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COMOC: THREE DIMENSIONAL BOUNDARY REGION VARIANT

THEORETICAL MANUAL AND USER'S GUIDE

By

A. J . Baker & S. W. Z e l a z n y

Bell A e r o s p a c e Company

.SUMMARY

.The Three-Dimensional Boundary Region Variant of the COMOC
computer program system solves the three-dimensional boundary
region equations for flow of a viscous, heat conducting, m u l t i -
ple species, compressible fluid including combustion. The gov-
erning partial differential equations are solved in physical
variables, and allow complete two-dimensional diffusion in the
plane transverse to the predominant direction of flow. The flow
field may be external or confined, subsonic or supersonic, lam-
inar and/or turbulent, and may contain up to nine or more dis-
tinct species in frozen composition or undergoing e q u i l i b r i u m
chemical reaction for a hydrogen/oxygen/air system. The program
is equally a p p l i c a b l e to computations in two- and three-dimen-
sional boundary layer flows wherein diffusion in only one direc-
tion is important.

The COMOC computer program is based upon a finite element
solution algorithm for the e l l i p t i c partial differential opera-
tor in the parent equation system. It employs an e x p l i c i t finite
difference integration procedure to solve the resultant systems
of first-order, ordinary differential equations. Boundary con-
dition constraints on the normal flux and tangential distribution
of each dependent v a r i a b l e are user-specifiable on arbitrarily
disjoint segments of the solution domain closure. The solutions
for each dependent variable, and all computed parameters, are
established at node points lying on a specifiably non-regular
computational lattice formed by plane triangulation of the solu-
tion domain. The numerical solution establishes the complete
three-dimensional distributions of the three scalar velocity
components, enthalpy, temperature, density, viscosity, and all
a p p l i c a b l e species mass fractions, as well as various integral
flow parameters. V a r i a b l e Pr.andtl number and species diffusion
coefficient distributions may be u t i l i z e d . I n i t i a l d i s t r i b u t i o n s
of all dependent variables may be arbitrarily specified.

This report documents the theoretical and mechanical
structure of the computer program, and presents detailed guidance
on adaptation of the code to solution of a particular problem.



Sample solutions are discussed for several problems, especially
with respect to solution accuracy and speed as a function of pa-
rameters under control of the user. Construction of the input
data decks for sample problems is discussed. A programmer's
manual has been separately p u b l i s h e d [Ref. 1. ].

INTRODUCTION AND USER GUIDELINES

The finite element methodology for numerical solution of
initial-boundary value problems in continuum mechanics is under-
going an explosive rate of growth. Formerly .considered to be
constrained to solution of problems in structural analysis, or
other l i n e a r field problems wherein an e q u i v a l e n t extremum prin-
c i p l e exists, the theoretical support is now sufficiently gen-
eralized to render the method directly a p p l i c a b l e to e x p l i c i t l y
nonlinear problems, i n c l u d i n g the Navier-Stokes equations [Ref.
2-4]. The COMOC computer program system is being developed to
transmit this rapid theoretical progress (often couched in in-
tricate mathematical formalism) into a v i a b l e and versatile nu-
merical solution capability. As such, it must be a p p l i c a b l e to
diverse and complex problems in computational continuum mechanics
w h i l e requiring m i n i m a l mathematical prowess on the part of the
user. On the way to generation of this general purpose concept,
several Variants of COMOC have been developed for specific prob-
lem classes i n c l u d i n g transient thermal analysis [Ref. 5] and
the two-dimensional Navier Stokes equations [Ref. 6]. This re-
port documents the developed Three-Dimensional Boundary Region
(3DBR) Variant of COMOC, and describes its a p p l i c a b i l i t y to a
wide range of practical two- and three-dimensional flow problems.

The 3DBR Variant of COMOC solves the three-dimensional
boundary region equations for flow of a viscous, heat conducting,
m u l t i p l e - s p e c i e s , compressible f l u i d i n c l u d i n g combustion. The
governing partial differential equation system, developed in rec-
tangular Cartesian coordinates from the parabolic Navier-Stokes
equations, allows complete diffusion in the plane perpendicular
to the uniformly d i s c e r n i b l e predominant flow direction. The
flow may be external or confined, subsonic or supersonic, l a m i n a r
and/or turbulent, and can contain up to nine or more distinct
species in frozen composition or undergoing e q u i l i b r i u m chemical
reaction for a hydrogen/oxygen/air system. The finite element
solution procedure marches the discretized equivalent of the
governing equation system in the direction p a r a l l e l to the pre-
dominant flow. It numerically establishes the complete three-
dimensional distributions of the three scalar velocity components,
enthalpy, temperature, density, viscosity, and all a p p l i c a b l e
species mass fractions, as well as various integral flow param-
eters. No restrictions or s i m p l i f y i n g assumptions are made for



the Prandtl number, and i n d i v i d u a l species diffusion coefficients
are treated as v a r i a b l e parameters. I n i t i a l d i s t r i b u t i o n s of all
dependent variables may be arbitrarily specified. Boundary con-
dition constraints on the normal flux and tangential distribution
of each dependent v a r i a b l e are user-specifiable on arbitrarily
disjoint segments of the solution domain closure. The solutions
for each dependent v a r i a b l e , and all computed parameters, are es-
tablished at node points lying on a specifiably non-regular com-
putational lattice formed by plane triangulation of the solution
domain.

All Variants of the COMOC system are b u i l t upon the macro-
structure i11ustrated in Fig. 1. The Main executive routine al-
locates core, using a v a r i a b l e d i m e n s i o n i n g scheme, based upon
the total degrees of freedom of th.e problem. The size of the
largest problem that can be solved is thus limited (only) by the
core size of the computer in use. The precise mix between number
of dependent variables (and parameters), and fineness of the dis-
cretization, is user-speci f i.abl e and widely variable. The Input
module serves its standard .function for all dependent variable,
parameter, and geometric coordinate arrays. The Discretization
mpdule forms the finite element discretization of the solution
domain, and'evaluates all required finite element non-standard
matrices and standard-matrix m u l t i p l i e r s . The I n i t i a l i z a t i o n
module computes the remaining i n i t i a l parametric data required
to start the solution. The Integration Module constitutes the
primary execution sequence of problem solution. It is based upon
an integration algorithm for the column vector of unknowns of the
solution, for which the discretized description is i n i t i a l - v a l u e d ,
C a l l s to auxiliary routines for parameter e v a l u a t i o n , e.g. vis-
cosity, Prandtl number, source terms, combustion parameters, etc.
as specified functions of dependent and/or independent variables
are governed by the Integration Module. The user has consider-
able latitude to adapt COMOC to the specifics of his particular
problem at this point, by directly inserting easily written sub-
routines into COMOC to compute special forms of these parameters.
The Output module is similarly addressed from the integration
sequence and serves its standard function via a h i g h l y automated
array display algorithm. COMOC can execute distinct problems in
sequence and contains an automatic restart capability to continue
soluti ons.

The 3DBR -Variant of COMOC, as a direct consequence of the
expansive problem class to which it may be. addressed, is a fairly
large and complex computer program. The vigor with which the
potential user of a computer code attacks preparation of a data
deck decreases exponentially (at least) with the thickness of the
instruction manual. It is the intent of this user's guide to,
in a m i n i m u m amount, of space, present general g u i d e l i n e s for the
use of COMOC-, describe t.he rudiments of the differential equation
system being solved, briefly expose the basic mathematics
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of the finite element algorithm and its numerical embodiment,
and discuss sample solutions with respect to accuracy, solution,
speed, and diversity. The standard test cases that accompany
COMOC are discussed in terms of the physics of the solution as
well as the description of data deck preparation. A large effort
has been made to s i m p l i f y and streamline data preparation and to
require the user to specify an absolute m i n i m u m of non-physical
or non-engineering input. The basic program contains a m u l t i t u d e
of options which could potentially '1ead to confusion on the part
of the user. Most of these have been suppressed, particularly
in the output sub-program, with default instructions or values.
The programmer's manual [Ref. 1] describes how they may be
returned to an operational status.

The following general g u i d e l i n e s w i l l assist the potential
user on adapting 3DBR COMOC to a given problem.

Solution Domain Configuration

Most three-dimensional flow fields for w h i c h , 1) a predom-
inant flow direction persists (i.e., no recirculation component),
2) a prescribed pressure gradient can be established, and 3) no
imbedded shocks occur, are amenable to analysis using 3DBR COMOC.
This includes two- and three-dimensional boundary layer flows,
certain two- and three-dimensional flows in environmental hydro-
dynamics, and free-, slot-, and boundary-jet injection config-
urations typical of combustors. Boundary conditions can be ap-
p l i e d to the entire solution domain closure with local normal
orthogonal to the direction of predominant flow. An i n i t i a l dis-
tribution (i ncl udi ng zero) of all dependent variables is needed
to start the solutic-n. However, a downstream outflow boundary
condition is specifically not required.

Variables and Parameters

The computational variables are the three scalar components
of velocity, stagnation enthalpy, and mass fraction of all iden-
tif i a b l e species. Perfect gas behavior is assumed. The present
3DBR Variant solves the mainstream and one cross-plane velocity
component as a boundary v a l u e problem; it employs the continuity
equation to establish the remaining cross-plane velocity component
The program computes static temperature and density, and all
thermophysical properties may be temperature and mass fraction
dependent. Unless overridden by a user provided subroutine, vis-
cosity is computed from Sutherland's law. The Prandtl and Schmidt
numbers may be variable. E q u i l i b r i u m combustion of arbitrary
mixtures of hydrogen, oxygen, and air can be established i n c l u d i n g
local heat release and formation of NO. In the absence of d i l -
uents, this capability provides e q u i l i b r i u m gas behavior for air
computations i n c l u d i n g dissociation.



Di sereti zati on

The nature of the flows to which this Variant is a p p l i c a b l e
yields the requirement for two-dimensional finite element dis-
cretizations only. Since the continuity equation is employed to
solve for a transverse velocity component, it is advantageous to
have node columns oriented par a l l e l to that coordinate. This re-
quirement for grid regularity has been b u i l t into an automatic
discretizer for 3DBR COMOC. Considering flow in an axial corner
for example, see Fig. 2, it might be desired to use a finer grid
near the w a l l s where larger dependent variable gradients would
exist. The user need specify (only) the desired incremental
spacing between node columns and rows. The discretizer w i l l au-
tomatically triangulate the domain on these node point coordinates,
and prepare the required geometric input data. This discretizer
is not directly a p p l i c a b l e to non-rectangular domains; however,
3DBR COMOC can accept discretizations formed m a n u a l l y or from
other automated sources.

Boundary Conditions

Constraints can be imposed on the admissible behavior of
each dependent variable and its normal flux, i.e., gradient, on
all surfaces bounding the solution domain, see Fig. 2. These
surfaces may constitute actual physical boundaries of the problem
or be strictly mathematical. As an example of the latter, em-
ploying symmetry planes to enclose a solution domain is particu-
larly advantageous in terms of computer execution time and user
input effort. The attendant v a n i s h i n g gradient constraint is
the automatic default v a l u e w i t h i n the finite element solution
algorithm, and its use does not require generation of any phantom
cells or special node h a n d l i n g . F i x i n g the normal gradient in
terms of the dependent v a r i a b l e is equally straightforward, and
is useful for thermally porous w a l l s or a s l i p w a l l boundary
condition. Here again, no special cells or node h a n d l i n g is
required on the part of the user.

Input Preparation

A concerted effort has been made to render i n p u t preparation
m i n i m a l and in terms of p h y s i c a l l y meaningful variables and ex-
pressions. However, should the solution to a dozen or more de-
pendent v a r i a b l e s be sought, the i n p u t deck can become of sub-
stantial size. The program accepts input in the Engl.ish system
of units; it outputs n o n - d i m e n s i o n a l i z i n g constants and solution
parameters in several systems, and provides detailed output ar-
rays of computed non-dimensional dependent variables. The pro-
gram executes under automatic error control and w i l l adjust inte-
gration step-size to maintain an accurate and stable solution. The
only user input required for this phase is the i n i t i a l and final



integration stations and the desired interval for output. Some
add i t i o n a l options exist that can speed execution for some cases
[Ref. 1]. These parameters are defaulted to "best" values if not
overridden by the user.

//// = Boundary Condition Specification

Figure 2. Illustrative Finite Element Discretization

User-Written Subroutines

COMOC provides the user with considerable latitude for
appending subroutines to perform specific parameter computations
Included in this category are pressure gradient, laminar and/or
turbulent viscosity, and Prandtl and Schmidt numbers. In all
cases, a skeletal subroutine is f i l l e d in by the user to i n c l u d e
an equation or tabular data of the parametric dependence on any
number of independent or dependent variables in any combination.
These subroutines are always written in terms of physical vari-
ables with dimensions consistent with the input data. Non-dimen-
sional ization and c a l l i n g sequence are controlled internally,
and the user can obtain complete arrays of these computations
from the output package.



Output

The 3DBR COMOC program contains a h i g h l y adaptive output
subprogram. The user has considerable latitude in specifying
output arrangements, both dimensional and non-dimensional, from
the input deck. The output routine is adapted to compute inte-
gral flow parameters i n c l u d i n g wall shear, Stanton number, and
m i x i n g efficiency. Data sets are automatically scaled and ordered
to be geometrically s i m i l a r to the physical problem for all dis-
cretizations, both regular and non-regular.

