
General Disclaimer

One or more of the Following Statements may affect this Document

 This document has been reproduced from the best copy furnished by the

organizational source. It is being released in the interest of making available as

much information as possible.

 This document may contain data, which exceeds the sheet parameters. It was

furnished in this condition by the organizational source and is the best copy

available.

 This document may contain tone-on-tone or color graphs, charts and/or pictures,

which have been reproduced in black and white.

 This document is paginated as submitted by the original source.

 Portions of this document are not fully legible due to the historical nature of some

of the material. However, it is the best reproduction available from the original

submission.

Produced by the NASA Center for Aerospace Information (CASI)

—T—	 F

FORTRAN AUTOMATED CODE EVALUATION SYSIEM (FACES)

SYSTEM DOCUMENTATION

Version 2, Mod 0

IBM Host - ModComp FORTRAN

September, 1975

(V ASA-C--14x492) Q CFTRAV AUTOMAT F D CODE	 N75-33746
v VATUAT?ON SYS Tr m (F ACTS) SYSTF"!
nnr [1M71 ' TA.TI0 %T, V- a SiO'k -, MnD C (Frown and
F a :u a moor* hv, Tn^7., Perkeloy, Calif.)	 544 p	 rinclas
H- $11.nr)	 CSCL rOn (0/61 42348

Cont:-act : # NAS8-30928

BROWNE	 &
RAMAMOORTHY, iNC,
1550	 Telegraph	 Avenue, Suite 404, Berkeley, Ca.. 94704

(415) 8480161

d

t

i

4.^
Table of Contents

1
FACES Objectives I

` Overview of System Operation II

Design Requirements III	 r
i

Control Driver IV

FORTRAN Front End V

I
Automatic Interrogation Routine VI

E Report Generator VII
^i

Input/Output File Description VIII

Data Structures (see local Table of Contents)	 IX

COMMON Block Descriptions X

Detailed Module Descriptions XI

G

d

a

i

i

s

t	 ,'

AML

i

Definitions

Computer Word - The word size of an integer word on the host machine.

Host Machine - Computer system on which the FACES system is run.

Local Tables - Analysis tables constructed by FACES to describe

,. the activities of a module.	 The Local Tables are

the Symbol Table (with overflow), Use Table, Node

Table, Successor Table, and Predecessor Table.
x

Logical Column Logical columns indicate the association of table

entries which require different physical word

storage.	 If multiple data items are packed in a

{ single word, several	 logical .columns are9	 9	 ^

represented in a word.	 If a data entry is longer	 {

than	 one computer word, several words may be used

for one logical	 column.

i

Computer Word	 Computer Words
1	 1	 2

1	 2	 3	 1

Logical	 Columns	 Logical	 Coluirn

' (Packed Data)	 (Long Data Item)

Module - FORTRAN subprogram presented for analysis. 	 May be

` a main program, subroutine, function, or BLOCK DATA.

I;
1

'

r,.

I

I.1.	 1

I. FACES OBJECTIVES

The FACES system processes FORTRAN based software systems

to surface potential problems before they become execution malfunctions.

Analysis services complement the diagnostic capabilities of compilers,

loaders, and execution monitors rather than duplicate these functions.

FACES emphasizes frequent sources of FORTRAN problems which require

inordinate manual effort to identify.

The principle value of FACES is extracting small sections of

unusual code from the bulk of normal sequences. Code structures likely

to cause immediate or future problems are brought to the user's attention.

These messages stimulate timely corrective action of solid errors and

promote identification of "tricky" code. Corrective action may require

recoding or simply extending software documentation to explain the

unusual technique.

Effort is directed toward identifying errors which would produce

legal FORTRAN programs , - subject to malfunction. These problems are
	 .

extremely difficult to identify and correct:

1. legal interfaces among modules which appear suspicious.

2. Code subject to misinterpretation during maintenance and

.modification.

3. Algorithm independent illogical operations.

4. Keypunch errors likely to escape compilation diagnosis.

5. Hazardous calling sequences among modules.

i
9

r

j

i u
3.

I.1.	 2

Subsystem Objectives. FACES is composed of 4 components:

j	 Control Driver, FORTRAN Front End, Automatic Interrogation Routine,

i'	 and Report Generator. 'Each component has subordinate objectives in

accomplishing code analysis.

Ik 1. Control Driver. The Control Driver performs file positioning

and housekeeping functions to coordinate resident data between

-^`	 runs and coordinate subsystem resul-ts.- The control routine

is also 'responsible for interpreting command control cards.

i,	 2. FORTRAN Front End IffLI. The HE processes new FORTRAN source

code providing analysis tables and a catalogued file of module

source text. The FFE provides FORTRAN interpretation to the

source code instructions provided. Error detection is limited

{	 to code features or system constraints which impact analysis

scope. ,

3. Automatic Interrogation Routine AIR). AIR inspects the

analysis tables for specific constructions under user selection I

control. Where constructions of interest are found, message 	 -'

flags are recorded for use in generating reports.

4. Report Generator. The report generator constructs user dis-

plays of the analysis results.

I:

i

y'

r

II.1.	 1

i

j

f
I

II. OVERVIEW OF SYSTEM OPERATION

FACES incorporates aspects of compilation, file management,

and data base interrogation to provide an analysis system suitable

for investigating software systems. Since some code normally.becomes

available before a runnable configuration is achieved, FACES adapts

its operation to analyze whatever code is currently available. As new

.modules are added, the new source code is included in the analysis.

For ease of operation, old modules are maintained between runs,

allowing incremental addition to the software data base.

The system can be initialized to an empty state for the first

run, creating an empty directory of modules, empty source code catalogue,

and empty analysis table file. The first set of FORTRAN modules is

analyzed, creating directory entries, analysis tables for each module,

and module source text added on a Source Code Catalogue. After the

initial system has been created, new modules can be added or existing
l

modules replaced with new versions. File status is automatically up-

dated on each run. a

Analysis is requested by the user either when adding source or

in a stand-alone run. The Automated Interrogation Routine performs

the selected analysis using information_ created by FFE on the analysis

table file. In addition to servicing user requests, AIR also performs

It
	 queries" which construct global data for the system extracted

from the current module set local descriptions.

During analysis, AIR reports findings.of investigations on a Flag

file. Flag file entries identify the source code lines participating

.	 v

4 xb

a

s

z

1 a.

i

f

i	l

r'

E:

1

11. 1.	 2

in the result and provide support data to be included in the

diagnostic message..

The Report Generator collects the information generated on the

Flag file and produces user reports of the analysis results. These

reports consist of messages generated by the FFF and AIR associated

with the source code card images obtained from the Source Code

Catalogue.

To consolidate report information, a sort of the Flag file is

required before actually producing the report, The sort action permits

redundant messages to be suppressed while printing the report, and

association of several messages with the same source line.

s
i

j

The following is a list of design requirements which influenced

the selection of techniques for construction of FACES.

!	 1. Historical Influence. FACES Version 2 is adapted from

methodologies and techniques developed from FACES Version 1.

To minimize development cost, a complete redesign of the

system was excluded. Enhancements were limited to extensions

and refinements of established processing methods.

k	
2. Transportability. The FACES system is constructed for trans-

portation to different operating environments.

3. Maximum Acceptance of FORTRAN Dialects. FORTRAN analyzed is

 primarily ANSI Standard text with common computable extensions

included in the analysis. Where conflicting forms of state-

ment_exist on several machines, statements_ are excluded from

the analysis.	 f

4. System Extension. The FACES system is designed for extension

of capabilities. Coding techniques allow for the possible

A

addition of capabilities while maintaining core processing

intact.

5. Operational Simplicity. Coding techniques emphasize simplicity.

in processing and ease of understanding :rather than optimal

execution speed. Speed improvement is anticipated through

improvement of time dominate routines found after installation.

6. Processing Contauity. The user should receive some benefit
r

from each run. Where limitations on processing occur, the

III.1.	 2

'	 procedure is to truncate processing and continue. Only

operational impasses result in abort termination.

7. Familiarity in Result Re op rts. Since the user's primary

familiarity with the subject software system is a compiler

listing, the source code listing is the primary vehicle for

reporting results. Extracting source lines is desired over

referencing artificially established numbers attached to
	 s

listings..

8. Reliability. Since FACES encourages coding practices to

increase software reliability, the techniques encouraged by

analysis are used in construction of`the FACES system. In

addition, reliable coding techniques beyond analysis capabili-

ties are employed to detect errors and recover from system

malfunctions.

i

I

III.2. 1

Coding Conventions. To enhance code uniformity and improve

transportation of the FACES system, several coding conventions

were adopted for implementation.

1. ANSI Standard FORTRAN. ANSI Standard FORTRAN was adopted

for system implementation. Where deviations from the Standard were

accepted, the potnetial impact of code transportation was carefully

weighed by considering features commonlh available from resident com-

pilers. The following are accepted deviations:

1. Use of IMPLICIT. Since all FACES variables are integer type,

the use of IMPLICIT was considered desirable. All routines con-

tain an IMPLICIT (A-7_) statement.

2. Use of ' in FORMAT character literals and comments.

Since the use of ' can be easily converted to the appropriate

H form by a mechanical process, the use of ' delimited character

strings was permitted in a limited context.

3. EOF detection for sequential files. ANSI Standard FORTRAN

provides no detection mechanism for determining the end of a

variable lenght sequential file. Resident machine dependent code

is used to determine the end of file. Physical I/O routines are

isolated to independent routines to simplify conversion.

Although specified by ANSI standard,-allocation-of core for multidimen

sional arrays is not assumed. Additionally, many standard constructions

such as EXTERNAL, ASSIGNED GO TO, etc. were excluded from implementation

techniques after being judged 'too difficult to maintain.

2. Variable Names. Variable names are restricted to a maximum of

111.2.	 2

6 characters. Since all variables are integers, lVading character con-•j

ventions were not considered significant. Where the variable represents

a character string, the name chosen is Hxxxx, where xxxx represents the

characters. For example, the variable containing the Hollerith character

A is called HA.

