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INTRODUCTION

In this part of the paper, the development of the thecry of the fi.ite -
state, finite - memory (FSFM) stochastic control problem initiated in Purt I
(1] is continued.

Specifically, the sufficiency of the FSFM minimum prin:iple (which is
in general only a necessary condition) is investigated. By introducing ' he

notion of a signaling strategy as defined in the literature on games in

extensive form [2], conditions under which the FSFM minimur principle is
sufficient are determined. This result is interesting since it explicitly
interconnects the information structure of the FSFM p obler with its
optimality conditions.

The paper closes with a discussion of the min-H algori:hm for the FSFM

problem. It is demonstrated that a version of the algorithm always converges

to a particular type of local minimum termed a person - by - person extremal.




II. SIGNALING AND SUFFICLENCY

The notion of a signaling strategy arises in the theory of Kuhn -

- ) &
type exteusive games. According to Kuhn, an extensive gam: is game

tree with
(1) a vartition of the vertices with alternatives into the

' chance moves Po and player moves P esey P

1’ n

(1i) a partition of the moves of P, into inforraition sets

i

(1ii) a probability distribution on the alternat.ves of the

information sets of PO

(iv) an n-tuple of real numbers for each terminil vertex.

An example of a Kuhn-type extensive game is shown in Figure 1.

There is one chance move in P0 with four alternatives. Eich alternative

consists of the choice of an outcome of tossing two senniz:s. Thus

each outcome occurs with probability %a There are four moves in

and player one's information set is equal to Pl. Trs player one doe:

Pl,

not know the outcome of the first chance move. Hh: <5 to guess if the
pennies match or don't match. If he guesses correctly, he gets to kee »
his own penny and player two's penny (the payoff is (+1, -1)). If

he guesses incorrectly, he loses his penny to player two (the payoff i:

(-1, +1)).

1 S—— s i

See [.3] for a complete exposition.

.
'y
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Every FSFM problem can be reduced to a Kuhn extensive game. It might

be thought that the reduction is accomplished by identifying the player's

alternatives with the controller's inputs, but this is not always

possible. Suppose, for exarple, that XO

~ ~ 1
rl = ("1. Yl}' where Yl(l) bt 1' YI(Z) = 0 and Yl = 1'Y1- Cleﬂrly:

the game tree for this problem must have its first seven nodes as

= {1,2}, u, = 0,1}, and

in Figure 2, with vertices 1 and 2 in the set of moves of player one

( the only player ). However, it is not possible to partition

Pl into information sets so that the restriction that the same alternative
must be chosen for each vertex in a given information set .s =quivalent
tc the restriction that the control law must lie in Fl. The point is

that restricting the control laws to lie in an arbitrary subset of
X

Ut t-1 is a more general restriction than one based on info mation.
Thus, it is in general necessary to identify the player's a._ternatives
with the set of control laws. This is undesirable since the game does
not exhibit the information properties of the FSFM problem. However,
it will be shown next that the first reduction (identifying
alternatives with controller inputs) is possible for FSFM problems with

simple information constraint.

1 : . .
The choice of I') seems unnatural, but has appeared in the liter.ture

(4]. The control laws in ['; are the closed:iggs—control laws those

0
1 r

e ———

in U , are the open-loop control laws.
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Figure 2 Game Tree for FSFM Froblem



Definition 1

The FSFM problem defined by equations (1) and (2) of ‘art I is said to

have a simple information constraint if

X
- t-1 -1
38 {vt €u, s ¥, (W) C Ft_ll (1)

e ————— -

for t =1,2,...,T, where Ut = P(Ut) and Ft-l is a subfield of xt-l = Ptxt_; o

The reason for restricting attention to FSFM oroblems with simple
information constraints is fhat these problems can pe readily identified

with a corresponding Kuhn model of an extensive game

Suppose that a FSFM problem with simple information constraint is

given. Let the sets xo, Ql' Ul' Qz' seey UT have Rgr Myr Myy Noy voey my

elements, respectively. The rank O movel of the corresponding game

tree has no alternatives. For 1 < t < T, the rank 2t-1 move has nt

alternatives and the rank 2t move has m, alternatives. Thus every play

has rank 2T + 1 (Figure 3).

