General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
FINAL REPORT

NASA CONTRACT NAS 9-12728

APOLLO GASTROINTESTINAL ANALYSIS

August 15, 1975

Submitted by: Buford L. Nichols, M.D., M.S.
Head, Section of Nutrition and Gastroenterology
Department of Pediatrics
Baylor College of Medicine
Houston, Texas 77025

C. T. L. Huang, Ph.D.
Section of Nutrition and Gastroenterology
Department of Pediatrics
Baylor College of Medicine
Houston, Texas 77025
I. Objective and General Description

During the Apollo 17 flight, the Command Module Pilot and the Lunar Module Pilot experienced one loose bowel movement each on the eleventh and twelfth days of flight, respectively. In each case, Lomotil was taken as a preventive measure and was effective. Nevertheless, the occurrence of this unpleasant complication led to questions concerning the etiology of this gastrointestinal problem in the flight. In the Spring of 1973 we reported that alterations in fecal bile acid (BA) pattern were observed in samples obtained during this period of space flight (in-flight study). Specifically, % dihydroxy BAs, such as deoxycholic (DOC) acid were significantly reduced during the diarrheal episode, despite the small number of analyses performed on BA. This observation is indicative of an alteration of BA metabolism associated with diarrhea of undetermined cause. In the summer of 1973, we started to evaluate a possible role of diet in the genesis of this Apollo 17 problem by feeding the identical diet to three normal volunteers under normal ground conditions. No significant changes in BA composition were observed in duodenal or fecal samples obtained during the "ground" test of the Apollo 17 diet. In addition, no abnormalities of intestinal bacterial flora occurred during the study. This clearly indicates that the diet was not the cause of the diarrhea or the altered BA metabolism. (See Technical Report, December 3, 1973).

The next phase of our investigation was a study of BA profiles of patients with acute diarrhea of known or unknown etiology. The comparison of these data with that of Apollo 17 space flight was undertaken to provide clues to the cause of diarrhea as it occurred in the Apollo mission. The following is a report on the results of the study on fecal BA pattern of subjects with acute shigellosis (SH) and travellers' diarrhea (TD) of non-specific nature. Based on the findings obtained from these two projects, we can re-examine the data from Apollo 17 pre- and in-flight periods and that from the relevant pair-fed "ground" test.

II. Shigella Diarrhea*

Volunteers used in this study were healthy adult male inmates at the Maryland House of Correction, Jessup, Md. Each subject was fed with 139 organisms of Shigella flexneri 2a (M42-43) strain contained in 45 ml of

*Presented in American Chemical Society, 30th Southwest Regional Meeting at Houston, Texas, December 9-11, 1974.
milk. About 40% of the subjects developed dysentery within 3 days after receiving the organism. All the diarrheal stools collected had positive identification of Shigella flexneri without exception. Fecal BA and neutral steroids from five randomly selected subjects (before and during infection but before antibiotic treatment) were analyzed by gas-liquid chromatography. In comparison with controls, an increase in primary BAs by 4 - 5 fold, decrease in secondary BAs such as DOC and LC by about two-fold each was observed (Table 1). Shigella diarrhea also induced the following changes in fecal neutral steroid profile: 1) An increase in unmodified cholesterol by 3.5 fold; 2) a decrease in bacterial metabolites such as coprostanol (CO), coprostanone (C00) and epicoprostanol by 4 - 7 fold (Table 2). These results are consistent with the hypothesis that shigella diarrhea is associated with a reduced bacterial modification of acidic and neutral sterols in the intestine, probably due to an increase in transit rate. This is further supported by our studies on the fecal BA profiles of children with acute shigellosis and the diarrhea associated with enteropathogenic E. coli and Salmonella. Whether this phenomenon extends to all types of specific diarrhea remains to be established.

III. Travellers' Diarrhea**

Five adult male volunteers attending the 5th World Congress of Gastroenterology, October 1974 in Mexico City contracted Travellers' Diarrhea of non-specific nature. Fecal samples collected during and four weeks after recovery from diarrhea were analyzed by gas-liquid chromatography. In comparison with controls, an increase in % DOC and decrease in % LC was observed. Percent CDC was also decreased in diarrhea, but the difference is not significant statistically (p < 0.10). Total bile acid concentration in µg/g % C and unidentified BA were not changed (Table 3). This pattern is strikingly different from shigella diarrhea in that bacterial activity on fecal sterols was not reduced in the diarrheal state. Instead, the shift in BA profile in Travellers' Diarrhea could be an indication of enhanced bacterial 7α-dehydroxylation. To confirm this, analysis of fecal neutral sterols (to check the degree of conversion of cholesterol into coprostanol) and/or direct incubation of feces with radioactive cholic acid-24-14C (to check the conversion of cholic into DOC) should be performed. The observation that DOC was significantly increased in the case of TD raises the question concerning the role of BA in the genesis of TD of unknown cause. DOC is known to be the most potent of all BAs in the inhibition of water absorption in the human colon. It can also induce water secretion at higher concentrations. However, DOC is known to adsorb to dietary fiber during its transit through the intestinal tract. The current concept is