Computational Costs

The computer cost associated with generating a COMOC solution
to a given problem can be approximately estimated. CPU costs are
bas.ically a function of the number of dependent variables in the
solution, the amount of output requested, out-of-core operations
associated with restart and/or plot tape preparation^, and the
thermodynamics of the solution. .The use of rather course discre-
tizations is strongly recommended for i n i t i a l e v a l u a t i o n of any
problem. Employing progressively finer discretizations w i l l gen-
erally improve solution accuracy with a more-than-proportional in-
crease in computational cost.

NOMENCLATURE

a boundary condition coefficient

A species; one-dimensional matrix; area

Ar argon

b coefficient

B species; two-dimensional matrix

c coefficient

CD specific heat

C species; three-dimensional matrix

C f skin friction

d differential

D determinant

f function of known argument



g function of known argument

h static enthalpy; integration step-size; stream depth

H stagnation enthalpy; hydrogen

i i ndex

I mass defect

i,j,k basis vectors of rectangular coordinate system

j summation index; coefficient

0 Jacobian

k thermal conductivity; integration stage number; constant

K generalized diffusion coefficient; e q u i l i b r i u m constant

1 differential operator; number; length

L characteristic length; differential operator

m number .

M , Mach Number; number of finite elements

n unit normal vector; number, nodes per element;
• dimensional i ty . •

N nitrogen; composition matrix :

0 oxygen

p pressure; predicted value

Pr Prandtl Number

q generalized dependent variable

Q generalized discretized dependent variable

r p o s i t i o n v e c t o r

R domain of e l l i p t i c operator; universal gas constant

Re Reynolds Number . .

S mass source term; enthalpy boundary condition parameter



Sc Schmidt Number

T temperature

u,U velocity

W molecular weight

x. r.ectangular Cartesian coordinate system

X species mole fraction

Y species mass fraction

a direction cosi.ne

g coefficient; pressure gradient parameter

Y ratio of specific heats; turbulence intermittency
factor

9R closure of solution domain

<5 boundary layer thickness

A increment

e kinematic eddy viscosity; basis vectors; integration
oarameter

K coefficient

X m u l t i p l i e r

£ non-dimensional length

y viscosity

p density

a integral kernel

T integral kernel; w a l l shear

4>, $ functional

X domain of i n i t i a l v a l u e operator

to turbulence damping factor

fi global solution domain

10



{ } column matrix

[] square matrix

U union

^ intersection

£ summation

Superscripts and Subscripts

* approximate solution; reference state

derivative in the x, direction; transformation
•>!

T matrix transpose

unit vector

~ reference state

constrained to solution domain closure

e effective v a l u e ; local reference condition

i,j,k,£, tensor indices

m pertaining to m .subdomain (finite element)

n integration stage

o i n i t i a 1 c o n d i t i o n

x evaluated at x,

°° g l o b a l reference condition

a . species identification

B elemental species identification

11



FINITE ELEMENT SOLUTION ALGORITHM FOR THE THREE-DIMENSIONAL
BOUNDARY REGION EQUATIONS

The system of partial differential equations governing the
three-dimensional boundary region flow of a compressible f l u i d
is obtained from the parabolic approximation to the full Navier-
Stokes equations. The parabolic approximation, i.e., "parabolic
Navier-Stokes equations," describe steady, three-dimensional flows
wherein, 1) a predominant flow direction is uniformly discernible,
2) in this direction (only), diffusion processes are n e g l i g i b l e
compared to convection, and 3) no disturbances are propagated up-
stream antiparallel to this direction. The boundary region equa-
tion system is obtained from parabolic Navier-Stokes with the
single additional assumption that a known pressure distribution
is superimposed upon the flow field. Conversely, the approxima-
tion may be viewed as generalization of the three-dimensional
boundary layer equations to include diffusion processes in the
complete two-dimensional plane of crossflow. Closure of this
equation system requires identification of constitutive behavior.
By employing an eddy coefficient hypothesis, the time-averaged
turbulent flow equations appear identical to the laminar flow
equations. Hence, the finite element development assumes a gen-
eralized transport coefficient description, distributed as lami-
nar or turbulent at nodes of the discretization by the user.

The Three-Dimensional Boundary Region Equations

In three-dimensional space, spanned by a rectangular Carte-
sian coordinate system, identify the velocity vector

/s. s*. /*.

u . = u, i + u £ j + u 3 k (1 )

For development of the differential equation system, assume that
i is aligned p a r a l l e l to the predominant flow direction. Iden-
tify a two-dimensional vector differential operator as

^ s\

( ),k = j(. ),2 + k( ),3 (2)

where the comma identifies the gradient operator. Employing
Cartesian tensor notation, with summation over 2 and 3 for re-
peated latin subscripts, the three-dimensional boundary region
equation system for a m u l t i p l e - s p e c i e s , compressible, reacting
flow takes the form

0 1 \ i / \ / n \= (pu-),. +(pu 1), 1 (3)

12
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(4)

(5)

(6)
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(7)

The variables appearing in Eq. (3)-(7) are non-dimensionalized
with respect to POO, U^, Cp^, TM, and a length constant L, and
have their usual interpretation in flu id mechanics. The Reynolds
(Re), Prandtl (Pr), and Schmidt (Sc) numbers are defined with
respect to the effective diffusion coefficient, ye, in algebraic
combination with the laminar and turbul en't contri buti ons as, for
example

(8)Pr
_
Pr

In Eq. (8), y is the laminar viscosity, e is the kinematic eddy
viscosity., and subscript T denotes a turbulent reference param-
eter. The stagnation enthalpy is defined in terms of species
s t a t i c e n t h a l p i e s a s

H I haY( \ uk uk

The static enthalpy includes the heat of formation,
species in its definition as

h" ,

'dT + ha

(9)

of the

(10)

13



An equation of state is required to close the system. Assuming
perfect gas behavior for each species, from Dalton's law, obtain

pRT
a Wa

(11)

where R is the universal gas constant and Wa is the molecular
weight of the ct-th species.

E q u i l i b r i u m combustion of hydrogen/oxygen/air systems in
three-dimensional boundary region flow is operational in 3DBR
COMOC. The following reactions are assumed operative.

2H +

H +

0 4-

2H t

20 £

0 J

H2°

H2

°2

OH

20 «- 2ND (12)

The e q u i l i b r i u m composition of
determined by applying the Law
reaction defined in Eq . (12).
of equilibrium rate constants,
nA + mB -<- aC, are expressed in
Xa, as

the combustion by-products is
of Mass Action [Ref. 7] to each
This y i e l d s definition of a set
K, w h i c h , for the simple reaction
terms of species mole fraction,

K E [XA]n[XB]m
(13)

Solution of Eq. (12) with (13), and coupled with conservation of
total and elemental mass, yields an algebraic equation system
for determination of the e q u i l i b r i u m composition of the system,
of the form.

{const. } (14)

In Eq. (14), the elements of the matrix [N^] account for the
particular species mole fraction d i s t r i b u t i o n , {Xa}, containing
the gth elemental material, e.g., 0, H, and N.

14



Finite Element Solution Algorithm

The three-dimensional boundary region equation system,
except' for global continuity, Eq. (3), is uniformly an i n i t i a l -
boundary value problem of mathematical physics. Each of the
partial differential equations, Eq. (4)-(7), is a special case
of the general second-order, nonlinear partial differential
equati on

L(q) = K[K(q)q,.J + f(q,q,.,x.) - g(q,X) = 0 (15.)
K ,k i i

•where q is a generalized dependent v a r i a b l e i d e n t i f i a b l e with
"each computational dependent variable. In Eq. (15), f and g are
specified functions of their arguments, x 1S identified with X]
for boundary region flows, and XT are the coordinates for which
second order derivatives exist in the lead term. The finite
element solution algorithm is based upon the assumption that
L(q) is uniformly parabolic w i t h i n a bounded open domain ft, i.e.,
the lead term in Eq. (15) is uniformly e l l i p t i c w i t h i n its domain
R, with closure 3R, where

n = R x [Xo,x) (16)

and x £ X < °°- Table 1 lists the functions f and g, as well
as the appropriate parameters, for Eq. (15) identified with each
dependent v a r i a b l e .

For Eq. (15) uniformly p a r a b o l i c , unique'solutions for q
are obtained pending specification of boundary constraints on
3R and an i n i t i a l condition on RU8R. For the former, the gen-
eral form relates the function and its normal derivative every-
where on the closure, 3R, as

£(q) E a(1)q(xi,x) + a
(2)Kq(x1,x),knk - a

(3) = 0(17)

In Eq . (17), the a'1'̂ .̂ ) are user-specified coefficients, see
Table 2, the superscript bar notation constrains x-j to 3R, and
n|< is the local outward-pointing unit normal vector. For an i n i -
tial distribution, assume given throughout RU3R x x

q(x.,x0) = qo(x.j) (18)
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TABLE 2

GENERAL BOUNDARY CONDITION STATEMENT

Boundary Conditions

No S l i p at Wall

Slip at Wall
Mass Injection

Adiabatic Wall
Specified Heat Flux

Temperature Dependent Flux
Symmetry Condition

a<'>

1

+

0

0

0
+

0

a< 2>

0
1
1
1
1
1
1

a < 3 >

0

0

+

0

+

+

0

+ User specified as non-zero to enforce desired condition level

Formation of the finite element solution is obtained by
establishing the algorithm for the equation system (15)-(18).
Straightforward theoretical development is provided by using the
M.e;t'hod of Weighted Residuals (MWR) formulated on a local basis.
Since Eq. (15) is v a l i d throughout R, it is v a l i d within
interior subdomains, Rm, described by (x-j ,x)eRm

 x [Xo>x)
finite elements," wherein URm = R. Form an approximate

[Xo»x)» calledfor q within Rm
series solution of the form

,x) > bY expansion

disjoint
called
solution

i nto a

{0>(xi)}
T{Q(x)}m (19)

'wherein the functionals (^(x-j) are members of a function set com'
plete in Rm, and the unknown expansion coefficients, Qk(x)> rep-
resent the x-dependent values of qjfj(x-j,x) at specific
interior to Rm and on the closure, 8Rm, called "nodes
(19) is a scalar, and selection of the particular <j>^ is d i s t i n c t -
ly specifiable [Ref. 8] and can be problem class dependent.

1ocati ons
Equati on

To establish the values taken by the expansion coefficients
in Eq. (19), require that the local error in the approximate so-
lution to both the differential equation, L'tqjfi) , and the boundary
condition statement, i(qjfj), for 8RmnaR, be rendered orthogonal
to the space of the approximation functions. Employing an un-
known algebraic m u l t i p l i e r , X, the resultant equation sets can
be combined as

{<t.(xi)}L(q*)dT -

m

xi))^(q*)da = 0

H3R

(20)
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The number of equations (20) is i d e n t i c a l to the number of node
points of the finite element, Rm, i.e., the number of elements,
n, in the column matrix, {Q(x)}m> Eq . (19).

Equation (20) forms the basic operation of the finite
element solution. Establishment of the global solution algo-
rithm, and determination of X, is accomplished by e v a l u a t i n g
Eq. (20) in each of the M finite elements of the discretized
solution domain, and assembly of these M x n equations into a
global matrix system u s i n g Boolean algebra. The rank of the
global system is less than M x n by connectivity of the finite
element domains as well as boundary condition constraints on 9R
where a (2), Eq. (17), vanishes identically. The lead term in
Eq. (15) can be rearranged, using the Green-Gauss Theorem, to
yield

f
Wx^MKqJ^] ̂  dT . = K

n <\ nKm 9Km

|{+{x1)}.kKq;.k<lT (21)

Rm

For 9RO9Rm n o n v a n i s h i n g , Eq. (21), the corresponding segment of
the closed surface integral w i l l cancel the boundary condition
contribution, Eq. (20), by identifying Xa(2) with K of Eq. (15).
The contributions to the closed surface integral, Eq. (21), where
9Rmn9R = 0 can be made to vanish [Ref. 4]. Hence, combining Eq.
(17)-(21), the g l o b a l l y assembled finite element solution algo-
rithm for the representative partial differential equation system
description becomes

U

Rm Rm

- K l{*Ham
1}q* - am

; {0} (22)

18



The rank of the global equation system, Eq. (22), is
identical to the total number of node points on RU8R for which
the dependent variable requires solution. Equation (22) is a
first-order, ordinary differential system, and the matrix struc-
ture is sparse and banded. Bandwidth is a function of both se-
lected discretization and the order of the employed approximation
functional ,{<(>}, Eq. (19). Solution of the ordinary differential
equation system is obtained using a finite difference numerical
integration procedure.

