General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)



NSG - 8011

SUPERRADIANT EFFECTS ON PULSE PROPAGATION IN RESONANT MEDIA

(NASA=CE=119141) SUPERRADPIANT FFFECTS O
. FR] ECTS ON -324¢
PULSE PFOPAGATION IX FESONANT MFDIR Final ol
Feport, Sep, 1974 - Sep, 1975 (tlabama
;:ri:ultural and Mechanical Cnll,) 17 p HC Uncla
i S
. CSCL 20H G3/772 41187

FINAL REPORT

Covering thr Period September 1974 - September 1975

Prepared feor
The National Aeronautics and Space Administration

Washington, D. C.

By
Ching Tsung Lee
Department of Physics and Mathematics
Alabama Agricultural and Mechanical University

Normal, Alabama 35762

The NASA Technical Officer for this Grant:
Dr. Robert L. Kurtz

NASA-Marshall Space Flight Center, Alabama 35812




I. INTRODUCTION

It has bYeen recently recognized that submillimeter waves are most desirable
for remote sensing in the atmosphere. The interest in the generation of coherent
submillimeter waves has made the study of superradiance under realistic conditions
an urgent need [1]. ‘lhe central problem in this study is the interaction of multi-
mode radiation with extended resonant media. Using the extremely powerful, but not
very well known, Dicke-Schwendimann representation [2,3], we should be able to put
the coupled superradiance master equations, recently derived by Picard and Willis
[4], in an explicit form. With this as a starting point, we can very easily study
the effects of superradiance on pulse propagation in resonant media.

In the period of thirteen months. We have had very significant achievements
toward this goal. However, the whole project is too big to be finished in one year.
We will describe the major results of our studies. The description will be brief
since the details of these results has been published or to be be published in opern

literature.

ITI. MATRIX ELEMENTS OF COLLECTIVE OPERATORS

One of the chief difficulties encountered in the Dicke-Schwendimann approach
is the lack of explicit expressions for the matrix elements of collective operators.
We have developed a simple and systematic diagrammnatic technique to clear up this

difficulty. The detailed description of this technique has been published [5].

III. TRANSITION FROM INCOHERENT TO COHERENT RADIATION

In the collective emission of radiation, the cooperation number r of the atomic
system, as defined by Dicke [2], can remain the same; out it can also change. The
ratter is often ignored. We have found that the emission through r-conserving process

is coherent and that through r-nonconserving process is incoherent. The .ransition
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from incoherent to coherent radiation can be best described by considering the
number of photons emitted, instead of the time, as the independent variable.
The former is a discrete variable while the latter is a continuous variable.
Hence, we have a difference equation instead of a differen:ial equation., The
result of the numerical sowution of this difference equacion has been described

in detail in a paper to be published [6].

IV. RATE EQUATION FOR SUPERRADIANCE

The difference equation described in the p». us section is not suitable
for the study of the intensity of superradiant pulse., For this purpose, we have
obtained a rate equation as follows:

dP(r,m) . (r+m+2) (r4m+l)p(r+l,m+1) + (r4m+l) (r-m)yP(r,m+l)
dt 2r+2

.. {rtm) (r4m=1)p(r,m) = (rim) (r-m+l)yP(r,m),
2r

where r is the cooperation number, m is one-half of the difference of the numbers
of atoms in the excited state and the ground state, P(r,m) is the probability of
the atomic system in the Dicke state Ir.m>. and y is the radiation rate of a
single atom.

It is convenient to make the following change of variables:

k = r+m, L= r-m;

and to define the following generating function:

f(x,y.t)-g ? P(k, 2)xkyt,

k=l =1

Then we can replace the rate equation for P(r,m), a function of t, by a partial
differential equation for f(x,y,t) as follows:

af

e 21223822 & vivead 21 0 & ¢
5c T RUT IR ¥ virakeiyg + 11,

The solution to this last equation is yet to be found.
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IV. PUBLICATIONS

Two papers have been prepaired based on the results of this research project:

1. "Diagrammatic Technique for Calculating Matrix Elements of Collective
Operators in Superradiance"

Physical Review A, Vol. 12, No. 2, pp. 575-586, August 1975.

2., "Difference Equation for Superradiance"

To be published.
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Diagrammatic technique for calculating matrix elements of collective operators in
superradiance”
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Adopting the so-called “genealogical construction,” one can express the eig.nstates of collective operators
corresponding to a specifiedd mode for an N-atom system in terms of those for an (N Iatom system. Using
these Dicke states as bases and using the Wigner-Fckart theorem, a matnix element of a collective operator of
an arbitrary mode can be written as the product of an m-dependent factor and an m-independent reduced
matrix clement (RME). A set of recursion formulas for the RME is obtained. A graphical representation of
the RME on the branching diagram for binary irreducible representations of permutation groups is then
introduced. This gives a simple and systematic way of calculating the RME. This method is especially « seful
when the cooperation number r is close to N/2, where almost exact asymplotic expressions can be obtai ed
easily. The result shows explicitly the geometry dependence of superradiance and the relative importance of r-
conserving and r-nonconserving processes. This clears up the chief difficulty encountered in the Dicke-
Schwendimann approach 1o the problem of N two-level atoms, spread over large regions, interacting with a
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multimode radiation field

L INTRODUCTION

In 1954 Dicke' discussed the spontaneous emis -
sion of radiation from an excited system of ¥
identical two-level atoms. Dy considering the
entire collection of atoms as a single quantum-
mechanical system, he found that under certain
conditions the individual atoms cooperate to emit
radiation at a rate proportional to N* which is
much greater than their incoherent emission rate.
This phenomenon is called superradiance.