**To be presented at American Chemical Society 27th Southwest-31st Southwest Combined Regional Meeting at Memphis, Tennessee, October 29-31, 1975.
+ Lithocholic
that only those BAs not adsorbed to solid materials are biologically active. In other words, DOC exerts its effects as a potent laxative only when it is in solution. To support this hypothesis, Hofmann observed that BA contents in the supernatant fractions of stool specimens of patients with ileal resection (BA malabsorption) were considerably augmented relative to pellet fractions (obtained by ultracentrifugation at 100,000 x g) as compared to those of healthy normal controls. In order to check the physical state of BA in the case of TD, we adopted Hofmann's method for the fractionation of feces. The results are shown in Table 4. It is quite obvious that the relative BA contents of pellet to supernatant fractions of the TD subjects were comparable to those of non-diarrheal controls. In both groups, the BA contents in solution (supernatant) constitute only 7 - 14% of total BA in feces.

This is in contrast to Hofmann's observation in ileal resection. On the other hand, % DOC in solution increases significantly in TD patients (49.0 ± 3.9 vs 28.8 ± 3.3 in controls, p < 0.02). Apparently, further study on the role of BA in TD is warranted. It should be mentioned that the sterol profiles of the control samples from the TD project were completely comparable to those of Shigella controls (see previous section). It is evident then that the differences in BA patterns between the diarrheal stools from these two independent studies can be attributed only to the diseases themselves.

IV. Analysis of Fecal Samples from Apollo 17 Mission*

Fecal samples from the following sources were analyzed by the combined thin-layer/gas-liquid chromatography: 1) paired-fed ground study; 2) Apollo 17 pre-flight period; 3) Apollo 17 in-flight period.

A. Paired-fed Ground Study

A possible role of dietary changes in the pathogenesis of diarrhea during the Apollo 17 spaceflight was ruled out by feeding the identical diet to three normal male volunteers under normal ground conditions. No significant changes in BA compositions were observed in fecal or duodenal samples obtained during the "ground" test of the Apollo 17 diet (Table 5). Furthermore, no abnormalities of intestinal micro-organisms occurred during the ground study (see Technical Report, Dec. 3, 1973). We also analyzed the neutral sterol (NS) fraction of the samples from this project by the chromatographic technique modified from that of Grundy et al in order to confirm our findings on BA. No significant differences in neutral sterol composition were observed for all stool specimens from "early" and "late" periods of Apollo diet (Table 6). Thus, analysis of both BA and neutral

* A part of the data from this study was presented at the Western Hemisphere Nutrition Congress IV, Miami Beach, Fla., August 19-22, 1974.
sterol strongly indicated that no alteration on BA or NS metabolism was
associated with dietary changes in the Apollo project. It is noteworthy
to indicate that fecal sterol compositions of the paired-fed subjects
were very similar to those of control subjects on regular mixed diets
from both shigellosis and TD studies despite apparent differences in the
fibre contents in their diets. These observations are interesting be-
cause dietary fibre has been theorized to play a role in the transit
rate of the bowel contents in the binding of BAs and the alteration of
colic microflora. However, the total BA and NS concentrations in
mg/g of feces (wet weight) of the paired-fed subjects were indeed con-
siderably lower (by 6 - 10 fold) than those on diets of higher fibre
content (see Tables 11 - 12).

B. Fecal Samples from Apollo 17 Pre-flight Period

Fecal BA analyses on samples from three astronauts in the pre-
flight period show some significant changes as compared with those of
"ground" studies on the identical diet. A reduction in LC (27.2 ± 7.1
vs 41.7 ± 8.4 in ground controls, p < 0.005) and in increase in unidenti-
fied BA (7.8 ± 4.9 vs 2.9 ± 1.6 in ground controls, p < 0.02) were ob-
served, although total BA concentrations in mg/g of dry weight were simi-
lar for both groups (see Table 7). Mean value of % DOC was also lower in
pre-flight (32.7 ± 4.9) than that of ground study (39.7 ± 4.9) but the
difference is not significant (p < 0.10). Although it is tempting to postu-
late a reduction in bacteria activity in pre-flight period due to environ-
mental stress and/or age differences (subjects used in ground study are
younger adults), further studies are necessary to clarify this.

C. Fecal Samples from Apollo 17 Flight

Sterol profiles obtained for fecal samples with wet weight < 150 g/
bowel movement (BM) were comparable with those of wet weight > 200 g/BM ex-
cept that % DOC was reduced in samples of higher fecal mass (p < 0.05)
Table 8). In fact, there was a negative correlation between % DOC of
total BA and fecal wet weight in g/BM (r = 0.65, p < 0.02). The samples
with wet weight of < 150 g/BM have significantly higher DOC than that of
pre-flight period (46.2 ± 6.9 vs 32.7 ± 7.9, p < 0.01). Total BA concen-
tration in mg/g of dry weight also increased by about 3 fold in the flight
(p < 0.01). This is probably due to a significant reduction in both the
frequency of bowel movement (from 1.1 ± 0.2 day⁻¹ pre-flight to 0.4 ± 0.1
day⁻¹ in flight, p < 0.01) and the mean fecal wet weight per day for each
astronaut during the flight (Table 10). On the other hand, fecal BA of in-
flight samples with > 200 g/BM were entirely comparable with those of pre-

