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COMOC: THREE DIMENSIONAL BOUNDARY REGION VARIANT
THEORETICAL MANUAL AND USER'S GUIDE

By
A. J. Baker & S. W. Zelazny
Bell Aerospace Company

SUMMARY

~The Three-Dimensional Boundary Region Variant of the COMOC
computer program system solves the three-dimensional boundary
region equat1ons for flow of a viscous, heat conducting, multi-
ple species, compressible fluid including combustion. The gov-
erning partial differential equations are solved in phys1ca1
variables, and allow complete two-dimensional diffusion in the
plane transverse to the predominant direction of flow. The flow
field may -be external or confined, subsonic or supersonic, lam-
inar and/or turbulent, and may contain up -to nine or more dis-
tinct species in frozen composition or undergoing equilibrium
chemical reaction for a hydrogen/oxygen/air system. The program
is equally applicable to computations in two- and three-dimen-
sional boundary layer flows wherein diffusion in only one direc-
tion is important.

The COMOC computer program is based upon a finite element
solution algorithm for the elliptic partial differential opera-
tor in the parent equation system. It employs an explicit finite
difference integration procedure to solve the resultant systems
of first-order, ordinary differential equations. Boundary con-
dition constraints on the normal flux and tangential distribution
of each dependent variable are user-specifiable on arbitrarily
disjoint segments of the solution domain closure. The solutions
- for each dependent variable, and all computed parameters, are
established at node points lying on a specifiably non-regular
computat1ona1 lattice formed by plane triangulation of the solu-
tion domain. The numerical solution establishes the complete
three-dimensional distributions of the three scalar velocity
components, enthalpy, temperature, density, viscosity, and all
applicable species mass fractions, as well as various integral
flow parameters. Variable Prandtl number and species diffusion
coefficient distributions may be utilized. Initial distributions
of all dependent variables may be arbitrarily specified.

Thié report documents the theoretical and mechanical
structure of the computer program, and presents detailed guidance
on adaptation of the code to solution of a particular problem.



Sample solutions are discussed for several problems, especially
with respect to solution accuracy and speed as a function of pa-
rameters under control of the user. Construction of the input
data decks for sample problems is discussed. A programmer's
manual has been separately published [Ref. 11].

INTRODUCTION AND USER GUIDELINES

The finite element methodology for numerical solution of
initial-boundary value problems in continuum mechanics is under-
going an explosive rate of growth. Formerly considered to be
constrained to solution of problems in structural analysis, or
other linear field problems wherein an equivalent extremum prin-
ciple exists, the theoretical support is now sufficiently gen-
eralized to render the method directly applicable to explicitly
nonlinear problems, including the Navier-Stokes equations [Ref.
2-4]. The COMOC computer program system is being developed to
transmit this rapid theoretical progress (often couched in in-
tricate mathematical formalism) into a viable and versatile nu-
merical solution capability. As such, it must be applicable to
diverse and complex problems in computational continuum mechanics
while requiring minimal mathematical prowess on the part of the
user. On the way to generation of this general purpose concept,
several Variants of COMOC have been developed for specific prob-
lem classes including transient thermal analysis [Ref. 5] and
the two-dimensional Mavier Stokes equations [Ref. 6]. This re-
port documents the developed Three-Dimensional Boundary Region
(3DBR) Variant of COMOC, and describes its applicability to a
wide range of practical two- and three-dimensional flow problems.

The 3DBR Variant of COMOC solves the three-dimensional
boundary region equations for flow of a viscous, heat conducting,
multiple-species, compressible fluid including combustion. The
governing partial differential equation system, developed in rec-
tangular Cartesian coordinates from the parabolic Navier-Stokes
equations, allows complete diffusion in the plane perpendicular
to the uniformly discernible predominant flow direction. The
flow may be external or confined, subsonic or supersonic, laminar
and/or turbulent, and can contain up to nine or more distinct
species in frozen composition or undergoing equilibrium chemical
reaction for a hydrogen/oxygen/air system. The finite element
solution procedure marches the discretized equivalent of the
governing equation system in the direction parallel to the pre-
dominant flow. It numerically establishes the complete three-
dimensional distributions of the three scalar velocity components,
enthalpy, temperature, density, viscosity, and all applicatle
species mass fractions, as well as various integral flow param-
eters.  No restrictions or simplifying assumptions are made for



the Prandt]l number, and individual species diffusion coefficients
are treated as variable parameters. Initial distributions of all
dependent variables may be arbitrarily specified. Boundary con-
dition constraints on the normal flux and tangential distribution
of each dependent variable are user-specifiable on arbitrarily
disjoint segments of the solution domain closure. The solutions
for each dependent variable, and all computed parameters, are es-
tablished at node points lying on a specifiably non-regular com-
~putational lattice formed by plane tr1angu1at1on of the solution
domain.

A11 Variants of the COMOC system are built upon the macro-
structure illustrated. in Fig. 1.- The Main executive routine al-
lecates core, using a variable dimensioning scheme, based upon
the total degrees of freedom of the problem. The size of the
largest problem that can be solved is thus limited (only) by the
core size of the computer in .use. The precise mix between number
of dependent variables (and parameters), and fineness of the dis-
cretization, is user-specifiable and widely variable. - The Input
module serves its standard function for all dependent variable,
parameter, and geometric coordinate arrays. The Discretization
module forms the finite element discretization of the solution
domain, and'evaluates all required finite element non-standard
matrices and standard-matrix multipliers. The Initialization
module computes the remaining initial parametric data required
to start the solution. The Integration Module constitutes the
primary execution sequence of problem solution. It is based upon
an integration algorithm for the column vector of unknowns of the

solution, for which the discretized description is initial-valued.

Calls to auxiliary routines for parameter evaluation, e.g. vis-
cosity, Prandtl number, source terms, combustion parameters, etc.
as specified functions of dependent and/or independent variables
are governed by the Integration Module. The user has consider-
able latitude to adapt COMOC to the specifics of his particular
problem at this point, by directly inserting easily written sub-
routines into COMOC to compute special forms of these parameters.
The Qutput module is similarly addressed from the integration
sequence and serves its standard function via a highly automated
array display algorithm. COMOC can execute distinct problems-
sequence and contains an automat1c restart capability to cont1nue
so]ut1ons

The 3DBR -Variant of COMOC, as a direct consequence of the
expansive problem class to which it may be addressed, is a fairly
large and complex computer program. The vigor with which the
potential user of a computer.- code attacks preparation of a data
deck decreases exponentially (at least) with the thickness of the
instruction manual. It is the intent of .this user's guide to,
in a minimum amount of space, present general guidelines for the
use of COMOC, describe the rudiments of the differential ecuation
system being solved, briefly expose the basic mathematics

b
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of the finite element algorithm and its numerical embodiment,

and discuss sample solutions with respect to accuracy, so]utlon,
speed, and diversity. The standard test cases that accompany
COMOC are discussed in terms of the physics of the solution as
well as the description of data deck preparation. A large effort
has been made to simplify and streamline data preparation and to
require the user to specify an absolute minimum of non-physical
or non-engineering input. The basic program contains a multitude
of options which could potentially lead to confusion -on the part
of the user. Most of these have been suppressed, particularly

in the output sub program, with adefault instructions or values.
The programmer's manual {Ref. 1] describes how they may be
returned to an operat1ona1 status.

The fo]]owing general guidelines will assist the potential
user on adapting 3DBR COMOC to a-given problem.

Solution Domain Configuration

Most three-dimensional flow fields for which, 1) a predom-
inant flow direction persists (i.e., no recirculation component),
2) a prescribed pressure gradient can be established, and 3) no
imbedded shocks occur, are amenable to analysis using 3DBR COMOC.
This includes two- and three-dimensional boundary layer flows,
certain two- and three-dimensional flows in environmental hydro-
dynamics, and free-, slot-, and boundary-jet injection config- '
urations typical of combustors. Boundary conditions can be ap--
plied to the entire solution domain closure with local normal
orthogonal to the direction of predominant flow. An initial dis-
tribution -(including zero) of all dependent variables is needed
to start the solution. - However, a downstream outflow boundary
condition is specifically not required. : .

Variables and Parameters

The computational variables are the three scalar components
of velocity, stagnation enthalpy, and mass fraction of all iden-
tifiable species. Perfect gas behavior is assumed. The present
3DBR Variant solves the mainstream and one cross-plane velocity
component as a boundary value problem; it employs the continuity
equation to establish the remaining cross-plane velocity component.
The program computes static temperature and density, and all
thermophysical properties may be temperature and mass fraction
dependent. Unless overridden by a user provided subroutine, vis-
cosity is computed from Sutherland's law. The Prandtl and Schmidt
numbers may be variable. ~ Equilibrium combustion of arbitrary
mixtures of hydrogen, oxygen, and air can be established including
lTocal heat release and formation of NO. In the absence of dil-
uents, this capability provides equilibrium gas behavior for air
computations incliuding dissociation.



Discretization

" The nature of the flows to which this Variant is applicable
yields the requirement for two-dimensional finite element dis-
cretizations only. Since the continuity equation is employed to
solve for a transverse velocity component, it is advantageous to
have node columns oriented parallel to that coordinate. This re-
quirement for grid regularity has been built into an automatic
discretizer for 3DBR COMOC. Considering flow in an axial corner
for example, see Fig. 2, it might be desired to use a finer grid
near the walls where larger dependent variable gradients would
exist. The user need specify (only) the desired incremental
spacing between node columns and rows. The discretizer will au-
tomatically triangulate the domain on these node point coordinates,
and prepare the required geometric input data. This discretizer
is not directly applicable to non-rectangular domains; however,
3DBR COMOC can accept discretizations formeo manually or from
other automated sources.

Boundary Conditions

Constraints can be imposed on the admissible behavior of
each dependent variable and its normal flux, i.e., gradient, on
all surfaces bounding the solution domain, see Fig. 2. These
surfaces may constitute actual physical boundaries of the problem
or be strictly mathematical. As an example of the latter, em-
ploying symmetry planes to enclose a solution domain is particu-
larly advantageous in terms of computer execution time and user
input effort. The attendant vanishing gradient constraint is
the automatic default value within the finite element solution
algorithm, and its use does not require generation of any phantom
cells or special node handling. Fixing the normal gradient in
terms of the dependent variable is equally straightforward, and
is useful for thermally porous walls or a slip wall boundary
condition. Here again, no special cells or node handling is
required on the part of the user.

Input Preparation

A concerted effort has been made to render input preparation
minimal and in terms of physically meaningful variables and ex-
pressions. However, should the solution to a dozen or more de-
pendent variables be sought, the input deck can become of sub-
stantial size. The program accepts input in the English system
of units; it outputs non-dimensionalizing constants and solution
parameters in several systems, and provides detailed output ar-
rays of computed non-dimensional dependent variables. The pro-
gram executes under automatic error control and will adjust inte-
gration step-size to maintain an accurate and stable solution. The
only user input required for this phase is the initial and final




. integration stations and the desired interval for output. Some
additional options exist that can speed execution for some cases
[Ref. 1]. These parameters are defaulted to "best" values if not
overridden by the user. h

2
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//// =Boundary Condition Specification

Figure 2. Ilustrative Finite Element Discretization

User-Written Subroutines

COMOC provides the user with considerable latitude for
appending subroutines to perform specific parameter computations.
Included in this category are pressure gradient, laminar and/or
turbulent viscosity, and Prandtl and Schmidt numbers. In all
cases, a skeletal subroutine is filled in by the user to include
an equation or tabular data of the parametric dependence on any
number of independent or dependent variables in any combination.
These subroutines are always written in terms of physical vari-
ables with dimensions consistent with the input data. Non-dimen-
sionalization and calling sequence are controlled internally,
and the user can obtain complete arrays of these computations
from the output package. ' :



Output

The 3DBR COMOC program contains a highly adaptive output
subprogram. The user has considerable latitude in specifying
output arrangements, both dimensional and non-dimensional, from
the input deck. The output routine is adapted to compute inte-
gral flow parameters including wall shear, Stanton number, and
mixing efficiency. Data sets are automatically scaled and ordered
to be geometrically similar to the physical problem for all dis-
cretizations, both regular and non-regular.