In the vast literature on superradiance, * n.ost
of the investigations have been limited to cases
in which the emitting atoms either are confined to
a region smaller than the wavelength of emitted
light or are able to couple with only one radiation
mode. This situation permits important mathe-
matical simplifications. However, current at-
tention®** in this field is being focused on the more
difficu!t, but more realistic, problem of N two-
ievel atoms, distributed over a space of dimension
much greater than the radiation wavelength, inter-
acting with all the modes of radiation field. Among
the works devoted to this problem, the one by
Schwendimann' elaborates a very elegant approach
of the problem initiated by Dicke.' One of the
chief difficulties encountered in this approach is
the lack of explicit expressions for the matrix
elements of collective operators. In this paper,
we will develop a simple and systematic diagram-
matic technique to clear up this difficulty.

I MODEL HAMILTONIAN

We consider a system of N identical two-level
atoms distributed over a space of dimension much
larger than the wavelengths of the multimode

12

radiation with which it interacts. In the usual
electric dipole and rotating-wave approximations,
the system can be described by the following
Dicke Hamiltonian:

* .
H "'Z ot anar +Hw, R, + Z gelark® vark?),
M 3

(1

where K is the wave vector, u'; and at are the
corresponding photon creation and annihilation
operators and obey the usual boson commutation
rules, and w; is the corresponding frequency.

w, 18 the transition frequency between the two
levels of each atom. K%, K*, and K, are collective
atomic operators defined in terms of the single-
atom flip operators R, R, and A, , which “hov
angular-momentum commutation rules as ' ..

n’::ﬁ.-"*"f'u;, R,:t!t,,. 2)
1

where X, is the position of the ith atom, and

g1 =(hwr 2¢,V)" p, are the coupling constants,
where p,, is the transition dipole moment, and
V'* is the volume of the cavity in which the radia-
tion field is quantized,

As one sees from Eq. (2), the R operators de-
pend on the wave vector k aud on the positions
5\’.'5 of the atoms. Their commutation relations
are

(R, R%| = ﬁ:--""’ ‘hn,,. (3)
1

Here we see that the commutator of two opera-
tors corresponding to different modes given an
operator corresponding to a third mode. There-
fore, in contrast to the case of samples smaller

575
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576 CHING TSUNG LEE 12

than a wavelength in which the "% factors dis-
appear, the behavior of the atoms cannot be des -
eribed by a simple set of angular-momentum op-
erators. However, it is possible to factor out
the k dependence in the operators and confine it
to c=number functions. This is the key point of
the Dicke-Schwendimann approach, to be dis-
cussed in the following.

A Dicke Schwendimann approach

Consider the set of operators tlt':'. R: (R, as
defined by Eqs. (2) with a particular wave vector
i, which we will eall the principal mode. It can
be easily shown that they obey the angular-momen-
tum commul'u?u relations. So we can chose
[+); and e™"1" "] <) to be the excited and ground
states of the th atom. Then we can construct
eigenstates | v, m; a) of K} and R, such that

R%‘Ir.m; ays=r(¥+1)r,m;,a),

(4)
Ryivr,m;a)s=mir,m,a),

where R* = (RT R? +KY R%)+Kjand a=1,2,. ..
Y is a degeneracy inviex with

v Ni@re)
*ON/2ar+IN(N/2=r)

The eigenstates |, m; a) will be called Dicke
states, » will be called the cooperation numbe;,
and /1 indicates the population inversion or total
energy of the atomic system. The trouble is that
the eigenstates of Rf'l corresponding to the prin-
cipal mode are not eigenstates of K* correspond-
ing to otaer modes. So we might think that we
need to construct a set of Dicke states for each
possible mode, which would be an imposing task.
Fortunately, this is unnecessary.

If we define”

R, t RIEAR S (®)

f (5)

for an arbitrary mode k and consider the set of
operators { KT, RY, K.z}, they do not obey

J

angular- nomentum commutation rules. However,
as first pointed out by Dicke,' their commutation
relations with the established angular-momentum
operators R%l and R, are of the following form:

IT:O W:l‘li""ul r‘o '-Io‘ e, -3, n

where we should identify K*, K*, and K, with
T., T', and T}, respectively. This proves’ that
(K, K2, R,z| is an irreducible tensor operator
set of rank 1, or simply a vector operator, As
a consequence, we can discuss them in terms of
the ecigenstates |»,m; a) of Rt operators. Fur-
thermore, the Wigner-Eckart theorem can be
used to establish the selection rules for the ma-
trix elements (' ,m";a' |[R* (v, m;a); namely,
r=r'sslorOand m=m' =21; and the nonvan-
ishing matrix elements can be factorized as fol-
lows:

(roma al |RE |y, mia)
[0 m)r ame 1)) 20r; 0’ |RE 7, @),
(relymel, ' |RE v m;a)
sk [reme)rame2) ¥ o 10 (RE |7, a),

(r=1,mel;a'|R* r,m;a)

s#[(rEm)rsm=1)V2r =1; 0 | R ¥, a),

B Transtormed Hamiltonian

We now expand R* in terms of Dicke states

R* =222222\r'_m‘;a'jk';lr,m;a.‘;r',m';a',\ r.m;a|
" m a

' m'a

. ZEEIO:.“"' R=R)R'E s, 0 R=K PN,

where we have used Eqs. (8) and (9) and have defined

(8)
where the reduced matrix elements (RME) are
independent of m and are of the following forms:

(r;a' |KE|v; @)= ﬁl‘ saa’ g ou(E =By g,
[}
¢ k=K,
(9
(ret;a'|RE|r;a)- t(’,’.".’.'l PRULELNE
(A
s, (k=K,).
Pt O k=R PR, (10)
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RN = Z:l(" su)rame V¥ r o ma ;0 ) v, myal,
U",',".' i sE[(r:md){r:m;’““]rol,mcl;a’;-\r,m;m_ (n

U"'ﬂ,‘;.-&Z:[(rlm){r!m-n’“u-t.nu La)(r,mal.

Using these results, the Hamiltonian in Eq. (1) can be rewritten as

Hh ;vrc'ta: chw Ry vHy o H o,

M, );m: (a}):z_jz; OOV -R)REY He).

(12)

o -2;“[(«':):);2_: O R =R PR, u.e.) . (01.22; et T AT o o u.c,)j -

where H, describes processes in which the cooperation number » is conserved, and My, describes pro-

cesses in which » is not conserved.

HE EVALUATION OF REDUCED MATRIN FLEMENTS

In the Dicke-Schwendimann approach that we
have elaborated in Sec. II, we notice the impor=-
tant role played by the reduced matrix elements
which we have written as ¢, (k = EJ. a c=number
function of the wave vectors. All the geometry and
mode dependence of our problem are determined
by these functions. They are independent of time,
and hence, describe the static effects of the sys-
tem. However, these functions appear as ccef-
ficients of dynamical operators in the expar.sion
of the Hamiltonian, Therefore, the usefulness of
this approach depends on whether we can obtain
an explicit expression for each of them.

A TGenealogical construction”

From the group-theoretical point of view, the
set of the so-called symmetrized states™ |r,m; a),

-

=
[N v om;a)=[(rem)/2r |2 Nal,rabmefia)e)ys|(r=m/2r|"2Nal,r=t mslja)|=)yet™"

P

a=1,2,.. .,/ forms a basis for an irreducible
representation of the permutation group 5, cor-
responding to a certain inary partition of N,
There is a one to-one correspondence between a
binary irreducible representation and the cooper-
ation number ». Because the matrix repr- senta-
tion of a group is fixed only within a similarity
transformation, the explicit expressions for RME
depend on how the Dicke states are constructed.
So we must chose a definite way to construct
them. A very natural and convenient scheme is
the so-called “genealogical construction.”* We
will use it here.

In this construction, the eigenstates of N atoms
with eigenvalues (r, ) are constructed from those
of N=1 atoms with eigenvalues (v = !, m=!) and
r=4,mey), or (relome=")and (r+§,ms+'), by
adding the “spin” functions for the Nth atom as
follows:

b

~

foras=1,2,..../7°%;

[Ny mza)=|[(reme1)/(2r + 2] 2 N=L,r st m=};0)|+)u

w(reme 1)/@r + 22 N1, v+ ), meds B)| =) e FreTn,
L]

and we have the relation
17 =S 1
which can be easily verified with the use of Eq.
(5).
Starting from the eigenstates for one atom, we

can construct the eigenstates for N atoms by re-
peated application of Eqs. (13). The Dicke states

for a=f)>h +Band B=1,2,... /00 (13)

obtained in this way form an orthonormal set
automatically. in this construction, an eigenstate
i% specified, in addition to » and m, by a series
of “partial-cooperation numbers™ r r,, ... ry.,.,
which will replace “he single index a. So we will
adopt a new notation

INrm @) s|vrmirr-rery,) (14

SRIGINAL PAGE
OF POOR QUAL



578 CHING TSUNG LEE 12

for the eigenstates. », is always }; », can be
either O or 1; if r, is 0, », can only be |, but if
v, i8 1, », ean be either } or [; and so on. Any-
way, we must have

¥, 00 and ¥y, =, w2} (15)

B Recursion formula for reduced matnix elements

We can write a collective operator for the N-
atom system as that for the first N=1 atoms plus

-

(r=lome Lyrpeee vy r =L ANy myr o oory oy =)

that for the Nth at »m,
REN) = RENV = 1) 00T Togy (16)

Using the Dicke states constructed by the repeated
application of Eqs. (13), we can reduce the matrix
element of a collective operator of N atoms to
that of N =1 atoms very easily. Let us work out
the following example as an illustration:

(/2 emdr =m3 D) (r=boma L= birie e by [ BN =D = hom= by oeery )