Jan-Feb 1975. Published by National Dairy Council, Chicago, Ill.
flight period (Table 11). Tables 11 - 12 give a general survey of the data on BA and NS from the projects studied by us with regard to the gastrointestinal problems encountered during Apollo 17 flight. In conclusion, fecal sterol analysis of Apollo 17 mission gives no indication of an infectious diarrhea of specific (such as shigellosis) or non-specific (such as travellers' diarrhea) etiology occurring in the entire flight period. A possible role of dietary changes in the pathogenesis of diarrhea was ruled out. At this point, it seems reasonable to assume that gastrointestinal problems encountered in Apollo flight are the consequences of altered physiology, perhaps secondary to physical or emotional stress of flight.

V. Other Relevant Studies to be Done in This Project

1. Drug-induced diarrhea or constipation - to study fecal BA and neutral sterols profile as a function of intestinal motility and transit rate by the administration of castor oil, magnesium sulfate or Lomotil.

2. Effect of virus diarrhea on fecal sterols.

3. Completion of neutral sterol analysis on travellers' diarrhea and Apollo pre-flight and in-flight samples in order to confirm degree of bacterial modification on BAs and the large increase in NS excretion in flight (Table 9). This enhanced NS excretion in flight, if confirmed, may provide an answer to the 15% decrease in serum cholesterol as observed during the flight.

VI. List of Publications

A. Papers

B. Abstracts

Production of Coprostanol as an Index of Bacterial 7α-Dehydroxylase Activity. C. T. L. Huang and B. L. Nichols. To be presented at the American Chemical Society 27th Southeast-31st Southwest Combined Regional Meeting, Memphis, Tennessee, October 1975.

C. Manuscripts in Preparation

Fecal Steroids in Diarrhea. II. Travellers' Diarrhea. C. T. L. Huang, J. Udall, M. Merson and B. L. Nichols.

TABLE 1

BILE ACID COMPOSITION OF FECAL SAMPLES FROM SHIGELLA-CHALLENGED SUBJECTS

<table>
<thead>
<tr>
<th>% Bile Acid (BA)</th>
<th>Non-Diarrhea</th>
<th>Diarrhea</th>
<th>Mean ± SD</th>
<th>Mean ± SD</th>
<th>pF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lithocholic</td>
<td>45.2</td>
<td>45.2</td>
<td>30.6</td>
<td>43.4</td>
<td>37.9</td>
</tr>
<tr>
<td>Isodeoxycholic</td>
<td>12.0</td>
<td>5.0</td>
<td>12.6</td>
<td>15.5</td>
<td>11.7</td>
</tr>
<tr>
<td>Deoxycholic</td>
<td>29.0</td>
<td>35.3</td>
<td>48.8</td>
<td>25.0</td>
<td>32.2</td>
</tr>
<tr>
<td>Chenodeoxycholic</td>
<td>3.8</td>
<td>3.0</td>
<td>0.7</td>
<td>4.9</td>
<td>3.5</td>
</tr>
<tr>
<td>Ursodeoxycholic</td>
<td>3.7</td>
<td>2.9</td>
<td>0.6</td>
<td>1.3</td>
<td>0.9</td>
</tr>
<tr>
<td>Cholic</td>
<td>0.9</td>
<td>2.4</td>
<td>2.2</td>
<td>2.9</td>
<td>1.1</td>
</tr>
<tr>
<td>Keto Acidb</td>
<td>3.4</td>
<td>1.8</td>
<td>3.9</td>
<td>5.0</td>
<td>10.7</td>
</tr>
<tr>
<td>Unidentified</td>
<td>2.0</td>
<td>4.4</td>
<td>0.6</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Primary BAc</td>
<td>4.7</td>
<td>5.4</td>
<td>2.9</td>
<td>7.8</td>
<td>4.6</td>
</tr>
<tr>
<td>DIOH BAd</td>
<td>48.5</td>
<td>46.2</td>
<td>62.7</td>
<td>46.7</td>
<td>48.3</td>
</tr>
<tr>
<td>Total BA (mg/g)e</td>
<td>7.6</td>
<td>22.9</td>
<td>29.9</td>
<td>9.6</td>
<td>5.8</td>
</tr>
</tbody>
</table>

a. All values are expressed as % of total bile acid unless otherwise indicated. NS = not significant.
b. Keto acid includes 7-ketolithocholic, 12-ketolithocholic, $\delta^6(11)\delta$-ketolithocholic, 7-ketodeoxycholic, and 3,12-diketocholanolic acids.
c. Primary BA includes cholic andchenodeoxycholic acids.
d. DIOH BA includes chenodeoxycholic, deoxycholic, isodeoxycholic and ursodeoxycholic acids.
e. Concentrations are in mg/g of feces (wet weight).
f. Determined by Student t-test.
<table>
<thead>
<tr>
<th>Subject</th>
<th>C.B.</th>
<th>A.N.</th>
<th>V.W.</th>
<th>J.L.</th>
<th>K.R.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± SD</td>
<td>12.2 ± 0.9</td>
<td>14.8 ± 1.2</td>
<td>15.2 ± 1.2</td>
<td>13.0 ± 1.0</td>
<td>13.5 ± 1.1</td>
</tr>
<tr>
<td>95% CI</td>
<td>12.0 to 12.4</td>
<td>14.4 to 15.2</td>
<td>14.8 to 15.6</td>
<td>12.5 to 13.5</td>
<td>13.2 to 13.8</td>
</tr>
</tbody>
</table>