Computational Costs

The computer cost associated with generating a COMOC solution
to a given problem can be approximately estimated. CPU costs are
basically a function of the number of dependent variables in the
solution, the amount of output requested, out-of-core operations
associated with restart and/or plot tape preparation, and the
thermodynamics of the solution. .The use of rather course discre-
tizations is strongly recommended for initial evaluation of any
problem. Employing progressively finer discretizations will gen-
erally 1mprove solution accuracy with a more-than-proportional in-
crease in computational cost.

NOMENCLATURE
a boundary condition coefficient
A species; one-dimensional matrix; area
Ar argon
b coefficient
B species; two-dimensional matrix
o coefficient
cp ‘ specific heat
C specjeé; three-dimensional matrix
Cf skin frfction
differential
D determinant
f function of known argument
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function of known argument:
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molecular weight
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boundary layer thickness
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global solution domain
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"FINITE ELEMENT SOLUTION ALGORITHM FOR THE THREE-DIMENSIONAL
- BOUNDARY REGION EQUATIONS

The system of partial differential equations governing the
three-dimensional boundary region flow of a compressible fluid
1s obtained from the parabolic approximation to the full Navier-
Stokes equations. The parabolic approximation, i.e., "parabolic
Navier-Stokes equations," describe steady, three-dimensional flows
wherein, 1) a predominant flow direction is uniformly discernible,
. 2) in this direction (only), diffusion processes are negligible
compared to convection, and 3) no disturbances are propagated up-
stream antiparallel to this direction. The boundary region equa-
tion system is obtained from parabolic Navier-Stokes with the
single additional assumption that a known pressure distribution’
is superimposed upon the flow field. Conversely, the approxima-
tion may be viewed as generalization of the three-dimensional
boundary layer equations to include diffusion processes in the
complete two-dimensional plane of crossflow. Closure of this
equation system requires identification of constitutive behavior.
By employing an eddy coefficient hypothesis, the time-averaged
turbulent flow equations appear identical to the laminar flow
equations. Hence, the finite element development assumes a gen-
eralized transport coefficient description, distributed as lami-
nar or turbulént at nodes of the discretization by the user.

The Three-Dimensional Boundary Region Equations

, In three-dimensional space, spanned by a rectanguliar Carte-
sian coordinate system, identify the velocity vector

u; = u]1 +ou,j o+ u3k (1)
For development of the differential equation system, assume that
i is aligned parallel to the predominant flow direction. Iden-
tify a two-dimensional vector differential operator as

~

(Do = 30 D)y + k(g (2)

where the comma identifies the gradient operator. Employing
Cartesian tensor notation, with summation over 2 and 3 for re-
peated latin subscripts, the three-dimensional boundary region
equation system for a multiple-species, compressible, reacting
flow takes the form

0 =- (pu.l)a1 + (pu])S'I . (3)

12
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The variables appearing in Eq. (3)-(7) are non-dimensionalized
Wwith respect to pws Uws Tws and a length constant L, and
have their usual 1nterpre%at1o in fluid mechanics. The Reynolds
(Re), Prandtl (Pr), and Schmidt (Sc) numbers are defined with
respect to the effective diffusion coefficient, u®, in algebraic
combination with the 1am1nar and turbulent: contr1but1ons as, for
‘example
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In Eq. (8), p is the laminar viscosity, € is the kinematic eddy
viscosity, and subscript T denotes a turbulent reference param-
eter. The stagnation entha]py is defined in terms of species
static entha1p1es as .

H o= § h%% + % u U (9)
a

The static enthalpy includes the heat of formation, hg, of the
species in its definition as
' ' T

h* = j cpdT + h (10)

p
To
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An equation of state is required to close the system. Assuming
perfect gas behavior for each species, from Dalton's law, obtain

e
p = pRTz-—— (11)
a W

- where R is the universal gas constant and W% is the molecular
weight of the o-th species.

- Equilibrium combustion of hydrogen/oxygen/air systems in
three-dimensional boundary region flow is operational in 3DBR
COMOC.. The following reactions are assumed operative.

2H + 0 < H.0
2H < H

20< 0

4

+¥

2N0 (12)

The equilibrium composition of the combustion by-products is
determined by applying the Law of Mass Action [Ref. 7] to each
reaction defined in Eq. (12). This yields definition of a set
of equilibrium rate constants, K, which, for the simple reaction
Qé + mB « 2C, are expressed in terms of species mole fraction,

» as

_ LXA]n[XB]m
K = ) (13)
[X™]
Solution of Eq. (12) with (13), and coupled with conservation of
total ‘and elemental mass, yields an a]gebra1c equation system

for determination of the equilibrium composition of the system,
of the form.

[NB]{X“} = {const.} | (14)

In Eq. (14), the elements of the matrix [Na] account for the
part1cu1ar species mole fraction distribution, {X®}, containing
the gth elemental material, e.g., 0, H, and N.

14



Finite Element Solution Algorithm

" The three-dimensional boundary region equation system,
except for global continuity, Eq. (3), is uniformly an initial-
boundary value problem of mathematical physics. Each of the
partial differential equations, Eq. (4)-(7), is a special case
of the general second-order, nonlinear partial differential
equation

L(q) = r<[l<(q)q,kJ’k t fla,9,55x;) - ga,x) = 0 (15)

Jwhere q is a generalized dependent variable identifiable with
“each computational dependent variable. 1In Eq. (15), f and g are
specified functions of their arguments, x is identified with xj
for boundary region flows, and xj are the coordinates for which
second order derivatives exist in the lead term. The finite
element solution algorithm is based upon the assumption that
L{q) is uniformly parabolic within a bounded open domain @, i.e.,
the lead term in Eq. (15) is uniformly elliptic within its domain
R, with closure 3R, where

Q@ = Rx [x,.x) ' (16)

and x_ < x < ». Table 1 lists the functions f and g, as well
as th8 appropriate parameters, for Eq. (15) identified with each
dependent variable.

For Eq. (15) uniformly parabolic, unique solutions for g
are obtained pending specification of boundary constraints on
dR and an injtial condition on RU3R. - For the former, the gen-
eral form relates the function and its normal derivative every-
where on the closure, 3R, as

2(q) = a(1)q(Yi,x) +'a(2)Kq(Y1,x),knk ~ L3 o g (17)

In Eq. (17), the a(])(Y.,X) are user-specified coefficients, see
Table 2, the superscrip{ bar notation constrains x; to %R, and

ng is- the local outward-pointing unit normal vector. For an ini-
tial distribution, assume given throughout RU3R x Xg

q(x;.x,) - q,(x5) (18)
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TABLE 2
GENERAL BOUNDARY CONDITION STATEMENT

‘Boundary Conditions | a(]) a(2) a(3)

No Slip at Wall 1 0 0

Stip at Wall + 1 0

‘" Mass Injection 0 1 +
Adiabatic Wall 0 1 0

Specified Heat Flux 0 1 +

Temperature Dependent Flux + 1 +

Symmetry- Condition 0 1 0

+ User specified as non-zero to enforce desired condition level.

Formation of the finite element solution is obtained by
establishing the algorithm for the equation system (15)-(18).
Straightforward theoretical development is provided. by using the
Method of Weighted Residuals (MWR) formulated on a local basis.
Since Eq. (15) is valid throughout R, it is valid within disjoint
interior subdomains, Ry, described by (x3,x)eRy x [xg,x) called
"finite elements," wherein URy = R. Form an approximate solution
for q within Ry x [xgsX%), ca]]ed af(xj,x), by expansion into a
series solution of the form

ax(xi0 = L @o0r, (19)

‘wherein the functionals o (X xi) are members of a function set com-
plete in Ry, and the unknown expansion coefficients, Qyx(x), rep-
resent the X dependent values of qp(xj,x) at specific 1ocations
interior to Rp and on the closure, 3Ry, called "nodes." Equation
(19) is a scalar, and selection of the particular ¢, is distinct-
ly specifiable [Ref. 8] and can be problem class dependent.

To establish the values taken by the expansion coefficients
in Eq. (19), require that the local error in the approximate so-
lution to both the differential equation, L(qpk), and the boundary
‘condition statement, 2(q#), for 3Ry OR, be rendered orthogonal
to the space of the approximation functions. Employing an un-
known algebraic multiplier, A, the resultant equation sets can
be combined as

jw( 3L (g dT-xfw (q¥)do = 0 (20)

Rm oR ﬂaR
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The number of equations (20) is identical to the number of node
points of the finite element, Ry, i.e., the number of elements,
n, in the column matrix, {Q(x)}m, Eq. (19).

Equation (20) forms the basic operation of the finite
element solution. Establishment of the global solution algo-
rithm, and determination of A, is accomplished by evaluating
Eq. (20) in each of the M finite elements of the discretized
solution domain, and assembly of these M x n equations into a
global matrix system using Boolean algebra. The rank of the
‘global system is less than M x n by connectivity of the finite
element domains as well as boundary condition constraints on 3R
where a(2), Eq. (17), vanishes identically. The lead term in
Eq. (15) can be rearranged, using the Green-Gauss Theorem, to
yield ' :

J{¢(xi)}K[an,k],de = x §I$(Xi)}Kq;,knkdo
R 3R
-k (ot ke, an (21)
Rm

For 3RN3R, nonvanishing, Eq. (21), the corresponding segment of
the closed surface integral will cancel the boundary condition
contribution, Eq. (20), by identifying Aal2) with « of Eq. (15).
The contributions to the closed surface integral, Eq. (21), where
9RpM3R = 0 can be made to vanish [Ref. 4]. Hence, combining Eq.
(17)-(21), the globally assembled finite element solution algo-
rithm for the representative partial d1fferent1a] equation system
description becomes

U [- c f{¢},qu$,kdr + f{¢}(f; - gx)dt

Rm Rm
-« J{¢}(aé])q; . aéB))dc} - {0} (22)
IR AR
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The rank of the global equation system, Eq. (22),
identical to the total number of node points on RUSR for which
the dependent variable requires solution. Equation (22) is a
“first-order, ordinary differential system, and the matrix struc-
ture is sparse and banded. Bandwidth is a function of both se-
lected discretization and the order of the employed approximation
functional, {4}, Eq. (19). Solution of the ordinary differential
equation system is obtained using a f1n1te d1fference numer1ca1
1ntegrat1on procedure. :

A finite element solution algorithm for the global continuity
equation is similarly derived. Recognizing that Eq. (3) is an
initial value problem on pup as a function of x2, with x7 and x3
appearing.as parameters, the approximation function need span only
the transverse coordinate direction as

ay = '{¢(xé)}T{Q(x],x3)}m - (23)
The matrix elements Qg are nodal values of pus; their functional
- dependence requires solution of-Eq. (3) along lines (x],x3) equal
.a constant. The solution algorithm for Eq. (3) is directly spec-
ified as : '

[tontougras = 0 (24)

R

where the matrix elements of {®} need not be coincidental with
those of {4}, Eq. (23), and the segments Rp correspond to lines
of (x],x3) equal to a constant. :

- THE THREE-DIMENSIONAL BOUNDARY REGION VARIANT OF COMOC

The COMOC computer program system has been established to
embody the finite e]ement solution algorithm for systems of equa-
-tions, Eq. (15)-(18). The computer program evaluates Eq. (22) for
each of the appropriate dependent variables, Table 1, including
up to nine or more species mass fractions, marches the resultant
ordinary differential equation system downstream, and includes a
continuity equation solver for Eq. (24). This section presents
the theoretical aspects of these solution techniques as embod1ed
in the 3DBR Variant of COMOC. :
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Finite Element Matrix Generation

The fundamental finite element operation is formation of
Eq. (22) on Ry and 3Ry,. The 3DBR Variant universally employs
linear approximation functions, Eq. (19), for all dependent
variables. The intrinsic finite element shapes for one- and
two-dimensional space spanned by simplex functionals, are the
Tine and triangle, Fig. 3. Accurate determination of the element
matrices of Eq. (22) is mandatory, and involves evaluation of
various-order moment distributions over the domain and on the
closure of the finite element. Natural coordinate functionals,
adapted from the area coordinates of structural mechanics [Ref.
8], are utilized. Simplex functionals are a linearly dependent
set of normalized functions that are orthogonal to the respective
closure segments of the finite element domain. For an n-dimen-
sional space, there are n + 1 simplex natural coordinate func-
tions. Table 3 contains the implicit definition of these func-
tions in their respective spaces. The natural coordinate

functions vanish at all node points of the finite element except
one where the value is unity; hence, these functions are the
elements of the approximation functional matrix, {¢}, Eq. (19).
Integration of arbitrary-order products of scalar elements of
the {¢}, over the domain of the finite element, are analytically
evaluated in terms of the exponent distribution, see Table 4.
For the present case, the equation system descriptions require
moment generation in Euclidean space spanned by a rectangular
Cartesian basis. All computations are performed in the local

