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ABSTRACT

A terminal guidance and navigation scheme developed in
earlier work is modified and evaluated for a solar electric
propulsion rendezvous mission to comet Encke. The scheme
is intended for autonomous, on board use. The guidance al-
gorithm is based in optimal control theory and minimizes
the time integrated square of thrust acceleration. The
navigation algorithm employs a modified Kalman filter set in
measurement variables. Random sequences were generated to
simulate measurement errors and the evaluation was conducted
with detailed numerical computations which include actual
motions of spacecraft and comet. The evaluations showed
that the.scheme attains rendezvous and maintains station
after rendezvous within less than 10 km for estimated '"best"
measurements and within less than 100 km for estimated
"sorst" measurements. The measurements required are angles,
range and range rate. Angles and range appear to be abso-
lutely necessary. Range rate is not as strong a measurement
type and further modifications of the filter will quite
probably allow a scheme that does not require the rate
measurements.
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1.0 INTRODUCTION

In previous work on the comet and asteroid navigation and guidance
problem, an optimal control theory guidance algorithm was devised.! An
evaluation of this algorithm combined with a Kalman filter method for
navigation showed that onboard guidance and navigation is possible with
reasonable limits on measurement errors.? But, this evaluation did not
fully establish practicality of the onboard approach. Questions of how
many measurement types are required and the effects of range of measure-
ment accuracy were not answered. And, the particular coordinate system
employed (range and direction cosines) gave ﬁnacceptable singularities
near coordinate planes. Also, there was the not unusual question of
management of state estimate divergence caused by the use of a linear
filter with a nonlinear system.

The objective of the work presented here was to carry out further
algorithm development to provide first answers to the questions above.
Results were to include the precision attainable with different instru-
ment types and accuracies and the onboard computer requirements neces-
sary to implement the scheme.

After initiation of the work, it became evident that the conversion
of the previously developed GANDER guidance and navigation computer
program to a non-singular coordinate system would be a larger task than
originally planned. The divergence question also presented unforeseen
difficulties. It was therefore agreed to reduce work on less important

tasks. Specifically, thrust errors were simulated by statistical terms
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in the filter equations and not by a second method wherein thrust errors
would be statistically developed and handled as new state variables.
Similarly, the use of available angular measurements to obtain improved
estimates of target ephemeris was not investigated. These refinements,
properly done, can orly improve results. Since successful rendezvous
was obtained without these refinements, the decision to drop them was
correct.

Identification of specific instruments, their accuracies and power
requirements could not be carried out because the requisite data has
yet to be developed in the frequency ranges of interest for onboard
radar in free space. A request todo this data development could not

be funded, so these questions remain open.
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2.0 REFORMULATION OF THE GUIDANCE AND NAVIGATION SCHEME

A firet step in the work reported here was to eliminate the dif-
ficulties encountered with the range and direction cosine coordinates
used previously in the Kalman filter. The difficulty arose because of
the basic relation among direction cosines that the sum of their
squares is unity. Near a coordinate plane one of the direction cosines
approaches zero and small numerical differences such as arise from
measurement errors can lead, in numerical computation, to imaginary
values for this cosine. If this happens, the computer becomes most
upset and reports in displeasure with a long string of error statements.
There are ways to get around this problem, but in doing so some of the
information in the data is lost. It is better tuv employ coordinates
in which the singularity trouble does not arise. Plain rectangular
coordinates would solve this problem, but would introduce a nonlinear
relation between measurement variables and filter variables. It was
one of our basic objectives to avoid this nonlinearity.

Coordinates that can be related to measurement variables in a one-
to-one fashion are simple spherical coordinates, and it is these co-
ordinates that were decided upon. A singularity in the varicus func-
tions arising in the algorithms can arise only on the polar axis of
the spherical coordinates. This singularity is not only less likely to

occur, but is more easily managed if it should become necessary.
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2.1 System Dynamics and the Guidance Algorithm
We here repeat the equations of motion and guidance algorithm as

previously developed.l’2

X3
X2
S/C
Rendezvous /X
Point 1
|
ICa3 R
1
S3 c, !
) 2L
s <,
2
5 Target
Sun S

Figure 1. Rendezvous Geometry.

Appropriate to onboard guidance, the equations of motion are set
in a coordinate frame fixed relative to the target as shown in Figure 1.
In rectangular coordinates centered at the rendezvous point, the equa-

tions of motion, neglecting the gravitational attraction of the target,

are

et e e v oy e



Xy = X5
X3 = Xg

(1)

M s - 3
F, + 353 [5;-D;(8/D)"]

"
i

5 = Fy + g3 [5,-D,(5/D)3]

M re 3
F3 + S3 [S3 D3(S/D) ]
where the subscripts indicate components in the corresponding coordinate
directions. M is the mass of the sun and G is the universal gravitational

constant. From the optimal control theory guidance law, the control

forces, Fl, FZ’ F3, which constitute the guidance algorithm, are

6 27 2 31
F) = [— @ - Ix o+ - ) Ixgg
TO o] 0 o]
6 2T 2 3t
By = =5 @ = Py *IT-( = P Ixgg )
TO o] 0
6 2T 2 3t
Fq [—; a- ;—)]XBO +[-T—(1 - -T—-)]x60
T o] [o] [o]

o]

where X100 ¥90° etc., are the initial conditions and T = TF - T is the

time to go with T, = final rendezvous time and T = running time.

F
Note that the equations above are in rectangular coordinates.

These coordinates are employed for the precision integration made to

construct the comparison trajectory for the evaluation to be made.

Transformation to the spherical coordinates for the measurement and

filter variables are made in the navigation algorithm,
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2.2 The Navigation Algorithm in Spherical Coordinates.

As in previous work a procedure devised by Mehra3 was chosen to
handle nonlinearities of the state-measurement transformation. In this
procedure, the filtering is carried out in measurement variable coordi-
nates where the observation transformation is linear.

The state of the system, x = (xlx2x3x4x5x6)T, is transformed from

rectangular coordinates used for the guidance problem to spherical co-

T as defined in Figure 2. Measurements of, for

ordinates, y = (RABRAB)
example, range, range rate, and angles are a subset of the spherical

coordinates. For this reason the y variables are called measurement

variables.
X3
S/C
Rendezvous /X
Point | 2
/, |
|
yd | /&
Xy |
i
|
|C3
]
1
I
Target u |
| 7
} ,1;
A 1
___________ 3
C2

Figure 2. Transformation Geometry.
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The transformation from rectangular coordinates, centered at the

rendezvous point, to the measurement variables, y = g(x), is

- 2 2 245
R = [(x,4C))? + (x,+C)) + (x4+C4)?]
A = ARCTAN [(x2+C2)/(xl+Cl)]
x, + C
B = ARCTAN 3.3 -
[Gep+C )2 + (xy+C,)2 17 3
R = [Gx4C))%, + (xy+Cy)xg + (x5+C5)x1/R
A= [(x +C))x%; - (x,%C,)%,1/ [(xl+cl)2 +(x2+C2)2]
;. [(xl+C1)2+(x2~?"CZ)2]x6 —(x3+C3)[(xl+Cl)x4+(x2+Cz)x5]

1

2 2172 p2
[(x1+Cl) + (x2+02) 1° R
The inverse transformation, x = Z(z) is
%, = R cos A cos B - C1
X, = R cos B sin A - 02

x3 = R sin B - 03 (4)
x4 = ﬁ cos A cos B - Ré sin B sin A + Ri cos B sin A
Xg = ﬁ cos B sin A - Ré sin B sin A +RA cosB cosA

=R sin B + R cos B

It was assumed that the most general set of measurements that can
be made is range, angles A and B, and range rate. It was assumed that
angular rates A and é cannot be measured directly.

The filter process proceeds as follows. Starting with an estimate
%k/k at time Tk’ and the spirit of the linear Kalman theory, a state

estimate %k+1/k at time T, is obtained by a linear extrapolation

through the state transition matrix for the linearized system

B/l = Peti/ic Fe/k )



where
P 0 0 8 0 0 T
k+1/k kt+l/k
0 Yt1/k O 0 v/ O
0 0 el [k 0 0 Br41/k
dp+1/k = (6)
T41/k 0 0 Skl 0 0
0 Yerl/k 0 0 Ser1/x O
0 0 Y1 /k 0 0 Sk
] -
and,
T T T 2
e = :+1/k (3¢ $+l/k y-2( $+1/k )21
k/k k/k k/k
T T 2
_ k+l/k _ k+l/k
Betl/k = Trti/k | i ( T/ ) ]
T T (7)
__ 6 k+1/k k+1/k, 2
Yk‘i‘l/k = T [( T )" ( T ) ]
k/k k/k k/k
T+1/k Tht1 /&0
6k+1/k = B(T—) -2 (‘Tr————)
k/k k/k
with time to go given by
Tk - TF T Tk "

Tktl/k T OF T Tkl
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Another method used to form the first state estimate §k+1/k is to

directly integrate (fourth-order Runge-Kutta) the state estimate

o " Tk+1 ¢
Xet1/k = Feset j x dt ®
Ty
With new computing equipment, this integration can be done onboard.
After the first estimate X1 /k is formed, we then transfer to
measurement variables with Equations (3) in the form

Yet1/k = 8 (§k+1/k) (nonlinear) (10)

The hest estimate of the measurement variables at Tk+1 is then given

by Kalman's relation

Tkl = Ttk Skt /K 2y - szﬂ/k) (11)

where H is a rectangular matrix of ones and zeros that picks from ik+l/k
those elements that correspond to the actual measurements, which, in

this case, is

H= a2)

Zr+1

matrix (yet to be calculated). After filtering, transformation is

is the actual measurement vector, and Kk+1/k is the Kalman gain

effected back to rectangular coordinates using Equations (4) in the

form
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The Kalman gain is calculated by

- T T _
Rrr/i = Merr/ie B By B+ Ryy)™ (14)

where Rk+1 is a square diagonal matrix of the variances of the measure-
ment errors, and Mk+1/k is a matrix consisting of the transferred co-

variance of measurement variables calculated by

T
M /ie = Ve M/ ¥ b /i (15)

where Mk/k is the measurement wvariables covariance matrix at Tk and
wk+1/k is an equivalent "transition matrix" for the measurement

variables; i.e.,

- o - 1
et /e = Vi /k Ti/k (16)
Mehra observed that ¥ can be constructed by calculating
e hetliley Peftey /i
ktl/k Wik Fsk Tk+l/k
or

= (o8 94,

bk T G wse Y/ Sk an

The matrices (Bllaz)k/k and ¢k+1/k are available from the best
estimate of state at Tk/k’ and (3g/3§)k+1/k is formed by using the first

estimate at T . The matrices (92/3y) and (3g/9%), in columns, are
k+1/k b4 X



L

(B£

(32

)

s%nB
-8 cosA

cos B
-R sinA

0.
—g sin)
~R cos)
| 0

-R cos)
-R sinA
R cosB
-R cosi
=R sinA

0
0
0

_sinB
0

0

0

-R sin)

0

[eNeNe]