A move is a vertex of the game tree with alternatives; a play is a
(terminal) vertex without alternatives. The rank of a move or play is
the number of moves that preceed it. See Kuhn [ 3] for details.
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The chance moves Po are the moves with rank 0, 1, 3, ...,

2T-1, and the moves P1 of player 1 (the only player) are the moves
with rank 2, 4, ..., 2T, Each alternative of the initial (rank 0)
move of the game tree corresponds to an element of xo. Similarly, the
alternatives of mov2s with rank 2t-1 correspond to elements of Qt' and
moves with rank 2t correspond to elements of Ut'

Each information subset of P, contains a single point of Po. The

0

information sets of P, are defined by the atonll of F£ as follows. Notice

that the system equations of the FSFM problem define a map

St : xo x Q1 x U1 X ... X Qt x Ut + xt (2)

which takes an initial state and a sequence of inputs and gives

corresponding stat-. Each atom F of Ft defines a set

{(x(0), q(1), ull), ..., qle), ulg)): S_ (x(0), q(1), u(l), ...,

W
- - C
qit), u(t)) € F} Xog ¥ Q) XUy X ... xQ x U, (3)

Since there is a cne-to-one correspondence between the set X  x Q1 x U x

0 1
T Qt x U_ ard the moves of order 2t + 1 of the game, the partition
induced on X) x Q) X U} X ... x Q x U_ by the atoms of Ft induces a
partition on the corresponding set of moves. Thus each atom F € Fv gives

rise to a single information set for player 1 containing moves o. player

1. As a consequence, all the moves of given information set ar: o/ the

1an atom of a field F is a set F ¢ F such that if E€ F and E C F, then
either E = ¢ or E = F. The atoms of a finite field always exist :nd form
a partition [ 5.
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same rank. This is not surprising, since the problem is sequential [6].
To finish the specification of the game, the probabilities of the
chance moves must be defined and the termiral cost specified. If an
information set of Po contains a move of rank 2t-]1, its alternative
corresponding to q € Qt is chosen witl rrobability pt(q). The terminal
cost is determined by the fact that the plays are in one-to-one
correspondence with xo X Q1 x U1

a conplete state-control trajectory for which J can be evaluated. This

X ose X QT x UT' Thus each play determines
value of J is the cost associated with the play.

In game t! vy, a strategy for player 1 is the &ssignment of a single
alternative to each information set. For FSKFM problems with simple
informv r _ur. constraint, a control law is the assignment of a point in

Ut t.o each atom of (since Yt is constrained to be F measurable) .

t=-1 t-1

Because of the man: er in which the information sets have been constructed
above, there is clearly a one-to-one correspondence between the control

laws of a FSFM problem with simple information constraint and the strategies
of its corresponding ext :nsive game form. Thus the same notation Yy will be
used to describe either 1 control law sequence or a strategy for the

equivalent extensive game.

Since an equivalence has been established between FSFM models with

simple information constraint and Kuhn extensive game models, the notions



of iignaling strategy and perfect recall can now be precisely defined.
The following definitions and propositions are stated for l-player games,

but can be easily extended to n-person gyames.

Definition 2 [3].

A move Z of player 1 (n=1) is called possible when playing y if it tas
non-z¢ro probability of occurring when the strategy y is used. An
information set I for player 1 is called relevant when playing y if

some Z € I is possible when playing Y.

Proposit.on 1.

A move Z for _layer 1 is possible when playing y if and only if ¥y
chooses all alternatives on the path Wz from the origin to Z which are

incident at moves of player 1.1

Proof

See reference [ 3], page 201.

Definition 3 [3].

A game G is said to have perfect recall if I is relevant when playing

y and Z € I implies that Z is possible when playing Y for all I

and Y.

Definition 4 [2].

Let I be an information set for player 1, and let Iu = {moves following

some move in I by alternative u}. Then I is a signaling information set

1All chince moves are assumed to occur with non-zero probability.

1.



for player 1 if, for some u and some information set J of player 1,

Iy NI ¥ dand J ¢ I,

Propcsition 2 [2].

A game G has perfect recall if and only if player 1 has no signaling

information sets.

Proof

See reference [ 2], page 268.
The following proposition is not valid for general games, but is a

special property of l-per.on (stochastic control) problems.

Proposition 3.

Let G be a l-person game with perfect recall, and let I be an
arbitrary information set of the player. If I is not re)evant when
playing Y, then the probability of any move in I is zero under y. 1If
I is relevant when playing Y, then the probability of any move in I is
positive under Y. Moreover, if I is relevant under any other strateqy

?, then the probabilities of any move of I under Y and Y are the same.

Proof

If I is not relevant when playing Y, then by definition no move of
I is possible when playing Y. Thus the probability of any such move is
zero when Y is used.

