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ANALYSES OF THE SOLID EARTH AND OCEAN TIDAL
PERTURBATIONS ON TIIE 0111a], T8 OF THE

GEOS-I AND GEOS-II SATli1jLT)rL4S

T. L. Felsontreger

J. G. Marsh
R. W. Agreen

ABSTRACT

The luni-solar tidal perturbations in the inclination of the

GEOS-I and GEOS-II satellite orbits have been analyzed

for the solid Earth and ocean tide contributions. Precision

reduced camera and TRANET Doppler observations spanning

periods of over 000 days for each satellite were used to

derive mean orbital elements. Perturbations due to the

earth's gravity field, solar radiation pressure, and atmo-

spheric drag were modelled, and the resulting inclination

residuals were analyzed for tidal effects. The amplitudes

of the observed total tidal effects were about 1.2 are seconds

(36 meters) in the inclination of GEOS-I and 4.5 are seconds

(135 meters) for GEOS-II. The solid Earth tides were then

modelled using the value for the 'C2 Love number of 0.30

available from Earth tide measurements, Earth rotation

observations, and seismic data. The resulting inclination
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residuals were then analyzed for K„ S21 and P t ocean tide

parameters. Since these ocean tidal constituents produce

satellite orbital perturbations with distinctly different periods

(ranging from 55 to 630 days), good separation of the con-

stituent effects was possible.

After the solution for these parameters, the inclination rms

residuals were on the order of 0.1 are seconds (about 3

meters). The satellite derived results for the K i and S2

ocean tide parameters are in good agreement with each other

and with those deduced from existing surface data models;

surface data models for the P t tide were not available for

comparison. The derived parameters consist of one second

degree coefficient and an accompanying phase angle in a

spherical harmonic expansion of the ocean tide potential

for each tidal constituent -- the results are as follows:

Tidal	 Coefficient (cm.)	 Phase
Constituent GEOS-I	 GEOS-II	 GEOS-I	 GEOS-II

S2	C22= 1. 7-0. 5 1. 0±0.2 622= 3500±210 620±110

Kt	 C21= 8. 8±0. 7 5. 7±1. 6 621= 150± 4 0 3340±150

Pt	 C21= 5. 0±1. 1 4.9±1. 1	 62 1= 178 0±150 1270±120
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ANALYSES Or TILE SOLID EARTH AND OCEAN TIDAL
PERTURBATIONS ON THE ORBITS OF THE

r	 GEOS-I AND GEOS-II SATELLITES

i	 INTRODUCTION

^I	
The effects of the tidal deformations of the Earth on the orbits of close Earth

i
satellites are readily observable as long period perturbations in the orbital	 e

ck

elements of the satellites. This has been made possible by vastly improved
	

C

tracking techniques and more aecurnte modelling of known perturbations such

as the Earth's gravity field, lunar and solar gravity, solar radiation pressure,

atmospheric drag, etc. Contributing to these tidal effects are the solid Earth,

ocean, and (to a somewhat lesser extent) the atmospheric tides. however,

. t

	

	 since the same frequencies are present in the effects caused by these several

contributions, any attempt to simultaneously recover parameters for them
w

from satellite data is rather prohibitive.
^.a

C

Previous work involving analyses of tidal effects on satellite orbits has focussed

on estimating values for the solid Earth tide Love number k 2 and the associated

phase lag. Early efforts were undertaken by Kozai (1905, 1908) and Newton

(1905, 1908). More precise work has been done recently by Anderle (1971),

Douglas et al. (1974), and Smith et al. (1973). however, the results from

these investigations were satellite dependent and indicated a variance in kZ

from a low of about 0.22 to a high of about 0. 31, which is contradictory to

strong evidence pointing towards a value for kz of about 0.30. Attempts to

1
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explain these discrepancies by the possible latitude dependence of the Love

numbers (e.g., Kaula (1969)) have been disputed by Lambeek (1979). The most

feasible explanation for these anomalous results Is the neglect of the ocean

tidal effects, which Kaula (1962) first indicated could be perceptible. Newton

(1968) erroneously thought that these effects would almost cancel out when

averaged over the whole Earth. More recently, Lambeck et al. (1979) have

shown that neglect of the ocean tides could introduce errors as large as 15 %

In determinations of Ice and sev, eal degrees in the associated phase angle from

analysis of satellite orbit data. Furthermore, as will be shown, in some

instances even the atmospheric tidal perturbations cannot be neglected in

determining solid Earth and ocean tidal parameters.

