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REMOTE PROFILING OF LAKE ICE USING AN S-BAND SHORT-PULSE

PADAR ABOARD AN ALL-TERRAIN VEHICLE

^` N	 by Dale W. Cooper, Robert A. Mueller, and Ronald J. Schertleri
NASA Lewis Research Center, Cleveland, Ohio 44135

ABSTRACT

An airborne short-pulse radar system to measure ice thickness

was designed and operated during the 1973-74 and 1974 - 75 ice seasons.

io 	 This system supported a joint effort among NASA, the U. S. Coast Guard
co

and NOAA to develop an ail-weather Great Lakes Ic,- " uurmation System

which aids in extending the winter navigation s,a=	 This paper describes

experimental studies into the accuracy and limitationi: of this short-pulse

	

L'	 radar system. A low power version of this system was built and operated
4

from an all-terrain"vehicle on the Straits of Mackinac during March 1975.

The vehicle allowed rapid surveying of large areas and eliminated the

ambiguity in location between the radai; system and the "ground truth"

ice auger team which is unavoidable fcA the airborne versions of the system.

These in situ measurements also permitted an assessment of the effects of

snow cover, surface melt water, pressure ridging, and ice type upon the

	

^	 accuracy of the system, Over 25 sites were explored which had ice thick-

ness in the range of 29 to 60 cm, The maximum radar overestimate was

	

^	 9.8 percent, while the maximum underestimate was 6. 8 percent. The

average error of the 25 measurements was 0, 1 percent.

INTRODUCTION

During the past three years NASA, in conjunction with the U. S.

Coast Guard, National Weather Service, National Oceanographic and

Atmospheric Administration, and U.S.. Army, has been developing an

Y'
i'
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f all-weather Great Lakes ice information system to aid in extending the !

t

winter navigation season. 	 An extended season has the potential of saving

A millions of dollars in coal and ore shipping costs, since cargo must now be

shipped by more costly rail or truck routes or stored until spring thaws.

The entir:i operational ice information system is scheduled to be turned

over to the U.S. Coast Guard by the end of the 1975 -76 ice season.

The Great Lakes ice information system primarily uses a side-

looking airborne radar (SLAR) aboard a U.S. Coast Guard C-130 aircraft.
E

This X-band radar is an improved version ofthe system flown on Army
r

OV-1 aircraft in Viet Nam.	 The SLAR provides; an all-weather ^erial view i!

of the ice cover which is than transmitted to SMS (synchronous meteoro- {

— logical e'	 ' rite).	 From the satellite the information is retransmitted to 8F

a NOAA ,	 on at Wallops Island, and then via telephone lines to the U. S.

Coast Guard 's Great Lakes Ice Center at Cleveland for interpretation.

Detailed ice maps are then constructed and sent by radio facsimile to any

ship on the Great Lakes "With the appropriate recording equipment.	 This

information is updated daily to reflect ice shifts due to wind.
I

The SLAR system has proved to be t rery effective in determining I

ice location patterns and movement on the Great Lakes in virtually all types

of weather.	 The SLAR is very sensitive to surface roughness and discon- E

tinuties and readily gives the location of pressure ridges. 	 Because the
1i

^
surface pattern is most often a relic of the early history of the ice, the

t
j	 f
!j

SLAR imagery cannot be interpreted directly to give ice thickness. 	 To

supplement the SLAR data ice auger teams have been used in the past, but

these ground truth measurements are laborious, time consuming, expensive.,
I

f
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weather dependent, dangerous to personnel and cannot be done on a large

enough scale to map an entire lake in a reasonable amount of time. It is

for this reason that a short pulse (one nanosecond) S-band radar system

* "	 was developed to profile the thickness of ice remotely.

The remote ice measuring system was fi it designed and

tested for feasibility during the winter of 1972-73 and flown successfully

aboard a U.S. Coast Guard H-53 helicopter at altitudes up to 100 meters

[Vickers et al., 1973]. Other radar methodss, were considered [Page et al.,

1973: Iizuka et al., 1971], but appeared to have possible operational and

resolution problems.