Table 2: Neutrophil Stained Conjugation of Buccal Samples From Stigmata-Challenged Subjects.
TABLE 3

BILE ACID COMPOSITION OF FECAL SAMPLES FROM PATIENTS WITH TRAVELLERS' DIARRHEA IN MEXICO CITY

<table>
<thead>
<tr>
<th>Bile Acid (BA)</th>
<th>Traveller's Diarrhea (n = 5)</th>
<th>Controls (n = 9)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M.M.</td>
<td>H.S.</td>
</tr>
<tr>
<td>C</td>
<td>29.1</td>
<td>33.9</td>
</tr>
<tr>
<td>ISODOC</td>
<td>1.7</td>
<td>1.8</td>
</tr>
<tr>
<td>DC</td>
<td>33.9</td>
<td>47.6</td>
</tr>
<tr>
<td>CD</td>
<td>2.9</td>
<td>1.5</td>
</tr>
<tr>
<td>ISODOC</td>
<td>1.6</td>
<td>0.4</td>
</tr>
<tr>
<td>KETO A</td>
<td>1.6</td>
<td>1.3</td>
</tr>
<tr>
<td>UNIDENTIFIED</td>
<td>4.4</td>
<td>0.5</td>
</tr>
<tr>
<td>PRIMARY BA</td>
<td>4.5</td>
<td>2.8</td>
</tr>
<tr>
<td>DIH BA</td>
<td>49.6</td>
<td>61.3</td>
</tr>
</tbody>
</table>

TOTAL BA (mg/g)

<table>
<thead>
<tr>
<th></th>
<th>Mean ± SEM</th>
<th>p^a</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.294</td>
<td>1.378</td>
<td></td>
</tr>
<tr>
<td>0.795</td>
<td>0.804</td>
<td></td>
</tr>
<tr>
<td>0.256</td>
<td>0.705 ± 0.205</td>
<td></td>
</tr>
<tr>
<td>8.743 ± 0.354</td>
<td>NS</td>
<td></td>
</tr>
</tbody>
</table>

Significant differences as determined by Student's t-test.

Concentrations of BA in mg per g of homogenized feces (wet weight).

Abbreviations used: LC = Lithocholic; ISODOC = Isodeoxycholic; DOC = Deoxycholic; CDC = Chenodeoxycholic; URSODOC = Ursodeoxycholic; C = Cholic; KETO A = KETO Acid (see footnotes under Table I); Primary BA and DIH BA (see footnotes under Table I).
TABLE 4

COMPOSITION OF BILE ACIDS IN THE PELLET AND SUPERNATANT FRACTIONS OF TRAVELLERS' DIARRHEA STOOLS OBTAINED BY ULTRACENTRIFUGATION METHOD\(^a, b\)

<table>
<thead>
<tr>
<th>% Bile Acid</th>
<th>Traveller’s Diarrhea</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pellet (n=5)</td>
<td>Supernatant (n=5)</td>
</tr>
<tr>
<td>LC</td>
<td>28.9 ± 2.8*</td>
<td>4.2 ± 0.6*</td>
</tr>
<tr>
<td>IsoDOC</td>
<td>9.3 ± 1.6</td>
<td>14.2 ± 2.1</td>
</tr>
<tr>
<td>DOC</td>
<td>47.0 ± 4.2</td>
<td>49.0 ± 3.9*</td>
</tr>
<tr>
<td>CDC</td>
<td>1.7 ± 0.5</td>
<td>1.3 ± 0.4</td>
</tr>
<tr>
<td>UrsoDOC</td>
<td>2.3 ± 1.0</td>
<td>5.6 ± 2.4</td>
</tr>
<tr>
<td>C</td>
<td>2.1 ± 0.8</td>
<td>10.5 ± 3.9</td>
</tr>
<tr>
<td>Keto A</td>
<td>5.0 ± 2.4</td>
<td>12.2 ± 2.5</td>
</tr>
<tr>
<td>Unidentified</td>
<td>3.6 ± 2.1</td>
<td>2.9 ± 1.3*</td>
</tr>
<tr>
<td>Primary BA</td>
<td>3.9 ± 0.9</td>
<td>11.8 ± 3.8</td>
</tr>
<tr>
<td>DiOH BA</td>
<td>60.3 ± 4.1</td>
<td>70.2 ± 4.4*</td>
</tr>
<tr>
<td>Total BA %</td>
<td>86.4 ± 3.2</td>
<td>13.6 ± 3.2</td>
</tr>
</tbody>
</table>

a. Centrifugation of homogenized feces at 100,000 x g at 4°C for one hour. All values are expressed as (Mean ± SEM)% of total BA.

b. Significant differences as compared to the corresponding fractions of the controls are denoted by: *p < 0.05; †p < 0.02; ‡p < 0.005.