A finite element solution algorithm for the global continuity
equation is similarly derived. Recognizing that Eq. (3) is an
i n i t i a l value problem on pu£ as a function of xg, with xy and xs
appearing as parameters, the approximation function need span only
the transverse coordinate direction as

q*Hm 1 (23)

The matrix elements Q|< are nodal values
dependence requires solution of Eq. (3)
a constant. The solution algorithm for
ified as

of p u $; their functional
along lines (x ] , x 3) equal
Eq. (3) is directly spec-

f{$}L(pu*)da = 0 (24)

where
those
of

m .

the matrix elements of {$} need not be coincidental with
of {<|>}, Eq . (23), and the segments R^ correspond to lines

equal to a constant.(x, ,x3)

-THE THREE-DIMENSIONAL BOUNDARY REGION VARIANT OF COMOC

The COMOC computer program system has been established to
embody the finite element solution algorithm for systems of equa-
tions, Eq. (15)-(18). The computer program evaluates Eq. (22) for
each of the appropriate dependent variables, Table 1, i n c l u d i n g
up to nine or more species mass fractions, marches the resultant
ordinary differential equation system downstream, and includes a
continuity equation solver for Eq. (24). This section presents
the theoretical aspects of these solution techniques as embodied
in the 3DBR Variant of COMOC.
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F i n i t e Element Matrix Generation

The fundamental finite element operation is formation of
Eq. (22) on R^ and 3Rm. The 3DBR Variant universally employs
linear approximation functions, Eq. (19), for all dependent
varia.bles. The i n t r i n s i c finite element shapes for one- and
two-dimensional space spanned by simplex functionals, are the
lin e and t r i a n g l e , Fig. 3. Accurate determination of the element
matrices of Eq. (22) is mandatory, and i n v o l v e s evaluation of
various-order moment distributions over the domain and on the
closure of the finite element. Natural coordinate functionals,.
adapted from the area coordinates of structural mechanics [Ref.
8], are utilized. Simplex functionals are a linearly dependent
set of normalized functions that are orthogonal to the respective
closure segments of the finite element domain. For an n-dimen-
sional space, there are n + 1 simplex natural coordinate func-
tions. Table 3 contains the i m p l i c i t definition of these func-
tions in their respective spaces. The natural coordinate
functions vanish at all node points of the finite element except
one where the v a l u e is unity; hence, these functions are the
elements of the approximation functional matrix, {<f>}, Eq. (19).
Integration of arbitrary-order products of scalar elements of
the {$}, over the domain of the finite element, are analytically
evaluated in terms of the exponent d i s t r i b u t i o n , see Table 4.
For the present case, the equation system descriptions require
moment generation in Euclidean space spanned by a rectangular
Cartesian basis. All computations are performed in the local
(primed) coordinate system, Fig. 3, defined by the tensor trans-
formation law

xi aijX. + r. (25)

One-Dimensional Space Two-Dimensional Space

Figure 3. Intrinsic F i n i t e Element Domains for Simplex
Approximation Functions
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TABLE 3

IMPLICIT DEFINITION OF SIMPLEX NATURAL
COORDINATE FUNCTIONS

D i m e n s i o n s

1

2

.Element

Line

Triangl e

Nodes

2

3

Natural Coord ina te De f i n i t i on

"; jj.r+ij . f_ i)
" i i i "

1 2 3
X l X l X l

1 2 3
A f\ O *?

<

1 i J

f*i]

*2

UJ
1 = (

1 "
xl
ixj

>

TABLE 4

INTEGRALS OF NATURAL COORDINATE FUNCTION
PRODUCTS OVER FINITE ELEMENT DOMAINS

Dimens ions

1

2

In tegra ls*

C n , n 2 n , ! n 2 !
1 A A rl rr ~ H — — — •
J R .1 2 (n + n1 + n2) !

/• n, n 2 n 3 . . n 1 ! n 2 ! n 3 !

J P 1 ^2 3 (n + n, + n9 + n-,)!
' K 1 c. O

* .D = Determinant of coefficient matrix defini-ng the
natural coordinate system, see Table 3.

n = Dimensionality of the finite element space

where n is the position vector to the origin of the primed
coordinate system, and the a-jj are the direction cosines of the
coordinate transformation. Tne integration kernels for two-
dimensional space, Eq. (22), are

dt

da

dx2dx3

dx'

(26)

(27)
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The first term in Eq. (22) is standard for all dependent
variables. Assuming the generalized diffusion coefficient is
distributed over the m'-'1 element as a dependent v a r i a b l e , obtain

K { < j > } , k K q * , k d T =

. Rm Rm

= K{K}T{B10}[B211S]{Q}m (28)

In Eq. (28) and the following, matrices with B prefixes are
standard two-dimensional forms defined in Table 5. For Eq . (22)
identified with each dependent v a r i a b l e , f* and g* u n i v e r s a l l y
contain the nonlinear convection term and the i ni ti al -val ue
operator as dominant terms. The finite element e q u i v a l e n t for
convection is

Rm Rm

= [B200S] {p t r } m {B l l } T {Q} m (29)

where the e lemen ts of the vec to r , { p u ^ } , are nodal v a l u e s of the
p lanar m a s s f l ux t rans fo rmed to the loca l coo rd ina te sys tems v ia

The i ni ti al - val ue operator, which comprises the mainstream
convection term, s i m i l a r l y becomes

j {< i>H<|>}T {pUl } n i {L}T {Q} rJdT

Rm Rm

= •{PU1}J[B3000S]{Q}^ (31)

where the matrix elements of [B3000S].are column matrices, see
Table 5. The superscript prime exterior to a matrix denotes an
ordinary derivative.
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TABLE 5

STANDARD FINITE ELEMENT MATRIX FORMS FOR SIMPLEX
FUNCTIONALS IN ONE- AND TWO-DIMENSIONAL SPACE

Matrix
Name '1*

Matrix
Function Matrix Eva luat1on ( 2 ) > ( 3 ) l ( 4 )

{810}

[B211SJ

J<*>dT

.{*>.k<*>!k

X3P3 ,\2

"y •
X3P3 X3P3 X3P3 -1

X3P3\
/

1

[B200S]

[B3000S] {»H<t>H<t>}dT

f6! f2!< 2 > h i12J U

li

{BID

[A200S]

{AID}

3R

({*}do

3R

(1) Matrix names are a 6 digit code covering dimensionality, nonllnearlty, degree of
differentiation and special matrix properties, as [a, b, c, d, e, f] where:

a '« A, B, C for spaces of one-, two-, and three-dimensions,
b • number of coordinate functions appearing In Integral or matrix,

c, d, e = (0,1) Boolean counters indicating (no, yes) differentiation of each function,
e or f = S, A, A for matrix symmetric, antisymmetric or general.

(2) Symmetric matrices are written in upper triangular form.
(3) Ara = 1/2 (X2P2)(X3P3), the plane area of the triangular finite element.

X2P2 = the xz prime coordinate of node 2,
X3P3 = the Xj prime coordinate of node 3.

(4) lm =• length of side for boundary condition (-X2P2).
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Both momentum Eq. (5) and (6) contain contributions to f^
stemming from a specified pressure distribution. For the m a i n ^
stream momentum equation, a specified l o n g i t u d i n a l pressure
gradient, p,-,, is assumed kpown; hence,

_i _ r n 1 ri\ ^ ( V \ / "3 O \, i Q T — i t 5 I U / p » i \ A i / . \ o L I

m

For. a lateral .pressure g rad ien t , ob ta in

{ 4 > } p , 3 d T =

Rm

{ B 1 0 H B l l } { P Z } r a ( 3 3 )

where the matrix elements of {PZ } are obta ined from the tensor
t rans fo rmat ion l a w , Eq . ( 2 5 ) , as

PZ, a. (34)

Each s p e c i e s cont inu i ty e q u a t i o n , E q . ( 4 ) , may have a source
term. A s s u m i n g the d is t r ibu t ion to l ie over the nodes of the
d i s c r e t i z a t i o n , ob ta in

j{<|>}Sa dT [B200S]{Sa} (35)

m m

For non-constant Prandtl and Schmidt Numbers, the energy equation
Eq . (7), has two source terms. An integration using a Green-
Gauss Theorem is appropriate for both; the generated surface in-
tegrals vanish by pairs on
on 3RmO3R for n o n - s l i p , non-porous

interior 3Rm and are i d e n t i c a l l y zero
w a l l s . For the first term,

Table 1 obtai n
2

2Re

m

p f ' { X M U } i { P R } [ B 3 0 0 0 S ] ^ . { U .. > m [B21 1 S] { U. > ( 3 6 )
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In Eq. (36), the repeated subscript j is summed over all scalar
components of the velocity vector uj. The matrix elements of
{XMU}™ and {PR}m are respectively tne mth element nodal values
of effective viscosity and the Prandtl Number function. The
same operations repeated for the second contribution to d i s s i -
p a t i o n , E q . ( 7 ) , y i e l d

Sc-Pr
Re

m

1 f/A\
- R? {*}''

* *a av .Y'kdT

m

- ̂  {XMU}T{SC}T[B3000S]£{HSa}m[B211S]{Y
a}m (37)

a

• a- thIn Eq. (37), the matrix elements of (SC}m and (HSu}m are m
element nodal values of the Schmidt Number function and the
species static enthalpy, Eq. (10), respectively.

The boundary condition constraint matrices, Eq. (22), are
evaluated directly, since they are always a p p l i e d on the l i n e ,
x| equal to a constant. Using prefix A to si.gnify a one-dimen-
sional element operation, obtain

(38)

(39)

3 R

3R fi3R~m
The A matrices are also listed in Table 5. Equations
and (37)-(39) are not presently coded into 3DBR COMOC,
included here for future reference.

(33),
but

(35),
are

Ordinary Differential Equation System Integration Algorithm

App l i c a t i o n of the finite element algorithm to the original
partial differential equation has produced a large-order system
of ordinary differential equations written on the discretized
equivalent of the dependent v a r i a b l e . Several e x p l i c i t numerical
integration algorithms have been developed for ordinary differ-
ential equations that are optimum on the m u l t i p l e bases of sta-
bility, accuracy, and required computing time, [Ref. 9, 10].
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However, the e x p l i c i t numerical solution of stable systems of
differential equations with large Lipschitz constants creates
serious integration step-size restrictions. The integration
package in COMOC contains two methods which belong to a family
of optimally stable, 3-stage, one-step integration methods [Ref
11]. The operational features of this integration package,
aside from the ease of programming using an e x p l i c i t procedure,
include being one-step (and therefore self-starting), having
internal error control features, automatic step-size determin-
ation, derivative evaluations required at the integration-inter
val end points only, and optimal stability and accuracy within
their given structure.

The family of numerical integration methods that are one-
step, predictor-multiple-corrector formulas, are described by
t h e e q u a t i o n s

Pn+1 = a] % + hbl %

= a? % + h^b? Pn^l + b2 ̂

"n + h[bl "nil' + b2 "n] (40'

Two members belonging to the 3-stage family are operational in
COMOC. Both methods are first-order accurate, i.e., their as-
sociated truncation error is of order h^, where h is integration
step-si ze , and they represent optimally stable methods w i t h i n
the collection of first-order accurate methods. The coefficients
in Eq. (40) for these two methods are listed in Table 6. Method
1 enjoys a large absolute stability i n t e r v a l , w h i l e method 2 has
an extended relative stability interval. Both options in the
integration package attempt to extremize integration step size
automatically, based upon internal error control. The estimation
of relative truncation error for both methods is of the form

RTE
pn+l - qn

B |qn+1l
(41)

where the parameter, 3, equals 3 and 6, respectively, for method
1 and 2. Equation (41) is u t i l i z e d within the integration pack-
age to evaluate the relative truncation error associated with
using the given integration step size, h, to estimate the (n+1)
value of the dependent variable. If the computed error is less
than the user-supplied acceptable l i m i t , the (n+l)st estimate
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TABLE 6

COEFFICIENTS IN INTEGRATION ALGORITHM
FOR TWO, ONE-STEP, THREE-STAGE METHODS

Coefficient

a]

'?'•

al

bi

b?

b2

bl

b2

Method 1

1 .000000

1 .000000

1 .000000

1.000000

0.037037

0.962963

0.148148

0.851852

Method 2

1 .000000

1 .000000

1 .000000

1,000000

0.074074

0.925926

0.296296

0.703704

for the dependent variable is accepted. Dependent upon computed
solution behavior, the integration algorithm w i l l selectively
seek to increase, h, by some fraction, before proceeding to the
next integration computation. In this fashion, the package con-
sistently seeks to increase step size (hence decrease 'solution
computation time). If at any point the computed relative error
exceeds the l i m i t , the current predicted values for the depend-
ent variable are discarded, a smaller step size selected, and
the operations of Eq. (40) repeated until an acceptable error is
measured. .

Continuity Equation Solver

Since an e x p l i c i t integration algorithm is u t i l i z e d for
solution of Eq. (22), solution of Eq. (24) for transverse mass
flux pu£ is required only after all other dependent variable
distributions have been obtained on the plane x-| = constant.
Establishment of (pu$) ,3 is direct since the nodal distribution
of {pU3} is known. However, an evaluation of (puf),] is re-
quired, since no streamwise derivatives of a dependent variable
can be formed before the distribution of all variables is known
in a plane. In the discretized solution, the actual requirement
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is to establish {pill}'; the following second-order accurate
finite difference formula for the derivative at the end point
of two panels of data of. dissimilar length is employed.

,* ' 1
'n + h n + l >

In Eq. (42), h +; and h are the x-j integration step-sizes,
respectively, Between tn<
previous two stations.

le current X] station, xn + -| , and the

(42)

An analytic expression is then established for the X2
distributions of mass flux derivatives, with X3 as a parameter
and on a nodal basis, as

(pUl)' I ak(x,)x,
k=0 K 6

(pU3),3 I MX3)Xk=0 K J
(43)

thusing an n"" order running-smoothing polynomial generator over
appropriate sequential panels of data. Using a unit step for
the weighting function, $, Eq . (24) then takes the form

(x

R

dx. (44)

m

Since all terms in Eq. (44) are integrals of perfect differen-
ti a l s , the solution for the increment in transverse mass flux
over an interval Ax^ is directly obtained as

.. k+1
A(pu*) I [a. (xj + b. (xj]

k = 0 k+1 (45)

Repeating Eq. (45) along each node column completes determination
of pui at the nodes of the transverse plane.