If I is relevant when playing Y, then every move of I is possible
when playing Y since G has perfect recall. Thus the probability of any

such move is positive when Y is used.
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If 2 €1 is possible when playing Y, by Proposition 3.3.1 Yy must

choose all alternatives on the path W_ from the origin to Z which are

z
incident at moves of player 1. All other alternatives on wz are incident
at chance moves, and the probability of Z under Y is simply the product
of the probabilities of these alternatives. But this probability is the
same for Y, since Y likewise chooses all alternatives on the path "z
ircident at moves of player 1.

At this point, the preceeding definitions and propositions are apélied

to the FSFM problem.

Definition 5.

A FSFM stochastic control problem is said to have perfect recall if
it has a simple information constraint and the corresponding extensive

game has perfect recall.

Definition 6.

A control law Ye for a FSFM problem with simple information constra:nt

is said to be a signaling control law if an atom of Ft-l gives rise to

a signaling information set in the corresponding extensive game.

Corolla.gx 4,

A FSFM stochastic control problem with simple information constraint

has perfect recall if and only if it has no signaling control laws.

Proof
This is a direct consequence of the definitions, the construction o

the equivalent extensive game, and Proposition 2.
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Theorem 5.
Suppose that a FSFM stochastic control problem with perfect recall

is given. Let A be an atom of F Then, for any control sequence,

t-1’
either the probability of all states in A is zero, or the probability of

each state is a positive constant independent of Y.

Proof
By construction, the probability of a state x(t-1) € A under y is
equal to the probability of the corresponding set of moves in the
information set I generated by A. Therefore, the theorem follows
immediately from Proposition 3.
The property of FSFM problems with perfect recall expr:ssed by Theorem
5 makes it possible to strengthen the minimum principl: to achieve a

sufficient condition for optimality.

Definition 7.

Let the set of itate prnbability vectors reachable at time t,

1< t< T, when the initial state probability wvector is ﬂb be denoted

{ Yl Yz Yt
rt{no) = {m, P7(1) P (Q) ... P (t) : Y, € l"l, Y, € I'z,

(4)
s g Yt € Ft}c

r,(T)) is called the reachable set (r,(m)) = {'ﬂo}).

Definition 8.

Suppose that the control law sequence Y* = (Yl*, Yz""" YT')

satisfies the condition



Yt. Yt.
m(t-1) P () ¢*(t) + m(L-1) h (t)

Y Y (5)
t t
= Mt=1) P “(t) ¢*(t) + mt-1) h (t)

for all Y, € T*, for all m(t-1l) €«r

e=1 ("b) where

Yt‘ Yt* 6
$*(t-1) = P © (t) ¢*(t) + h = (t) )
for t = 1,2,...,T (¢*(T) = QT). Then Y* is said to be universally

extremal.

Lemma 6.

Any universally extremal control law sequence is optimal.

Proof
The proof proceeds by induction on the number of stages T.

Suppose T = 1. Then
Y

J(Yl) = m(0) h 1(1) + m(1l) ¢(1)

Y, Y

= m0) h “(1) + m0O) P

(7)
Ly e

so that any extremal is optimal.
Suppose the lemma is valid for problems with T-1 stages. It must be
established that the lemma is valid for problems with T stages.

Assume that (Y.*, Y - YT*) is universally extremal. It

*
2 ’
follows immediately that (YZ*, Y3*, ey YT*) is universally extremal for

the problem with cost

L Ye (8)
J(Y2r vee YTF m™1l)) = t£2 m(t-1) h (t) + m(T) ¢(T)

15



for any (1) € rl(ﬂol. Therefore, by the induction hypothesis,
J(Yz.c ooy YT" ml) < J(er “eep Irl w(l)) (9)

for all m(l) € '1‘"0) and for all Y, € I‘z. seer Yo € l‘,r. Moreover, since

. M N
J(yl. Yoo vees Y.r) = m0) h (1) + J(Yz. ceer Yl mo) P “(1))
(10)
it follows that
(11)

J(Yl- Yo*e ceer V)< J(Yl. Yor seer Yy

for all v, € 1'1, Y, € 1"2, ceer Yo € I'T.
But the assumption that (Yl". Yz‘. cser Y,r') is universally extremal

implies that

Ylt Yl.
Jovy*s Yoty cees Yp® = TO) M T (1) + WO) P T (1) ¢*(1)

A N
<7(0) h "(1) + m(0) P (1) ¢*(1) = J(Yl. 72*. i y,r‘)

(12)

for all v, € I'l. The lemma follows from (12) and (11).