~R cosA
~R sinA

R cosB

Fcosk cosp
sinA cosB

5 cos Acos B -Bsin) singB
8

R cosA cosB

R cos B~RE sing i

cos) cosB
sinA cosB

R cos) cosB

11—

sinf -.isinA cosB

]

cosB

cosB + Ré sin) sinB fké cosA cosf
cosB -~ RA sin) cosf ~-RB cos) sing

J

sing
sinB

sinf ~ Bé cosA cosB +_Ri sin) sinB
sinB -RA cosA sinB -RB sin) cosB

- (18)

o

cosB

sinB
sinB

.
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2, /R l
B8y o |~(®Ry)/ (@D
0%y (p,R2-VE, ) /R®:
(P5Q%-2WP,)Q"
- 1 4 3n2
| (ByPg-P4P,)/ (QR7) - (2QB, By ) /R*+(2AR B ) / (QR*)+(P; P3A) / (°RY) |
2, /% 1
P, /Q?
2g -(B,P,)/ (QR?)
(sz) = | ®2pg-ve,) /R
- (»,Q2+2WR,) /Q*
- b4 3
L(P2P6—P3P5)/ (QR2) - (2QP,B,) /R + (2AP,P.)/(QR*)+(B,P58)/(Q Rz)_
1, /R )
0 2
@8 = Q/R ) ]
8x3 (P6R -VP3)/R
0
N g N I
| -/ (QR?)= (2P 12) [R*+ (242 3) / (QR™)
[0 | (19
0
g~ |0
(3x4) - Pl/R
-P,/Q*
-(2,P4)/ (QR?)
- .
5 0
Gy = o
*5 P, /R
P, /Q?
|- (B,R3)/ (@R |
=
3 0
G = |o
6 33/11
| Q/R*




~13-

where
Py = x + G Q= [Py? + P,2]"
P, = %, + G, R = [P12 + P22 + P32]2
Py = Xy + Cy A= PP, + PP (20)
P, = il = X, V = PP, + PPy + PP,
Py = x, = X5 W=P P - B,
P6 = x3 = x6

All that remains is to propagate the covariance to time Tk+l and this

is done by the relation

M1kl = TR/ B Mo /i (1)

2.3 The Modified Guidance and Navigation Scheme
The procedure is illustrated in the block diagram in Figure 3.

Starting at time T an estimate of the state gk/k is presumed available

k/k
for evaluation. The exact state X is also specified at this time. The
estimate e /k is put into the guidance law to generate the thrusting re-
quired over the ensuing guidance interval. The full equations of motion
of the comet are then integrated accurately to a time Tk+1 and the result

is then transformed to measurement variables and approximate noise added

to simulate actual measurements z

K+1° To represent onboard computations,

the state ﬁk/k is propagated to time through the transition matrix

Tier1
¢k+1/k (or integrated as shown by dotted line). The nonlinear transfor-
mation g(x) to measurement variables is then made to give a first esti-
mate ik+l/k' The filtered estimate §k+1/k+1 is then transformed non-
linearly by 2(y) to obtain the new state estimate §k+1/k+l azd the

process is repeated.



Onboard
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1
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K Motion Integration i
Figure 3. Evaluation Scheme.
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3.0 ALGORITHM DEVELOPMENT

Having completed the reformulation in spherical coordinates, a
second task is to reinvestigate the divergence problem. Proper choice
of statistical quantities employed to set the filter is necessary, and
work done to provide this proper choice is outlined in Section 3.1.

Other approaches to improvement of system performance through
trajectory biasing and end point control are described in Sections
3.2 and 3.3.
3.1 Investigation of Filter Divergence

The Kalman filter theoretically produces an increasingly accurate
estimate as additional data is processed. However, under actual
operating conditions, error levels in the Kalman filter are often
higher than predicted by theory. Errors can, in fact, increase con-
tinuously although additional data is being processed. No general way
of handling this problem is available and approximations based on ideas
from the theory and ad hoc procedures are the rule and this is the
approach we take. To insure that the set of measurements employed are
sufficient to reconstruct all states, system observability is investigated
first.
3.1.1 System Observability

A system is observable if all states can be reconstructed from the
set of available measuréments. For the equations

Vel /k = Vi /i Jie/k

(22)
Zi41 = H e
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an augmented matrix derived by Kalman"
F = (HT, xpTHT,(xpT)Z HT,...(wT)“"IHT) (23)

is formed. If the rank of the matrix F is n, where n is the order of
the y vector, the system is observable.

A computer program written by Bullock and Fosha® is used to form
the matrix F. The matrix is normalized at each step (HT, wTHT,...)
so that each colum has unit length. The complete matrix is renormal-
ized so each row has unit length (The normalization procedure prevents
overflow in large problems). Then the square matrix FFT is computed.
If FFT is nonsingular, the system is observable.

Since ¥ is a function of time, the matrix F is also a function of
time. Therefore, F must be computed at each guidance interval (or any
multiple) because a new F is present at each step, and the degree of
observability can change.

3.1.2 State Covariance Weighting Criteria

In nonlinear systems, the state error covariance matrix tends to
reduce rapidly with respect to the actual state indeterminancies. This
can be attributed to the fact that the filter believes the first measure-
ment is highly accurate when it is not, and state estimates are biased
incorrectly. To account for the reduction of the covariance matrix, a
weighting procedure is employed.

Introducing state disturbance into the system, equation (16) be~
comes

Yierr ke = Vst /e T T T M 24)
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where T is the disturbance transition matrix, assumed to be identity,
and Wi is the disturbance vector. The process {y , k=0,1,...} is a
Gaussian White sequence for which

E [Yk] =0, h=1,2,... (25)
Defining the positive definite matrix

Q, = Elw, w,'] (26)

It can be shown (See, for example, Meditch®)that the state error co-

variance matrix is given by the relation

T
M1 /x = Vira /e e Ve Y % @7

This weighting criteria aids in eliminating the severe reduction
of the state covariance matrix and keeps it from becoming non-positive
definite. However, proper weighting of measurements is not guaranteed
because Q cannot be accurately determined, and errors can still exist.

3.1.3 Approximation of the Initial State Error
Covariance Matrix

In a nonlinear system, good state knowledge at time k does not
insure good knowledge of future state because of nonlinearities in the
dynamical equations. Hence, the Kalman gain must weight the measure-~
ments sufficiently to compensate for the errors in the one-step propa-
gation., Measurements are not weighted enough initially when the filter
is initialized with state error covariance matrices that are too small.
To aleviate this problem, a design procedure for determining a suit-
able initial state error covariance matrix is introduced.

Assuming a priori information for the range of values of the Kalman
gain, a suitable initial state error covariance can be found eliminating

the incorrect weighting of measurements. The only elements that are
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directly adjustable in the Kalman gain matrix are those which lie on the
diagonal of the 6x4 gain matrix (to be shown later; these adjustable
elements correspond directly to the first four diagonal elements of the
state covariance matrix because of the special form of the observation
matrix (discussed previously). Therefore, for given values of the
Kalman gain, an initial state covariance matrix (four diagonal elements)
can be found.

There exists a one-to-one relationship between the diagonal elements
of the Kalman gain matrix and the first four diagonal elements of the
state covariance matrix. A change in one element of the state covariance
matrix results in a direct change of the corresponding element in the
Kalman gain. This can be shown by performing the matrix operations. By
precalculation, y is found to be approximately an identity matrix, so

Equation (27) can be written

Meri/e © M t % (28)
where Mk+l/k is
™ n
My
M
22
Ma5
Met1/k = M "
55 o
| 66

The Kalman gain relationship is given by

T T -
Kerr/ic = Mok B @ga il Ry ' (29)

We write out Equation (29) in explicit matrix form,
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p~ - pa -W pn 1_1
K O M1 0 MR O
K9 oY) L AY)
K33 = Mqq Mys+Rqq (30)
K M O 4R
4ty 44 ALY
C) CD L -
L i 6x4 i _6x4 4x4

Notice that only the first four diagonal elements of the state covariance
matrix have any direct effect on the Kalman gain matrix because the
elements M55 and M66 were eliminated in the calculations.

The Kalman gain matrix can be reduced to a 4x4 matrix since only
the diagonal elements are considered. The diagonal elements of the 4x6
observation matrix correspond directly with the adjustable elements in
the gain matrix, so H is taken to be a 4x4 identity matrix. The state
covariance matrix is also reduced to a 4x4 matrix since only four elements
can be directly obtained.

Now, an initial covariance matrix can be found insuring accurate
weights for the measurements. Rewriting Equation (29), the Kalman gain
is |

=1
Kier/k = Mt/ Merr/ie + Rt (31)

Elementary matrix manipulations of Equation (31) result in

Mok = (I- Kk+l/k)_1 K1/ Bieta (32)
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Since ¢ is approximately an identity matrix, the initial state covariance

matrix can be calculated by

Mok ® M T % (33)

The formulation calculates only those diagonal elements in the
state covariance matrix which correspond to the actual measurements.

But this is sufficient because the other diagonal elements in the state
covariance matrix do not affect the diagonal elements in the Kalman
gain matrix. However, the other diagonal elements do affect the off-
diagonal terms in the ka/k wT calculation which, in turn, affects the
fifth and sixth rows of the Kalman gain matrix. Therefore, the other
diagonal elements must be chcsen carefully. But this can only be done
through numerical experiments.

With this formulation, a range of values for the state covariance
matrix corresponding to the values of the Kalman gain matrix can be cal-
culated, and, through simulation, the desired state covariance matrix
can be determined. However, since the unmeasured states are not direct-

1y weighted, divergence can still occur.

3.2 Trajectory Biasing

In the comet rendezvous problem, the optimal control algorithm tends
to fly the spacecraft directly toward the desired rendezvous point. If
the rendezvous point lies directly between the comet and spacecraft, as
illustrated in Figure 4, the measured angles change very little in the

initial stages of flight and can cause poor estimation of the angular
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rates (unmeésured states). Poor estimates of the angular rates can
cause the velocity of the spacecraft to be in error and accurate rendez-

vous cannot be attained. To eliminate this problem, trajectory biasing

is investigated.

S/C

o)

Rendezvous
Point | Xy

X2 C3

|
i
|
Comet 4
|
I

Figure 4. Possible Rendezvous Geometry.

Instead of flying directly to the desired rendezvous point, the
spacecraft initially flies toward a point biased away from the target
point. This point can be changed at each guidance step (or some mal-
tiple) until the biased point becomes the desired rendezvous point.
Biasing the trajectory of the spacecraft in this mammer gives larger

angular change and, consequently, better estimation of angular rates.
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With a better estimate of the unmeasured states, velocity estimates
are more accurate, and more accurate rendezvous can be attained.’

3.3 End point Control

The guidance algorithm singularity leads to a "blow up" of the
procedure at rendezvous unless appropriate steps are taken. One approach
would be to "freeze" the commands near rendezvous, but this is not a
good way because after the rendezvous is accomplished, it must be main-
tained. That is, station keeping must be done. For this reason we
looked for a modification that would transform the terminal approach
algorithm into a station keeping algorithm while avoiding the singularity.
One easy way to do this is simply to push time to go a predetermined
amount as rendezvous is approached. A successive increase of time to go
by a predetermined amount of time at each guidance step after a specified
point will keep time to go large enough to avoid the singularity and
automatically turns the approach algorithm into a station keeping
algorithm. For deterministic runs and evaluations with very high pre-
cision data this worked well when implemented in the form of an increase
of one guidance time interval at each succeeding step starting at the
time of one interval before rendezvous. However, for cases of only
moderately accurate data, this procedure still led to thrusts above
those easily attainable with SEP (about lO'“g). Several other methods
" of reducing end point thrust were considered, and a particularly simple
one was found to work well. Instead of pushing nne step, we chose an

increase in time to go equal to

F
To=r
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Where,
A = guidance step size
10~% = maximum SEP thrust (g's)
F = value of thrust in unmodified

next interval.

Here, the symbol IA| means round A to the next higher integer. Note
that there are extensions of this technique that could be applied
early in the terminal approach should such be required. However, this
extension was not incorporated in the computer program as it was not

necessary for the cases considered.



24—

4,0 ALGORITHM EVALUATION

The full guidance and navigation algorithm of Section 2.0 was
programmed for simulation on an IBM 370/150 digital computer. The
simulation package includes a double precision, fourth-order Runge-
Kutta integrator to provide an accurate comparison trajectory for
evaluation of algorithm performance. A brief discussion of the program
and user instructions are included in the Appendix.