Computation of E q u i l i b r i u m Composition and Thermodynamic
Properties of Hydrogen/Oxygen/Air Mixtures

The 3DBR Variant of COMOC can compute three-dimensional
frozen flow m i x i n g of arbitrary gas mixtures, as well as the
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e q u i l i b r i u m combustion of hydrogen/oxygen/air systems. For the
latter, the NASA computer code GAS (see Ref. 12) has been made
operational within COMOC after considerable.modification to ren-
der it compatible with a marching-type solution with m u l t i p l e
nodes, hence solutions. The e q u i l i b r i u m composition and thermo-
dynamic properties of hydrogen/oxygen/air mixtures are evaluated
as a function of temperature and pressure; relative concentra-
tions of the elements, H2, 02> N2, and Ar are also determined.
The species considered are H20, u 2 , H2, N2, Ar, 0, H, NO, and OH.
Since all th.ermophysical properties are temperature dependent,
stagnation enthalpy is typically not known a priori; consequently,
i n i t i a l i z a t i o n is based upon a user input total temperature dis-
tribution. As a function of input pressure at i n i t i a l i z a t i o n and
the b u i l t - i n tables of thermodynamic data, distributions of static
temperature, frozen specific heat, and stagnation enthalpy cor-
responding to input total temperature are determined using an it-
eration algorithm based upon the method of false position. All
solutions following initialization are based upon iteration to
e q u i l i b r i u m composition using computed nodal static temperature
as the convergence parameter. The iteration on temperature is
assumed to have converged when the difference between successive
iterates is less than 0.1 percent.

After convergence to a static temperature, the e q u i l i b r i u m
constants for chemical reaction are calculated from the G i b b s 1

function. Composition is then determined using a modified Newton-
Raphson iterative procedure for solution of a system of nonlinear
algebraic equations. Once the nodal species equilibrium (or fro-
zen) composition is determined, enthalpy, entropy, molecular
weight, and specific heat are calculated for mixtures of ideal
gases in terms of the computed species mole fractions, Xa, as

Molecular Height: W

Specific Heat: c • "I
W

a,,aI XaW
a

a
(«c.

(46)

(47)

Static Enthalpy: h

Entropy:

1 y xaha
W L X n

a

li*"
a

a
| Inp - In Xa

(48)

(49)

Mass Fraction:

Gas Constant:

/ex

Y

.XaWa/W

- R/W

(50)

(51)
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The e q u i l i b r i u m model is based upon the conservation
properties of the sum of mole fractions, and the constancy of
the atomic number density ratios of argon/nitrogen, nitrogen/
oxygen, and hydrogen/oxygen. The five chemical reactions con-
sidered are

2H + 0 £"H20

2H * H2

20 J 02

H + 0 £ OH

+ 20 «- 2NO (52)

Applying the Law of Mass Action [Ref. 7] to each reaction in
Eq. (52), the following system of nonlinear algebraic equations
relating species mole fractions, X^a', is obtained.

v(4) = v n.

(3)

(6)

(2)

(7) (53)

.thIn Eq. (53), K. is the e q u i l i b r i u m constant for the iu" reaction,
which is ,a function of temperature only, and p is the static
pressure. The numbering scheme for species identification is
1i sted i n Table 7.

TABLE 7

SPECIES IDENTIFICATION FOR REACTING HYDROGEN/OXYGEN/AIR SYSTEMS

Number

Chemical Species
1 2 3

H OH H2

4 5 6

H20 0 02

7 8 9

NO N2 Ar
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Equations for the conservation of total mass, and the i n d i v i d u a l
atomic species H, 0, N, and Ar, may be expressed in terms of
known constants by the matrix equation.

{const.}

where

and

{const.} =

.0
0)
(2)
(3)
(4)

The specific values of the constants c
the i n i t i a l composition.

(6)

(54)
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(56)

are determined from

Of the several possible choices, the computed composition
is based upon solution of the nonlinear e q u i l i b r i u m equations
for mole fraction of hydrogen, atomic oxygen, and the square root
of molecular nitrogen. The resultant n o n l i n e a r equation system
requiring solution is

[fi(X
ot)]{Xa} = {0} (57)

The N e w t o n - R a p h s o n i te ra t ion a lgo r i t hm a s s u m e s , g i v e n a set o f
trial v a l u e s , X", determinat ion of a new set of va lues Xn + 1 ,
sepa ra ted from the Initial es t ima te by AXf t , by d i f ferent iat ing
Eq. ( 5 7 ) to y ie ld .

( 58 )

In Eq. (58), the Jacobian contains elements,. J k « , determined
numerically as

9f,

3Xa
(59)
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The n+1 es t imate of Xa is accep ted as the so lu t ion to Eq. ( 5 8 )
when

3

I IMClH 1 e ( 6 0 ) '
j=l J " '

_5
where e is a prescribed small parameter, usually 10 . A maximum
of thirty iterations are allowed for the solution of Eq. (57)-
(60) to converge w i t h i n e. In only a few cases has non-conver-
gence occurred, always within a few degrees of the threshold tem-
perature for dissociation. For these i n i t i a l l y divergent solu-
tions, the equations are resolved assuming that dissociation is
n e g l i g i b l e , i.e., the mole fractions of H, 0, OH, and NO are neg-
l i g i b l y small in comparison to FU, G^* ^o' anc' ^?®'

ILLUSTRATIVE SOLUTIONS

.The 3DBR Variant of COMOC has established solutions for
several two- and three-dimensional boundary region flows covering
a wide range of Mach and Reynolds numbers. Several are discussed
to illustrate the various features of solution. The data decks
for two of these cases are presented in. the next section, and
come as standard test cases with the program.

Constant Density Flow Fields

Because of its basic simplicity, the two-dimensional, iso-
energetic, laminar boundary layer flow of a fluid at small Mach
number (M < 0.3) provides an excellent check case for e v a l u a t i n g
the essential performance features of the finite element algo-
rithm for Eq. (15)-(17). Only one dependent variable (u-|) need
be integrated numerically, along with solution of the continuity
.equation for Up. However, COMOC assumes all flows are three-
dimensional and compressible with temperature-dependent thermo-
physical properties. The two-dimensionality is readily obtained
by specifying only one column of elements, see Fig. 4, and en-
forcing the v a n i s h i n g normal gradient (q,n = 0) boundary condi-
tion on the lateral segments of 3R. This is particularly simple
since v a n i s h i n g gradient is the automatic default value intrinsic
to the finite element algorithm. The discretization may be ex-
tended beyond the boundary layer thickness, 6X, so that v a n i s h i n g
normal gradient may be applied along the freestream segment of
3R as well. The slope of the diagonals of the discretization,
Fig. 4, bears l i t t l e impact on solution accuracy for two-dimen-
sional problems. Dependent upon i n i t i a l conditions and/or other
perturbations placed into the solution, the computed variable
distributions along each node column may differ slightly. These
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small differences typically damp out as the solution proceeds,
and interchanging diagonal slopes simply exchanges the location
of these differences if they exist. The element aspect ratio
is similarly unimportant for two-dimensional problems. For iso-
energetic flows, COMOC contains a simple but q u i c k - r u n n i n g sub-
routine to compute density and static temperature for two-compo-
nent perfect gas mixtures with a specified pressure distribution
Unless overridden by a user-supplied subroutine, viscosity is
computed from Sutherland's law.

u

u

Figure 4. Finite Element Discretization for Two-Dimensional
Boundary Layer Flow

Assessment of computed solution accuracy and convergence
with discretization can be obtained for the v a n i s h i n g pressure
gradient case by comparison to the B l a s i u s simi1arity solution
[Ref. .13]. The test case corresponds to air at atmospheric
pressure and M = 0.272. The boundary layer thickness at the

= 0.0011 m. (E 0.11(-2)) and the unit
. = 0.63(7)/m. Two uniform discretizations

6o
Re,
first spanning 60 with only four (4) finite

i n i t i a l station is
Reynolds number is
were employed, the
elements, while the second doubled that number. The numerical
computations were i n i t i a l i z e d with the similar solution profiles

downstream from the leading edge at x-|/60 = 278.
was continued downstream to.x-|/60 = 2560. Shown
a comparison of the B l a s i u s solution to the com-

puted velocity profiles, U] and U2» obtained for the coarser
discretization. For reference purposes, the i n i t i a l profiles

at a station
The solution
in Fig. 5 is
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are also shown with the finite element node locations superim-
posed. The l o n g i t u d i n a l flow i n i t i a l l y contained w i t h i n 6 Q has
been retarded by a factor of 2 to 3 throughout, and agreement
between the computed and Bl a s i u s velocity profiles is excellent.
The computed skin friction and displacement thickness distribu-
tions are shown in Fig. 6. The computations using the coarser
discretization s l i g h t l y underpredict skin friction and over
estimate displacement thickness. Doubling the discretization
(to 8 elements lying within 6O) noticeably improves computed
solution agreement with the Bl a s i u s solutions, Fig. 6. Figure 7
presents actual percent inaccuracy in the computed solutions for
skin friction and displacement thickness. The influence of the
coarse discretization is most noticeable in 6; however, the error
rapidly decreases as the boundary layer grows into the discreti-
zation, which corresponds essentially to grid refinement. As a
function of discretization, computed skin friction, Cf, converges
approximately proportional to the square of refinement. This
agrees exactly with the convergence rate predicted theoretically
for the parent diffusion equation, neglecting convection, using
linear finite element approximation functionals [Ref. 14]. The
uniformily small inaccuracies in computed skin friction for both
discretizations indicate that solutions, adequate for certain
engineering approximations, can be obtained using finite element
discretizations that app.ear rather coarse in comparison to con-
ventional experience.

1.0 2.0

Transverse Coordinate-

Figure 5. Computed Velocity Distributions, M = 0.272,
ReY = 0.63(7)/m
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The increased accuracy of the finer discretization solutions
is obtained with a measurable increase in computer CPU time.
Shown in Fig. 8 are the distributions of integration step-size,
AX1 , automatically established by COMOC as within the stability
interval of the Method 1 integration al gori thm f or this boundary
layer problem. The periodic stepping feature is illustrated for
the four element solution; the step-size of the eight element
solution remains essentially constant at about one-fourth the
average of the former. Since the finer discretization contains
twice as many elements as w e l l , an approximate eight-fold in-
crease in computer time would be anticipated. The actual in-
crease was by a factor of 6.9, see Fig. 8. Computer CPU is also
a function of the number of dependent variables in the solution,
as well as user u t i l i z a t i o n of the I/O features of COMOC. An
approximate formula for estimating execution time in seconds is

CPU = \lc. (61)

where X is the ratio of CP speed of the computer in use to that
of the IBM 360/65 (e.g., X ~ 0.2 for the CDC 6600), and

c, E 0.011 x (No. elements) x (No. passes)

x (No. dependent variables + 0.165)

Cp = 0.8 x (No. outputs) x (No- pages per output)

c3 = 1.25x(No. outputs if Restart tape is written)

In the expression for c-j , the number of passes is an output
parameter from COMOC that is somewhat greater than three times
the number of integration steps in the solution. The fa-ctor
0.165 accounts for s i m p l e thermodynami c , viscosity, and other
parameter evaluations. The contribution from Co occurs only
when writing a restart tape, and the coefficient may vary with
different computers.

A second i l l u s t r a t i v e solution for 3DBR COMOC in the low
speed category comes from environmental hydrodynamics. Analyti-
cal prediction of thermal and/or waste water dispersion into
waterways could help understand the important mechanisms for
turbulent transport phenomena. Such a c a p a b i l i t y could also
circumvent some of the detailed laboratory experimentation now
required for certification of engineering projects. The example
[Ref. 15] corresponds to turbulent dispersion of ejectant from a
submerged waste water outfall. The solution domain is non-reg-
ular and corresponds to the measured cross-sectional depth dis-
tribution of a natural stream [Ref. 16] with a span of 48 m.
(160 ft), see Fig. 9. The i n i t i a l l o n g i t u d i n a l velocity dis-
tribution was established from the measured isovel d i s t r i b u t i o n ,
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Figure 9. Cross-Section of a Natural Stream

Showing Measured Isovels, [Ref. 16]
by interpolation at the nodes of a 468 finite element discreti-
zation of the cross-section, see Fig. 10. .Since the solution
domain is quite non-regular, the automatic discretizer in COMOC
was not a p p l i c a b l e . The waste water ejector was assumed located
in the deepest section of the river as shown in Fig. 10.