3. Data Values. In general, FACES variables are either numerical

integer values or character strings. Numerical values use positive inte-

gers tb avoid problems of packed data stored in single words. The value

zero is reserved in coding schemes to indicate a null or empty stake. If

a numerical value is used for a logical indicator, the value zero is used

for the FALSE condition and positive value (usually 1) is used for the

logical TRUE condition.

Character strings are stored in Hollerith format since this is

the only ANSI Standard form of character representation. Character

variables also use the value zero to indicate an empty state. Since no

machines known to the designers have a valid Hollerith character string

represented by all zeroes, this technique should be 'transportable to

new host environments.

4. Physical Computer Words. FACES assumes a minimum integer word'

size of 32 bits. No more than 32 bits are used by any variable regard

less of physical host word S 4 ze. Bits are numbered for internal use

from the leftmost (most significant) starting with the number 0 increasing
	

3 3

to N, the right most bit. Characters within a word are numbered from the

left Piost character starting with the number l for the first character.

(At most, four characters are packed in a single integer word.

1

0

III.2.	 3

5. Data Elements. Preference is given to full integer words

for holding values. If packing is required, numerical values are

packed two to a word. Where the significant value is contained in

half an integer word, the data item is called "half word data". Half

word data physically occupies a full integer word when unpacked.

Machine dependent use of physical half words are not used in FACES.

On some occasoons, bit field flags are used in packing table

data. Flag bit fields are allocated to the leftmost position of

computer words.

Data values are right justified for numerical codes and left

justified for character codes. If the data is held in a half word of

host memory, the physical word is divided and the data is justified 	 g

in the separate regions.

6. Data Structures. Numerous tables are used to implement
3

FACES processing. Tables arc physically implemented by FORTRAN

arrays. The array declaration is of the form A(w,l) where w

is the width of the table entries and 1 is the length of the table.

By convention, the declaration of a table requires

establishing table control variables. These variables include pointers

to access table entries and a length variable to control overflow

conditions. If the array name is TAB, conventions require the current

pointer to be named to be named PTAB, the pointer to the last entry

(for sequential tables) must be named PLTAB, and the physical length

indicated by LTAB. Additional descriptive pointers maybe included in

the data structure description, however, no firm convention iswrequired

r

I/O unit Number of the file

file record size

length of the file

end of file indicator

pointer to file records

is

is

is

is

is

the

the

the

the

the

III.2.	 4

for the additional descriptors. By convention, the table is empty if

w
the pointer to the last entry has value zero.

7. COMMON Block Convention s. Preference is given to numerous

	

s	 -

small labeled COMMON blocks which are identified with a data structure

or processing function. All COMMON declarations are identical in

separate routines.

COMMON blocks which implement tables are of the genereal form:

COMMON /GEN/ GENTAB(x,y), LGEN, PGEN, PLGEN

where

GENTAB is the table space

LGEN is the length of the table (value y)

y	 PGEN is the pointer to the current entry

	

f	 PLGEN is the pointer to the last nonempty entry in the table

If a hash coded table is constructed, the pointer to the last nonempty

entry is replaced by a prime number variable to be used in the hashing.

Where the COMMON block describes an I/O file, the general form

is:

COMMON /FILE/ FILER, RSFILE, LGFILE, EFFILE, PTFILE

where

FILE is the file name

r: I LEaL

RSFILE

LGFILE

EFFILE

PTFI'LE

L

C

III.2-.	 5

Not all variables are needed on all files, although they are all

declared. If future needs arise for these file descriptors, the

assigned names should be used as the required variable.

Blank COMMON is reserved for the largest local table.

8. Statement Labels. All executable statements are labeled

in increasing numerical order. Associated code sections are

grouped with common leading digits. Substantial breaks in program

logic begin new label sequences.

All DO loops are assigned unique terminal labels. All DO

loops are terminated by CONTINUE cards to set off the loop. Loop

interior code is indented.

FORMAT labels are distinguished from executable labels by

conventions.

Where independent cases are treated in the code, statement

labels are assigned to indicate the case being processed.

9. Comments. Liberal comments are included with routines.

Comments are the primary method of describing what is occurring

in the executable code. Comments provide overview, warnings, and

assertions of conditions in the program at strategic points.

10. Code Structure. All nonexecutable declarations appear

prior to executable code. Declaration of arrays is preferredin the --

COMMON statement if the array is used by more than one routine.

Code is structured by either statement labels or indentation.

All DO loops are indented. Fully indented routines are an experimental

form of structured programming applied-in-FORTRAN. Branches are not

_	 ^	
n

III.2.	 6

allowed to enter a structured section except at the heading statement.

Iterative structures implementing the WHILE condition are pretest

loops; UNTIL structures are pest-test loops.

FORMAT statements follow the first I/O statement which references

the FORMAT. Preference is given to ass ,igning individual FORMATs to each

I/O statement.

COMMON blocks are ordered alphabetically on the COMMON label.

Routiii_es..are ordered alphabetically on the routine name.

11:) Error Detection and Control. Substantial code is dedicated

to internal error control. Parameters and table entries are checked

prior to use. Overflow of arrays is checked. Where errors are detected,

error-reports are issued. If processing can proceed, corrective action

is taker.

12. Programming Techniques. To facilitate modification,

physical data structures are concealed from processing routines.

Complex structures are managed by independent routines under the direction

of processing routines.

Although negative values are avoided in the system, the test

for zero is frequently implemented by .LE: or .GE. operations.

a
This technique ,permits error-recovery if an illegal value is

assigned.

Routines are coded to be serially reusable. Any values stored

between calls are placed in COMMON to prevent problems in future over-

lay environments. local variables are not set with DATA statements.

Tables are frequently cleared to zero prior to inserting;.	 Q	 y	 P	 9 data.

i

III.2.	 7

The clearing operation is protection against possible malfunctions..

r	 Processing rotuines do not assume initially cleared tables.

Machine dependent routines are coded as stand alone modules to

permit easy modification and transportation. Any routine performing bit

manipulations or machine dependent I/O is considered machine dependent.
r

k	 Integer rounding division is used to compute the integer least

upper bound on a value. For example, to compute the number of positions

r
required to store an - element of length A in groups of N elements per

t	 entry, the computation (A+(N-1))/N is used.

The intrinsic FORTRAN functions MOD, MIND, and MAXO are used

in the system. MOD is used to perform table wrap-around searches.

Where the table length is L and the current pointer is P, the expression

1	 P = MOD(P,L) + 1

yields the next table position in wrap-around fashion.

13. Initialization. In general, each subsystem is responsible

for initializing table entries and data structures unique to the sub-

system. If the data structure is used by all subsystems, initialization

is performed in BLOCK DATA.

Since the ANSI standard permits DATA statements to set COMMON
a

variables in BLOCK DATA only and restricts ,Hollerith character strings

to parameter lists and DATA STATMENTS, all variables requiring char-

acter literals are set in BLOCK DATA.

Data structures and variables not used by all subsystems are

established in an INTxxx, where xxx is a`subsystem identification.

-1

k

j

h

4

i

w-

f

F'

j

III.2. 8

SPECIAL NOTES: Initial system development permitted heavy use of the

two branch logical IF statement. This form was mistakenly assumed to

be widely implemented. When it was discovered that the form was

restricted to a few machines, statements of the form

IF(condition) 1,2

where mechanically converted to

IF(condition,) GO TO 1

GOTO2

Both forms read

"IF condition THEN 1 ELSE 2"

i
	

IV. 1.	 1

i
i

VI.
	 Control Driver

Design Considerations

Purpose. The Control Driver coordinates activities of the

functional subsystems to produce analysis results requested by the 	 r

user.

Requirements. The Control Driver manages file positioning and

command card interpretation to control FACES activities. The control

structure was designed to facilitate operation in an overlay environ-

ment with at most one subsystem core resident at a time. Due to

limitations encountered in installation, the control was divided into

3 phases of operation, with each phase controlling one subsystem.

The Control Driver should interpret card image control commands

given by the user and construct internal control variables to cause

.proper execution of the desired function. The Control Driver should

inform the user of interpretation of the command and actions resulting

from the request. Any errors detected should be reported to the user.

In an error environment, a valid subset of operations should be

performed. If no valid activity can be derived from the command, no

action should be taken.

The Control Driver should isolate subsystems from file positioning

problems. Files should be positioned such that immediate use of the

file by the intended subsystem is not dependent upon the nature of the

run.

Command cards should be easy to construct. Natural language con-

struction is preferred to elaborate syntax. Where formal syntax is

t

r

	

IV. 1.	 2

required, the character set and expression format should be similar

to FORTRAN constructions.

Strategy. To accommodate overlay execution, the processing

subsections are driven from a central routine. The Control Driver is

responsible for command card interpretation and file controls, permitting

k
	

subsystems to be isolated from the activity sequence.

To simplify command card processing, a free field blank delimited

format was selected. Each command begins with a keyword followed by

qualifiers. The keyword is directly associated with a functional sub-

system; qualifiers are selected depending upon the capabilities of

individual subsystem controls. A.stand-alone command is implemented to

^I

	 initialize the system on the first run.

Since different subsystems require different manipulations and
{

user controls,.a link procedure subroutine is supplied to interface

each subsystem in the control strategy. 	
i

a

The link process interprets options for a particular phase and

establishes control variable values to drive the subsystem in thej
proscribed fashion.

3

	

Accommodating phased operation requi res distributi ng the command	
_a

'ontrol among different ,job steps of the run, In general, phases are

established along the lines of control card order. That is, Phase 1

will accommodate the addition of source code to the system (FFE activity);

Phase 2, analysis of code properties (AIR activities); and Phase 3, report 	 i
l

production (Report Generator activities),

Control among subsystems is effected by passing the control cards

and resident files among the subsystems. Thus, with the exception of

a

'i

{

IV.1. 3

the Control Driver, subsystems are not aware of the phased nature

of processing.