4.1 Development Simulations

The starting point was chosen to be five days before rendezvous at
a distance of 50,000 km from the target and a relative velocity of
20,000 km/day. Measurements are made and navigation computations ..ade
each one-tenth of a day. The rendezvous point is located 1732 km
from the target with 1000 km displacement in each coordinate direction.
In the first simulations, the initlal state error covariance was assumed
to be a diagonal matrix with terms of the order of 10° in units of km
and days. This matrix is an identity matrix in the units of 10° km for
distance and days for time as used in the computer program. A five
percent error in each coordinate of the true initial state was chosen as
the estimated position and velocity of spacecraft.

Simulations were made and gross filter divergence was found as
shown in Figure 5. Terminal rendezvous errors were about 2000 km and
1,500 km/day (17.4 m/sec). Divergence began approximately four days
from rendezvous. At this point, system observability was checked with

the method of Section 3.1.1 to determine 1f the four measurements were



-25-.

10.000

1,000 ,-'/////

ition (km) | /
Position (km = Position
and i/ ~-ewee Velocity

Velocity (km/day) /
100 \\5miﬁ%;~/rf

10

5 4 3 2 1 0
Time to go (days)

Figure 5, Navigation Errors for Initial Simulations.

sufficient to reconstruct all six states, The observability criteria
was applied with solutions showing complete system observability
throughout the mission. Hence, methods for correcting divergence were

investigated.
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One cause of divergence was the rapid reduction of the state error
covariance matrix. In fact, simulations show the covariance matrix
became numerically zero in the computer near rendezvous and completely
ignored new measurements as they were made. A standatd fix is to inmsert
noise into the basic system equations as discussed in Section 3.1.2. A
constant matrix Q was added to the state error covatriance matrix to
approximate this noise. Q was arbitrarily chosen diagonal with elements
of the order of magnitude of 10. The magnitude of the diagonal elements
in Q are approximately the same size as those in the state érror co-
variance matrix when divergence started.

Figure 6 shows a marked improvement in the navigation errors with
the addition of the Q matrix. Errors at rendezvous were approximately
11.5 km and 310 km/day (3.59 m/sec) with the spacecraft a distance of
28 km from rendezvous.

Continuing the divergence investigation the method of Section 3.1.3
was employed to estimate initial covariance. Assuming deéired values for
the diagonal elements of the Kalman gain matrix of about .95, an initial
state error covariance matrix was found. Interestingly, results were
very close tb the previously assumed identity matrix and we therefore
continued to use the identity matrix.

The principal errors were in the velociiy estimates. To get a
better angular data; that is, data with larger changes, the trajectory
of the spacecraft was biased away from the final target point following
the idea of Section 3.2. The new target point was chosen as a function

of position by the equation

~ Fa) ~ !’
= {[x12 + %2+ x32]2/‘1.5} + 1000

Cq 2
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where C1 is the standoff distance in the %) direction. The point

changes each guidance step, and, upon a forced command, becomes the

10000
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Figure 6, Navigation Errors with Q Matrix Added.
desired rendezvous point at time zero. Biasing in this manner allows
the angles to change more in the early stages of flight and thus gives

a more accurate estimate of the angular rates. Figure 7 shows the
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Figure 7. Comparison of Trajectories with and
without Biasing within 1/2 Day to Go.

terminal geometry of typical biased and unbiased trajectories:. A con-
siderable improvement in accuracy was obtained. The improvement was
sufficient to warrant undertaking the parametric study of the effects
of measurement accuracy. Before conducting this study, the end point

control scheme of Section 3.3 was incorporated into the program.
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4.2 Ceneration of Parametric Data

Table 1 presents nine of the data error sets employed in the
parametric study. The choice of error in range measurement standard
deviation, Ogs of 0.3 percent and 3.0 percent of range was made to
bracket expected errors with realistic radar equipment. Specific
information on what these errors might be is not available and these
values were chosen after discussions with NASA radar electronics person-
nel. The choice of standard deviation of range rate measurements, TRs
of 100 km/day and 1,000 km/day (1.16 m/sec and 11.6 m/sec), was based on
these same discussions. The standard deviation of 1.0 arc.seconds on
angle measurements was also a best estimate of what could be done with
on board equipment. This value is three times larger than the value
used by JPL for use of ground based data reduction of spacecraft TV.

TABLE 1. DATA SETS FOR PARAMETRIC STUDY
(Note: 1,000 km/day = 11.6 m/sec.)

Data Set Range, R Angles A & B Range Rate, R
(arc min.) (km/day)

.03156 R 1.08 10
| i 100
.03 R 1.0 100
1,000
10,000
V 100,000
.003 10
100
Y 1,000

O =2 o 4 3 9d a w b
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5.0 RESULTS

The parametric runs made with the data sets of Table 1 gave no
cases of divergence even with the extreme range rate errors of sets
E and F. And station was maintained after rendezvous for as long
a period as run (up to 30 days after rendezvous). The results indicate
that the rate measurements may not be required, but this requires
additional investigation.

Results of four representative sets, C, D, H and J are shown in
Figure 8. These sets braéket expected measurement errors as discussed
in Section 4.2. In the samples, the same four sequences of random
nurhers was used to simulate the four measurements made (range, range-
rate, and two angles) Other sequences gave results differing only in
detail not accuracy levels. The plots give position and velocity
errors only at intervals of one day because plots with the one~tenth
day computation steps used in the simulations are cluttered and dif-
ficult to interpret. ihe values at each day were obtained by averag-
ing over an interval about each plotted point.

One point is immediately obvious from Figure 8: The magnitude
of the error in position depends almost completely on the acuuxacy of
range measurements and the magnitude of the error in velocity depends
almost completely on the accuracy of range rate measurement. For
example, consider sets C and D. These sets have the same range measure-
ment standard deviation (.03 R), but different rate standard deviation
(100 km/day and 1000 km/day). The position errors for these two cases

are very nearly the same, but the velocity errors differ by a factor
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of three to four. Similarly, sets C and H show essentially the same
velocity errors and a difference in position error by a factor of nine
or ten.,

We are led to two conclusions applicable in the range of measure-
ment errors considered: First, that reduction of range rate error by
a factor of ten leads to an improvement in velocity estimation by a
factor nf three or four and has little effect on accuracy of position
estimation. Second, that reduction in range error by a factor of ten
leads to an improvement in position estimation by a factor of nine or
ten and has little effect on accuracy of velocity estimation. The plots
in Figure 8 show these effects add linearity. Stated another way: An
improvement in range rate measurement accuracy produces only about one-
third the improvement in velocity estimate while an improvement in
range measurement accuracy leads to about the same improvement in posi-
tion estimate. Note that the linearity of the relation for velocity
breaks down and (fortunately) very large rate measurement errors do not
lead to large velocity estimate errors. Range is clearly the more
valuable data type.

Examination of the velocity error curves of Figure 8 shows what
might seem to be a slight divergence after the nominal rendezvous time.
However, the reduction in accuracy is caused by the elimination of tra-
.jectory biasing shortly before zero time to go. The ensuing motion is
a cyclic motion near the rendezvous point. This is reflected in the
position error curves. An appropriate biasing of the trajectory and

thrust levels can undoubtedly smooth this out. This would be a point
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for study only later in guidance and navigation scheme development. As
it is, the errors are not large and do not grow with time.

The work presented here has lost much of its sense of immediacy
because of changes in the overall NASA space program. Missions to comets
or other deep space bodies wihiich will require autonomgous navigation and
guidance are a long way in the future. When the time comes, the results
here may help to give a starting point for the detailed investigations

and development that will then be required.
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APPENDIX

COMPUTER SIMULATION PROGRAM

The computer program used is written in FORTRAN IV and used with
the IBM 370/155. The program is a research tool, not a production
routine. The steps in the simulaiton and the names of the subroutines
that carry out these steps are as follows.

A fourth order Runge-Kutta subroutine, RUNKUT, is used to integrate
the dynamic forces in GOFX$ over subintervals of length DT. At each
time step (DELT), observations are made in OBSERV and the filter is
used to predict the state in FILTER. The information genevated is
transferred to subroutine CYCLOT and terminal conditions are checked.
Program sequencing and execution is controlled by subroutine CYCLE. Sub-
routine TARGET is used to generate the comet's position. NOISE is a
dummy name for the functions URAND (Uniformly Distributed Random Numbers)
and GRAND (Gaussian Distributed Random Numbers). Ten independent noise

channels are shared by these two functions.

A, Subroutine Names and Descriptions

MAIN Reads in system data and calls CYCLE.

CYCLE Controls sequence of operation and transfer of data
between XT (true state) and XP (predicted state).

RUNKUT Fourth order Runge-Kutta integrator. Dynamics are
provided by DOFX$ and guidance by GOFX$. Called by
CYCLE. Performs N integrations of step size DT at each
call.
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GOEFXg:

FILTER

OBSERV

CYCLOT

TARGET
MINV

CONOBS
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Entries:

RXINIT called by CYCLE
Initialize internal variables and read in XT

- Compute contribution of dynamics to true é. J is the index

of the components of XT.

Entries:

DOFX$: Compute data to be used by all components.
DOFX: Compute each component of the true state vector.

DXINIT: Initialize internal constants and read
in comet data.

SPECIAL: Calls target for comet position.
Same as DOEF$ except XP is used as variable.

User supplied algorithm to calculate XP. (Basic Extended
Kalman filter used in present listing).

Entries:
FLINIT: Used to initialize arrays.

SPECIAL: Calls MINV, CONOBS, and can call INTGR.
Generates Z; may call GRAND.
Outputs data and checks for end of run.

Entries:
TERMIN: Check for end conditions to be satisfied.

RECAP: 1If end conditions met outputs minimum
normed distance, velocity, and associated
times.

CYINIT: Initialize internal comstants.

Comet's position by solution of Kepler's equation.
Gaussian elimination inversion routine,

Determines degree of observability

SPECIAL - Calls MTRANS, MMUL, MXINV, and NORML

ral
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MATRIX Subroutine name for group of entries.

Entries:

MMUL: Petforms a special matrix multiplication
for CONOBS,

MIRANS: Transposes matrices for CONOBS.
MXINV: Caliz DINVER

NORML: Normalizes matrices for CONOBS.

DINVER - Matrix inversion routine using pivital condensa-
tion for determination of determinants used in CONOBS.
INTGR - Same as RUNKUT except uses XP instead of XI.
GRAND - Generates Gaussian distributed random noise with given
mean (RMEAN) and standard deviation (STDDEV).
L.SCNT - Noise channel number. Calls URAND.
URAND - Generates random numbers over the interval [o,1].
BLOCK DATA - Initializes seed numbers for URAND.

B. Variable Names and Definitions

XT - True state vector.

XP - Predicted state vector (loaded in GXINIT).

XE -~ Error in state.

2 ~ True observations.

2P -~ Predicted observations.

2E ~ Error in observations (residuals)

LSL - One BYTE logical array used to control sequencing of simu-
lator.

LE - One BYTE Logical array for use by error monitor (not
implemented).

DT - Integration stepsize (true position).
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DELT - Guidance update stepsize (predicted position).
N - DELT/DT (an integer).

TI - Integration start time.

TF - 1Integration end time.

ISLEN - Number of elements in state vector.

LOLEN - Number of elements in the observation vector.
C - TRendezvous stand-off distance.

A - Target semi-major axis.

RN - Target mean motion.

EPS - Target eccentricity.

EO - Target eccentric anomaly.

TSTAR - Guidance initiation time.