(primed) coordinate system, Fig. 3, defined by the tensor trans-
formation law '

s = L. XLt .
X3 o5 5% r. (25)
3
’ X'
x’ X 2
X 2 3
3 2
2
1
X3 1
X3
*2 X2
X
X 1
One-Dimensional Space Two-Dimensional Space

Figure 3. Intrinsic Finite Element Domains for Simplex
Approximation Functions
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TABLE 3

IMPLICIT DEFINITION OF SIMPLEX NATURAL
COORDINATE FUNCTIONS

Natural Coordinate Definition

Dimensions Element Nodes
1 Line 2 B 1] (¢, (1
N 2 -
X1 X %2 X1
. - K '1
2 Triangle 3 1 1 1 ¢] 1
' 1 2 3 _
Xy Xy X $p 0= ¢ Xy
1 2 3
| ¥2 X2 %2 ¢3 Xo
i _ —
TABLE 4

INTEGRALS OF NATURAL COORDINATE FUNCTION
PRODUCTS OVER FINITE ELEMENT DOMAINS

Dimensions Integrals*
- n n n,!n,!
: 1 2 1°7°2
1 J oy ¢ do D
R 2 (n+n] + n27!
n n, -n n.!n,!n,!
1 2 3 : 1723
2 I ¢ 0 ) dt = D i
R 2 73 -7 (n#ny + ny + ng)l
* D = Determinant of coefficient matrix defining the
natural coordinate system, see Table 3.
.n =

Dimensionality of the finite element space

where rj is the position vector to the origin of the primed

coordinate system, and the aj;
coordinate transformation. T%e

are ‘the direction cosines of the
integration kernels for two-

dimensional space, Eq. (22), are

dt f dxédxé (26)
do = dx; (27)
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The first term in Eq. (22) is standard for all dependent
variables. Assuming the generalized diffusion coefficient is
distributed over the m element as a dependent variable, obtain

S R Y [ R O EH IS MR CIEE
Rm Rm
= «{K} {B10}[B2115]1{Q}_ (28)

In Eq. (28) and the following, matrices with B prefixes are
standard two-dimensional forms defined in Table 5. For Eq. (22)
identified with each dependent variable, f* and g* universally
contain the nonlinear convection term and @he initial-value
operator as dominant terms. The finite element equivalent for
convection is '

[torougaro = [torterToupd o1 ]ty e
Rm . Rm

= [B200S1{pU”} {B11}'{Q}_ (29)

-

where the elements of the vector, {pu/}, are nodal values of the
planar - mass flux transformed to the 15ca1 coordinate systems via

uz (30)

kT %kiY

The initial-value operator, which comprises the mainstream
.convection term, similarly becomes

Jtoroutariar = Joreer oo, T

R - Ry

= {pU1}][B300051{Q} (31)

where the matrix elements of [B3000S].are column matrices, see
Table 5. The superscript prime exterior to a matrix denotes an
‘ordinary derivative. _
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STANDARD FINITE ELEMENT MATRIX FORMS FOR SIMPLEX

TABLE 5

FUNCTIONALS IN ONE- AND TWO-DIMENSIONAL SPACE

(2)
(3)

(4)

(1) .
Matrix Matrix
Rame Function Matrix Evaluation(z)’(3)’(4)
1
m
{810} J(e)dr i
1
Rm
1 -1 0
n N 1Y )
[B211s] 14}, {8} id] 0
l-xzps )2 xaes (xses X3P3 -1
. X2p2 * X2P2 ’ X2P2
ST x3p3Y? _ [x3e3
o]
L .
2 11
T A" -
{82005] jmm do o2
. o 2
m
{f} {ﬁ} {:2:}“W
) 2y {2 1
: 2 1 2
- . T Am 2 1
(e3000s] | [earceriorTer | §p 181 12
R . >
m 2
: 2
6
) 4| 4
{B11} {0}, €. {¢, +e3. {6,
¢
*3),,- 3)4-
) m|2 1
(A2005] JrorerTeo é—[ 2]
aRm
L 1
{a10} [to100 21
CL .
(1) Matrix names are a 6 digit code covering dimensionality, nonlinearity, degree of

differentiation and special matrix properties, as fa, b, ¢, d, e, f] where:

a A, B, C for spaces of one-, two-, and three-dimensions, .

b number of coordinate functions appearing in integral or matrix,
¢, d, e (0,1) Boolean counters indicating (no, yes) differentfation of each function,
e or f S, A, & for-matrix symmetric, antisymmetric or general.

Symmetric matrices are written in upper triangular form.

AR = 1/2 (x2P2)(X3P3), the plane area of the triangular finite element.
X2P2 = the x, prime coordinate of node 2,
x3P3 = the x3 prime coordinate of node 3.

2™ = length of side for boundary condition (=X2P2).
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Both momentum Eq. (5) and (6) contain contributions to f3
stemming from a specified pressure distribution. For the main-
stream momentum equation, a specified longitudinal pressure
gradient, Psys is assumed koown; hence,

'I{¢}pa]dT = {B]O}p’](x]). T (32)

Rm

For. a lateral pressure gradient, obtain

[torp.g0c = [eortorlytrzr or = ropEInTepzy, (33)

Rm

~where the matrix elements of'{PZ}m are obtained from the tensor
transformation law, Eq. (25), as

PZ, (34)

op3Ps3

Each species continuity equation, Eq. (4), may have a source
term. Assuming the distribution to lie over the nodes of the
discretization, obtain

J{¢}s“dT = J{¢}{¢}T{s“}md1_ = [B200S1{s%} (35) .

Rm Rm

For non-constant Prandtl and Schmidt Numbers, the energy equation,
Eq. (7), has two source terms. An integration using a Green-
Gauss Theorem is appropriate for both; the generated surface in-
tegrals vanish by pairs on interior 3R, and are identically zero
on 3R, R for non-slip, non-porous walls. For the first term,
Table 1, obtain

, {MZ p
(0} 7r5 < 5 ”>ue(u.u.), dt
J 2Re Pr 37377k sy

Rm

Mg 1-Pr *-e*
= 4 — —_— * ;%
Re J{¢},k Py u ujuj,de

Rm

3
. T T :
= - gg (XMU} {PR}_[B3000S] Z.{Uj}m[8211$]{Uj}m (36)

j=1
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In Eq. (36), the repeated subscript j is summed over all scalar
components of the velocity vector u;.- The matrix elements of
{XMU}, and {PR}, are respectively t%e mth element nodal values
of ef?ective viscosity and the Prandtl Number function. The

- same operations repeated for the second contribution to dissi-
pation, Eq. (7), yield '

j{¢}[%g <§§%§3) ueZh“Y?k} dt
- ’k
R, .

il

| . |
1 Sc-Pr’ e* * o¥
- = J{¢}’k<§EF?_> v gha'Y?kdr
R .
m
I %E'{XMU};{SC};[B30005]§{H5a}m[821]S]{Ya}m (37)

In Eq. (37), the matrix elements of {SC}y and {HS%}, are mth
element nodal values of the Schmidt Number function and the
species static enthalpy, Eq. (10), respectively.

The boundary condition constraint matrices, Eq. (22), are
evaluated directly, since they are always applied on the line,
x3 equal to a constant. Using prefix- A to signify a one-dimen-
sional element operation, obtain

c[tsrajards = «alVimzooscar,  (38)
3R _M3R

KJ{¢}a;do' = Ka;3){A10} - (39)
) Rmf 13 R

The A matrices are also listed in Table 5. Equations (33), (35),
and (37)-(39) are not presently coded into 3DBR COMOC, but are
included here for future reference. '

Ordinary Differential Equation System Integration Algorithm

Application of the finite element algorithm to the original
partial differential equation ‘has produced a large-order system
of ordinary differential equations written on the discretized
equivalent of the dependent variable. Several explicit numerical
integration algorithms have been developed for ordinary differ-
ential equations that are optimum on the multiple bases of_sta-
bility, accuracy, and required computing time, [Ref. 9, 10].
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However, the explicit numerical solution of stable systems of
differential equations with large Lipschitz constants creates
serious integration step-size restrictions. The integration
package in COMOC contains two methods which belong to a family
of optimally stable, 3-stage, one-step integration methods [Ref.
11]. The operational features of this integration package,
aside from the ease of programming using an explicit procedure,
include being one-step (and therefore self-starting), having
internal error control features, automatic step-size determin-
ation, derivative evaluations required at the integration-inter-
val end points only, and optimal stab1]1ty and accuracy within
their given structure.

The family of numerical integration methods that are one-
step, predictor-multiple-corrector formulas, are described by
the equations

1 1 1

Phe1 = 87 Gy * hby qp
2 2 o1 2 .
Pny1 = 27 Gy * JCEREN + by apl
N - kel k-2. . k-1 _.
pﬁ+} N a% an * h[bl ] pn+1 * bg qn:|
ok k-1. . .k _. :
1 T T W T h[b1 Pre1” * bz 5] (40)

Two members belonging to the 3-stage family are operational in
COMOC. Both methods are first-order accurate, i.e., their as-
sociated truncation error is of order h2, where h is integration
step-size, and they represent optimally stable methods within

the collection of first-order accurate methods. The coefficients
in Eq. (40) for these two methods are listed in Table 6. Method

1 enjoys a large absolute stability interval, while method 2 has
an extended relative stability interval. Both options in the
integration package attempt to extremize integration step size
automatically, based upon internal error control. The estimation
of retative truncation error for both methods is of the form

2 rd
h | Prar” - qnlJ
RTE| = o ~ ' (41)
| | 8 { 'lqn+lI

where the parameter, B, equals 3 and 6, respectively, for method
1 and 2. Equation (41) is utilized within the integration pack-
age to evaluate the relative truncation error associated with - t
using the given integration step size, h, to estimate the (n+1)
value of the dependent variable. If the computed error is less
than the user-supplied acceptable limit, the (n+1)S estimate
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TABLE 6

COEFFICIENTS IN INTEGRATION ALGORITHM
FOR TWO, ONE-STEP, THREE-STAGE METHODS

Coefficient Method 1 Method 2
a) | 1.000000 1.000000
af' 1.000000 1.000000
a? 11.000000 ! 1.000000
by 1.000000 1.000000
b’ 0.037037 . 0.074074
b’ 0.962963 _E 0.925926
b? 0.148148 % 0.296296
b3 i 0.851852 é 0.703704

i

for the dependent variable is accepted. Dependent upon computed
solution behavior, the integration algorithm will selectively
seek to increase h, by some fraction, before proceeding to the
next integration computation. In this fashion, the package con-
sistently seeks to increase step size (hence decrease solution
computation time). If at any point the computed relative error
exceeds the limit, the current predicted values for the depend-
‘ent variable are discarded, a smaller step size selected, and
the operations of Eq. (40) repeated .until an acceptable error is
measured. - . .

Continuity Equation Solver:

Since an explicit integration algorithm is utilized for
solution of Eq. (22), solution of Eq. (24) for transverse mass
flux pup is required only after all other dependent varijable
distributions have been obtained on the plane x; = constant.
Establishment of (pua),3 is direct since the nodal distribution
of {pU3} is known. owever, an evaluation of (pUT),] is re-
gquired, since no streamwise derivatives of a dependent variable
can be formed before the distribution of all variables is known
in a plane. In the discretized solution, the actual requirement
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is to establish {pU1}”; the following second-order accurate
finite difference formula for the derivative at the end point
of two panels of data of dissimilar length is employed.

, ] o
{pUT}” = h (2h + h_){pU1}
n+1 hnhn+1(hn + hn+1j { n n+l n n+1
= (h_+ h_.)2%eU1}. + h2 . {pU1} (42)
n n+l P , ¥ T tP¥ i p

In Eq. (42), - and h_are the x7 integration step-sizes,
-respect1ve]y, Belween tHe current X1 station, xp471, and the
previous two stations.