r

r

In this paper, an attempt has been made to screen the solid Earth tide (and

atmospheric tide) effects from satellite orbital data and analyze the result-

ing data for ocean tidal parameters. The rationale for this approach is based

on the assumption that at least the value for the second degree solid Earth

tide Love number Ice has been well established, while ocean tide models for

the tidal constituents deemed to be important are either in question or do not

exist at all. Study has shown that long period tidal effects are most easily

observable in the angle of inclination of close Earth satellites, therefore, the

present work has been limited to analysis of this orbital element only.

2
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i	 TIDAL PERTURBATION EQUATIONS
P

The ocean tide disturbing potential at a point (r, 4 , X exterior to the Earth,

!1	 including the effects of ocean loading, can be expressed in a spherical harmonic
i

expansion as follows:

It	 it
U — E E (1 + K09( 

3 
+ 1) ( Pm ) ( r m ) 1{+1 PQ (sin 0)

1	 Ic=0 R=0

'	 r (alck cos O n + c1c Q sin O n) eos R X

+ (blcR cos On	 cllc2 sin On) sin R>	 (1)

Where

u

r	 = geocentric distance

latitude	 i
r

T	 =	 east longitude
i

am = mean radius of the Earth
r

g	 =	 acceleration of gravity	 1

i

P	 — mean density of sea water

p,D 	 =	 average density of the Earth 	 a

Klc ' =	 load deformation coefficient of degree Ic '^	 3

On	 =	 argument corresponding to a particular tidal constituent

(Lambeck et al. , 1974; McClure, 1973)

!	 RPlc =	 Legendre functions

akk , bkk , cici' , dick = harmonic coefficients

i

t	 3



Values for the load deformation coefficients are given by Longman (1966) and

Farrell (1072).
r
fl ,

t If we expand the potential of Equation 1 In terms of equatorial orbital elements

of an artificial satellite, we obtain

It	 a	 Ic+ 1	 k
pm	L	 £	 ( I + Klc)	 )	 Z	 Fit	 Gkpq\ ?Ic + 1	 a	 Rp (1)	 (e) .

It- 0 R= 0	 p= 0

C^stn	 C(Ic-2p) w+ (k-2p+q) M+ R (S2- O g) +	 an+	 eICR{R	

1. k- R oven

-CkR sin	 [ (k-2p) w+ (It-2p+q) M+ R (n- 0 g) -	 o n + e k2 ]

-C^Cos	 [(It-2p) w+ (It-2p+ q) M + R ( ti- O g) +	 °n + a +{R	 1
r^ It-9	 odd

4

1+ CICR uos	 [(k-2p) w + ( Ic-2 p+q) M + R ( St- Og) -	 °n '	 ' If R J

„-
(2)

where

t

a	 =	 semi-major axis of satellite ' s orbit

I	 =	 angle of inclination of satellite ' s orbit

e	 =	 eucentriclty of satellite's orbit

w	 =	 argument of perigee of satellite ' s orbit

M	 =	 mean anomaly of satellite's orbit

n	 =	 longitude of ascending node of satellite ' s orbit

Og	=	 Greenwich mean sidereal time

r
I 4
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Tklp (I) I Ckpq(o) = inutl,%ation and eccentricity functions defined by

Kaula (1000) ,

oh	 n 0 - ail = argument corresponding to tidal constituent

Ch R ,Ch R = harmonic coefficients

elcR ' eltR = phase angles

Long period perturbations, 1. e. , those having periods longer than one revolu-

tion of the satellite, will occur only when the coefficient of M, k-2p+ q, is 0.

In addition, perturbntions having periods longer than a day will appear only

when Og, disappears from the expression, 1. e. , when R - n, which eliminates

the terms multiplied by Ch R . The principal perturbations occur when q = 0

and Ic-2p = 0, so the resulting principal long period potential is

IC I k+1	 h
UL g 

P 
b	 E (1+1{It) (21t+I	 'I >	 CIcR E rltlp(1)Ckpq(e).PO lc-- 0 R= 0	 P= 0

f

sin IC-2 even

cos	 (R S2 - a R + e ltR )'	 (3)
L	 Ic- R odd

where CIcR and eltR replace CI,R and c l,R resp. For the semidiurnal

tides, the most important terms are those for which R = 2 and Ic = 2, A, 0,	 .

