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INTRODUCTION

1.1 The instrument Landing Approach

decision heights (ICAO, 1965 and 1970).

1

w_

CHAPTER I

The instrument landing system (IIS) has been in civil use

since 1947 and is in operation at about 600 airports throughout

the world, half of them in the United States. Its name, however,
1

is a misnon-er. It should more properly be called an instrumnt

low-approach system, as a pilot must establish visual reference
i

with the ground in the last phase of the approach to complete the

landing. This is the "see-to-land" concept (DeCelles, 1970). j

w elevation at which aThe FFUrs^smnn height above the runway	 9

pilot Faust abort the approach if the required visual reference

has not been established is the "r?acision height". At present,
-i

five categories of instrurpemt landing approaches are classified

by the International Civil Aviation Organization, with different



Table :_.1 ICAO Categories

Category	 Decision Height (ft.) 	 Runway Visual Range: (ft.)

I 200 2400

11 100 1200

IIIA 0 700

IIIB 0 150

1I1C 0 0

The category under which an ILS approach is conducted depends

on the certification of the particular aircraft and its crew and

on the available ground equipment at the airport. Category I landings

have been carried out for almost tliirty years; the first eigh^.

United States airports were certificated for Category 11 operations
i

in August of 1968. At the present time- there is only one runway

in the United States which is certificated for Category ILIA operations.

V

The ILS is a precision approach system which provides accurate

course alignment and ;Aide slope descent information during the

approach by way of specialized equipment on the ground and on board

the aircraft:

1. The glide slope transmitter, usually installed between

2
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750 and 1250 feet from the approach end of the runway, establishes

a radiation pattern in space from which a signal is derived propor-

tional to the aircraft's vertical angular displacement from the glide

path. This signal drives the up-down glide slope deviation indicator

(GST) needle and is one of the inputs to the longitudinal flight--

dixector in the aircraft. The glide slope beam width is approximately

1.5°, half above and half iDolaa the glide slope line. The glide slope

line e.Levati.on is usually 2.50 1 	 .5° above the 1Z0rizontal.

2. The localizer-transmitter is usually installed approximately

1000 feet beyond  and 300 feet to ;he side of the far end of the

runway with the aaitenna in line with the runway centerline. The

localize: establishes a radiation paLtexn in space from which a

signal is derived proportional to the lateral angular displacement

from the vertical plane through the runway centerline. This sigoal 	 {

drives the left:-right. course deviation indicator (MI) needle and

is one of tbe inputs to the lateral flight director in the aircraft.

The localizer beam width is approximately 50, half to the right and

half to the left of the runway centerline extension.

3. Marker bcac:ons and optional compass locators provide

definite fixes along the approach as distance spot checks. The outer

marker is placed on the rwzway centerline extension at a distance

of from 4 to 7 miles from the runway threshold; the i;iiddle marker is

placed where the glide slope is 200 feet above the runway elevation

and identifies the Category Y decision height; the inner marker is

3
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placed where the glide slope is at the Category II decision height

or to indicates runway threshold passage. In addition to an audible

tone, the outer marker lights a purple l.aup on the instrua-ent panel;

the middle marker, an amber latrp; and the inner marker, a vAiite lamp.

1.2 Background

In the last decade, a great deal of thought has been given to

Category III landings and their trap .icatioals. one area of intensive

investigation centered around t:e role of the crew during the

approach, and current thought is polarized around two extremes:

1. The crew is in the control loop and flies the aircraft in

accordance with instrmn-ant-generated signals.

2. Steering signals are coupled directly into the autopilot,

with the crew monitoring the system.

Crew control based on the steering signals is favored by many crewmen

and operations personnel (I:ayton, 1969), and ccmprehensive manual

control.-display theories have been developed (Clement et aZ., 1968;

McRuer et aZ., 1967) to facilitate the design of optimal equipment.

For reasons of economy, civil aviation authorities and oourrtercial

carriers prefer to retain the IIS for Category III guidance and are

4



working to set standards for campatible airborne equipment. Phe

ILS localizer can probably be made usable for lateral guidance during

Category III touchdowns. The ZLS glide slope is not usable, hay.,°ever,

below approximately 100 feet of altitude, because of the parabolic

shape of the beam in that region. Thus, for vertical guidance near

the runway, Category III landing systems must be based on non-IL,S

equipment such as microwave guidance or a radio altimeter.

During 'he early phases of an uncoupled final approach, at

.-ltiitudes greater than the decision height, steering information

presented to the pilot by the flight director. This system

ZLic:orrnrates as inputs not only the raw GSI and CDI position data

17ut also rate information and thus relieves the pilot of the need

to generate large leads in synthesizing the information (DeCelles,	 {

1970). New features axe constantly being added i-j existing flight

director systems (Monroe et al., 1968); they & •e, however, inadequate

Y'

	

	 as a mode of guidance during the final phase of the landing (DeCelles,

op. cit.) and their perfo_--mance during simulated Category III landing

studies has been disappointing (Gainer et al., 1967), presumably

because of increased worldcads caused by the manual control mode

and because of excessive dispersion at touchdams .



the first fully automatic landing in airli n. , passenger service

occurred two years later. Since then, great progress has been achieved

in the development of automatic landing systems. The simplex, fail--

hard couplers of yore have been replaced by redundant duplex systems

and triply-redundant autopilots which provide fail--soft capability

in the event of two simultaneous failures. Many systems are available

today, such as TATAR, F1LzMSCAN and AUTOLAND, to name just a few.

Yet computers are only h=an, and crews demand the capability

of monitoring the progress of the landing via displays which utilize

signals and data processors completely independent of the autopilot

(DeCelles, op. cit.). Indeed, a number of independent landing monitor

(ILM) concepts and configurations have been proposed to date, both	 a
d

the conventional pai+c.l-inounted variety (Bencivenga, 1970) and the
=	 3

heads--up display (Huo) type (Parks and Tubb, 1970; Jenney et aZ. ,1971) .

Some of these concepts have been evaluated in flight: An instr^Jnt

panel display for monitoring automatic landings was flight-tested

in a DC-7 at the National Aviation Facilities Experimental Center
j

(Pursel, 1968), while in France a HUD all-weather approach and landing

monitor is being flown on board a Nord-262 (Dunbar rind Collins, 1972).

;i

`l
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1.3 Objectives of the Thesis

E

i

It is axiomatic that a pilot should be capable of detecting
}

and identifying failures in the automatic landing system accurately,

reliably and with minimal time delay. To this end, extensive studies

have been conducted in which the pilot was treated as a controlling

element in a one-dimensional task; his decision processes (Schrenk,

1969) and his adaptive behavior following a sudden change in the

controlled plant dynamics were investigated (Young et al., 1964;

Phatak and Bekey, 1969). Other studies investigated the failure-
s

detection xrformance, treating the operator as a pure monitor

d

	

	

(Gai and Carry, 1975). In reality, the pilot is faced with multi-

axes, not single-axis, tasks; although ncdels for interference amang

multiple control tasks have been derived (Levison, 1970), the inter-

relationships between simultaneous control and monitoring tasks

are not as yet well understood (Levison, 1971).

Young et aZ. (op. cit.) found that in single-axis tracking

tasks the human operator's performance as a failure detector was

]getter when he was in the control loop; simulated Category III

landing studies, on Use other hand, revealed that the pilot's failure

detection performance deteriorated when he was faced with a manual

control task, compared to the monitoring mode (Vreuls et al., 1968a

7
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and 1968b). V7hen faced with split-axis tasks, pilots' monitoring

and decision making was impaired (Monroe et al., 1968) and they

sometimes completely overlooked the occurrence of a failure,

presumably because of the increased workload associated with split-

axis tasks compared to a mnitoring task (Gainer et aZ., 1967).

The inadequacy of the human operator as a fault detector led to the
i	

development of -performance--monitoring hardware. (Smith et al. , 1972)

which has been installer) in many troderil aircraft (Jester, 1973) .
I

Even with the aid c~ such aruiunciatc - panels the pilot's performance,

under: certain conditions, leaves much to be desired (Semple et al.,

1968).

It has been recognized that when the role of the human o _iator

changes from monitoring to that of an active controller, corresponding

€	 changes take place in his workload level (Ekstrom, 1962; Wewerinke).

However, in pilot performance studies to date these effects were	
i

completely confounded. It is the priory purpose of this investigation

to separate these effects and to document pilot performance during

a Category III landing as a function of the particular control

mode at different workload levels. We wish to .isolate and identify

the effects on performance due to the variations in the control

E	 mode alone - and hence, variations in the operator's mde of behavior

p	 apart from the effects on performance due to the variations in the

workload level.
i

i g
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1.4 Research Method

As stated, the purpose of this research was the stl-rjy of the

pilot's short term decisions regarding performance assessment and

failure monitoring. We wished to investigate the relationship between

the pilot's ability to detect failures, his degree of participation

in the control task and his over-all workload level. Also, we wished

our findings to be applicable to the general population of pilots who

fly law-visibility approaches in co -rcial jet transport aircraft.

To this end, this research conaisted of an experimntal inves-

tigation: which was carried out in a static ground simulator. Airline

pilots flew zero-visibility landing approaches with different degrees

of automation and at different workload levels, which were induced

by simulated wind disturbances. The pilots' ability to detect failures

and to provide a reliable manual back-up capability was monitored

and recorded.

The data were analyzed to identify statistically significant

relationships among the experimental  treatments and the factors which

produced the optimal performance were sought.

9
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1.5 Results of the Thesis Research

The investigation has examined the effects of the pilot's

participation node in the flying task an his workload level and

failure-detection performance. At found that the participation

mode had a strong effect on the pilot's workload, the induced workload

being lowest when the pilot acted as a monitoring element during a

cotxnled approach and highest when the pilot was an active element in

the control loop. In addition, a very ma ked increase in workload

at altitudes below approximately 500 feet was documented at all

participation modes; this increase was inversely related to distance-

to-go.

The effects of workload and participation node on failure

detection were separated.. The participation rude was shown to have

a d minant effect on the failure detection performance, with a

failure in a monitored (coupled) axis being detected significantly

faster than a comparable fa.ilux'e in a nonaally controlled axis.

Touchdown performance was also documented and the findings

of previous investigators were supported, namely that the conven-

tional instrument panel and its associated displays were quite

.inadequate for zero--visibility operations in the final phases of

the simulated landing approach.

10



CHAPTER II

THE EXPERIMENT

2.1 EQ3thco s

In analyzing his performance as a systems component, the

h non can be assumel to possess information-processing capacity

which is fixed and constant in any given set of conditions (Brown,

1964). As long as the information processing demands, which are

imposed on th4 operator, are considerably less than this max,mal

capacity, the human's information sampling rate will be lLnited

only by the presentation rate and by his own display scan rate

limitations. When the demands are increased, however, the human

must reduce his information sampling rate.

if the harm serves as a controlling element in the system,

the reduced sampling rate will manifest itself in increased lag

and hence, to maintain an adequate phase margin, the operator will

reduce his gain which, in turn, will effect an increased RTS tracking

error. if he acts as a failure monitoring elect, then failure-

detection times will be increased. These assumptions underline

our hypotheses



1. Both operator participation level in the control task

and his overall workload affect the Vformation-processing require-

vents. The effects, then. -f the operator ` s participation level and

workload on his .failure detection performance are additive. Manual

tracking will result in longer detection times than will monitoring

a coupled autonut.ic approach, and high workloads will manifest them

selves in linger detection times than will low workload levels.

2. As the fliyht instruicnts display angular, rather than

linear, deviations fran the locaj izea_ course and glide path, they

increase in sensitivity as distance to L-ouch-da-in decreases. In

addition, the penalty for error increases with increased proximity

to the grouid. Wditional pri cessing demands are therefore placed

on the pilot and hence his workload increases in inv rse proporticon

to the altitude or to distanca-to go.

The validity of these hypotheses will be tested experimentally

in a fixed-base cockpit simulator with the aid of a workload-measure-

meat device.

2.2 Workload M asure3nent Theory

As was already stated in Section 2.1, the Duman operator is

postulated to possess finite, fitted capacity to perform well on

t

12
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tasks such as manual tracking or information processing (Brown, 1964).

This total capacity, TC, is assumad to be constant in a given set

of conditions such that the performance is inversely related to the

amunt of workload required in excess of this level.

Men the human operator is performing a task which requires

less than his total capacity, then his total capacity is divided

into the expanded capacity, EC, and tl-ie fraction which is unused,

the residual capacity, PC:

TC = EC+RC
	

(2.1)

A now classic example of these concepts was given, during evaluation

of alternative control modes for the X-15 research aircraft (Ekstrom,

1962). The subject first perfr:rw-d a self-paced choice-reaction

pushbutton task, and his scores were recorded. As this was a self-

paced task and the subject was well-motivated, these scores were

assumed to represent his total capacity. Next, the subject performed

the primary control task concurrently with and at the expense of

the subsidiary pushbutton task. if the subsidiary task response

was reduced to 40 percent of the level obtained w3hen performing

the subsidiary task alone, then this would be taken as an indication

that the operator needed 100 - 40 = 60 percent of his attention to

perform the primary control task. The results of this analysis

13



showed that the pilot could use both cont—l' modes equally well

but that one mode required less of the pilot's attention and there-

fore, in terms of workload penalty, was superior to the other.

In this application, the auxiliary task is introduced as a

measuring tool. It is used to determine the price paid in operator

effort in meting the performance criteria of ;lie primary task.

The rationale for using the subsidiary task is that as the load

of the primary task is increased, performance on the subsidiary

task will deteriorate, thus ai_ving a measure of how much additional

work the operator can h:mdle while still meeting system criteria

of the primary task. The situation is illustrated schematically in

Figure 2.1.

2.3 Requirements of the Auxiliary Task

The problem of defining the requirements of the auxiliary

task is complicated by the simple fact that different experiments

impose different specific demands upon the auxxiliary task, thus

hampering the development of a universal subsidiary task.

A generalized set of desired charactarzstics, however, can

be described for the auxiliary task. These characteristics do not

14
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Fig. 2.1 Auxiliary Task Score Reflects Primary
Task Difficulty
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define any one particular auxi.l.iaxy task; they merely narrow down

the selection to a smaller number of possible alternatives, of which

the one is chosen which satisfies the additional requirements of the

case in point.

2.3.1 The Multiplex Model

The subsidiary task is used to measure the reserve capacity

of the operator daring what is essentially normal performance of the

primary task. it should, therefore, be subtle in its effect on the

primary task; it should by dexanding enough so that the operator

cannot, ignore it, yet not so demanding as to stress the primary

task to the point of disruption (Knowles, 1963). In analyzing the

specific requirements of subsidiary tasks, it is helpful to turn

to a rather simple, yet effective, single channel multiplex model

which has been proposed to summarize the basic notions of operator

loading and its measurement by subsidiary task scores (Knowles,

1973; Szoadbent, 1957). A meltiplcx system uses a single, fixed

capacity channel 61 tr,nsmit messages from several sources to

several destinations. only nnssagcs from one source to one destina-

L	 tion can be processed at a . o ne, but the information flow rate can

be uaximized by proper coding an o.itching routines. A schematic

r	 representation of the model is given 4 n Figure 2.2. in this model

t:
5 is an information source, D is a destination, S- b l represent

the flow of the primary task information, 5 2--D2 represent the floe

"^	 16
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of the subsidiary task information.

Sri measuring operator workload it is assumed that, by appro-

priate motivation, priority is given to primary task information,

and that subsidiary task information is processed within the residual

channel capacity.

Some importanL requirements of the Gubsidiary task are AM--

strated by reference to this simple model:

1. The switching points at the input and at the output repre-

sent opportunities for task interference that must be minimized.

At the input end, priority must be given to the primary task.

Nonce, by appropriate motivation, the subject should perform the

subsidiary task only when he feels that he can respond with no

decrement in his performance on the primary task. It should be

noted here that in practice complete non-interference between the

subsidiary and pricey tasks is difficult to achieve. It should,

however, be minimized by using a subsidiary task which is different

in form from the primary task and which requires different effectors

at the output end.

2. The subsidiary task should be self-paced.
c

3. It has been mantioncd that information flow-rate #_h ough

the multiplex channel is a function of t3xe efficiency of th y: coding

18
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min:unized if a meaningful measure of the workload is to be obtained.

Consequently, the subsidiary task should be simple, thus requiring

very little learning, and the subject should be given an opportunity

to practice on the subsidiary task alone until he reaches steady

state on the learning curve. This yields the auded benefit of mini-

mizing inter-subject variations as the base performance for each

subject can be determined.

4. The subsidiary task information may occupy the channel

only in the absence of primary task information. This implies that

subsidiary task messages should be very short. This requirement

can by mat by using discrete stimulus-response units.

5. As mentioned above, the subsidiary task is used as a

measurement tool, to dete=*ne the operator's reserve capacity and

hence the portion of his total rapacity which is expended on the

primary task. As a measuring device, the scores of a given subsidiary

task should be comparable from situation to situation. In addition

to providing an average score over an entire run, in many applications

it is desirable for. the subsidiary task to provide an indication

of the instantaneous rate of flow of information continuously through-



2.4 The Subsidiary

As nentioned.in. Section 2.3, the subsidiary task is characterized

by the following features:

1. It is performed only when the subject feels that this

w" I not result in a decrement in his performance on the primary

task.

2. It involves psychoxrotor activity different from the primary

task's.

3. It is simple and over-learned.

4. It consists of short, discrete message units.

5. It can be scored continuously throughout an entire run,

and the information conveyed by the scores is comparable from situation

to situation.

Based on these required features, a "warning light" type subsidiary

task was selected for this research. It consisted of two small,

1/8" diameter red lights counted above each other outside the subject's

foveal vision and peripheral vision, and a rocker thumb .switch

mounted on the left horn of the control yoke.

The lights provided the stimuli. They were located 75 9 to

the right of the center of the flight instruments. The intensity

20
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of the lights was very low and was adjusted individually for each

subject via a variable resistance to ensure that the subject would

not be able to detect the lights in his peripheral vision. The

lights were mounted on a matte black background and the two-inch

distance between them subtended a relatively large visual angle

of 40 , to minimize confusion (see Figure 2.3).

During the run the upper or the lo'vvier light, with equal prob-

ability, was lit Lt random times for two seconds. A correct response

by the subject to this stimulus consisted of turning the light off

by a proper motion of the rocker thumb switch; that is, pushing

the switch: up if the upper light was on or pushing it dcrem if the

lower light was on.

A correct response by the subject caused the light to turn

off. A "hit" was scored and the subject's response-time stored.

In the absence of a correct response the light stayed on for two

seconds, then turned off and a "miss" was scored.. An incorrect

response by the subject (that is, pushing the switch the wrong way)

was also scored as a "miss".

After a Light was turned off, a time delay followed, uniformly

distributed between 0.5 and 5.0 seconds, and the process was then

repeated. V-:o time delay, as well as the selection of the light, was

21
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Figure 2.3 Subsidiary Task Warning Lights

22

f



r

k.

controlled by a random number generator in the computer program.
F

The subject was instructed to consider the piloting task of

4	 flying an ILLS approach as his major concern at all times (see Appendix

B, "Instructiorn to Pilot -- Workload Measurement") . It was emphasized

that his primary concern should be to do the best that he could

flying the approach, and that he should resporid to the lights if and

only if he felt that he could do so without sacrificing his piloting

performance. To further impress upon the subject the importance

of the piloting task he was told that during the workload-measurem-ent

runs h,:^ did not have the option of executing a missed approach

and that each approach had to terminate in a touchda-,m on the runway

on the first trial.

A subsidiary task of this type has been shim to combine

sensitivity to workload changes with minimal de-rredation of primary

tracking task performance (Spyker et al., 1971). Thds point was

further substantiated in this study by subjective evaluation (see

Appendix C, "Pilot Questionnaire") as well as statistical analysis

of RMS tracking errors. These results are reported in detail in

Chapters III and 1V.
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2.5 Apparatus

For the purpose of this thesis, a simulation capability including

the ADAGC AGT/30 digital grarlaics computer and a fixed-base cockpit

simulator has been developed.

A mathematical model has been developed of a large transport

aircraft in the landing approach flight envelope. The actual flight

data of a DC-8 were used in the equations of motion (leper, 1969),

and the various parameters were later refined following a series

of flight tests by a senior airline captain with considerable Boeing

707/123 experience. Non-linear phenaniena surh as ground effect

and stalls have also been included. As an added assurance, the

simulator had been flown by cx-fighter pilots and airline captains

prior to conyrencement of the actual experimntation and all felt

that it was quite adequate.

An integrated-cue flight--director system has been designed

for this simulator, providing the capability of landing the simulated

aircraft manually an zero-zero conditions in a relatively satisfactory

manner. Also, a two-axis auto-pilot has been incorporated into the

simulation which is capable of flying IiS coupled approaches, in

either axis or in both axes, to touchdown. The autopilot and the

24
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flight-director systems have been tested extensively (see Figures

A.11--A.12) .

We also had the capability of addling wind disturbances to the

simulation to induce different workload levels. The wind nWes were:

1. No wince.

g	 2. 5 kt wind, gusting to 15 kz, from 260° (i.e., at 450
r

to the runway heading. Runway 4R at Logan Airport, whose heading

is 35^, was our active runway).

3. 10 kt wind, gusting to 30 kt fran 2600.

The gusts were modelled as faltered white noise with a cutoff frequency

of 7/6 rad/sec.

The equations of motion of the aircraft, as well as the flight-

director and autopilot systems, are described in detail in Appendix A.

The mathematical model was progrd into the AGI'/30 computer

which was linked via multiplexer channels and sense lines to the

cockpit simulator. The cockpit was a mock -up of the captain's

crew station in a Boeing transport aircraft (see Figure 2.4). The

windows were fzrosted to eliminate external visual reference.
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Figure 2.4 Cockpit S.irnulawr -- General View
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The controls included an operational, spring-centered control

column with a control wheel and rudder pedals, as well as four

throttles, flaps, speed-brake and landing gear levers, and flight-

director and autopilot controls.

Apart from engine instruments and marker Macon lights, the

simulator was equippad with three CPT screens, mounted one each

on he irai.n insti mr.nt panels at the captain's and the first office'r's

stations and one in p1jce of the weather radar screen. The screens

were driven siraultan- !oiisly by the ADAM caniautcr. The screens on

the main panels prescnt.ad six standard flight instruments (see Figure

2.5) : ak __d, at.titudn--flight director iirti.cator, altim-ter,

instantaneous vertical spoed indicator, horizontal situation (HSI)

and radio magnetic WNI) indicators, as well as a DME digital readout

and a glideslq?, deviation needle which was repeated on the attitude

indicator and the NISI. Tho HSI included a course deviation line which

was tuned to the localizer. The RMI needles were tuned to the outer

compass locator and to the Boston VCR station (see also Figure A.3)

One of our goals in this study was to investigate the pilot's

failure detection performance based on his internal model of the

environment and on his capability of processing raw flight data.