For abbreviations used in this table see footnotes under Tables 1 and 3.
TABLE 5
BILE ACID COMPOSITION OF FECAL SAMPLES FROM PAIRED-FED VOLUNTEERS

<table>
<thead>
<tr>
<th>% Bile Acid (BA)</th>
<th>Early (n = 4)</th>
<th>Late (n = 4)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC</td>
<td>38.1 ± 3.2</td>
<td>45.3 ± 4.7</td>
<td>NS</td>
</tr>
<tr>
<td>Δ5,3β</td>
<td>0.0 ± 0.0</td>
<td>0.1 ± 0.1</td>
<td>NS</td>
</tr>
<tr>
<td>IsoDOC</td>
<td>7.2 ± 1.7</td>
<td>4.2 ± 2.1</td>
<td>NS</td>
</tr>
<tr>
<td>DOC</td>
<td>39.1 ± 2.0</td>
<td>40.2 ± 3.1</td>
<td>NS</td>
</tr>
<tr>
<td>CDC</td>
<td>2.4 ± 0.8</td>
<td>2.7 ± 0.2</td>
<td>NS</td>
</tr>
<tr>
<td>UrsoDOC</td>
<td>2.8 ± 0.6</td>
<td>1.4 ± 0.4</td>
<td>NS</td>
</tr>
<tr>
<td>C</td>
<td>1.5 ± 0.8</td>
<td>0.7 ± 0.1</td>
<td>NS</td>
</tr>
<tr>
<td>Keto A</td>
<td>5.0 ± 0.7</td>
<td>3.8 ± 0.9</td>
<td>NS</td>
</tr>
<tr>
<td>Unidentified</td>
<td>4.0 ± 0.6</td>
<td>1.7 ± 0.4</td>
<td><0.025</td>
</tr>
<tr>
<td>Primary BA</td>
<td>3.9 ± 1.0</td>
<td>3.4 ± 0.2</td>
<td>NS</td>
</tr>
<tr>
<td>Dihydroxy BA</td>
<td>51.5 ± 3.9</td>
<td>48.5 ± 4.5</td>
<td>NS</td>
</tr>
<tr>
<td>Total BA (mg/g)</td>
<td>1.745 ± 0.778</td>
<td>1.518 ± 0.451</td>
<td>NS</td>
</tr>
<tr>
<td>(mg/g)<c></td>
<td>0.349 ± 0.156</td>
<td>0.304 ± 0.090</td>
<td>NS</td>
</tr>
<tr>
<td>24 hr excretion (mg/kg/day)</td>
<td>0.89 ± 0.35</td>
<td>0.72 ± 0.16</td>
<td>NS</td>
</tr>
<tr>
<td>(mg/day)</td>
<td>61.5 ± 21.0</td>
<td>51.0 ± 11.5</td>
<td>NS</td>
</tr>
</tbody>
</table>

a. Early = Day #4-5. Late = Day #8-10. All values are expressed as (mean ± SEM) % of total BA unless otherwise indicated. For abbreviations and explanatory notes, see footnotes under Tables 1 and 3.

b. Calculated on the basis of dry weight of feces.

c. Calculated on the basis of wet weight of feces, assuming 80% H2O content for all stool specimens.
TABLE 6
NEUTRAL STEROL COMPOSITION OF Fecal SAMPLES FROM PAIRED-FED VOLUNTEERS