Overview of Control Driver Operation

The overview of control envisioned is illustrated in figure

Required procedures include initial file activities, distinguishing

initial runs from follow-on processing, accomplishing user requests,

and final file action to permit results to be saved for subsequent runs.

Processing of user requests is implemented as a processing cycle

controlled by command cards. The processing cycle is terminated by

detecting the end of a command card set.

Control commands are implemented using free format, blank delimited

commands. The first entry of the command (command keyword) identifies

the subprocess to initiate. Remaining control qualifiers are command

card dependent.

Command cards are interpreted as follows:

1. The keyword command item is interpreted to determine

the subsystem required for the processing request.

Z. A linking procedure is initiated to complete inter-

pretation of the command card and establish file and

control variable linkage to the subsystem.

Although command card interpretation is distributed, a common set

of subroutine calls is used to access command card data. Command card

entries are returned through a single COMMON block.

At the end of commands, file manipulations required to secure the

data are performed. Initial and final file manipulations may differ

among host machines.

I

i

a	 Control Driver logical Process	
IV.1. 4i	

ll

i^

	

	 ~

OPEN

FILES

i

Y	 N
INITIAL

4

t SYSTEM

INITIALIZE SYSTEM	 INITIALIZE SYSTEM

FILES AND TABLES	 FROM

FOR FIRST RUN	 EXISTING FILES

MO IE

x

-3

COMMAND 	
PROCESS USER

CARDS	
REQUESTS

CLOSE

FILES

Figure-IV-1

r	 _

b

IV. 1.	 5

Effects of Phased Operation.	 Although initially designed to

operate in overlays, the FACES system is installed in phases. Phased

operation became necessary because:

'	 1.	 A FORTRAN callable sort procedure could not be found and

insufficient development resources remained to construct

such a routine. 	 Sorting of Flag File entries is required

between analysis and report generation.

2.	 Insufficient time was available to actually set up the

overlays among routines.

With an eyetoward eventual consolidation of processing, the control

structure was adapted to operate in phases.

Phase 1.	 Phase 1 permits the analysis of FORTRAN source code

and incorporation of source in the analysis library.

Phase 2.	 Phase 2 permits the investigation of software in the

analysis library.

Phase 3.	 Phase 3 permits the generation of reports from in-

formation gathered during source code analysis.

On each run, all three phases execute.	 If command cards are
f^

absent for a particular phase, no action is taken by that phase.	 The

required sorting of Flag File entries is accomplished between phases 2
4

and 3 by system software.
a.

The primary effect of phased operation is restriction on command

card order and limitation to a single report request on one run.!

In implementation, phased operation required adaptation of the

Control Driver to the functions permitted within that phase. Essentially,^.	

this amounted to reducing the scope of control for three different copies

._	 i

4 }

CONTROL
DRIVER

(FACES)

LINK TO
OPEN FILES	 LINK TO	 LINK TO	 REPORT	 CLOSE FILE

FFE	 AIR	 GENERATOR
(FILOPN)	

(LNKFFE)	 (LNKAIR)	 (LNKRPT

INITIALIZE	 CONSTRUCT
SYSTEM	 FFE	 QUERY LIST	 AIR	 RPTGEN

(ISYSTM)	 USERQ

Phase 1	 Phase 2	 Phase 3

Control Driver Processing Hierarchy

Figure IV-2
C

a+

O► 	 i
1

}

.v

t 3

1

1

1

a	 IV.1.	 7

f
of the Control Driver. Identical control routines are found in each

phase. Control routines unique to a given subprocess are not included

in phases where that process cannot be performed. For example, the

linking routine to AIR is found only in Phase 2.

Processins! Command Cards

Command Card format. Command cards are single card images of

80 columns organized as a free field, order dependent sequence of

command items. Command items are delimited by blank characters or

special symbols. A series of blanks is equivalent to a single blank.

The first command card item is a command keyword identifying

which subprocess to activate for the user request. Remaining card entries

are keyword dependent options which may be omitted.

Acquiring Command Card Items. The flow of data from command cards

is illustrated in Figure IV-3.The command card entries are scanned in

sequential . fashion. Groupings of characters are collected by the scan

process into "command items".

Command items are one of the following forms:

1. Character strings of one or more alphanumeric

characters,

2. Single entries of special characters.

3. Single entries of special termination symbols.

The nature of the command `item is established by the first 'non

blank card character encountered. If the character is an alpha or

numeric character, the command card scan extracts subsequent characters

A

l

Command Card Data Flow
	

IV.1. 8
a

ti

I

CIMAGE/

	

BU. F_r COMMAND ITEM 	 TERMINAL

	

FROM CARD CHARACTER 	 COMMAND ITEM

(BLDCIT)	 SYMBOLS

NEXT COMMAND ITEM

(NXTCMD)

NEXT COMMAND
ITEM

/CITM/

r-	 Figure IV-3

to command interpreting
routines

,y

IV. 1.	 9

until a special symbol, blank character, or end of card is founO. If the

first character is a special symbol, a single character ite^14 is extracted

as a command item.

i
Special termination symbols are generated to indicate the end of

a command card and the end of a command card set (i.e., no more command

i
cards to be processed).

In addition to providing the command item text string, the item

is.classified by the scan process as: Alphabetic, Numeric, Alphanumeric,

Special, or Terminal. This classification simplifies recognition of

the command item and assists in detecting and diagnosing keypunch errors

on the command.

Where terminal command items are returned (end of command and

A	 finish of command cards), the classification symbol is returned both as

the classification and as command item text. Establishing the terminal

condition as the command text prevents us-ng "left over" data from the

last command item in interpreting optional qualifiers.

Command Card Scanning Conventions. Since blanks are ignored except

to terminate command items, a pointer convention is required for scanning

the card. When a new card is read, the scan pointer is advanced to the

first nonblank column. If the card is blank, the initial position of

the pointer is beyond the end of the card As command items are extracted

the scan pointer is advanced to the first nonblank entry after the command

item.

When the end of the card is detected, the scan pointer is positioned

beyond the end of the card. This state is called an "exhausted card" and

indicates the end of coimi and card text.

3

a

IV. 1.	 10

Detecting Terminal Conditions. When a command item is requested

from an exhausted card, an " end of card" command item is returned and

the card is set empty (i.e., pointer to last entry set to zero). Acquiring

a new card image requires_ positive acknowledgement of the end of card

condition. This acknowledgement is provided by setting the command item

empty prior to calling for the next command item.

If command items are requested from empty cards without positive

acknowledgement, "end of card" command items are repeated. This control

mechanism permits requests for nonexistant options from a card without

the danger of prematurely moving to the next card image.

If a request for new card image results in no card being provided,

the end of command card set is detected. This condition results in a

"finish"` code being returned as the command item. The "finish" condition

is terminal; no other command item will be returned.so long as requests

for new data result in no new cards.

Physical I/O of Command Cards. The physical read of command cards

results in command card images being read to a COMMON resident card

buffer. In addition to reading the card, the nonempty entry pointer is

set to the end of the card image to define the character scan region.

Tf an end of file is detected during the card read, the end of

file indicator is set and an empty card (i.e., zero length nonempty card

image pointer) is returned 	 All subsequent card requests are ignored so

long as the end of file indicator has not been cleared.

i'

F	 Q

C

r

IV. 1.	 11

Command Item Access Protocalls. Since the number of command

item entries cannot be predicted early to the scan, care must be taken
tA,	

to avoid prematurely reading a new command before the current process

is completed. To provide this protection, , conventions in access of

command card items are established.

Command items are acquired through NXTCMD. The first call to

NXTCMD causes the command card to be read. Command items are acquired

sequentially from the card image. When command items are exhausted,

a series of "end of card" command items are returned. This code is

ignored by routines establishing controls for a subsystem; default

activities result where end commands are provided.

After the command has been processed, a clearing routine, CMDEND,

is called to acknowledge the end of card. If the command card was not

completely scanned by the processing routine, CMDEND will flush any

unused text, isolating error conditions to a single command card image,

and recovering to the next command card.

I

	

If a command is unrecognizable, the CMDEND routine will discard 	 I

the card without need for special processing.

F

-

V.1.	 i

W

r

V.
	 FORTRAN FRONT END

Design Considerations:

Purpose.	 The FORTRAN Front End (FFE) is responsible for producing
.

analysis data from incoming source code.

Requirements.	 FFE must accept legal FORTRAN code from the user.

Input source decks should not require extensive preparation for submission. {

If the deck contains foreign constructions beyond FACES capabilities, alien

code should be ignored in the analysis.

Source code must be analyzed using the rules and interpretations of
ti

FORTRAN compilers.	 The source code should be captured to facilitate

result reporting and future system extension. 	 Source code must be correlated

with the analysis data produced.

User errors and system limitations should not cause system termination. 1

Rather, analysis should be performed on program modules to the limits of

the system's ability. 	 Limitations should be communicated to the user for
3

interpretation of effects.

To accommodate different dialects of FORTRAN, the FFE should isolate

where possible, the influence of different target FORTRANS. 	 Machine

dependent FORTRAN constructions should be implemented to minimize the effects

of different FORTRAN extensions.

Techniques should emphasize transportability of the system to different

host environments._ Host dependent techniques should be minimized and iso-

lated.

V.1.	 2

t

Is

The purpose of FFE is to analyze code, not criticise the techniques

used.	 To the extent possible, deviations in capabilities among dialects
s

should be accepted by the HE as the broadest capability in known dialects.

Strategy.	 Since considerable experience was available from FACES
s

Version 1, similar techniques and constructions were applied for Version 2,

Analysis tables are constructed on a module basis to describe the

computational activities indicated in the presented program. 	 The source

code is captured on a separate file with links to the module data estab-

lished through table entries. 	 Table generated for a module are recorded

on a random file after their creation.	 File entries are recorded under the

module name in a Directory..

Analysis of source code is performed by a blind scan followed by a

parser-like analysis of the statement description.	 Statement entries are

used to produce analysis table entries.	 The scan process uses the rules of

FORTRAN to separate elements of the statement text into associated groups
l

i1

of character strings.