=[r=mremae D)2 (r=bome e lyrieery L REN =) v =bomabir ooory )

"l("m""”"l’]w(r'lnm‘ 53’:""’;-:"“."-’1gi".""'#-a)"

We can use the orthonormal property of the Dicke
states to express the last term in angular brackets
in the above equation as the product of Kronecker
6's:

(rebdomediriceeryglr=bomedir vy,

= O(r,, ri)0(ry, ) 2 O(ry . Y )

s0y.q (18)
where

{1 forr,=r|

O(r, ry) = ) 0 for r, a7}’

(19)

We can also use Eqs. (8) to factorize the matrix
elements in Eq. (17) and drop common factors on

ll(ttt.l-;.-} :

(n

both sides ; then this equation will reduce to
(r=livp o ¥y =L REN) rir e org oy =)

2 (r= vl vy, [ REN =1)

"r - _',;l’.‘ . -f._‘)_f'“:':l"f'ﬁ.-'l . (20)

This is a recursion formula for one of the RME .
We notice that m does not appear in this formula.
Following similar procedures and keeping in

mind that the selection rules »; =»{ =+ 1or 0
applv *o any of the (r,,r}) pairs, we can obtain
a set ¢f all the nonvanishing recursion formulas
like E (. (20) for RME. To save space we will
drop the r ***ry_ and »|***ry_, parts of the
indices.

(riv =S REMN 77 = §)=[(2r =1)/27)(r = § I RE(N = 1) 7 = 1)+ (1/2)8y ye =T Tn, (2180
v o S IREN) rs v + 1) =27 +3)/@r +2) (0 « J | REN = 1) 7 + 1) = [1/420 + 2)] 8, pe 5 -Firka (21h)
(r;r e} REN ;v d) s = r(r « 1)) ™20 2§ REN=1)| 73 ), (21¢)
(re v+ JIREN rw v 3) <[ 1/2r + 20 (r + JIRENV = 1) 7 4 1) = [ 120 4 2)| 8y e F-F0 Tw, (21d)
(r+ L r + SIRECD sy = D) = r/(r + )20 + S IREN = 1) r = 1), (21e)
(Felyr o RN ryr o 3) = [(r +2)/(r « D)0 + JIREN = 1)[ 7 4 1), (211)
(r =137 = L REMN) 757 = §) =[1/20)(r = B REN = 1) r = 3) = [1/2) 8y e T T T, (214"
(r=1;7=3REWN) rsr =D =[(r=1)r]"2r = [JREN =1)|r=}), (21e")
(rel;r=bREN r;r e D) a[r e 1) 7|2 o L IREN = 1) 7 4 ). (211")

C. Evaluation of € )07

From Eqs. (8), we can see that the evaluation
of the matrix elements of collective operators
Rf is reduced to the evaluation of the RME; which,

f

in turn, is reduced to the evaluation of the coef-
ficients C,s”', as can be seen from Eqs. (8). An
examination of Eqs. (21) leads to the following
conclusions:

(i) The recursion formulas can be generalized
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by ceplacing ¥ and » by ¢ and r,, respectively,
with . «1,2,..., N, and can be summarized by
one general formu.a

() 7oy | RE(D)) Pii®ia)

ST s ¥ Wi [ REG =1 7,
T LT TR . r;_‘}d._.'lur -:I,.:"
(22)

By repeated application of this general formula,
we can obtain a general expression for C 3" as

Ca"‘o"ﬂ' - 0._.‘(7', r;;'.... l’:..)

x n S Pas ¥ Paugs Yauy): (23)

(i1) The & ., in Eq. (23) implies that the coef-
ficient C /7" vanishes unless the a and o' are
such that when expressed in the notation of Eq.
(14) give r, =7, for all j=1,2,..., up to at least
J=i=1, In other words, if we have

, | =0 torj=1,2,...,0=1

Ar,ar,-r,ho iy - (24)
then we will have
{ #0 for i<l and r' =rorrzl
~iaa’ °
Cor™ | =0 otherwise (25)

This interesting result is, of course, a conse-
quence of the genealogical construction,

(i) The two functions / and g in Eq. (22) are
the - ae for both operators K7 and K*, so we
have

Clar =Cisr sCfiyl . (26)
(iv) 1f we replace the v in Eqs. (21d")=(21(") by
¥+ 1 and then take Hermitian conjugate, they will

be exactly the same as Eqs. (21d)=(211). This
kind of argument leads to the following relation:

Chs sCRA. (27)
However, using Eq. (23) to evaluate CJ% for
large systems may still be rather tedious. In

Sec. 1D, we will introduce a diagrammatic tech-

nique which will help us to visualize the situations
much more clealy.

D Branching diagram representation

The branching diagram® is usually used to de-
termine the dimension of an irreducible repre-
sentation of a permutation group Sy corresponding
to a binary partition of ¥, When this diagram is
used in the discussion of a system of electrons,
the abscissa and the ordinate represent the num-
ser of electrons and the total spin, respectively.
In our case, they will represent the number of
atoms and the cooperation number, respectively.
We will represent a Dicke state |r,m,r ** vy

FIG. 1. Graphical representation of an example of reduced matrix element (§; §1j1§1§2( K-/} J14041§1) of a collective
operator of a nine-atom system corresponding to an arbitrary mode K. The background {s the branching diagram usually
used to determine the dimensions of irreducible representations of permutation groups Sy corresponding to binary parti-
tions of N, The abscissa denotes the number of atoms in the system or a subsystem, and the ordinate represents the
cooperation number, The letters at the bottom indicate the types of sections, defined in Fig. 2, of this example diarram

which is of type N(3.