An analytic expression is then established for the x2
distributions of mass flux derivatives, with x3 as a parameter
and on a nodal basis, as

(pU1) T a (x)x
s = a, (x
P (Lol t3lX2
. n K .
(pU3)hg = ] by(x5)x5 (43)

k=0

using an nth order running-smoothing polynomial generator over
appropriate sequential panels of data. Using a unit step for.
the weighting function, &, Eq. (24) then takes the form

| J[(DUE)Q p

R

N~

0[ak(x3) + bk(x3)]x§de2 - 0 (44)

Since all terms in Eq. (44) are integrals of perfect differen-
tials, the solution for the increment in transverse mass flux
over an interval Ax, is directly obtained as

k+1
n X
soug) = I Laylxg) + b ()] —fy (45)

Repeating Eq. (45) along each node column completes determ1nat1on
of pu§ at the nodes of the transverse plane.
Computation of Equilibrium Composition and Thermodynamic
Properties of Hydrogen/Oxyaen/Air Mixtures

The 3DBR Variant of COMOC can compute three-dimensional
frozen flow mixing of arbitrary gas mixtures, as well as the
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equilibrium combust1on of hydrogen/oxygen/air systems. For the
latter, the NASA computer code GAS (see Ref. 12) has been made
operational within COMOC after considerable.modification to ren-
der it compatible with a marching-type solution with muitiple
nodes, hence solutions. The equilibrium composition and thermo-
dynamic properties of -hydrogen/oxygen/air mixtures are evaluated
as a function of temperature and pressure; relative concentra-
tions of the elements, H,, 0,, N,, and Ar are also determined.
The species considered are H20, Up, Hp, Np, Ar, 0, H, NO, and OH.
Since all thermophysical properties are temperature dependent,
stagnation enthalpy is typically not known a priori; consequently,
initialization is based upon a user input total temperature dis-
tribution. As a function of input pressure at initialization and
the built-in tables of thermodynamic data, distributions of static
temperature, frozen specific heat, and stagnation enthalpy cor-
responding to input total temperature are determined using an it-
eration algorithm based upon the method of false position. All
solutions following initialization are based upon iteration to
equilibrium composition using computed nodal static temperature
as the convergence parameter. The iteration on temperature is
assumed to have converged when the d1fference between successive
1terates is less than 0.1 percent

After convergence to a static temperature, the equilibrium
constants for chemical reaction are calculated from the Gibbs'
function. Composition is then determined using a modified Newton-
Raphson iterative procedure for solution of a system of nonlinear
algebraic equations. Once the nodal species equilibrium (or fro-
Zen) composition is determined, enthalpy, entropy, molecular
weight, and specific heat are calculated for mixtures of ideal
gases in terms of the computed species mole fractions, X%, as

Molecular Weight: W = 3 XOue : (46)
a A
g . = J_ oy Qo ’ ’
Specific Heat: Cﬁ W g X cp | (47)
Static Enthalpy: ho= Lpoxeh® | (48)
a
Entropy: s = Ry xe S ap - 1n X (49)
py : vl 2
Mass Fraction: Y& o= xOu%,y ' (50)
' c
Gas Constant: y = —2P (51)
Cp - R/W . :
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The equilibrium model is based upon the conservation
properties of the sum of mole fractions, and the constancy of
the atomic number density ratios of argon/nitrogen, nitrogen/
oxygen, and hydrogen/oxygen. The five chemical reactions con-
sidered are

2H + 0 < H,0
2H < H,
20 < 0,
H+ 0< OH
N, + 20 < 2NO (52)
Applying the Law of Mass Action [Ref. 7] to each reaction in
Eq. (52?, the following system of ?091inear algebraic equations
relating species mole fractions, X'®/, is obtained.
(4) 2 K]pz[xm}zxm
(3 - [x(M]?
(6) . {(5)12
X = K3p X ]
(20 e (D)
(7)o 12 [x(®)]1/2[(6)] (53)
In Eq. (53), K. is the equilibrium constant for the ith reaction,

which is a funltion of temperature only, and p is the static
pressure. The numbering scheme for species identification is
listed in Table 7.

TABLE 7
SPECIES IDENTIFICATION FOR REACTING HYDROGEN/OXYGEN/AIR SYSTEMS
| Number 1 2 3 4 5 6 7 8 §~}
Chemical Species H OH H2 H20 0 02 NO N2 Ar;
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‘Equatiohs for the conservation of total mass, and the individual
atomic species H, 0, N, and Ar, may be expressed in terms of
known constants by the matrix equation.

(N81x®} = {const.} (54)
where A
1 1T 1 1 1 1 1]
1 12 2 0 0 0 0 0
[Ngj =]o 1 01 1 2 1 0 0
: 0 0 0.0 0 0 1 2 0
o 0o 00 0 0 0 0 1] (55)
and
g
| c(]).
"{const.} = <c(2)
(3)
c(4) (56)

(8)

The specific values of the constants ¢ are determined from

“the initial composition.

Of the several possible choices, the computed composition
is based upon solution of the nonlinear equilibrium equations
for mole -fraction of hydrogen, atomic oxygen, and the square root
of molecular nitrogen. The resultant nonlinear equation system
requiring solution is '

[F,(x*) X% = {0} 3 ~(57)

The Newton- Raphson iteration algorithm assumes, given a set of
trial values, X%, determination of a new set of values Xa+1l,
separated from the initial estimate by AX , by differentiating
Eq. (57) to yield. : .

[J(fi,x“

)1axSY = - {F5(x3)) (58) .
In Eq. (58), the Jacobian contains elements, Jkl, determined
numerically as

of _
= (59)

jkz‘ o
3X2
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The n+1St estimate of X* is accepted as the solution to Eq. (58)
when

£, 0001 < e (60)

i e~1¢0

j=1
where ¢ is a prescribed small parameter, usually 10'5. A maximum
of thirty iterations are allowed for the solution of Eq. (57)-
(60) to converge within €. In only a few cases has non-conver-
gence occurred, always within a few degrees of the threshold tem-
perature for dissociation. For these initially divergent solu-
tions, the equations are resolved assuming that dissociation is
negligible, i.e., the mole fractions of H, 0, OH, and NO are neg-
Tigibly small in comparison to HZ’ 02, N2, and H20.

ILLUSTRATIVE SOLUTIONS

The 3DBR Variant of COMOC has established solutions for
several two- and three-dimensional boundary region flows covering
a wide range of Mach and Reynolds numbers. - Several are discussed
to illustrate the various features of solution. The data decks
for two of these cases are presented in the next section, and
come as standard test cases with the program.

Constant Density Flow Fields

Because of its basic simplicity, the two-dimensional, iso-
energetic, laminar boundary layer fliow of a fluid at small Mach
number (M < 0.3) provides an excellent check case for evaluating
the essential performance features of the finite element algo-
rithm for Eq. (15)-(17). 0Only one dependent variable (uj) need
be integrated numerically, along with solution of the continuity
.equation for u,. However, COMOC assumes all flows are three-
dimensional ang compressible with temperature-dependent thermo-
physical properties. The two-dimensionality is readily obtained
by specifying only one column of elements, see Fig. 4, and en-
forcing the vanishing normal gradient (g,, = 0) boundary condi-
tion on the lateral segments of 3R. This is particularly simple
since vanishing gradient is the automatic default value intrinsic
to the finite element algorithm. The discretization may be ex-
tended beyond the boundary layer thickness, &y, so that vanishing
normal gradient may be applied along the freestream segment of
9R as well. The slope of the diagonals of the discretization,
Fig. 4, bears 1ittle impact on solution accuracy for two-dimen-
sional problems. Dependent upon initial conditions and/or other
perturbations placed into the solution, the computed variable
distributions along each node column may differ slightly. These
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small differences typically damp out as the solution proceeds,
and interchanging diagonal slopes simply exchanges the location
of these differences if they exist. The element aspect ratio

is similarly unimportant for two-dimensional problems. For iso-
energetic flows, COMOC contains a simple but quick-running sub-
‘routine to compute density and static temperature for two-compo-
nent perfect gas mixtures with a specified pressure distribution.
Unless overridden by a user-supplied subroutine, viscosity is.
computed from Sutherland's Taw.

/ '4
N T ET1 11T I I ARSI AR AR AR AR

U1=U2=0

" Figure 4. Finite Element Discretization for Two-Dimensional
- Boundary Layer Flow

Assessment of computed solution accuracy and convergence
with discretization can be obtained for the vanishing pressure
gradient case by comparison to the Blasius similarity solution
[Ref. 13]. The test case corresponds to air at atmospheric
pressure and M = 0.272. The boundary layer thickness at the
initial station is 8, = 0.0011 m. (= 0.17(-2)) and the unit
Reynolds number is Rey = 0.63(7)/m. Two uniform discretizations
were employed, the first spanning 8, with only four (4) finite
elements, while the second doubled that. number. The numerical
computations were initialized with the similar solution profiles
at a station downstream from the leading edge at x7/8¢ = 278.
The solution was continued downstream to xy/8, = 2560. Shown
in Fig. 5 is a comparison of the Blasius solution to the com-
puted velocity profiles, uj and up, obtained for the coarser
discretization. For reference purposes, the initial profiles
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are also shown with the finite element node locations superim-
posed. The longitudinal flow initially contained within &, has
been retarded by a factor of 2 to 3 throughout, and agreement
between the computed and Blasius velocity profiles is excellent.
The computed skin friction and displacement thickness distribu-
tions are shown in Fig. 6. The computations using the coarser
discretization slightly underpredict skin friction and over
estimate displacement thickness. Doubling the discretization
(to 8 elements lying within 8,) noticeably improves computed
solution agreement with the Blasius solutions, Fig. 6. Figure 7
presents actual percent inaccuracy in the computed solutions for
skin friction and displacement thickness. The influence of the
coarse discretization is most noticeable in &§; however, the error
rapidly decreases as the boundary layer grows into the discreti-
zation, which corresponds essentially to grid refinement. As a
function of discretization, computed skin friction, Cg¢, converges
approximately proportional to the square of refinemeni. This
agrees exactly with the convergence rate predicted theodretically
for the parent diffusion equation, neglecting convection, using
Tinear finite element approximation functionals [Ref. 14]. The
uniformily small inaccuracies in computed skin friction for both
discretizations indicate that solutions, adequate for certain
engineering approximations, can be obtained using finite element
discretizations that appear rather coarse in comparison to con-

ventional experience.
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The increased accuracy of the finer discretization solutions
is obtained with a measurable increase in computer CPU time.
Shown in Fig. 8 are the distributions of integration step-size,
AX1, automatically established by COMOC as within the stability
interval of the Method 1 integration algorithm for this boundary
layer problem. The periodic stepping feature is illustrated for
the four element solution; the step-size of the eight element
solution remains essentially constant at about one-fourth the
average of the former. Since the finer discretization contains
twice as many elements as well, an approximate eight-fold in-
crease in computer time would be anticipated. The actual in-
crease was by a factor of 6.9, see Fig. 8. Computer CPU is also
a function of the number of dependent variables in the solution,

as well as user utilization of the I/0 features of COMOC. An
approximate formula for estimating execution time in seconds is

CPU = AZci (61)
i

where ) is the ratio of CP speed of the computer in use to that
of the IBM 360/65 (e.g., X = 0.2 for the CDC 6600), and

c; = 0.011 x (No. elements) x (No. passes)

x (No. dependent variables + 0.165)
c, = 0.8 x (No. outputs) x (No. pages per output)
c; = 1.25 x (No. outputs if Restart tape is written)

In the expression for cy, the number of passes is an output
parameter from COMOC that is somewhat greater than three times
the number of integration steps in the solution. The factor
0.165 accounts for simple thermodynamic, viscosity, and other
parameter evaluations. The contribution from c; occurs only
when writing a restart tape, and the coefficien% may vary with
different computers.

A second illustrative solution for 3DBR COMOC in the low
speed category comes from environmental hydrodynamics. Analyti-
cal prediction of thermal and/or waste water dispersion into
waterways could help understand the important mechanisms for
turbulent transport phenomena. Such a capability could also
circumvent some of the detailed Taboratory experimentation now
required for certification of engineering projects. The example
[Ref. 15] corresponds to turbulent dispersion of ejectant from a
submerged waste water outfall. The solution domain is non-reg-
ular and corresponds to the measured cross-sectional depth dis-
tribution of a natural stream [Ref. 16] with a span of 48 m.
(160 ft), see Fig. 9. The initial longitudinal velocity dis-
tribution was established from the measured isovel distribution,
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Figure 9. Cross-Section of a Natural Stream

Showing Measured Isovels, [Ref. 16]

by interpolation at the nodes of a 468 finite element discreti-
zation of the cross-section, see Fig. 10. .Since the solution
domain is quite non-regular, the automatic discretizer in COMOC
was not applicable. The waste water ejector was assumed located
in the deepest section of the river as shown in Fig. 10.