Incoming source code is assumed to be legal FORTRAN statements com-

posed primarily of ANSI standard forms.	 Processing diagnos^ics are limited

to identifying constructions which impede processing by FACES. 	 Many illegal

FORTRAN constructions will be accepted by the system without diagnostics;

initial correctness is required for generating valid tables.

To accommodate different FORTRAN dialects, code is provided for

common extensions to FORTRAN. 	 The presence of the extended form indicates

l

the target FORTRAN is capable of supporting the extension. 	 The absence of

i

V.1.	 3

N

an extended form should not affect interpretation.

Some FORTRAN dialects extend the size limits of variable names and

constant specifications. The HE will accept variable names up to eight

characters in Ilength. Numerical constants are limited only by the size

of table structures.

Table entries generated should parallel program activities which

will occur dynamically in execution. Following tables entries should produce

activity profiles consistent with the operation in execution. Where the

sequence of operations is not significant in the analysis, arbitrary order

is permitted in table entries

If table space is exhausted in the system, the procedure is to

truncate and proceed. Similarly, if unrecognized statements are present,
4

statement processing is abandoned and a valid fragment of statement opera-

tion maintained for analysis.

9

Overview of FORTRAN Front End Operation

To the FORTRAN Front End, processing is a perpetual cycle of presented

modules. The highest level control routine manages the break in source code

presentation between runs. At the start of processing, the system status is

copied to pick up where the last module left off. At the end of processing,

status information is saved pursuit to the next set of source code modules.

The FFE is driven from Source Coderesented for analysis. Sourcep	 Y

code text causes various processing paths to be executed. The operation is

roughly similar to compilation; however, the HE is much Jess formal in ac^a^^'^

`r1

ti

V.1. 4
a	 ^`

Emphasis is placed upon extracting the data elements used in the program

and the context of their use. Little attention is given to the operational

computations specified by the program.

Functional activities of HE subsystems are roughly identified with

the following duties:

1. Scanning- combining source code text into program referenced

items.

2. Parsing - interpretation of FORTRAN source lines

3. Table Generation - recording the program specified elements in

analysis tables.

4. Error reporting - communication of source code features and

processing limitations which may influence the analysis

5. Maintenance support - display operational elements for system

tuning and debugging

FFE processing control is constructed around the elements of a

FORTRAN program: Module set (FFE), Single Module (PARSER), and single	
3

statement (PRSSTM). Analysis tables are emptied at the start of a module,

produced during module processing, and saved at the end of the module.

During module processing, error messages are issued for the constructions

found, , and source code is captured for report generation.

Processing a module involves _a compiler like operation. A single

line of source code (including continuation cards) is acquired and examined

by a blind scan processor. The scan uses syntactic and format rules of
1

FORTRAN to associate adjacent characters. Parsing Tables are created

-:	
MOM	 NO

7

V.1.	 5

by the scan for analysis by Parsing routines. The Parsing Table entries

are a normalized presentation' of the source text with unnecessary blanks

removed and relevant character strings grouped.

Using the Parsing Table entries, parsing routines process the statement

text, making analysis table entries. Program elements and constructions are

recorded to support later analysis. Parsing routines are identified with

statement types potentially available from FORTRAN and constructions used

in these legal statements.

At the end of a module, the generated tables are recorded on a random

file and the location of these records and the associatedsource code is

recorded in a Directory. To support . recording requirements, modules are

'x
	

identified by name.

Scanning Functions

The Scan process analyzes one FORTRAN statement and produces Parsing

Table entries for the statement components. Scanning requires the following

activities:

1. Interpretation of FORTRAN card format

2. Distinguish initial lines from continuation lines

3. Distinguish comment lines from source lines

4. Apply FORTRAN syntax rules to associate adjacent card characters

as a unit

In addition to the formal rules of FORTRAN, the following possibilities are

considered in the scan

V. 1. 6

1. Presence of blank cards

2. Comments between continuation cards and/or modules.

3. Potential presence of special directives which are recognized

by resident compilers as comments.

Scanning is performed in two phases: 1) Preliminary Scan and

2) Post Process Scan. The Preliminary Scan performs most of the effort

in producing the Parsing Tables. In the preliminary process, fundamental

character'strings are associated and simple compound forms are recognized.

The post process activity identifies floating point and complex constant

constructions. Additionally, the post process reviews the Parsing Tables

for the first zero level equal sign.

Data flow in Scannin g . The flow of character text during the prelim-

inary scan illustrated in Figure V-1 To recognize possible continuation

cards, a statement ands when the initial line of the next statement is

detected.

The scan process examines one statement of FORTRAN text at a time.

Card data is acquired from input-source code and placed in the source code

input buffer. If the card read is an initial line or a continuation of

the current line, card text is copied to the Scan Buffer. The Scan Buffer

is a normalized concatonation of source code characters with continuation

column, label field of continuation cards-, and identification field removed

from FORTRAN source cards. Comment cards are not transferred for processing.

The contents of the Scan Buffer are analyzed by scan routines. Char-

acter strings are associated by scanning rules and accumulated in the

y

i
ra

r
r

i

Scan Buffer

/SCANBF/

4

h

C
t

I`
i

k

Card Image

Buffer

/CDBUFF/

'	 Scan Buffer Manager

(BUFMGR)

Source Code

Input File
(SCIN)

Physical I/O

(CDREAD)

Physical I/O
(CDCAT)

s	 ^r

Next Character

(NXTCHR)

Figure V-1	
Character

Scan Processor

Lexical Item	
Routines	 _

jLEXITM/

f	

_

Temporary Symbol

	

	 Intermediate
Temporary Symbol

Recording	
Table	

Symbol String

(STOW)	 /TMPSYM/	 /INTSS/

r __

Source

Code

Catalogue

(SCAT)

r

n	 .

V.1.	 8

J-
Lexical Item. Unnecessary blanks are purged. After the collection or

individual symbols is complete, the lexical item is stored in the Temporary

,j Symbol Table and an identifying entry inserted in the Intermediate Symbol
i

String. Insertion activity is complete when the statement text is

exhausted in the Scan Buffer (i.e., all continuation cards have been

processed).

The Scan Buffer is sized to accommodate a moderate number of con-

tinuation cards. If the number of continuation cards present requires

more data space, the Scan Buffer contents are compressed by purging used

data and moving active data to the top of the buffer.

^i

j

i

f

l

1

F

t

F	

!^

AW

V.1. 9

13

Scan'Rules. To accomplish blind scanning, scan rules were developed

for associating the character strings of the FORTRAN text. The scan control

routine selects a rule to apply based upon the leading character of the next

source code symbol. If a multiple symbol string is required, a service

routine is called to process the form.

Association rules are developed using "local context" to permit

flexible modification of the system. In general, the rules deal with imme-

diately preceding symbols to distinguish one construction from the next.

The principal adversaries of the blind scan are:

1. FORMAT statements. Potential for identifying format component

specifications as floating point constants.

2. Procedure calls. Passing a pair of floating point constants may

appear to be a complex constant form.

3. Apostrophe Hollerith Strings. The apostrophe may also appear as

a separator in direct access I/0.

4. Statement label. Statement labels are processed as a leading

integer on the statement.

5. Nondecimal constants. Some nondecimal constant forms cannot be

distinguished from variable names. Their use is restricted to constant

contexts such as DATA statement constant lists. The blind scan must

recognize these as variable names since the context is unknown.

6. FORTRAN keywords. Since blanks have no significance outside

literal fields in FORTRAN, keywords (e.g., DIMENSION, GO TO, etc.)

are run on with variable names or statement label indicators.

i

r.

i

r

Z

Figure V-2	
V.1.	 10

r

Scan Rules for Association of Character Strings

{	 Preliminary Scan Process

f	 Routines Rules

SNALPH Combine alphanumeric character strings

k which begin with an alphabetic `character.

.^- The string is terminated by a special character

or the end of card

SNNUMB Combine decimal digit character strings

until nondigit character is found

SNNUMB, SNHOLL Hollerith forms are indicated by Count H

Literal String.	 The Count may not be a state-

ment label.

SNHOLL Delimited Hollerith forms are either
j

'Literal	 String''

"Literal String"

The appearance of a double delimit mark

indicates a single character in the literal
3

string.	 To avoid confusion with the '	 used as

a record indicator in direct access 1/0, the

character preceeding the ' may not be an operand.

SNNUMB, SNZPRO Nondecimal constant forms of.Count Z Hexidecimal

String Octal String B permitted.

SNZPRO, SNALPH Nondecimal character strings of 0 Octal String

. Y Z Hexidecimal String

are constants if the total string length

exceeds target FORTRAN variable name size.

Otherwise, classify as a variable.

t

w

i

i^

Figure V-2 (cont)
V.I. 11

SNNUMB	 Statement labels are decimal constants

which appear first in the statement text.

SNPERD	 Logical Operators, Relational Operators and

Logical Constants have the form V. in the

preliminary scan. The character string asso-

ciated with V is one of the known templates for

the construction.

Scan Post Processing

Routine	 Rule

SIDCPX	 Complex constants have the form,

(sC1, sC2)

where s is an optional sign character

Cl, C2 are either single or

double precision constants.

The open and close parenthesis pair must be
S
e

within at least 7 ISS positions for proper

form. If the left parenthesis-is preceeded

by a V entry, the form is not a complex constant.

Floating point constants are of one of the

following forms

ME

where M is a mantissa of the form

I. or .I or I.I

E is an optional exponent of the form

E s I or DsL

s, an optional sign; I, a digit character string.

r

Figure V-2 (cont)
	

V.I. 12

1 .1 the exponent if specified, the form

I E s I is acceptable.

I	
The form VA is not a floating point constant.

i	 r
I	 3

j

i
I

i

I

a
r

3
i

a

1

{

i
a

e
j

-

V.1. 13

Treatment of these run on strings must be accomodated by

the Parsing routines where context is known.