For the next ice season (1973-74) the nanosecond radar system

was redesigned to be used as an ice profiler aboard a C-47 aircraft
j	 [Cooper et al., 1974]. This system-;roved operational at altitudes up to

2300 meters and ground speeds of 75 m%sec. The radar was able to detect

ice thickness from 10 cm to 92 cm, the upper limit being the thickest ice

found on the Great Lakes in the past two ice seasons,

As thickness data from the short-pulse radar system was

•	 utilized in an operational program in support of the SLAR during ice sea-

sons 1973-74 and 1974-75, questions arose as to the radar's accuracy and

{{
	 operational limitations. During some initial helicopter check out flights

j	 a small amount of calibration data was taken. Some more calibration of

I	 the short-pulse radar system on the C-47 aircraft was done in conjunction

with an ice auger team on Brevoort Lake in the upper i3eninsula of Michigan

west of the Straits of Mackinac during the ice season of 1973-74. TbQ lake

was of relatively uniform thickness and easy to locate by aircraft. G The
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radar data checked the auger team to within 2 cm. Because 3i was not

possible to exactly locate the ice auger team on a flight line, some uncer-

tainty in the calibration remained.

Operationally, results from the C-47 flights had shown that the

radar was unable to detect less than 10 cm of ice and that measurements

were precluded wherever surface melt water exceeded about 1 mm in

thickness, because of lack of penetration. Snow cover on the ice was never

found to be a problem unless the snow surface was slushy. The S-band radar

system worked well in any type of weather except rain which, of course,

has the same effect as melt water.

Calibration of the system could not be performed readily in the

laboratory because of the large amount of ice and water required to approxi-

mate a planar surface. In the laboratory it also would be difficult to make

any supporting structure nonreflective to microwaves. The dielectric con'

stant of ice made from pure water has been measured in many laboratory

studies [Birks, 1961; Cumming, 1953; Evans, 1965]. Von Ripple [1954]

found the dielectric constant of ice to be 3.2 at S-band, decreasing to 3. 17

at X-band. Accurate measurements of ice thickness depend on a good

knowledge of the dielectric constant of lake ice.

To help facility" = ue ter radar measurements, ten lake ice sam-

ples were taken from the Straits of Mackinac and Whitefish Bay during the

winter of 1973-73 and analyzed for dielectric constant and loss tangent at

Stanford Research Institute [Vickers, 1975]. The diameter of the samples

was 7 . 6 cm with thickness ranging from 30 to 78 cm. Various ice types

were in the samples, i.e., clear, milky with small air inclusions, and

---r,
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mo .dy clear with large layered inclusions. Ice machining to permit the

i

	

	 insertion of the sample in the teat wave guide was performed in an environ-

mental chamber at -10 0 C. The relative dielectric constant for lake ice

from 1 to 18GHz was found to be 9, 17 for clear ice with no inclusions, 3.08

for milky ice with small (less than 540-2 em diameter) air inclusions and

2.99 for clear ice with large (greater than 0, 6 cm) air inclusions. Whereas 	 r

these results are in the expected range of values, the laboratory method

requires ice storage for long periods of time prior to examining as well as

machining which could possibly alter the measured results.

Because locating an ice auger team directly on a flight line for

accurate system calibration was considered nearly impossible, it was

decided to build a low power radar which could be mounted on an all-terrain

yehiclr. With this configuration the radar could be easily checked without

Location ambiguity. A low r. f. power radar was required to insure person-

nel safety. A portable gasoline generator supplied the auxiliary 115v, 6011z

electrical power. The all-terrain vehicle was borrowed from the Coastal

Zone Labs of the University of Michigan at Traverse City, Michigan._ 7 fie

actual research using the all-terrain vehicle on the Straits of Mackinz4^: =,v as

performed in the second week of March.

THEORY AND SYSTEM CONFIGURATION

The short -pu'.'se radar system works on the basic radar principle

t^

of time delay. From an aircraft the radar pulse may be considered a plane i
wave which is partially reflected upon incidence at the surface of the air-ice

or snow - ice interface. Part of this wave continues on through the ice at a !
slower velocity due to the increased relative dielectric constant. At the

i

r
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ice-water interface total reflection takes place and the wave continues at

its slow rate back to the air-ice or snow-ice interface, The receiver

measures the time delay between the partially reflected incident wave

and the wave which continued through the ice to the water interface and

back before preceeding to the aircraft. To know the velocity of the wave 	 V

in the ice, the relative dielectric constant must be known. In addition to

ice thickness, a measure of the time that the partially reflected incident

wave takes to return to the aircraft gives aircraft altitude.