A Initial 100% Contour

Figure 10. Finite Element Discretization of Stream Cross-Section
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The flow field was assumed isoenergetic and without cross-
flow. Hence, a marching type solution was required for m a i n -
stream velocity and a s i n g l e species mass fraction. The total
and static temperatures for this case are i d e n t i c a l ; thus, a
large input pressure was employed to coerce the perfect gas sub-
routine in COMOC to compute a uniform density distribution cor-
responding to that of water. Closure of the governing equation
system was obtained by specifying a turbulent viscosity law, and
providing a user-written subroutine to override Sutherland's Law
A tensor turbulence law was assumed a p p l i c a b l e [Ref. 17, 18];
in the plane of the finite element discretization, the eddy vis-
cosity coefficients in the vertical (/2) and transverse (x3)
coordinate directions were assumed given as

y*2 = k2U*h . (62)

y*3 = k3U*h (63)

where local depth of water is g i v e n by h, k2, and k3 are empir-
ical constants, and U* is the friction velocity defined as
U* = /T/P. The approach of Patankar and Spalding [Ref. 19] was
employed to evaluate w a l l shear, T, as.

T = K2pU2[R"] - 0.156R"0'45 + 0.08723R'0'3
X X X

+ 0.03713R"0'18] (64)
A ,

2
where K is an empirical constant (set equal to 0.435,), Rx =, RK
where R is a local Reynolds Number defined as R = pffx^/y, U is
local l o n g i t u d i n a l velocity near its extremum, and X2 j,s a rep-
resentative length scale. For the present case, both U and X2
were obtained directly from the solution for the detailed veloc-
ity profiles. A study was performed, see Table 8, to measure
the sensitivity of the computed p o l l u t a n t distribution to the
constants in the eddy viscosity law, Eq. (62)-(63), as well as
the te.nsor character. The base l i n e case corresponds to use
of mean depth averages for the coefficients, confirmed experi-
mentally .to capture the essential parabol ic character of the
measured distributions, Case II. Case III corresponds to a
scalar eddy viscosity equal to the magnitude of the Case I
tensor expression.

The results obtained from this type of study are summarized
in Fig. 11, which presents predicted mass fraction contours of
the contaminant, for the three cases, at a station 9.6 m. down-
stream of injection. Comparing the results of Cases I and II,
the neglect of the p a r a b o l i c distribution in the vertical m i x i n g
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T A B L E 8 '

P A R A M E T E R S IN P O L L U T A N T D I S P E R S I O N STUDY

Case

I

II

III

k2

0.067

0.36U-S2)

0.24

k3

0.23

0.23

0.24

Comments

Base line case [Ref. 16]

Vertical p arabolic distribution
(£=nondimensional local depth)

Scalar of equal magnitude to
Case I

15%

0.1%
30%

, Case 111

Figure 11. Predicted Mass Fraction Contours at 9.6 m Downstream
of Injection, Three Diffusion Models

coefficients is confirmed to be a reasonable assumption at this
distance downstream. However, for these conditions, the omission
of the tensorial character of the dispersion, coefficient, Case
I I I , is quite measurable. Comparing Cases III and II, the larger
vertical (k£) coefficient has allowed the 3% contour to break to
the surface of the river. An overall larger diffusion has also
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occurred, although, as expected, the lateral extent of the dis-
tributions is considerably less affected. Although no experi-
mental data are a v a i 1 a b l e to directly confirm these results, these
predictions amply illustrate the potential to examine trends and
isolate key features, w h i l e capturing the important geometric
non-regularities and differential equation non-linearities so
important to the physics of the problem. The numerical procedure
is readily adaptable to relocation of the ejector and alteration
of its geometry, see Fig. 12 for example. For all cases, inte-
gration was continued downstream a distance of approximately 90 m;
at this point the maximum ejectant concentration had decreased to

Y///////A Initial 100% Contour

0.1% 0.1%

Figure 12. Predicted Mass Fraction Contours at 9.6 m Downstream
of Interface Injection

15% ±1% dependent upon the viscosity law. A typical execution
time on the IBM 360/65 was 875 s i n c l u d i n g about 145 s to produce
an inch of output. The predicted v a l u e using Eq. (61) is 900 s.
(It should be noted that, a l t h o u g h tensor turbulent transport
properties can be u t i l i z e d in 3DBR, program modification, beyond
the scope of the casual user, is required for the present Variant

Compressible Flow Fields

A standard check
Mach 5. laminar, two-di
batic wall in a favora
tion [Ref. 20], as we!
utilized to evaluate a
for the detailed coupl
this solution. The di
cations are essential!
ber boundary layer sol
corresponds to the sim
subroutine can be used
density for isoenerget
integrated downstream,

case for 3DBR COMOC corresponds to a nominal
mensional boundary layer flow over an adia-
ble pressure gradient. A similarity solu-
1 as finite difference procedures, can be
ccuracy and consistency of solution trends
ing of the mechanics and thermodynamics of
scretization and boundary condition specifi-
y i d e n t i c a l to those of the small Mach num-
ution. For constant specific heat, w h i c h "
ilarity solution, the s i m p l e thermodynamic
to compute local static temperature and

ic flow. Only the equation for ui need be
coupled with solution for U2 using the
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continuity equation solver. For non-isoenergetic flow or variable
specific heat, stagnation enthalpy (H) must be added to the inte-
grated solution vector, and the local solutions for density,
static temperature, and specific heat are obtained from the com-
bustion subroutine. In this instance, the air composition must
be i n i t i a l i z e d as well, although the oxygen and.nitrogen 'elemental
species mass fractions need not be integrated since the flow f i e l d
composition is homogeneous and constant. For either thermodynamic
procedure, the stagnation enthalpy is i n i t i a l i z e d from an input
(constant) total temperature distribution. The i n i t i a l U] pro-
files are established from the s i m i l a r solution for 3 = 0.5 and
S = 0 [Ref. 20]. Sutherland's law is employed to compute
viscosity.

The standard test case is i n i t i a l i z e d at xi = 0.03 m down-
stream from the surface leading edge. The boundary layer thick-
ness at this station is 6g = 0.0039 m, the local Mach number is
M =? 3.77, the unit Reynolds number is Rex = ,83(5)/m, and the
adiabatic wall temperature is Tw = 1000°K (1800°R). Shown in
Fig. 13 are the COMOC computed skin friction, freestream Mach
number, and .boundary layer thickness distributions for the con-
stant specific heat case. These were obtained using two uniform
finite element discretizations corresponding to 4 and 8 elements
spanning the initial boundary layer thickness. The input static
pressure d i s t r i b u t i o n , Pe(*l)> is also presented for reference,
and the boundary layer thickness has increased, greather than
four-fold within the solution domain. Only small differences,
on the order of about 2%, exist between the two solutions, with
the finer discretization producing a s l i g h t l y larger skin fric-
tion and smaller freestream Mach number. Superimposed in F i g .
13, for.comparison purposes, are the results for the s i m i l a r
solution [Ref. 20], and a 20 zone finite difference solution ob-
tained using the von Mises coordinate transformation [Ref. 19].
Agreement among the four solutions is excellent (within 2%) for
skin friction. The s i m i l a r solution for M e l i e s between the
COMOC and finite difference solutions, and agreement is within
±3%. Shown in Fig. 14 are computed velocity profiles at X]/60 =
22.7, which is about mid-way through the standard test solution
domain. Shown for reference is the i n i t i a l U] profile obtained
from the s i m i l a r solution [Ref. 20], with the node locations of
the 4 element discretization superimposed. Both COMOC solutions
produce U] distributions that are s l i g h t l y more concave upward
in the mid-region in comparison to the s i m i l a r i t y or finite
difference solutions. The finer discretization COMOC solution
l i e s closer to the s i m i l a r i t y solution in the region where the
two finite element solutions differ. The finite difference
solution l ies appreciably below both the COMOC and s i m i l a r i t y
solutions near freestream. The COMOC computed transverse veloc-
ities are also shown in Fig. 1.4; .only s l i g h t differences between
the two discretization solutions, are apparent. The trends of
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the COMOC solutions are in excellent agreement with the estab-
lished procedures; unfortunately, since each method of solution
is distinctly numerical, no absolute accuracy assessment is
established, as was possible for the constant density boundary
layer check case.

The computation of transverse velocity warrants a d d i t i o n a l
comment. COMOC w i l l accept, but does not require (since one is
rarely a v a i l a b l e ) , an i n p u t distribution for U2 at the i n i t i a l
station. For the discussed Mach 5 solutions, the i n i t i a l U2
distribution, Fig. 14, is self-determined by w i t h h o l d i n g its
computation un t i l the u^ equation had been integrated forward
a few stations. (This is mandatory, even if an i n i t i a l U2
distribution is input, since several data stations are required
to a l l o w evaluation of Eq. (42) for (pu-|)'.) Computation of U2
is then initiated and it rapidly becomes consistent with the
computed u] distributions. Solution is terminated after a few
more steps downstream, and the computed nodal 02 distribution
trend with l o n g i t u d i n a l distance is back extrapolated to estimate
an i n i t i a l distribution. Only one or two iterations of this type
are typicaVly required to establish a consistent U2 distribution.
Starting with a zero i n i t i a l d i s t r i b u t i o n is probably the most
convenient choice for analysis of engineering problems, wherein
detailed i n i t i a l accuracy is not of primary importance.

Solution speed and accuracy have been i1lustrated • to deoend
directly upon discretization. Solution speed is also a direct
function of a user i n p u t control parameter (e) that places some-
what flexible bounds on acceptable relative truncation error,
Eq. (41), during downstream integration. A va.lue of e of 10(-4)
has been found by experimentation to be generally adequate to
m a i n t a i n solution stability, hence accuracy. Using smaller values
of e sharply increases computation time without producing the
attendant increase in solution accuracy that a finer discretiza-
tion would yield. However, increasing e up to 10(-2) can produce
measurable cost savings with a good probability of only a marginal
decrease in solution stability and accuracy (upon rare occasion,
the solution may actually go unstable and blow-up). Shown in
Fig. 15 are computed integration step-size histories for the
Mach 5 .test case for several discretizations and values of e.
In all cases, the computed solutions were of comparable accuracy
and uniformly acceptable. The automatic stepping feature is
illustrated, and the predicted necessary sharp decreases in Ax-|
appears independent of e. For the two, 8-element discretization
tests, increasing c to 10(-2) about doubled the allowed step size
and hence decreased CPU by almost 50%. As expected, a four-fold
increase in CPU accrued for twice the discretization, for e con-
stant at 10(-4), with integration step-size about half that of
the baseline 8-element case. The coarsest 4-element discretiza-
tion test recorded the largest integration step distribution with
a remarkably smaller CPU. However, this solution appeared on the
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ragged edge of i n s t a b i l i t y , as evidenced primarily by sometimes
anomalous behavior in transverse velocity, U£. From experimenta-
tion, i n c i p i e n t overall solution instability is almost always
foretold by erratic behavior of the computed u2 d i s t r i b u t i o n ,
since it immediately reflects anomalies in the streamwise deriv-
ative distribution for UT, see Eq. (45). The user may typically
feel confident that solutions generated using e>10(-4) are ac-
ceptable provided the computed U2 behavior is smoothly consistent
However, it is worthwhile to substantiate this assumption, by a
shorter run at smaller e and/or finer discretization, if it can
be afforded
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As a final evaluation, the nominal Mach 5 test case was
repeated for temperature-dependent specific heat. This necessi-
tates addition of stagnation enthalpy, H, to the dependent
variable vector and addressing the thermodynamic package in the
combustion subroutine. Shown in Fig. 16 is a comparison between

1.00

1.0 1.5

Transverse Coordinate - x2/5

Figure 16. Computed Boundary Layer Velocity Profiles,
M = 5, Rev = .83(5)/m, 6 = 0.5

X

computed l o n g i t u d i n a l velocity d i s t r i b u t i o n s at X]/6Q = 22.7 for
a uniform adiabatic wall temperature of 1000°K. Maximum differ-
ences of about 4% accrue due to temperature dependent specific
heat; the computed increase in skin friction is about 10%.
Besides the increased solution cost stemming from employing H as
a dependent v a r i a b l e , an additional expenditure accrues from
addressing the more comprehensive thermodynamics package for
variable thermophysical properties. Referring to Eq. (61), a
fourth contribution to CPU for non-combustion utilization of
the combustion subroutine is

C, = 0.004 x (No. Passes) x (No. Nodes)
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The second example problem for compressible flow computa-
tions using 3DBR COMOC corresponds to analysis of turbulent,
binary three-dimensional m i x i n g in a supersonic boundary layer
flow fiel.d. The analyses include cold flow studies with com-
parison to data as well as e q u i l i b r i u m combustion. The impetus
for these studies is the hydrogen fueled scramjet engine, a
prominent candidate for propulsion of the next generation of
hypersonic cruise vehicles [Ref. 21, 22]. Many alternative
designs have been proposed, but all e x h i b i t the commonality that
fuel introduction arrangements consist of rows of circular,
choked-flow injector orifices mounted flush or normal to the
combustor wall or in fins spanning the combustor inlet. The
pattern of fuel injection, hence three-dimensional mix.ing, can
exert significant influence on combustor performance. Figure 17
illustrates an experimental apparatus used by Rogers to experi-
mentally probe the three-dimensional cold m i x i n g region down-
stream of transverse hydrogen injection from .a single discrete
orifice [Ref. 23], an;d mul ti pi e laterally-disposed orifices
[Ref. 24], into a Mach 4 airstream on a flat plate. Detailed
numerical predictions of turbulent, three-dimensional m i x i n g in