@ nitial 100% Contour

S ' =T
— = .

Figure 10. Finite Element Discretization of Stream Cross-Section
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The flow field was assumed isoenergetic and without cross-
flow. Hence, a marching type solution was required for main-
stream velocity and a single species mass fraction. The total
and static temperatures for this case are identical; thus, a
large input pressure was employed to coerce the perfect gas sub-
routine in COMOC to compute a uniform density distribution cor-
responding to that of water. Closure of the governing equation
system was obtained by specifying a turbulent viscosity law, and
providing a user-written subroutine to override Sutherland's Law.
A tensor turbulence law was assumed applicable [Ref. 17, 18];
in the plane of the finite element discretization, the eddy vis-
cosity coefficients in the vertical (xp) and transverse (x3)
coordinate directions were assumed given as

u$2 k,U*h | - (62)

u$3 kgU*h (63)

where local depth of water is givén by h, ko, and k3 are empir-
“ical constants, and U* is the friction velocity defined as

U* = V/1/p. The approach of Patankar and Spaliding [Ref. 19] was
employed to evaluate wall shear, 1, as.

-0.45

2 12rp-1 0.3
pU [RX - 0.156Rx

Tt = K + 0.08723R;

+ 0.03713r; 0+ 18] (64)

where K is an empirical constant (set equal to 0.435), Ry = RK?

where R is a local Reynolds Number defined as R = pUXo/u, U is
Tocal longitudinal velocity near its extremum, and Xp is a rep-
resentative length scale. For the present case, both U and X»
were obtained directly from the solution for the detailed veloc-
ity profiles. A study was performed, see Table 8, to measure
the sensitivity of the computed pollutant distribution to the
constants in the eddy viscosity law, Eq. (62)-(63), as well as
the tensor character. The base line case corresponds to use

of mean depth averages for the coefficients, confirmed experi-
mentally to capture the essential parabolic character of the
measured distributions, Case II. Case III corresponds to a
scalar eddy viscosity equal to the magnitude of the Case 1
tensor expression.

The results obtained from this type of study are summarized
in Fig. 11, which presents predicted mass fraction contours of
the contaminant, for the three cases, at a station 9.6 m. down-
stream of injection. Comparing the results of Cases I and II,
the neglect of the parabolic distribution in the vertical mixing
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~ TABLE 8- |
PARAMETERS IN POLLUTANT DISPERSION STUDY

Case k2 R k3 Comments
I 0.067 | 0.23 Base line case [Ref. 16]
11 0.36(5-&2) 0.23 Vertical parabolic distribution
(£=nondimensional local depth)
I11 0.24 0.24 Scalar of equal magnitude to
- Case 1

Case |l

. Case {11

Figure 11. Predicted Mass Fraction Contours at 9.6 m Downstream
of Injection, Three Diffusion Models

coefficients is confirmed to be a reasonable assumption at this
distance downstream. However, for these conditions, the omission
of the tensorial character of the dispersion coefficient, Case
ITT, is-quite measurable. Comparing Cases III and II, the larger.
vertical (kp) coefficient has allowed the 3% contour to break to
the surface of the river. An overall larger diffusion has also
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occurred, although, as expected, the lateral extent of the dis-
tributions is considerably less affected. Although no experi-
mental data are available to directly confirm these results, these
predictions amply illustrate the potential to examine trends and
isolate key features, while capturing the important geometric
non-reqularities and differential equation non-linearities so
important to the physics of the problem. The numerical procedure
is readily adaptable to relocation of the ejector and alteration
of its geometry, see Fig. 12 for example. For all cases, inte-
gration was continued downstream a distance of approximately 90 m;
at this point the maximum ejectant concentration had decreased to

Y////////1 \nitial 100% Contour

3%

15%

Figure 12. Predicted Mass Fraction Contours at 9.6 m Downstream
of Interface Injection

15% +1% dependent upon the viscosity law. A typical execution
time on the IBM 360/65 was 875 s including about 145 s to produce
an inch of output. The predicted value using Eq. (61) is 900 s.
(It should be noted that, although tensor turbulent transport
properties can be utilized in 3DBR, program modification, beyond
the scope of the casual user, is required for the present Variant.)

Compressible Flow Fields

A standard check case for 3DBR COMOC corresponds to a nominal
Mach 5 Taminar, two-dimensional boundary layer flow over an adia-
batic wall in a favorable pressure gradient. A similarity solu-
tion [Ref. 20], as well as finite difference procedures, can be
utilized to evaluate accuracy and consistency of solution trends
for the detailed coupling of the mechanics and thermodynamics of
this solution. The discretization and boundary condition specifi-
cations are essentially identical to those of the small Mach num-
ber boundary layer solution. For constant specific heat, which’
corresponds to the similarity solution, the simple thermodynamic
subroutine can be used to compute Tocal static temperature and
density for isoenergetic flow. Only the equation for uj need be
integrated downstream, coupled with solution for up usina the
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continuity equation solver. For non-isoenergetic flow or variable
specific heat, stagnation enthalpy (H) must be added to the inte-
grated solution vector, and the local solutions for density,
static temperature, and specific heat are obtained from the com-
bustion subroutine. In this instance, the air composition must

be initialized as well, although the oxygen and.nitrogen elemental
-species mass fractions need not be integrated since the flow field
composition is homogeneous and constant. For either thermodynamic
procedure, the stagnation enthalpy is initialized from an input

"~ (constant) total temperature distribution. The initial uj pro-
files are established from the similar solution for B = 0.5 and
S = 0 [Ref. 20]. Sutherland's law is employed to compute
viscosity. :

The standard test case is initialized at x7 = 0.03 m down-
stream from the surface leading edge. The boundary layer thick-
ness at this station is 8§, = 0.0039 m, the local Mach number is
M = 3.77, the unit Reyno]gs number is Rey = .83(5)/m, and the"
-adiabatic wall temperature is T, = 1000°K (1800°R). Shown in
Fig. 13 are the COMOC computed skin friction, freestream Mach
number, and boundary layer thickness distributions for the con-
stant specific heat case. These were obtained using two uniform
finite element discretizations corresponding to 4 and 8 elements
spanning the initial boundary layer thickness. The input static

pressure distribution, pe(x7), is also presented for reference,
and the boundary layer thickness has increased greather than
four-fold within the solution domain. Only small differences,
on the order of about 2%, exist between the two solutions, with
the finer discretization producing a slightly larger skin fric-
tion and smaller freestream Mach number. Superimposed in Fig.
13, for.comparison purposes, are the results for the similar
solution [Ref. 20], and a 20 zone finite difference solution ob-
tained using the von Mises coordinate transformation [Ref. 19].
Agreement among the four solutions is excellent (within 2%) for
skin friction. The similar solution for Mg lies between the
COMOC and finite difference solutions, and agreement is within
*3%. Shown in Fig. 14 are computed velocity profiles at x71/8q =
22.7, which is about mid-way through the standard test solution
domain. Shown for reference is the initial uj profile obtained
from the similar solution [Ref. 20], with the node locations of
the 4 element discretization superimposed. Both COMOC solutions
produce uj distributions that are slightly more concave upward
in the mid-region in comparison to the similarity or finite
difference solutions. The finer discretization COMOC solution
lies closer to the similarity solution in the region where the
two finite element solutions differ. The finite difference
solution lies appreciably below both the COMOC and similarity
solutions near freestream. The COMOC computed transverse veloc-
ities are also shown in Fig. 14; only slight differences between
the two discretization solutions. are apparent. The trends of
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the COMOC solutions are in excellent agreement with the estab-
lished procedures; unfortunately, since each method of solution
is distinctly numerical, no absolute accuracy assessment is
established, as was possible for the constant density boundary
layer check case. '

The computation of transverse velocity warrants additional
comment. COMOC will accept, but does not require (since one is
rarely available), an input distribution for ug at the initial
station. For the discussed Mach 5 solutions, the initial up
. distribution, Fig. 14, is self-determined by withholding its
computation until the ujy equation had been integrated forward
a few stations. (This 1s mandatory, even if an initial up
distribution is input, since several data stations are required
to allow evaluation of Eq. (42) for (puy)”.) Computation of up
is then initiated and it rapidly becomes consistent with the
computed uy distributions. Solution is terminated after a few
more steps downstream, and the computed nodal up distribution
trend with longitudinal distance is back extrapolated to estimate
an initial distribution. Only one or two iterations of this tyne
are typically required to establish a consistent up distribution.
Starting with a zero initial distribution is probably the most
convenient choice for analysis of engineering problems, wherein
detailed initial accuracy is not of primary importance.

Solution speed and accuracy have been illustrated.to denend
directly upon discretization. Solution speed is also a direct
function of a user input control parameter (e) that places some-
what flexible bounds on acceptable relative truncation error,

Eq. (41), during downstream integration. A value of ¢ of 10(-4)
has been found by experimentation to be generally adequate to
maintain solution stability, hence accuracy. Using smaller values
of € sharply increases computation time without producing the
attendant increase in solution accuracy that a finer discretiza- -
tion would yield. However, increasing € up to 10(-2) can produce
‘measurable cost savings with a good probability of only a marginal
decrease in solution stability and accuracy (upon rare occasion,
the solution may actually go unstable and blow-up). ~Shown in
Fig. 15 are computed integration step-size histories for the

Mach 5 test case for several discretizations and values of €.

In all cases, the computed solutions were of comparable accuracy
and uniformly acceptable. The automatic stepping feature is
illustrated, and the predicted necessary sharp decreases in Axj
appears- independent of €. For the two, 8-element discretization
tests, increasing € to 10(-2) about doubled the allowed step size
and hence decreased CPU by almost 50%. As expected, a four-fold
increase in CPU accrued for twice the discretization, for € con-
stant at 10(-4), with integration step-size about half that of
the baseline 8-element case. The coarsest 4-element discretiza-
tion test recorded the largest integration step distribution with
a remarkably smaller CPU. However, this solution appeared on the
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M =5, Re, = .83(5)/m, B = 0.5

ragged edge of instability, as evidenced primarily by sometimes
anomalous behavior in transverse velocity, up. From experimenta-
tion, incipient overall solution instability is almost always
foretold by erratic behavior of the computed up distribution,
since it immediately reflects anomalies in the streamwise deriv-
ative distribution for uy, see Eq. (45). The user may typically
feel confident that so]ulions generated using €>10(-4) are ac-
ceptable provided the computed u2 behavior. is smoothly consistent.
~However, it is worthwhile to substantiate this assumption, by a

shorter run at smaller ¢ and/or finer discretization, if it can
be afforded S '
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As a final evaluation, the nominal Mach 5 test case was

repeated for temperature-dependent specific heat. This necessi-

tates addition of stagnation enthalpy, H, to the dependent
variable vector and addressing the thermodynamic package in the

combustion subroutine. Shown in Fig. 16 is a comparison between
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Figure 16. Computed Boundary Layer Velocity Profiles,
M =5, Rex = .83(5)/m, B8 = 0.5
computed longitudinal velocity distributions at x7/68, = 22.7 for

a uniform adiabatic wall temperature of 1000°K. Maximum differ-

ences of about 4% accrue due to temperature dependent specific
heat; the computed increase in skin friction is about 10%.
Besides the increased solution cost stemming from employing H as

~a dependent variable, an additional expenditure accrues from

addressing the more comprehensive thermodynamics package for
variable thermophysical properties. Referring to Eq. (61), a
fourth contribution to CPU for non-combustion utilization of
the combustion subroutine is

C4 = 0.004 x (No. Passes) x (No. Nodes)
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The second example problem for compressible flow computa-
tions using 3DBR COMOC corresponds to analysis of turbulent,
binary three-dimensional mixing in a supersonic boundary layer
flow field. The analyses include cold flow studies with com-
parison to data as well as equilibrium combustion. The impetus
for these studies is the hydrogen fueled scramjet engine, a
prominent candidate for propulsion of the next generation of
hypersonic cruise vehicles [Ref. 21, 22]. Many alternative
designs have been proposed, but all exhibit the commonality that
fuel introduction arrangements consist of rows of circular,
choked-flow injector orifices mounted flush or normal. to the
combustor wall or in fins spanning the combustor inlet. The
pattern of fuel injection, hence three-dimensional mixing, can
exert significant influence on combustor performance. Figure 17
illustrates an experimental apparatus used by Rogers to experi-
mentally probe the three-dimensional cold mixing region down-
stream of transverse hydrogen injection from a single discrete.
orifice [Ref. 23], and multiple laterally-disposed orifices
[Ref. 24], into .a Mach 4.airstream on a flat plate. Detailed
numerical predictions of turbulent, three-dimensional mixing in

Figure 17. Three-Dimensional Flow Field Downstream of
Transverse Injection from Discrete Orifices
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this flow field have been performed, using 3DBR COMOC, in a so- -
lTution domain spanning up to 120 injector diameters downstream,
for both the single and multiple jet geometries. The scaled
discretization of the symmetric half-plane into 100 finite ele-
ments, Fig. 18, was formed by the automatic discretizer. The
turbulent boundary layer thickness at the injector station
(without injection) was equal to 2.7 injector diameters, and
.the Reynolds number was Rey = .6(8)/m. To the first order of
approximation, these data correspond to isoenergetic binary
diffusion in a constant pressure flow field. Hence, numerical
integration was required for uj and a single species mass frac-
tion -plus the continuity equation for us,.