Character Overrun.	 Some Scan Rules require a character string

to continue until a nonqualified character is encountered. Therefore,

in processing a decimal integer, the character after the integer must be

obtained before it is know that the decimal integer is over. This con-
r

dition is called "character overrun." The extra character must be returned

to the Scan Buffer for processing the first symbol of the next item.

By convention, the next symbol from the Scan Buffer is always

the first symbol of the next lexical item. To correct for the character

overrun condition, the Scan Buffer is backed up one position, returning

the last character for processing.

End of Statement. The statement is completely scanned when no

F {	 more continuation cards are found to extend the Scan Buffer contents.

Instead of card data, an End of Statement passes the terminal code to the

requesting processor. This action will continue indefinitely to neutralize

any errors which might ignore the end of statement code. The condition is

cleared by setting the Scan Buffer empty to request the initial line of

the next statement.

Parsing Table Overflow. The Parsing Table are sited to accomo-

date FORTRAN statements including a moderate number of continuation cards.

If an exceptionally long statement is encountered, the FORTRAN text is

truncated to available table space.

The main control routine for the preliminary scan process inspects

the Parsing Table status before beginning each new item. If at least

r

i

t.

V.1. 14

one ISS and TSTAB position remains for FORTRAN items, the process con-

tinues. If table space is exhausted, the process is terminated. If a

scan service routine requires more than one table position to store

the FORTRAN item, the routine is individually responsible for insuring space

remains to accomodate the item.

The Parsing Tables are not permitted to be completely filled with

source code data. The last few positions are reserved for the end of state-

ment code and a protective buffer of end of statement codes.

If table space is exhausted before the source code is completely

processed, the remaining statement text is purged"to position the source

code to the next statement, and an end of statement code forced into

the Parsing Tables. This procedure is called "statement truncation."

Scan Post Process. The Scan Post Process procedure reviews

the Parsing Table constructions built by the preliminary scan to collapse.

compound constructions of floating point and complex constant entries.

Each of these constructions is identified by a scan rule routine and

collapsed by a separate routine.

In addition, the post process procedure identifies the Parsing

Table position containing the first zero level equal sign, if one exists.

A zero level equal sign is an equal sign not enclosed in parenthesis.

This usually indicates the presence of special FORTRAN statements including

assignments, DO's,.etc.

Source Code Cataloguing`

Since Comment cards are discarded by the scan process, the source

code catalogue is constructed in the scan phase (routine BUFMGR). As

F

i

j V.1.	 15

source code lines are read from the input file, the card image is written

to the next sequential position of the SCAT file. 	 Card images are cata-

'„ loqued by relative card counters which are reset at the end of each

module.

c
As source lines arrive, the first and last card numbers of a

FORTRAN source line are recorded. 	 Comment cards between lines are ignored 	 P

in the counts.	 Thus, the last card of one statement may be separated by

more than one value from the first card of the next statement. 	 If

F comments appear between continuation cards, the comment is catalogued as

part of the statement.

If a FORTRAN statement contains two logical portions, such as

a logical	 IF statement, both portions will have the same card image

counts.

The card of the statement is the module relative card image of

the initial line.	 The initial	 line is also the last card if no continu-

ation cards are found.	 If continuation cards are detected, the last card

is the final continuation card in the set.

Statement Parsing

l Statement parsing is similar to a compiler interpretation of

FORTRAN syntax.	 The FFE is interested in extracting the data elements and

context of their use for analysis; actual mathematical munipulation of

program elements is ignored.	 During the Parse, local tables are con-

structed.	 In comparison to compiler operation, Symbol Table entries

are similar to core allocation for program variables; use table entries,

, object code; and transition pairs table entries, transfer vector.

,a

V.1. 16

The parsing procedure is basically a single pass left to right

parse on elements of the Parsing Table. The analysis proceeds using

bottom up production on elements found in a statement. The parser is

looking for a program composed of a header statement, followed by a

(possibly empty)-set of body statements, terminated by an END statement.

If a new module header is found before the END, a premature header card

is assumed indicating the absence of an END card on the current module.

An overview of the parsing activity is shown in Figure V-3.

Control is divided into module level control and statement level control.

The statement parsing routine requests card data to be placed in the Par-

sing Tables. Statement lables are processed by the statement parsing

routine, advancing the Parsing Table to the first statement text entry..

The primary parsing decision is made from the zero level equal sign

l r^'
	

indicator. If the statement contains a zero level equal sign, control

passes to a decision routine for those statement forms. Otherwise,

the statement is processed by a FORTRAN keyword which appears as the

first entry of source code text.

Zero Level Equal Process'. The zero level equal sign statement

process must distinguish between the statement types of:

1. Assignment Statements

2. Statement Function Definitions

3. Do Statements

4	 IF statements with a logical assignment statement. In the

process, the statement type is established for the current statement.

Control then passes to the appropriate statement processor.

Key Word Process. The keyword process uses the first entry

of the statement to determine the type of FORTRAN statement to process.

^... 	R. ^	

fit..	

•a
	

--	 ..	 .^`..,	_..,.		 _...	 _.	 _....	 .'..	 _	 ..	 `.... T.

i

V.1. 17
Parsing Control Overview

Module

I
	

Control

i

	 ^.	 (PARSER)

	

Statement	 Module Table	 h`

	Control	 Post Process

(PRSSTM)

Statement

Scan	 3

(SCAN)

a

a

	Control Zero Level	 Control FORTRAN

	

Equal Sign Stmts	 Keyword Stmts	 3

(PRSZEQ)	 (PRSZEQ)

Zero Level Equal 	 IF Statement
	

Keyword Statement
Sign Statement	

Processor
	

Processors
Processors

Figure V-3

A

'	 V.1.	 18

The keyword is identified by the leading four characters of the keyword.

If a known statement is detected, the statement type of the current state-

ment is established and control passed to the appropriate statement
ti

processor.

Parsing techniques and conventions.	 In processing FORTRAN
x

keywords, correct spelling is assumed. 	 This assumption arises from

the correct code assumption central to the FACES strategy.	 If the

word is improperly spelled, correct operation will usually result if the

character count is at least correct.	 FORTRAN keywords are not reserved

s	 words.	 Therefore, parsing routines must be aware that the programmer ,!

may use keyword character strings as variable and subprogram names.

Parsing Table entries may be run on by the blind scan.	 In pro-

cessing keyword constructions, thls ccndition must be corrected. 	 For

example the construction,

'	 DIMENSION VAR

will appear as one continuous string in the Parsing Table entries. 	 The
It

character string	 AR must be extracted from the leadi ng keyword symbolsg	 g	 Yw	 Y t ^
{t^

DIMENSION.	 This action is normally performed using a local holding }^

array and the routine SHIFTY.

Once the variable name is extracted, the Parsing Table entries

are modified to normalize the appearance of structural elements in the

statement.	 An alternative is to directly treat the extracted name and

advance the Parsing Tables past the run on entry.

Support routines are used to process major subconstructions of

FORTRAN statements,	 Each routine processes Parsing Table entries until

.I

r.
r.

V.1. 19

r	 the construction is completely recognized or a foreign form is encountered.
i	 -

Control is returned to the calling routine with the Parsing Tables posi -

tioned to the last entry not processed.

i	 Parsing Table Manipulations. Since the Parsing Tables are composed

of a synchronized table pair with implied association, there is substan-

tial danger of lost control through table positioning error. For this

reason, modification and radical manipulation of table entries are

avoided where possible. By convention, the tables are always maintained

!	 in a synchornized state. This convention carries over even to error
w

processing.

In some instances, the Parsing Tables must be modified by dele-

tion or replacement of entries. Routines are provided to perform this

_Ea,ve .L _1 centralize modification.

Generally, once an element has been passed over, there is no

need to return. On some occasions, hoever, the tables must be restored
i

to a different position. :ISS is the master control for this movement.

1

Parsing table positions are recorded in terms of the ISS position. The

TSTAB position corresponding to an ISS entry can be developed given any

properly synchronized state. A service routine, FNDTST, is provided

to deter°^Tline f rvi pro per TSTAB entry position.

'	 In repositioning the Parsing Tables, the TSTAB position must be

determined before any adjustment'is made to the pointers; current pointer

values are used to determine the proper new position,
G

j	 r .^	 ',"o ? ^)f the ernd of s - tem,ent code is reserved for th e
i

highest level routine. To lower level routines, the end of statement

;r

V.1. 20

code is simply an unknown symbol. The end of statement code is con-

structed to not match any template used in the searching process.

Although correct code is assumed, incorrect code is not per-

mitted -to drive the system into an error state. For this reason, parsing

routines frequently look for the end of a sequence rather than a speci-

fic symbol. For example, in a DATA statement, the end of a comma series

is used to terminate a loop rather than the final "/". If the

was missing, a search loop keyed on the "/" would not terminate.

At the end of each statement processor, a call is made to the

end of statement routine. This is in effect an assertion that the state-

ment has been completely processed. If the statement was only par-

tially processed, or superfluous text remains, this routine will report

treat i:,rme text was not processed. This condition might result if a

foreign construction was found during statement processing.

Note that the logical IF statement construction containing a

conditional statement does not call the end of statement process.

Rather, this construction is treated as two statements. After processing

the IF condition, the Parsing Tables are left positioned to the first

entry of the conditional statement. The second portion is processed

independently or the next cycle.

Statement Abortion. When an unrecognized construction is

encountered in the Parsing Table which inhibits further processing, the

statement in progress is 'aborted. Abortion does not affect the tables

-Ipd prior to encountering the problem or necessarily inhibit

further analysis. In effect, abortion simply acts to terminate the

T --VJ

If

V.1. 21

card text prematurely.

Abortion is accomplished by simply positioning the Parsing

1	 Tables to the end of statement text. The analysis routines react as if

1	 the text was prematurely exhausted. An error message is issued to indicate

where the analysis was terminated.

Special Notes on Parsing. While the great majority of parsing

is straight forward, some special mention should be made on unusual

problems.