60

Flat Plate

Injection Orifice

Figure 17. Three-Dimensional Flow Fi e l d Downstream of
Transverse Injection from Discrete Orifices
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this flow field have been performed, using 3DBR COMOC, in a so-
lution domain spanning up to 120 injector diameters downstream,
for both the s i n g l e and m u l t i p l e jet geometries. The scaled
discretization of the symmetric half-plane into 100 finite ele-
ments, Fig. 18, was formed by the automatic discretizer. The
turbulent boundary layer thickness at the injector station
(without injection) was equal to 2.7 injector diameters, and
the Reynolds number was Rex = .6(8)/m. To the first
approximation, these data correspond to isoenergetic
diffusion in a constant pressure flow field. Hence,
integration was required for u-| and a single species
tion p.lus the continuity equation for u9.

order of
bi nary
numeri cal
mass frac-

Closure of the equation .system requires a turbulence model
for three-dimensional boundary region flow of this type. A
prototype eddy viscosity model was developed to reflect mass
flux differences between the main flow and the jet and the tur-
bulence due to the presence of the wall [Ref. 25]. Directly
above the m i x i n g region, turbulent dispersion was assumed to
primarily reflect differences in mass flux. Outside the m i x i n g
region but near the w a l l , the turbulence was assumed due solely
to boundary layer phenomena. W i t h i n the m i x i n g region both
mechanisms are assumed active. Therefore, near the wall where
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Fi rn te.Element Discretion of Symmetric Half-Space
of Single-Jet Injection Geometry
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m i x i n g length theory is
mass is of the form

assumed v a l i d , the eddy diffusivity of

3U-

3x, Sc -1 (65)

u 1 is the mean l o n g i t u d i n a l velocity, £ is the m i x i n g length,
w'is va.n Driest's damping factor [Ref. 26], and y is the inter-
mittency factor, empirically modeled in a number of ways [Ref.
27]. For this study, it was evaluated as

1

1 + O.OU'
(66)

where r, = X2/6;?» and ^2 is tne value of X£ where the hydrogen
mass fraction is one-half its wall value. In the outer region
the eddy diffusivity of mass is assumed proportional to the
mass defect of the form

(67)

where K is an empirical constant, y is the intermittency factor,
the characteristic length L is defined as the half height of the
m i x i n g region on the centerplane (xj = 0), and I is the three- .
dimensional mass defect evaluated as

KX-,) (68)

A subroutine was coded for addition to 3DBR-COMOC, to evaluate
Eq. (65)-(68) along columns of nodes parallei to the x.2 axis,
see Fig. 18. The effective viscosity of mass mixing was laminar
plus selectively E] or e2» and the transition from e-j to £2 was
internally signaled. So as to provide the potential user with
an example of construction of a fairly complex subroutine
addition, this code forms a part of the data deck for the second
standard test case for 3DBR-COMOC.

An extensive computational program was conducted using
3DBR-COMOC to validate use of the three-dimensional boundary
region equations for this problem geometry, and to evaluate
the governing influences on turbulent m i x i n g in the three-
dimensional region within the constraints of the prototype eddy
viscosity model. The existence of extensive cold flow data
[Ref. 23, 24] for l o n g i t u d i n a l vel oci ty , u-i , and hydrogen mass
fraction, YH, provides the means to evaluate the accuracy and
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consistency of the numerical predictions; the complete dis-
cussions of results is in Ref. 25. Briefly, for the first
series, the experimental data at 30 diameters downstream of
injection (i.e.,xi/D = 30) for
of unity, were interpolated at
discretization, Fig. 18, using
numerical solution was carried
constant in Eq. (67) set to K

a dynamic pressure ratio (qr)
the nodes of the finite element
cubic s p l i n e procedures. The
to x-|/D = 60, and the empirical

= 0.1 by "best" agreement with '
data. As shown in Fig. 19, agreement with 'the superimposed data
along the symmetry pl a n e , X3 = 0, is excellent. Transition from
m i x i n g length to mass defect occurred between 0.6 and 1.0 inje'c-
tor diameters above the plate across the entire pattern. The
predicted lateral spreading of the hydrogen (parallel to the X3
axis) is in good agreement with the data spread near the wall,
but is underpredicted in the mid-region of the pattern. Transi-
tion from the i n i t i a l distribution, and detail.on solution ac-
curacy, are presented in Fig. 20, which compares data to computed
concentration profiles along planes x^ = constant at x^/D = 60.
The underpredicted lateral diffusion is prominent, stemming in
part from the omission of three-dimensional influence in the

Symbols are Best Symmetry Plane Fit for Data of Rogers [Ref 23]
Transverse Displacement

Concentration - %

-6 - 2 0 2

Lateral Displacement - x-j/D

Figure 19. Computed Hydrogen Mass Fraction and Experimental
Data for Single-Jet, qr = 1.0, x^D = 60
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Symbol Description

A
A

Initial Conditions, x^D = 30
Raw Data Measurements
Best Symmetry Plane Determination
COMOC Computation

8 0 2 4 6 0 2 0 0

Hydrogen Mass Fraction • Y (%)

Figure 20. Computed Single-Jet Hydrogen Mass Fraction
Distribution at x^D = 60, qr = 1 . 0

turbulence model. The experimental data show that in this re-
gion, ui,2 and Ml,3 are of equal magnitude, as observed in Fig.
21, which is a three-dimensional surface plot of the longitudinal
velocity distribution at x-|/D = 30, as observed from a vantage
point beneath the plate surface. The superimposed grid coincides
with the finite element discretization (omitting diagonals), and
the hydrogen jet is imbedded within the centroidal indentation.
Obviously, three-dimensional effects are important, and should
form an integral part of future three-dimensional turbulence
modeling. Figures 22 and 23 compare the COMOC computed solutions
for hydrogen mass fraction and l o n g i t u d i n a l velocity distribu-
tion to data at x-j/D = 120, as well as the i n i t i a l distributions.
Agreement is generally quite good throughout.

This computational study was repeated using for i n i t i a l
Conditions the experimental data for a row of orifices aligned
perpendicular to the main flow vector with a uniform separation
distance of 12.5 orifice diameters [Ref. 24]. For this study,
the finite element discretization of Fig. 18 was simply scaled
to span the symmetric half zone between ejectors, using the
automatic discretizer. The van i s h i n g normal gradient boundary
condition was then applied to both lateral sides of the compu-
tational region. Shown in Fig. 24 and 25 are the COMOC com-
puted hydrogen mass fraction profile distributions at stations
X]/D = 60 and x-|/D = 120 compared to data. .Figure 26 displays
the more familiar contour plot at x-|/D = 120. These results
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Centerplane

Fi gure 21. Isometric View of Longitudinal Velocity Surface
Single-Jet Configuration, x-|/D = 30

for

Symbol Description

Initial Condition, Xj /D = 30

Raw Data Measurements

x3/D = 0

Best Symmetry Plane Determination
COMOC Computation

x3/D

= 6.5

0 4 6 8 0 2 4 6 0

Hydrogen Mass Fraction Y (%)

Figure 22. Computed Single-Jet Hydrogen Mass Fraction
Distribution at x,/D = 120, q^ = 1.0
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Symbol Description
Initial Condition, Spline Fit, X../D = 30

Experimental Data, x.j/0 = 120

COMOC Computation, Xj/D = 120

10

CM
X

OJ ~
E 6
ID'
CJ
CO

Q 4

§ 2
I-

x3/D = 0 x3/D= 1.0 x3/D = 2.5 x3/D = 4.5

1000 2200 ' 1000 2200 1000 2200 1000
Longitudinal Velocity - u. (ft/sec)

2200 1000 2200

_| L fc I 1 I 1 f ill I I I I I - t i I 1 I I I i i

nn "• onn cnr> Tnn * onn cnn inn ' onn cnn inn '•om
i i i
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Longitudinal Velocity - u^ (m/sec)

Figure 23. Computed. Single-Jet Longitudinal Velocity
Distribution at x^D = 120, qr = 1.0

—i_. Symbol1 Description • - - —

Initial Conditions, x^D = 30;

O Raw Data Measurements
• Best Symmetry Plane Determination

COMOC Computation

x3/D

4.5

0 2 4 6 0 2

Hydrogen Mass Fraction - Y (%}

Figure 24. Computed Multijet Hydrogen Mass Fraction
Distribution at x^/D = 60, q - 1.0
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Symbol Description

Initial Conditions, x.j/0 = 30

© Raw Data Measurements
9 Best Symmetry Plane Determination

COMOC Computation

x3/D = 0 x3/D = 1
x3/D = 6.25

OK)

6 0 2 4 6 0 2

Hydrogen Mass Fraction - Y (%)

0 20 20

Symbols

T

Figure 25. Computed Multijet Hydrogen Mass Fraction
Distribution at x-j/D = 120, qp = 1.0
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Transverse Displacement - Xj/D
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Figure 26. Computed Mass Fraction Contours and Experimental
Data for Multijet, X/D = 120, q = 1.0



were obtained using the identical m i x i n g model of the s i n g l e
jet, i.e., K = 0.1, Eq. (67), with transition from m i x i n g length
to mass defect occurring in the region 0.6 <_ x;?/D <_ 1.1. Figures
24 and 25 indicate that centerplane diffusion is somewhat over-
predicted, while a considerable improvement between computations
and data has occurred in the lateral region. Figure 26 i l l u s -
trates how the computed contour patterns merge between jets for
the m u l t i p l e injector configuration. Agreement between computed
and measured velocity distributions at both downstream stations
was excel lent.

Detailed volumes of experimental data, of the tyoe uti1ized
.to start these discussed solutions, are typically not a v a i l a b l e
for complex reacting flow fields. Assuming that the foregoing
studies have indeed verified the appropriateness of the differ-
ential equation system, as well as a limi t e d v a l i d i t y for the
turbulence model, methods for starting a three-dimensional solu-
tion with combustion are sought. One technique that shows some
promise, and also admits numerical evaluation of its appropriate-
ness, is the "virtual source." The theoretical hypothesis is
simply that the complex transverse injection process can be com-
putationally replaced by a hydrogen jet imbedded w i t h i n a boundary
region flow, and that the d i s t i n g u i s h i n g features of this virtual
source are solely dependent upon freestream and injectant param-
eters. The derived model [Ref. 25] captures the essence of the
barrel shock-Mach disk hypothesis for injectant-freestream equi-
libration [Ref. 28]. To establish computational verification of
this concept, the cold flow studies were repeated for the virtual
source established in the plane of injection, i.e., x,/D = 0.0.
It was assumed to be of e l l i p t i c a l cross-sectional shape with the
minor axis parallel to X2» and composed of 100% hydrogen with
l o n g i t u d i n a l momentum determined from the dynamic pressure ratio,
qr. Computational evaluations of the concept were made for the
three values of qr for which data exist. Shown in Fig. 27 are
typical results, obtained for virtual source simulation of the
m u l t i p l e injection configuration for qr = 1.0. Superimposed are
appropriate experimental data [Ref. 23, 24] for the key comparison
bases of, 1) l o n g i t u d i n a l trajectory of maximum hydrogen concen-
tration, 2) height above the plate of the maximum concentration
trajectory, and 3) the lateral spreading of the diffusion pattern.
The peak hydrogen mass fraction is observed to drop precipitously
from its i n i t i a l 100% concentration, but to promptly level off in
good agreement with the multijet data. The deoendent variable
gradients associated with this solution were quite large, yet
3DBR-COMOC maintained stable solution behavior using the automatic
step-size constraint. The trajectory of the maximum hydrog.en con-
centration above the plate surface is s i m i l a r l y in good agreement
with multi-jet data. The computed lateral spreading agrees well
with multi-jet data to x-|/D = 30, but is progressively underpre-
dicted (maximum 15%) as the solution continues downstream. Simi-
lar agreement trends with data were recorded for the "softer"
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injection case,- qr = 0.5. However, fairly large disparities (up
to 40%) occurred for the "hard" jet, corresponding to qr = 1.5,
but for which the entire theoretical concept becomes rather sus-
pect. Figure 27 is completed with a plot of n., an integral
"mixing efficiency" parameter, [Ref. 24]. This parameter is
defined as the percentage of molecular hydrogen that would be
lost to the computed frozen flow H;? mass fraction d i s t r i b u t i o n
if all a v a i l a b l e \\% (or 0;?, depending on the l i m i t i n g reagent)
was converted to HpO within the computed velocity distribution.

The virtual source turbulent transport model was identical
to the prior cold flow studies with two minor exceptions. The
m i x i n g length hypothesis, e-| , was uniformly enforced until the
minimum velocity in the virtual source depression accelerated to
within ~2% of the corresponding boundary layer velocity without
injection. This occurred within 8 diameters downstream of the
injection Diane for all qr. Downstream of xi/D = 8, transition
from e] to £2 occurred w i t h i n one diameter above the Plate sur-
face. Due to the rather small i n i t i a l density within the virtual
source, the i n i t i a l computed mass defect was disoroportionally
small. From exnerimentation, a smaller constant (K = 0.05) was
found uniformly effective for the three studies.