C. Input Data

Card Number Contents Format
1 Title Card SAS8
2 Run time logical
flags (LPL) 80L1
3 Run time error
flags (L$E) 80L1
4 N, ISLEN, IOLEN 813
5 TL, TF, DT, DELT 8F10.0
6 XT (Initial conditions) 8F10.0
7 A, RN, EPS, EO, TSTAR . 8F10.0

8 c 8¥10.0
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Subroutines and
Line Numbers

GX INIT(J)

38,39,40
41,42 ,43

FLINIT
238-243

OVINIT

90

91, 92

OBSERV

30-33

24-27

Entry

Initial position error
Initial position error

Initial state error
covariance matrix

Standard deviation of angular
measurement error (EANG)

Fix logical if statements for
RMIN and RDMIN

Mean, standard deviation and
noise channel.

Range, angles, and range rate
errors (RFRAF)



502
503
504
505
602
603
604
606
607
608

PROGRAM LISTING
MAIN

IMPLICIT REAL*8 (A-H,0-1)

LOGICAL*]1 LSL,LSE,LMON,LF,LT
COMMON/VSERBLE/XT(6) 4 XP(H) s XELE) 2Z(6)42P(6) 2E(6)
COMMON/ TSMER/DELTyDT o TIMEZTEoTFyNy ISLEN, IOLEN
COMMON/SYSTEM/LSL{40),LSE(10)
COMMON/MSENITR/LMONIL20)
COMMON/NOISE/ZIRAN{LQ) +DG(10)4RFRAF(6)
COMMON/OFFSET/C(3)
COMMON/MOOCH/T64,4,4)

DIMENSION B(446)9RN(4,4)

DATA LFoLT/F,T/

FORMAT(80L])

FORMAT(5A%8)

FORMAT(8BI13)

FORMAT(BF10.0)

FORMAT(1HO,80L1)

FORMAT(1HG,5A8)

FORMAT(1HO,* [INPUT CARD L. 1{ST?)
FORMAT(1H 4//77)

FORMAT(1HO,8I5)

FORMAT(1HO,1P6D12.5)

WRITE(69604)

READ(54503)TITLE

WRITE(6,603)TITLE

READ{5,502)L$L

WRITE(649602)LSL

READ(5,502 )L $E

WRITE(6,602)LS$E
READ(55,504 )Ny ISLENy TOLEN
WRITE(69607)Ny ISLEN, IOLEN
READ(S5¢505)TIoTF,DTyDELT
WRITE(6,608B)TITF4DT4DELT
WRITE(6,606)

CALL CYCLE

STOP

END

SUBROUUTINE CYCLE

IMPLICIT REAL*8 (A-H,0-1)

LOGICAL*]1 LSLLSEyLMON,LF,LT
COMMUN/VSRBLE/XTIO) ¢ XPLO) s XE(6) y2(6)32ZP(6),2E(6)
COMMON/ TSMER/DELT yOT o TIMEZTI o TF )Ny ISLEN,TOLEN
COMMON/SYSTEM/LSL{40),LSE(10)
COMMON/MSNITR/LMON(20)
COMMON/NOLSE/IRANLLO) yDGIL1D) ¢RFRAF(6)
COMMON/OFFSET/C(3)
COMMON/MONCH/TE444)

DATA LFLT/F,T/

DIMENSION Bl4,6)RN{4,4)

C xxxk INITIALIZE SUBRDUTINES ##kxX

CALL RKINIT
DUM=DXINIT{1)

—40-
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DUM=GXINIT(1)
DUM=URINIT(1)
CALL CYINIT
CALL FLINIT
CALL OVINIT
CALL INTINTI
DUM=DXININ(1)
DUM=GXININ(1)

wxxk COMPUTE TRAJECTURIES *&*xx

1 CALL RUNKUT
IF(L$L(2))GO TO 2
CALL OBSERYV
CALL FILTER

. GO TO 3

2 DO 4 I=1,ISLEN

4 AP(I)=XT(I)

xaork QUTPUT CYCLE DATA %k

3 CALL CYCLOTY

xxkx MONITOR SECTION #okkxk
CALL TERMIN
IF(LSL(2))GO TN 5
IF(L$L(3))GO TO 5
IF(L$L(6))GD TO 1
GO TO0 7

5 DO 6 I=1,ISLEN

6 XPLI)=XTI(I])
IF(LSLL6))IG0 TO 1

k% QUTPUT SECTION *%&x%k

7 CALL RECAP
RETURN
END
SUBROUT INE RUNKUT
IMPLICIT REAL*8 (A-H,0-1)
tNGICAL*] L$L,LSESLMON,LF,LT
LOGICAL%*]) LS1,LS2
COMMIIN/ VSRBLE/XTUI6) ¢ XP(6) o XE(B)y2(6)2PLE) yLELG)
COMMON/TSMER/DELT9yDT o TIME,TI+TFo N, ISLEN, TOLEN
COMMON/SYSTEM/LSL(403 ,L$SE(LO)
COMMOM/MENTITR/ZLMON(20)
COMMON/NOI$E/IRAN(LO) ,DG(10) yRFRAF(6)
COMMON/OFFSET/C(3)
DIMENSION XINT{6),SUM{6)
DATA LFLT/7F,T/
LsLtl2)=LT7
YS= USQQT(XP(1’**2+Xp(2)**?+xp(3)**2)
C{L)=1.00-02+(Y¥S/1.5D0)
IF(TIME.GT.38.4) C(1)=1.0D-02
WRITE(6,750)1C

759 FORMAT(LHO s 77X YCLlYy LIXy'Cl' 911Xy *'C3%/4X,1P3D12.57)

D0 1 ICYCLE=1,4N
DO 33 [=1,1ISLEN



20

31

10

11

5
6

33

Ol
01

32

42—

SUM(I1)=0.000

LsL(10)=LT

DO 10 Il=l,4
LS].:‘IQEQOZQ OR.I1.EQ.3
L52=[10E00l0
L$L(11)=11.EQ.3

F=F1

FS=F5

IF(LS1)F=F2
IF(LS1)FS=F3
IF(LS2)FS=F4
TS=TIME+DT*FS

DO 20 1=1,ISLEN
XINTC(I)=XTUI)¢FS*XINT(I)
DO 31 I=1,NP1

J=1~1

IF(J.GT.0¥ GO TO 2
DUM=DOFX$(J,TS)
DUM=GOFX$( JyTS)
LsL(12)=LF

60 10 31
XINT(J)=DT*(DUFX(J)+GUFX(J’)
SUMLJ)=SUM(JI+FEXINT(J)
CONTINUE

LSL(10)=LF

CONTINUE

TIME=TIME+DT

DO 11 I=1,ISLEN
XT(I)=XT(I)+SUMLIT)
CONTINUE

RETURN

ENTRY RKINIT
READ(5'501)(XT(I)ol=lylSLEN)
WR[TE(6'601)(XT(1)9l=lgISLEN)
FORMAT(8FLl0.0)
FORMAT(1HO,1P8D12.5)
F1=1.0D0/6.000
F2=2.0D0%*F1
F3=1.0D0/2.000

Fa=1.0D0

F5=0.0D0

TIME=TI

NP1=ISLEN+1

DO 32 I=1,ISLEN
XINT(L)=XT(I)

RETURN

END

FUNCTION DOFX$(J,TS)
IMPLICIT REAL*8(A-H,0~-1)
LOGICAL*1 L$LoLSEJLMONyLFoLT
CUMMUN/VSRBLE/XT(6)pXP(b)'XE(G)pl(b’,lP(b)pZE(b)
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COMMON/ TSMER/DELT,DT,TIME,TI,TF4,NsISLEN,IOLEN
COMMON/SYSTEM/LSL(40),LS$E(10)
COMMON/MENITR/LMON(20)
COMMON/NOISE/IRAN(10),DG(10),RFRAF(6)
COMMON/VARL/ASRNJEPSyEOs TSTAR,DET
COMMON/OFFSET/C(3)

DIMENSION D(3),S5(3)

DATA LFsLT/F,4T/

99601 FORMAT(1HO,14,*IMPROPER INDEX *DOFX?')
IF{.NOT.LSL(11))CALL TARGET(S,TS)
52=0.000
02=0.000
DO 1 I=1,3
DOI}=S(I)}+C(T)+XT(I)
D2=0D2¢D(1) %*%2

1 $S2=S2+4S()*%2
DN=DSQRT(D2)
SN=DSQRT(S2)
RATI=GM/ ( SN®SN%*SN)
RAT2=(SN/DN} *%3
DOFX$=0.000
IF(TF-TIME.GT.DELT)RETURN
IF(.NOT.LSL(10) )RETURN
WRITE(6,602)TIME,XT

602 FORMAT(LIHO,*END STATE 942Xy *TIME="yF10.3/71H ,1P6D12.5)

RETURN
ENTRY DOUOFX(J)
GO TO (99999,99999,99999,99998,99998,99998),J
WRITE(6,99601)J
DOFX=0.000
LEELZ2)=LT
RETURN

G993 DOFA=XT{J+3)
RETURN

99298 DOFX=RATI®(S(J=-3)~-0(J-3)%RAT2)
RETURN
ENTRY DXINIT(J)

READIS,501 JA¢RNHEPS»EO,TSTAR
EO=RN*%*TSTAR
WRETELO6:601)ARNyEPS,ED,TSTAR
501 FORMAT(8F10.0)
601 FORMAT(1HO,1PBD12.5)
READ(%5,501)C
WRITE(6,601)C
GM=9,90549D05
DET=1.0D-3
DXINIT=0.00D0
RETURN
END
FUNCTION GUFX${J,TS)
IMPLICIT REAL*8(A-H,0-2Z)



99601

39999

99998

500

501
90001
176

25

by

LOGICAL*1 LSL,LSE,LMON,LF,LT
COMMON/VSRBLE/XTU6) ¢ XPU6) ¢ XE(6),Z16)ZP(6) 42EL6)
COMMON/ TSMER/DELT 4DT o TIME TIoTF Ny ISLEN, IDLEN
COMMON/SYSTEM/LSL(40),L$E(LO)
COMMON/MSNITR/LMON(20)

COMMON/NOI$SE/ IRAN(10)4DG(10)4RFRAF(6)
COMMON/FORCE/F(3)

COMMON/OFFSET/C(3)

COMMON/ XPROP/XPNEW(6)

DATA LF LT/F,T/

DIMENSION XERR(6)

FORMAT(1HO,14,*IMPROPER INDEX ®GOFX?)
IFILSL(12))TIMLI=TS

TAUD=TF-TIM]

TAU=TF-TS
TRAT1=(6.0D0/TAUO*%2)%(1,0D0-2.000%(TAU/TAUO))
TRAT2=(2.000/TAUO)*(1.0D00-3.0D0O*(TAU/TAVOD))
GOFX$=0.000

RETURN

ENTRY GOFX{(J)

60 TO (99999,99999'99999’99998199998999998)'J
WRITE{(6,99601)J

L$E(3)=LT

GOFX=0.0D0

RETURN

GOFX=0.0D0

RETURN

FIJ=3)=TRAT1%XP(J=-3)+TRAT2%XP(J)

GOFX=F(J-3)

RETURN

ENTRY GXINIT(J)

WRITE(6S500)IXT(I)yI=1,6)
FORMAT(1HL43Xy * XTRUE INITIALLY?'/4X,1P6D12.5/)
XERR(1)=2.0D-02

XERR(2)=1.5D-02

XERR(3)=1.0D-02

XERR(4)=7.00~03

XERR(5)=5.0D-03

XERR(6)=4.0D-04

WRITE(645CL)Y (XERR(I)I=1,06)

FORMAT(1HO,3X, *INITIAL ERROR ON XV/4Xe1P6D12.57)
DO 90001 I=1,ISLEN

XP(I)=XT{I)+XERRI{I)
WRITE(O6,TT6)(XP(I)yI=1,ISLEN)
FORMAT(1HO,3Xy *XHAT INITIALLY'/4X4,1P6D12.57)
DO 25 I=1,6

XPNEW(IL)=XP(T)