In the case of the diurnal tides, we have R = 1 and lc = 2, 4, 0,	 .

Substituting the expression for UL in Equation 3 into the Lagrangion equation

of motion f*r I and integrating under the assumption that the argument is a
_

5
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linear function of time yields the following perturbation equations for I, con-

sidoring only the first harmonic coefficient for each tidal constituent:

IC, tide	 /
a	

m	

i I am a Cos I )	Cos (S2+ n+ e 2:)
aI	 10 g	 ( 1+IC2) ` n	 naz (1_ e2 z Czt	 it	 (q)

S2 lido
0	 p	 l a

., 3
	 sin I	 sin (2 52-2 A'+ e22)

8I = - 5 g P^ (1+IC2) \ a / na2 (L-e2) 2 C22 2 S2 2— -- (S)

i
J

Pj tide _
S	 p 	 a m	 ^	 cos I	 cos (52 -21^	 n+ + e 21) 

(a)dI=	 10 g p^ (1+ICZ ) ( a 
/ na2(1— o2) C21	 '2

where

n	 - mean motion of satellite

t	 A'	 rr, ;-a,n t?ollptic longitude of the Sun
b

Similar exnreesions can be derived for any of the other ocean tide constituents;

however, as will be Indicated later, strong evidence for observable effects

from only these three constituents was found In the GEOS -I and GI;OS-II data.

In addition, since only the inclination data was considered, only one harmonic

coefficient for each constituent could be recovered. This coe fficient would be

biased by the effects of the higher order coefficients (e. g. , Cg,, C Q„ . . .

for the IC, tide), a fact which had to be taken into account when comparing the

'	 results with existing surface data models.

u
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COMPUTATIONAL, PROCEDURES

Derivation of ocean tidal coefficients from the analyses of GEOS-I and GEOS-II

orbital data required Investigation of the orbit evolution over several hundred

days. The techniques and computer programs used to efficiently and accurately
i

t a

analyze observational data over orbital arcs of this length are discussed in the
r

followir,g paragraphs.

Orbit computations were carried out with the GEODYN Orbit and Geodetic

Parameter Estimation Computer Program (Martin, 1972). The program em-

ploys an 11th order Cowell numerical Integration procedure. Satellite disturb-

ing forces modeled in the program included the gravity field of the earth in

the form of spherical harmonic coefficients, gravity anomalies, or surface

densities, third-body gravitation, atmospheric drag, luni-solar induced solid-

Earth tides, and direct solar radiation pressure. For the present analyses

the GSFC GEM-1 Earth Gravity Model (Lerch, of al. , 1972) in the form of

spherical harmonic coefficients was used. For the lunar and solar positions

required in the computation of the third-body gravitational effects, the Jet

Propulsion Laboratory (JPL) ephemeris tape was used. The atmospheric

density was modeled by the Jacchia model atmosphere (Jacchia, 1965, 1968,

1970, 1971).

In order to investigate the long period orbital perturbations caused by the tides,

a program designated ROAD (Wagner, et al. , 1974) was used. This program

7
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effects of the solid Earth and ocean tides on the Inclination. There is clearly

evident an effect of about 1 . 2 are seconds (36 meters) in amplitude with a

period of approximately 160 days, which is precisely the period of the K f tidal

effect, a luni-solar diurnal constituent.

Figure 2 shows a similar result for the GEOS -II satellite. Here, a 651 day

period (beginning March 1968) of both precision reduced camera and TTtANET

Doppler observations were processed in the form of two-day arcs to obtain

mean orbital elements. The orbital elements derived from GEOS -II camera

data were published by Douglas et al. (1973). The clearly visible effect has

an amplitude of about 4. 5 are seconds (135 meters). In addition to the solid

Earth and ocean tidal perturbations, however, this effect also reflects a solar

atmospheric tidal perturbation with an amplitude of 0. 1 arc seconds and a

period of approximately 436 days.