16

Notice from the proof of Lemma 6 that the existence of a universally

extremal control law sequence Y* implies the unusual fact that the

problems

v & min N J(Ylt veey Yt"l' Yt; ceey YT) (13)
t gt Ty T

for Y, € I'l, crer Ypop € r have a common sclution (Ye*r wees YT*) ;

t-1

Thus the existence of a universal extremal would seem to be rather uilikely.
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From this viewpoint, the following property of FSFM problems with perfect

recall seems rather remarkable.

Theorem 7.
Every FSFM problem with perfect recall has a universally extremal

control law sequence.

Proof

The proof is constructive. The control laws Yt are defined by
choosing their valaes on the atoms of Ft-l'

; i

Consider the case for t=T. Let A, _," be an atomof F ., i =1,2,...,

P. For simplicity of notation, suppose that aT—ll contains the first 21
2 .

states of X, ,, A,_," contains states %, + 1 through &, of X, ,, etc.

Notice that

Yo Vp
mT-1) P " (T) ¢(T) + m(T-1) h "(T) (14
p L n v (T) v (T ]
= I L m.(T=1) T P, (T) (T) + h (T)
i=1 j=f_ 41 ) w1 K °" )

where n is the number of states in x'!‘-l' !.0-0, and Ui«{T) is the value of

Y, on the ith atom of FT—l'
The decomposition ( 14 ) makes the constriction of y&* clcar.

By Proposition 5, every vector m(T-1) € rT_l(ﬂol either has TB(T-l)-O,

\ fmo - - .z
j Ei+1, ciavalh Qi-I—l' or has TT]..T 1) ﬁi(T 1 3 !.14-1, T

where o - i
Qi+l' each ﬂi(T 1) is a fixed number. independent of Yl""'YT—l'
, where

* *
Therefore, p takes the value ui(T) on the ith atom of FT-l



'.1 ~ . u u
min - m, (T-1) L Pk (T) ¢ (T) + b, (T)
u € U'r j= 9_1_14-1 k=1
A
i N n u.*(T) ui.(ﬂ
= L T (T-1) : e, ’ (T) ¢ (T +hy ml .
jut, 41 b kel J

(15)

The construction of the remaining Yt. is completed by applying an

analogous procedure to

Ye Y
m(t=1) P (t) ¢*(t) + m(t=1l) h (t). (16)

Theorem 7 is primarily of theoretical and conceptual impor tance.

Problems with perfect recall are more efficiently handled by ¢ eriving an
equivalent deterministic problem that has a conditional probal ility vector
for the deterministic state. (The conditioning is with respect to the
field Ft.-l' ) Special cases of this procedure are implicit in the usual
stochastic dynamic programming algorithm (7, 8, 9, ] and the

algorithm of Sandell and Athans for the l-step delay problem [10].

18



III. A FSFM MIN-H ALGORITHM

A substantial number of ni'merical algorithms have been suggested
for the solution of deterministic optimal control problems. The most
natural of these for the FSFM problem is the min-H algorithm, which is
intimately related to the minimum principle. The min-H algorithm was
initially suggested by Kelley [ 11]. Platzman [ 12]) has shown that the
algorithm is equivalent to Howard's policy iteration method for Markovian
decision processes, and has suggested its application to the imperfe-t
state information case of that problem.

To simplify the notation, the sets xt and U_ are assumed to have

t

a constant cardinality for 0 < t < T,

Algorithm (Min-H)

0 0]
l. Guess Yl 4 Y2 ) eeng YTO- Set j = 0.
2. Compute ¢J(T), ¢J(T—1). ceey 03(1) using YTJ- T Ylj in the

adjoint equation (¢7(T) = ¢) . Set t = 1.
Y Y

3 Choose Ytj+1 to minimize wj*ltt-li P t(t) ¢j(t) + nj*ltt-l) h t‘t).l
j+l =
(m (0) ﬂo) . j41
4. If t < T, compute nj+1(t) = n3+1(t-1} pt (t).

Set t = t+l, and go to 3.

)+
5. I1ft=T, test JJ ¢ Jj, where
g

. T Y .
P = m@-n B (t) + 7 (1) ¢

t=1

1 j+ .
If YtJ . is not unique, choose arbitrarily but with preference for Ytj

if it is in the minimizing set.
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1£ J3* < J3, get § = §41, t = 0, and go to 2.
1 J3%2 Jj, stop.
Theorem 5.
The preceeding algorithm converges in a finite number of steps
to an extremal solution.
Proof
Let § = { J(Y)|YEF}. Since S is finite, its elements can be arrangeli in
discending order,
= >
s (J,. J,.....Jt). ¥, > ¥, (17)
Consider the set of positive numbers
R-(Jl-Jz ey JL‘I-JL) (18)

and let € = inf R. Note that € > 0.

j j+ 1
Consider the diffecence J7 - JJ+ defined in the algorithm. Clearly, either

b I - L 0, or 73 - 3%l 2> €. By induction, if the algorithm has not

converged by step j, then

713 < 3" - e (19)



Then

Therefore, eventually JJ+1 = J7, since inf 8 is finite. But J° = JJ+1

implies that (yi....,y; )is extremal.

