described in Ref. 4.

In order to measure the effect of flame radiation on liner tempera-
tures 6 chromel-alumel thermocouples were installed on the liner walls
at the locations shown in Fig. 3. 1In all cases the maximum liner temper-
ature was registered by the same thermocouple, as shown in Fig. 3.

TEST CONDITIONS

Tests were conducted at the combustor-inlet conditions shown in
Table I. Although small variations may exist among the various engine
models, these conditions were considered to be typical of idle and cruise
operation of the JT8D engine. 1In addition, blowout tests were conducted
with most of the fuel blends. Tests were conducted at three different
airflow rates, 1.81, 2.27, and 2.72 kilograms per second. At each air-
flow rate the fuel-air ratio was held constant at a value of 0.02,

Inlet-air temperatures were ambient and ranged from about 294 to
308 K; no attempt was made to control the temperature within these
limits., After ignition, the combustor-inlet pressure was graduallv
lowered, at constant airflow rate and fuel=-air ratio, until blowout
occurred.

Fuel Selection

The objective of tnis investigation was to determine if aviation
fuels produced from coal and oil-shale derived syncrudes and refined
to aviation fuel specifications could be utilized effectively in modern
turbojet combustors, and, at the same time, to determine if these speci-
fications could be broadened in order to increase the yield of jet fuels
or to increase refinery flexibility. As a result, fuels were chosen to
give wide variations in chemical composition and in boiling range. Inas-
much as some syncrude derived fuels are expected to be high in aromatics,
and upon hydrogenation, in naphthenes, the selection of fuels was
weighted heavily in that direction. Additionally, one fuel obtained
from oil-shale and refined to JP-5 specifications was tested. The fuel
was part of a production run of 5765 bbl of various military fuels from
10 000 bbl of crude shale oil produced by the Paraho process from the
shale mined from the Naval oil shale reserve located at Anvil Points,
Colorado (Ref. 5). A list of the fuels and fuel blends and their prop-
erties is given in Table 1II.
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RESULTS AND DISCUSSION
Petroleum-Based Fuel Blends

Idle. - In general, combustor performance at simulated idle condi-
tions showed no significant differences among the various fuel blends
tested. Combustion efficiency values, as determined by gas analysis,
ranged from 89.5 to 92.0 percent (Fig. 4) and increased slightly with
increasing hydrogen content of the fuel. Correspondingly, emission
indices of CO and unburned hydrocarbons decreased slightly with in-
creases in the percentage of hydrogen (Fig. 5). However, there was con-
siderable scatter in the data, especially in the CO emission values, sug-
gesting that other factors such as fuel volatility affected emissions.
NOy emission indices, shown in Fig. 6, were too low for any meaningful
evaluation of the effect of fuel properties on NOy emissions. At a fuel-
air ratio of 0.008 an emission index of 2 g NOp/kg of fuel corresponds to
about 10 ppm of NOy and any small deviations from this value are not con-
sidered significant, Similarly values of smoke and liner temperatures
were too low 0 draw any meaningful conclusions as to the effect of fuel
properties on these parameters.

Combustion efficiency values reported herein may be somewhat lower
than those reported by the manufacturer of the engine., Slight variations
in combustor geometry and in the severity of the combustor-inlet condi-
tions could probably account for the difference. However, since the
scope of this investigation was a comparison of fuel properties rather
than the establishing of absolute values, the discrepancy is not con-
sidered significant.

Cruise. - At the simulated cruise condition values of CO and un-
burned hydrocarbons were very low. Combustion efficiencies, which are
computed from the CO and unburned hydrocarbon emission values, were al-
ways 99,5 percent or above. Emission indices of NOy, shown in Fig. 7,
varied from 10.5 to 12.7 g NOp/kg of fuel, but did not correlate with
the hydrogen content of the fuel. ¢imilarly, although NO, formation is
generally considered to increase with increasing flame temperatures, no
such trend was observed, as shown in Fig. 8. Maximum flame temperatures
which were obtained from a computer program described in Ref. 6, are
equilibrium flame temperatures. As can be seen from Table II, the spread
in temperatures was not great, ranging from 2476 to 2515 K. However, be-
cause of the large differences in local fuel-air ratio in the primary
zone of a combustor, the spread in local flame temperatures within the
reaction zone probably obscured the effect of the differences in equi-
1ibrium flame temperature among the various fuels.