GXINIT=0.0D0

RETURN

END

SUBROUTINE FILTER
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IMPLICIT REAL*B(A-H,0-2)

REAL G,BQ,PSI

LOGICAL %] LSLyLSE,LMON,LF,LT
CDMMUvasRBLE/XT(b)oXP(6).XE(6)oZ(6).ZP(6’oZElb)
COMMDN/TsnER/DELT.DT.TlME.Tl.TF,N.ISLEN.IOLEN
CUMMDN/SY$TEM/L$L(40)oLSE(lO)
COMMON/MSNITR/LMON(20)
CDMMUN/NDISE/IRAN(IO)oDG(lO)'RFRAF(6)
COMMON/KALMAN/RM(6o6)vFlLT(6'4l'U(6)pRN(4o4)oB(4'6)
COMMON/OFFSET/C(3)
COMMDN/MUDCH/Y6(4;4)

COMMON/ XPROP/XPNEW(6)
COMMON/YTRUE/YTRUE(6)

DIMENSION T1(6).YL(6)'Y(6)pT2(6.6)'T3(6.6),T4(6.6),QP(
6536),
$T5(646),PHI(6,6)

DIMENSION DY(6).QEXT(696).RU(1).DDY(6)
DIMENSION BQ(4,6),PS1(6,6)

DIMENSION G(6,1)

DIMENSION LL{6),MM(6)

DATA LFoLT/F,T/

TAUKL=TF-~TIME

TAUK=TAUK1+DELT

RAT=TAUK1/ TAUK

RAT2=RAT*RAT

RAT3=RAT2%RAT
A=3,0D0%RAT2-2.0D0%RAT3

DIF=RAT-RATZ2

F=TAUK1*DIF

D=3.,0D0%RAT2-2.0DU%RAT
E=-6.000%DIF/TAUK

bo 31 1=1,3

PHI(I,I)=A

PHI(I,I43)=F

PHI(I+3,1)=€

PHI(I+#3,1+3)=D

CONTINUE
REDICT X STATE

IF(LSL(9)Y) GO TO 8COO

DO 10 I=1,ISLEN

T1(I)=0.0D0

DO 10 J=1, ISLEN
TLOD)=TLCI)4PHI(I,J)%XP(J)

GO TO 8002

CONTINUE

CALL INTGR

DO 8001 I=1,1ISLEN

TI{I)=sXP(I)

CONTINUE
RANSFORM TO Y SYSTEM

P1=T1(1)+C(1)
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P2=T1(2)+C(2)
P3=T1(3)+C(3)
Q=DSQRT(P1*%24+P2%%2)
R=DSQRT(P1%#24+P2%%24+P3%%2)
AU=P1l*T1(4)+P2%T1(5)
V=AU+P3%*T1(6)
W=((PL}*(TL(S)))=((P2)*(TL(4)))
Y(1l)=R
Y{(2)=DATAN2(P2,P1l)
Y{(3)=DATAN2(P3,Q)
Y(4i=V/R
Y(5)=W/{Q**2)
Y{6)=({Q**2%T1(6)-AU*P3)/(Q*R*%2)
CL=DCOS(Y(2])
CB=DCOS(Y(3))
SL=DSIN(Y(2))
SB=DSIN(Y(3))

c COMPUTE LEFT PARTIAL DERIVATIVE
T2(1,1)=CL%*CB
T2(2,1)=SL*CB
T2(3,1)=58
T2(4y1)=-Y(6)®CL*SB-Y(5)*SL*CB
T2(5,1)1=Y(5)*CL*CB~Y(6)%*SL*SB
T2(691)=Y(6)%CB
T2(1,2)=-Y(1)*SL*CB
T2(2,2)=Y(1)*=CL*CB
T2(4,2) ==Y (4)%SLECB4Y (L)%Y (6)*SBASL-Y(1)*Y(5)*CL*CB
T2(592)=Y{4)%CLECB=Y (1) 2Y(5)%SL*CB-Y{1)%Y(6)*CL*SB
T2(1,3)=-Y(1)*CL*5B
T2(2,3)==Y(1)%SL#SB
T2(3,3)=Y(1)%CB
T2(4y3)==Y(4)*CL*¥SB=Y(1)xY{6)2CL*CB+Y(1)*Y(5)%SL%SA
T2(543)==Y(4)aSLASB-Y(L)8Y(5)%CL*SB-Y{1)*xY(6)*SL*CH
T2(64,3)=Y(4)%CB-Y(1)xY(6)%SB
T2(4y4)= CBXCL
T2(5,4)=SL*CB
T2(644)=SB
T2(445)==Y(1)%SL*CB
T2(5,5)=Y{1)%CL%CH
T2(446)=-Y(1)*CL*SB
T2(5,6)==-Y(1)%SL%*SB
T2(646)=Y(1)%*CB

c CUMPUTE RIGHT PARTIAL DERIVATIVE
T3(1s1)=P1/R
T3(142)=P2/R
T3(1,3)=P3/R
T3(2,1)=-P2/7(Q**2)
T3(2,2)=P1/(Q%**2)
T3(3,1)=-P1l%P3/(Q¥R*%2)
T3(3,2)=-P2%P3/(Q*R*%x2)
T3(3,3)=Q/ (R¥*%2)
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T3(4,1)={T1(4)*R*¥*x2-V*PL1)/ (R¥*3)
T3(4,2)=(R*%X2%TL(5)=V*P2)/ (R¥%3)
T3(4,3)={T1{6)%R®x*2-V%P3)/ (R¥*3)
T3(4,4)=P1/R

T3(445)=P2/R

T3(4,6)=P3/R
T3(5'1)=(T1(5)/(Q**2))-(2.*N*P1)I(Q**4)
T3(5.2)=(-T1(4)/(Q**2))-(2.*H*P2)/(Q**4)
T3(5,4)=-P2/(Q%*2)

T3(5,5)=PL/7(Q*%2)
T3(b,1)=(P1*T1(6)-P3*l1(4))/(Q*R**Z)-Z.*Q*Pl*Tl(6)/(R*
k4 )4
SZ.*AU*PI*PB/(Q*R**é)+P1*P3*AUI(Q**3*R**2)
T3(6.2)=(P2*T1l6)-P3*T1(5))/(Q*R**Z)—Z.*Q*PZ*Tl(é)I(R*
kb )+
sz.*Au*Pz*P3/(Q*R*t4)+Au*PZ*93/(0**3*R#*2)
T3(6,3)=—AU/(Q*R**2)-2.*P3*Tl(6)*QI(R**4)+2.*AU*P3**2/
$ (Q¥R*%4)

T3(6,4)==-P1%P3/(Q*R**2)
T3(6,5)==-P2%P3/(Q¥R*¥%2)

T3(6,6)=Q/(R*%x2)
OMPUTE PSI

DO 12 [=1,ISLEN

DO 12 J=1, ISLEN

T4(1,J)=0.0D00

DO 12 K=1,ISLEN

DO 12 L=1,ISLEN
T4(I.J)=T4([.J)+T2(vi)*PHl(K,L)*TB(L'J)
DO 9990 1=1,6

DO 9990 J=1,6

Gli,1)=0.0

PSI(I,J)=Ta(l,J)

DO 9991 I=1+4

DO 9991 J=1,6

BQ([,J)=B(['J)
REDICT COVARIANCE

DO 13 I=1,ISLEN

DO 13 J=1, ISLEN

TS{1,J)=QP(14J)