<table>
<thead>
<tr>
<th>Neutral Sterol</th>
<th>Early (n = 3)</th>
<th>Late (n = 5)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal Sterols (AS)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coprostanol</td>
<td>63.5 ± 1.2</td>
<td>62.9 ± 2.3</td>
<td>NS</td>
</tr>
<tr>
<td>Epicholestanol</td>
<td>0.0 ± 0.0</td>
<td>0.0 ± 0.0</td>
<td>NS</td>
</tr>
<tr>
<td>Epicoprostanol</td>
<td>3.1 ± 0.8</td>
<td>1.9 ± 0.5</td>
<td>NS</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>26.7 ± 0.8</td>
<td>28.2 ± 1.4</td>
<td>NS</td>
</tr>
<tr>
<td>Cholestanol</td>
<td>1.5 ± 0.2</td>
<td>1.1 ± 0.4</td>
<td>NS</td>
</tr>
<tr>
<td>Unidentified</td>
<td>2.7 ± 0.8</td>
<td>4.1 ± 1.7</td>
<td>NS</td>
</tr>
<tr>
<td>Coprostanone</td>
<td>2.5 ± 0.3</td>
<td>1.7 ± 0.6</td>
<td>NS</td>
</tr>
<tr>
<td>Cholestanone</td>
<td>0.0 ± 0.01</td>
<td>0.04 ± 0.04</td>
<td>NS</td>
</tr>
<tr>
<td>Plant Sterols (PS)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desmosterol</td>
<td>3.4 ± 0.8</td>
<td>2.0 ± 0.8</td>
<td>NS</td>
</tr>
<tr>
<td>Campesterol</td>
<td>16.7 ± 1.8</td>
<td>12.4 ± 3.4</td>
<td>NS</td>
</tr>
<tr>
<td>Stigmasterol</td>
<td>4.8 ± 1.1</td>
<td>3.3 ± 1.3</td>
<td>NS</td>
</tr>
<tr>
<td>Ergosterol</td>
<td>4.0 ± 0.4</td>
<td>2.7 ± 1.3</td>
<td>NS</td>
</tr>
<tr>
<td>β-Sitosterol</td>
<td>37.4 ± 4.2</td>
<td>44.4 ± 1.3</td>
<td><0.10</td>
</tr>
<tr>
<td>Fucosterol</td>
<td>5.8 ± 1.4</td>
<td>7.7 ± 1.2</td>
<td>NS</td>
</tr>
<tr>
<td>Unidentified</td>
<td>27.9 ± 5.3</td>
<td>27.6 ± 5.0</td>
<td>NS</td>
</tr>
<tr>
<td>Total AS (mg/g)</td>
<td>6.582 ± 0.946</td>
<td>7.386 ± 1.307</td>
<td>NS</td>
</tr>
<tr>
<td>Total PS (mg/g)</td>
<td>0.442 ± 0.065</td>
<td>0.537 ± 0.054</td>
<td>NS</td>
</tr>
<tr>
<td>Total AS (mg/g)</td>
<td>1.316 ± 0.189</td>
<td>1.477 ± 0.261</td>
<td>NS</td>
</tr>
<tr>
<td>Total PS (mg/g)</td>
<td>0.088 ± 0.013</td>
<td>0.107 ± 0.011</td>
<td>NS</td>
</tr>
<tr>
<td>24 Hr AS excretion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(mg/kg/day)</td>
<td>3.48 ± 0.50</td>
<td>6.67 ± 2.22</td>
<td>NS</td>
</tr>
<tr>
<td>(mg/day)</td>
<td>241.9 ± 12.3</td>
<td>446.2 ± 142.2</td>
<td>NS</td>
</tr>
<tr>
<td>24 hr PS excretion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(mg/kg/day)</td>
<td>0.233 ± 0.033</td>
<td>0.466 ± 0.120</td>
<td>NS</td>
</tr>
<tr>
<td>(mg/day)</td>
<td>16.2 ± 8.2</td>
<td>32.1 ± 8.2</td>
<td>NS</td>
</tr>
</tbody>
</table>

Notes:

a. Early = Day 1-3; Late = Day 8-11. All values are expressed as (mean ± SEM) % of total animal or plant sterol.

b. Calculated on the basis of dry weight of feces.

c. Calculated on the basis of wet weight of feces, assuming 80% H₂O content for all stool specimens.
TABLE 7

BILE ACID COMPOSITION OF FECAL SAMPLES FROM APOLLO 17 PRE-FLIGHT PERIOD AS COMPARED WITH THOSE OF PERIOD-FED GROUND STUDIES

<table>
<thead>
<tr>
<th>% Bile Acid (BA)</th>
<th>Pre-Flight (n=8)</th>
<th>Ground Early & Late (n=8)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lithocholic</td>
<td>27.2 ± 2.5</td>
<td>41.7 ± 3.0</td>
<td><0.005</td>
</tr>
<tr>
<td>$\Delta^5,3\beta$</td>
<td>1.5 ± 1.5</td>
<td>0.0 ± 0.0</td>
<td>NS</td>
</tr>
<tr>
<td>Isodeoxycholic</td>
<td>18.3 ± 2.3</td>
<td>5.7 ± 1.4</td>
<td><0.001</td>
</tr>
<tr>
<td>Deoxycholic</td>
<td>32.7 ± 2.8</td>
<td>39.7 ± 1.7</td>
<td><0.10</td>
</tr>
<tr>
<td>Chenodeoxycholic</td>
<td>3.0 ± 0.6</td>
<td>2.6 ± 0.4</td>
<td>NS</td>
</tr>
<tr>
<td>Ursodeoxycholic</td>
<td>1.7 ± 0.4</td>
<td>2.1 ± 0.4</td>
<td>NS</td>
</tr>
<tr>
<td>Cholic</td>
<td>2.2 ± 0.7</td>
<td>1.1 ± 0.4</td>
<td>NS</td>
</tr>
<tr>
<td>Keto Acid</td>
<td>5.7 ± 1.2</td>
<td>4.4 ± 0.6</td>
<td>NS</td>
</tr>
<tr>
<td>Unidentified</td>
<td>7.8 ± 1.7</td>
<td>2.9 ± 0.6</td>
<td><0.02</td>
</tr>
<tr>
<td>Primary BA</td>
<td>5.2 ± 1.0</td>
<td>3.7 ± 0.5</td>
<td>NS</td>
</tr>
<tr>
<td>DiOH BA</td>
<td>55.7 ± 3.9</td>
<td>50.0 ± 2.8</td>
<td>NS</td>
</tr>
<tr>
<td>Total BA</td>
<td>1.542 ± 0.240</td>
<td>1.631 ± 0.419</td>
<td>NS</td>
</tr>
<tr>
<td>(mg/g)b</td>
<td>0.429 ± 0.089</td>
<td>0.326 ± 0.084</td>
<td>NS</td>
</tr>
<tr>
<td>(mg/g)c</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 hr excretion</td>
<td>0.63 ± 0.14</td>
<td>0.81 ± 0.18</td>
<td>NS</td>
</tr>
<tr>
<td>(mg/kg/day)</td>
<td>49.2 ± 10.8</td>
<td>56.2 ± 11.3</td>
<td>NS</td>
</tr>
</tbody>
</table>