Consequently, we did not include any displays of a mode progress
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7. Airspeed

2. G.lidcslope Deviation (GSI)

^. Attitude (Artificial Horizon)

d. Aircraft Referenre Symbol

i. Integrated Cue Command Liars

G. Bank Indicator

7. Altimeter

8. Vertical Speed OVS1)

9. Course Set

10. Loval i z r lDevinLion

11. Distance Measuring (iDMir)

12. hori zontal Situation (HSI)
and Course Deviation WDU

13. Rnd i o--Magnetic Compass WMi )

Pigurc 2.5b blight Insti-umont-s
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annunciator, movable bugs or a fault annunciator panel, nor were

there any warning flags.

The CRT screens were driven by the ocxnpster at a rate of 24

frames per second which was sufficient to produce flicker--free

images. The images were updated at a rate of 5/second.

2.6 N-easuremei-its

Throughout each run continuous measurements were taken on-line

by the canputer program. 'These veasurema-its were stored initially
a

in memory buffers; at the end of the run they were written on disk
a

and on magnetic tape as data files for subsequent off-line analysis.

2.6.1 Flight Data

During an approach, the airplane's spatial coordinates, i.e.,

the distance from the runway threshold, the distance from the localizer

course (runway centerline) and the altitude were sanpled at constant

1-.ime antj_-~rals and stored. The sampling intervals were set at 5

seconds initially and at one second at altitudes below 150 feet,

where aircraft responses of higher frequencies were expected during

the flare or go-around maneuvers. 'These date enabled us to reconstruct

30



the flight path and to estirreLte derivatives, such as velocity and

sink rate, which we could not store directly due to nary Limitations.

At touchdawn (i.e., when altitude equals zero) pertinent

quantities were sampled and stored. They are:

1. distance from, threshold

2. distance from centerline

3. airspeed

4. sink rate

5. pitch angle

6. bank angle

7. heading

8. crab angle	 9

These data allecred us to assess the acceptability of the

landings. A landing as considered successful if it satisfied allg

of the following requirements (Gainer et al., 1967):

Ii

I.

a^

1	 .

1

1. range - first 3000 feet of the 7500-foot runway

2. centerline - f 75 feet

3. airspeed - less than 135 kt

4. sink rate - less than 360 fpm

5. pitch - between 0' and 90
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6. bank - less than 50 left or right

7. heading - within 4° of runway heading, i.e., between

31° and 390

There were no penalties for excessive crab, i.e., lateral drift,

as the pilot was not presented with any decrab information.

In addition to these, time to detection of failures, when a

failure occurred, was also recorded. A detection was inn ica:ed by

pressing a push-button located on the center console in the cockpit.

2.6.2 Workload Data

When it was activated, the pilot's performance on the subsidiary

warning-light task was monitored on-line. Data were recorded in real

tirre throughout the run and stored in wry, to be written on

disk and on magnetic tape at the end of the run as data files.

Specifically, the program recorded the number of times that

the subject responded correctly to the warning light by ,i  va-l-ing
the thurrtb switch ("hits"), his response time (latency) and the

X -coordinate of the aircraft, i.e., the distance fran the runway

threshold at the time of the response. This last measure enabled us

to correlate the subject's workload with the altitude via the recorded
Y

2
	

flight-path data. The distance frets threshold was recorded, rather



than the actual altitude, as it was conceivable that the aircraft

would fly at a constant altitude or pass through an altitude more

than once, while it was improbable that a pilot would be more than

once at amy given 0-coordinate, that is, T-'y , a course at an angle

of 90 or more fron the runway heading.

incorrect responses by the pilot, that is, not responding

to an illuminatod light or activating the switch the wrong way,

were counted and labolled as "misses". The X -coordinates corresponding

to the "misses" were also recorded and stored. r

A workload index was computed from these data as follows:

1. As each stimulus was presented for 2 seconds, the total

response-time ratio, RTR, for both "hits" and "misses" was computed by

cumulative latency Q Ti)

R`I`R -

	

	
z	

---	 (2.2 )
Total number of stimuli x 2 sec

2. A miss rate MR was computed by
j

14R NaWber of stimuli missed	 (2.3)
Total nurJjer of stimuli

i
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3. A workload index WLX was then extracted using the best

I
least squares fit weighting coefficients

VEX

i

_ 0.780 RTR + 0.625 MR
r 0.780 + 0.626 x 100 percent	

(2.4)

This measure of workload has been shoran (Spyker et a7.., 1971) to

be correlated with physiological predictor} of workload with a

correlation coefficient p = 0.645, significant at the p < 0.005

level.;

For the purpose of correlating failure detection performance
i

with workload levels, subject responses between altitudes of 2000

feet and 800 feet were used in coigDuti.ng the workload index because
i

between these altitudes the aircraft was stabilized on the approach

path and because failures occurred only in this region. Also, we

wished to eliminate differences betiieen subjects which may have been

caused by different. subjects assigning different relative priorities

to the primary  tracking task and the subsidiary task. To this end

the workload index of each subject was normalized, that is, a workload

index of zero was assigned to the approach which resulted in the

laaest workload measure for each subject and a workload index of

100 was assigned to the approach with the highest workload measuref	 '„

for each subject. The normalized workload index on approach i of
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subject j was computed by

min

Normalized WLX..	 i 
rqiII 

7',7	 x 100 percent	 (2.5)"'Inxij 	
J

i 
{VffX,

i 

2.7 Expm--iimntal Design

'1,111	 -imental variables to be investigated in this study

were the pi-L, s participation level in the pilotin g task, the

workload ind'-icpd by the control dynamics and by external disturbances,

and the pilot's failure detection performnce.

The experianent involved four levels of participation:

1. "Passive monitoring", with autopilot coupling ii-i all

axes, including autothrottles.

2. "Control yaw", with autopilo t coupling in the pitch axis

and autotl-irottle coupled.

J.
3. "Control pitch", with autopilot coupling in the yaw

axis only.

4. "Control both", i.e., a fully-manual approach.
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There were three levels of wind disturbance:

1. No wind.

2. A 450 tailwind of five knots, gusting to fifteen knots.

3. A 45° tailwind of ten knots, gusting to thirty knots.

Three failure conditions were used:

i

1. No failure.

2. Failure in the yaw axis (see Section A.4). In this condition

the autopilot, if coupled, or the flight director would steer the

airplane away from the localizes course, resulting in a one-dot

deviation (1.250 of angular error) about 100 seconds after the

failure occurred. This type of failure was chosen, rather than a

runaway failure, because it was quite subtle and so provided a

good masure of the limits of the pilot's failure-detection capability.

3. Failure in the pitch axis, which resulted in a one-dot

deviation (0.350 of angular error) approximately 30 seconds after

the occurrence of the failure (see Figure A.11')

Failures were presented only between the altitudes of 1800 and 800

feet. The selection of the failure altitude was randomized, as was

the selection of the direction of the failure (left-right in a yaw

failure viode, up-down in a pitch failure mode). workload levels
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and failure detection performance were investigated in separate

experiments, to avoid possible contamination of failure detection

data by t[-ie presence of a concani.tant subsidiary task. Also, we

were interested in measuring workloads at the different participation

levels. The occurrence of a failure during the approach would have

made this impossible, as the control mode changed following a failure.

2.7.1 workload

The effects of the level of participation and of the wind

disturbance on the pilot's workload were investigated in a 4 x 3

factorial experiment as shown schematically in Figure 2.6.

The order of presentation of the twelve treatncnts was randomized,

and every pilot (replication) flew all twelve approaches indicated

by the design. The subject's workload level was measured by the sub-

sidiary task. No failures were presented and go-arounds were not

permitted.

2.7.2 Failure Detection

The effects of the level of participation and of the wind

disturbance on the pilot's failure detection performance Caere inves-

tigated in a 4 x 3 x 2 factorial experiment as sh=-1 schemtic.a lly

in Figure 2.7.
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The "no failure" condition was also incorporated in the design

so that the subject would not anticipate a failure on each and every

approach. This, however, resulted in a 4 x 3 x 3 = 36 treatments

per replication for this experiment in addition to the twelve treat-

ments of the workload experiment. We felt that such a large number

of treatmants placed an unacceptable burden on the volunteer subjects.

Consequently, some high-level interactions were partially confoumded

in the failure detection experimental design {Cochran and Cox, 1968;

Li, 1955), resulting in eighteen treatments per subject (replication).

With the workload index experiment, this meant 30 treatments in

all per subject, which we felt was a more manageable load. The

interactions which were partially confounded were (participation) x

(failure! and (participation) x (disturbance) x (failure). The average

loss of informtcion regarding these interactions was 1/27 and 4/27,

respecta.vc ly (Li, 1944) , cured to a full rank design; that is,

the acc :_L ct: _es of the estimates of these effects were 26/27 and 23/27,

respectively, of the accuracy of the estimates of the non-confounded

effects. The treatments presented to each subject, excluding the

six approaches in which no failures occurred, are shown in Table 2.1.

The subsidiay task was not presented in this part of the experiment

and go"arounds weir permitted.

The order of presentation of the twelve trea.trents was ranJomizc :;.

Each pilot flew the twelve approaches indicated by the design, failures
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Table 2.1 Treatments of Failure Detection Experiment

Treatment {ijk} participation mode i

disturbance level j

failure condition k

REPLICATION (SUBJECT)

2b	 3a 3b 4a	 4b 5a	 5b	 6a	 6b	 7a

001 000 001 001 000 001 000 000 001 000

010 010 011 010 011 010 Oil 010 Oil Oil

021 021 020 020 021 021 020 021 020 021

101 100 101 100 101 100 101 101 100 101

110 110 ill 111 110 ill 110 ill 110 110	 g

121 121 120 121 120 120 121 120 121 120

200 201 200 200 201 200 201 201 200 200

211 211 210 211 210 211 210 211 210 211

220 220 221 221 220 220 221 220 221 221

300 301 300 301 300 301 300 300 301 301	 f

311 311 310 310 311 310 311 310 311 310

320 320 321 320 321 321 320 321 320 320
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1 (continued)

REPLICATION (SUBJECT)

7b	 8a	 8b	 9a	 9b

001 000 001 001 000

010 Oil 010 Oil 010

020 020 021 020 021

100 101 100 100 101

111 110 111 110 ill

121 121 120 121 120

201 200 201 201 200

210 211 210 211 210

220 220 221 220 221

300 301 300 330 301

311 310 311 310 311

321 321 320 321 320
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were presented and the pilot's detection performance was monitored.

Each pilot flew six additional approaches in which no failure occurred.

These approaches were randomly interspersed among the twelve failure

approaches. No failure detection data were obtained from these approaches,

of course, but recoils of these runs were kept for identification

of possible loading effects of the subsidiary task, when present,

by means of analysis of variance of RMS tracking errors.

The data which were obtained in these experiments were processed

off-line by a package of statistical computer programs, UCLA BMD.

The methods of analysis are described in detail in Chapter IV of this

thesis.

2.8 Procedure

2.8.1 Familiarization and Training

Each pilot was first briefed in general terms about the

purpose of this research, and after he filled out a personal data

questionnaire (Appendix C) he proceeded to the simulator.

The subject was familiarized with the instruments and with

the various controls, levers and switches. He was sham an approach

plate for runway 4R at Logan on which the initial aircraft position

42
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and heading were indicated by an arraw (Figure 2.$), and the approach

procedures were explained to him: the subject was told that all

approaches began at the same position, 12 miles from the runway threshold,

one mile to the left of the localizar course and heading of 065°,

at altitude 2500 feet and airspeed 170 KIAS, with the landing gear

up and flaps set at 300. lie was to capture and t°ack the ILS approach

path, la.,ier the flaps to 400 when the ylideslope deviation indicator

needle started moving dr.A,,7n and call for the landing gear and for full

flaps (500) when passing through altitude of 2000 feet. It was made

clear to the subject that, as pilot-in-corrmand, he could deviate

from, these guidelines at his mm discretion. The experirmanter

was to act as a co-pilot and operate the flaps and the landing gear.

43
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T,ie autopilot was then coupled, the flight director was

turned off and biased out of view, and the subject observed a fully

automatic coupled approacd-i to touchdowm. The exTerimenter, in the

co-pilot's seat, called out the following events: localizer alive,

glideslope alive, 2000 feet, outer marker, 1000 feet, middle marker,

and threshold passage (inner marker). These calls were made on all

subsequent approaches.

At touchdown the CRT s=ee-1 blanked out for one second and

then a list was displayed (Figure 2.9) indicating to the pilot

the parameters at touchdown.
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Next, the lateral autopilot was uncoupled, the flight director

was turned on in the roll (LOC) mode, and the pilot flew a split-

axis approach, in which he controlled the aircraft in yaw and in
f

roll, to touchdc Fan. The thud familiarization approach was a split-
I

axis control in pitch in which the pilot was, for the first time,

in control of the power, followed by a fully manual approach.

11he subject continued to fly fully manual approaches until

he indicated that he was satisfied with his perfonnnce or until

he flew at least tcn approaches which terminated in a successful

touchdcxvn, which ever occurred later. This ended the training period.

The actual expe_r_inental runs then comm-'nced. The experiment

consisted of two separate sessions, with each pilot flying fourteen

approaches in the first session and sixteen approaches in the second

session. Seven pilots flew the workload approaches first, followed

by the failure detection runs; the order was reversed for the other

eight subjects. This was done to counter-balance any possible

learning effects.

Each approach lasted between five and six minutes; the first

session usually lasted for about three hours, including one 20-

minute break. The second session was conducted about a week or

two weeks after the first, and also started with a re-training
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period. Generally less practice was required, howevexr to reach

a plateau on the learning curve and the second session ?asted for

about two hours, including the 20--minute break..

f'

2.8 ,2 Tnrarkload Pxperin-ent

The subject was instructed in the use of the subsidiary task

(see Appendix B. 1), and it was emphasized to him that his primary

concern at all timas should be to do the best that he could on the

primary task (flying the approach). To further impress upon the subject

the priority of the primary task he was told that he could not elect

to execute a missed approach and that each and every approach should

te-iminate in a touchdmrn on the first triad.. The brightness of the

subsidiary task's warning lights was then adjusted by the experimenter

with the subject looking at the attitude indicator, until the subject

reported that he could not detect the Lights in his peripheral vision.

The twelve experimental rums for the record then c=renced. At the

end of this session, the subj% :t was asked to answer a subjective

evaluation questionnaire. (see Appendix C).

2.8.3 Failure Detection

Instructions concerni ng the general characteristics of Lhis

experiment were read to the pilot (Appendix B.2). He was told tliat

as soon as he detected conflicting readings or discrepancies between

instrmnalts he should call it out as a failure and specify the axis
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in which he suspected tl.-ie failure occurred, such as "roll failure",

"lateral malfunction", "drifting off the localizer" and the like.

This was done to assure that the pilot detected an actual failure

and was not reporting a false alcu-m which may have resulted from a

sudden gust or a vertical draft.

The pilot was told that leas reaction time would be recorded

by way of the experimenter pressing a button on the center console.

The experimenter held his hand over the button throughout the approach

on every approach, including the ones in which no failure was to occur,

to minimize delay--times and to avoid cueing the subject inadvertently.

The pilot was told that folkwing a correct identification,

Eithe malfunctioning system would be disconnected by the experimenter

^i	 and it would be up to him to decide whether to continue the landing

or to execute a missed approach, whi d-i consisted of calling for a i

go-around and establishing a positive rate-of-climb, at which point

}F	 the run was teLmi.nated by the experimenter.

(tl
(t^

S^

FAA regulations or company policy concerning the tex-mi.nation

of an approach were not to be adhered to. The pilots were to use
^	 3

thus crvm judgement, the decision--criterion being the probability

of an acceptable landing. If they thought that they could complete 	 n
i

the landing following a malfunction, the pilots were to . do so;

,fig
t

.^	 _	 ^



if, in their judgement, an acceptable touchdown was precluded,

they were to initiate a go-around.

The flight-director operated only in the axes wl-dch were

controlled manually. The matrix of control mcdes fol-lowing a failure

is given in Table 2.2.

2.9 Pilot Subjects

A total of twenty qualified pilots. participated in this research.

Of these, four pilots - two airli-ne captains and two DnT personnel -

assisted in the preliminary phases of simal.ator validation, flight

parameters adjustment, and experinental procedures shakedown runs.

Of the rmaining sixteen pilots, one dropped out of the program

after one session for personal reasons and fifteen pilots from Delta

Airlines and Eastern Airlines -- seven capta-Lis, six first officers

and two second officers - flew 450 approaches for the formal experi-

ments. These pilots' personal data are suRnarized in Table 2.3.

^g	 All of the pilots were volunteers who had an interest in the



FAILURE

Autopilot
	

Flight Director

Fully Automatic Autopilot disconnected,

flight--director coupled

in failed axis

crk
C)	

Split Axis	 Autopilot disconnected,	 Flight-director disconnected,

flight-director coupled
	 pilot reverts to raw data in

in failed axis
	

failed axis



FLIGHT EXPERIENCE, HOURS FLIGHT.

COMMERCIAL MILITARY OTHER DIRECTORS

PILOT AGE POSITION CURRENT
EQUIP. JET RECIP. JET RECIP. CP RB	 0	 i

j

2b 38 F10 DC-9 5000 1500 1500 'I

3a 56 Captain B727 5000 15000 2000 550

3b 32 Captain B727 4000 1000 2000 /

as 33 F/0 B727 2200 300 550
cn

4b 39 Captain DC-9 5000 5000 ,l /

5a 41 F/0 B727 3300 250 J ^^

5b 62 Capt(ret) DC--9 7000 18000 5000 1200

6a 55 Captain B727 9500 16500 1500 850 3 V/

6b 35 S/O B727 400 1500 150 500

7a 32 F/0 Electra 300 2000 1000 250
z

7b 40 Captain DC-9 5500 3500

8a 30 S/0 B727 1000 1500 300 400

8b 32 Captain B727 5000 3000

9a 28 F/0 B727 300 600 3300 J

9b 3 1 F/0 B727 4000 350 V^

Mean 39 3800 7400 1300 1600 1800

^'CPWcross-painters (Sperry); RB=roll-bars (Collins); O=other (Litton)
#r'equipment

._	 ......

flown . prior to retirement

,
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The total flight experience of the pilots who participated

in the experimental phase of the research ranged from 2,550 hours

to 31,200 hours, with a median of 6,000 hours. Twelve pilots had

accumulated 10,000 hours or less, with a median of 4,200 hours;

three pilots had more than 22,000 hours each, with a mean of

28,350 hours.

This experience had been accunul.ated in conneercial jets such

as B707, B727, DC8, DC9, FH227 and CV860; reciprocating com-ercial

aircraft such as DC3, DC4, DC5, DC6, DC7, CV240, CV340 and CV440;

military jets such as F4, A6, T33 and T37; militaiy propellor-driven

aircraft such as 0-1, T41, T42 and an assortmnt of World [far Il

aircraft; and various light fixed- and rotary-wing airplanes.

All pilots, with one exception, had had. experience with integrated- 	 ;=

cue flight directors such as the Collins ED105 and FD109. With the

exception of subject 5b, all pilots had flown numerous ITS approaches

in the six-month period i mdiately preceeding the first experimantal

session, the most recent IIS approach having been within two weeks

F'
E
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3.1 Description of the Records

CHAPTER III

DATA AND RESULTS

Data were accumulated during each run and throughout the run.

They were initially stored in arrays in the computer's memory; at

touchdown, which automatically terminated the run, or when the

experimenter manually terminated the run after initiation of a

missed approach, all the data of that run were copied into data 	 ,j

files and stored on a disk. At the end of a session, all the data

files of that session were also copied onto magnetic tapes. In all,

about 1500 data files were accumulated.

The m-asurements which were taken on-line are reported in
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RUN CODA JH113
.	 t PARAMETERS AT TOUCHDOWN OR AT STOPACTIOW

^.F

DISTANCE FROM THRESHOLD 1936, FT.

-. DISTANCE FROM CEPTEFLIN£ -88. FT.
i INDICATED AIRSPEED 127. KNOTS
1t VERTICAL SPEED -143. FPM.

PITCH ANGLE	 6. D£GS.

BANK ANGLE	 1. D£GS.
HEADING	 36.	 DEGS.

CRAB At?GLE	 0.	 DEGS.

.! t TIME TO . DETECT	 0 . 00	 SECS,
TIME TO IDENTIFY	 0. 00 SECS.

f

j

E 1 •

c

i

t

YI

i °

f

}Z-

r

rr

5 ^

i^

55

F

Figure 3.1	 Sample Output Record

(Continued on next 4 pages)
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75 SMPLES OF SPATIAL COORDINATES FOLLOW'

_.. 1 ELAPSED TIME,SECS, X,FEET A, FEET

0.008 -71807, 2500.
5.203 -70505. 2496.

j 10.008 -69297. 2495.
I 15.058 -68032, 2494.

20.108 -6675". 2494.
25.008 -65513. 2495.
30.058 -64204, 2492.
35.108 -62862. 2489.
40.158 -61492. 2488.
45.009 -60138. 2488.
50.059 -58701. 2485.
55.109 -57249, 2481.

" - 60.159 -55796. 2475,
:. 65.009 -54440. 2475.

70.059 -53114. 2471.
75.110 -51806. 2469,

10.210 -50473, 2472.
85.060 •-4920. 2464.
90.160 -47874. 2426.
95.010 -46612. 2371.
100.060 -45297. 2318.
105.161 -43999. 2275.
110.011 -42689. 2242.
115.011 -413£6. 21.1?2.
120,111 -40066. 2120.
125.161 -38769. 2046.
130.011 37522.
135.110 -36207. 1934.
140.210 -34953. 1890.
145,009 -33897• 1819.
IS0.lU9 -3276$. 1735.

i3 195.053 -31676. 1c•69•
160.157 -30556, 1619.
165.007 -29474. 1582.
170,106 -22319. 1554.
175.006 -27205. 15£2.
180.105 -26044. 1458.
185.284 -24875. 1382,
190.054 -23754. 1315.
195.203 -22556. 1261.
200.052 -21445. 1210.

. 205.152 -20286. 1149.
210	 051 -•19141 1079

Y. FEET

-6079.
^5319.
-4+16.
-387£.
-31c0^
-2379.
-1681.
-1080.
-547.

274,
492.

501.
440. i
405.

343,
289.
243.
224.
267.
312. i
350. .,.	 1
349.
312.

216,
152.

y9.
-15.
-54.
-9.

16.
4' 4 .
92
156.
203. z

197.
167. i	

.