With the change of one input flag, the virtual source
simulation was repeated with e q u i l i b r i u m combustion allowed.
Shown in Fig. 28 are the typical results of this computational
simulation, on the m u l t i p l e comparison bases previously dis-
cussed for the cold flow tests. The precipito.us drop in the
.peak hydrogen mass fraction concentration parallels the cold
flow experience, but the levels downstream of x-|/D = 7 lie well
below the non-reacting experience. The trajectory of the peak
hydrogen level is essentially parallel to the plate surface
through x^/D = 30. The lateral spreading of the jet is con-
siderably more pronounced for X]/D>10 in comparison to the cold
flow tests. The mixing efficiency parameter, ri, reaches 100%
at x-|/D = 20, well ahead of the cold flow simulation. These
differences reflect, in large part, the considerably different
temperature and density distributions. As shown in Fig. 28,
i g n i t i o n occurs immediately downstream of simulated injection,
and the peak temperature rapidly climbs to 2000°K (~3800°R).
It remains at this level until stoichiometric m i x i n g is corn-
Dieted, i.e., n = 100%; thereafter, it continuously decreases
as local heat addition from combustion is unable to balance
diffusion effects. A typical CPU time on the IBM 360/65 for
execution of this test with combustion was about 1275 seconds.
Execution of a cold flow counterpart (to x-j/D = 30) required
about 950 seconds. The 325 seconds a d d i t i o n a l for combustion
reflects the CPU required to execute the temperature iteration
loop in the combustion subroutine for this particular test case.
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DATA DECK PREPARATION

The data decks that generate the nominal Mach 5 isoenergetic
boundary layer flow, and the three-dimensional virtual source
simulation, come as standard test cases for 3DBR COMOC. The
listings of these data decks are included in Appendices A and B.
Another problem specification can be readily adapted from these
decks, since approximately one-third of a data deck is associated
with standard call sequences as well as output format specifica-
tion and arrangement instructions. These standard data should
not be altered without reference to the programmer's manual for
3DBR COMOC [Ref. 1]. The following discussion covers general
details, and i l l u s t r a t i v e examples are pertinent to the data deck
for the Mach 5 test case. Comments and descriptions should be
interpreted with reference to Appendix A. Subsequently, the
alterations required to establish the non-uniformly discretized
virtual source problem data deck from the Mach 5 test case are
presented and discussed.

Input preparation is subdivided into four phases.

Phase I. Reference Conditions and Control

Call

Parameter Specification

Parameter Code Function

FEBL Starts execution of COMOC
COMTITLE Reads one title card to appear on cover

page of output
RENAME I n i t i a l i z a t i o n

SNAME01 Integer parameter input
NEQKNN Number of dependent variables to be in-

tegrated in XI direction
IGAS 0 Isoenergetic flow with constant cp

1 General flows
IFR 0 E q u i l i b r i u m composition (IGASEl)

1 Frozen composition
KDUMP 0 Suppress debug output

1 Print debug output
NPVSX . No. of entries in pressure table
NSCX 0 Uniform X3 interval in discretization

1 Non-uniform X3 interval in discretization
NSCY 0 Uniform X2 interval in discretization

1 Non-uniform X2 interval in discretization
&NAME02 Floating point parameter input

UINF Reference (freestream) velocity (F/S)
T0FINF Reference stagnation temperature (°R)
REFL Reference length (F)
T0 Initial XI station (F)
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Cal 1 Parameter Code Function

TD Length of XI solution, starting at T0
(F)

DELP Percent of TD at which output is desired
EPS Integration control parameter (.01 to

.0001)
VSTART Percent of TD at which transverse veloc-

^ i ty (U2) computation starts
XSCALE \ M u l t i p l i e r s to convert discretization
YSCALE J to feet
CPA,CPH | Specific heats, stagnation temperatures,
T0A.T0H I and molecular weights for two-compo-
XMA.XMH nent, isoenergetic, frozen flow mixing

J (IGAS=0)
FEDIMN Generate vector lengths and array entry

points.

Phase II. Finite Element Discretization

LINK! 1 This call generates the finite element discretiza-
tion of the X2X3 plane. The data are read in free
format fields. .A "T" terminates any sequence.

A. Automatic Uniform Discretization
Occurs for NSCX = NSCY = 0
Set XSCALE = desired element width in the X3 direction
Set YSCALE = desired element height in the X2 direction
Read selection keys

e.g. YSCALE = 0.004
XSCALE = 0.002
1 21, 1 2,
T
Generates discretization made up of 21 node rows x 2
node columns, or 40 elements (x 1 element). Elements
are 0.004 F high by 0.002 F wide.

B. Automatic Non-Uniform Discretization
Occurs for NSCX = 1 and NSCY =1
Set X3 discretization first, X2 discretization second.
Data are used in sets of 3 integers at a time. First
integer identifies finite element interval concerned,
next two indicate element width (or height) as ratio
in feet, e.g., 3 1200 = 3/1200(F).

e.g. 1 3 1200,2 1 600,3 5 1200,...
T
1 1 600,7 1 600,8 7 1200,...
T
1 11, 1 4,
T
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This generates a finite element discretization of 11
node rows * 4 node columns. The element widths
(intervals between node columns) are respectively
3/1200 (F), 1/600 (F), .... The height of the first
7 element rows is uniformly 1/600 (F), eighth is
7/1200 (F), etc.

Phase III. Output Specification

Following the discretization phase, the user can input up to 10
title cards to head each generated output sequence.

The next -.65 input cards specify output format, see Appendix A,
and are typically not to be changed without reference to the

Up
programmer's manual

to 10 title cards can follow the standard output specification
to fully describe the problem being solved. This output

once, directly after printing of the cover page.will occur

DONE Calls end to output specification phase

Phase IV. Solution Parameters, Boundary Conditions,
and Initial Distributions

Call

VX3ST

e.g. 11*10.05 0.1

VPVSX

e.g. 4.3494 3.41...

IPINT -1

KBNO (N)

Function

Establishes NPVSX entries into static
pressure table as function of XI
Eleven pressure values at intervals AX1
of 0.05, starting at XI = 0.1.

Read pressures in PSFA

Standard Input consisting of integer
array of numbers corresponding to depen-
dent variables. Program w i l l integrate
first NEQKNN of them, plus U2.

KBNO (N) establishes fixed boundary
conditions for dependent variables N
through NN.

KBNO (NN)

e.g. KBNO
BOTTOM

Fixes variable
DONE discretization

values.

4 nodes on bottom of
at their i n i t i a l input
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Call Functi on

ICALL
ICALLS
LINKS
LINK1

VTEMP

-T
-1
43J

-58

e.g. VTEMP
82*1800,
T

VYY -(X)

Fixed c a l l i n g sequence for internal
evaluations, not to be changed.

Read i n i t i a l nodal total temoerature
distribution. Non-dimensionalize
entries by number in location 58 (TREF)

Read: first 82 nodes at T = 1800°R

Reads i n i t i a l conditions for dependent
v a r i a b l e N. Non-dimensionalize entries
by number in I X I.

VYYEND (N)

e.g. VYY -27
42*0.0 .
T
VYYEND 2

e.g. VYY -27
2*0.0 2*1654...

72*4004.8
T
VYYEND 1

QKNINT
DESCRIPT
DONE
DESCRIPT 3

DONE
COMOC
END

- EXIT

I n i t i a l U2 d istribution is all zeros
Non-dimensionalize entries by number
in location 27 (UREF)

I n i t i a l 111 distribution is zero at
first two nodes, 1654 F/S at second
two,..., last 72 nodes have 4004.8
F/S. Non-dimensionalize entries by
number in location 27 (UREF).

Standard completion of data deck

If a second
insert data
before EXIT

test case is desired,
deck starting with COMTITLE
card.

62



Listed in Table 9 are the changes to the Mach 5 test case
data deck required to establish the three-dimensional virtual
source data deck. The complete listing of the latter is included
as Appendix B. The following explains the alterations with
.respect to input phase and the line numbers in Table 9.

Input
Phase

I

II

Line No,

1
2

7
8

Descri ption

Title card for output cover page
Reference condition and control parameters
for combustion calculations using five
dependent variables

Form non-uniform discretization, using 11
node rows * 6 node columns, producing 100
finite elements

III Title card to head each output call
Detailed problem description

IV Entry locations of longitudinal pressure
distribution (constant)
66 nodes have uniform stagnation temperature
Initial Ul distribution

Initial 1)2
Initial 02
of virtual
Initial N2
Initial H2

distribution
di stri but ion
source
di stri bution
distri but ion

is zero
ref1ects 1 ocation

Hence* establishing the data deck for a m u l t i p l e dependent vari-
able, three-dimensional problem using.a. non-uniform finite ele-
ment discretization is readily accomplished. In this case, only
forty data card changes were required, using the two-dimensional
Mach 5 data deck as a master deck.
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ẑ
0

OO
Z
u.
!_!

D

LU
LU
CC.
X

oc

u.

LU
00
<
(.J

y/

<->

LU

O

O

o
o

0
, 

K
O

U
M

P
=

0

=
 l

r

=
.0

0
3

3
3

3
3

3
3

,

u >- -^
QC O LL
U, 10 LU
•- Z a:

•.
0
.

ro
ro
in

•• •• II

II II Z
oo x >—
< O U.
O^5 O
^*^ Z ^"

^ (M
u> ^ r^
II r\J rvi
Z ll nj
Z x n
;̂ VO LL
0 > Z
LL O. • —
z z - o

OJ

UJ

UJ

2

O

o
II

OO
CL
LU

O
•• o

o — •

» o in
O "-1 *M

« II (M
in i—
II OC
a < in
-J t- QC
UJ CO •• O
o > o t-

o <
ro •— •
rO Z
ro O O
ro in Z
ro -< LU
ro -o
ro |
O •* QC
0 0

•• o o <
o n o oc
-J UJ t-i UJ
• -J 51

o < r>
u o in z
D oo cxj |
*- > —< UJ

o
•• o

ro ro z
ro
ro •• »
ro O ro
ro Q x
m — .
J2 z
O LU
0 U UJ
. in i

O t~
» II LL

O LU rv cc.
• _l

O < » oo
II 0 0 |-
C oo 0 z

z:
LU

Ln ry

Z

O
0

0
in
OJ

o

»
o
o

in
r-
*>^

rj*1

»
o
o
»^

vn
r\j
^^

o> rvj
x

•>
O z
"̂  LL.'

LU

UT*i H—

U-

£T

r-
oo

^ ^~
o z
-- UJ

LU
U> CC

Z

LU UJ
O U
of a:

5 c
U, CO 00
LU
Ct _l _J
_j <r <
II 3 ^

>- H
CO QC QC

UJ •— —
-1 > >
<I •
U 1 1

z z
>• 0 O

1 ta* ^H

X O O
UJ LU

LU OC QC
O
Z >- V
LU OC OC
I < «

«. o C
u. z z

QC a o
-J CO CC

>• o o
CO ^ Z

»-^ »— 1
D H- »-
II 1 LJ LJ
rv) < <
M LL LL'
-j ct a
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CONCLUDING REMARKS

This report documents the theoretical foundation and the
mechanical structure of the Three-Dim,ens ional Boundary Region
Variant of the COMOC computer program system. A unified effort
has been made to generate a computational capability that can be
addressed to a wide range of problems i n v o l v i n g comnlex three-
dimensional flow fields without requiring undue mathematical
prowess on the part of the user. The success of this tyoe of
venture can only be measured by the degree to which these goals
are approached or attained. As with any large computer orogram,
it has been debugged to the extent of the specific problems
already explored. Hopefully, if bugs remain, they are not of
such a d e b i l i t a t i n g nature as to severely l i m i t the usefulness
of the program. In this regard, it is suggested that the poten-
tial user first experiment with a few problems whose solution
character is known, in order to attest to the program's perfor-
mance for a particular problem class.
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APPENDIX A

DATA DECK LISTING FOR MACH 5
TWO-DIMENSIONAL FLOW CHECK CASE

FEBL
COMTITLE

CHECK CASE,TWO DIMENSIONAL SUPERSONIC FLOW WITH PRESSURE GRADIENT
FENAME
ENAME01

N£OKN!M = 2,
NPVSX=11,

IGAS=Ot
N SC X= 1,

IFR=0,
NSCY=1,

KOUMP=0,

TOP INF=1800. ,
TD=0.2,
CPA=0.24,
XMA=28.ST,
YSCALE=1.0,

RFFL=.0132
DELP=5.0t
CPH=3.445,
XMH=2.016,

RENO
SNAME02

. UINF=40C4.8,
TQ=0.1f
V$TART=5 .0 ,
TOH=C.O,
XSCALE=1 .0 ,

SEND
FEOIMN
LINK I 1

I 2 1000,
T
1 2 1000,
T
1 21, 1 2,
T

CHECK C A S E , T W n DIMENSIONAL SUPERSONIC FLCW WITH PRESSURE GRADIENT

TOA=1800.,

SETUP
2

21

2 1CCO,

2 1CCC,

REFERENCE ENGLISH-FT ENGLISH-IN M-K-S C-G-S

DONE
MPAHA -1

2 2
2 2
2 ?
2 2
2 -175
2 2
2 2
2 2
2 2
2 2

HOLIST

VELOCITY.. .
DENSITY. .. .
TEMPER ATURE

FROZ .SPEC.
V I S C O S I T Y . .

162
2
2
2
2
2
2

169
2

2

HEAT

LOCAL PRF.SSURP

164 163
164 163
170 174
165 2

2 2
176 2

177 178
168 167

2 2
2

.FT.... .... .

.LBP/FT3. .. .

.R4NKINE . . . .

.BTU/LBM. ...

.RTL'/LBM-R. .

. L^M/FT-S. . .