Although the FSFM Min~-H algorithm is guaranteed to converge in a finit:

number of steps, the amount of computation per step may be prchibitive, -ewve: .

if full advantage of the special structure of the prublem is nide (see [11]) for

a discussion and estimates of computation time). Thus modifica :ions to the

basic algorithm for special cases are of interest.

Consider the case in which

and F: consists of control laws measurable with respect to a subfield
FiorX
¢ of e’

Make the following notational convention: o

X 2
Yo t Xey U XU x ..lox Ug (21)
C el o8 K
Yt (Y ’ Yt P ssegp Yt ). (22)

J(Y10 sz cveyp Y&)

1 k 1 ko "
- J(Yl ’ . e Yl r 72 " LR Yz [l L) YT].' ey ‘Y: ’. {2-’)
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Definition
A sequence

1* " * ko
1‘ = (YI.' Y YT’) - (Y1 ' ..-'Yl § veagy YTl P seeyg YT )

is said to be a person-by-person extremal if

-

L
i ¢ ey YTk ’

l.
1(11 b Yy

k.

-
<J(Yll P oeeey Ytir secr Vo

) for all Y, € r 1,

i=1, vo., k, t=1, «o., T. (24)

Every optimal control law sequence is a person - by - person extremal,
but the converse need not be true. Clearly, the FSFM Min-H algorithm can be
modified to give an algorithm that always converges to a person - by-person

extremal. One possible order of minimization is

1 1 1 2 2 2 k k k
Yl r Yz ’ - .y YT' 1 [ Y:? I L T' LR ) Y]_ [] Yz [l LR ) YT!

Thue k forward and backward sweeps c¢f the state and costate equations are
required per iteration. The number of multiplications required is considerably
reduced. See [13] for details. Clearly, the person -py- person Min-H algorithm

is finitely convergent to a person -by- person extremal soluticn.



Notice that person-by-person approach is consistent with the minimum
principle approach:
1. both approaches given iecessary conditions for optimality

2. both approaches are sufficient only under convexity assumptions
that do not hold in general

3. An initial guess is improved, but the improvement may stop
short of optimal.

These facts are consequences of the fact that the person-by-person and
min H algorithms are actually both concrete realizations of orthogonal
search. The Min-H algorithm minimized the cost withcut coordinated choice
of the control laws at different times. The person - by-person Min=H
algorithm minimizes the cost without coordinated choice of the control

laws of the various controllers at a fixed time instant.
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IV. SUMMARY AND CONCLUSIONS

The notion of signaling has been introduced from game theory and
shown to be relevant to the FSFM problem. In fact, the signaling
pheromena is of general impcrtance in non-classical stochastic control
theory. The presence of signaling makes it necessary for decentralized
controllers to employ (ontrol laws with a dual purpose: simultaneous
communication and control. The presence of signaling in LQG problems
menifests itself in the nonlinear strategies that are optimal for these
problems [1,14]). (Given the prevelance of nonlinear coding and modulation
techniques in comnunicat.on theory, the existence of nonlinear optimal
strategies for nonclassical LQG problems is hardliy surprisinj.) Moreover,
the absence of signaling in LQG proklems (in the IQG context, equivalent
to the presence of Ho~Chu nesting) insures the optimality of linear
strategies [15]. Thus the very special nature of the classical stochasti:
control problem is made clear: only the control aspect of th: dual problems
of communication and contr 1 need be considered.

The need to simultaneously solve a contral and communication:problem
makes the nonclassical stochastic control problem very difficult to solve,
even in the FSFM case. One approach to solution of the FSFM problem is the
person - by - person ''in-H algorithm sketched in Section III. Presently,
evaluation of the algorithm is being carried out in the context of a highly
simplified model of un ARPA-type packet switching computer ccmmunication
network [16].The primary difficulty is essentially combinatorial, sinco there
is an explosive growth in the number of states with network size. Thus
straightforward implementation of an algorithm seekinc i "node-by-node" optimal
routing strategy is possible only for small networks, or largar networks with

an aggregated and/or merged [17] state set.
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