121. i
215.151 -t$O5S. 1000. 74.
220.200 -16930. 933. 41.

s 225.099 -15830. 885. 23.
230.199 -14690. $41.

i 235.048 -13607. 791. 11
240.147 --12470, 727. 12.
245.197 -11348, 659. 0.



i

I

-9

I

l 250.046 -10274, 592.	 -6.
255.145 -9142. 529.	 -1I.
250.245 -0013. 474.	 -15.
265.094 -6939. 424.	 -13.
270.144 -5818, 370.
275.243 -4681. 314.	 11.

is 230.092 -3599. 259.	 15.j'
285.192 -2467. 197.	 -2.

..^+
289.191 -1563. 149,	 '-27. -f
290.091 -1384. 138.	 -33.
291.191 -1141. I26.	 -41.

" 292.091 -942. 115.	 -48.
293.191 -699. 102,	 -57.
294.091 -500. 92.	 -6.4.
295.190 -258. 79.	 73.
296.090 -60. 69,	 -80, E
297.190 IE2. 56.	 -89. j
2?8.090 380. O.S.	 -94. Ji
299.190 622. 33.	 -99.

{( 300.090 320. 25.	 -102, i
1i 301.190 1062. 16.	 -102.

302.090 12£0. 10.
303.189 1501. 5.	 -99.
304.029 1699. 2.	 -94.
305.189 1936. 0.

] i

Y'

1

i

{^e
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9

t 1 29 CORRECT RESP014SES FOLLOUI,

Y„FEE=T	 RESPONSE T,	 ES C.

y-70013.940	 1.950
-68357.560	 2.000
-67100.440	 0.850
-66200.750	 1.100
^68210.030	 1.750

.

t -57939.340	 1.750
-54917.4.10	 1.350
-54266.280	 1.300 9

-50538.250	 11300
-^ -47704.720	 0 .900

-37639.$45	 1.550
-36:?2E.?15	 1.300
-35192.125	 1.100

' -32514.126	 1.350
(! -30212.923	 1 . 100

.•}
-275I2.360	 1.750
-• 25082.132	 1.550
-23695.419	 1.600
-20488.569	 1.750

p -15729.657	 1.800
-14500.133	 1.750 f

-12325.117	 0.650
i -9925.V36	 1.Ssa

'	 ! •-7625.F30	 1.350 f

f -6251.277	 1.840
-5337.676	 1.750

''	 4
:3 -39C9.5S+2	 I.350

' -2%54.590	 0 .900

^I
r
E

I

i
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i

38 I14CORRECT RESPONSES FOLLOW:
X.FEET

-64947.3
-•61422.9
-54599.7
-56355.6
-54561.9
-53114.0
-520.27.2
-X18745.5
-46729.0
-45518.7
-44248.4
-43264.7
-41940.9
--40919.0
-397$2.0

1	
-38371.]

-33897.2

-29417.$

'	 -228313.8
1	 -26852.9 r

-25659.9 j
-24471.2 i
-22154.6

f	 -21090.9
-19592.0

99
;	 7

-18946.7
-1776:•4

tia

-16424.7 i

€	 -13462.3
-11591.8 a

j	 -10805.4
-8456.3

I	 -4 580 .6 i

-1726.4
^	 --80 2 . !

622.0
1259.7

r
F
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the 15 subjects, segregated by participation level, are shown in

r
Figures 3.2-3.5; those of the normalized workload scores are shown

in Figures 3.6-3.9.

s	 z`

r
The non--normalized workload scores ranged fzan 28.6 to 100.0;

the normalized scores ranged from 0.0 to 100.0. Normalized workload

scores as a functirn of the gusts' ,_trength are she an. in Figure 3.10,

and as a function of the participation mode - in Figure 3.11.

TAb were also interested in the tim-variations in the instant-

aneous workload levels. To this end, <ti7orkload data were segregated

by participation modes; man scores were extracted at 300-feet

altitude intervals between the altitudes of 2000 and 500 feet, and 	 ~i

P	 g
at 100-feet intervals between 500 feet and touchdown. The results,

averaged over all pilots, are shown in Figures 3.12 through 3.15. .;
}

A measuren-ent of each subject's evaluation of the primary and

secondary task difficulty was included in our study. The questionnaire

which was used (Appendix C) had four multiple-choice questions

related to the overall difficulty of the primary task and two questions

on the difficulty f the secondarydazy task. Points were assigned for

j	 each answer on a zero--to-ten Cooper rating scale (Figure 3.16) i with

10 indicating the greatest difficulty (Cooper and Harper, 1969)..

yy

	 This was the same type of questionnaire that had been used in a pilot
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Figure 3.10

Normalized Workload Index at Two

Disturbance Levels
1

D1 - Calm Air

D2 - 10 kt. Wind, Gusting to 30 kt.
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r

s
sworkload istudy conducted by Spyker et aZ. (1971). The results are

shc%m in Figures 3.17--3.22.

L _:

3.3 Detection Performance

Detection performance was analyzed in terms of detection-time

and accuracy. Detection-titer was defined as the elapsed time between
{

the occurrence of a failuxt. and the verbal report by the subject that
s'

the failure has been detected; the subject also report&d the failure-

axis to insure that he reported a bona-fide failure and not a false

:-

	

	 alarm. Detection-tim~ results are presented in Figures 3.23-3.25 for

longitudinal failures and in Figures 3.26--3.28 for lateral failures.

Accuracy was measured by the fraction of failures that were

missed altogether. he differentiated between approaches in which a

failure went unreported but which resulted in a successful touchdown

of in an error at touchdown which was unrelated to the failure .(such

as excessive bank, following a longitudinal failure), and approaches

in which a failure was missed and which did not terminate in a

successful landing because of a gross error in the failed axis. The

latter are shown in Table 3.1 and 3.2; the nunbers in Var-entheses

represent the fraction of all missed failures, whether or not they

resulted in a successful landing.
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Hitch Failure Detection Times at Four

Participation Modes
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Table 3.1

Fraction of Missed Longitudinal Failures

in percent of all longitudinal failures (in parentheses)
^	 3

and in percent of missed alarms resulting in gross

deviations in failed axis

disturbance	 Level
Participation Overall

Mode 1 2 3

Monitor 0. 0. 0. 0.

Control Yaw 0. 0. 0. 0.

Control. Pitch 12.5 0. 12.5 8.7

(12.5) (14.3) (12.5) (13.0)

Manual Control 0. 14.3 37.5 17.4

(12.5) (14.3) (37.5) (21.7)

Overall 3.3 3.3 13.3 G.7

(6.7) (6.7) (13.3) (8.9)
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Table 3. 2

Fraction of Missed Lateral Failures
9

jin percent of all lateral failures (in parentheses)
I

and in percent of missed alarms resulting in gross

deviations in failed axis
t

Disturbance	 Level
Participation Overall

Mode 1 2 3

Monitor 0. 0. 0. 0.

Control Yaw 25.0 14.3 12.5 17.4

(37.5) (14.3) (37.5) (30.4)

Co:ttro1 Pitch 0. 0. 0. 0.

Manual Control 14.3 0. 14.3 9.1

(14.3) (14.3) (9.1)

Overall 10.0 3.3 6.7 6.7

(13.3) (3.3) (13.3) (10.0)

i
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in all, 90 approaches were flown in which a longitudinal failure

occurred; of these, eight went unreported, six of which slid not

terminate in a successful landing. Of the 90 lateral failures pre-

sented, nine were missed; of these, six did not terminate in a

successful. touchdown.
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3.5 Tracking Performance

95

As the time-histories of the spatial coordinates of the

simulated aircraft during each approach were available (Section 3.1),

it was possible to compute angular root--mean-square vector tracking

errors. We chose to document tracking performnce in angular, rather

than linear, RMS errors as only angular information was available to

the pilot from the localizer- and glideslope-deviation indicators.

The data of RMS errors were computed between the altitudes of

2000 and 900 feet for the approaches in vh-Lich no failure occurred.

Men a failure was simulated, RMS errors were computed between 2000

feet and the point of failure occurrence. Crass-track angular RN,S

errors are shown in Figure 3.36 as fractions of a full-scale deviation

(5°); angular RMS errors in the vertical plane are shown as fractions

of a full.-scale deviation (1.4°) in Figure 3.37.
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4.1 Wbrkload

We were cognizant of the fact that our workload-measuring

side-task may have caused undesired loading of the sub"ects, and

hence, that the piloting performance results obtained in the workload

measurement e%perunt and the data obtained in the runs When the

side-task was not present care from different populations. '.-Lbis

possibility was carefully investigated. It has been sho-an Melley,

1966) that the most precise piloting performance measure is RMS

tracking error; consequently, RMS tracking-error data of the work-

load measuring experin-ent Caere compared with RMS data obtained from

the failure detection experiment, on approaches in which no failure

occur:, _. Analysis of variance revealed that the iiypotiiesis t1--at

the data represented the sane population could not be rejected

(Table 4.1). It was concluded, therefore, that the side-task did

not cause any significant loading of the pilots and that the work-

load scores which were obtained during the workload measurement runs

Caere applicable to the failure detection, no-side-tusk approaches.

It seemd clear from Figures 3.10 and 3.11 that the side-task

scores were sensitive to variations both in the disturbance level and

in the participation mode. Indeed, analysis of variance under the

hypothesis that the effects were additive revealed that the variations

j	 {

7	 !

°i
r^

iS

3

i
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F Table 4.1	 ANOVA of RMS Tracking Errors

'

dk

13 Source S.S. d.f. M.S. F
I

1 Mean 45974.99 1 45974.99 459.3*

^,

Replications 2791.99 14 199.43 2.0
f

' `_'rea tments : f

Participation Mode 4201.48 3 1400.49 14.0*

Disturbance Level 6197,89 1 6197.88 61.9

Presence or Absence

`
of side--task 318.20 1 318.20 3^2

4c

^^

Error 25023.09 250 100.09
`{

* - Significance at the 19. level

3

7	 '

Table 4.2	 ANOVA of Normalized Workload Scores
ft

4 I	 i

Source S.S. d.f. M.S. F

Mean. 457561.50 1 457561.50 893.2*

Replications 15019.85 14 1072.85 2.1

Treatments:

' Participation Mode 79507.92 3 265:2.64 51.7:

Disturbance Level 3868.10 2 1934.05 3.8
f

- Error 81966.42 160 512.29
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3 scores as a function of participation mode were significant

0.01 level., and as a function of the severity of the

-- at the P < 0.05 level. (Table 4.2) .

eras, however, no significant difference between workloads

wind of 5 knots, gusting to 15 knots. It was asswned, and it was

verified by pilots 	 convents, that the components of the wind normal

and parallel to the final approach flight-path (3.5 knots gusting to

10.6 ]cizots) were not strong enough to induce workloads significantly

higher than those induced by piloting the simulated aircraft in calm

air. Consequently, these two disturbance levels were combined in the

i` analysis and the data were txeated as if there were only two distinct

i!

disturbance levels, "low" and "high".

An additive model was used in the regression of workload scores

on disturbance levels and participation modes:

3

W(P,D) = W, (P) + W2 (D)= WO + Wp (P) + Wd (D)	 (4.1_a)	
f

where w is the workload score

7 P is the participation node

^E
D is the disturbance level 	 i

and Wd are the partial derivatives M/aP and W/M,	
3P

j respectively

and WO is the baseline workload score.
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Using this model, Wl (P) and W2 (D) were found to hG

0.0 for the lai disturbance level

W20
9.8 for the high disturbance level

18.7 for the fully automatic mode

36.6 for the split-axis, yaw-manual mde
Wl (P)

61.0 for the split--axis, pitch-manual made

72.9 for the fully-manual mcde 	 F '

These values yielded workload-participation mode correlation_	 3

significant at P < 0.001 and workload--disturbance level correlation
1

significant at P < 0.05. 	 j

i

Figures 3.12 through 3.15 reveal the asymptotic altitude behavior

of the pilot's workload: The workload is essentially constant at

altitudes higher than approximately 500 feet, but there is a very 	 }.;

r - ^marked ir_creasY., in the workload at lower altitudes. Undoubtedly, this

increase is at least partially due to the non-linear increase in

display sensitivity with decreasing distance-to-go. However, this

increase in pilot workload was observed even when the pilot acted as
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a monitor and the autopilot controlled the ai-rcraft, which seems to

indicate the effect of other factors as well; sloclZ as, possibly, the

pilot's rental state arising from his awareness of the proximity of

the ground. It is conceivable that optimal display design may reduce

the additional workloads i pposed on the pilot as a result of the

increased display sensitivity; further studies are necessary, hcwever,

to find out whether these other factors, if any, are inherent in the

situation or whether a reduction is possible in the pilot's workload

during the last phase of a landing approach.

4.2 Trackinq Performance

FigL.-es 3.36 and 3.37 show the vertical and lateral RMS tracking

errors, respectively, averaged over all subjects and over all wind-

disturbance levels. It is clear that our subjects were capable of

tracking the ILS glade-path within less than 10% of full-scale GSI

deflection. Localizer tracking performance was even better, and the

largest raean RMS error is approximately 5% of full-scale CDI deflection.

The dii.erence between lateral and longitudinal tracking performance

may be due partially to the larger size of 	 course deviation

indicator instiimnnnt, as compared to the glide-slope deviation indicator,

and partially to the difference in the difficulty of controlling the
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simulated aircraft in the longitudinal and lateral axes: Longitadinal

control., requiring the coordination of power and pitch attitude, impose	 }

on the pilot higher demands than does lateral. control.. This point is
tr

further substantiated by the evidence of the higher workload levels

which are induced by longitudinal control (Figure 3.11).

We wished to eliminate any learning effects from our experi ents.

To this end, the order of presentation of the experiae1tal treatm?nts

to each subject was randomized. In addition, each experimental session

brogan with a training period designed to bring the subject to a steady-

state level on the learning curve (Section 2.8). Indeed, an analysis

of variance of the tracking errors, treating the order of presentation

as an independent variable, showed that the null hypothesis could not

be rejected (Table 4.3).

4.3 Detection Perfoimiance

As Tables 3.1 and 3.2 show, about 10% of all failures were not

reported by the subjects; about 7% were obviously not detected at all.,

as evidenced by the fact that these approaches did not terminate in a

successful landing because of gross deviations in the failed axis.
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9 Table 4. 3	 ANOVA of PMS Tracking Errors

E

by Order of Presentation
^

•Ii
E ^

i^

Source S.S. d.f. M.S. F

f
Mean 13649.57 1 13649.57 510.7* 3

:F

Replications 547.72 14 39.12 1.5

Treatments:

Participation Mode 278.56 3 92.85 3.5
3

Disturbance Level 1218.43 1 1218.43 45.6* j
Order of

jj

EI

presentation 627.92 29 21.65 0.8
11

k

Error 3527.73 132 26.73
ti	 ,.	 {

4

f

:J	
1

: 	::	 J

S

Y

*i

yi

{
I

j

j k

1	 d

c

#;a

1	 ';
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A very interesting pattern is obvious from Tables 3.1 and 3.2

and from Figures 3.23 and 3.26: All failures in an automatically-

controlled axis were detected in consistently short times; between 9%
3

and 170 of the failures which occurred in a manually-controlled axis

were not detected at all, and the ones that were required considerably 	
=f

longer detection times. A t test revealed the difference between the

man detection times in the automatic and manual modes to be highly

significant, at the P < 0.001 level.

Our first hypothesis (Section 2.1) attempted to explain this

i
difference in detection performance as being due, in part, to the

^I

increased involvement of the pilot in the control task in the manual.

mole and, in part, to the increased workload levels associated with

}}	 manual control.. We set out, therefore, to separate the individual.
I
j	 effects of these factors, participation mode and disturbance level.,

on the failure detection performance.
1	 3

1i

€ In Figures 4.1 and 4.2, the mean detection tames of longitudinal
-	 s

and lateral failures, respectively, are plotted as functions of the

corresponding man eaorkload levels for the four participation modes.

#{	 The following relationships are evident:
fs

^
I	1r	 -
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1. Detection times in a manually-controlled axis are significantly

longer than detection times in an autmatically-controlled axis

(P < 0.001) .

2. Detection times for lateral failures are significantly

longer than detection times for longitudinal failures at comparable

workload levels (Table 4.4).

3. Detection times increase in direct relationship to work-

load (P n--163 = 0.322).

The apparent similarities between Figures 3.23 and 3.26 and 	 !

Figures 3.36 and 3.37, respectively, suggest an attractive theoy 	
i

to explain the shorter detection times in the automatic-control modes:

The lower angular RMS errors in the automatic modes effect higher

signal--to-noise ratios of the displayed tracking error which, in turn,

result in better detection performance.

This hypothesis was tested by analysis of variance of the failure

detection times, with the angular FMS tracking errors in the failed

axis as a covariate (Table 4.5). The F-test rejected the hypothesis,

as the PMS errors did not show a significant effect on the failure

detection tunes. A linear correlation analysis yielded the same result, 	 f

as the RMS-detection tin-e correlation coefficient fell short of

significance at the P < 0.01 level (Pn=163 _ 0.215). In addition,

under the SM theory, the tracking errors on the approaches in which a

failure was massed altogether should be larger than on other approaches 	 F
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M. S. F

279547.71 648.2*

3537.96 8.2*

800.53 1.9

10017.42 23.2*

431.14

. S.S. d.f.

279457.71 1

10613.87 3

1601.05 2

10017.42 1

67258.33 156

S.S. d.f_

110966.97 1

13556.86 1

10298.17 1

1053.07 1

.100.91 1

50785.94 144

M. S. F

110966.97 314.6*

13556.86 38.4*

10298.17 29.2x

1053.07 2.9

100.9 0...3

352.68

Table 4.4 ANOVA of Failure Detection Times by

Failure Axis

source

Mean '

Participation Mode

Disturbance Level

Failure Axis

Error

Table 4.5 ANOVA of Failure Detection Times

with RMS as Co-ariate

source

Mean

Participation Mode

Failure Axis

' E	 Mode x Axis

RMS

Error



cdth comparable participation and disturbance conditions. A paired-

difference Student-t test, however, failed to reveal any difference...

Consequently, RMS tracking errors were excluded from further consid-

eration and the failure detection performance was assumed to be a

function of the control mode, of the failed axis and of the %aorkioad

level, but not a function of the RMS tracking error.

A disparity is obvious, however, between Figures 4.1 and 4.2.

The longitudinal failure detection data, shown in Figure 4.1 seem

to suggest that the increased detection tins in the manual control

modes P 3 and P4 are due mainly to the associated increase in workload

and that, had the subjects operated at a constant workload level.	 r

(that is, along a line normal to the abscissa), their detection perfor--
	 y

rence would have, in fact, improved in the manual control erodes,



It should be noted that both Figure 4.1 and Figure 4.2 are

plots of two dependent variables, as the workload level cvas controlled

in the experiment only indirectly. Consequently, there were masurement

errors in, both coordinates and therefore, the slopes of the straight

lines in Figures 4.1 and 4.2 could, in reality, be quite different

than those shown; one possibility is plotted in Figure 4.3. Oar

statistical tests (t and r) did not have sufficient power to reject

either possibility with any degree of confidence.

To resolve the ambiguity, we assumed that the fail?are detection

mechanism of the human operator acts similarly in both lateral and

longitudinal axes; any difference in performance between these axes

is due to differences in the plant dynamics and in display variables

only, not to differences in processes internal to the operator.

This assuaption of equivalence between the lateral and longitudinal

axes has been made, either explicitly or implicitly, by many inves-

tigators. it is based on the theory that the human operator behaves

optimally with respect to his task (cf. SmallEaaD.d, 1967) in all axes,

and that the operator adjusts his describing function to match the task

(Young; 1969):

Longitudinal and lateral failure data were thus Pooled;
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detection tirries were regressed on the type of failure (longitudinal

or lateral) and on the control mile in the failed axis, with the v ork-

load index as a covariate, based on the following additive model:

Tdetection -= T
O + a (control mode) + R (failed axis) + y (workload) (4.2a)

A solution was obtained for the regression coefficients a, 0 and y:

Tdetection = 20.9 + 16.5M 15.4A + 0.IOWL	 (4.2b)---	 -

1 if the failed axis is controlled manually
where M

0 otherwise
	

f

1 if the failure occurs in the lateral axis
A_=

0 if the failure occurs iri the longitudinal axis

WL = the normalized workload index

and Tdetection is measured in seconds.
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4.4 Touchdowns

As mentioned in Section 3.4, 389 of the 450 approaches flown

terminated in attempted landings, 59 terminated in a missed approach

and two were discarded because of equipment malfunctions. The breakdown

of landings and go--arounds by failure type is sho-van in Table 4.6.

When the "acceptable landing„ criteria (Section 2.6) were

applied to the data, 193 landings were considered successful and 196

(or approximately 50%) were judged unsuccessful. Of these, 106 were

rejected because of an excessive deviation in any one parameter, 61

were rejected because of excessive deviations in two parameters

simultaneously, twenty-two - in three parameters, sax °- in four

parameters and one attempted landing was rejected because of simul-

taneous deviations in five of the seven parameters. Tables 4.7, 4.8

and 4.9 su c arize the touchdown performance «. a function of the

mm-mally-controlled axis and the presence or absence of flight-director

information (see also Table 2.2).

It seems clear from Tables 4.7-4.5 that the landing performance

:j

was quite poor under all but fully automatic conditions. Longitudinal

control presented a more severe problem to the pilot, as evidenced bJ

the difference in the percentage of successful landings which is
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i

1

11

WITH FLIGHT-DIRECTOR	 22.0 17.7	 46.2

WITHOUT FLIGHT--DIRECTC' : 24.2 	 9.1	 48.5

TOTAL.	 22.4 16.4	 46.6
Y:
See Table 2.2

ATTEMPTED LANDINGS
	

257	 68	 64
	

389

GO--ABOUNDS
	

11	 22	 26
	

59

TOTAL	 268'	 90	 90	 448

Including 178 workload-measurement runs in which no failures
were presented and go- grounds were not permitted (see Section 2.8.2)

Table 4.7 Touchdown Performance, pitch Manual

PERCENT OF	 LANDINGS, PARAMETER OUT OF TOLERANCE	 SUCCESSFUL
X	 Y	 SPEED SINKRATE PITCH BANK HEADING (ATTEMPTS)



Table 4.8 Touchdowm Performance, Yaw M

TOTAL	 10.4 27.9	 26.1	 20.7

See Table 2.2

lal
I

:TER OUT OF TOLERANCE SUCCESSFUL

r

PITCH BANK HEADING (ATTEMPTS)

3.1 8.8 2.6 43.0(193) --

6.9 0. 3.4 37.9(	 29)

3.6 7.7 2.7 42.3(222)

I

Table 4.9 Touchdown Performance, Split--Axis Control

PERCENT OF LANDINGS, PARAMETER OUT OF TOLERANCE SUCCESSFUL
X Y SPEED SINKRATE PITCH BANK HEADING (ATTEMPTS)

LATERAL 0. 24.5 0. 0. 0. 7.5 4.7 67.0(106)

LONGITUDINAL 27.2 0. 42.7 26.2 5.8 0. 0. 34.0(103)

MANUAL CONTROL,
ALL AXES 22.4 31.0 47.4 39.7 5.2 7.8 0.9 19.8(116)



t

I

s

significant at the P < 0.01 level. Table Q.9 separates the effects

of manual control in the yaw and the pitch axes.