DO 13 K=1,[SLEN

DO 13 L=1,ISLEN
rs(I.J)=T5(!.J)+T4(I.K)*RM(K,L)*T«(J,L)
DY{(1)=-2.C0D-05

DY(2)=-4.,10-05

DY{(3)=-3.3N-05

DY{4)=1.5D-05

DY(5)=9.210-05

DY{6)=4.1D-05

DO 600 I=ly6

DO 600 J=1,6

QEXT(I,J9)=DY(1)#DY(J)
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D0 980 I=146
980 QEXT(I,1)=QEXT(1,1)*1.0D6
DO 601 I=1,6
DO 601 J=1,6
601 TS(1,4J)=TS5(I,J)+QEXT(I,4J)
C COMPUTE THE FILTER
DO 14 I=i,I0LEN
DO 14 J=L.I10LEN
T6(1,J)=RN(I,3)
DO 14 K=1,ISLEN
DO 14 L=1,ISLEN
14 Tollsd)=T6(L13J)+BLIK)*TS(K,L)*B{JsL)
CALL MINV(T6,I0LENs16sLLyMM,D)
DO 15 I=1,ISLEN
D0 15 J=1,I0LEN
FILT(I,J)=0.000
D0 15 K=1,ISLEN
DO 15 L=1,I0LEN
15 FILT(I,J)=FILT(IoJ)#T5(1KI%BILyK)ETOIL,J)
C COMPUTE PREDICTED OBSERVATIONS
DO 16 1=1,I0LEN
P(11=0.000
DO 16 J=1,ISLEN
16 ZP(I)=ZP(1)+B(I,J)*YV(J)
C COMPUTE THE ERROR IN CBSERVATIONS
DO 17 I=1,10LEN
17 ZE(I)}=2(1)-2P(1)
c UPDATE Y
DO 18 I=1,ISLEN
TL(D)=Y(I)
DO 18 J=1,IDLEN
18 THD)=TL(I)+FILTUI,J)*2ZE(J)
C UPDATE COVARIANCE :
DO 19 I=1,ISLEN
DO 19 J=1,ISLEN
T4(1,J)=0.0D0
DO 19 K=1,I0LEN ;
17 T4l J)=Ta (14 J)+FILT(I,KI%*B(K,J)
DO 20 I=1,ISLEN
DO 20 J=1,ISLEN
T4(l,J)==T4(I,J)
IFII.EQed)Ta(1,J4)=T&(1,J)+1.0DD
20 CONTINUE
DO 21 I=1,ISLEN
DO 21 J=1,ISLEN
RM{1,J)=0.000
DO 21 K=1,1SLEN
21 RMIT4J)=RM(I4J)4T4l1,K)%T5(KyJ)
99 CONTINUE
C SAVE Y{(K+1l,K+1)
DO 22 I=1,ISLEN
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22 YLUD)=TLLI)
CALL CONDBS(641,49PSI4G,80Q)
C CONVERT TO X
cL=DCOS(YL(2))
CB=DCOS({YL(3))
SL=DSIN(YL(2))
SB=DSINIYL(3))
XP({1l)=vyL(1l)*CB*CL-C(1)
XP(2)=YL(1)*CB*SL-C(2)
XP(3)= YL(1)#SB-C(3)
XP(4)=YL(4)®CB*CL~-YL{L)*YL(6)*SB*CL-YL(1)*YL(5)*CB*SL
XP(S)=YL(4)*CBESL-YL{1)*YL(6)*SB*SL+YL(1)%YL{5)%CB*CL
XP(6)=YL(4)2SB+YL(1)»YL(6)%CB
WRITE(69912)(XP(J)9Jd=1y6)
912 FORMAT(1HO¢3Xy *XHAT®*/4X,1P6DL2.5/)
DO 913 I=146
913 XPNEW(I)=XP(I)
RETURN
ENTRY FLINIT
* ENTRY
C ZERD ARRAYS
DO 101 I=1,ISLEN
DO 102 J=1,ISLEN
T2(1,4J)=0.000
T3(1,J)=0.000
RM(1,J)=0.0D0
PHI(I,J)=0.0D0
102 QP(1,4)=0.000
DO 101 J=1,10LEN
101 FILT(I,J)=0.0D0
c INITIALIZE VARIABLES
YL(1)=DSQRT((XP{L1)+C(1))#%2+(XP(2)+C(2))2%x2+(XP(3)+C(3
%) )*%2)
YL(2)=DATAN2((XP{2)4C(2)),(XP(L)+C(1)))
ARG2=DSQRT ({XP(L)+C( 1)) *%2+(XP(2)+C(2))**2)
YL{3)=DATANZ2((XP{(3)+4C(3))4ARG2)
YL(4)=({XP(L)I+C (L)) ®XP(4)+(XP(2)+C(2) 1*XP(5)+{XP(3)+Cl
*3))%XP(6))
s/yL(l)
YL(S5)=( (XP(L)+C{L) I RXP(S5)=(XP(2)+C(2))#XP(4))/
$C(XP{LY4C(L))%%24+(XP(2)+4C(2))*%2)
YLI6)=(((XPIL)+C(1) )24 (XP(2)+C(2))*%x2)%XP(6)-(XP(3)+
*C(3))*
$C(XP(L)+CIL))IRXP(4)+{XP(2)+CL2))%XP(5)))/(YL{L)*%2%ARG
*2)
RM(1,1)=1.0D0
RM(2,2i=1.0D0
RM(3,3)=1.000
RM{4,4)=1.0D00
RM(5,5)=1.00D0
RM{6,6)=1.0D0
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WRITE(649652)
652 FORMAT(1HO,3X,*INITIAL COVARIANCE MATRIX®)
DO 650 I=146
650 WRITE(64651)(RM(I,J)9J=1+6)
651 FORMAT(1HO,4Xy1P6D12.5)
RETURN
END
SUBROUTINE QOBSERY
IMPLICIT REAL*8(A-H,0-2)
LOGICAL*1 LSLoLSE,LMON,LF, LT
COMMDN/VSRBLE/XT(b).XP(6).XE(6).Z(6)'ZP(6).lE(b)
COMMON/T‘MER/DELT'DT'TIMEOTI'TF'N'ISLEN'[ULEN
COMMON/SYSTEM/LSL(40),LSE(10)
COMMON/MSNITR/ZLMON(20)
COMMON/NOISE/Z/TIRAN{(10),DG(10),RFRAF(6)
COMMON/ZKALMAN/CRUD(66) yRN(4¢4) 4B(446)
COMMON/OFFSET/CI(3)
COMMON/YTRUE/YTRUE(6)
DIMENSION 1T(6)
DATA LFLT/F 4T/
C OBSERVATIONS
C RFRAF(L TO 4) = STDDEV FOR ZIT(1l TO &) RESPECTIVELY
YTRUE(1)=DSQRT((XT(I)*C(I)’**2+(XT(2)*C(Z"**2*(XT(3)+
#*C(3))%xx2)
RANGE=YTRUE( 1)
YTRUE(2)=DATAN2((XT(Z)*C(Z))'(XT(1)+C(1)))
ARGL=DSQRT((XT(L)I+C (L)) %2+ (XT{2)+4C(2) ) *%2)
YTRUE(3)=DATAN2({XT(3)+C(3)),ARG])
VTRUE(4’=((XT(l)*C(l))*Xt(4,*(XT(2)fC(2))*XT(51+(XT(3)
x+C(3))*XTL6
$))/YTRUE(1])
YtRUE(5)=((XT(1)+C(1))#XT(S)—(XT(2)+C(2))tXT(4))/(ARGI
xkk2)
YTRUE(6)=((ARGI**Z’*XT(b)-(XT(3)*C(3))*((XT(I)*C(I))*X
¥T{(4)
S+(XT(2)*C(2))*XT(5)))/(YTRUE(I,**Z*ARGI)
RFRAF(1}=DABS{YTRUE(1)#3,0D-03)
RFRAF{2)=EANG
RFRAF(3)=EANG
RFRAF{4)=1,0D-02
DG(1)=GRAND(Q.O0DOsRFRAF(1)45)
DG(2)=GRAND(O.ODO,RFRAF(2),42)
DG{3)=GRAND(D.ODORFRAF(3),3)
DG(4)=GRAND{O.ODGsRFRAF(4),8)
[IF(RANGE.GT.RMIN)GO TU 2
IF(RANGE.LT.RMIN.AND.RANGE.GT.ROMINIGO TO 3
IF{RANGE.LT.RDMIN.AND.RANGE.GT.RMIN) GO TD 6
IF(RANGE.LT.RDMIN)IGDO TO 8
2 WRITE(6,1)(DGILSCNT) LSCNT=2,3)
IOLEN=2
GO T0 4
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IOLEN=3
WRITE(691)(DG(LSCNT)yLSCNT=1,10LEN)
FORMAT{///410Xy "NOISE*,5X,1P&D12.5)
GO TO 4
WRITE(6,1) (DG(LSCNT)LSCNT=2,4)
IOLEN=3
GO 10 ¢
I0LEN=64
WRITE(691)(DGILSCNT) oLSCNT=1,10LEN)
CONTINUE
DO 38 I=1,I0LEN
DO 32 J=1,I10LEN
RN{1,J)=0.0D0
DO 38 J=1,ISLEN
8{I,4)=0.000
IF(IOLEN.EQ.2)GO TO 34
IF(LSL(20) .AND. IOLEN.EQ.3)GO TD 37
DO 33 I=1,1I0LEN
B(I,I1)=1.0D0
GO T0 36
B(1,2)=1.0D0
B(243)=1.000
8(3'4)=10000
DO 39 1=1,3
RN(I,I)=RFRAF(]+1)%%2
GO TO 35
B{1,2)=1.GCDO
8(2,3)=1.000
RN{1ly1)=RFRAF(2)%%2
RN(292)=RFRAF(3)#*%2
G0 1O 35
DO 30 I=1,10LEN
RN{IoI)=RFRAF(])%*%2
CONTINUE
DO 41 1=1,10LEN
IT(1)=0.0D0
DO 41 J=1,ISLEN
ZT(L)=2ZT(1)+B(1,J)*YTRUE(J)
DO 43 I=1,10LEN
Z(1)=2T(1)+DG(])
RETURN
ENTRY OVINIT
ENTRY
A=0,0D0
EANG=2.9060D-04
RMIN=1.0D20
ROMIN=1.0D20
RETURN
END
FUNCTION GRAND(RMEAN,STDDEV,ISLCT)
IMPLICIT REAL*8(A-H,0-2)
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PURPOSE

50

COMPUTES A NORMALLY DISTRIBUTED RANDOM NUMBER WITH A G

*[VEN

MEAN AND STANDARD DEVIATION

A=OOODO

DO 50 [=1,12

A=A+URAND(ISLCT)

GRAND=(A-6.0D0)*STDDEV+RMEAN

RETURN

END

FUNCTION URAND(ISLCT)

IMPLICIT REAL*B(A-H,0-1)

COMMON/NOISE/ZIRAN(L10)yDGL10) 4RFRAF(6)

IY=IRAN(ISLCT)#*65539

IF(IY)S546496

IY=1Y+214748364T+1

URAND=DFLOAT(IY)*4,656613D-10

IRAN{ ISLCT)=1Y

RETURN

ENTRY URINITC(ISLCT)

* ENTRY

URAND=0.0D0

URINIT=0.000

RETURN

END

BLOCK DATA

IMPLICIT REAL#8 (A-H,0-1)

COMMON/NOISE/ZIRAN(LO) DG(10) 4RFRAF(6)

DATA IRAN/69800661,54218059,51070625,15239339,75892237
*y
*10418327,81767867,59847821,52031357,26256013/

END «

SUBROUTINE CYCLOT

IMPLICIT REAL*B(A-H,0-2)

REAL GUTL

LOGICAL*L LSLoLSE,LMON,LF,LT

COMMON/VSRBLE/XT(6) yXPL6) 4XE(6) +2(6)92P(6) 4 2EL6)

COMMON/ TSMER/DELT yDT o TIME, TI o TFoNy ISLEN¢IOLEN

COMMON/ SYSTEM/LSLI40) 4LSE(10)

COMMON/M$NITR/ZLMON(20)

COMMON/NOTSE/ZIRAN(10)9DG(10) +RFRAF(6)

COMMONZKALMAN/P(6+6) o FILT{6,4),UL6)3RN(4e%)1814,6)

COMMON/FORCE/ZF ( 3)

COMMON/OFFSET/ZC(3)

COMMON/MOOCH/T6(4,4)

DATA LF,LT/F,T/

601 FORMAT(L1H 3X,*TRUE STATE VECTOR'/4X,1P6D12.5)
603 FORMAT(1H ,*TIME="'41PD12.5)
604 FORMAT(1H »*NORMED DISTANCE=',1PD12.5+3X, *NORMED VELOC

%[Ty=¢,
11PD12.5493Xy *NORMED FORCE=',1PD12.5)
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605 FORMAT(1HO,'$$$ RENDEZVOUS $$8')
606 FORMAT(1HO,*MINIMUM NORMED DISTANCE=',1PD12.593X'AT T
*IME="
1 1PD12.5)
607 FORMAT(1HO, "MINIMUM NORMED VELOCITY =4%,1PD12.593Xy AT
*TIME="*,
1 1PD12.5)
608 FORMAT(//777)
609 FORMAT(1HO,'*#%% QUT OF TIME #®&x?)
610 FORMAT(1HO,*FORCE VECTOR®3/y1H ,1P3D12.5)
611 FORMAT(1HO,3X,*PREDICTED STATE VECTOR'/4X,1P6D12.5)
612 FORMAT(1HO,3X,'ERROR IN STATE VECTOR'/4X,1P6D12.5)
613 FORMAT(1HO,3X,* TRUE OBSERVATIONS?*/4X,1P6D12.5)
614 FORMAT(1HO,3X, *PREDICTED OBSERVATIONS'/4X,1P60D12.5)
615 FORMAT(1HO,3X,'RESIDUAL ERRUR*/4X,1P6D12.5)
617 FORMAT(1HO,3X,*COVARIANCE MATRIX?')
618 FORMAT(L1H ,6X,1P6D12.5) -
619 FORMAT(L1HLl,10X,¢ SIMULATION RESULTS',///7)
IF(LSLIL)IWRITE(6+619)
620 FORMAT(1H ,3X,*NORMED POSITION ERROR = *,1P1ID12.545X,"
*NORMED VELOC
$ITY ERROR = *,1P1D12.5)
FT=0.0D0
T1=0.0D0
T2=0.0D0
DO 1 I=1,3
FII)=F(I)*CF1l
FT=FT+F (1) %%2
TLl=TL+XT(I)%XT(1)
1 T2=T2+XT(I+3)%XT([+3)
FT=DSQRT(FT)
XS=DSQRTI(T1)
XV=DSQRT(T2)
IF(LS$L(9))GO TO 2
IFI{XS.GT«X0)GO 7O 3
X0=XS
TXS=TIME
3 IF(XV.GT.XVOIGO TO 2
XVO=XV
TXV=TIME
2 WRITE(6,603)TIME
WRITE{(6,604)XSeXV4FT
CHK=DABS(TF-TIME)
IF{CHK.LE.{1.10DO*DELT)) GO TO 50
GO 10 60
50 FTHRST=DSQRT(F{L)*%2+F(2)%%2+F(3)%%2)
GUTL=FTHRST/1.0D-04 '
GUTTE=DFLOATU(IFIXI{GUTL))
QCHK.=GUTTR+1.0D0
TF=TF+QCHK*DELT
60 CONTINUE
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IF(LSL(2))IRETURN
DO 99901 I$=1,1SLEN
99901 XE(IS)=XT(IS$)-XP(I$)
PNORM=DSQRT(XE( L) 2424 XE(2) ®*24XE(3) $42)
VNORM=DSQRT{XE(4)**24XE(S) a%24+XE(6)##2)
WRITE(64610)F
WRITE(6,601)XT
WRITE(6,611)XP
WRITE(69612)XE
WRITE(6,620)PNORM, VNORM
WRITE(6,613)2
WRITE(69614)12P
WRITEL6,615)1E
WRITE(6,617)
DO 6 I=1,ISLEN
6 WRITE(6,618)(P{T1,J),yJ=141SLEN)
WRITE(6,608)
99902 tLsL(1)=LF
RETURN
ENTRY TERMIN
* ENTRY
IF(XS.LT.IQOD‘ZQANDQXVOLT.1.00"")60 TG IO
IF(TIME.GE.TF)GO TO 5
RETURN
4 WRITE(6,605)
L$L(b)=LF
RETURN
5 WRITE(64609)
LSL(6)=LF
RETURN
ENTRY RECAP
* ENTRY
WRITE(69606) X0y TXS
WRITE(69460T)XVO,TXV
RETURN
ENTRY CYINIT
X0=1.0D40
XV0=1.0D40
c GRAVITATIONAL ACCELLERATION INVERSE
CF1l=1.0D00/(9.80665D0~-08%8,.64D4%#%2)
RETURN
END
SUBRUUTINE TARGET(S,T)
IMPLICIT REAL%*8 (A-H,0-1)
DIMENSION S(3)
COMMON/VARL/ZA3RN;EPS,EToTSTARDET
601 FORMAT(1HO,*CONVERGENCE= *,1PD12.5," KEPEQ"')
EO=ET
ET=ET+DET
DO 1 I=1,100
SINET=DSIN(ET)
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COSET=DCOS{ET)
E=RN*{T+TSTAR)~ET+EPSXSINET
DF=EPS*COSET~1.0D0