URIGINAL PAGE IS
OF POOR QUALITY



580 CHING TSUNG LEE 12

by a zig-zag line on this branching diagram, and
a pair of such lines will represent a reduced ma-
trix element as shown in Fig. 1. In this diagram
representation, there is no way to tell the w value
of an eigenstate. Fortunately, a reduced matrix
element is independent of m; 80 we need not worry
about it, Because of Eqs. (26) and (27), we also
need not distinguish whether the operator is K

or K and which line represents the state on the
right of the operate= the ket vector, and which
lin *epreser state on the left, the bra vec=
tor,

From Eqs. (21) and (27), we can see that the
reduction of a RME of N atoms to that of N=1
atoms can oceur in 8ix different situations. They
are represented by a section of lines, which rep-
resents this RME, between two vertical lines
corresponding to N and N = 1. The six different
sections are shown in Fig. 2. The factors
T G ria) and glr, risr ., ri.,) can also

P4
-~
R = e - o=

FIG. 2. Six distinct types of sections o. the graphical
representation of a reduced matrix element of a collec-
tive operator,

be considered as functions of the type of a sec-
tion and the » value of one of the four corners,
say the upper=left one, of this section such as
I(A,r) and g(D, r)., These functions are listed in
Table 1.

E Eampl

With Fig. 2 and Table | as guides, we can now
casily use Eq. (23) to evaluate, as an illustration,
all the coefficients C .2 of the RME of nine atoms
represented by the diagram in Fig. 1 as follows:

The first nonvanishing value of (r; = r}) occurs
at i - 4, so we have

Cy=CynC,y=C =C, =0,

where, as well as in the following, we have dropped
the other subscripts and superscripts in the no-
tation of the coefficients.

A common factor of all the nonvanishing coef-
licients is

fams = TE,DAC, DA DD, DS(F,2)
ANV =2/ @2 (DUNVE = -4 VE.
Then we have
CooglD 1)1 ey = (= I=8)VT,
Cyog(B, VWD, 1)) == DUN=HWE,
Co =g, DB DD, 0 g = (DB =ANE,
Co=glA, 0/, DB NN,
(NS =-AVE,

So the final result is

TA. LE I, Factors in the recursion formulas for dif-
ferent types of sections, as deflined in Fig. 2

I'vpes fin.rh g, ri

or 1

A R ——

el 2r +1

or+2 1
2r+ r +1

1
¢ “Ter+ner=-n,

D 1

2rel Tar )
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‘i;;l}lila"lnt(onlull‘O;':I)' —ﬁ#}(i.""t'cl";lo i‘,u':-f..-f‘_*‘ ln?-!l,»f‘-:'_.‘....?' -’.'.

IV ASYMPTOTIC RESULTS FOR LARGE N

From the physical point of view, we are more
interested in the asymptotic results for large N
(= 10°%) than in the exact results for small N. When
N is 8o large, we have ¥ * 1 for an overwhelm ing
majority of cases; so we can assume » to be of
the same order as N without introducing any ser-
ious errors.

From Table |, we see that in the asymptotic
limit tne / factor is 1 for a section of type A, B, E,
or F and of the order 1N for a section of type
Cor L, Therefore, in the diagram representing
a RME, whenever a section of type C or D) occurs,
the value of this RME will be reduced by a factor
of the order of 1N, For the convenience of state-
ments, we shall refer to a section of type U or €
as branching or rejoining section, respectively.

A Topologs al classification of reduced matrix elements

We can classify the RME according to the topo-
logical types of their diagrams, as shown in Table
II. Obvi v sly, type CO, representing a diagonal
element, is the most important one among the
r-conserving processes; and the same is true
with type NC1 among the r-nonconserving process-
es, The value of each of an RME of type C2 or
NC3 is smaller than the leading one by a factor
of the order of 1/'N*, Therefore, if the number of
possible diagrams of these types corresponding
to each of the leading one is much less than N ¥,
then we will be safe to discard them,

Let us define

dsiN=r, (28)

Then for an eigenstate [r,m;r, ***ry., ), we will
have r,,, =7, = = | exactly d times. In other
words, the diagram representing this state will
drop exactly d times,

For a fixed ket vector |r,m;r ***ry_ ), there
is only one bra vector to form a process of type
C0; and there are less than d(N =d = 1) possible
bra vectors to form processes of type C2. The
latter can be seen as follows: In the branching
diagram, one can see easily that one end of the
“loop” in a diagram of type C2 must occur at one
of the d sections with »,,, =7, = =}, while the
other end can occur at any of the other N=d =1
sections with r,, =7, = + ). So there are
d(N =d = 1) possibilities. However, some of these
possibilities may have to be dropped because of
the restric ‘on that ¥, can never be negative.
Hence, the real possibilities must be less than

d(N=d =1). Therefore, the condition that we
can discard processes of type C2 is d(N=d =1)
“« N*, which implies

d/N=1, (29)

On the other hand, for a fixed ket vector
[Fymir ¥y, ), there are d possible bra vec-
tors (rel,mel r e *Fuel and N=d = 1 possible
bra vectors (¥ =1, mz L;r;***ry.,| to form pro=-
cesses of type NC1, 8o under condition (29), we
can discard processes in which » increases.