We cannot ascertain from the available data whether the poor

landing performance was due to insufficient information presented

by the displays, overloading of the pilot in the final stages of the

landing, deficiencies in the simulation or soue other causes. Some of

our subjects executed consistently good landings, which seen-ed to

indicate that the simulator could be landed successfully; some

subjects, experienced pilots as they were, did not, however. Further

study of the factors affecting pilots' performance in the final

phases of the approach and during the flare maneuver is clearly

necessary.

4.5 Applicability of the Results

We wished our findings to be applicable to the general population

of pilots who fly lar-visibility approaches in commercial jet transport

aircraft. Great care was taken, therefore, in designing the experiments,

in the development of the simulator system and in the selection of

subjects. These will be discussed in the following sections.

f
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4. 5 .1 Expe-rimntal Design

The research consisted of tuo factorial experiments, a 4 x 3

workload masurement test and a 4 x 3 x 3 failure detection experiment.

Two full-rank factorial experinents would have resulted in a total of 	 4

4x3 + 4x3x3 = 48 treatments per subject. This number was considered ,i

to be unrealistically large and, consequently, sore high level inter-

actions were partially confounded in the failure, detection experiment:

Each subject was presented only 18 of the 36 treatments, resulting in

a total. of 30 experimental treatments per subject. The particular

treatments were assigned to individual subjects in a way that resulted

in each pair of subjects being presented all the experimental treat-
1

,rents and thus each pair of subjects represented one experimental

block.
:.i

i
a

a^

We wished to estimate the accuracy of the significant differences

found in these experiments. Following standard procedures (Cochran and F

Cox, 1968, pp. 17-23) the a posteriori probability of significant

differences being detected was calculated for the worst case, namely,

the difference in detection thins between the lateral and longitudinal

axes. This case was considered worst as the man difference (15.4

seconds or 37.04% of the moan detection time) and the number of rep-

lications (45) were the smallest.

a.

r
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where t - Student's random variable
;r

6 - rrean of the detected difference

a - standard error per unit

r - nu-Lea: of replications
F

and P - -Level of stignificance
N

t
:c

From the analysis of variance of failure-detection times, the

following values were obtained:

6 = 37.040

c = 49.98% with 156 d.f.

Tatting, for this "worst case" computation, P = 0.05 one has, for
a

156 d.f.,	 1

t0.05,r^=156 _ Z0.05 = 1'95996

hence

z2(1-P)	
27.04	

- 1,95996 = 1.5537	 (4.4a)

(45} (49.98)

2(1-P) = 0.125	 . ' . P = 93.7%	 RAW

4

or
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That is, the probability of a true difference being detected as a

significant difference is quite high, and the number of replicates in

} the experiment was sufficient for the accuracy sought,
1

4.5.2	 Simulator System

The simulator was intended to resemble a large transport jet

1 1

aircraft in the final approach flight envelope. The actual flight

pararm?ters of a DC-8 were initially used and later madified, following

a series of flight tests by an experienced Boeing-707 instructor

captain. The f fight tests included adjustment, with the aid of a

stop-watch, of the simulated aircraft's U-xottle and control responses

and of the effects of the flaps, landing gear and speed brakes.

tl

A subjective evaluation was solicited of the pilots who flewi(( the simulated aircraft (Appendix C and Figures 3.17-3.20). According

to thds evaluation, the stimulated aircraft was rated as corresponding

` to 4.0 points on the Cooper-Harper rating scale (Cooper and Harper,
1

1969, p. 12). This rating represents an aircraft in which adequate

performance is attainable with tolerable pilot workload but which has

sores annoying deficiencies. It should be kept in mind that the
^r -a

pilots evaluated the total aircraft system, including the intentionally

simulated failures.

r:

Due to technical and economic limitations, we used a fixed--base,

7

t

1,23	 {
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or static, skiralator in this research. The case for the importance

of motion cues in flight sLuulations has been made by many investi-

gators; (cf. Gibino, 1968; Jacobs et aZ., 1973). our main purpose in

this research, however, was to document the pilot's failure detection
t

performance. The simulated failures were very subtle and it is our

belief that motion cues would not have aided the pilot in the

detection task, especially in the presence of the noise introduced

by turbulence and wind gusts, which are quite common during a bad-

weather approach.
i'	 3

s

4.5.3	 Subjects

3

JAll	 the fifteen subjects who participated in the formal
s

,t

experiment were professional pilots from two major domestic airlines

who were highly motivated, enthusiastic and intelligent. All but

four flew jet transport aircraft regularly; the four who dial not j

(one pilot who flew turbo prop transport aircraft, two second

officers and one retired captain) did not reveal any difference in

performance (RMS tracking errors, workload scores, touchdown per-

formance and failure detection times) when coupared to the other.

pilots. We are convinced that our subjects were a representative ;#	
a^

sample of the population of airline pilots.

jj

X47
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CHAPTER V

SUMMARY AND CONCLUSIONS

}^

ff#f,

f

-^ ^ r 1	 Sun^ttary

1

t	 -

F.

In the last decade, a great deal of thought has been given

to Category III landings and their implications. One area of intensive

.,C investigation centers around the role of the crew during the approach.

1
Current thought is polarized around two extremes:

k

^^

1.	 The crav is in the control loop and flies the aircraft in
z

f
accordance with instrument-generated steering signals.

2.	 Steering signals are coupled directly into the autopilot,

with the crew monitoring the system. a

It is axiomatic that a pilot should be capable of detecting

identifying failures in the landing guidance system accurately, w

reliably andl with minimal time delay. The purpose of this research

'r #11 was the study of the pilot's short-term decisions regarding performance `.

assessment and failure monitoring. he wished to investigate the
j.,

tf relationship between the pilot's ability to detect failures, his

degree of participation in the control task and his overall, workload

125
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1
level. Also, we wished our findings to be applicable to the general	 3
population of pilots who fly lo-vi-visibility approaches in oanuercial

jet transport. aircraft.
E

Th this end, this research consisted of an experimental

investigation which was carried out in a static ground simulator.

Fifteen airline pilots flew zero-visibility landing approaches with

different degrees of automation and at different workload levels

which were induced by simulated wand disturbances. The pilots'

ability to detect failures and to provide a reliable manual back-

up capability was monitored and recorded.

The data were analyzed to identify statistically significant

relationships among the experimental treatments and the factors which

produced the optimal performance were sought.

`Wo hypotheses were tested in this research:

1. Both the participation mode of the operator in the control

task and his overall workload level affect his information processing

capability. The effects, then, of the operator's participation mode

and workload level on his failure detection performance are additive.

Manual tracking will result. in longer detection tiues. than will..
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monitoring a coupled, automatic approach, and higher workloads

will effect longer detection times than will low workload levels.

2. As the flight instL ments display angular, rather than

linear, deviat 4.ons from the localizer course and from the glide-

path, they increase in sensitivity as distance to touchdown decreases.

In addition, the penalty for error increases with increased proximity

to the ground. Additional processing demands are therefore placed

on the pilot and hence his workload increases in inverse-relationship

to altitude or to distance-to-go.

'I'o measure the pilot's workload, a "warning-light"-type

subsidiary task was selected for this research. It consisted of two

small red lights mounted above each other outside the subject's

peripheral vision field, and a rocker thumb switch mounted on the

left horn of the control yoke. The Lights provided the stimuli.

During the run the upper or lower light, with equal probability,

was lit at a random time for a maximum of two seconds. A correct

regrnnse by the subject to this stimulus -onsisted of turning the

L.ght off by a proper motion of the rocker thumb switch. The subject's

responses we:r,e processed and converted into a workload index.

1. For the purpose of this research, a simulator capability

^i

i

1?

1



including a digital graphics computer and a fixed--base cockpit

simulator has been developed. An integrated-cue flight director

system has been designed for t1-is simulator. Also, a two-axis auto-

pilot has been incorporated into Uie simulate-i which is capable

of flying ILS-coup i.ed approaches, in either axis or in both axes,

to touchdown. We also had the capability to add wind disturbances

to the simulation to induce different workload levels. The simulation

did not include any displays of a mods progress annunciator, movable

bugs or a fault annunciator panel, nor were there any warning flags.

The experimental variables to be investigated in this study

were ti-ie pilot's participation made in the piloting task, the work-

load induced by the control dynamics and by external disturbances,

f'	 and the pilot's failure detection performance. The experiment

involved four levels of participation:

Passive monitoring.

2. Split axis, yaw manual.

3. Split axis, pitch manual.

4. Full manual control.

TI-Lree failure conditions were used:

1. No failure.

2. Failure in the yaw axis. In this condition the autopilot,

if coupled, or the flight director would steer the aircraft away from
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the local.iaer course.

3. Failure in the pitch axis, similar in nature to a failure

in the yaw axis.

in addition there were three levels of wind disturbances.

The effects of the level of participation and of the wand

diturbance on the pilot's workload wera investigated in a full-rank

4 x 3 factorial. experiment. The effects of the level of participation

and of the wind disturbance on the pilot's failure detection perfor-

mance were investigated in a separate 4 x 3 x 3, partially-confounded

factorial experiment. The "no failure" condition was incorporated in

the design so that the subjects would not anticipate a failure on

each and every approach.

The following results were obtained:

1. The workload scores were sensitive to both participation

mode and the presence of wand disturbances.

2. There was a very marked increase in workload si r, s at

altitudes below 500 feet AGL, which was inversely related to distance-

to-go. This increase was observed even in fully automatic approaches,

Which seems to indicate the effects, possibly, of the pilot's mental

state arising from his awareness of the proximity of the ground, and,

therefore, that a significant reduction in the pilot's workload at.

f

i^
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low altitudes cannot be achieved by improved display design alone.

3. Detection times in a manually-wntrolled axis were
4

	

-'	 significantly longer than detection times ix: an automatically-

controlled axis.
I_;

	

fi^	 4. Detection Oxces for lateral failures were significantly

longar than detecti,,n tjims for longitudinal failures at comparable

workload levels. This result can possibly be attributed to sores

	

r,	 combination of the following factors:

a. A lateral failure, as simulated in our experiment, t
j:

resulted in a one-dot deviation in approximately 100 seconds, while

a longitudinal failure required only about 30 seconds to cause a. one-

dot deviation. The reasons for this are the differences in thF3

dynamics of the simulated aircraft in the lateral and longitudinal.
s

axes and the larger linear distance represented by a one-dot lateral

deviation (1.25 °), conpared to the distance represented by a one-dot

longitudinal deviation (0.35°).

b. As the lowest altitude at which a failure was presented

	

F	
_

s was 800 feet AGL, which corresponds to a distance of over 2 miles from

the runway threshold, the pilots may have assigned, in. that phase of

the approach, a higher priority to vertical positioning of the simulated

	f	 aircraft than to runway centerline alignment; consequently, they may

have been m«re sensitive to excursions of the glide-slope deviation

indicator.

t
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c. Both position and rate information are directly

available to the pilot in the vertical plane by means of the GST

and the vertical speed indicator, respectively. Lateral rate infor-

mation, on the other hand, is available only indirectly by means of

the heading displayed on the HSI; fur-Unermore, this information is

contaminated by extraneous inputs, such as lateral draft due to the

wind. The ready availability of vertical rate information, which

relies the pilot of the need to generate a large phase lead, may

be responsible, in part, for the better failure detection perfarmance

in the longitudinal axis.

5. Detection tams increased in direct relationship to work-

load:

Tdetection ° 20.9 + 16.5M + 15.9A + O.MW

1 if the failed axis is controlled manually
where M =

0 otherwise

1 if the failure occurs in the lateral axis
A_ =

0 if the failure occurs in the longitudinal axis

TEL = normalized workload index

and	
Tdetection 

is measured in seconds.

The model correlated with the data at the P << 0.001 level of

significance.

G. Finally, the touchdown performance was poor under all

131



conditions with the exception of the fully-automatic no--failure-r	 r

case. Of the attempted landings, 67% were acceptable under the split-

axis, yaw-manual mode of control; 34% were acceptable in the aplit-axis,

pitch-manual mode and only 19.80 of the attempted landings were

successful on fully-manual approaches. We could not ascertain from

the available data whether the poor landing performance was due to

insufficient information presented by the displays, overloading of

the pilot. in the final stages of the landing, deficiencies in the

simulat :• • -;ana other causes.

5.2 Conclusions

Our goal in this research was to identify the participation

mode and workload level which optimize the pilot's failure-detection

performance. For the failures considered here the results suggest that

a coupled, fully-automatic landing with the lowest possible workload

is called for in Category III operations, with the crew monitoring

the progress of the landing via a cockpit display. I^'urthe=re, as

manual touchdam performance with the simulated conventional flight

instruments was unacceptable by commercial operational standards, a

failure in the automatic landing system may have to be followed by

the initiation of a mandatory missed approach and a diversion to a

Letter visibility alternate field; unless the required progress is
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made in display design and technology to radically improve manual

touchdown performance.

The detection times for pitch failures in a fully-automatic

mode ranged in our experiments from 7 seconds to 56 seconds, with

a mean of approximately 24 seconds. Yaw failures detection times

under the sane conditions - that is, a fully-automatic approach -

ranged from 17 seconds to 52 seconds, with a mean of approximately

35 seconds. Assuming a rate of descent of 10 feet per s6cond on the

final approach, our data suggest that below Category I decision

height a failure of the automatic landing system (as simulated in

our study) may not be detected at all or, at least, it may not be

detected in time to allow safe initiation of a missed approach.

Performance monitors and fault annunciator panels may alleviate the

problem somewhat and shorten detection times. They are inadequate

at altitudes below 100 feet, however (Vreuls et al., 1968a); also,

they are not infallible, and additional warning lights and buzzers

in the cockpit provide only more opportunities for malfunctions and

for crew confusion.

one possible answer to the dilemma may lie in the Independent

Landing Monitor concept. The monitor is completely independent of

the guidance systean and of current landing aids, thus reducing the

probability of simultaneous failures. It presents to the crew a
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perspective life-like synthesized analog display of the runway

environment, enabling the pilot to monitor the performance of the

automatic landing system or to fly the aircraft manually, following

an autopilot failure, by reference to artificial visual cues. One

proposed ITM system (Parks and Tubb, 1970) was based on microwave i

transmitters or radio reflectors Installed along the runway edges.

The display, when augur-._.nted with aiding symbology (c-f. Wan Houtte,	
E

1970) may lead to safe Category III operations.

5.3 Recommendations for Further Research

	A very marked increase in workload scores at altitudes below 	 !

	

500 feet has been observed, even on fully-automatic approaches. As 	 `']
1

the pilot's failure detection performance was shown to be inversely
3

related to his workload, this phenonenon should be carefully inves-

tigated and its causes identified; an effort should be made to reduce

the flying pilot's workload during the final phases of the approach,

either through display design or by crew task allocation.

The pilot's failure-detection performance should be investigated

at a constant workload level; to validate our findings. An invariant

workload level across participation under. can be induced, possibly, by

a cross-adaptive concomitant loading task.
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In our experiments the failure detection performance in the

longitudinal axis was significantly better than in the lateral axis.

One possible explanation of this result (see Section 5.1) is the
'I

availability of explicit rate information in the longitudinal axis.

This hypothesis should be tested and, if verified, the findings should

be applied to the design of the lateral deviation instruments.

As stated in Sections 3.3 and 4.3 all missed alazms occurred

in manually-controlled axes; no failures were irissed when the failed

axis was under automatic control. An attempt to explain this result
i

by variations in the signal-to-noise ratio of the displayed tracking

error failed, as the ME tracking errors on approaches which resulted	 '.

in missed alams were not statistically different from the tracking	 I	 k

errors on other approaches under cceparable experimental conditions.

other possible explanations of the difference in missed alarm performance

between manually- and autamtically-controlled axes may be:

1. As detection times in.manually-controlled axes were longer

than detection times in automati.cally--controlled axes, there was a

higher probability when the failed axis was controlled manually that

the approach would terminate (at touchdown) prior to detection. This

explanation leaves something to be desired as it does not address the

question of the basic cause of the difference in detection pGxxform nce
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between manually- and automatically-controlled axes.

2. When faced with simultaneous demands for monitoring and

control the pilot may divide his attention between the two tasks.

Under such "single channel" theory the fraction of attention allotted

to one of these tasks is not available to the other (even though the

pilot derives the information for both tasks from the same set of

displays), thus resulting in a better failure detection performance

when an axis is monitored by the pilot (and controlled automatically)

as compared to simultaneous monitoring and control.

Further study is clearly necessary to effect a better under-

standing of the causes of the reported missed--alaxm performance and

their implications in the context of low-visibility landings.

Finally, the behavior of the pilot during the last phases of

the approach is not. well understood. Factors affecting the pilot's

touchdo -;n performance should be studied and his information r eqd x'e-

nmts and processing mechanisms identified., as a prere quisite to

pilot-aircraft interface design; the design must be optimized if

future Category III operations are to maintain the excellent safety

record of cmmercial aviation.
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APPENDIX A

SIMULATOR DYNAMICS

A.1 Equations of Motion

In order to describe fully the rmtion of a rigid airplane,

three frames of reference were used. They were the body-fixed frame

of reference and the cartesian axes E;, n and ^ assoc .ated i-rith it;

the so-called wind frame of reference and the spherical coordinates

V
, y and ^ associated with it; and the inertial earth--fixed frame

of reference and the cartesian coordinates X, Y and Z associated

with it.

A.1.1 Body-Fixed Frarre

in the body-fixed frame of reference E is the longitudinal

axis of the airplane, positive fon%,ard; n is the pitch axis, positive

to the right; and C is the yaw axis, positive down; thus completing

a ri.gHL-handed orthogonal triad.

In this coordinate system, assuming small angular rates, one

has:

1.37



p VIA 	(A. 1)

q = m/111	 (A.2)

n/x 	(A.3)

where p, q and r are -.he angulax velocities aground the E, n and C

axes, respectively,

Z, m and n are the wn ents

and IV In and I^ are the principal mints of inertia.

A.1.2 Local-Wind Spherical Coordinates

In the local-wind frame of reference C  is along the velocity

vector v, y is the angle, in a vertical plane, between C  and the

local horizontal, positive upward; and ^ is the heading azimut-i

angle of the velocity vector, measured clockwise from the north.

The relationship Between the body-fixed and wind fraTres is shown

in Figure A.1. Transforming vectors from the body--fixed coordinate

system to the spherical wind coordinates, one has (Miele, 1962):

:I

j

i=

j

i„

f
-j

?	 1

I

Z	 3

I3	 -

t^

_	 1

a = q coso - p sink -- y cosh - cosy sine	 (A.4)

(cosy cosh Cosa - siny sina)- sink Cosa - r (A.5)

cp = p cosR cosa + q sink cosy - y sina - j; sing	 (A. 6)
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YNbiile the equations of mot-.on in the wind coordinates are

v = W (T cosy cosy - D - L sing - W sing)	 (A.7)

W Vgcosy (-T sing cosh cos
y + L sinO)	 (A.8)

g__
y W V {(T sing cosy + L cosa)cos^ - W cosy}	 (A.9)

and

6 = (a + y)coo + Bsin¢	 (A.10)

where a - angle of attack

0 - side-slip angle

0 - hank angle



2. All engines produce equal test, and the resultant thrust

axis coincides with the aircraft's longitudinal. axis.

3. All rates of rotation are small and hence, all products

of inertia. are negligible.

4. Fuselage side forces and secondary forces produced by

air hi.ttang the jet intakes at an angle to the thrust axis are

negligible.

S. Effects of curvature of the flight path due to motion

about the earth are negligible.

A.1.3 Aerodynamic Forces and N--ments

The aerodynamic Lift and drag forces appearing in Equations

A.1 through A.9 were defined as fol1cws:

L = SC V2	(A. 11)

D =2 SCdV2	(A. 12)

where p - density of air

S -- wing area

Ct , Cd coefficients of lift and drag, respectively

As this model was meant for use in final approach studies p

was assumed to remain constant at 0.0023 lb.sec2/ft 4 . The lift-

curve of die wing eras assumd to }- piece-raise linear with the
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angle of attack (see Figure A.2) and consequently, a lumped coeffi-

cient of lift CL

q° z sacR/aa	 (A.13)

i

and a lumped coefficient of drag C-

zsaCd/aa	 (A. 4)

were introduced. The final relationships for the lift and drag forces

were then

L qw2

(CL) a=230 (280 _ a) V2
5

= 0

D =qaVz

0<a< 230

23a < a < 270	(A.15)

270< a

(A. 16)

The lumped coefficient of lift was a function of flaps position

CZ, q*0 + CLf
(A. 17)
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The lurid coefficient of drag was a function of flaps position.,

landing gear position and speed brake position

CD = 	
+ q r + CD G + q S	 (A. 18)

0	 f	 g	 s

In addition, ground effect was included in the model, obeying the

relationship

CL=Cy(1+kh+x,-11)	 tA,l9)
ch

Ft

? d.

^,rllere h is the altitude andkg, kh and kA are constant coefficients.
i>.

The aerodynamic moments !Z, m and n were computed by passing the

appropriate control deflections through a simple gain

EQ = 
{k 'L^ C + lC

knq C) V2 	(A_ 20)

m = knOcV2 + 
k
(L cosa cos¢ - w cosy)	 (A. 21)

E;

j`.	 (taking into account pitching rents caused by lift and by the
f^

`	 fact that the center of gravity is Located forward of the aero-

dynamic center)

az = fic (q) + 0 - k r - k	
}V2	 (A_22)

nn c 	 nQ c

_	 F

E^

' 	 E

14.4



(including a yaw damper in the model).

In Fquations A.20 - A.22, IC, 0c, and ^c are the roll, pitch and

yaw commands, respectively, and k^ Q, kQn , m, PAS , k  and kno are

constants.

As a first approximation, the parameters of a IC-8 were used

in the equations of motion (Toper, 1969) . The various parameters

were later refined folloeing a series of flight tests by an American

Airlines senior instructor captain with considerable Bneing 707-123

experience. The actual values can be found in Section A.5.
w

j

A.1.4 Earth-Fixed Frame
	 J

The origin of the earth-fixed coordinates for the model was

set at the glide-slope touchdown point of runway Q at Logan Airport

in Boston. In this frame of reference X lies along the runway center-. 

line, positive toward the far end of the runway; Y is normal to it

in the horizontal plane, positive to the right; and Z is normal to

both X and Y, positive up, thus completing a left-handed orthogonal

triad. The earth-fixed coordinates are shown in Figure A.3 together

with various landmarks and navigation aids.