ET=ET-F/DF

DIF=DABS{F/DF)
IF(DIF.LT.1.00-10)G0 TO 2
CONTINUE

WRITE(64601)DIF

DET=ET-ED

S(1)=A®{COSET -EPS)
S(2)=A*DSQRT{1.0D0-EPS*EPS)*SINET
$(3)=0.0D0

RETURN

END

SUBROUTINE MINV(A,NsNSQeLyMsBIGA)
[MPLICIT REAL%*8 (A-H,0-1)
% 00000135

DIMENSION A(NSQ)sL{E) ML)

* 00013200
DESCRIPTION OF PARAMETERS
L x 00013500

A - INPUT MATRIX, DESTROYED IN COMPUTATION AND R
*EPLACED BY 00013600
RESULTANT INVERSE.

# 00013700
N - ORDER OF MATRIX A
% 00013800
BIGA - RESULTANT DETERMINANT
* 000139300
L - WORK VECTOR OF LENGTH N
* 00014000
M - WORK VECTOR OF LENGTH N
* 00014100
* 00014200
NK=~N
* 00017500
DO 190 K=14N
¥ 00017600
NK=NK+N
% 00017700
L(K)=K
* 00017800
M(K)=K
¥ 00017900
KK=NK+K
* 00018000
BIGA=A(KK)
* 00018100
DO 30 J=KsN
% 00018200

1Z=N*(J-1)
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& 00018300
DO 30 I=K¢N

* 00018400
1J=172+1

* 00018500

10 IF(DABS(BIGA)-DABS(A(IJ))) 20,30,30
20 BIGA=A(1J)

* 00018800
LiK)=1
x 00018900
M{K)=J
* 00019000
30 CONTINUE
* 00019100
* 00019200
INTERCHANGE ROMWS
* 00019300
* 00019400
J=L{K)
* 00019500
IF(J-K) 60,60,40
* 00019600
40 KI=K-N
* 00019700
DO 50 I=14N
* 00019800
KI=KI+N
% 00019900
HOLD=-A(KI)
% 00020000
JI=KI-K+J
* 00020100
AlKI)I=ALJI)
* 00020200
50 A{JI) =HOLD
* 00020300
* 00020400
INTERCHANGE COLUMNS
* 00020500
* 00020600
60 1=M{K)
* 00020700
[F(I-K)} 90,90,70
& 00020800
70 JP=N*{I-1)
* 00020900
DO 80 J=1,N
#* 00021000
JK=NK+J
* 00021100
JI=JpP+J
* 00021200
HOLD=-A{JK)
* 00021300

ALJK)I=A(JT)
* 00021400
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80 A(JI) =HOLD ->7-

% 00021500
* 00021600
DIVIDE COLUMN BY MINUS PIVOT (VALUE OF PIVOT ELEMEN
*7T IS 00021700
CONTAINED IN BIGA)
* 00021800
* 00021900
90 IF(BIGA) 110,100,110
* 00022000
100 RETURN
* 00022100
110 00 130 I=1N
x 00022200
IF(1-K) 120,130,120
* 00022300
120 IK=NK+I
* 00022400
A(IK)=A(TIK)/{-BIGA)
% 00022500
130 CONTINUE
# 00022600
* 00022700
REDUCE MATRIX
* 00022800
* 00022900
DO 160 I=1,N
¥ 00023000
TK=NK+I
* 00023100
1J=1-N
* 00023200
D0 160 J=14N
*® 00023300
[J=1J+N
* 00023400
IF(I-K) 14041604140
* 00023500
140 IF(J-K) 150,160,150
* 00023600
150 KJ=IJ=1+K
* 00023700
ALIJ)=ACIK)*AL(KJ)+ALTY)
¥ 00023800
160 CONTINUE
* 00023900
* 000240600
DIVIDE ROW BY PIVOT
* 00024100
*® 00024200
KJ=K~-N
* 00024300

DO 180 J=1,N
* 00024400



KJ=KJ+N -58-

* 00024500
IF(J-K) 170,180,170
* 00024600
170 A(KJ)I=A(KJI)/BIGA
# 00024700
180 CONTINUE
# 00024800
* 00024900
REPLACE PIVOT BY RECIPROCAL
* 00025000
* 00025100
A(KK)=1.0/B1GA
* 00025200
190 CONTINUE
* 00025300
* 00025400
FINAL ROW AND COLUMN INTERCHANGE
» 00025500
* 00025600
K=N
* 00025700
200 K={K-1)
* 00025800
IF(K) 270,270,210
* 00025900
210 I=L(K)
* 00026000
IF({I-K) 240,240,220
* 00026100
220 JQ=N%(K-1)
* 00026200
JR=N*(I-1)
* 00026300
DO 230 J=1¢N
* 00026400
JK=JQ+J
* 00026500
HOLD=A(JK)
* 00026600
JI=JR+J
* 00026700
A(JK)==-ALJ])
* 00026800
230 A(JI) =HOLD
* 00026900
240 J=M(K)
* 00027000
IF(J-K) 200,200,250
* 00027100
250 KI=K-N
* 00027200
D0 260 I=1,N
* 00027300
KI=KI#N

* 00027400



32

35

HOLD=A(KI ) -59-

* 00027500
JI=KI-K+J
& 00027600
ALKI)=-A{JT)
* 00027700
260 A(JI) =HOLD
* 00027800
GO TO 200
* 00027900
270 RETURN
* 00028000
END
% 00028100
SUBROUT INE CONOBS (NP yNUsNY,FoGyH)
* CNBS0000
DIMENSION F(696)¢Gl69L)sHI446),Bl6424)3S1(646)9WI6496)
%5(646)
DOUBLE PRECISION DETH
LO=NU
% CNBS0050
DO 32 I=14NP
* CNBS0060
DO 32 J=1,NU
* CNBSO0T0
S(I,4) = GlIsd)
* CNBS0080
DO 33 I=1,NP
* CNBS0090
DO 33 J=1,4NP
* CNBSO100
33 S1(I4J)=F(f,J)
%* CNBSO110
DO 85 ITEST=1,2
# CNBS0120
IF (LO .EQ. O) GO TO 90
* CNBSO130
CALL NORML (NP4LO,S)
* CNBSO140
00 35 1 LoNP
* CNBS0150
DO 35 J 1,L0
* CNBSO160
B(I,Jd) = S(I,J)
* CNBSOL170
L=1
* CNBSO180
MOU=NP-1
* CNBS0190
DO 40 1T=1,M0U
* CNBS0200
CALL MMUL (NPyNPyLDyS1ySsW)
% CNBS0210
CALL NORML (NP,LOsW)
% CNBS0220
DO 20 I=1,NP
& CNBS0230
DO 20 J=1,L0
%* CNBS0240
J1={J+L*LO)
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* CNBS0250
BllysJdid=Wl1,J)
* CNB30260
20 StI,J)=Wll,J)
* CNBS0270
40 L=L+1
* CNBS0280
NOIM=L=%LD
* CNBS0290
DO 41 I = 1,NP
% CNBS0292
SUM = 0.0
* CNBS0294
D0 42 J = L4NDIM
* CNBS0296
42 SUM = SUM + Bll,J)%%2
* CNBS0298
SUM = SQRT(SUM)
* CNBS0300
IF (SUM .EQ. 0.) GO TO 4l
* CNBS0302
DO 45 J = 14NDIM
* CNBSO0304
45 BUI1,J) = BlI¢J)/SUM
* CNBS0306
41 CONTINUE
* CNBS0308
DO 1000 I1 = 14NP
# CNBS0310
DO 1000 JJ = 1yNP
% CNBS0320
SUM = Q.O
* CNBS0330
00 1001 KK = 1,NDIM
% CNBS0340
1001 SUM = SUM + B(II,KK)*B{JJ,KK)
%* CNBS0350
1000 WiIl,JdJ) = SUM
& CNBS0360

CALL MXINV (NP,WyDETL1ls1ER)
IF (ITEST .G6T. 1) GO TO 87
% CNBS0380
[F (IER .EQ. O0) GO TO 70
* CNBS0390
60 TO 90
* CNBS0420
70 WRITE(64300) DETI1
300 FORMAT (26H CONTROLLABLE DET = 41PEl4.4)
* CNBS0440
90 LO=NY
* CNBS0450
DO 93 J=1,NY
* CNBS0460
DO 93 I=14NP
x CNBS0470
93 S{Lyd)=H{JyI)
* CNBS0480
85 CALL MTRANS (NP4NP4F,S1)
% CNBS0490
87 IF (TER .EQ. 0) GO TO 170



¥ CNBS0500
WRITE(64902) DET1

902 FORMAT (26H NOT OBSERVABLE

* CNBS0520

GO TO 91

* CNBS0530
170 WRITE(6,901) DET1

901 FORMAT (26H OBSERVABLE

* CNBSO0S550
91 RETURN
* CNBS0560
END
* CNBSOS5T0
SUBROUT INE MATRIX
P MTRX0000
DIMENSION A(6,6)9B(6+6)9C(646)
ENTRY MMUL (MPo¢NPyNUsA¢8,C)
* MTRX0520
DO 11 L=1,MP
* MTRX0530
DO 11 I=14NU
* MTRX0540
SUM = 0.0
*x MTRX0S550
DO 31 J=1,4NP
* MTRX0560
31 SUM = SUM + A(L,J)*B(J,1)
* MTRX0570
11 ClLyI) = SUM
#* MTRX0580
RETURN
% MTRX0590
ENTRY MTRANS {M,N,A,8)
* MTRX0790
DO 10 I=1,M
% MTRX0800
DO 10 J=1¢N
* MTRX081C
16 BlJo1) = Atll.Jd)
& MTRX0820
RETURN
* MTRX0B30

ENTRY MXINV (NPyA,DETL,IER)
DOUBLE PRECISION DA(6,6)4DET14DB(1,1)