1. Parenthesis Processing. Parenthesis balancing is accomplished

on a local level. In general, a routine which processes the opening

left parenthesis is responsible for matching the balancing right paren-

thesis, No global count is maintained for parenthesis processing. Karen-

vF° s3 f o^ in'E- range from the value 0 (balanced parenthesis) upward

to a positive count. The count is incremented on left parenthesis and

1	 reduced on right parenthesis. An unbalanced right parenthesis is treated

as a return condition in service routines.

2. Arithmetic Expressions. Processing arithmetic expressions is

complicated by the possible use of subexpressions as array subscripts or

function parameters. Since this is basically-a recursive process, allow-

ances must be maAe to process the recursive form in a nonrecursive FORTRAN

envirilomen`t. To accomodate this requirement, arithmetic expressions

are processed as simple forms up to a potential candidate which might

contain a subexpression as a component. Simple arithmetic expressions are

rr	 ^'^	 a,7:, -^^-nr p ins vhich ^snt in ar array reference with simple

If .	 operand subscripts as - the most complex component,

V.1. 22

When an array or function reference is encountered, simple arith-

metic processing is interrupted and the subscripts or actual parameters

examined. If complex forms are discovered, the subscript or parameter

is replaced with a temporary variable to produce a simple operand form.

Function references are processed before returning to the simple arith-

metic expression process. The functions name is left in the Parsing

Tables to be recognized as a simple variable upon return to simple expres-

sion processing.

Notice that the simple arithmetic expression process is used for

both the exterior arithmetic expression and the subexpression process.

For this reason, counters and indicators used by the simple arithmetic

expression process must be carried on the calling routine side of the

interface. Otherwise, routine sharing could not be.used.

3. Assignment Statements. The arithmetic expression

l
of assignment statements is processed first. This approach is taken

to permit Use table entries to,parallel the reference pattern of compiled

code. If the assigned variable were processed first, an "output" Use A

would appear before the "input" Uses in the table. This could lead to

incorrect analysis.

Processing is accomplished by moving the Parsing Tables to the right'

of the equal sign, processing the expression, then returning to the

assignment variable. Notice that the assignment variable might be a

conditional statement in a logical IF construction.

'`able Production

,^	 A principle activity of the FFE is to produce analysis tables

m T Iq

V.1. 23

A

depicting code interactions. These include both the Local Tables of a

module and Directory entries for accessing the tables and source code.

Symbol Table. Symbol Table entries are made by the parsing

routines as source code is processed. Since FORTRAN permits implied

definition of variables, the Symbol Table is not complete until the last

line of FORTRAN source has been processed. As a result, each variable and

constant processed is treated by the parsing routines as a new symbol.

The character string is passed for recording in the Symbol Table. If

the Symbol is already present, the table is positioned to the current entry;

otherwise, the symbol is added to the table.

Use Table. The Use table entries are recorded as source code

J
is processed by the parsing routines. The Use table `^s constructed in

F^. s .le g &f R° 3 :1 fashion	 Si ncf, Uses are associated with recorded symbols, the

Symbol Table must be properly positioned before the Use is recorded.

The Use is attached to a list of references for the Symbol currently

selected in the Symbol Table.

Node Table. Node Table entries are made at the end of

each statement. The entry is made using the current statement description

accumulated by the parsing routines. Graphical entries are constructed

:*ftar the m--';A,; ras been completely processed.

Graphical transitions are recoreded in the Transition Pairs

Table as program branches and boundary conditions are detected in the

parse. The transition Pairs table is a temporary structure which is

v1 .5 ,	 .. ^.^^	 ^r ^r rh	 drly	 S:rce statement label references may

k	 be made to labels which are defined by later statements, no attempt is

K ;

i

	

	

V.1. 24
d m

made to identify defined labels until the module is complete. At comple-

tion, the Symbol Table and Use table entries are used to determine node

numbers of specified branch references.

Predecessor/Successor Tables. Predecessor and'Successor tables

are constructed by the same module post processing procedw-e used to create

graphical entries in the Node table. The converted Transition Pairs

Table entries are used to establish "explicit" transitions. Implied

"next statement" transitions are produced by examining adjacent entries

of the Node Table. Current graph production techniques include non-

executable statements in the program graph.

Local Table Recording Techniques. To establish Symbol Table

entries, the type and class code for each entry must be determined. In

general, the hi ghest level control routine may dictate the type and/or

class; alternatively, the type and/or class may be defaulted. If the

code is dictated, a positive integer value is passed by parameter; if

the code is defaulted,, the value zero is passed.

A variety of methods may be used to establish the proper type and

class codes. Once a positive code has been assigned, the code is main--

tained. The type and/or class may be derived from a statement context

use (e.g., the ;game of a subroutine, an entry in a type statement, etc.),

implied from the ISS code or the operand (see Table V-4), or determined

from the character string during Symbol Table insertion (e.g., a vari-

able,-name).

Sinpre r, boll may change type and/or class characteristics

l

^between the initial appearance in the source code and a later reference,

r

^..,,u

N

V.1.	 25

Parsing Table Entries

Intermediate Temporary Implied Implied

Symbol String	 Symbol Table Type Class
(ISS) (TSTAB, TSTOVR)

V 8 characters of Scalar
alphanumeric text Variable

I String of numeric Integer Constant
digits

•	 F Character string of Floating Constant
a floating point Point
constant

i

D Character string of Double Constant
a double precision Precision
floating point con-
stant

C Character s tring of Complex Constant
a complex constant

H Character string of Hollerith Constant
a Hollerith constant

T Character string of Logical Constant
a logical	 constant

r

V.1. 26

^ F

r^

a special routine, AMBSYM, is provided to resolve ambiguities. The

ambiguity process also distinguishes between symbols which have the

same character string but are not equivalent symbols (e.g., the statement

label 10 and the logical constant 10).

To isolate parsing routines from table structure, table manipu-

lations are normally performed by interface searching routines. These

routines are implemented as logical or integer Functions. Given a speci-

fication, the table contents are searched. If the required entry is found,

the table pointer is positioned to the matching entry. Note that posi-

tioning the table requires modifying a COMMON variable; therefore, these

routines have "side effects". The routines are constructed,.however, to

yield repeatablc results given the same input conditions and table con-

tents. -Thus, they should not result in improper optimization.

Special Cases for Local Table Production. While the general

approach suffices for the vast majority of cases, some constructions

require special treatment.

I. External Routine Names. When a routine name is passed by

parameter to another routine, the name must appear as an EXTERNAL statement

entry. When the entry is detected in processing the EXTERNAL statement,

a class code of "external" is assigned to the symbol. Since it is unknown

whether the routine is a subroutine or function until it is used, a

type code is assigned based upon the symbol name, If it is later used

in a subroutine context, the type is reversed to "neutral

On the ut-her side of the interface (i.e., the called routine),

the subprogram name is passed by parameter. The character string used in

r

I

V.1. 27

z^ the subprogram may not be the same as the routine's actual name.

Therefore, if the name referenced as a function or subroutine is passed

as a parameter, the class code of "external" should also be assigned.

2. Arrays. Arrays may appear in FORTRAN statements without sub-

scripts. Therefore, all variable names are processed as scalar vari-

ables except where array declarations are possible. Since arrays and

scalar variables must have different names, the ambiguity process recognizes

scalar variable references to be references to arrays.

3. Statement Function Dummy Parameters. Statement function dummy

parameters may have the same character string as a program variable.

This will cause problems if the program variable is declared on a card

preceding the. statement function definition. Current ambiguity rules

permit linking scalar variable references to declared dummy parameters,

however, this technique will also link all previous referenceseto the same

character string. This error should be corrected in future versions.

Table Overflow. Since FORTRAN only permits fixed length

tables, some exceptionally long programs may cause table overflow. If a

table overflows, the recording routine is responsible for not addressing

the array out of bounds. Normally, the entry is simply discarded and

processing continues.

Continuat on of normal processing is used to flush remaining

text not processed. Error disgnostics are issued to inform the user

of the overflow situation.

Constructing Directory Entries. Directory entries are recorded

from the completed Symbol Table of a processed module. The module

V.1. 28

l
Ak

name assigned is recorded along with access information to the Table

File and Source Code Catalogue. Any 'secondary entry points are recorded

in the Directory with the same access information as the primary entry

point. References made to other modules are recorded as Directory reference

entries. Care is taken in references to avoid entering character strings,

which are not actual module names (e.g., passed by parameter).

HE Error Reporting
r

Two types of Errors are reported by the FFE:

I. System Anomolies. Unusual conditions encountered during

processing which might indicate a system malfunction.

2. User Message Reports. Limitations or conditions which

affect analysis table construction.

FFE Anomolies are reported by calling the anomoly routine. The

calling routine passes identification information indicating the detecting

routine and condition which prompted the report. The anomoly routine

combines the reported information with the current module and card number

to issue the printed report message.

User messages are accomplished by first provided message data

in the error message common data structure. By convention, the message

data may be passed empty if a single line error message is to be con-

structed. Flag identification is passed by parameter to the message

writing routine. Flag identification.information is combined with the

common data passed to enter records on the Flag File. Card numbers for

attaching the message are acquired from the current statement.

Note that the error reporting routines service the scan, parse, and

J

V.1. 29

post functions. Since the card number differs in these routines, an

approximation is made based upon card counts of the various phases.

Maintenance Support Features.

Since the HE does not normally produce printed output, main-

tenance trace features were kept in the production version. These
r

features allow printing source code as it is analyzed, dumping the contents

of the Parsing Tables constructed for each statement, displaying the

contents of tables constructed and collecting statistics on table usage.

The maintenance features are activated by setting variables in

COMMON block /FFEOPT/ through modification of the BLOCK DATA routine.

' 7

i

A
r-

VI.1.	 1

6

VI. Automa tic Interrogation Routine AIR

The Automatic Interrogation Routine traverses the tables pro-

duced by the FORTRAN Front End (FFE) in search of incongruous FORTRAN

language constructions. The user has control over which type of in-

M'
	 congruous language constructs AIR searches for, as well as . some control

over the output format of some of these constructions discovered by AIR.