The geometry of the runway environment is defined, in this

coordinate system, by:
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Fig. A.3 Runway Environment
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Localizer antenna is at X = 7500 feet, Y 0

Runway threshold is at X -1153 feet

Middle marker is at X -4800 feet, Y 0

Outer marker is at X = -5.49 n.m., Y = 0

Bost-on VOR is at X = -250 feet, Y = 4200 feet

Glideslope beam originates at X 0, and the glide-slope angle

is 3.031.

All approaches bogan. at X -12 n.m., Y -1 n.m. _,id Z 2500

feet, at aircraft heading and course of 65*. This course resulted in

localizes interception angle of 30 1 at approximately 11 n.m. from the

runway threshold, well beyond the outer marker.

By sinple transformation of the spherical wind axes one obtains

the kinematic equations of motion of the airplane's center of gravity

in the earth-fixed axes:

V sing	 (A.23)

V cosy cos (0-35')	 (A. 24)

V cosy sin( 35°)	 (A. 25)

For the purpose of various uYeasurem-ents during the approach (see

Section 2.6) an X -coordinate, distance from the runway threshold,
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--W.Ti
yn+l = e	 yn + T'^n +l yo=0 (A.31)

Since, for a square distribution,

a2 = (2P) 2 /12

.'. P = X12 ax/2
	

(A. 29)

,The gust scqurl nce yn was obtained from the random sequence x 

by passing it through a first-order filter G (s)

G(s) = 1/(s + w i )
	

(A, 30)

The output of the filter was sampled by the program at intervals of

T seconds (the program's update rate), to obtain the gust sequence

Hence, the gust sequence has the following statistics:

yn = T	 but x  = 0	 yn = 0
	

(A. 32)

-2W.T
ay = e	 ay +Tax
	

(A. 33)

or

--2-w-T L

C5	 T
	 (A. 34)

y
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It was desired that the wind gusts yn should not exceed some preset

maximum value Vex 99.75% of the time (which, for normal distributions,

corresponds to 3a ). Therefore, Y - V ,/3 and 	
s

Vttax	 -W2wiT

ax 	 3

-2w. T

.'. P= 12c 2-^Vmax (1--e ^ )
z

V	 -2wiT
mTax (

1 - 3	
}

The use of the no)-nal distribution property is justified as the

output of a linear filter has approximately normal statistics.

To sumarize:

1. A random sequence was gennxated

	

xn+l - (7701 xn + 3927)md(10000)
	

X'
0

 7129

2. A modified sequence was defined

	x'	 2V	 -2wiT
X	 n	 1) max (1 - e	 )
n v x'10000	 2 T	 3

where Vlnax - the desired maximal gust velocity

W  - the gusts' cutoff frequency, set at n/6 rad/sec
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and T •- the program's update rate. -0.2 seconds.

3. The sequence x  was passed through a filter G(s)

G (s) (s ++ mi)

to obtain the random wind gusts.

Figure A.6.

A.2.1 Dynamics

4. hs a final step, a steady (constant) wind was superimposed

on the gusts.

f
:a

in a series of tests the actual means and standard deviation of

the generated dusts were found to be within less than 1.2% of the

predicted values, even when as few as 150 sample points were used,

and t- and F-tests could not reject the hypotheses that the actual

statistics of the gusts were equivalent to the predicted ores. A

typical time history of the gusts over 200 seconds is shoran in

The aircraft was assumed to posses two separate motions:

1. Motion relative to the air (wind axes)

2. Motion of the air relative to the around, defined by the

wind speed V and its heading,`

The vector addition of these b.;o motions defined the motion of the

'52
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(s) 	 1
Vna(s) - Ts + 1

V^ T (Viw - n ) - -lr- % s
in (^W -^(1) - VzI

or

Vg = V+Va Cos

and the total side-slip angle ^T is

O
T = 

0 + arctan(
Vzw - V) /Va

aircraft relative to the ground.

'^	 1

1

Also, if there was a component of the Wind, V nW, normal to the

heading of the aircraft ^, the aircraft Was assured to acquire a

component of velocity VZ ir_ that direction (normal to its heading)
	 i

relative to theound according to the relationsh ip^	 g	 p

The ground speed, Vg, was then computed from the airspeed a 
ar 3 the

..	 -
wind velocity V a:



x = [ a + v ,7 cos( sa --)]cos( - 35°) - Vn sin (q) -- 35°)

(A.41)

vY = [va + w cos (^o-^ - ^} ] sin Q - 35°) -- V Z sin W - 35')

The geometry is illustrated in Figure A.7. Fbr the purpose of

the simulation, the following values were used:

T = 1 second

TV = 80° (45° to the runway heading, which was 350)

and three values for V

1. v a = 0, Vex = 0 (no wind) .

2.w = 5 knots steady wind plus gusts ranging between +10 knots.
3. w = 10 A. shady wind plus gusts ranging between *20 knots.
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'-	 A.3 slight Directors and Autopilot

{	 An integrated-cue flight director display was used in the

simulation. At the initiation of each approach the flight director

was slaved to the ar-U flcial horizon anO cammanded the straight-and-

level condition. The lateral (TAC) made engaged auton 	 ally at

two-dot deviation (2.5°) from the localizer course; the longitudinal

made (APPR) engaged at one-dot deviation (0.35 1 ) from the glide

`	 slope. At an altitude of approximately 60 feet above the rLuiway

elevation the flare mode became operational and the letters FLR

}?	 appeared on the flight director display.

I^
j

A.3.1 Ifingitudinal Mode

First-order transfer was utilized in? the longitudinal director
I

(Weir and Klein, 1970):
4

0.5 0P = -3.6(0.0005 h + 	 )	 (A.42)
e s + 0.034

where FD is the flight director's pitch attitude command and h e , t1i	 p

altitude deviation in feet from the glide path, was computed by
i	

r

`	 e	
Z - X tan(-3.03 0 )	 (.x.43)

R	 j'
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and

= Z - X tan(-3.03 0 )	 (A.44)

d	 :; 7

The time--rate of pitch, 0, in radians per second, was found from +;

Equation A. 10:

A : 0 = (a + y)coso +	 sine + [a cosh - (a + y)sin0j; 	 (A.45)

The control sequence FDp was mechanized digitally by a trapezoidal
}

int.^gration:

(gip)	 `3.6[0.0005(h  	 + 0.034 h ) + 0.5 0 3 - 0.034 (FDp )n+^	 e	 e	 n

and	 (A.46) .

-	 g
(FD) n+1 - (FD ) n ^^ (FD ) n+^ Atp	 p	 p

A.3.2	 Flare Path

During the flare maneuver it is desired to cause the aircraft x=
^

to approach the ground asymptotically while fo"iowing an exponential

flight path. Refex-i,ng to Figure A.8 one has

h 	 e t/T+ho	 T	 (A.47)

h --- (ho/T) e^t^^	 (A.48)
a {'	 d

^t
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but, from Eq. A.47

h	 e t'/T	 h - hT (A. 49)
o

.'. h = z	 (h - hT)•(-1) (A.50)

and

q;

h = hT - Th (A.51)

Assuming that h µ hT in N time-constants T and that X is approximately

invariant, then
t

D = N , T •y	 .. T = D/NX (A.52)

and

h W h z, - D • h/ (N - X) (A.53)

s: at the initiation of the flare maneuver t=0 and

I
t

D is the distance downrange that the aircraft will travel between the-

- initiation of flare and touchdown.

We introduced the bias hT because of the delay in the response

of the aircraft to control. inputs: It is assumed that at touchdown the

i

aircraft will be below the computed path by this amount.
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Equation A.53 was used to compute the nominal path; deviations

from this path were fed to the longitudinal flight director as

altitude-error signals during the flare.

The parameters hT , D and N were adjusted o-n:irically. As

X = V cosy,o = V sing one has, from Equation A^.5

on a nominal glide path y = 3.03°; for the best touchdown

performance, in tortes of sink rate at touchdown and longitudinal
=e	 ;

dispersion, values of D = 2550 feet at N = 3 and h T = 15 feet we e

used. These yielded a nominal flare altitude of 60 feet; the actual

altitude at which flare command was to be initiated, based on the 	 {
F

airplane's ground speed and sink rate, was computed in real tim

from Equation A.54.

A. 3.3 Lateral Mode

Second-order transfer was utilized in the lateral flight

director (ibid.):

FD	 -0.2• [ a (b^ + c + dc) + fc + gel	 (A.56)r	 (s+T )(s+z2)
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c

where a	 0.62
t

b = 8.6

0.9C -

d = 180

f = 2.7i
j_

g = 15.6

((
1.

T1 = 1.06

P

T2 = 0.16
:^

and where s, the angular deviation in radians from the localizer

course r was computed by

E	 Y/ (-X)	 (positive to the right)	 (A.57)

-

f

S.'

f
5 	 :,

Now,
3

a	 _	 R	 R
(S+T1)(s+T2} - s+T2	s +T1

-' (A.58)

R =	
a	

W 0.6889
T1 - T2	 '

and

r

R	 +	 ' +	 -	 R	 +	 +IT'D	 = -0.2 ^S (b 	 c	 de }	 (b	 + c¢	 d^ }	 fc^	 qE ]	 (A. 59)
}

+T	 S+T
2	 1
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The control sequence FD  was mechanized digitally by a trapezoidal

numerical in egration in a way similar to that of the longitudinal

director (Equation A.M .

A, 3.4 Autopilot

The autopilot was mechanized by feeding a function of the

flight-director's commands as control inputs:

Cc = kl ( ^) + k2 (ED	 (A, 60)

^c	lc3 (FDr) + k4 (Ebr)	 (A.61)

c = -	 (A. G2)

At altitude of 200 feet the pitch autopilot stopped trackinq

the longitudinal flight director and maintained, instead, a glide path

of 3.031 in an open-:loop fashion until the flare maneuver was to be

initiated; during the flare maneuver the lateral autopilot disengaged

from the flight director and maintained wings-level attitude.

The autothrottles were mechanized by computing the appropriate

thrust required to null the velocity time--rate-of-change (Eq. A.7) at

a nominal reference airsrced (see Table A.1).

i

i



Table A.1 Approach Reference Speeds

failure.

Failures in the guidance system were simulated by feedinq a constant

bias deviation into the appropriate flight director system (but co*

into the raw--data indicators, that is, the CDI or the GSI). I::a bias

was computed to correspond to one-dot deviation at the point of 	 ='

:7ailure occurrence; from that point on, until the failure was correctly

identified, the aircraft was guided to intercept and track a path

parallel to the nominal path but translated by the amount of the bias,

as shown in Figures A.9 and A.10. This enabled us to introduce failures

at different altitudes without having the data contaminated by unwanted
i;

effects, such as differences in the aircraft's rate-of-turn or sink rats
f>	 ..

and in the rate of motion of the deviation indicators, following a^.'

164









When a failure occurred in a manually-controlled axis the pilot

was guided by the flight director to intercept and track the new path.

When the failure occurred in an autopilot-coupled axis the autopilot,

driven by the flight director, trackF ' the new path. Tn each case the

subject was expected to detect the failure by reference to the raw--

data indicators, x;,hich did not fail. To this end the flight director

display was biased out of view whenever the autopilot was coupled.

Failures were presf7rited at altitudes between 1800 and 800 feet.

The choice of altitudes was randomized, as were the order of presen-

tation and the direction of the failure, i.e., left-right for a

lateral failure and up--dawn for a longitudinal one.

A.5 CSauter Prcgrams

Three coiqDuter program were used: A "No Failure" program which

included the workload measurement subroutine, a "Pitch Failure" program

and a "Yaw Failure" program; both of the latter accepted as inputs the

altitude at which a failure was to occur and its direction. At the

begining of each run the appropriate program was loaded from a console

in a room adjacent to the simulator.

Documentation and Iisti_rtgs of the programs are presented in the

remainder of this Appendix.
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I	 I	 I	 I	 J	 I	 I

PP.OGRAH PUF
C
C4^^	 PROGRAM: NO FAILURES
t:

GLOBAL ITIME,NF
IMPLICIT FRACTION CF>
LOGICAL CONE
REAL FLAPS

L	 OTSERRORS=SHORT

COIII40N/CSTASY./I•tSTSK, TOTTY., ET I14E, LTON,11S l11OLD, T 1!•tEOtf, TIIIEOFF

COIIMON/CNTRL/T,FLAPS,CTETA,CPH1,Cgl,GEAR,AFLARE.SPSRY,
COMMOtt/CNTRL/BTETA,BPH3,BXI
CO gl40 N/PR14TP./V,XI,VG,VW,COSXW,SIt1XW,COS35,51N35,SETAG,Vt1ORM,CRAB
r , '''nN/PPMTP./GAt111A, ALPHA, BETA, PHI , VX, VY. VZ, THETA, A, ti:14, Y, R

)II/DPF,t4T R/DV, DX I , DGAMA, DALFA, D?ETA, DFH I , D T. D'. Z

I	 I/AN;•SI NA, SIIIG,SIIIP.SINB.51FMCO$Ai COSG.CO•;P,COSX

COt114Gr1/>: PAC/FV, FB11K, FP I CH, FA. FA100 , FVZ, FROG. FADF, FVOR, FCP ICH
COMMON/FRAC/FCBNK,FER,FHEP.,[W.E.(5), MODE (6),FTETAO
COI4MOti/FI?/7+DF, VCR. CP I CH, C8Nr„ EPS, HER. F."D, GUST. THE TAO

COMMON/A IJ TO etC BNK t , C'CRNr.2, C• CP I CH, CAPTR, WSJ, W, VZO , . FLi4RE
COMM014 STORT(100),TOTT(IS0),STOPX(150).STORA(150),SIGRY(ISO)
CUMHOIE LDCT,LOC[^.I1T'^..XttlSSti100),}'HIT(100)
DATA RRp/5T.296f.W/1b50G4./.f,W/0.0001155/
DATA TMRKRI/0.4815/,T14PKR2/0.068/,TMRKR/0.0076/
DATA TNCSA/-0.05293?/
DATA COSXW/0.173649•',SIIIXW/0.5849OS/
DATA COS35/0.815152/,SItF35=0.573576/
WRITEC10,200 )
READ( 10,2006:NAME

2005 FOPHATC' ENTER 5-LETTER CODE'/)
2006 F'ORMATC95)

DECODE(5.2008.IrANE,H)INHNE
IF(I14 ;LME.EP, 40404040•;OB)NAtlE=Nfi14E.R: 18
DECODE(5,2007,11WIE.H)IDIST

2007 FORMAI;3X,I1)
2008 FORI4ATCZk.A3)

VWO=IDIST*5.
PRA14D=IDIST-11,6936
I F ( NAt1E . ER . 77777740 X30 B) PRAIID ^0 .
ENTRY NF

C
C ,P**	 TURN OFF ALL LIGHTS AND SAMPLE SIDE-TASK SWITCH
C

I CONT I14UE
A	 ADEPT

11DAR TURNOFF
ARIC'A'F
14DAP HSTASK
S6AP.'A'F
JPLS 14STSKOII

vRILTNAL .pAff s;i

OP POOR QUALITY,

1
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^

} FORTRAN
I MSTSK=O

GO TO B
A	 ADEPT
IISTASK:	 01H00200
MSTSKON:	 HoOP
FORTRA14

MSTSK=:
B	 CONT INUE 1
c
E ns*h	 INITFALIZE ALL VALUES
c °e

GAII14A=0 .

DGAMA=O.
XI=65.

FEYY=O OF

ALPHA=6.

THETAO=4.

e 4ETAG=O.
p SETA=0 ,

DF14G=2550 .
AFLAPE=O.
IFLAP.E=O
TOM= IMM=[IM=O

i; JJFF=0
' ETIME=TOTTX=O.

iy LOCT=LOCP=O
` LTON =11 I35=NSUOLD=0
(= TIMEOH=5.

T I IIEOFF=2 . 1
' XME-12.

Y=— E030.2 i

YQR=43.047 i

E; ADF=43.732

VG=170.

V.X=VG•O,666026
t	

i
^- VY=VG *0.5
3! ; V2=0 . k
g!+

y

i-

i,

WAUTM

IE^^

E

170

1

..:

f	

7 !	 ^.



l -;

YZO=-1.
IPOU14=7129

GUST=O.
VW=vino+GUST
YNORI4=0 .
V-VG-VW* ( COSX%'*0 .422618+S I14XW*0 .906308 )
R=D.
THETA=ALPHA-2.
DIST=SGRTC(X14+0.0411) 4w2+(Yi6080.2-0.6908) #*2)
S5LOCK=0.

MODFDa "'1

LABELOODE)
ZSETCO.OF)
M3VECO.2SF,0.6SF)
WP.ITE(16,556)MQDFD
EFIDI.I ST
LABCL(DKE)
2SL:T(O.F)
fIOVE(-0.805F,-0.014S4F)
WRITE(15,555)DIST
EIIULI ST
XFEETZ Yjj460es.2
EPS, w Y/(-kX?1-1 .23)46^880.2)
MEP-R-.:FE ET^^ -0. R:.2:+.'3)
CPECHI-CFICH=O.
DCPIC4=0.
C8IIKI = CBI1K=CE^ = r.2 = 0 .
D MW: 1 =M E,!11'2=0.
ETCTA= 8PH1-B:%I=-O,

CALL SAMPLE
STETA=CTETA
BPHI=CPHI
BXI=CXI

CALL PTOF

CALL 'ERIC



START THC DISPLAY

JPSR $GRAFX
$DIALS
5

*	 INITIALIZE DATA —UPDATE CLOCK

2 ITIME=I^

ENTER WAIT LOOP IF SWITCH 8 (START) IS NOT ON

IF(.NOT.SWITCH(6))G0 TO 2

EXECUTE U14LESS SWITCH 12 (FREEZE) IS 014

6 IFC.NOT.SWITCH(12))GO TO 3

i

AFTER SWITCH 12 HAS CEEN PRESSED, EXIT IF SWITCH 16 i.o ON

7 IF(SWITCHCI6))GO T4 4

*	 OR 1NITIALI2E VALUES IF SWITCH 4 (IC) 19 ON...

IF(SWITCH(4))GO TO 5

OR START EXLCUTION AGAIN IF SWITCH 8 IS ON... 	 {

IF(S'l1ITCM8))C3 TO 6	 1
y

OR INITIALIZE DATA —UPDATE CLOCK AND ENTER A WAITIBr^ LOOP

IT 1!•tE-1

GO TO 7
5 CONTINUE

STOP THE DISPLAY AND GO BACK; TO INITIAL VALUES

JPSP 3NHALT
HOOP

GO TO 1

C

C41

C
A
A

R
C

C**
C

C
C*a'
C

C
C**
C

G
C**
C

C
C**

C

C
C***
C

C

C

C+,**
C

R
A



i )
j

_i

-i

i G
y

G•dN START EXECUTION OF A NEW DATA-UPDATE CYCLE:
C*** COMPUTE DT (=TIME IN SECS OF PREVIOUS CYCLE)

a'
C*t q- AND INITIALIZE DATA-UPDATE CLOCK.
C

3 TIME=ITIME
x IT IME=O

DT=TIMQ 120.
CALL DYHNF
CALL TRIG

C
i C** COMPUTE RANDOM DISTURBANCE CGUSTS)

C
L INTEGER:.=LON^

IRtiU 44=M4UCt7 ,QfWIPMt3M + 3927) , f0000)
RtiLSx]= E RN6j'4

L IN7EGERS=S}TORT

p' DVWI=CPHUMwI0009.-Q.5)MPF^AND 4
I" OUST=GUIT+tDVN L-0.104 ZIC UST)&DT

VW-VW0 4 GU;T	 $
Y,FEET V0 60 0 . 2
IFC:-:FEET .EO.O. )){FEET=1 .
YM1LE=Y16720,2

.; C
C* COMPUTE THETA-DOT	 C=PITCH-ANGLE TIME-P,ATE OF CHANGE)

'S
€

TDOT=(DALFA+DGAt1A)*COSP+bBETA+SIHP+CBETAoRAD+COSP-CALPHA+GAMMA) j	

a

E wsIHP , wwD)+ l pHl

C >

I C*** FLARE COMMAND COMPUTATION
C

IFC If LAP013, 35
• 35 DENOM =3.j 	:,,'	 .3367

r, AFLARE=AV0.	 5.-GFNG4VZ,DrUQM) - 120.) p
IFCA.GT.AF ,	 O E )GO	 TO 31

^

IFLARE = 1	 , 7	 1
l

l'
f

I
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I

Yz0 a AM1111 e (VZ+150	 -150
cplcHlv4.
MODFD="FLR."
LABEL(MODE)
ZSET(O.F)
AOVE(0.23F,0.66F)
WRITE(I6,556)1tODFD
ENDLIST

556	 FORMAT aG 11 , B4
33	 HERl=A+TAlJ*VZ-15.

HED0T=VZ/60,+TAU*DVZ
GO TO 32

31	 HERmA-NFEET*TflrSA
HERI=HER
HEDOT=YZ/60.+V1( 41,68894*(-TtIGSA5

FLIGHT-DIRECTOR PITCH COMMAND
C
32	 DCPICHn-0.6*(0.0005*4HECiOT+0.034#HERI)+0,5*TDOT)-0.024*CPICHI

CPICHI=CPICHI+DCPICHtDT

INIFLAPE)SO01,8002
9001
8002 CONTINUE

,IF(R.LE.AFLAPL)GO TO 22
C

CENTEP FLIGHT-DIPECIOR	 IF OUTSIDE OF
C*41*	 GLIDE-SLOPE RECEIVER PAUL-E
C

CAPTR=I.
IF(ABS(HER/•FEET).L-5.0.006)GSLOCt,=I,
IF(CSLOCK)22,402

402	 CONTINUE
c'PICHM-GW.11lA
DCPICHo•Df,AhA
CPICHI=O.
CAPTR=O.

22	 CONTINUE
CPICH=AM0D(CPICH,360.)

ORIGINAL PAGE JB

OF POOR QUALITY
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c
C*W*	 FLIGHT-DIRECTOR LATERAL COMMAND
C

IF(XM.E0.1.23)X14=1.2's0I
EPS=YMILE/(1 , 23-Xld)
EPSDT=VXi3600 . *YMILE-^( (%td-1.23)+(};ld-1 .23} )-VYi3E00. /(xv:-1 .23)
DCBN1:1=-CO,1+(5.4244*DXI+3.32'E.DPH1+139,6*EPSDT

1 +0.432+PHI/PAD+2.4.3*CPS>+0.16+CE'.'Jri)
DCBNK2=0.06S89'+C$.6+DFI+0.9tivPHI{180,+EPSDT)-1.06*CBNK2
CBNK=CB1lK,+(DCBrO 1+DCBNr.2) *DT +RAD

CB14K1 =CB1lK1+DC5NF;l *&T
C$HK2=CPNt:2+DC8N1,2+DT
IF(ABS(EPS).LE.0.045)G0 TO 21
CBNK=C8UK1=C5NK2=DCB1jKI=DCENK2=0.