The time delay t in nanoseconds can be directly related to the

ice thickness, x in cm, by the following expression if the relative dielec-

tric constant of ice, e r, is known:

x^14.99t/V^

Generally a relative dielectric constant of 3. 1 `[Vickers, 1.9751 is assumed

for lake ice which yields:

x = 8.51 t

The short-pulse radar system hasmade ice thickness measure-

ments in support of the SI .AR imagery during the ice seasons of 1973-74

and 1974-75. As previously mentioned, aircraft location is of prime impor-

tance because radar makes measurements at the nadir the aircraft, NASA"s

C-47 aircraft is equipped with an inertial navigation system ( INS) which is

accurate to t 1 . 85 Km after one hour. While the INS is adequate for

making ice charts, good calibration cannot be performed.

Both C and S-band versions have been employed on the C -47 air-

craft, but the S-band proved operationally superior because of better system

components. The aircraft radar system block diagram is shown in Figure 1.
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The S-band system used; either random noise or continuous wave modula-

^'	 tion at 2.86 GHz. Random noise modulation was used to avoid the possi-

bility of coherent interference between the transmitted pulse and other

interfering signals. In actual operation this problem did not occur as

theorized,

,-

	

	 The heart of the system is the nanosecond pulse generator

which when mixed with the S -band oscillator allows only a few cycles of

r. f. power to be transmitted. For this purpose, a double mixer system

is employed to decrease feed thru from each double balanced mixer. The

length of coaxial tr-)nsmission line to the second mixer is cut to the proper

length so both pulses ;, the output of the first mixer and the output of the

pulse generator, arrive simultaneously. The traveling wave tube ampli-

fier gives over 20 watts of peak power. The solid state pre -amplifier

r
maintains a proper input level. The entire system bandwidth must be

greater than 1 GHz, as dictated by the nanosecond pulse.

For the purpose of narrowing the receiver antenna patter., 4

ridged horns feed a combiner and then a low noise (8.8 db noise figure)

solid state amplifier, all located in close proximity. After detection a

1 GHz sampling oscilloscope was used for the final display. The radar

was initially triggered by the clock ;which operated from 40 to 250 kHz.

The oscilliscope was triggered from a delay unit which started the scope

at the precise time that the return pulses were received. A manual

adjustment was used on the delay unit which required consta`at manipula-

tion by the operator as the aircraft altitude changed to keov the data dis-

played on the oscilloscope face. Recording of data was done with an
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oscilloscope camera. Typical aircraft ice return displays have been
i

reported [Cooper et al., 1974 Vickers et al., 1973]. A new design is

now being formulated which determines the ice thickness electronically

and corrects for any aircraft altitude changes. In addition this new system

will profile the ice surface, permitting the detection of ice ridges.

ALL-TERRAIN VEHICLE CONFIGURATION
	 r

When applying radar principles to an all-terrain vehicle, the,

nearness of the ice involved new considerations. It was necessary to de-

termine that the ice surface was in the far, not near, field of the transmit-

ting antenna. Near field calculations were made on the S-band pyramidal

ridged horn [Harrington, 19611. At least 20 cm of separation were required

between the transmitting horn and the ice surface.

Personnel safety was of primary importance because of long

exposure times, so the radio frequency power density in any personnel areas

was maintained below 1 mW%cm2 . This was a full decade below usual U. S.

safe standards. Fortunately this still allowed sufficient power to make

thickness measurements. The 115V, 60 Hz power was supplied from the

auxiliary gasoline generator.

The radar for an all-terrain vehicle is simpler than the airborne

system because of the lower radio frequency power levels involved. The

all-terrain vehicle S-band short pulse radar block diagram is shown in

Figure 2. This system differs from Figure 1 in that there was no random

noise source, transmitter traveling wave tube amplifier and delay unit.

The solid state amplifier was the final transmitter with only 10 dBm out-

,_ ut which insured personnel safety. Triggering of the sampling oscillo-
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scope was directly from the clock without a delay unit.