The following rationale for analyzing the data in Figures 1 and 2 was then

adopted. Parameters for both the solid Earth and ocean tides cannot be re-

covered simultaneously, since the same frequencies are involved in each.

However, the tidal effects seen in the data art essentially of second degree

and the second degree solid Earth tide Love number Icy has been fairly well

established as a result of Earth tide measurements, Earth rotation observa-

tions, and seismic data, while parameters for the ocean tide constituents are

not too well known. Hence, the effects of the solid Earth tides were modelled

PRIs'C ING PAGF, BLANX 1TOT PILMF;1)	 9
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using the value k2 = . 3 and a lag angle of 0 degrees, and the remaining

inclination residuals were analyzed for ocean tidal effects.

Figure 3 shows the GEOS-I inclination residuals after removal of the solid

Earth tide effects. A frequency analysis performed on this data indicated the

presence of perturbations having periods of 160, e5, and 56 days, which cor-

respond to long period effects caused by the K 1 , Pi , and S2 ocean tides, re-

spectively. A subsequent least squares fit to this data involving the perturba-

tion Equations 4, 5, and 6 resulted in the recovery of one harmonic coefficient

and phase angle for each constituent (C 21 and Ell for Ki and Pt, and C22 and C22

for S2). Values for these coefficients and phase angles are given in Table 1.

In addition, the amplitudes of the effects are given in meters (Figure 3) and

are seconds (Table 1).

Figure 4 presents a similar set of inclination residuals for GEOS-II after

accounting for the solid Earth tidal effects. Also taken into account, however,

is a substantial solar atmospheric tidal perturbation with a frequency about

equal to that of the S2 ocean tine. The perturbation equation for this effect

Is very similar to Equation 5. Using the coefficient and phase angle for the S2

atmospheric tide as reported in Chapman and Lindzen (1970) - C22 = .352 mb,

C22 = 1580 - it was found that this perturbation had an amplitude of slightly

less than 0. 1 arc seconds. Again, a least squares fit to the data shown in

Figure 4, for the Kl , Pi , and S2 ocean tides, yielded the results given in

10
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Table 1. The periods and amplitudes (in meters) for these effects are shown

on Figure A, while the amplitudes (in are seconds) are presented in Table 1.

The rms of the residuals after the least squares fits shown in Figures 3 and 4

were on the order of 0.1 are seconds for each satellite. These residuals -re

shown in Figures 5 and 6. Frequency analyses indicate that there are no

discernible significant periodicities left in these data.

RESULTS AND CONCLUSIONS

The coefficients and phase angles presented in Table 1 are in reasonable agree-

ment with each other, considering the differences in the amplitudes of the

various effects from the two satelli;.es and the fact that the effects of higher

order harmonics have been "lumped" into the single coefficient. This latter

point makes it somewhat incorrect to compare values for the same coefficient

as derived from GEOS-I and GEOS-II.

To illustrate this, let us write the perturbation equations for I considering the

first two significant harmonic coefficients. They have the following form:

KI tide

61 = Q C21 COS W + n + 6 21) + R Col cos (n + Tf + e 41 )	 (7)

8 2 tide

5,=  S C22 sin (2 n - 2 X t + e22 ) + T C42 sin (2 n - 2 T ' + e 42)	 (8)

where

r

11



Q= 10 PO (1+ K2) ( n0) a na 1 ) F (0)

15
R= p

i;
r

(1+ K4) (
m	 5 Cos I (4-7 cos2I) (1+3/2 e 2)	 1 (10)10 pe na (1-e)

S = -	 5 6`	 Pm (1+K2) ( a0 ^ 3 na21 (lle2 ) 2	 2V (11)

5
T= -

p
S

r	 (
(1+ K4

am ,1 5 sin I (3-21 cos2 I) (1+3/2 e2)	 1 (12)
8 Pm a J na (1-e2) 4 	212-2 j r

e

i

I

r

a

i

i

.,
Equation 7 can be rewritten as	

1	 f	 I
S I = IQC21 Cos e 21 + RC41 cos C A1] Cos ( n+ Tr - I QC21 sin 621 + RC41 sin e41]

sin (R+lr )	 L	 '(13)

or

&I = VC 21 cos e21 cos ( 12+ a j - VC21 sin e21 sin (n+ rr )

= Vc21 COS (52+7T+ e21)1
	

(14)

which is of the same form as Equation 4. Similarly, :3r Equation A,

dI = [SC22COS E22+ TC42COS 642] sin (2n-2X')+ ISC 22 sin e22+TC42

• sin E 42 J COs (2 n -2 X')

= W 822 COS E22 sin (2 92 -2 A') + W C 22 sin E22 Cos (2 12- 2 71.'). 	 (15)

= W C2 2 sin (2 12-2 X '+ e22)

which is of the same form as Equation 5.