21	 CONTINUE
CBIJK,=AMOD(C£NI' 300.)
IF(XM.EQ.-5.4896)XM=-5.4995

C
C***	 VOR, ADF AND :•rr INFORMATION
C

ADF=35 . -ATAti (YtiI LEi(-);t4-5 . •1896)) *F'AT
IF( XM,GT.-5.4g96)AGF=++iF+183.

IF CXL1.EO,-0.4411);;14=-O.0410
VOR='5.-r+7AN^ t'i tIILE-0 . b'+08)x(-0.0411-Xt17) ^t'<AG
IF(1J4.GT.-O.Gal!)VUR=VOei+190.
ADF=AHOD?H4aF.360.)
VOP=AMOV VDR.360.)
CALL RTQF
CALL STASK
DIST=SQRT((Xtt 4 O .0411)+*2+(Yl4ILE-0.0,906)+*2)
LASEL(DVE)
2SETC0.07)
MOVEC-0.''05F.-0.01434F)
WRTTE(16.'555)DIST

555	 FOPHAT("6y".F4.1)
ENDLIST
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`	 r

7

CONE=.FALSE.

IFCEPS.LE.O.05,AND.EPS.GT .-0,05)CCINEO.TRUE.

}
}^	 C

C***	 TURN OUTER MARKER LIGHT ON
e

IFCABSCKHIS .4C96).LE.TMRKRI.AUD.CD"E)IOM=1
C

_	 C***	 TURN MIDDLE MAPKER LIGHT ON

I;	 C
IFCAB_CMM+0.7596).LE.TMRKR2.AND.CONE)INM=I

G***	 TURN SUER MARKERLIGHT ON

^:	 C

j;

	

	 IF(ABSCXH+0.I?96),LE.TMRKR.AND.	 CONE )I!M=I
CALL BEACONSCIOM.IHM,IIM.JJFF3

C

C**+	 EXIT IF ALTIii16E=0}.	
C

IFCA)4.4,6
4 CONTINUE

i'	 Cr.
j_	 C*4,*	 STOP THE DISPLAY, TUP_H ALL LIGHTS OFF
E :.	 C

A	 JPSR INHALT
CALL STOW

A	 ADEPT
MDAP. TURNOFF
ARICWF
JUMP .+2

TURNOFF: 77076057777
1.	 1400P
t;	

FORTRAN}

XFF=XM*6OE0.2+1153.

.'	 ^3CDT=1 . •D7

E

s

t

r^

j`	 7

i

i^



f

i

Ca> SHOW PARAMETERS AT TOUCHDOWN ON THE CRT SCREEN
C

WRITE(25,2000>
1 WRITE(25,:00I)XFF,Y,V

WRITE(25,200P)VZ
WRITE(25,200:)AFLARE
s;I=x;-CETA6
TRACK-XI*CPAB
WP.ITE(25,2063)THETA,PHI,KI,TRACT(,CPAS,DT,F'DT,LOCD,LOCT,t-IISS

2000 FORMAT(/r///27X,"PAPAmETEP.S AT TOUCKOWN OP AT STOPHGTl^7p".'^)
2001 FOF.FIAT(27X,"DISTi4?4fE	 FPOM THRESH(tGD	 ",F15.0,"	 FT."/

I	 27X,'DISTAl10E	 FROt4	 CEVTEPLIHE",FI5.0,"	 FT."/
-- 2	 27Y.,"INDICATED AIPSPEED	 ',FI5.0,"	 KNOTS")

f

^.: 2002 FOPMAT(27 V ,"JEPTICAL	 SPEED	 ",FI5.0,"	 FPII")
t; 2004 FORMAT427X,"F I kKE	 COMMWkDED	 AT ALT.	 '.FES,l,"	 FT,")

2003 FORtlAT(	 /27x."PITCH ANGLE	 11IF5,01,	 D"^GS."f
!	 27X,"SIVW	 ANSLE	 ",FS.U,"	 DE?:S."^

E 2	 27X, "HEAD ING	 ",F5.0,"	 DEGS.
1-' 7	 27X."GPOUNC	 TPFCY,	 F5.0,"	 C,EGS.

3	 2?X,"CPAD ANGLE	 ',F5.0,"	 PEGS.
4	 27X."	 DT
5	 27X."DATA UPDATE PATE s	 I2/

li: 6	 27X,%000=",13,"	 HITS=`	 1.1,	 MISS='	 13)

C
C+*a OUTPUT FLIGHT DATA TO DISK.: C

3.'. IF(INAME.ED.4040404040B3 GO	 TO 601
CALL OUTPUT

G01 CONTINUE
EX i r

f

f



C*** SUBROUTINE TO OUTPUT DATA TO DISK
C

D1I4ENSION	 1BUFF(20B)
TDETECT=O.

F ( TIDENTmO.
` 0PE11( I-0,2 010UFF.11AME)

WRiTE (21)Y,FF. Y,V,V2. THETA, PHI .X I. CRAB, TDETECT.TIVEHT,NAME
WP.ITEC2 1) LOCG.t30TT ( I),STOP.XiI>.570RACI >. 5TdF. Y(I).7 = 1.LOCD)
DO	 1	 K=1.50

CONTINUE
1 CONTINUE

I` CLOSEC21)
OPEW 2_, 0, 2,	 1 BUFF, '+HITSTASK*')

WRITEc22 ) LOCT
IFcLOC7.EO.CiG0 TO	 130 5
L:4ITEi2, 	ST0RTC1),:dHIT(1).1	 1.L0CT)

f' 1313 COUT;urJE

DO	 c^	 V = 1 ,5L1
i' COUTI14LIE

2 COIrF F11UE

CLRSEC32)

OFENl	 23,0,?	 :1 DUFF. '+MI5STA,;;!

DIP ITE(23)111Sc

IF(MISS,EQ.o)u0	 TO 40

UPI TE(23)1):1LI'?S(I?,1=1.MISS)
40 CGNT I NVE t	 -

^^r^_ D0	 3	 1: = 1,50
COLT I MIE 'r

r , 3 CONTINUE

` CLOSE(23)
I PFTURI1

•s

i`

END

-

f

^c

1
r.

i

I.

S;

1.
i

ij.
jr

^x
S ,

k

1 ,
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SUBROUTINE SAMPLE
C
C***	 SUBPOUTINE TO SAMPLE COCKPIT CONTROLS
C

IMPLICIT FRACTION!F)
REAL FLAPS	 E
COMe14N % PRFITP ,' Y, X ] , VG, VW, COSXW, S III,SW, CO535, SI 135, BETAG, VN0R!4, CFAB
COMMON/CNTPL/T, FLAPS, CTETA,CPHI,CXI, GEAR, AFLAP.E,SPBP'Y..
COMMON/CIITRL GTETA,BPHI,l;XI

A	 ADEPT

FPR I
MD07'F 0 i
0:0:0
MD07'F	 10
0;0
S5MD FSPBRK
HDO7'F 24
0;0
S5i+[.	 FTI	 e

MI .07'F	 40

S5flD F12

MD07'F	 100
0;0	 j
S5FID FT3
1iDO?'F 200
9;9	

^

S5MD FT4
1iD97'F	 0

MD07'H Cl
0;0;0

MD07'L;	 I!Hl

0;0	 ,i
S5MD FFLAPS
IID07' L:	 I I H2
0:0	 —

S5MD F'NKE
MD07'L;	 I!H4

0:0
S5MD FUHEEL

IID07'L;	 1 !1410
0:0

S51-ID FPEDL

MD07'H Cl

0:0:0

UPRI
sf	 -

i

t

t—

1'y 
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14DAR MASK
S6AR'A'F
ARAP'H'F
JPLS DOWN
MDAR ZEPO
ARHD Fi-EAP.
JUMP BACK

DOWN:	 MDAR ONE
ARND FGEAR
JUMP Bi4CK

MASK:	 00160EH0
ZERO:	 01Ha
ONE:	 01H37777
FGEAR:	 0
FSPERK:	 0
FT1: 0
FT2: a
F73:	 0
FT4:	 0
Cl:	 0!H00001
FFLAPS:	 0
FYOFE:	 0
FWHEEL :	 0
FPEDL:	 0
EACY.:	 HOOP
FORTRnH

SPERK=FTOR(FSPEPK)
FLAPS=AF1r+:=.2(0 . OF. FFLAPS)*? .5603
CTETI=-rlCP(F'CVE)+12.FS-3TETR
CPH1=-FTCPtFWHFCL)*42.5-6PH1
CNI=FTOP+ FF'E1,L74_0.;-FS y:1
THRUST=FTCR(FT1+FT21+F70i(FT3*FT4)
IF( THPUST-1.04E7?01.201.2fl0

200	 T=60000.4(THPUST-i.0•:2}*17?)a,

GO TO 203
201	 T=60000.-(1.044-THRUST)424221.

IF( TH UST-.376)202.efic,203
202	 T=3004.-(.376-THRUST)*?102.
203	 IF(V-200.)204,204,205
204	 T=T*300.ikV+100.)

GO TO 20E.
205	 T=T*(SOOOO	 V«V+10000.))
206	 GEAR=FTUF'(FGEAP.)

RETURN
CND

t

'f



C
C***	 SUBROUTINE TO OPERATE MARKER —BEACONS' LIGHTS
C

IF( IOM. OR. I till. OR. 1Ib1)j, 10
9	 C0147 114UE

JJFF=JJFFai
GO TO (8,8.6.10),JJFF

8	 CONTINUE
IF<1014)1,4

4	 IF(114M)2.5
S	 IFQIl4)3,6
C
C**,	 NONE OF THE LIGHTS SHOULD BE ON:
Cmd,*	 TURN TdE" ALL OFF
C
14	 JJFF=O
6	 CONTINUE
A	 ADEPT

"DAR srGN
AP1C'AIF
JUMP .42

8CN:77277!H57777
HOOP

FORTRAN
GO TO 7

1	 CONTINUE
A	 MDAR OUTER
A	 ARIC'O

GO TO 7
2	 CONTINUE
A	 14DAR M1DLE
A	 ARIC'O

GO TO 7
3	 CONTINUE
A	 MDAR INNER
A	 ARIC'0

GO TO 7
A	 ADEPT
OUT£R:20000
MIDLE00400M
INNER10011W H
FORTRAN
7	 CONTINUE

RETURN
E116

^U40;

p3ag

3



i SUBROUTINE STASK
`	 C

C*** SUBROUTINE TO OPERATE THE WORT:-LOAD SIDC-TASK.
C

I14PLICIT FPACTION	 (F)
COI4IlONiCSTASI. -, MSTSK, TOT TX, ET I ME, LTON , 11SWOLD,T : MEN N,TIMEOFF

COMMOH/PFMTR ,V,Y.I , VG. VW, COSY,W, SI IN :W, COS35, S I H35, 0ET gG .V NORM,  CRAB
C0J4M0NrPF . MTR/GAMJSA, ALPHA, BETA, FHI .VY.,VY,VL, THETA, AI XM, Y,R
COMMOfI/DPRMTR/VV, DX,I , DC-AMA, DALFA, DBEE"TA, DPH I, DT. VVZ
COMMON STORT(100),TOTT(150),r:TOPX9'150),STOPA(150),STORYC150)
COMt40N LOr'r.LOCD,01$$,XMISS(100).XH1T(100)

I'	 C

i	 C*w* UPDATE RUJJNING CLOCK AND LIGHT CLOG`:^ C

i..
TOT7X=TOTTX+D7
IF(MSTSK)16,100

1	 16 CONTINUE
ET I ME = ET I 14E+DT

C

n

C*o*	 IS LICHT ON?

C

IFCLTOH11,2
I	 CONTINUE
A	 ADEPT

MDAP, 11nSY.UP	 [SAMPLE RESPONSE SWITCH

S6AR'A ' F	 CIS IT UP?
JPLS SWUP	 EYES
MDAR MA;F:DN
S6AR'A'F

JPLS SWDN	 [IT IS DOWN
FORTRAU
C

C***	 SWITCH IS NOT ON
C

IN5W=0
GO TO 3

A	 ADEPT
MASY,UP: 10000	 Jk

MASKD11:04000
SWUP: HOOP

ORIGINAL' PAGE N
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C
C***
C
4

5
C

6

7
c
c0*0

C.

CORPECT RESPONSE

LOOT=LOOT+l
STORT(LOCT)=ETIME
XH1T(L0CT)=`M+60Q0.2+1153.
GO TO 9
IF(&SW-=OLDK, 7

INCORRECT RESPONSE

MISS=MlS5+1
xMISS(NIsS)=Xm*h0 &0.2+1153.
=OLM 1 NW
M ETIME-TIMEOFf)100.e.a

TIME TO TUPU LIGHT OFF (WITHOUT COPREC7 RESPONS0

FORTRAN

INSW=2

GO TO 3
A	 kDEPT

SwDu l HOOP

FORTRAN

INSU=1

3	 GO TO(7,5,4,14.5),INSW* LTOU +1

6	 CONT I lip}E
ir(NSWOLD)9.10

^k
13	 MISS-"I.5+1

;;	 XN I55^ ii I :,•7)-Y.14x^^080 .2+I I53.
9	 Coln I ME
A

	

	 ADEPT
HEAR mkSKOFF

is	 AF:IC'k'F
^

	

	 JU11P . +2
MASKOFF:77576!H77177

NOOP
FORTRAN
C

to

i

i .



10	 NXFEET=A8S(XM*6080.2)
LION=140D (t1X FEET. 2)+l

L	 INTEGERS=SHORT
GO TO CI1,12),LTOU

11	 CONTINUE
A	 ADEPT

IIDAR MRS112
AP,IC'0'F
JUMP ,+3

14ASK2:00200 ! H
MASY.3:A0001!N

NOOP
FORTRAN

GO 10 13
12	 CONTINUE
A	 MDAR MSY.3
A	 AP.IC'O'F
13	 ETIME=O.

INSW=NSW0LD=O
GO TO 100

14	 WR ITE(10,15)
15	 FOPIIATt5):,' ERPOR 114 SWITCHING LOGIC')
100	 CONTINUE

3
STORE TOTAL ELAPSED TIME, X,A,AND Y AT 5 SEC
INTERVALS: UNLE;S ALTITUDE IS LESS THAN 150, 	 r

C***
	

IN WHICH CASE STORE THEM AT 1 SEC INTEPVALS
C

TINT=5.	 i
IF(A.LE.150.)TINT=1.
IFtAMOD(TOTTX,TINT).GT.DT)GO TO 101	 3
LOCD= LOCD+1
TOTT(LOCD)=TOTTY.
STOPM LOCD )=X14 ,• 6030. 2+1153
STORA(LOCD)=A
STORY(LOCD)=Y

101	 CONTINUE
RETURN
END
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SUBROUTINE DYMIF

DYNAMICS-COMPUTING SUSROUTI1t£

GLOBAL DVZ,DT,MP,APP,P.Q,DR
REAL L,FLAPS	 1a
COMM0?J,'Ct7TRL/T, FLAPS, CTETA,CFHI.CXI, GEAR, AFLAPE,SPBRK
COMMONiCNTRL/BTETA,BPHI,BXI
COtiFtOtl/PP74TR/V, X1 ,VG, VW.COSXW, SINr: 1J , CO$35, Sirl35, BETRG, V1IGP.M, CRAB
COi4t4OtIiPF'I-ITP,, GAttt4A, ALPHA, EFTA, PHI, VX, VY, V2, THETA, A, Y.N, `1, k
COMt4Ofii pPF.itTR/UV. D1(I . LCAt1A, i^ALFA, GBETk. DFH I , GT . DV2
COMMorl/ANG'S1ttA,SING,S1ttP.SItt8,S11AX,C'_:. A,GOS6,Cc3F',CQSX
COi4810N/AUTQ-, C)rBttK 1 , [,CEtif ' 2, DCP I CH, C,tPTF , C LF, U, V?u , I FL,I F E
COMMOtlrFD/ADF,VOP,CPI CHI CBUk,EPS, HER, RAD, GUST, THE TAI
CALL SAMPLE

'> J
COMPUTE GROUND EFFECT AWD ALT. EFFECT

4

GFEFF=1.+(U,5-V.."^;83.)^CA+£.)
Ale=A/1800.
Arl-F=2.*A18-AIB+ASR
VW YWtAEFF
CL=(0.6502+0.4902+FLAP'S)+GPEFF
CD=0.05+0.07&• 9*FLAPS+O.0ZN7TGEAR+0.157+SPFPY, 	 t	 '
V2=.V+'d
Y=ASS(V-10+1.

VERTICAL GUSTS CORP.ELATEG TO LATERAL GUSTS

GUSTZ=GUST-, 200.	 CREFF+AEFF
ALFAI=ALPHA-GUSTS

.' ITCTA=O
IF(ALFAI.LE.23.)GO	 TO 9
rF(ALFAI.LE.27.}GO	 TO	 10
L=O.
GO TO 11

9 L=CL*ALFig1*V2
GO	 TO	 11

10 L=CL+4.604(28.-ALFAI)*V2
I: 11 CONTINUE
, e

C**n SAMPLE AUTOPILOT MODE-SELECT SWITCHES
C

A ADEPT
S6AR'F

I' MDAP.'A IISKAPP
APAR'H'F
3PLS APP
JUMP MP

ORIGINAL PAGE 1.
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3

r	 I i

E

_ 14SKAPP:04000FHO

i

14SKAPR:020001HO
APP:	 HOOP
FORTRAN

C I
C41*4,	 COMPUTE PITCH C01414AND

I

C 1

ITETA=1
IF(A.LT . 200,.AND . A:GT.AFLACrE ) GO TO 12
TCOI-IL = C3.-2.5 *CAPTR ) *CIICH+3 . 4,DCPICH4•RAD
GO TO 15

12	 TCDHI=-3.*CGAMMA+3.03)-3..iUGAi4A4!RAD
15	 CONTINUE

I

CTET6=At41t11 (10 . , At4AXI C TC0111 , —! 0 ,))
A	 ADEPT
11P:	 NOOP

S6AR'F

MDAR' A NSKAPR
i

ARAR'H'F
JPLS APP I^ -

t JU14P MANP.
,

fi

APR:	 HOOP
-	 p	 ? FORTRAN

c
C**..h	 COMPUTE YAW AND ROLL COMMANDS i1 --
C `I

CPHI m—BETA {
IF(A.LT.AFLAP.E)CPHI=—(PHI+DPHI4P.AD*3.)
CXI=CRUX+(DC©NKI+DCEUK2)4RAD+3. ;
IF(A.LE,C —V2/120.))CXI=(35• —XI+BETAG)*5. i

A	 MAHR; HOOP
P=(0.0107*CPHI+0.005754C.XI)*V2/163£6,656
C1=CO.9o50-CTErA + 42+<L+COSA +GOSP- • w4• rOSG ) ilnaa. ) ^15^,A1.$08 '^- ^I.`
DR-C0.03^rCG):I+BETA—i24'?a.ri3/V4R)-0 .00!83*Cr^HI!w4?/ •:0?65.&4*DT f^ i

I R=R+DPC

IFCITETA?13,14 ii
;.; .13	 CONTINUE ^^,.. {
!	 ; C1.i

C***	 COMPUTE THRUST IF IN AUTO PITCH MODE

i C 1
TC=170. !I

gl

{
L; IF(FLAPS.GT ,0,5)TC=150.

_ IF(FLAPS.GT .0,8)TC=1^0. I	 '.
IF(A.L.E,S.)TC=120, I^

T = ( (TC—V).e (20 , *DT4.GW)+D+L lI l Sl NA+Ot*$1110 /COSA
T=AttItl1CT,7500a,) ^^ 3



i

f^

.	
1

f	 14	 CONTINUE	 }.

DVNORPI=VW M ( S I IIXWµ--CGSX - COS SW*S I HYD--VHOR14
VNORM=VNORI4+DVIJOP14*DT

i	 DV=GW*<T*COSA-G-L*SI.NA--*SI PIG) *DT

OXI = GW /V,'COSG ti( L+S I NP-Ts ! S I IJB*C!] aP*COSA+DVtIOR ?I) *DT
DGAMA=GW /V k( (Li COSA+7-i :SINA ) *COSP -W*COSG)i DT

DA1_FA = ( Q-P 4 'S I NB) +DT-DGAI-1A' - COSP - DY.I h•S INP+CGSG
DBETA=DX1 k (COS A*CGSG+COSP-SI. NA+SIt=G)-GGAt1A*CDSA*SI NP- R+DT

DPHI =( P+,CG3A + O*SINI:*COSA + P4:SI14A)nDT+DXI*SI14G
XI=XI + f)XIkRAG
SETAG=BET Ai_+D BETA +RAD

SFTA=BETA,, - D'PIORM/Vi-RAD

CRAB= BETAG + ATA1* ( VtIORM, VG)-':*AD

PHI-PHI+DPHI4RAD
A=A+V?/60.WDT

XM=X1.1+V%/ &o 0 . N VT
;'=Y+VY+I . 68V4*DT
VG=VG+DV

V=VG-VW+ (COS (}L+r,OSx+ S I N %bI µ S I NX)
VX=VGtCO.S^,+ (^.0;35rGUSX+W 3 Nay*SIP=:{>

1 - 4'IIGF^14t C^'US?5+=1N:(- slrla$ µEOS}:)
VY=VG+COS,+;r,OSw5+;INS:-Sttls5^COSX)

1 +VNOPM' (COS s5oCUS X +SIN35 + SIIIX)
V2=VG«Slfl,+1U1.3367

DV.':=<DV+S III,+VGµrOSGrDGArIA)+1 .68894/DT
ALPHA=ALPHA*DALFA*P.AD

GA14MA =GAl:!;a + DGAI!p +12AC• +GUSTZ	 '
THETA=(+ALPHA - 2.+i,aMtlH) + CrjSFI + E?ETA*SltJP
THETAO=( 165000 . /CL/V2-2. +GAII14A) "COSP
XI=AtIOD(VI,340.)

PHI=AMOD^PHI,3hU.)

GRISPEFl-aMOUCGArtNa,36A. )
THETA=AM0D0HETH,360.)

A=AMAXI(A.D.)

RETURN
END

AV, POOR Qualm.
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SUBROUTINE RTOF

€ C
C^*x• 5USROU7IFlE 7Q CONVERT DATA RERL •• TO-FP,AC7I0!]