AIR has the ability to search for any combination of the following

unusual language constructions:

1) ANSI Standards function names not used as an ANSI Standards

function.

2) FORTRAN "reserved" words not used as a FORTRAN reserved word.

3) Data statements not in BLOCK DATA referencing COMMON block variables.

4) Function parameters assigned values within the function itself.

5) Multiple branching statements (such as the arithmetic IF) which do

not branch to the statement iiinediately following them.

6) DO Loop control variables assigned values within the loop itself.

7) DO Loop index variables used after the DO Loop has terminated under

normal conditions.

8). Local variables assigned values but never used.

9) Uninitialized local variables.

10 .) COMMON Block misalignment.

a) Corresponding COMMON Block declarations which do not have the

same number of entries.

b) Corresponding entries in corresponding COMMON Block declarations

 h	
. d	 l

wh;ch d o not ave ent^ca types.

1

F-.

I
VI.1.	 2jl

k

c) Corresponding entries in corresponding COMMON Block

declarations which do not have identical dimensions.

d) COMMON Blocks which appear in only one module.

e) Corresponding entries in corresponding COMMON Block declar-

ations which do not have identical names.

f) Corresponding entries in corresponding COMMON Block declar-

ations which do not have the same size.

g) Corresponding COMMON Block declarations which do not have the

same total size.

11) Parameter List misalignment.

a) Corresponding parameter lists which do not have the same

number of entries.

b) Corresponding entries in corresponding parameter lists which

i	 do not have identical type.

c) Corresponding entries in corresponding parameter lists which

do not have compatible dimensions.

12) Cyclic calling sequences.

A query is defined as a search for one of the above constructions.

The user has some control over how certain unusual language con-

structions are to appear in the report on the software system evaluated.

The user may specify that a message is to appear within the source code

listing immediately after the violation and/or after the source code

listing.

VI.1.	 3

A user may exercise this control over the following

queries:

1) Search for a DO Loop index variable used after the DO Loop

terminated under normal conditions.

2) Uninitialized local variable search.

3) Any of the COMMON Block misalignment searches.

4) Any of the Parameter List misalignment searches.

a

a

^a

I^
- W

VI.1.	 4

Operational Overview of the AIR Subsystem

The AIR subsystem is a three-level hierarchy.

The first level consists of the driver of the AIR system,

the routine AIR itself. It invokes those routines which satisfy user

requests and FACES system requests. FACES system requests are satis-

fied before any user requests can be processed. User requests con-

sist of queries and the requests for certain report formats. FACES

system re^liests consist of requiring certain global tables to reside

in main memory.

The second level consists of the queries themselves, routines

to create certain global tables, and routines to move these global

tables from main memory to secondary storage and vice versa.

The third level consists of utilities. These utilities are the

heart of the AIR subsystem. They are the only routines that can

directly access the tables built by the FORTRAN Front End.

Before AIR can execute, two other processes must already have

been completed.

1. The FORTRAN Front End must have already parsed the source

code which is to be examined and packed this information into

various. tables.

2. The driver of the entire system (FACES) must have already

placed all system and user requests into list which is

accessible to AIR.

After the above requirements have been met, AIR examines the list

sequentially, satisfying system and user requests as the list is

4

t

a

_	 1

VI.1.	 5

I

traversed. After the list has been completely traversed, control is

returned to FACES.

As user requests are processed, AIR searches for specified

unusual language constructions. Whenever one of those language

constructions is located, warning messages are sequentially written

to the Flag File.

T .-19

8

t

VI.1.	 6

AIR Abbreviations

The following abbreviations are used in AIR:

I Data Structures

'COM' = COMMON Block Name Table

f	 'DIR' = Directory

'IS' = Inverse System Hierarchy Table

t	 'ISD' = Inverse System Hierarchy to Directory Table

'LIN' = Linked List Table

'LIS' = List Table

'MAP' = List Table Map

'NOD' = Node Tabl e

'PRE' Predecessor Table

'SH' = System Hierarchy Table

'SHD' = System Hierarchy to Directory Table

'STK' = Control	 Stack	 F;

'SUC'
i

= Successor Table

`SYM' = Symbol Table

`.	 'USE1'_ = Linked Usage Table

'USE2' _ Statement Number List Usage Table

II Types

'A` Alphanumeric

}^	 'I'	 _ Integer

r

III Scalars

i
'L' = Length

I,

	
'P' = Current Row Pointer

'PLE' = Pointer to Last non-empty Row
j'

'PRM' = Prime Number

I

d +r.

VI.1.	 7

t

VI.1. 8

AIR Basic Search Technique

y

The FFE parses the source code submitted by the user and pro-

duces a large data bass, which is organized in various types of

intea- and inter-connected lists in tables. AIR then searches through

these lists, searching for patterns determined by the user or the

iw	
system. A successful pattern search can be thought of as a template

^--	 match.

{
The basic approach for any pattern search begins with AIR

traversing a list. The list is traversed until an element of the

list is found which matches part of the template. The search then

enters another list. The entry point into the second list is determined

by the location in the first list which contains the template matching

~ Ir	 element. The search then enters a third list, the entry point being

determined by the second list.

This chain of operations continues until one of the following

occurs:

1. The entire pattern has been matched. AIR then takes some

appropriate action, such as setting warning flags if the

I;
investigation is searching for some incongruous language

construction, and then continues the search looking for

other occurrences of the 'same langua ge construction.

2. The nth list has been traversed to its end. The search

returns to the 'location in list n-1 that was last being

investigated, and the search continues as before. If the

th	
st

1^ ,::t is the
1

n
	
list, i.e., the initial list, then

the search has been completed.

Start searching
through the list	 V	 1
in Table 1

A	 0

A	 3

The first element of
the first list is not
an 'A' or 'B'. Goto
the next element in
the list.

k

t

i

u

VI.1.	 9

Example:

Search-for elements which are 'A' or 'B' and which are 131,

i.e., elements which satisfy the logical expression (AYB)^3.

Table 1	 Table 2

Elements Pointer
to List in	 Elements

Index	 Table 2	 Index

1	 V	 1	 1	 3

2	 A	 0	 2	
end of
list

3	 A	 3	 3	 2

end of
4	

list	
4	 3

5	 1

6	 end oflist

This element is an W. This represents
a partial'teaplate match. But it has no
entries in the second list. This is the
same as saying that it does have a list in
Table 2, but that list has been completely
traversed. Goto the next element in Table 1.

!	 ,

The first element of the list in Table 2
is not a 1 3'. Continue traversing the
list.

VI.1.	 10

This Table 1 entry represents a partial
template match. Start examining the
corresponding list in Table 2.

V	 1	 3

A	 0	 eol

	

EAA 3	 2

eol
	

3

eol

r
f

-^	 A	 3	 2

	

eol	 -•	 3

1

eol

Table 2.

.	 a

xk

^Y

The second element of the list in Table 2
V	 1	 3	

is a '3'. A complete template match has
been found. Output a message.

A	 0	 eol	
Now search for other occurrences of the same
pattern	 Continue traversing the list in

V	 1	 3

A	 0	 eol

-^	 A	 3	 2

eol I	 3

-^	 7

eol

The third element in this list is not a
1 3 1 . Continue traversing the list.

'	 V	 1	 3	
The list in Table 2 has been completely
traversed. Return the search to the list
in Table 1.

	

A	 0	 eol

-^	 A	 3	 2

	eol	 3

-.	 eol

— ..	 Ike,.•,.,,

VI. 1.	 12

The list in Table 1 	 has been completely
V 1 3

traversed.	 The search has been completed.

All elements .which are 'A'	 or	 '6'	 and

A 0 eol which are 1 3'	 have been located;

r
A 3 2

-* eol 3
-	 k

.R l

F

eol

a

c.

1

(sty,.
requests

Uti1iti,

^i+	

i

i

4

VI.1.	 13

Conceptual Hierarchy of AIR

AIR can best be conceptualized as a three-level hierarchy.

The first level consists of the driver of the AIR subsystem and a

routine to initialize the AIR subsystem. The second level consists

of routines which service system and user requests. The third level

consists of utilities; this category can be broken down into general

purpose utilities and special purpose utilities.

a
AIR'S call"ina hierarchy is different from AIR's conceptual

hierarchy.

s

i

VI.1.	 14

1

Pattern Searches

'	 As discussed in the section ertitled, "AIR Basic Search Tech-

'. i
nique", pattern searches examine lists.

There are four basic components of the AIR subsystem which are
c

R	 involved with traversing lists. They are

1. The Control Stack

2. The 'Initial Entry' subroutine

3. The 'Table to Table Transition' subroutine
i

f
4.' The Forward-Backward Register

E	 The Control Stack keeps track of which lists are being traversed
s

(examined) for a specific pattern search, and exactly where a traversal

is within a given list. The Control Stack contains four pieces of in-

formation for each list being traversed.

1. The module number of the module which contains the list.

2. The name of the table which contains the list.

3. The list indicator for the list. If the list indicator is 	 a

greater than zero, the list has not been completely traversed.

If it is equal to zero, the list has been completely tra-

versed.

4. A pointer to the location in the list indicating exactly

where the traversal is within the list.

l
For a more detailed description of this data structure, see the dis-

cussion on the Control Stack.

i
D

The top of the Control Stack refers to the list currently being

examined. As a new list is examined, information concerning it is

placed on the top of the Control Stack. After a list has been completely

traversed, its associated information is removed from the top of the

Control Stack. Adding information concerning a new list to the Control

Stack is called a 'push'. Removing this information is called a 'pop'.

The Initial Entry subroutine deals only with sequential lists

whose lengths are equal to those of the tables in which they reside.

Traversing one of these lists means that every row in the table with-

in which the list resides is examined.

When this subroutine is called, one of the following occurs.

1. If the Forward-Backward Register indicates 'forward', then approp

H ate information is added to the top of the Control Stack (a 'push'),

with the pointer pointing to the first row in the table.