Closure of the equation system requires a turbulence model
for three-dimensional boundary region flow of this type. A
prototype eddy viscosity model was developed to reflect mass
flux differences between the main.flow and the jet and the tur-
bulence due to the presence of the wall [Ref. 25]. Directly
above the mixing region, turbulent dispersion was assumed to
primarily reflect differences in mass flux. Outside the mixing
region but near the wall, the turbulence was assumed due solely
to boundary layer phenomena. Within the mixing region both
mechanisms are assumed active. Therefore, near the wall where
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mixing length theory is assumed valid, the éddy diffuéivity-of.
mass is of the form '

ol
ax2

-1
T

ei = lzwy Sc: (65)

uy is the mean longitudinal velocity, £ is the mixing length,

w is van Driest's damping factor [Ref. 26], and y is the inter-
mittency factor, empirically modeled in a number of ways [Ref.
27]. For this study, it was evaluated as

y = — T . {66)
1 + 0.01¢

where ¢ = x2/62 and 62 is the value of Xp where the hydrogen
mass fraction is one-half its wall value. 1In the outer region,
the eddy diffusivity of mass 1s assumed proportional to the
mass defect of the form-

ey = Kyl/pl e (67)

where K is an empirical constant, y is the intermittency factor,
" the characteristic length L is defined as. the half height of the
mixing region on the centerplane (x3 = 0), and 1 is the three-
dimensional mass defect evaluated as ‘ :

I(xq) = J louy - p U ldt (68)
R .

A subroutine was coded for addition to 3DBR-COMOC, to evaluate
Eq. (65)-(68) along columns of nodes parallel to the x, axis,
see Fig. 18. The effective viscosity of mass mixing was laminar
plus selectively gy} or €2, and the transition from €7 to e was '
internally signaled. So as to provide the potential user with
an example of construction of a fairly complex subroutine

addition, this code forms a part of the data deck for the second'-

standard test case for 3DBR-COMOC.

An extens1ve computat1ona1 program was conducted using
3DBR-COMOC to validate use of the three-dimensional boundary
region equations for this problem geometry; and to evaluate-
the governing influences on turbulent mixing in the three--
dimensional region within the constraints of the prototype eddy
viscosity model. The existence of extensive cold flow data .
[Ref. 23, 24] for longitudinal ve10c1ty, and hydrogen mass
fraction, YH, provides the means to eva]uale the accuracy and
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consistency of the numerical predictions; the complete dis-
cussions of results is in Ref. 25. Briefly, for the first
series, the experimental data at 30 diameters downstream of
injection (i.e.,x3/D = 30) for a dynamic pressure ratio (qp)

of unity, were interpolated at the nodes of the finite element
discretization, Fig. 18, using cubic spline procedures. The
numerical solution was carr1ed to x7/D = 60, and the empirical
constant in Eq. (67) set to K = 0.1 by "hest" agreement with
data. As shown in Fig. 19, agreement with the superimposed data
a]ong the symmetry plane, x3 = 0, is excellent. Transition from
mixing Tength to mass defect occurred between 0.6 and 1.0 injec-
tor diameters above the plate across the entire pattern. The
predicted lateral spreading of the hydrogen (parallel to the x3
axis) is in good agreement with the data spread near the wall,
but is underpredicted in the mid-region of the pattern. Trans1—
tion from the initial distribution, and detail .on solution ac-
curacy, are presented in Fig. 20, which compares data to computed
concentration profiles along planes x3 = constant at x3/D = 60.
The underpredicted lateral diffusion i1s prominent, stemming in
part from the omission of three-dimensional influence in the

Symbols are Best Symmetry Plane Fit for Data of Rogérs [Ref 23]}
Transverse Displacement

X2/D
8 Symbol Concentration - %
o 4.0
A 3.0
6 [ ] 2.0
v 1.0
¢ 0.5
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-6 -4 -2 0 2 4 6

Lateral Displacement - x3/D

Figure 19. Computed Hydrogen Mass Fraction and Experimental
Data for Single-Jdet, G = 1.0, x /D = 60
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turbulence model. The experimental data show that in this re-
gion, uj,2 and uj ,3 are of equal magnitude, as observed in Fig.
21, which is a thrée-dimensional surface plot of the longitudinal
velocity distribution at x7/D = 30, as observed from a vantage
point beneath the plate surface. The superimposed grid coincides
with the finite element discretization (omitting diagonals), and
the hydrogen jet is imbedded within the centroidal indentation.
Obviously, three-dimensional effects are important, and should
~form an integral part of future three-dimensional turbulence
modeling. Figures 22 and 23 compare the COMOC computed solutions
for hydngen mass fraction and longitudinal velocity distribu-
tion to data at xy3/D = 120, as well as the initial distributions.
Agreement is genera]]y quite good throughout.

This computat1ona] study was.repeated using for initial
Conditions the experimental data for a row of orifices aligned
perpendicular to the main flow vector with a uniform separation
distance-of 12.5 orifice diameters [Ref. 24]. For this study,
the finite element discretization.of Fig. 18 was simply scaled
to span the symmetric half zone between ejectors, using the
automatic discretizer. The vanishing normal gradient boundary
condition was then applied to both lateral sides of the compu-
-tational region. Shown in Fig. 24 and 25 are the COMOC com-
puted hydrogen mass fraction profile distributions at stations
X1/D = 60 and x1/D = 120 compared to data. Figure 26 displays
the more familiar contour plot at x7/D = 120. These results
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Centerplane

Figure 21. Isdmetric View of Longitudinal Velocity Surface for
Single-Jdet Configuration, x]/D = 30
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Figure 22. Computed Single-Jet Hydrogen Mass Fraction
Distribution at x]/D = 120, 9, = 1.0
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Distribution at x1/D = 60, q. ="1.0
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Figure 25. Computed Multijet Hydrogen Mass Fraction
Distribution at x]/D = 120, q. = 1.0
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Figure 26. Computed Mass Fraction Contours and Experimental
Data for Multijet, x]/D = 120, 9p = 1.0
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were obtained using the identical mixing model of the single _
jet, i.e., K =10.1, Eq. (67), with transition from mixing length
to mass defect occurring in the region 0.6 < x2/D < 1.1. Figures
- 24 and 25 indicate that centerplane diffusion is somewhat over-
predicted, while a considerable improvement between computations
and data has occurred in the lateral region. Figure 26 illus-
trates how the computed contour patterns merge between jets for
the multiple injector configuration. Agreement between computed
and measured velocity distributions at both downstream stations

- was _ excellent.

Detailed volumes of experimental data, of the typoe utilized
to start these discussed solutions, are typically not available
for complex reacting flow fields. Assuming that the foregoing
studies have indeed verified the appropriateness of the differ-
ential equation system, as well as a limited validitv for the
-turbulence model, methods for starting a three-dimensional solu-
tion with combustion are sought. ‘One technique that shows some
promise, and also admits numerical evaluation of its appropriate-
ness, is the "virtual source." The theoretical hypothesis is
simply that the complex transverse injection process can be com-
putationally replaced by a hydrogen jet imbedded within a boundary
region flow, and that the distinguishing features of this virtual
source are solely dependent upon freestream and injectant param-
eters. The derived model [Ref. 25] captures the essence of the
. barrel shock-Mach disk hypothesis for injectant-freestream equi-
libration [Ref. 28]. To establish computational verification of
this concept, the cold flow studies were repeated for the virtual
source established in the plane of injection, i.e., /D = 0.0.

It was assumed to be of elliptical cross-sectional shgpe with the
minor axis parallel to x», and composed of 100% hydrogen with
longitudinal momentum determined from the dynamic pressure ratio,
qr. Computational evaluations of the concept were made for the
three values of qpr for which data exist. Shown in Fig. 27 are
typical results, obtained for virtual source simulation of the
multiple injection confiqguration for qr = 1.0. Superimposed are
appropriate experimental data [Ref. 23 2471 for the key comparison
bases of, 1) longitudinal trajectory of maximum hydrogen concen-
tration, 2) height above the plate of the maximum concentration
trajectory, and 3) the lateral spreading of the diffusion pattern.
The peak hydrogen mass fraction is observed to drop precipitously
from its initial 100% concentration, but to promptly level off in
good agreement with the multijet data. The dependent variable
gradients associated with this solution were quite large, yet
3DBR-COMOC maintained stable solution behavior usinag the automatic
step-size constraint. The trajectory of the maximum hydrogen con-
centration above the plate surface is similarly in good agreement
with multi-jet data. The computed lateral spreading agrees well
with multi-jet data to x73/D = 30, but is progressively underpre-
dicted (maximum 15%) as the solut1on continues downstream. Simi-
lar agreement trends with data were recorded for the "softer"
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injection case, q, = 0.5. However, fairly large disparities (up
to 40%) occurred for the "hard" jet, corresponding to q, = 1.5, .
but for which the entire theoretical concept becomes rather sus-
pect. Figure 27 is completed with a plot of n, an integral
"mixing efficiency" parameter, [Ref. 24]. This parameter is
defined as the percentage of molecular hydrogen that would be
lost to the computed frozen flow H2 mass fraction distribution
if all available Hp (or 0p, depending on the 1imiting reagent)
was converted to H20~within the computed velocity distribution.

" The virtual source turbulent transnort model was identical
to the prior cold flow studies with two minor excentions. The
mixing length hypothesis, €7, was uniformly enforced until the
minimum velocity in the virtual source denression accelerated to
within ~2% of the corresponding boundary layer velocity without
injection. This occurred within 8 diameters downstream of the
injection nlane for all qy. Downstream of Xl/D = 8, transition
from €7 to €5 occurred within one diameter ahove the nlate sur-
face. Due to the rather small initial density within the virtual
source, the initial computed mass defect was disproportionally
small. From exnerimentation, a smaller constant (K = 0.175) was
found uniformly effective for the three studies.

With the change of one input flag, the virtual source
simulation was repeated with equilibrium combustion allowed.
Shown in Fig. 28 are the typical results of this computational
simulation, on the multiple comparison bases previously dis-
cussed for the cold flow tests. The precipitous drop in the
_peak hydrogen mass fraction concentration parallels the cold
flow experience, but the levels downstream of x1/D = 7 lie well
below the non-reacting experience. The trajectory of the peak
hydrogen level is essentially parallel to the plate surface
through x7/D = 30. "The lateral spreading of the jet is con-
siderably more pronounced for x7/D>10 in comparison to the cold
flow tests. The mixing efficiency parameter, n, reaches 100%
at x7/D = 20, well ahead of the cold flow simulation. These
differences reflect, in large part, the considerably different
temperature and density distributions. As shown in Fig. 28,
ignition occurs immediately downstream of simulated injection,
and the peak temperature rapidly climbs to 2000°K (~3800°R).
It remains at this level until stoichiometric mixina is com-
pleted, i.e., n = 100%; thereafter, it continuously decreases
as local heat addition from combustion is unable to balance
diffusion effects. A typical CPU time on the IBM 360/65 for
execution of this test with combustion was about 1275 seconds.
Execution of a cold flow counterpart (to x3/D = 30) required
about 950 seconds. The 325 seconds additional for combustion
reflects the CPU required to execute the temperature iteration
loop.in the combustion subroutine for this particular test case.
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DATA DECK PREPARATION

The data decks that generate the nominal Mach 5 isoenergetic
boundary layer flow, and the three-dimensional virtual source '
simulation, come as standard test cases for 3DBR COMOC. The
listings of these data decks are included in Appendices A and B.