1 C
. GLOBAL TRIG, -FPICHI,FPCHI

II
IMPLICIT FP.ACT ] ON (F) 1

j COAICSON/PP.A4TR,,V , XI, VG, VW, COSXIU, S I11M, CO"S, $1 U-15. KTA a, VN f iRM , CRAB

i CQCItSgElif'C3 A{TR / GAF1FfR, ALPHA, BETA, PH 1, VX, VY, VZ, THETA, A, W. I , Y, P. ; •

COlHCO}! /ANG/SIt1rl,s I nc, SI l i p , SItlB,SINX,COSA,COS€ , CUSP,COL"X

C01*1Otl /FRAC /FV, FBIIY. , F p I CH, FA, F A 100 , FVZ. FHI,G , FADE. FVJR, ;= C P I CkI

COMMON/FRAC/FCBNK,DER,FHER,DATEi5), MODE (6),rTETAO
COI*10N/FD /ADF, VOF. CPI CH, CS ! lV.. EPS, HER, RAD, GUST. THE 7 AO ;.

-AtfOD(V,A00.))/200.
FEt]}; 1 : pH1 %360 . ^i

FailKmPsUK{+PBNK1
FFILHI =-THETA/3t-0.
FPICH=FPICHI+FPICHI

.
ff
E FT£TAO=THETA) / 1$0. F'

IF(A.LT. O.)A=O.

Ff+=(500.-kF.I0D(A, 100,. ))/500. j
FAI00=CS000.-AIIQDC+.10000.))/'5000.

fE FVZ=--FMINI (I ., AM4-.^I01Z/4UOE i .. -1
FHDGI=AMODC:
FHDG=FHDGI+FHDG1
FADF1=-ADF/360.
FHDF=PAGE 1 rFriDFl
Fb'QnI^-40R r 3+i4 .
FVOR=FVORI+•FVQRI

i C
C*** SAMPLE FLIGHT-DIRECTOR' MODE SELECTOR.

I C ^.
A ADEPT

S6AF:' F' H
14DAR'A MSKBTH
JPLS FoON
MDAP. UNO
ARMD FCPICH

j JUMP L2
If FDO	 s SSAR'F'H
I MDAR'A MSKFDP

JPLS PON !!
MDAR ZF:O
ARID FCPICH

i

t it .
^

^z.

9
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F
ROLL I	 SSAR' F' H -

.I MDAP.'A MSICFDR
JPLS RON

e 14DAR ZP.0
ARMS+ FCONK

` j
II

JUMP L2
USKBTH:	 01400 -'
143KFDP •	01000 Y

MSKFDR;	 00400
ZROi	 0!H4
UNO:	 0IH37777
PON t	 hoop
FORTRgNI

- F•PCHI=CPICH/360.
FPCH1 =FM 1142C0.1F,FMAK2(FPCH1.-0. IF) )

I` FCPICHA4.*FPCH1
A	 JU14P ROLL
A	 RON:	 NOOP

FSMK1--CStJKf360.
' FBNKI=F111N2(0. IF, FMAX2(F8UK1 s -0	 IF)
! FCBIIIC=F.£NN.1*4, ".

A	 L2.	 NOOP
.j ERP.=EPS'-RAD

-.i -	 -	 TEMPP=HI19tX1 CEP.P..-2.5)	 -
j	 i EP.PoWl1U1(2,5,TUMP)

FER=-ERF*0.24
Ir(m.E0.0.mn=0.0001

} AHER=HER*RAD!(XM*6030.2)
TEMPP=AMAX1(AHERr-0.7)
TEJ1P =AHIN1(0.7.TEMPP)
FHEP=TEMPt0.22257

4

j

I #	 ,..

•:
:

r
1

!
r
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•

SUBROUTINE TRIG

SS
C*** SUBROUTIt1E TO COMPUTE TRIG FUNCTIONS

EM ONCE FOR EACH DATA-UPDATE CYCLE`-
C

FRACTION COSH
ALPmALPHAfRAD

< ALP2=ALFwALP
SIIlA=ALP-ALP#^ALP2i6.

-, SINB=SETA/RRD
1 C0SA=I.--ALP/2.+ALP24-ALP2i24.

F$RPIA=GRHLSR^360 .

# FGAMA=FGAIiA+FCAMA
FPHI=PH£^36G.

^t FPHI=FPHI+FPHI
' FXI=Y,lr$60.

FXI=FXI+FXI
j SING=FSIIt(FGAMA)
j COSG=FTOP (l C l3SN )

SINP=FSIN(FPHI)
.i C0SP--FT0R( C0S11)

SINX=FS£NtFY.l
COS+{=FTOPi K(JSIt?
RETURN

1i^1 END !

^;

E(

1
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114AGE DIALS
C
Cw.xw SUBROUTINE TO DISPLAY THE IIISTRUNEUT PANEL

C $FTIAX _,INTEGER
IMPLICIT FRACTION(F)
COMMDtI/FPAC/FV,FBtJK,FPICH.FA,FA100,FV2,FHDG,FADE,FVOR,FCPIC'H
00;•1t9Oil/FRAC7FCBt4K, FER, FHER, DME(S) , I-IODE<G), FTETAO
LINKAGE PTR(e),.C:BARS(12),LYt4E(4),P71TR.1(10),PIITR(20)
LINKAGE GSI (SO , LOCI (5),ADFN(19),VOR11(10),HDt4(5>

C
Cwww ADD FTIMX TO ITIt4E, TO UPDATE THE
C*** DATA-UPDATE CLOCK
C.

4I T I t:E-SIT 1 t•1E*'GFMjX
POSCHAR(0.2417F,-0.01434F,-0.3F,'OS35")
POSCHARC ME)
POSCHA.F.(MCDE.>
DY(FHER)
TABLE2D(GSI)
LDY(O.F)
TABLEZD(HDNG)
LDXM;P*0.2557F)
TABLE2D(LOCI)
LDY.(-0.75F)
LDYCO.49F)
LSCL(0.2757)
LRZ(FV)
TADLEZD(Ftl7R)
LDX(0.71F)
LDY(O.52F)
LSCL(0.23F)
LRZ(FA)
TAPLE2D(PttTR)
LPZ(FA100)
TABLE2D(PUTRi)
LDX(O.71E26F)
LDYC-0.20575F)
LSCL(0.2e.5F)
LP.2CFVZ-0.5F)
TABLE2DCPNTR)

i



r._	 l_^L	 l..	 1	 I- ° 	I
.r.

E

i

1

LDXf4.F)

t LSCL(O.33F)

LR.Z(FFIDG)
Mi—L2D ( SCCARD)

A	 2DT BUG
.:i ROT2f-0.19444F)

DX(FER)
TABLE2D ( LY14E)
LRZ(FHDG) i

LDRC--0.7450
LDY(-• 0 , 212F)
LSCLC0.275F)

{ ROTZ(FADF)
TABLE2DCADFi1)
ROTZ(FYOP_—FADF)
TABLE?D ( VGRU)
LRZ(FHDG>
TABLE2D ( SCCARD) r

LDY(0.56F)

LSCL (O .32F)
LRZ (FSt1K )
TABLC2D C PTR)
LSCL(1,OF) f'
ROT:((FP I CH)

{
LAI(17B.0 . 5F)
TACLE3D ( BHPZQH) 13

LSCL( 0 . 32F i R .:.^

ROTX(FCFICH4TETAO)
l

f
POT— ( FCE;IW) !1

TAELEZVCBARS) !	 a

TABLEZO ( CBARS) i{
t

^i

RETUR14 f

{

e 3
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F

f

DATA2DCLYNE)

_f

{

ESETC0.00
i LINEC9.F . D,43F,Q . F,^0,528faF)

EIIDL IST

€I	 E EUDDATA

DATAZD(PIITR1 }

11OVEC-0.02F,0.04F)
%RAW <-0.02F,-0.3F)

i DRAWCO.OF,-0.36F)

DRAW(0.02F,-0.3F)

DRA000,02F,0.04F)
A.

DRAWL-0.02F,0.04F)

: EHDLIST
EGDDATA

i DATA2D (PIITR)
2SET(0.0F)

DRAW<-042F!-0.560
ii DRAIJ(-0 . 02F,-0.74F)

DP.AW<9 .OF, •- O , °F )
DE:AW40.02F.—O.74F)

4; DRAWf0 .02F,-0.55F)

.:; DPAW(.O. OF, —0.5F)

DRAWCO.OF.—O.26F)S

DR.AWCO,04F.-0.2F3 1

DR.AW(0 . 04F.O.OF)
s^ DRAU1t.9.06F.0.1F)

4
DRAW(-9.OGF.O.tF)

s DRAW(-0.04F,O.OF)

;f DRAW(-0.04F,—O.2F).

DRAWCQ . OF.-O.26F)
MOVE(O. OF, 0.nF)

DR.AW(O.DF,O.OF)
ENDL I ST

#y

t
EUDDATR fi

€

}sl

i

}

a

C



DATg2D(6Si)
2SETCO.OF)
MOVE(-D.3F,0.55F)
DRAW(-0 . UF, 0.59F)
DRAW(-0.3F,0.63F)
IMCC-0.3F. -0-30F)
DP.AW (-O.36F,-0.34F)
DRAW(-0.3F,-0.3SF)
ENDLIST
ENDDATA

DATA2D(LOCI)
?SETC0.0F)
MOVE(-0.04F,0.I6F)
DF.AWCO.OF,0.12F)
DRAWC0.04F,0 16F)
ENDLIST
ENDDATA

DATA2DCADFW
25ET(O.OF)
MGVE(-0.[F,0.5F)
DRAW(-0.1F,-0.7F)
DRAW(O,OF, -0.SF)
DRAW 0.:r'j-0. 7F)
DRAW(O.IF,0.5F)
DRAW(-0,14F4,5F)
DRAW(0.4F,0.8F>
DRAW0 .I4F,O.5F)
DRAW(O. W.0.5F)
MOVE(O.OF.,0.9F)
DRAW<O.OF,4.*F)
MOVE(O.OF,O.OF)
DRAW(O.OF.O.OF)
MOVE<O.OF,-0.3F).
DRAW(O.OF,-0,9F)
ENDLIST
ENDDATA



f	

{

•

l	 ^

y	 '

1	

^

.

DATA2D(VORII)
1> ZSETCO.OF)

MOVECO . OF,O,SF)
3i DRAU( -0.04F.0.6F)

DPAW(-0.04F,-0.$F5
DPAWC0.0+1F,-•9,8F)
DPAW(9.04F40,6F)
DPAW(O.OF,O.3F)
140VE(O.OF,0.9F)

4j DRAWCO.OF.-0.9F)
EIIDLIST
EHDDATA

A	 ADEPT

BUS ,	0
1631224426;16?'221261:131442334511631224427

j 200002S743i1146211562:1I46Z1546110631414431
0767613244:11462t5461:6631462316:6314655465
60009139541600001 3E755i 600001i055;70OQOU5462
7000005453'i0+)90054631100007ZS14;100OQ72315

^r 10000?e315:206Uu 64922: 2A00064023^l777764Ut3
FOP,TPRII

r DATA20(PTR)
j ZSET(O.F)

ROVE(O.F4,8333F)

t
DPAW(-0.15,F,0.6667F)
DP.AW0.15F40.6667F)
DRAW0 ,OF,O.9333F)

- EUDLIST
ENDDATA

DATA2DCCSARS5
ZSET(-1.QF)



i

I

V	

r

1	 1

z^

r	 DATA2D(HDN6)
ZSETCO.OF)
I40VE(-^-015F,0.03625F)
DRAB?( P.F,0.0035F)
DRAW(0.015F,0,03625F)
ENDLIST j=

t	 ElIDDATA

F	 RETURN

f	 E14D

ri
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PROGRAM PFP

C
C***	 PROGRAM: FAIL PITCH

C
GLOBAL ITIME,FP

IMPLICIT FRACTION (F)

LOGICAL COIIE
RF,AL FLAPS

L	 OTSEPRORS=SHORT

COMMCJII/CSTASY -INSTSK, TOT TX, ETI14E , LTO11,11SWOLD , TIMEGFr, CIMEOFF
COMMOfl/C11TRL / T, c"
COI.IMON/.HTPL/.'TETA, EPH1 , 6XI
COMMON /P RIII R, , V, VI. VG, VW, COSXW . S1N:.U , COS35,SIN35 , EETAG,VNORM,CRAB
COMM0N /PPFITR /GA1lMA, ALPHA. 2ETA, PHI , V:S, VY, VZ, THETA, A, X14, Y, R
COMMON/DFPMTP: D' + . DX 1 , DGAMA, DALFA, DBETA, DPH I , DT. C,YZ
COMMON/ Atiit /SI NA, Si1::. SIti p , S ING, SIf4 x, COSA, COS C. C_':P, COSX
COmKOtt /FPAC /FV,FSiM •FPT CH, FA, FRI00 , FVZ.FHDfi.FmPF , FVOP,FCPICH
COMMON /FF tr,,FCLtfV,FEP.,FIRER,L,1"•E(5),MODEl6:,FTET-0
CJ14?-1011 'FD %AVF,VOR,CPICH,C;.	 CP S, HEP,F A D, GUS T.T'^ETRn

COMMON/AUTO / Dr. BI1 1'. I,PCENKG C• CPICH,CAPTR,G1d, III, 'd O , IFLkPE

COMtION LOi^D, Ft77T(1571,5TC^l?'l.<15ii.yTifRisllSlfS.STUr'l•.1Sil)
DATA RsiD/r7.2 '3G/,Lf/1v54nQ ,/. G!D•C,4001155/
DATA TPt 1:F'1/0.4S15 /. Tr!PV- P.2/0 063 ••. TMEYR/0.0*76/
DATA TN: ,A/-0 .9.`..2933/
DATA CGS:09/0.17.^646/,SINXW-i-90436$7
DATA COST /0.?1915c'/,SIt135f0,5i3:76/
WRITE<10,20055
READ(10,C005YNAHE.AFRIL

2005 FOPIIAT<' ENTEP 5-LETTER CODE AND ALT. I'/)
2006 FOPMAVi;5/F6.05

DECODE (c „20 Q$, NAME o 101 NAME
1F(	 R.18

DECODE<5.2007,HAME,H)IDIST 	 1
2007 F0PMAT<3:4, I1)
2008 F0FMAT(2X,A:0

VW0mIDIST+S.
PRA.ID=IDIST*11.6936
IF<NAtIE.E0.777777404UB)PRAND=O.
ENTRY FP
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Caa=a	 INITIALIZE ALL VALUES
!	 I CONTINUE

A	 ADEPT
NDAR MSTSKON
ARAD PRDET
HDAR IiSTASK
ARAD SELECTOR
MDAR TURNOFF
ARIC'A'F
HDAR HSTASK
SGAR'A'F
JPLS MSTSKON

j	 FORTRAN
MSTSK=O
GO TO 8

r	 A	 ADEPT
MSTASK:	 01H00200
HSTSVOIJ:	 flOU3'
FORTFrAN
8	 CONTINUE

HSTSK=O
GAMMA=0.
DGAh1R=0 .
XI=65. !
PHI=O. s	 .:
FENK=0.OF
ALPHA=6,
TKTA0=4.
SETAG=D .
BETA=O.

A=2500.
DRNG=2550,
AFLARE =O. J
IFLRRE =O
I014=IMI9=IIM=O
JJFF=O
ETIHE=TOTTX=TDETECT=TIDENT=TFAIL=O.
IFAIL=(DETECT=IDENT=O
LOOT=LGCD=O
LTON=N ISS=NSWOLD=O
T I14CON=5,
TIHEOFF=2.

1

i
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}	 C**x	 START THE DISPLAY

A	 SPSR £GP,AFY.
((	 A	 *,DIALS

i	 A	 5
C* *	 INITIALIZE DATA—UPDATE CLOCK

2 ITIMC=t
C***

	

	 ENTER. WAIT LOOP IF SWITCH E (START) IS NOT ON
IFC.NOT.SWTTCHC8))G0 TO 2

C***	 EXECUTE UNLESS SWITCH 12 (FREEZE) IS ON 	 p
6 IFC.NOT.SWITCH(12))G0 TO 3

C ox**	 AFTER SWITCH 12 HAS BEEtt PRESSED. EXIT IF SWITCH 16 IS Olt...

7 IF(SWITCH05))GO TO 4
C***

	

	 OR INITIALIZE VALUES IF SWITCH 4 (IC) IS ON...
IF(SWITCH(4))GO TO 5

C**-^

	

	 OR STA RT EXECUTIOtt AGAI14 IF 5WITCH 8 IS ON...
IF(SWITCH(8))GO TO 5

C***

	

	 OR I11ITIALIZE DATA — UPDATE CLOCK AND ENTEk A WAITING LOOP
ITIME=1
GO TO 7

1	 5 C014T I NUE
!	 C***	 STOP THE DISPLAY AND GO BACFC TO INITIAL VALUES

A	 JPSR SNHALT	
E

A NOOP
GO TO I

C***	 START EXECUTION OF A NEW DATA —UPDATE CYCLE,
t '	 C***	 COMPUTE DT (=TIME IN SECS OF PREVIOUS CYCLE:)

C**n	 AND INITIALIZE DATA— UPDATE CLOCK
3 TIME=ITIME

ITIME=O
DT=TIME/I20.
CALL DYNNF
CALL TRIG

C*'l*	 COMPUTE RANDOM DISTURBANCE (OUSTS)
L	 INTEGEF.S=LONG

:RNUM=MOD(0'701*IRNUM+3927:,30000)
P.NUM=IRmjm

L	 IFITEGERS=.SHORT
LyVWt = (RilUrt .10oo0,-0 .5)*P32AtIp
GUST=GUST+(DVWI — O. t0472*OUST)*DT

44	 VW=VWO+GUST

F

F;

y .s

F

y

{.4

200	 -



_m

_	 F

f

^
E

zF C IFAIL*1DETECTD I0 . 13
C***	 STORE TI14E OF FAILURE IDENTIFICATION
10	 CONTINUE

ADEPT s

'`
S6AR^F

- ARAR'H'F

!I FiDAR'A CORRECT 	 CIS PITCH A. p:.	 OR PITCH F.D.	 "ON"?.
-. I JPLS 110CHANGE	 EYES. NO IDENTIFICATION OCCURED. f

AMID TSELECTOR	 MO. STORE 0 ItI TSELECTOP
MDXO SELECTOR	 CIS THERE ALREADY A 0 IN SELECTOR?

jj JPLS CHANGE	 ENO.	 IDEUTIFICATIOrf HAS JUST OCCURED. 3
i JUNp NOCHAtIGE	 EYES.	 IDENTIFICATION ALREADY RECORDED.

^Y CORP.ECT:	 0I H05000

f TSELECTOR.	 0
r SELECTOR:	 ;

j

CHANGE:	 F1DAR TSL"ECTDP. ^,r	 j

ARMD SELECTOR

I! FORTRAN
TIDEFIT=TOTTX
IDENT =i

µ ^

ji CPICHI=O,
A	 NOCHANGE: HOOP
11	 COtfTIMJE

XFEET=:'M+S0S0, 2
' IFCXFEET.EQ.0.)Y.F£ET=1.'t.

YFII LE=Yi6090 , 2
C. **	 COMPUTE THETA — DDT (=PITCH—A3,;LE TIME—RaTE OF CHANGE)

TDOT=(DALFO+D,At1A)*COSP+DBETA*SItlP+CrFTA:RAD*COSP—(ALPHA+C,AMMA)
^	 ` 1	 ^+SIt^P%RHC?}+•UPHI

C.•**	 FLARE COI-MAND COMPUTATION
IF(IFLAPE)33.35 .

i 35	 DENOHwZ .,*VX+101.336T
3	 i AFLAP, E= Al31N1.((15.—DP.1I(;*VZ/GEttOM), 120, f

I'F(A.GT.AFLARE)GO TO 31
IFLARE=1
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TAU=DRNG/DENOl,l
V20-AMINI(CVZ+150.),-150.)
CPICHI=O.
41ODF D="FLR.
LABELCMODE!
ZSETCO.F)
MOVEC0.23F,0.66F)
WRITE(16,556>MQDFD

556	 FORMAT C 8S" , E4 )
ENDLIST

33	 HERI=A+TAU*VZ^15,
HEDOT=VZ,,60.+TAU*DVZ
GO TO 32

31	 HER.=A-XFEET*TNGSA
HEP.I=HER
HEDOT=V2i60.-VX4-1.688944,TNGSA

32	 IFCIFAIL)405,401
401	 IFCA-ARSCAFAIL))403.403,400
403	 IFASL=1

TFAIL=TOTTX
405	 IF( IDEr1T)400,404
404	 HERI=HER+0,1156935*kFAIL
C*lf,*	 FLIGHT-DIPECTOR PITCH COMMAND

400	 DCPICH--0.6*(0.0005+CHEDOT+0.034+HER1)+0.5*TDOF)-0.034+CPICHI
CPICHlA=CPICHI+DCPICH*fiT
DCPSCH=(-0.6t.-0.0341,
1 CPICHIA+DCPICH)eZ.
CPICHI=CPICHI+bCP1CH*DT
CPICH=CPICHI*PAL• t3.*<l +IFLRP,EwC2.*ABSLCV?+I50,3iVZO)-1.!)
IF(IFLARE)8001,S402

8001	 IF(VZ.GT.-150.)CPIC8=rMIflI(O.,C-ABS!CPICH)))
8002 CONTINUE

IF(A.LE.AFLAPE)GO TO 22
C***	 CEUTEP. FLIGHT-DIRECTOR. COMMAND-E=ARS IF OUTSIDE Or



i

C**

	

	 FLIGHT-DIRECTOR LATERAL COMMAND
IF(XM.EQ.1.23)Y.M=1.2301
EPS=YMILE.,o.23-XM)

.	 EPSDT-N)Cr3600.^YiSILErECX1t-1.23)WSKI4-1.23)7-V'rr3600./CYtd-1.23)
DCSM',l=-(0.1*C5.9244*DXi+3.32*DPH1+139.6rEPSDT
1 +0.432*PHI/RAD+2.49PEPS)+0.164CBtli11)
DCEiNK2=0 .06889* 48.6s • D;{1+0 .3*DPHI+l80 . +EPSDT)--1 .06*CStlK2
C8t4.=CSrlK+( DM;K 14 tDMW,2 7 *DTwRoD
C8tlK1-CBNK.I+DMll, *DT
C9NK2=C9M,'2+DCBMl2+DT
IFCABStEPS).LE.0.045)GO TO 21
CBNIC=CBIlt;1=CBIIK2=DCENK 1=DCBIlY.2=0 .