Consider a diagram of type NC1 with the branch«
ing point occurring at the N th section such that
IN =ry, +d,. There will be d (N, =d, = 1) possible
ways to form the “loop” of a diagram of type NC3
corresponding to this fixed diagram of type NC1,
Therefore, the condition that we can discard pro-
cesses of type NC3 is d (N, =d = 1) N{, which
implies

d, /N1, (29)

For an overwhelming majority of cases, we can
say that condition (29) implies condition (29°).

Fortunately, from the physical point of view,
we are most interested in situations where con-
dition (29) is satisfied.

TABLE 11, Classification of reduced matrix elements
according to the topological tvpes of their diagrams and
the order of magnitude of each type.

'1._

00— ——— -~

r-CONSErving proce ises

r-nonconserving processes
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B Propagaton

As can be seen from Table 11, a diagram of
RME consists of single lines and double lines
alternatively connected by branching and rejoining
sections. We shall refer to a single line as an
5 “propagator” and a double line as a T “propa-
gator."” However, the first single line must be
treated differently and shall be called the “gen-
erator” because, while others contribute only a
common factor to all the nonvanishing coefficients
Cis, this single line determines the structure
or variation of the coefficients. We shall denote
the contribution to the RME by an 5 propagator,

a T propagator, and the generator by S, 7, and
W, respectively.

I8 propagators

An 5 propagator is a consecutive product of a
mixture of f(A,r)and f(B, ) factors. It turns
out that the result of this product always gives
the numerator of the first factor divided by the
denominator of the last facter This can be seen
easily by considering the ¢ L.c+ .1g simple ex-
ample:

3

SE, v g MAE, ) e S, vy ) S B vy VIE, %)

“(

SA A v VB JIA, 7 ) (AR

" 2, 2+ 2,+2 2+ ) 2+ 2
r+ 1 W+ 2 el 42 4 3

_Ir_ 2n

e 3 Wl
Therefore, an 5 propagator is a function of the

types and r values of the beginning and ending
sections only. And we have

S(A 1 ;A7) =S(A, 7, B,n)=2r,/(2r, + 1),
(30)
SWB, v A, ) =SB, v, B,v)=(2r+2)/(2r,+1).
For large values of »;, these two expressions are
almost the same and can be summarized as

S, nl=n/r, . (31)

21 propagaions

A T propagator is a consecutive product of a
mixture of J(E,r) and / (F, r) factors. Let us
first obtain the result of a consecutive product
of pure / (E,r) factors. We have

2, W+l -3 -2 -1 )'”

x
y+1 2m+2 2 +3 -1 2 2+ 1

= (2= 1)@x) /(20,20 + 1)) 7 (32)

Then consider the case when one of the factors
J(E, 7)) is replaced by f(F, n). We have

fE v SE,w VF, ) (E,n, ) SEr
(B B )
= hin ) (2r; = 1)(2r)/(20)) 20, + 1], (33)
where
hin) = [(20 = 2)(20, + 1)/(20 = 1)(20)]7*
=1 =(20) " 40021 =0O(N7), (34)

We see that the deviation of Eq. (33) from Eq. (32)
is of the order of N™*, When there are d'f(F,r)
factors, the deviation will be of the order of
d'/N’. Therefore, for large values of »,, we have

Ty n)=n/v . (35)
It is interesting to note that 5 and T propagators
are the same asymptotically.
C. Diagonal reduced matrix elements and the generator

A diagonal RME is represented by a diagram
of type C0O; i.e., one single line only. Suppose

that sections of type A occur N =d =1 times and
those of type B occur d times at the (i, = 1)th
section with s =1,2, ..., d. Assuming that the
last section is of type A, we can calculate tie
coefficients C [, for four different cases accord-
ing to the types of the (/= 1)th and the ith sections,
namely AA, AB, BA, or BB, as follows:

CM=gl(A, r  )S(A, r;A,r =)
=(1/20)(20,/2r)=1/2r, \36a)
CA2 =8(A, 7, 08B, n, . ;A r =})
=[1 @2, + Dl@2n, +3)/2r)
=(1/2r)N(2n, + 3)/ @20, + 1] , (36b)
Ci4=g(B,r,. )5(A,n, A, > =)
== 1/@n, + D20, 2]
==(1/2r)(2r,)/ (20, + 2)], (36c)
COF=g(B, v,  )S(B, % A, r=})
=[=1/2n, + 2)][(2r, + 2) 2r]
==1/2r, (36d)

where we have dropped the regular subscripts and
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supers~ripts of the coefficients,