"~ Another problem specification can be readily adapted from these
decks, since approximately one-third of a data deck is associated
with standard call sequences as well as output format specifica-
tion and arrangement instructions. These standard data should
not be altered without reference to the programmer's manual for
3DBR COMOC [Ref. 1]. The following discussion covers general
details, and illustrative examples are pertinent to the data deck
for the Mach 5 test case. Comments and descriptions should be
interpreted with reference to Appendix A. Subsequently, the
alterations required to establish the non-uniformly discretized
virtual source problem data deck from the Mach 5 test case are
presented and discussed. ,

Input preparation is subdivided into four phases.

" Phase I. Reference rond1t1ons and Contro]
Parameter Specification

Call = Parameter Code Function
FEBL g Starts execution of COMOC
COMTITLE ' Reads one ‘title card to appear on cover
page of output
FENAME : Initialization
&NAMEO] Integer parameter input
: ' NEQKNN Number of dependent variables to be in-

tegrated in X1 direction

[GAS 0] Isoenergetic flow with constant Cp
1 General flows

IFR 0 Equilibrium composition (IGAS=1)

: 1 Frozen composition

KDUMP 0 Suppress debug output
1 Print debug output

NPVSX . No. of entries in pressure table

NSCX 0 Uniform X3 interval in discretization

1 Non-uniform X3 interval in discretization
NSCY 0 Uniform X2 interval in discretization

] Non-uniform X2 interval in discretization

&NAMEOQ?2 Floating point parameter input

UINF Reference (freestream) velocity (F/S)
TOFINF Reference stagnation temnerature (°R)
REFL Reference length (F)
T9 . Initial X1 station (F)
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Call Parameter Code Function

TD Length of X1 solution, starting at T9

(F)

DELP Percent of TD at which output is desired

EPS Integration control parameter (.01 to
.0001)

VSTART . Percent of TD at which transverse veloc-
ity (U2) computation starts

XSCALE Multipliers to convert discretization

YSCALE to feet

CPA,CPH Specific heats, stagnation temperatures,

TAA,TOH and molecular weights for two-compo-

XMA, XMH nent, isoenergetic, frozen flow mixing
(IGAS=0) '

FEDIMN Generate vector lengths and array entry

points. .

Phase II. Finite Element Discretization

"LINK]I ] " This ca]]‘generates the finite element discretiza-
tion of the X2X3 plane. The data are read in free
format fields. A "T" terminates any sequence.

A. Automatic Uniform Discretization
Occurs for NSCX = NSCY =0
Set XSCALE = desired element width in the X3 direction
Set YSCALE = desired element height in the X2 direction
Read selection keys

e.g. YSCALE = 0.004
XSCALE = 0.002
1 21, 1 2,
T .

Generates discretization made up of 21 node rows x 2
node columns, or 40 elements (x 1 element). Elements
are 0.004 F high by 0.002 F wide.

B. Automatic Non-Uniform Discretization
Occurs for NSCX = 1 and NSCY = 1 . _
Set X3 discretization first, X2 discretization second.
Data are used in sets of 3 integers at a time. First
integer identifies finite element interval concerned,
next two indicate element width (or height) as ratio
in feet, e.g., 3 1200 = 3/1200(F).

e.g. 3 1200,2 1 600,3 5 1200,...
1 600,7 1 600,8 7 1200,...

1, 1 4,

—_ ) ] ot ] —
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This generates a finite element discretization of 11
node rows x 4 node columns. The element widths
(intervals between node columns) are respectively
3/1200 (F), 17690 (F), ...”. The height of the first
7 element rows is uniformly 1/600 (F), eighth is
7/1200 (F), etc. -

Phase III. Output Specification

Following the discretization phase, the user can input up to 10
title cards to head each generated output sequence.

The next .65 input cards specify output format, see Appendix A,
and are typ1ca11y not to be changed without reference to the

. programmer's manual.

Up to 10 title cards can follow the standard output specification
to fully describe the problem being solved. This output
will occur once, directly after printing of the cover nage.

DONE -Calls end to output specification phase

Phase IV. Solution Parameters, Boundary Conditions,
‘ and Initial Distributions

‘vCaTl . ‘ ' | ' ' Function
VX3ST ~_Establishes NPVSX entries into static
‘ pressure table as function of X1
e.g. 11*10.05 0.1 Eleven pressure values at intervals AX]

of 0.05, starting at X1 = 0.1.
VPVSX - - : Read pressures in PSFA
e.g. 4.3494 3.41...

1 Standard Input ¢onsisting of integer

IPINT
- array of -numbers corresponding to depen-
dent variables. Program will integrate
first NEQKNN Qf them, plus U2.
KBNO .~ (N) KBNO (N) establishes fixed boundary
. conditions for dependent variables N
through NN.
KBNO  (NN)
e.g. KBNO 4 “ Fixes variable 4 nodes on bottom of
BOTTOM DONE discretization at the1r 1n1t1a1 input
' - values.
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Call
ICALL -1}
ICALLS -1
LINK3 4!
LINKI 3
VTEMP  -58
e.g. VTEMP
82*1800.
2
VYY -(X)
VYYEND  (N)
e.g. VYY -27
42%0.0
:
VYYEND
e.g. Vyy ~27
2%0.0 2*1654...
...... 72%4004.8 -
:
VYYEND
QKNINT
DESCRIPT
DONE
DESCRIPT 3
. \
DONE
COMOC
END
< EXIT
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Function

Fixed calling sequence for internal
evaluations, not to be changed.

Read initial hoda] total temperature
distribution. 'Non-dimensionalize
entries by number in location 58 (TREF).

Read: first 82 nodes at T = 1800°R

Reads initial conditions for dependent
variable N. Non-dimensionalize entries
by number in |[X].

Initial U2 distribution.is all zeros.
Non-dimensionalize entries by number
in location 27 (UREF)

Initial Ul distribution is zero at
first two nodes, 1654 F/S at second
two,..., last 72 nodes have 4004.8
F/S. Non-dimensionalize entries by
number in location 27 (UREF).

Standard completion of data deck

If a second test case is desired,
insert data deck starting with COMTITLE
before EXIT card.



Listed in Table 9 are the changes to the Mach 5 test case
data deck required to establish the three-dimensional virtual
source data deck. The complete listing of the latter is included
as Appendix B. The following explains the alterations with
respect to input phase and the line numbers in Table 9.

Input :
Phase Line No. ' Description
1 1 ~ Title card for output cover page
' 2 Reference condition and control parameters
. for combustion calculations using five
. ‘dependent variables
7
Il 8 Form non-uniform discretization, using 11
' node rows x 6 node columns, producing 100
: finite elements
3 -
I11 14 Title card to head each output call.
- 15 - Detailed problem description
- 22 : T -
IV 23 Entry locations of longitudinal pressure
24 distribution (constant)
25 _ 66 nodes have uniform stagnation temperature
26 In1t1a1 Ul distribution’
36
37 Initial U2 distribution is zero
38 Initial 02 distribution reflects location
’ of virtual source : '
39 Initial N2 distribution
40 - Initial H2 distribution

Hence; establishing the data deck for-a multiple dependent vari-
‘able, three-dimensional problem using.a non-uniform finite ele-

ment discretization is readily accomplished. In this case, only
forty data card changes were required, using the two-dimensional
Mach 5 data deck as a master deck. :
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CONCLUDING REMARKS

This report documents the theoretical foundation and the
mechanical structure of the Three-Dimensional Boundary Region
. Variant of the COMOC computer program system. A unified effort
has been made to generate a computational capability that can be
addressed to a wide range of problems involving comnlex three-
dimensional flow fields without requiring undue mathematical
prowess on the part of the user. - The success of this tyoe of
venture can only be measured by the degree to which these goals
are approached or attained: As with any large computer nrodram,
it has been debugged to the extent of the specific problems
already explored. Hopefully, if bugs remain, they are not of
such a debilitating nature as to severely 1imit the usefulness
of the program. In this regard, it .is suggested that the poten-
tial user first experiment with a few problems whose solution
character is known, in order to attest to-the program's perfor-
mance for a particular problem class.
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APPENDIX A

DATA DECK LISTING FOR MACH 5
TWO-DIMENSIONAL FLOW CHECK CASE

FEBL . .

COMTITLE :
CHECK CASE,TWwD DIMENSICONAL SUPERSONIC FLOW WITH PRESSURE GRADIENT

FENAME . . . '

ENAMEO] . )
NEQKNN=2, 1GAS=0, o 1FR=0, KDUMP=0, -
NPVSX=11, NSCX=1, NSCY=1,
fLEND ’ ’ - )
ENAMEO 2 :
. UINF=40C4.8, TOFINF =1800. , REFL=.0132
Y0=0.1, - TD=0.2, : DELP=5.0, EPS=.01,
VSTART=%.0, CPA=0.24, - CPH=3.445, TOA=1800.,
TOH=C.O0, XMA=28.ST, - XMH=2,016,
XSCALE=1.0,y YSCALE=1.0,
&END : : .
FEDTMN
LINK 1 : SETUP
1 2 1000, 2 2 10C0,
T
1 2 1000, 21 2 1CCC,
‘[ .
1 21, 1 2,
T
CHECK CASE, TWD DIMENSTONAL SUPERSONIC FLCW WITH PRESSURE GRADIENT
REFERENCF ENGLYSH-FT ENGLISH-IN M-K-$S C-6-S
0DONE
MPARA -1
2 2 - 162 164 163
2 2 2 164 163
2 ? 2 170 174
2 2 2 1€5 2
2 -175 2 2 2
2 2 2 176 2
2 2 2 177 178
2 2 169 1¢8 - 167
2 2 2 2 2
2 2 2 2
HOL IST i
LENGTH..I...... .FT...I.'... .[N..Q..l... .M.O..-...-Q .CM'......C.
V'.:LOCITY‘..OOOOI ‘FT/S...O'.. .N.A.'..l... .M,S..QOCOOQ .CM/SO......
DENSITY e enennns LLBM/FT3. ... eNeBeeeovase eKG/MIeeeeen eG/CCoecscace
TEMPERATURE ¢ 0 v «RANKINE ..o eNeAeoosoone SKELVING.ow® eNeAceooooos
ENTHALPV....... .BTU/LBNIQOO QN.AIOO...'. QKJ/KGOQQQOO .N.A..l.'...
FROZ .SPEC. HEAT +BTL/LBM-R. . eNeAcesooons e KJ/KG-Keoeos eNeBAeeessosos
V'SCDS'TYG-..oo oLBM/FT’S-.- .N-Aooooooo- -NT'S/MZ..O. .pOISE-o-.o-

LOCAL pRFSSl’RF .pSF........ '.psl........ .NT/MZC..... OTORR....‘..
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LOCAL SOLUTION MACH NC. DPDOX1 (LBF/FT3) MAX, H2 CONC. MIX EFF.(FTA)

XL/LREF DX1/LREF EPSTLON DX1MIN/LREF
TeNUNR -1 . :
200 4%43 266 27 200 2%27
200 10 200 2#1c - 200 58 200 58 200
200 91 200 S7 2€0 200 30 200 30 200
200 38 200 2%38
$99
. 200 3¢ 36 36 36
200
€1 100 134 122

11 12 14 €5

TCSAVE -1

1248 285 320 284 102438

2248 278 4248 SG24¢€ e248

1247 334 262 214

T Uy Ty FS,RHOWN2, V, CP.HTOT.HZ;OZ.DIFU PR ND.'LAP VISC.,SCT.NO.
IgMuLT -1

14%2

T Uy Ty HSRHG4N24V, CPHTOT4H2,02,DIFU,PR ND.oLAM VISC. SCT.NC.
BESCRIPY 2

J1/UREF . T/TREF HSYAT /HREF RHO/RHOREF ELEM.N2 MAS.FRAC
U2/UREF CPF/CPFREF HTO Y/HRFF FLEM,H2 MAS ,FRACELEM,.02 MAS ,FRAC
EFF JMU/MUREF EFF. PRANDTL NO.MU/MUREF EFF.SCHMIDT NO.

ccMoc .