21	 CONTIME
C8NY,=AM0D<CB11K. 360. )
I.F( X19. EQ. -5.4896)%M=-5.4895
ADF=35,-ATAN(YM1LErC-,101-5.4P96))*PAD
IF( M.GT.-5.4S96)AGF=AC-F+1 v0.
IF(MM. EQ. -0. 0-, 11)XM=-Q .0.410
VOR-35.-ATAN(CYMILE-0.6908)e,(-0.0411-XM)ikP.AD
IF<XI+S.GT.-0.0411)VOP=VOR+19,0.
ADF=At40G<ADF, 360. )
VOR=AM0D! VOP.. ?60 . )
CALL RTOF
CALL FECRD
pIS7^^aURTfCY.tl+0.04L1)^*2+CYt4ILE-0.5?03)++•2)
LA$EL(DME)
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CONE=. FALSE.
^ ! i0tt=1b1M=IIt4=0

IF( EPS.LE.0.05.At1D.EPS.GT.-0.05)C011E=.TRUE..
4.1 C***	 TURII OUTER MARKER LIGHT Ott

+ j IFCABS( ?It•1+5.439C-) . LE.TtIR!: RI.At1D . COt=E)IOM=1
C* yl*	 TURH MIDDLE MARKER LIGHT 01I

IFCASS(XM40.78565. LE. TMRKR2.AND.. CONE) IMt4=1
C*4'*	 TURD! INNER. 11APKER LIGHT ON

;III IFCABSCXM+0.1896).LE.TMRKR.AND.	 CONE	 )IIIt=1

'`

CALL	 liEtCOtISCIOfi . Itlf1.IIi4,dJFF)

IF<1FAiL)!2,l3
12	 CONTINUE
C*4^*	 STORE TIME OF FAILURE DETECTION
A	 ADEPT

14DAP. DETECT
S6AR'A'F	 [SAMPLE DETECTION SWITCH
JPLS DETON	 E17	 is	 "!]II"
JU14P DETOFF	 [IT	 IS "OFF"

DETECT : 0 ! HO 1100
PRDET: 0
DETOU.	 MDXO PRDET	 EWA$ IT "Ott" VE:FORZ?

JPLS .. +2	 E.II0
1 JU14P DETOFF	 EYES

ARMD PPDET
1 FORTRAN

TDETECT=TOTTY

a
1DETECT=1

A	 DETOFF:	 HOOP
13	 CONTINUE J
C***	 EXIT IF ALTITUDE=O !

IFCA)4.4.6
4 CONTINUE

A	 JPSR INHALT
CALL RECRD

A	 ADEPT
MDAR TUR110FF
RRIC'A 'F -:; -1

Jump .+2
TURNOFF:	 77076!H57777

HOOP
FORTRAN

E `
XFF=Xt4ti6030.2+1153. c

JJJ

II

I - I 	 1	 3

y

i
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i WRiTEC25.2000)

f}

. ^ 'UI?iTE<25.20017XFF, Y. V -f

WRITE(2S.2002)V? E
WRITE:(25,2004)AFLARE:

' XI=X i —BETAG

^.
TRACK=XI+CRAB
TJ£TECT=TDETE CT— TFAIL
TI DEN T=TIDENT—TFAIL
WP.ITE<25,2003) THE TA. PHI.X I. TRACK, CRAB, DT, LOCO, TDE7ECT,

1 TIDENT
j 2000 FORMAT (/////27:5,"PARAMETERS AT TOUCHDO',914 OR AT SIUPACTIO11:"/)
1 2001 FOPMAT(27X,"DISTANCE FROM THRESHOLD ".F15,0." FT.", , %?

"/1	 27X4"DISTANCE FPOM CENTERLINE",F15.0," FT.

`
2	 27X,"INDICATED AIRSPEED 	 ",FSS.O." KNOTS") j

2002 FORilAT(27X."VERTICAL SPEED 	 ',F15.0."	 FP11")
2009 FORMAT (27X o "FL , iPE COMMANDED AT ALT.	 ".F15.1,"	 FT.")

iIs 2003 FORMATC /27X,"PITC14 ANGLE 	 ',F5.0,"	 DErss.1/
1	 27X,"BARK ANGLE	 ",F5.0,"	 DEGS."/
2	 27X, "HEADING	 ",F5.0,"	 OtICS."/
7	 27X,"GROUND TRACK 	 ".F5.(9,"	 CEGS.
3	 2799"CRAB ANGLE	 ", F5.0,"	 DEGS."//
4	 27X,"	 DT	 =",F7.4,,
5	 27X,"LOCD=",I3/
6	 27X,"TIi-sE TO DETECTION 	 =	 ",F6.1,"	 SECS."/

7	 27X."TI33E TO	 IDENTIFY	 =	 ',F6.1,"	 SECS.")

IF(INAME.E0.4040404040D)GO TO 601
4 CALF. OUTPUT

f ` 601 CONTINUE ?',

b	 '

F*IT

E

t is	 3

j

11

3f
J

7
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1	 - SUBP.OUTIRE OUTPUT
DIT•7EN5ION IBUFF(2083

OPE11[21,0,2.O1SUFF,NAME) 3
WRITE ( 21)XFF , Y,Y, +IZ, THETA. PHI,Y.,I, CRAB .TDETECT,TIDENT	 ,iIAME
UP.I.TE(2i)LOCD,(TOTT(I);STORX(1),STOPACI),STOfiY(I>,I-1,LOCD)
DO	 1 K=1,50

:::.. CONTINUE
j I	 CONTINUE

}
CLOSE(21) 1

OPENE224;2,01SUFF,'wHITSTASt(*1)
LOOT-a
O ITE(22)LOCT
DO 2 K=1,50.

- CONTINUE
2	 CONTINUE

9 CLOSE(22)
OPEN(23,0,2i01 BUFF, '*01 SSTASK*') #

NRTTE(23)JIISS
3

UO 3 K=1.50
CONTINUE

{
3	 CONTINUE

CLOSEC23)
RETURN

a

E14D

1

A '

S

i #
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i

Ii
SUBROUTINE RECRD

C ^.
i i C*** SUBROUTINE TO RECORD . RUN DATA

C IMPLICIT FRACTION (F)
COMMON/CSTASK/1iSTSK, TOT T X, ETI ME. LTON,NSUOLD,TIMEON TIMEOFF

:	 3 COMtdON/PRt4TR/ V,X I.VG, VW, COSXU S1t1XW,COS35.SlU35r31 TAG.VNORt1.CRAS
'i Coll MON/PP.11TP./GAHRA, AL.PPA -13 ETA, PHI , VX, VY, VZ; THETA, A. %FL. Y. R.

COt ?loN /DPRFITR/DV, OX I , DGAtiA, DfiLFA. DOCTA, DPH i, DT, CV_
COMMON LOCD,TOTT(150).STORX( 150).STORA<150).STORY<150)^;

C
C*A, * UPDATE RUNNING CLOCK

i C

.^ TOTTX=TOTTY.+DT
f

G C
C**O STORE TOTAL ELAPSED TIME, X,A,AIID Y AT 5 SEC

.j C+** INTERVALS; U11LESS ALTITUDE IS LESS THAN ISO,
C**+ IN WHICH CASE STOPS THE14 AT 1 SEC INTERVALS 9

7ItHT=5.
` fF"tA. LE. 154 . )FI1lT-1 .

Ir0MOD(TOTTX,TlUT).GT.DT)G0 TO 101
I` LOCD=LOCG+1

"	 { TOTTCL0CD)=TOTTX
STORX(L0CD)=XH*6080 .2+1153.

' STORA(LOCD) =H
STORYCL.00D}=Y

101 CONTINUE
RETURN
END

s

i.

E
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INSTRUCTIONS T 0 PILOT

You are the pilot--in-command of a Boeing-707123 on a

flight to Boston.
^F

You will be asked to fly a number of ILS approaches

i to touchdown on Runway 4R at Logan in zero-ceiling; zero--

_	 visibili.ty conditions. 	 Your task is to stay as close as
is

you can to the nominal ILS path and to execute the best
k

lariding possible under the circumstances.

The approaches will be flown with the autopilot in

different modes:	 Some may be fully automatic, some may

have autopilot coupling in one axis, and some may be

fully manual, with flight-director guidance.

'The guidance-and-control equipment that you have on	 {

board is not too reliable and has been known to malfunction.

occasionally in the past. 	 Therefore, you should keep up

your instrument scan to detect`di.acrepancies which might

indicate a guidance-and-control system failure.	 !

All the approaches will start from the same point: You
I; -
'' are 12 miles so.uth-west of the.airport at.250. 0 feet AGL,

flying heading.065 to intercept the localizer inbound.

3	 ;.

i
{

i	 !
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INSTRUCTIONS TO PILOT - WORKLOAD MEASUREMENT

This is our "Pilot Workload Assessment" experiment. You
H

have two tasks to perform: 	 i.

The piloting task, which should be your major.concern

at all times, consists of flying an ILS.approach to 	 {

touchdown on Runway 4R.

Four secoadary task is identifying,, and responding to,

the two Lights above the cenrer panel. One or the other

of the lights will illuminate at random times and will

stay on for two seconds. Your response consists of moving

the thumb-switch which is mounted on the left horn of the

yoke in the direction of the light - UP for the upper light,

DOWN for the lower light.

To be scored as correct, your response must be made

while the light is on.

Let me again emphasize that your primary concern should 	 +,

be to do the best that you can flyinq the approach.

Respond to the lights if, and only if, you feel that you

can do so without sacrificing your piloting performance.
S

{





iAge	 SexName

Jets: Hours

Rec.: Hours

Private Flight Experience:

Types

Types

Hours Types

Airline	 Position

Pilot's License

Type Ratings

Commercial Flight Experience:

Transport Aircraft - Jets: Hours

Types

Recip.: Hours

Types

Military Flight Experience:

Simulator Experience:

QUESTIONNAIRE - PERSONAL DATA. PRECI+DDIG pAGE BLANK NOT FILMED



QUESTIONNAIRE -- WORKLOAD EVALUATION.

Please give only one answer per question.

I. In my opinion, with respect to response characteristics,

the simulated aircraft was:

[ ] Excellent

[ ] Good

[ ] Fair

[ ] Somewhat uncomfortable: Quite sensitive or

quite sluggish

[ ] Very uncomfortable:

extremely sluggish

Extremely sensitive or

[ ] Nearly uncontrollable

[ ] Uncontrollable

II. In my opinion, with respect to control characteristics,
the simulated aircraft was:

[ ] Extremely easy to control with excellent precision

[ ] Easy to control with good precision

[ ] Controllable, with somewhat inadequate precision

l Controllable, but with very little precision

[ ] Difficult to control
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Ill.	 in my opinion, with respect to the demands placed

f	 on me-as the pilot, the simulated aircraft was:

I

	

[ ]	 Completely undemanding, very comfortable to fly

i
C 1 Largely undemanding, comfortable to fly

] Mildly demanding of pilot attention, skill

or effort

	

]	 Very demanding of pilot attention, skill or

effort

	

C ]	 Nearly uncontrollable

	

[ ]	 Uncontrollable

}(-
	 IV.	 In my opinion., the following is true with respect to

€' f the deficiencies in the simulated aircraft:

`'	 [ ]	 No noticeable deficiencies
f'

C ] Very mild deficiencies with no significant effect

on performance

C ] Deficiencies with effects on performance which

j	 are easily compensated for by the pilot
i

	

]	 Moderately object_ -,)Y:able deficiencies
^f

^`	 ]	 Very objectionable deficiencies

i'^o	 C ]	 Nearly uncontrollable

	

C ]	 Uncontrollable
l^

l



V. in my opinion, turning off the lights' interfered with my

performance on the piloting task:

7 Not at all, no interference

7 To a negligible extent

[ 7 Some interference, resulted in few piloting errors

[ ] Moderate interference, caused some piloting errors

C 7 Definite interference, resulted inconsiderable.

pilotingg errors

[ 7 Nearly complete interference, piloting was severely

.impaired	 8

C 7 Complete .interference, could not perform piloting

task	 a

VI. In my opinion, the following is true with respect to my	 3

responses to the lights:

[ ] Always responded immediately

17 Always responded, but occasionally too late

[ 7 Usually responded, and responses were never late

j 7 Usually responded, but responses were sometimes late

[	 Often failed to respond, but responses were.

usually on time

C 7 Often failed to respond and responses were usually

too late



t	
5

i

REFERENCES

^gg

I.3

I	
Afifi, A.A. and S.P. Azen, Statistical Analysis - A Computer Oriented

E

A roach. New York: Academic Press, 1972.
^i

Baty, D.L., Human Transformation Rates During One-to-Four Axis Tracking

with a Concurrent Audio Task, Memo, NASA-Ares Research Center,
Moffett Field, Calif.

Bencivenga, V.L. , Test and E'vaZuction of are Advanced Tn' egrated Landing

System for A-Z?--^:eather Landing, National Aviation Facilities

Experimental Center, Atlantic City, N.J., August 1970.

FAA-RD-70-28.

Blakeloch, J.H., Auto-natic Control of Aircraft aDd Missiles. New York:

John Wiley & Sons, 1965.

Broadbent, D.E. r A MeaharaieaZ ModeZ for Human Attention and Immediate

Memory ., Psych. Rev., 64:245-215, 1957.

Broadbent, D.E.,. Decision and Stress. New York: Academic Press, 1971.

Brown, I.D., The Measurement of PerceptuaZ Load and Reserve Capacity,

The Trans. Assoc. Industrial Medical Officers, 14:44-49, 1964.

Clement, W.F., H.A. Jex and D. Graham, A AianuaZ Control--DispZarl Theory

Applied to .Instrument Landings of a Jet Transport, 	 Trans. on

Man--Machine Sys., Vol. MG--9, 4:93-110, December 1968,



Cooper, G.E. and R.P. Harper, Jr., The Use of Pilot Rating in the

Evaluation of Aircraft Handling Qualities, NASA TN-D-5153,.

April. 1969.

L'eCelles, J.L. et al., The FaiZ-Safe Landing, Report of the ALPA All-

Weather Flying Committee presented at ALPA's 17th Air Safety

Forum, San. Francisco, Calif., July 1970.

Dillow, J.D., The Paper Pilot - A Digital Computer Program to Predict

Pilot Hating for the Hover Task, Air Force Flight Dynamics

Laboratory, Wright-Patterson AFB, Ohio, March 1971.

AFFDL TR-70-40.

Dixon, W.J. (ed.) , BMD - Biomedical Cor_^puter Programs. University of

California Press, 1973.

Do masch, D.O. et al., Airplane Aerodynamics. 4th ed. New York:

Pitman R,. )lisping Co., 1967.

Dunbar, J. and C. Collins, Demonstration of the French Thomson-CSF,

All-Weather Approach and Landing Monitor HUD, Irmo, Charles

Stark Draper Laboratory, Cambridge, Mass., Oct. 2, 1972.

Ekstrom, P.J., Analysis of Pilot WorKoad in Flight Control Systems

with Different Degrees of Automation, paper presented at the

IRE international Congress on Huron Factors Engineering in

Electronics, Long Beach, Calif., May 1962.

Gai, E.G., Psychophgsical Models for Signal. Detection with Time-

Varying Uncertainty, Ph.D. Thesis, Dept. of Aero. and Astro.,

f E	 M.I.T. , January 1975.

Gain E.G_ and R.E. Curry, Failure Detection by Pilots During Avtomatic

t	 Landings: Model, and Experiments, paper presented at 11th Annual

Conference on Manual. Control, NASA :Ames Research Center, May 1975. 	 f

:` d =	 217	 E

t



I	 i_	 L	 J_	 I. -I	 I

Gainer, C.A. et al., All—Weather Landing S^mulation for Category III

Airborne Configuration Summary of Studies on Flight Directors

and Split Axis Control, Bunker-Rarro Corp., Canoga Park, Calif.,

July 1967. SRDS RD-67-56/1.

Gibino, D.J., .Fffects of Presence or Absence of Cockpit Motion in

Instrument Flight Trainers and Flight Simulators, Wright-

Patterson AFB, Ohio, June 1968. AF ASD TR--68-24.

ICAO All-Weather Operations Panel, Second Meeting, Montreal, Canada,

May 1965. ICAO Docwmnt No. 8512.

IC_40 ?rocedures for Air Navigation Services: Aircraft Operations.

2d. ed. , 1970.

Jacobs, R.S. et al., Simulator Motion as a Factor in Flight.--Director

Display LvaZuation, Human Factors 15(6):569--582, 1973.

Jenny, L.L. et al., Head--Up Displays - A Study of their Applicability

in Civil Aviation, Matrix Research Division, URS System Co.,

Pall Church, Va. January 1971. NASA CR 117135.

Jester, D., Implementation of the DC-10 Performance and Failure

Assessment Monitor (PAIF'AM), McDomel-Douglas Co., May 1973.

ND C J4123D.

Jones, S.S.D., Guidance and Control Philosophy for All-Weather Landing,

J. Inst. Nay. , Vol. 3, 3:277-301, July 1970.

Kayton, M. and W:R. Fried (ed.), Avionics Navigation Systems,

pp. 520--548. New York: John Wiley & Sons, 1969.



i

3f

Kelley, C.R., Design Applications of Adaptive (Self Adjusting)

Simulators, paper presented at the Working Conference on Manual

Control, Cambridge, Mass., Feb. 2$ March 2, 1966.

Knowles, W.B. , Operator Loading Tasks, Tiuman Factors 5:155--161, 1963.

Levison, W.H., A Model for Task Interference, paper presented at the

6th Annual Conference on Manual Control, Wright-Patterson AFB,

Ohio, April 1970.

Levison, W.H., A Control-Theory Model for Human Decision Making,

paper presented at the 7th Annual Conference on Manual Control,

Los Angeles, Calif. June 1971.

Li, C.C., Introduction to Experimental Statistics. New York: McGraw-

Hill, 1964.

Li, J.C.R., Design and Statistical Analysis of Some Confounded

Factorial Experiments, Iowa State College of Agriculture and

Mechanic Amts' Agricultural Experiment Station, Ames, Iowa,

Research Bulletin 333, pp. 482-486, June 1944.

McRuer, D.T. and H.R. Jex, A Review of Quasi-Linear Pilot Models,

IEEH Trans. on Human Factors in Electronics, Vol. HFE-8,

3:231-249, Sept. 1967.

McRuer, D.T. and D.H. Weir, Theory of ManuaZ Vehicular Control,

Trans. on Yon -Machine Sys., Vol. MMS-10, 4:257-291, Dec. 1969.

McRuer, D.T. et al., A System Analysis Theory for DispZays in Manual

Control, Systems Technology, -Inc., Hawthorne, Calif., Oct. 1967.

AD 675 983.



Monrose, R.D., D. Vreuls and C.A. Stele, Summary of All-Weather
Landing Simulation Studies, Bunker-Ramo Corp., Canoga Park,
Calif., Feb. 1968. SRDS RD-68-13.

Parks, D.L. and D.G. Tubb, Simulator Development and Flight Validation
of a Perspective Display as an Independent Landing Monitor,
paper presented at the AMA 2nd Aircraft Design and Operation
Meeting, Los Angeles, Calif., July 1970.

Perkins, C.D. anC R.E. Hage, Airplane Performance, Stability and

Control. New York: John Wiley & Sons, 1958.

Phatak, A.V. and G.A. Bekey, Decision Processes in the Adaptive
Behavior of Human Controllers, IF Trans. on Sys. Science
and Cybernetics, Vol. SSC-5, 4:339-351, October 1969.

Pu se7_, R.H., An Evaluation of an All-ldeather Landing Panel Display,
National Aviation Facilities Experimental Center, Atlantic
City, N.J., Aug. 1968. NAIEC NA-68-9.

Schneider, C.E. , FAA Answers All-Tieather Critics, Aviation Wee]c and

Space Ter.-nology, Aug. 10, 1970. pp. 58-59.

Semple, C.A. et aZ., Effects of a 100-ft. Option Altitude Mule and an

Annunciator Panel on Failure Detection, Go--Around Decisions and

Landing Performance, Bunker-Rarer Corp., Canoga Park, Calif.,
Feb. 1968. SRD.S RD-68-11.

Schrenk, L.P., Aiding the Decision Maker - A Decision Process Model,

• Trans. on Man-Machine Sys., Vol.. MOB-10, 4:204-218, December
1969.

t

1



^_ ^	 i_. L	 I I	 _L-	 I I

Schtunan, H.G. and R. Staufenbiel, Plight Control Systems with Respect

to V/STOL Automatic Landing, AGARD Conference Proceedings on
Aircraft Landing Systems, Cambridge, Mass., May 1969.

AGARD CP-59-70.

Schweizer, G. and G. Schmidt, A V/STOL Guidance and Control Sijstem

with Bad Yleather Landing Capability, Dornier-Post (English ed.) ,

3:11-16, 1970.

Singleton, W.T., Display Design - Principles and Procedures,

Trans. on Man-Mach-ine Sys., Vol. ME-10, 4:181--193, Dec. 1969.

Smallwood, R.D. , .Tnterna7. Models and the Human 1?7strument Monitor,

IF, Trans. on Hunan. Factors in Electronics, Vol. HFE-8,

3:181-187, Sep. 1967.

SYr_ '1, J.M. et al., P-rinciples of Performance Monitoring w,.th AppZication
to Automatic banding, J. of Aircraft, Vol. 9, p. 3.39, May 1972.

St. John, O.B. and R.C. Morgan, The Implication of All-Weather Landings

in the U.K., Aerospace Proceedings, pp. 1.111-1127, 1966.

Spyker, D.A. et aZ., Development of Techniques for Measuring Pilot
Workload, Honep7ell, Inc., Roseville, Minn., Nov. 1971.

NASA CR-1885.

Teper, G.L., Aircraft Stabilitg and ControZ Data, System Technology,

Inc_, Hawthorne, Calif., April 1969. STI TR 176-1.

Todosiev, E.P. et at., Human Performance in Single-- and nio-Axis
Tracking Systems, paper presented at the 2nd. Annual NASA --

University Conference on Mw-ival Control, Cambridge, Mass.,

Feb. 28 - March 2, 1966.



Van Houtte, N.A.J., Display Instrumentation for VISTOL Aircraft in

Landing, Sc. D. Thesis, Dept. of Aero. and Astro., M.I.T.,

June 1970.

Vreul.s, D. et a1.., Pilot Failure Detection Performance with Three

LeveZs of Fau.Zt Warning Infos^mation, Bunker-Ramp Corp., Canoga

Park, Calif., Feb. 1968x. SRDS RD--68--9.

V.reuls, D. et at., All-Iileather Landing Flight Director and FauZt

kJaminr^ Displa + Si mulatov Studies, Bunker-Rama Corp., Canoga
Park, California. Pater presented at the 5th Annual. Synresiun
on Hunan Factors in Aviation, Los Angeles, Calif., June 1968b.

Wear, D.H. and R.H. Klein, T71 0 Measurement and AnaZysis of Pilot

Scanning and f;antroZ Behavior During Simulated Instrument

Approaches, System Technology, Inc., Hawthorne, California,

jjk---