The probability that AA will occur is about (N = d)*/N*; that of AB or BA is about d(N - d)N*; and that of
BB is about d*/N*, Therefore, under condition (29), cases of AA are an overwhelming majority and those

of BB are negligidle,

Let us consider a consecutive pair of AB and BA. This pair will coutribute the following to the RME:

P (.“‘:‘!, PUITLES 110 A Clre BT e %y,

.“ 2')‘”(‘-:.}-1‘._.“' _‘,lll:-:ljnt“.-ih_ﬂl + “ ‘r,.ll ¢ ‘,u(t-:l)-ﬁ“ -R...,:I_'., ,l; 2 (37)

The value ol P al given by Eq. (37) depends on
the index (k - f.. -1); which, in turn,
depends very crltlcahy on how we order the atoms
in the sample. Assuming that the atoms are
randomly distributed, we can order them in such
a way that two consecutive atoms are very close
neighbors and (i. 3...,) is almost perpendicular
to (k -K,), as illustrated in Fig. 3. Suppose in
‘his way we can manage to reduce the index to a
value of the order

k-k) X, -X,.)=00); (38)
then we have
B, =0(e/N)+ O(1/N?*)=O(e/N), (39)

where the last step is taken because we believe
that the order of ¢ is higher than that of 1/N.
Now we can write the diagonal RME as

N
(r;a|RE|r;a)= .;7 ?::,-ur-r.,.&,
.
4

+Y B+ 0wd*/NY)
2t

N
: zl_r ;l‘,i‘(:';l).&‘ + Olde /N),
? (40)

where a possible error of the order of d*/N* is
introduced because we have ignored the existence
of BB. The prime on the summation sign indicates
that i, =1 and i, are to be skipped; this means
that the number of terms to be summed is exactly
2r. This would be true even if we had laken cases
of BB into consideration because for every term
of BB, a term of AA is canceled almost exactly.
If the last s ction of the diagram is of type B,
then the last factors in Eqs. (36) should be
J(B.r +}) instead of f(A,r %), and 2r in all ex-
pressions in this subsection should be replaced
by 2r + 2. But this is of no significance wt all.
The generator of an RME is represented by the
first single line of its diagram. Suppose this
single line consists of N, = 1 sections with
N,=d, =1 of them being cf type A and d, of type B.

—

The expression for the generator can then be ob-
tained from that for the diagonal RME in Eq. (40)
by replacing N and » by N, and ry , respectively,
as follows:

QN )= 5

Z, ud fa-i.,u(d(N) (41)

L |

D, Off-diagonal reduccd matrix elements

With the expressions for propagators and the
genera‘or available, we can very easily write
down the RME for all types of diagrams. For
off -diagonal RME, the generator is always fol-
lo v.d by a section of type D), It is convenient to
combine the contribution of these two to the RME
once for all as follows:

FIG. 3. An illustration of the way to choose the se-
quence of atoms in order to reduce the possible error

introduced in simplifying the expression for a diagona!
reduced matrix element or a “generator.”

IGUVAL PAGE IB
Or POOR QUALITY!
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qt‘w,)-th.mn. ve,) + &0, my DoV E=F 0 Ty

rett BT % u@E %y, /

fa) Type NC1,

(ra ;07 |RE|v; ) = QF N )T 0w, o 7ve)> 3 (5 2' e BT gty ) (43)
My fe4

h) Type Ci2n). A diagram of type C(2r) consists of the generator, n T propagators, and n 5 propagators
connected by n sections of iype D and n sectirns of type C. We can write the RML as

(r; a’ IRE ;@) = QBN )T ry vy M(C, 7y IS(ry o 1y W, o VS (D, )"+ 2 Sy 1y W)

RN 7 ) LY 0 W~ PUOY, 3 F5 Moy % §% )
"'“l-;(l"n’("ﬁn Z.:,’e e i (44)

e) Type NCi2n + 1), A diagram of type NC(2n + 1) consists of the generator, (n+ 1) T propagators, and

n S propagators connected by (n+ 1) sections of type D and n sections of type (',
‘e wu@-%)

SRR | (" 1)
(r:l'a IR‘[]?,I” ’ "gl‘l(zr" ("f’]

V. CYLINDRICAL SAMPLE AND TRANSITION
PROBABILITIES

To obtain numerical values of RME by using
Eqs. (40), (43), (44), and (43), we replace the
summation by integration. The result of such
integration will, of course, depend on the boundary
of the sample. This is where the sample-shape
effect comes in. The most popular sample shape
used in the discussion of superradiance has been
the circular cylinder.” In the literature, cases
of spherical'’ and rectangular shape'' have also
been considered. In this paper, we will corsider
the case of a circular cylinder only.