DO 1 I = 1,.NP

& MTRX0860
DO 1 J = 14NP
* MTRX0870
1 DA(L,J) = All,J)
x MTRX0880

CALL DINVER (NP,6,DA,0,1,DByDETL,IER)
IF (IER <NE. 0} RETURN

% MTRX0900
DO 2 I = 1,yNP
* MTRX0910
DO 2 J = 1.NP
* MTRX0920
2 A(loJ) = DA(I'J)
* MTRX0930

RETURN

91PEL4.4)
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%* MTRX0940
ENTRY NORML (NRyNC,A)
% MTRX1000
DO 4 J = 1,NC
%* MTRX1010
SUM = 0.0
% MTRX1020
DO 3 1 = 1,NR
* MTRX1030
3 SUM = SUM + A(l,J)*%2
* MTRX1040
SUM = SQRT{SUM)
% MTRX1050
IF (SUM .EQ. 0.) GD TO 4
* MTRX1060
DO 5 1 = 14NR
& MTRX1070
5 A(l,sJ) = A(I,J)/SUM
* MTRX1080
4 CONTINUE
* MTRX1090
RETURN
% MTRX1100
END
% MTRX1110
SUBROUTINE DINVER (NA,NADyA,NByNBD,B,DET1, IERROR)
c THIS SUBROUTINE IS A MODIFICATION OF THE UNIVERSITY OF
% FLORIDA ONVROO10
C COMPUTER CENTER®'S INVERT . IT USES DOUBLE PRECISION AN
%D HAS BEEN ODNVR0O0Q20
C RENAMED DINVER. C FOSHA 2-69

* DNVR0O030

DIMENSION A(NAD,NAD),B(NBD,NBD)+BD(6)y INDEX(6)
DOUBLE PRECISION A,B,BD,SAVE,PIVOT,DETI]

DET1=1.000
IERRUR = 0O
%* DNVROOT0
Do 130 I = 1, NA
" DNVR0080
PIVOT = 0.0D0
* DNVRO090

c SEARCH FOR PIVOTAL ELEMENT

% DNVR0100
D0 60 J = Iy NA
* DNVROL110
% DNVRO120
PIVOY = A(J,1)
* DNVRO130
INDEX(I) = J
"
60 CONTINUE
% DNVRO150
1F (DABS(PIVOT) LT.
%* DNVRO160
IF (INDEX(I) .EQ. 1)
* DNVRO170
DET1=-DET1

DNVRO140

*AGONAL DNVRO190

DABS(PIVOT)) GO

T0 60

To 250

50 10O 90

INTERCHANGE ROWS TO PUT PIVOTAL ELEMENT ON D



D0 80 L =1, NA O

* DNVR0200
SAVE = A(l,L)
x DNVRO210
A(I,L} = AULINDEX(I)y L)
# DNVRO0220
80 AUINDEX(I)y L) = SAVE
* DNVRO230

90 DET1=DET1*PIVOT
AltlI,I) = 1.0D00

¥ DNVR0250
Do 91 KK=1,NA
e DNVR0260
91 AL, KK}I=ALT,KK)/PIVOT
* DNVRO270
C REDUCE NON-PIVOTAL RONWS
# DNVR0O280
DO 130 LS = 1y, NA
2 DNVR0290
IF (LJ EQ. I) GO TO 130
% DNVR0 300
SAVE = A{LJy 1)
* A DNVRO310
AlLJ,I) = 0.0D0
* ONVRG320
Do 120 K = 1, NA
#* DNVR0330
120 A(LJ,K) = A(LJyK) = SAVE * A(l,K)
* DNVRO 340
130 CONTINUE
* DNVRO350
C INTERCHANGE COLUMNS
* DNVR0360
NAl=NA+1
* DNVRO370
DO 160 KKK = 1y NA
* DNVRO380
K = NAlL - KKK
# DNVR0O390
IF (INDEX{K) .EQ. K) GO TO 160
* DMVR0400
0o 98 L = 1, NA
* DNVRO410
SAVE = A(L,K)
* DNVRO420
A(LsK) = AlLs INDEX(K))
* DNVR0430
98 A(L, INDEX(K)) = SAVE
% DNVR0440
160 CONTINUE
* DNVR0450
o A INVERSE IS NOW STORED IN A
# DNVRO4560
o FIND SOLUTION VECTORS FOR ALL CONSTANT VECTO
#RS INPUT DNVRO4T0
IF (NB +.LE. 0) RETURN
* DNVR0O480
DO 190 K = 1, NB
# DNVR0490

Do 180 I = 1, NA



% DNVRO0500
BD(I) = 0.0DO
* DNVROS510
0o 180 J = 1y NA
* DNVRO0520
180 BD(I) = BD(I) + All,J)%BL.U,yK)
* DNVR0O530 .
DO 190 1 = 1y NA
¥ DNVR0O540
190 B(I,K) = BD(I)
* ONVR0O550
c SOLUTION VECTORS NOW IN B
* DNVRO560
RETURN
& DNVRQ570
C IF CONTROL REACHES 250, MATRIX IS SINGULAR
x ONVRO0580
250 [ERROR = +1
* DNVR0590
DET1=0.000
RETURN
® ‘DNVR0O610
END
* DNVR0620

SUBROUTINE INTGR
IMPLICIT REAL*8 (A-H,0-2)
LOGICAL*Y L$L,LSEyLMON,LF,LT
LOGICAL*1 LS1,LS2
COMMON/VSRBLE/CRAPIGO) yXTI6) ¢ XE(6)2L6)2ZPL6) 4 2E(6)
COMMON/TSMER/DELT ¢DOT o TIME,TI»TFyN, ISLEN, TOLEN
COMMON/SYSTEM/LSL(40),L$ELL1D)
COMMON/MSNITR/LMON(20)
COMMON/NOI$EZIRAN(10),D0G(10) 4RFRAF(6)
COMMON/OFFSET/C(3)
COMMON/ XPROP/XPNEW(6)
DIMENSION XINT(6),SUM(6)
DATA LF4LT/F,T/
L$L{l12)=LT
700 CONTINUE
TIME=TIME-DELT
DO 1 ICYCLE=1,N
DO 33 I=1,ISLEN
33 SUM(I)=0.0D0

LsL(10)=LY
DO 10 Il=1,4
LSl'—'[ loEQoZo DR.lloEQoB
LS2=11.EQ.4
L$L(11)=11.EQ.3
F=F1
FS=FS
[F(LS1)F=F2
[F(LS1)FS=F3
IF(LS2)FS=F4
TS=TIME+DT%FS
DO 20 I=1,ISLEN

20 XINTCI)=XT(I)4FS*XINT(])
DO 31 I=1,NP1
J=I-1
IF(J.GT.O) GO TO 2
DUM=DOFX$N{J,TS)



31

10

11

701

32

99601

99999
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DUM=GOFXSN{JsTS) >

LeL.(12)=LF

GO TO 31
xINT(J)=DT#(DOFxN|J)+GOFthJ))
SUM{J)=SUM(J)+F#XINT (I}

CONTINUE

LSL(10)=LF

CONTINUE

TIME=TIME+DT

DO 11 I=1,{SLEN

XT(I)=XTLI)+SUMLL)

CONTINUE

CONTINUE

RETURN

ENTRY INTINI

F1=1.0D00/6.000

F2=2.0D0%*F1

£3=1.000/2.0D0

F4=1,0D0

F5=0.000

NPL=ISLEN+1

DO 32 I=1,1SLEN

XINT(I)=XT L)

RETURN

END

FUNCTION DOFX$NUJ,TS)

IMPLICIT REAL*8(A-H,0-1)

LOGICAL*] L$L,LSEsLMON,LF,LT
COMMONIV$RBLEICRAP(6),XT(b),XE(6)ol(6)'ZP(6).ZE(6)
CUMMDN/tsMERIDELr,DT,rlME.TI.TF.N.ISLEN.IOLEN
connom/svsTEM/LsLtao).LsE(lo)
COMMON/MS$NITR/LMON(20)
CDMMON/NDISE/IRAN(IO).DG(lO).RFRAF(6)
COMMDN/VARI/A.RN.EPS.ED,TSTAR.TRASH
COMMON/NEWDET/DETN
COMMON/OFFSET/C(3)

DIMENSION D(3),S(3)

DATA LFSLT/FoT/
FORMAT(1HO 14, * IMPROPER INDEX *DOFX?)
IF{.NOT.L$SL(11))CALL TARGEN(S,TS)
$2=0.000

D2=0.0D0

DO 1 I=1'3

D(I)=S{1)+C(I)+XT(])

D2=D2+4D( [ ) %%2

§2=52+S( 1) %%2

DN=DSQRT(D2)

SN=DSQRT(S52)

RATI=GM/ { SN*SN*SN)

RAT2=(SN/DN) *%3

DOFX$N=0.0D0

RETURN

ENTRY DOFXN(J)

60 TO (99999.99999.99999.99998,99998.99998).J
WRITE(6499601)J

DOFXN=0.000

L$E(2)=LT

RETURN

DOFXN=XT(J+3)

RETURN
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99998 DOFXN=RATI®{S(J=3)=-DlJ-3)*RAT2)
RETURN
ENTRY DXININ(J)
GM=9.90549D05
DETN=1.0D-3
DXININ=0.0D0
RE TURN
END
FUNCTEION GOFXSN(J,TS)
IMPLICIT REAL*8(A-Hy0-1)
LOGICAL*]1 LSLsLSE)LMONyLFyLT
COMMON/VSRBLE/ZXT(6) ¢ XPLO) ¢+ XEL6) 4216)ZPL6) 4 LE(G)
COMMON/ TSMER/DELT yDT s TIME, T1oTFoNy ISLEN¢ IOLEN
COMMON/SYSTEM/LSLI40) 4LSE(10)
COMMON/MSNITR/LMON(20)
COMMON/NOISE/ZIRAN(10),DGL10) 4RFRAF(6)
COMMON/FORCE/F(3)
COMMON/OFFSET/C(3)
COMMON/ XPROP/XPNEW(6)
DATA LFWLT/F,T/

99601 FORMAT(1HO,14,*IMPROPER INDEX #*GOFX?)
IF(L$L(12))TIML=TS
TAUO=TF~TIM1
TAU=TF-TS
TRAT1=(6.0D0/TAUD**2)%{1.000-2.000*(TAU/TAUOD))
TRAT2=(2.,0D0/TAUO) *{ 1,0D0-3.000%({ TAU/TAUO) )
GOFX$N=0.0D0
RETURN
ENTRY GOFXN(J)
GO TO (99999,+99999,99999,99998,99998,99998),J
WRITE(6,99601)J
L$E(3)=LT
GOFXN=0.0D0
RETURN

99999 GOFXN=0.0DC
RETURN

99998 F(J-3)=TRAT1*XPNEW(J-3)+TRAT2#XPNEW(J)
GOFXN=F(J-3)
RETURN
ENTRY GXININ(J)
GXININ=0.0D0
RETURN
END
SUBROUTINE TARGEN(S,T)
IMPLICIT REAL*8 (A-H,0~2)
DIMENSION Si{ 3)
COMMON/VARL/A,RNyEPSsET,TSTAR, TRASH
COMMON/NEWDET/DETN

601 FORMAT({1HO,'CONVERGENCE=*,1PD12.5,*' KEPEQ"')
EC=ET
ET=ET+DETN
DO 1 I=1,100
SINET=DSIN(ET)
COSET=DCOS(ET)
F=RN*(T+TSTAR)-ET+EPS*SINET
DF=EPS*COSET-1.0D0
ET=ET-F/DF
DIF=DABS(F/DF)
IF(DIF.LYT.1.0D-10)G0O TO 2
1 CONTINUE



WRITE(6,601)DIF 67
2 DETN=ET-ED
S(1)=A%(COSET-EPS)
S{2)=A%DSQRT (1. 0D0-EPS*EPS) #SINET
${3)=0.0D0
RETURN
END
//7G0.SYSIN DD %
TEST RUN
TFFETTITITFTTTITTITTITTTITTSTTITVITITITRITNNTNNT
FEFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
10 6 4

34.0 39.0 0.01 0.1
«366447 275514 «192315 -.141411 -.106223
3318.76000.0052056 .846765 6.0 1142.8

0.01 0.01 0.01

-¢072940
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