'j	 The system was composed physically of four subsystems, i. e. ,

t the clock, the sampling oscilloscope, the; 1;ransmitter and receiving radar

module and the two ridged pyramidal horns. The transmitting and receiv-

ing module with power supplies weighed 2.7 Kg.

The all-terrain vehicle in operation is shown is Figure 3. This

vehicle allowed 3 persons to be carried at speeds up to 48 km/hr. Due to

`

	

	 the low bottom of the vehicle, deep snow and high ridges were impassable.

Polyethylene bags were placed over the horn antennas to keep mud, snow,

and water out of them in transit. With clean bags over the antennas the

system was completely operational on the ice. The antennas were extended

r	 1.5 m from the rear deck of the ail-terrain vehicle and both were adjusted

in the traverse plane while pointing downward to have maximum output. The

transmitting horn's source of radiation was taken to be 1.30 m above the ice

surface, while the receiving horns point of collection was taken to be 1. 14 m

above the ice surface. The distance between these points measured parallel

to the ice was 1.25 m.

In reducing the data from the all-terrain vehicle, it was neces-

sari to take into account the geometry of the situation. Since the receiving

and transmitting horns were in a nonsymmetrical configuration the geomet-

rical theory of diffraction [Kline et al. , 1965 ] was employed in data reduc-

tion. Computer iterations using ray tracing techniques at various thick-

nesses accounted for refraction at the ice surface. The wave propagation

was entirely normal in the aircraft model.

The wave bending as it enters the ice may be obtained from Snell's

y	 y
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law for electromagnetic waves [Harrington, 1961]. The angle to the normal

in air at the ice surface, B, may be related to the angle to the normal in ice,

V, by the relative dielectric constant of ice, Er'

sin q9 = E sin G

r

For this all- terrain vehicle radar system, the computerized ray tracing

technique yielded the following approximate equation for ice thickness over

10 cm:

X sts 8.77 t if c  = 3.1

A series solution can also be obtaiaed [Cooper et al., to be published 19761

that yields the same result. Where ice is not identifiable, a dielectric

constant of ice, c  of 3. 1 was assumed.

On the C -47 aircraft a refracted wave, directly from the transmit-

ter to receiver, was an inconsequential problem because essentially it

occurred microseconds prior to the two return pulses separated only by

nanoseconds. It could readily be removed from the receiver return.

On the other hand, in the all-terrain vehicle configuration due to

the short distances, this refracted pulse exists in all the data and there-

fore must be disregarded. The first pulse is the refracted pulse, the sec-

ond pulse is a surface reflected wave, while the third pulse is reflected

from the water as shown in Figure 4.

Data were originally to be taken with a polaroid " oscilloscope

camera. The severe cold caused the shutter to stick and visual data could

only be taken with a 35 mm camera. A typical ice return is shown in

is
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Figure 5, This photograph was Oken on the Straits of, Mackinac near

St. Helena where the auger team measured 39 cm. The feed-thru pulse

occurs first followed by the pulse from the ice surface and finally by the

pulse from the ice-water interface. The measured radar delay is 4.2 nan-

oseconds or 36.8 cm of ice if the relative dielectric constant is 3.1. This

ice was covered by 8 cm of snow which is not detectable. The ica appeared

milky with some similar air inclusions.

TEST RESULTS

The short pulse radar was calibrated by comparing actual auger

and radar measurements, This calibration was done on the Straits of

Mackinac from March 1244, 1995.

Over twenty-five sites were examined and measurements, were

compared. Considerable effort was made to find varied sites, i.e., different

ice types anti thicknesses. Ocassionally deep snow made the all-terrain

vehicle inoperable. Essentially all the encountered ice was snow covered

as shown in Figure 3. Up to 25 cm of snow was found at one site but it

did not affect any of the radar measurements except when the snow had a

slushy crust which was only found at one location. Snow was usually re-

moved around the site to help identify the ice type. Large blocks were not

removed as had been in previous ice studies at the Straits of Mackinac.

Usually a dielectric constant of 3.1 was assumed.