Although differences in fuel composition produced no significant
changes in combustion efficiency and gaseous emissions, they did have a
pronounced effect on smoke and on flame radiation, as evidenced by
changes in liner temperature. From Fig. 9 it can be seen that smoke
numbers increased sharply as the hydrogen content of the fuel decreased.
In the same manner maximum liner temperatures (Fig. 10) increased
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markedly with decreasing hydrogen content of the fuel. The effects of
reduced hydrogen content of fuels on increased smoke formation and flame
radiation are well substantiated in the literature (e.g., Refs. 7 and 8).
However, the steepness of the curves emphasizes the problem with liner
cooling and with excessive smoke formation that could arise from the use
of highly aromatic fuels. It might thus become necessary to improve fuel
atomization by the use of air atomizers or of premixed, prevaporized
fuels to combat smoke, and the use of ceramic-coated liners to improve
combustor durability.

0il-Shale Derived JP-5

A sample of fuel derived from oil shale and refined to JP-5 specifi-
cations was tested at simulated idle and cruise conditions. 7The results
of the tests at idle, presented in Fig. 11, show no significant differ-
ences in combustion efficiency and emissions of CO and unburned hydrocar-
bons between the oil-shale JP-5 and the standard petroleum-based Jet A
fuels, Values of NOy emissions, liner temperatures, and smoke were too
low for any meaningful comparisons between the two fuels.

Smoke numbars, maximum liner temperatures, and NOy, emission indices
obtained with the two fuels at the simulated cruise condition are shown
in Fig. 12. As in the case of the petroleum-based fuel blends, emission
of CO and unburned hydrocarbons were very low and combustion efficiencies
were 99.9 percent and above for both fuels. Maximum liner temperatures
and smoke numbers were slightly higher for the shale-oil JP-5, but the
differences are not considered significant.

NOy emission indices for the shale-oil JP-5 were noticeably higher
than those obtained with the Jet A fuel. Because of limitations in the
degree of hydrcgenation employed in the Anvil Points production run, the
JP-5 fuel contained a considerably higher p-rcentage of fuel-bound nitro-
gen (about 800 ppm) than the Jet A fuel (generally less than 50 ppm).
Studies (Refs. 9 and 10) have shown that 50 to 90 percent of the fuel-
bound nitrogen can be converted to NO, in the primary zone of a combustor.
A nitrogen content of 800 ppm at 100 percent conversion would produce a
NO, emission index of about 2.6, Thus, the differences in NOy between
the Jet A and the shale-oil JP-5 can be attributed almost completely to
the presence of fuel-bound nitrogen in the oil-shale derived fuel.

The tests at both 1dle and cruise conditions have shown that there
was little difference in the combustion performance of the petrcleum
based Jet A and the oil-shale derived .jP-5 fuels. However, if concen-
trations of organic nitrogen in the syncrude derived fuels remain high,
problems could arise in those combustors which are already marginal trom
a NO, emission standpoint.
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Blowout

No significant differences in pressure at which blowout occurred
were observed. However, the tests were conducted at ambient combustor-
inlet temperatures, ranging from about 294 to 308 K. It is quite pos-
sible that, if the tests had been conducted at the combustor-inlet con-
ditions prevailing at the altitudes and flight Mach numbers of interest,
differences in blowout pressure would have been observed.

CONCLUDING REMARKS

Tests conducted with a single-can JT8D combustor with a number of
fuels exhibiting wide variations in volatility and chemical composition
showed that no severe problems should be encountered with these fuels
at the idle condition. However, at cruise, smoke numbers and liner tem-
peratures increased sharply as the hydrogen content of the fuel de-
creased, Thus, fuelg high in aromatic content could present severe prob-
lems with smoke emissions and with liner durability.

Based on the results of the above tests it would be expected that
no significant differences iun performance should be obtained between an
oil-shale derived and a petroleum-based fuel refined to essentially the
same specifications. Comparison tests of the oil-shale JP-5 and the
Jet A fuels did, indeed, show very little difference in the performance
of these two fuels except for emissions of NOy. The oil-shale derived
fuel contained a high percentage of fuel-bound nitrogen resulting in sig-
nificantly higher NOy emissions. Inasmuch as reduction of NOy emissions
already presents a formidable challenge to the combustor designer, the
presence of large amounts of organic nitrogen could greatly aggravate
the problem.
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TABLE I, - TEST CONDITIONS

, Condition Pressure Temperature Airflow Fuel-air
Y N/cm? | psia K F kg/sec | 1b/sec ratio
Idle 27.3 39.6 | 400 | 260 1.84 4.06 0.0074
Cruise 71.0 | 103.0 | 620 | 657 3.57 7.87 0.0138
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o TOTAL TEMPERATURE
o GAS SAMPLE PROBE

SECTION A-A SECTION B-B SECTION C-C
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L INSULATION-WRAPPED LINER i

Figure 1. - Combustor assembly and instrumentation sections.
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Figure 10. - Effect of hydrogen content of fuel on maxi-
mum liner temperatures at cruise conditions.
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