*a. All values are expressed as (mean ± SEM) % of total BA unless otherwise indicated.

b. Calculated on the basis of dry weight of feces.

c. Calculated on the basis of wet weight of feces.

d. $\Delta^5,3\beta=3\beta$-hydroxy-5-cholenic acid.

DiOH includes chenodeoxycholic, deoxycholic, isodeoxycholic and ursodeoxycholic acids.
TABLE 8

BILE ACID COMPOSITION OF FECAL SAMPLES FROM APOLLO 17 IN-FLIGHT PERIOD

<table>
<thead>
<tr>
<th>% Bile Acid (BA)</th>
<th>Non-Diarrhea <150 g/BM (n=5)</th>
<th>Diarrhea > 200 g/BM (n=2)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lithocholic</td>
<td>26.1 ± 1.8</td>
<td>24.9 ± 1.0</td>
<td>NS</td>
</tr>
<tr>
<td>Δ5,3β</td>
<td>0.0 ± 0.0</td>
<td>3.8 ± 3.8</td>
<td>NS</td>
</tr>
<tr>
<td>Isodeoxycholic</td>
<td>10.6 ± 1.3</td>
<td>12.6 ± 7.2</td>
<td>NS</td>
</tr>
<tr>
<td>Deoxycholic</td>
<td>46.2 ± 3.1</td>
<td>31.6 ± 4.0</td>
<td><0.05</td>
</tr>
<tr>
<td>Chenodeoxycholic</td>
<td>2.0 ± 0.3</td>
<td>2.4 ± 2.1</td>
<td>NS</td>
</tr>
<tr>
<td>Ursodeoxycholic</td>
<td>1.7 ± 1.1</td>
<td>0.1 ± 0.1</td>
<td>NS</td>
</tr>
<tr>
<td>Cholic</td>
<td>1.4 ± 0.7</td>
<td>2.7 ± 0.6</td>
<td>NS</td>
</tr>
<tr>
<td>Keto Acid</td>
<td>5.2 ± 1.2</td>
<td>7.9 ± 2.6</td>
<td>NS</td>
</tr>
<tr>
<td>Unidentified</td>
<td>7.0 ± 1.3</td>
<td>14.1 ± 12.4</td>
<td>NS</td>
</tr>
<tr>
<td>Primary BA</td>
<td>3.3 ± 0.9</td>
<td>5.1 ± 1.5</td>
<td>NS</td>
</tr>
<tr>
<td>DiOH BA</td>
<td>60.4 ± 1.7</td>
<td>46.7 ± 13.3</td>
<td>NS</td>
</tr>
<tr>
<td>Total BA (mg/g)b</td>
<td>4.719 ± 1.121</td>
<td>2.571 ± 0.400</td>
<td>NS</td>
</tr>
<tr>
<td>(mg/g)c</td>
<td>1.076 ± 0.274</td>
<td>0.454 ± 0.020</td>
<td>NS</td>
</tr>
<tr>
<td>Total BA excretion (mg/kg/BM)</td>
<td>7.079 ± 0.268</td>
<td>1.437 ± 0.042</td>
<td>NS</td>
</tr>
<tr>
<td>(mg/BM)</td>
<td>85.0 ± 21.9</td>
<td>108.1 ± 2.5</td>
<td>NS</td>
</tr>
</tbody>
</table>

a. BM = Bowel movement. All values are expressed as (mean ± SEM) % of total BA unless otherwise indicated.
b. Calculated on the basis of dry weight of feces.
c. Calculated on the basis of wet weight of feces.
d. DiOH includes chenodeoxycholic, deoxycholic, isodeoxycholic and ursodeoxycholic acids. Δ5,3β = 3β-hydroxy-5-cholenoic acid.
TABLE 9
NEUTRAL STEROL COMPOSITION OF FECAL SAMPLES FROM APOLLO 17 IN-FLIGHT PERIODa