.PSF .PSI

. M

.KG/M3.

.KELVIN.. .,

.KJ/KG....,

.KJ/KG-K. ..

.NT-S/12...

.NT/M2 .. . . .

. CM . . . .

.CM/S..

.G/CC..

.N.A...

.N.A...

.N.A...

.POISE.

.TORR..
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LOCAL SOLUT ION
Xl/LRFF
ICNUMB
200
200
200
200
999
200
200

61
11

ICSAVE
1248
2248
1247

-I
4*4
10

97
38

36

3
200
200
200

36

100
12

-1
285
278
334

14

320
4248
2S2

MACH NC. DPDX1 JLBF/FT3)
DXl/lREF EPSILON

2CC 27 200 2*27
2*10 200 58 200 58

<57 2CO 200 30 200 30
2*38

36 36

134 122
65

284 IC248
524f 82*8
314

MA
0

200
200

MIX E F F . ( F T A )
OX1MIN/LREF

T U,T,hS,RHO,N2,V,CP,HTOT,H2,02»DIFU fPR NO. ,LAM.VISC. tSCT.NO.
IOMULT -I

14*2
T U,T,HS,RHC,N2fV,CP,HTOT,H2,02tOIFU,PR NO.,LAM.VlSC.iSCT.NO.

OESCRIPT 2
Ul/UREF T/TREF H S T A T / H R E F RHO/PHORFF ELEM.N2 M A S . F R A C
U2/UREF CPF/CPFREF HTOT/HRFF FLEM.H2 MAS.FRACELEM.02 MAS.FRAC
EFF.MU/MUREF EFF,,. PRANDTL NO.MU/WUREF EFF.SCHMIDT NO.
CCMOC
CESCRIPT

.COMOC .CHECK CASE FOR TWO-DIMENSIONAL FLOW WITH PRESSURE GRADIENT,
fl C O M P A R A B L E S I M I L A R I T Y SOLUTION HAS BEEN REPORTED BY CHRISTIAN ET AL,
««L 703-'p'o?3. "SPECIFIC C A S E CONSIDERED CORRESPONDS TO MACH NO.5 BETA=0.5,
S( 0)=q"^'Ab,I'A8ATIC W A L L I . -SCLUTION STARTED AT X=0.10 FT. WITH SIMILAR
SOLUTIOr.N".PR'OFILE.LAMiiINA1RmLOW WITH V ISCOSITY FROM SUTHERLANDS LAW.
ClSCREti/ATION-:SPAN :S rT-HR^EE TIMES INITIAL BOUNDARY LAYER THICKNESS.
ISOPNPR.CF'Ttc FL'OV«-WITH TOTAL TEMPERATURE = isoo R.

D C N F '" "Si=/

11*10.05 0.1

2.846 2.464.3494 3.41
T •.'."'-! "

I P I N T
I

K 3NO
"O.tTOM

KI3NO
BOTTOM

K B N O
BOTTOM

-I
4
1

-40

T XI TABLE FOR PRESSURE

2.2176 2.02 1.857 1.73 1.6178 1.53 1.4451

3 2 .T INTEGRATE Ul,ENTH.,02,N2tH2,U3,U2

DONE
FIXES Ul ( V A R I A 3 L E NO. I) ALCNG WALL TO INITIAL VALUE
2

DCNF
FIXES U2 ( V A R I A B L E NO. 2) ALONG HALL TO INITIAL VALUE
4

DONE - .
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F I X E S
-I(CALL

2 5
I C A L L S -1

10 6
LINK3 4
LINK! 3
VTEMP

42*1800
T I N I T I A L

V Y Y
2*0.0 2*865.

2*3992.

H ( V A R I A B L E NO. 4) ALONG W A L L TO INITIAL VALUE

2 2 1 1 2 T

^ 12 5 6 3 T
DIMEN
GEOMFL

-58

TOTAL TEMPERATURE PROFILE
-27

2*1654. 2*2373.
2*4CC4.2

2 *3 00* .
24*4004.8

2*3550. 2*3879.

T INITIAL
VYYEND 1
VYY

2*0.0
2*253.

T INITIAL
VYYEND 2
VYY

T INITIAL
VYYEND 8
V Y Y

T INITIAL
VYYEND 10
VYY

T INITIAL
VYYEND 9
OKN INT
O E S C R I P T
OCNE
C E S C R I P T 3

REFERENCE
REFERENCE
EVALUATED
FREESTREAM

Ul PROFILE

-27
2*2.12 2*20.14
2*441. 24*45C.

U2 PROFILE

2*53.52 2*83.2 2*109.3 2*165.

42*. 2330
02 MASS FRACTION' PROFILE

42*.767C
N2 MASS FRACTICN PROFILE

42*0.C
H2 MASS FRACTION PROFILE

LENGTH,LREF
VISCOSITY.LAMINAR VALUE
AT RFF. TEMPERATURE.
VELOCITY AT XO(=UREF»

43 FT.

STAGNATION TEMPERATURE (CONSTANT , = TREFI
FREF.STRFAM DENSITY AT XO(=RHOREF)
FREESTRFAM MACH NUMBER AT XO
STATIC PRESSURE AT XC
NUMBER OF NODES
NUMBER OF FINITE ELEMENTS

DONE
COMOC
END
EXIT

38
27
58
10

154
9

-16
-14

LBM/FT-S
FT/S
OEG R
LBM/FT3

PSF
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APPENDIX.B

DATA DECK LISTING FOR VIRTUAL SOURCE
THREE-DIMENSIONAL CHECK CASE

FERL
COMTlT lE

COMOC CHECK CASF FOP THREE DIMENSIONAL REACTING BOUNDARY REGION FLOW
RENAME

ENAME01
IGAS=1,
NSCX=1,

IFR=Of
NSCY=l,

KOUMP=0,
NPVSX=2,

NEIE2=1,
6END
GNAME02

UINF=2272., TGFINF=533.0,
T0=0.0, TD=0.10,
XSCALE=C.C03333333 , YSCALE=0. 003333333 , VST ART= lOl.Ot

6ENO
FEDIMN
LINK I 1

1 75 100, 2 50 100. 3 125 IOC. 4 150 100, 5 225 100,
T INCREMENTS BETWEEN X3» NCDE-NUMERATOR-DENOMINATOR

1 5 1C, 7 5 1C, 8 125 100, 9 175 100, 10 250 100,
T INCREMENTS BETWEEN X2

1 11, I t,
T 11 ROWS AND 6 COLUMNS NORMALIZED BY LREF , HENCE X-Y SCALES = LREF

CHECK C A S E , THREE DIMENSIONAL REACTING BOUNDARY REGION - VIRTUAL SOURCE

REFL=.003333333,
OELP=5.0, EPS=O.Ol,

SETUP

REFERENCE ENCLISH-FT ENGLISH-IN

•OONE
MP*RA

2
2
2
2
2
2
2
2
2
2

-1
?
2
2
2

-175
2
2
2
2
2

162
2
2
2
2
2
2
169
2

2

164
164
170
165

v 2
176

177
lee
2

2

163
163
174

2
2
2
178

167
2

M-K-S C-G-S

HOL 1ST
LENGTH
VELOCITY
DENSITY
TEMPERATURE. . . .
ENTHALPY
FROZ.SPEC. HEAT
VISCOSITY .
LOCAL PRESSURE
LOCAL SOLUTION

.FT

.FT/S

.LBM/FT3...

.RANKINE...

.BTLVLBM...

.BTL/LBM-R.

.LBM/FT-S..

.PSF
KACH NO.

.IN M

. N.A .M/S

.N.A. KG/M3

.N.A... KELVIN

.N.A........ .KJ/KG

.N.A KJ/KG-K....

.N.A NT-S/M2....

.PSI NT/M2
DPDXl (LBF/FT3) MAX. H2 CONC.

.CM

.CM/S

.G/CC

.N.A

.N.A

.N.A

.POISE

.TORR
MIX EFF.(ETA)
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Xl /LREF DXl /LREF EPSILON DXlHIN/LPEf
TONUM3
200
200
200
200

999
200
200

61
1 1

-I
4*43
10 200

97 20C
38 200

36 36

100
12 14

200 27 200 2*27
2*10 200 58

=7 200 200 30
2*38

3t 36

134 122
£5

•
200 58 200
200 30 200

-1
285 320 284 10248
278 4248 9246 8248
334 2S2 314
HS,RHO,N2,V,CP,HTOT,H2,02,01FU,PR
-1

NO. ,LAM.VISC..SCT.NO.

RHO/RHQPEF ELEM.N2 MAS.FRAC
ELEM.H2 MAS.FRACELEM.02 MAS.FRAC
EFF.SCHMIDT NO.

I O S A V E
1248
2248
1247
T U,T

IOMULT
14*2
T U,T,HS,RHO,N2,V,CP,HTOT,H2,02,01FU ,PR NO. ,LAM.VISC.,SCT.NO.

DESCRIPT 2
Ul/UREF T/TREF HSTAT/HREF
U2/UREF CPF/CPFREF HTOT/HREF
EFF .MU/MUREF EFF. PRANDTL NO.MLVMUPEF
COMOC
D E S C R I P T

CHF.CK C A S E , T H R E E DIMENSIONAL R E A C T I N G BOUNDARY REGION - VIRTUAL SOURCE
(H2 /02 /A IR S Y S T E M WITH EQUILIBRIUM CHEMISTRY) . PROBLEM CONSIDERED
REPRESENTS T R A N S V E R S E H2 INJECTION INTO A SUPERSONIC AIR S T R E A M
C H A R A C T E R I S T I C OF S C R A M J E T FUEL I NJECTI ON, SEE ROGERS N A S A TNC-6U4,
1971 AND N A S A TND-6476,1971 FOR E X P E R I M E N T A L STUDY OF THIS PROBLEM.
TURBULENCE MODEL EMPLOYED IS DESCRIBED IN USER'S MANUAL N A S A CR-132450,1974.
C A L C U L A T I O N S ARE S T A R T E D USING V I R T U A L SOURCE CONCEPT TO REPLACE

FIELD.

FOR PRESSURE

COMPL
DONE
VX3ST

0.0
VPVSX

193.
IPINT

I
K 6NO
ROTTOM

K BNO
BOTTOM

K6NO
BOTTOM

FX NEAR INJECTION FLOW F

100.

193.
-1
4 . 8
1

FIXES Ul
2

FIXES U2
4

FIXES H

T XI TABLE

T PRE.SSURE

10 c 3

DCNE
(VARIABLE NO.

DONE
(VARIABLE NO.

30CNE
(VARIABLE NO.

TABLE PSF

2 T INTEGRATE Ul ,ENTH. , 02, N2, H2. U3,U2

1) ALONG W A L L TO INITIAL V A L U E

2) ALCNG W A L L TO INITIAL V A L U E

41 ALCNG W A L L TO INITIAL V A L U E
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KRNO
BOTTOM

KPNO
ROT TOM

KBNO
BOTTOM

FIXES
9

FIXES
10

ICALL
2

KALLS
10

L INK3
L INK I
VTEMP

66*=33,
T INITIAL

VYY

-I
5

-1
6
4
3

TOTAL

3DONE
(VARIABLE

3DCNE
(VARIABLE

3DQNE
(VARIABLE

2 I I i

12 5 6 I

-58

TEMPERATURE
-27

NO. 8) ALONG W A L L TO INITIAL VALUE

NO. 9) ALONG WALL TO INIT IAL VALUE

NO. 10 ALONG W A L L TO INITIAL VALUE

DIM EN
GEOMFL

PROFILE

6*0.0
6*1503.
6*1660.
2*1550. 4*1159.
2*1550. 4*1833.
2*1550. 4*1892.
2*2272. 4*1942.
2*2272. 4*1985.
2*2272. 4*2C74.
2*2272. 4*2169.
6*2272.

T INITIAL Ul PROFILE
V Y Y E N D 1
VYY -27

66*0.0
T INITIAL U2 PROFILE

VVYEND 2
V Y Y

13*.233
T INITIAL 02

VYYEND 8
VYY

18*.767
T INITIAL N2

V Y Y E N D 10
VYY

13*0.0
T INITIAL H2

V Y Y E N D 9
OKN INT
O E S C R I P T

DONE
D E S C R I P T 3

REFERENCE LENGTH,LREF
RPFFRFNCE V I S C O S I T Y . L A P I N A R VALUE
EVALUATED A T REF . TEMPERATURE.
FREESTRFf tM VELOCITY A T X C ( = U R E F )
S T A G N A T I O N TEMPERATURE ( C O N S T A N T T = T R E F )
FREESTREAM DENSITY A T X O ( = R H C R E F )
FREESTP.EAM MACH NUMBER AT XO
S T A T I C PRESSURE A T X C
NUMBER OF NODES
NUMBER OF FINITE ELEMENTS

DONE

2*0.0
M A S S FRACTION

2*0.0
M A S S F R A C T I O N

2*1.0
M A S S F R A C T I O N

4*.233
PROFILE

4*.767
PROFILE

4*0.0
PROFILE

2*0.0 4*.233 2*0.0

2*0.0 4*.767 2*0.0

2*1.0 4*0.0 2*1.0

34*.233

34*.767

34*0.0

43 FT.

38 LBM/FT-S
27 FT/S
58 DEG R
10 LBM/FT3

154
9 PSF

-16
-14

F X I T
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