CESCRIPT

coMoc CHECK CASE FOR TwO-~ DINEKSIUNAL FLCW WITH PRESSURE GRADIENT.

a4 - CDHPAQARLF STMILARITY SOLUTICN HAS BFEN REPORTED BY CHRISTIAN ET AL,
ARt 707 0023. “SPECIFIC CASE CONSIDERED CORRESPONDS TO MACH NO.5 BETA=0,.5,
S{0)= 0 (AD!ABATIC WALL),. :SCLUTIGN STARTED AT X=0,10 FT, WITH SIMILAR
SOLUTION PROF!LE LAMINARTERLOW WITH VISCOSITY FRCM SUTHERLANDS LAW.
CISCRETIZATION{SPQNS “THREE TIMES INITIAL BOUNDARY LAYER THICKNESS.
I%OCNfRCFYYC FLOW. WITH TOTAL TEMPERATURE = 1800 R.. -

NCNE
vX3sT , o o
w .4 11%10.05 T- X1 TABLE FOR PRESSURE
WOYEX A A A o : -
4.3454 3,41 2.846 2,46 2,2176 2.02 1.857 1.73 1.6178 1.53 1.4451
¥ o :
IPINT | -1 : '
) g 10 9 3 2 .7 INTEGRATE. UL +ENTH, ,C2,N2,H2,U3,U2
K BNO 1 : '
ADT.TOM DCNE
" FIXES Ul (VARIASLE NO. 1) ALCNG WALL TC INITIAL VALUE
K BNO 2 : ,
©ROTTOM ’ DCNE ' T )
FIXES U2 (VARTARLE NO. 2) ALCNG WALL TO INITIAL VALUE
X BNO 4 :
POTTOM DONE
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FIXES H (VARIABLE NO. 4) ALCNG WALL TO INITIAL VALUE

1CALL -1
"2 5 2 2 11 2 71
1catLs -1 4
10 6 4 12 5¢ 3 T
L INK3 4 :
LINK1 3 _
VTEMP -58
42%1800.
T INITIAL TOTAL TEMPERATURE PROFILE
vYY -21
2¢0.0 2%865. 2%16%4. 222373, 2%3004. 2%3550, 2¢3879.
_ 2%3992, 2%4CC4.2 24%4004 .8
T INITIAL Ul PROFILE :
VYYEND 1
vYY -27 :
2¢0.0 2%2.12 2%20.14 2%53,52 2#83.2 2%109.3 - 2%*165,
2%253, 2%447. 24%45C.
T INITIAL U2 PROFILE
VYYEND 2
vYY
42%,223¢0
T INITIAL 02 MASS FRACTICN PROFILE
VYYEND 8
vYY .
42%,7¢€¢1C
T INITIAL N2 MASS FRACTICN PROFILE
VYYEND 10
vYY
42%0.C
T INITIAL H2 MASS FRACTICN PROFILE
VYY END 9
_QKNINT
DESCRIPT
NDCNE
CESCRIPT 3
REFERENCE LENGTH,LREF 43 FT.
REFFRENCE VISCOSITY.LAMINAR VALUE
EVALUATED AT RFF. TEMPERATURE, 38 LBM/FT-S
FREESTREAM VELOCITY AT XO(=UREF) 27 FI/S
STAGNATION TEMPERATURE (CONSTANT,=TREF) 58 DEG R
FREESTRFAM DENSITY AT XO(=RHQREF) 10 LBM/FT3
"FREESTRFAM MACH NUMBER AT X0 154
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STATIC PRESSURE AT XC 9 PSF
NUMARER 0OF NODES ’ -16
‘NUMBER NF FINITE FLEMENTS -14

NDONE
ccMac
END
EXTT

DIMEN
GEOMFL



FERL
COMTITLE .
COMOC CHECK CASE FOR THREE DIMENSIONAL RFACTING BOUNDA
FENAME
ENAMEO]
NEQKNN=£, IGAS=1,
NPVSX=2, NSCX=1,
NELF2=1,
EENC
ENAMEQ?2 .
: UINF=22T72., TCFINF=533.0,
T0=0.0, TD=0.10,
¥SCALE=C.,C03333333, YSCALE=0.003333333,  VSTART=101.0,
EEND : '
FEDTMN .
L INK1 1 .
1 75 100, 2 SC 100, 3 125 10C. 4 150 100, 5 225 100,

T INCREMENTS BETWEEN X3,

1 5 1Cy 7 5

- APPENDIX. B

DATA DECK LISTING FOR VIRTUAL SOURCE

THREE-DIMENSIONAL CHECK CASE

1¢, 8 125

T ° INCREMENTS BETWEEN X2

1 11, 1 ¢,

T 11 ROWS AND 6 COLUMNS

100,

[FR=0,
NSCY=1,

REFL=.003333333,
DELP=5.0¢

NCDE-NUMERATOR-DENOMINATOR
100y 9 175

250 100,

.NURMALIZED BY LREF yHENCE X-Y SCALES =LREF

RY REGION FLOW

KDuUMP=0,

EPS=0.01,

_SETUP

CHECK CASF,THREF DIMENSIONAL REACTING BOUNDARY REGION - VIRTUAL SOURCE

REFERENCE ENCL
NONE
- MPARA -1
2 ? 1€2
2 2 2
2 2 2
2 2 2
2 -115 2
2 2 2
2 2 2
2 2 1€9
2 2 2
2 2 2 2
HOL IST

LENGTH.teeoooee
VELDCITY.......
DENS'TV.‘....'.
TEMPERATURE.. ..
ENTHALPY covusee
FROZ .SPEC., KEAT
VISCOSTTY  eenoe
LOCAL PRESSURE

LOCAL SOLUTION

ISH-FY
164 163
1€4 163
170 174
165 2

2 2
176 2 -
177 178 -

1€8 167
2 .2

.FT---o-oooc

.FY/S...Q..‘
«LBRM/FT3, ...
«RANKINE.ss s
«BTU/LAM, .0
«BTU/LBM-R. o
«tBM/FT-S,...
QPSF... oo o0 0
MACH NO.

ENGL ISH-IN

.IN'..‘.....
.‘N. A....-...
.NoAro-..co-
eNeAusveooone
'N. A...;....
.N.A‘..'..'..

.N.A'.'....C

.PS!..-.-...

.M.’.O"....
eM/Seeveceee
UKG/M3'00000
oKELVIN.coow
.KJ/KG......
.KJ/KG‘K....
QNT‘S/MZ.:..
.NT,MZ......

DPDX1 (LBF/FT3) MAX, H2 CONC.

C-G-S

nCM.oo..ocon

.CH,S.....I.
OG’CC.......
oN-A.ooo.oo.
.NoA.o....o-

.N-Ao.o.onoo

ePOISEcccease
eTORReceosee
MIX EFF.(ETA)
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X1/LREF DXL /LREF - EPSILON DXLIMIN/LREF

TONUMB -1 . :
200 4%43 200 27 200 2%27

209 10 200 2%10 200 58 200 S8 200
200 S71 20C <7 200 200 30 200 30 200
200 38 200 z%38 -

599

200 36 26 3¢ 36

200

€1 100 134 122

11 12 14 €S

13SAVE -1 :

1248 285 320 284 10248

2248 278 4248 924¢ 8248

1247 334 262 314 .

T Uy Ty HSIRHKEO N2y VoCP JHTOTH2,02,DIFU,PR NO. 4 LAM.VISC.,SCT.ND,
oMuLYy -1

14%2 :

T Us Ty HSWRHOWNZ2,V,CPHTOT,H2 ,02,D0IFU,PR NO. ,LAM.VISC.,SCT.NO,
DESCRIPT 2

U1/UREF T/TREF ‘HSTAY/HREF RHO/RHOREF ELEM.N2 MAS.FRAC
U2/UREF CPF/CPFREF HTOT/HREF ELEM.H2 MAS.FRACELEM.02 MAS,.FRAC
EFF JMU/MUREF EFF. PRANDTL NO.MU/MUREF - EFF.SCHMICT NOC. S
coMoc i .

DESCRIPT

CHFCK CASE,THREE DIMENSIONAL REACTING BOUNDARY REGICN - VIRTUAL SOURCE
(H2/0Z/ATR SYSTEM WITH FQUILIBRIUM CHEMISTRY), PRCBLEM CONSIDERED

REPRESENTS TRANSVERSE H2 INJECTION INTO A SUPERSONIC AIR STREAM
CHARACTERISTIC OF SCRAMJET FUEL TNJECTIGN, SEE ROGERS NASA TNC-6114,

1971 AND NASA TND-£476,1971 FCR EXPERIMENTAL STUDRY OF THIS PROBLEM.
TURBULFNCE MODEL EMPLOYED 1S DESCRIBED IN USER'S MANUAL NASA CR-132450, 1974,
_CALCULATIONS ARE STARTED USING VIRTUAL SOURCE CONCEPT TC REPLACE

COMPL FX NEAR [INJECTION FLOW FIELD.

NONE
VX3St
0.0 100. T X1 TABLE FCR PRESSURE:
VPVSX :
193. 193. T PRESSURE TABLE PSF
TPINT -1
1 4 . 8 10 < 3 2 T INTEGRATE U1l ,ENTH.,02sN2,H2,U3,U2
K ENO 1
ROT TOM DCNE
FIXES Ul (VARTABLE NO. 1) ALCNG WALL TO INITTAL VALUE
K BNO 2
BOTTOM DCNE
FIXES U2 (VARIABLE NO. 2) ALCNG WALL TO INITIAL VBLUE
K B8NO 4
80TTOM - 3DCNE

FIXES H (VARTABLE NO. 4) ALCNG WALL TO INITIAL VALUE
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K BNO 8

XES H (VARTIABLE NO. 8) ALGNG WALL TO INITIAL VALUE

NUMBER 0OF NODES

NUMBER n0F
OCNE
END
EXIT

FINITE ELEMENTS

ALCNG WALL TO INITIAL VALUE

ALCNG WALL TO INITIAL VALUE

LE

2%0.0

2%¥3.90

2*1.0

AOTTOM 3D0NE
F1
K BNO 9
ROTTOM 3DCNE
. FIXES H (VARIABLE NQO. 9)
K BNO 10 : :
ROTTOM _ 3DCNE
o FIXES H (VARIABLE NO. 10
. 1CALL -1 o
2 5 2 2 11 2 7
TCALLS ~1
10 6 4 12 s6 3 T
L INK3 4
LINK L 3 .
VTEMP -58
665523,
T INITIAL TOTVAL TEMPERATURE PROFI
vvYyYy =27
6%0 .0
621503,
€%¥1660.
2%1550. 4%1759.
Z%1550. 451833,
2%1550. 4%18S2,
2%2272. 4% 1642.
2%2272. 4%1585,
2%2272. 4%2CT4.
252272, 4% 21€S.
%2272, )
T- INITTIAL Ul PROFILE
VYY END 1 _
vYy -21
66%0.0 - -
T INITTIAL U2 PROFILE
‘VYYEND 2
vYY
18%,233 2%0.0 4%,233
T INITIAL D2 MASS FRACTION PROFILE
VYYEND 8 :
VYY i
To18%.767 250.0 4%, 767
T INITTAL N2 MASS FRACTION PROFILE
VYYEND 10 -
vYY
19%0.0 2%1.0 4%0.0
T INITIAL H2 MASS FRACTICN PRNOFILE
VYYEND 9
QKN INT
DESCRIPT
DONE
DESCRIPT 3
REFERENMCE LENGTH,LREF _
REFERFNCE VISCOSITY.LAMINAR VALUE
EVALUATED AT REF, TEMPERATURE.
FREESTREAM VELNCITY AT XC(=UREF)
STAGNATION TEMPERATURF (CONSTANT,=TREF)
FREESTREAM DENSITY AT XO(=RHCREF)
FREESTRFAM MACH NUMBER AT X0
STATIC PRESSURE AT X¢C

4%,233 2%0.0

4%,T767 2%0 .0

420.0 2%1.0

43

38
27
58
10

154

9

-16
-14

FT.

LBM/FT-S
FT/s - -
DEG R

LBM/FT3

PSF

DIMEN

GEOMFL

34%.233

34%,767

34%0.0
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