Previously the airborne radar sometimes became inoperable in

warm temperatures. Surface melting was theorized as the problem. Exper-

iments were performed which verified the fact that melt water prevents pene -

tration of the radar wave into the ice. Tests showed that de-ionized water

was as effective as lake water in preventing penetraticn,
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The all-terrain vehicle was very limited in crossing ridges due

to its low underside. Because there was fear of becoming immobile in deep

snow, hourly check-ins by marine radio were made to the local U.S. Coast

Guard.

Near the Mackinac Bridge, a pressure ridge was studied where

two slabs of ice had refrozen, one over the other, The radar quickly re- 	 r

vealed an ice step from 29 cm to 50 cm. Auger measurements supported

this finding. A high rafted area 82 cm thick gave inaccurate radar results

of about 35 cm but investigation revealed that the ice had a slushy interior.

Another rafted area measured 110 cm with the auger, but the radar gave a

reading of only 93 cm. Large air pockets were present indicating that the

relative dielectric lo.ks, tant, Er, was assumed too high at 3. 1.

For inform ice with small air inclusions the radar and auger

measuremen t s were in close agreement assuming e r = 3.1 in over 25 differ-

ent sites as shown in Figure 6. The line represents exact agreement be-

iween auger and radar measurements. These sites had ice thickness in the

range from 20 to 60 cm.

DISCUSSION OF ERROR

Some of the data scatter in Figure 6 was directly attributable

to the ice auger team. The ice auger measurements could be up to f 1 cm

in error due to tape reading, a local convexity or concavity at the bore hole

and top and/or bottom surface roughness. This estimate has taken into

-account considerable past ground truth experience which has shown the bot-

rom surface of lake ice to be relatively smooth and flat.

'l

L_
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The radar measurements shown in Figure 6 were normalized to

the auger measurements for comparison. The maximum radar overestimate

was 9. 8 percent, while'Whe maximum underestimate was C.6 percenL The

average error of the 25 measurements was 0.1 percent.

A major unknown in the radar mesurements is the true dielectric

constant of the ice. In fact, all measurements could be considered exact if

the dielectric constant of the ice varied from 2.8 to 3.8. As can be seen by

the magnitude or these numbers, they are out of range of what ice is thought

Lo be and other factors are contributing to the errors.

In the present configuration the pulse time delay can only be

accurately read to about 0.2 nanosecond which corresponds to a 1.75 cm

thicknesL error which is about 5%pf a 35 cm measurement.

Another concern is the locatiun of the actual, electrical interface.

It could be above the actual ice-water interface or the ice and water could

have an air pocket between them.

The aircraft system has not been able to measure ice below about

10 cm because it is not possible to separate the two return pulses. This

limit has not been veriied pith the all-terrain vehicle radar system because

no ice was found at the proper thickness. A measurement of 92 cm of lake

ice has been detected from an aircraft, which is the thickest lake ice-we have

found in the past two ice seasons.

CONCLUSION

The short pulse radar system has been demonstrated to be an

accurate remote lake ice measuring device. Snow cover or adverse weather

generally did not interfere with making measurements. Surface melting

and rain however preclude measurements. 	
it
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Further studies are necessary to establish the varl ibility of

the relative dielectric constant for lake ice. The best mearWto do this
i

is in situ, possibly with the short pulse radar and an auger team. For 	 i
next ice season a radar system is being built for the U. S Gast Guard's

HV-16 helicopter stationed at Traverse City, Michigan, This could allow

many different types and ages of ice to be studied throughout the ice season, 	 f
I

NASA's OV-1 and Coast Guard 's C-130 aircraft will have C-band

versions of this radar system for next winter. At the higher frequency,

smaller antennas will be used, but surface roughness may be more of a

problem. A half nanosecond pulser will be used to increase the resolution 	
I

of the instrument.

Electronic processing of the data will be done and manual setting 	
i

of the oscilloscope trigger delay will no loiger be required. Pressure 	
I

ridges will be studied b- noting any rapid charges in the first return pulse.

Knowing the pressure ridge height relative to the surrounding ice field

should yield ridge thickness, assuming that the ridge is in isostatic'ualance,

i. e. , its weight is supported by its bouyancy, not by stresses in the sur- 	 i^

rounding ice field.

pi
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Figure 4. - Short-pulse radar all-terrain vehicle configuration.

Figure 5. - A typical ice return shown on the face of the sampling
oscilloscope 12 nano-sec/div.).
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