A Cylindrical sample

Consider a sample of atoms confined in a space
of the shape of a circular cylinder of length [ and
radius a. We can express the summation in Eq.
(40) as an integration over the sample space as
follows:

F, G 3 a)-_zl N(t Il'
i=)

- _1 I u{:-r Jg
na'l J, . s

xj-qmbf.-"(’uﬁ-'ﬁ,)p;._wﬂdv'
: : (46)
where (k -k Je,p are the transversal and axial

components of (k = ﬁ ), and the z axis has been
chosen in the ﬁ directlon Carrying out the inte-

We can write the RME as

‘_!,..n:-:,..i,l.;) _ (45)

gration in Eq. (46), we obtain

F.(ﬁ. l,a)-e'“:-:u.m

o ll% (K—ﬁ,).l 2] 24 ,((E-R )pa)
=K, 1/2 -K)a '
(47)

where J, is the Bessel function of order 1.
Now we can write Eq. (43) as

rsl, a'lR‘fIr,a)
=(1/2eNF, (&, 1 ,a) = e F-F0r%u 0

(48)

where we have assumed that the order of the atoms
is such that a disk of radius « and thickness dz

is completely filled before we go te the next disk
along the axis of the cylinder; we have also de-
fined

1,=1(N,/N). (49)

B. Transition probabilities

‘Nith our knowledge of the matrix elements but
without solving' the master equation, we should be
able to get sorie idea about the time evolution of
tt e atomic svstem. We assume that at time (=0,
%o systenr consists of completely inverted atoms
with r = ) N and a vacuum of the radiation field.
The initial evolution when the value of » is still
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close to | N will be essentially determined by
the collective opers* r Rf. Suppose at a certain
instant the atomic system is represented by an
eigenstate |r,m; a); we will consider the transi-

fa) r=conserving process,

tion probabilities to the single state [(r,m=1; a,
and to the whole set of states |[r =1, m=1a’),
respectively. They will be proportional to the
following quantities:

Krym=1;0a|RE|r,ma)| =0+ m)lr =m+ 1)|(r; a|RE | r;a)|?

ke sin (& - k,), 12 42(&-K),a)
(r.m}(r-m*—l)—ﬂjl—)"-l‘m;] W. (50)

(h) r=nonconserving processes,

Zl(r-l.m ;o ’lﬂflr.u;a)l"(r+mllr+m-IlzI(r-l a’'|RE |r;a)|?

'1' 2

= (r+mr+m=1) )_“,‘ |E. &, 1, a) = e~ ®=F 0 Fwpe |2 /29y

: fr._"ﬂ(f_m_-ﬂ( f |F.&, 1, @), -

2r

£ r + m)r + m=1) 1}

= T -

From Egs. (50) and (51) we 2an see the general
behavior of the evolution of the atomic system.
At the beginning, when m is close to r, the fac-

tors (r + m)r =m+ 1) of Eq. (50) and (r+m)lr+m=1)

2r of Eq. (51) are of the same order of magni-
tude. So the relative importance of the two kinds
of processes is determined by the other factors;

namely, |F(K,1,a)|’ of Eq. (50) and 1=|F(&, I,a)|*

of Eq. (51). Rehler and Eberly” have calculated
numerically the function | F(, I, a)f, = .ch shows
a high peak along the direction of k,. Therefore,
for radiation around the direction of k,, it is
predominantly » conserving; and for radiation

in other disections, it is predominantly » non-
conserving. Later on, as m approaches zero,

we have (r + m)lr =m+ 1) (v + m)(r+ m=1)/2r,

if »>> 1. Then the r-conserving process dom-
inates, and the radiation will be confined within
a small solid angle around the direction of K A

We can see then the condition for superradiance
is that the st ‘te of low m must be reached before
r arops too low due to » -nonconserving processes.

VI SUMMARY

In the Dicke-Schwendimann approach to the
problem of N two-level atoms spread over large

z 2J (& -K)pa)
®&-K,)a

= .1H(K-EI),1 |
Io - 1’!': "
rf‘pdpf" e.rt-!,a,pm.odb l)
sin{ (k-K,), 12| 4J:(k-K,),a)
(1- S5 o). e

regionu, interacting with multimode -radiation
field, the major difficulty has been lack of ex-
plicit expression for the reduced matrix elements
(RME's) of collective operators which determine
the static aspect of the problem. The aim of this
paper has been to clear up this difficulty. The
genealogical construction was adopted to obtain
Dicke states corresponding to a specified mode.
Then a set of recursion formulas of the RME’s of
collective operators corresponding to arbiirary
modes was obtained. Using the branching diagram
usually used to determine the dinmensions of bi-
nary irreducible representations «f the permuta-
tion group Sy, a simple and systematic method
was developed for calculating RME's for any
number of atoms in a system. However, from

the physical point of view, one is most interested
inthe asymptotic results for large N. In this asymp-
totic limit, it is found that the order of inagnitude
of an RME is determined by the topological struc-
ture of its diagram. Explicit expressions have
been obtained for RME's with diagrams of all types
of topological structures. They are presented in
Eqs. (40), (43), (44), and (45). Equation (40) gives
the diagonal r-conserving RME with » close to iN,
which is not much different, especially when the
summation is replaced by an integration, from
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the case with » = } N which is well known. J{ow-
ever, because this expression has been obiained
with the order of magnitude of possible error
clearly in mind, the result certainly enhances our
confidence in extending the usage of this expres-
sion from the case of » = } N to cases of » close to
LN, Equation (43) gives the most important off-
diagonal and »-nonconserving RME. This is, per-
haps, a new result, although Schwendimann has

speculated about a similar expression (Ref. 4, p.
276, footnote). Anyway, in my judgement, the
most important contribution of this paper is in
gaining insight into »-nonconserving processes.
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