12
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Now,

•^	 f V821 C08 e lf = QC21 Co g e 21 + RC 41 COS ell

4

VC21 sin 6 21 = QC2f sin elf + RC41 sin	 641

W822 COS 022 = SC2 2 COS 6 22 + TC42 COS e42

t ' W822 sin 622 = SC22 sin e22 + TCA2 sin e42

i

(10)

(17)

(18)

(19)

Lambeck et al. (1974) have calculated values for the CkR and ekR from (1)

the empirical solution of Dietrich (1944) for the K1 tide, and (2) from the

numerical solution of Bogdanov and Magarik (1987) for the S2 tide. They are

given in Table 2.

^a	
If one computes values for Q, R, S, and T from Equations 9, 10, 11, and 12

=-	 (using mean orbital elements), and uses the coefficients and phase angles in

i Table 2, the right hand sides of Equations 10, 17, 18, and 19 can be evaluated.

Then, under the assumptions that V = Q and W = S, values for 621 , C2 v 621,

and 622 Lan be computed for each satellite. These are given in Table 3.

These coefficients and phase angles provide a better basis for comparison

with those in Table 1. (Unfortunately, no model for the P i tide is available

for comparison). There is reasonable agreement, ;:xcept for the C 21 for

GEOS-I and the e22 for GEOS -II. Reasons for possible shortcomings in the

assumptions made in this work are as follows:
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(1) Inadequacy of the solid Earth tidal model. There is some belief

that the Love number Icy is not a constant for diurnal tides, but is

frequency dependent due to core resonance and could introduce

errors on the order of 20% in the interpretation of tidal perturba-

tions (McClure (1975)).

(2) Attributing th •4 total effect, as seen in Figures 3 and 4, to ocean

tides alone.

(3) Inadequacy of the polar atmospheric tidal model for GEOS-II.

(4) Neglect of higher order coefficients in the solutions.

(5) Inadequacy of the solar radiation pressure modelling.

We believe, however, that these results indicate the feasibility of recovering

global ocean tide parameters from satellite data. This capability will in-

crease as data from --pore satellites are studied, and as the effects are seen

in other of the orbital elements (in particular, the l)ngitude of the ascending

node, for which the effects are greater than for the orbital inclination but are

more difficult to isolate). The main advantage in using satellite data for

recovery of ocean tide parameters lies in the fact that the perturbation due to

any tidal constituent appears as a long period effect with a frequency distinctly

different from that of any other constituent, whether diurnal or semi-diurnal,

14
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thereby making separation of the constituents quite easy. On the other hand,

while surface tidal measurements can be used to separate diurnal from semi-

diurnal constituents, it is difficult to differentiate between the various diurnal

(or semi-diurnal) constituents unless observations over long periods of time

are investigated.
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j	 Table 2
$	 (j

Ocean Tide Parameters from Surface Measurements
t

Source	 Constituent	 Coefficients (em)	 Phase Angles
i

J
i (	 Dietrich (1944)	 Kl	 C21 = 3. 3, CO = 1.2 e21 = 3180 , c41 = 227 0

I
^..	

Bogdanov & Magarilc	 o	 0
(1967)	

52	 C22 = 1. G, C A2 = 0.2 e22° 310 , e42 = 90 i

Table 3

Combined Ocean Tide Parameters

Coefficients (cm) Phase Angles
Tidal

Constituent GEOS-I	 GEOS-II GEOS-I G>;OS-II

K i 82t = 4. 0	 C21 = 5. 0 e21 = 3610 621 =	 6

S2 C22 = 1.7	 C22 = 1.5 e22 = 3070 e 22 = 3120
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