<table>
<thead>
<tr>
<th>Neutral Sterols</th>
<th>Non-Diarrhea < 150 g/BM (n=2)</th>
<th>Diarrhea > 200 g/BM (n=2)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal Sterols (AS)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coprostanol</td>
<td>77.2 + 2.5</td>
<td>75.1 + 4.4</td>
<td>NS</td>
</tr>
<tr>
<td>Epicholesterol</td>
<td>0</td>
<td>0</td>
<td>NS</td>
</tr>
<tr>
<td>Epicyclopropanol</td>
<td>2.2 + 0.4</td>
<td>2.2 + 0.1</td>
<td>NS</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>18.1 + 2.0</td>
<td>17.6 + 2.9</td>
<td>NS</td>
</tr>
<tr>
<td>Cholestanol</td>
<td>0</td>
<td>0</td>
<td>NS</td>
</tr>
<tr>
<td>Unidentified</td>
<td>1.6 + 0.3</td>
<td>1.7 + 0.3</td>
<td>NS</td>
</tr>
<tr>
<td>Coprostanone</td>
<td>1.1 + 0.0</td>
<td>3.3 + 1.1</td>
<td>NS</td>
</tr>
<tr>
<td>Cholestanone</td>
<td>0.0 + 0.0</td>
<td>0.2 + 0.1</td>
<td>< 0.10</td>
</tr>
</tbody>
</table>

Plant Sterols (PS)			
Desmosterol	5.2 + 4.0	5.4 + 1.6	NS
Campesterol	10.9 + 3.3	4.7 + 3.0	NS
Stigmasterol	1.9 + 0.5	2.4 + 2.0	NS
Ergosterol	1.2 + 1.2	0.0 + 0.0	NS
\(\beta \)-Sitosterol	34.2 + 3.5	39.0 + 2.6	NS
Fucosterol	7.1 + 1.9	5.8 + 3.1	NS
Unidentified	39.6 + 5.4	42.9 + 9.1	NS
Total AS (mg/g)b	34.18 + 0.17	24.67 + 8.57	NS
Total PS (mg/g)b	1.45 + 0.33	1.35 + 0.03	NS
Total AS (mg/g)c	8.067 + 0.110	4.798 + 2.447	NS
Total PS (mg/g)c	0.341 + 0.052	0.247 + 0.052	NS
Total AS excretion (mg/kg/BM)	10.5 + 3.5	14.8 + 6.8	NS
(mg/BM)	826.9 + 299.8	1,107.1 + 508.0	NS
Total PS excretion (mg/kg/BM)	0.421 + 0.07	0.777 + 0.115	NS
(mg/BM)	33.0 + 7.0	58.1 + 8.5	NS

a. BM = bowel movement. All values are expressed as (mean ± SEM)\% of total animal or plant sterol.
b. Calculated on the basis of dry weight of feces.
c. Calculated on the basis of wet weight of feces.
TABLE 10

SURVEY OF BOWEL MOVEMENTS FOR THREE ASTRONAUTS DURING APOLLO 17 MISSION

<table>
<thead>
<tr>
<th></th>
<th>Pre-Flight</th>
<th>In-Flight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td># Stool/Day</td>
<td>Fecal Mass (g/day)</td>
</tr>
<tr>
<td>Evans</td>
<td>1.00</td>
<td>200.0</td>
</tr>
<tr>
<td>Cernan</td>
<td>1.00</td>
<td>87.6</td>
</tr>
<tr>
<td>Schmitt</td>
<td>1.43</td>
<td>77.0</td>
</tr>
</tbody>
</table>

Average values for 7 days and 13 days for pre-flight and in-flight periods, respectively.
Table 11

Fecal Bile Acid and Neutral Sterol Profiles for Adult Male Subjects

<table>
<thead>
<tr>
<th>Sample Group</th>
<th>Pre-Fight (n=8)</th>
<th>Controls (n=8)</th>
<th>Regular Mixed Diet (n=8)</th>
<th>Treadmill (n=8)</th>
<th>shafter (n=8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bile Acid (%)</td>
<td>15.06% (n=8)</td>
<td>2.02% (n=8)</td>
<td>2.83% (n=8)</td>
<td>2.95% (n=8)</td>
<td>2.97% (n=8)</td>
</tr>
<tr>
<td>Neutral Sterol</td>
<td>9.18% (n=8)</td>
<td>4.23% (n=8)</td>
<td>2.56% (n=8)</td>
<td>1.10% (n=8)</td>
<td>3.90% (n=8)</td>
</tr>
<tr>
<td>Total BA (mg)</td>
<td>2.88% (n=8)</td>
<td>1.21% (n=8)</td>
<td>1.06% (n=8)</td>
<td>1.17% (n=8)</td>
<td>1.18% (n=8)</td>
</tr>
</tbody>
</table>

Note: Values in parentheses are calculated based on weight of feces.

Concentrations are expressed as mg/g of feces.
Table 12

Effect of diarrhea on fecal steroid profile in adults and children.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Total Sterols (mg)</th>
<th>Total Sterols (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal control</td>
<td>su</td>
<td>su</td>
</tr>
<tr>
<td>Pre-diarrhea</td>
<td>su</td>
<td>su</td>
</tr>
<tr>
<td>During diarrhea</td>
<td>su</td>
<td>su</td>
</tr>
<tr>
<td>Post-diarrhea</td>
<td>su</td>
<td>su</td>
</tr>
</tbody>
</table>

Significant differences as determined by student's t-test are those p < 0.05.