2. If the Forward-Backward Register indicates 'backward', then the

information at the top of the Control Stack is updated to refer to

the next element of the list. If there is no next element, i.e.,

the list has been completely traversed, then the Control Stack is

'popped', and a flag is set,

The Table to Table Transition subroutine deals with lists whose

entry points are determined by other lists, i.e., the location of the

first element of the list is indicated by some other list. The two

lists are always in different tables. Thus, there is always a transi-

tion from one table to another.

r

r

0

VI.1.	 16

When this subroutine is called, one of the following occurs.

1. If the Forward-Backward Register indicates 'forward', then approp-

riate information is added to the top of the Control Stack (a 'push'),

with the pointer pointing to the first element in the new list. If

for some reason the transition to the new list cannot be made, then

no new information is added to the top of the Control Stack, and a

flag is set.

2. If the Forward-Backward Register indicates 'backward', then the

top of the Control Stack is updated to refer to the next element

of the list. If there is no next element, the Control Stack is

'popped', and a flag is set.

The Forward-Backward Register determines what occurs in a number

of subroutines; including the Initial Entry subroutine and the Table

to Table 3ransition subroutine. Except for the routine AIR, the For-

ward-Backward Register always indicates the direction of the flow of

control through an AIR subroutine. If the flow is going forward, then

this register is set to 'forward'. If the subroutine has just executed

a backward branch, then this register is set to 'backward'.

Occasionally, it is necessary to add an entry to the Control

Stack without calling IE or TT. This can be done with a call the the

PUSH subroutine.

Often, it is either convenient or necessary to remove an entry

from the Control Stack without calling IE or TT. This can be done

with a call to the POP subroutine.

VI. 1.	 17

Example:	 Search for scalars used as input variables in assignment

statements in module number 3. Assume the AIR subsystem has

been initialized and that module 3 already resides in main
T

memory.

Statement	
Source Code

r Number

1	 SUBROUTINE FLAG

2	 IMPLICIT INTEGER (A-Z)

3 A = A+ 20	 #

4	 RETURN

5	 END

I

r

Symbol Table (abbreviated)

index	 Symbol	 Class	
Use
Pointer

12	 FLAG	 Subroutine	 1

196	 20	 Constant	 3

322	 A	 Scalar	 2

T

VI. 1.	 18

f

K =	 Use Table	 (abbreviated)

index	
Statement	

Usage
Forward

Number Pointer

1	 1	 Declaration 0

2	 3	 input in 4
assignment
statement

j	 3	 3	 input in 0
assignment
statement

`	 4	 3	 output in 0
assignment
statement

The algorithm would be:

s

C***Initialize the direction,

FBR = 'Forward'

C***Search the entire Symbol Table.

100 CALL IE(Symbol Table, FLAG)

(continued on next page...)

T-I

VI.1.	 19

(continued)

C***Reset the direction.

FBR = 'Forward'

C***Determine if the entire Symbol Table has been traversed.

IF (FLAG indicates end-of-list) GO TO FINISHED

C***The Symbol Table has not been completely traversed.

C***Determine if this element in the Symbol Table is a scalar.

CALL GET(CLASS)

IF (CLASS.EQ.SCALAR) GO TO 200 -

C***The Symbol Table entry is not a scalar. Continue traversing the list.

C***The flow of control is about to go backward.

FBR = 'Backward'

GO TO 100

C***The Symbol Table entry is a scalar. Now, investigate how it is used.

C***Enter the Linked List Usage Table from the Symbol Table.

200 CALL TT(Linked List Usage Table, FLAG)

C***Reset the Direction.

FBR = 'Forward'

C***Determine if the entire list has been traversed.

IF (FLAG does not indicate end-of-list) GO TO 210

C***The list has been completely traversed.

C***The flow of control is about to go backward.

FBR	 'backward

r #	 GO TO 100
1

(Continued)

i	 C***The list has not been completely traversed. Determine if the Usage

C***Table entry is used as an input to an assignment statement.

210 CALL GET(USAGE)

F	 IF (USAGE.EQ.Input-to-an-assignment-statement) CALL OUTPUT

C***Continue traversing the list. The direction is backward.

FBR = 'Backward'

GO TO 200

Approximate Air Source Code

C***EOL MEANS END-OF-LIST

FBR = HF

I	
100 CALL IE(HSYM,BFLAG)

FBR = HF

IF(BFLAG.EQ.EOL) GO 40 `1OU0

CALL GETE(HSYM)

IF (CLASS.EQ.SCALAR) GO TO 200
f

FBR = HB

GO TO 100_

.r

VI. 1.	 21

200 CALL TT(HUSEI,BFLAG)

} FBR = HB

IF(BFLAG.NE .EOL) GO TO 210

w	
FBR = HB

GO TO 100

210 CALL GETE(HUSE1)

{	 IF (USAGE.EQ.(input to-assignment-statement)) CALL OUTPUT
}

FBR = HB

GO TO 200

i

rl Initially,. the Control Stack is empty.

The first time the Initial Entry subroutine is executed, the Control

Stack contains

Control Stack

Module	 Table	 List	 Pointer
Number	 Name	 Indicut,or	 d

3	 SYM	 699	 1

where the List Indicator , contains the number of entries in the list

still unexamined and the Pointer points to a row in the Symbol Table

(the first element in the list).

Row I. of the Symbol Table is empty, therefore, it cannot have a
s

class of 'scalar'. Flow of control branches back to the IE subroutine 	 #

with FBR set to 'backward'.

r
i

f<

^`

II

k

{

i
'T

r-f

i	 I

V1. 1.	 22

The Control Stack now contains

Control Stack

Row 2 of the Symbol is empty, and the flow of control again branches

back to the Initial Entry Subroutine with FBR set to backward. This

sequence continues. When row 12 of the Symbol Table is reached,

the Control Stack contains

Control Stack

a

3	 SYM	 688	 12

Row 12 of the Symbol Table does not contain a scalar. The flow of

control remains unchanged until row 322 of the Symbol Table is reached.

The Control Stack now contains

Contro l Stack

3	 SYM	 X78	 322

The entry in row 322 in the Symbol Table is a scalar. The flow of

.	 '"'"^'*nom^..ev-v • .., ,.....R.^^	 y

a	 V1.1.	 23

A*
control now branches to the statement containing a call to the Table

to Table Transition subroutine, with FBR previously set to forward.

After TT has been executed, the Control Stack contains

Control Stack

1

3 USE1 1 2

3 SYM
i

378 322

where the List Indicator indicates that the end of the linked list in

the Usage Table has not been reached, and the Pointer points to the

second row in the Linked List Usa(}e Table (USED .

The entr y in the Usage Table representsa usage of 'an input

variable in an assignment statement'. This represents a complete

template match, and an appropriate message is printed. The flow of

control now branches back to the call to the TT subroutine, with the

Forward-Backward Register set to backward.

After the TT subroutine has been executed, the Control Stack

contains

Control Stack

3 USE1 a 4

3 SYM 378 322

y

t

^^ tt

i

V1.1.	 24

The Forward-Backward Register is set to 'backward' and the flow of

control branches back to the IE subroutine. After IE is executed,

the Control Stack contains

Control Stack

Processing continues as before until the last row (last element in the

list) is being examined. The Control Stack contains

Control Stack

Row 700 is empty. IE is again executed. This time, it is discovered

that the List Indicator indicates that the list in the Symbol Table

has been completely traversed. The Control Stack is popped and the

FLAG is set to indicate that there are no more list entries to examine.

The search has been completed.

i

Al

w

i_

VI. 1,	 25

i
Traversip t,ists

As discussed in the section "AIR Basic Search Technique",
i'

lists are traversed through the Initial Entry subroutine (IE) and

the Table to Table Transition subroutine (TT), with reference to
E

the Forward-Backward Register (FBR).
.K

That discussion can be summed up as the following:

1) IE can only reference a list that consists of an entire table.

a) If IE is called with FBR set to 'forward', than a table

is entered at its beginning, i.e., the search examines

the first row of the table.

b) If IE is called with FBR set to 'backward', then the

search examines the next row in the table.

I
2) TT can only reference a list which can be entered from 	 I

another list.

a) If TT is called with FBR set to 'forward', then a list

is entered from another list, and the entry point row

is examined by the search.

b) If TT is called with FBR set to 'backward', then the

next row in the list is examined by the search.

Although the lists of IE and the lists of TT occupy the same physical

space in the tables, the lists of one cannot be referenced by the other._

The lists of IE and those of TT are mutually exclusive.

i

M.- Yi

l

VI,1.	 26

• IE can only reference certain tables, i.e., lists. These tables

ir, the following:

1. COM (COMMON Block Name Table)

2. DIR (Directory)

3. IS	 (Inverse System Hierarchy Table)

4. NOD (Node Table)

5. SH	 (System Hierarchy Table)

6. SYM (Symbol Table)

7. USE1 (Linked List Usage Table)

B. USE2 (Statement Number Linked Usage Table)

The lengths of the above lists is equal to the contents of the

pointer to the last non-empty row in the table. The only exception is

the Symbol Table. Because it is a hash-coded table, the length of its

list'is equal to the physical length of the table.

Whenever IE is called and FBR indicates'forward', the List Indicator

in the Control Stack is set to the length of the list minus one. After-

wards, when IE is called and FBR equals 'backward', the List Indicator

a- decrEment-1 I° nn^-^ Vih^n the List Indicator equals zero, then the

end of the list has been reached.

When entering a list at its beginning, TT can only reference

lists which can be reached through other lists. These lists reside

in separate tab`t es; a transition from one table to another, is necessary.

2

i
VI. 1.	 27

The permissible paths from Table 1 to Table 2 are as follows:

A

' Table 1 Table 2 Method

1	 i
+ COM + LIN pointer to Linked List Table

DIR SYM hash and search

I DIR SH row index

DIR -} IS row index

IS ISD pointer to Inverse System Hierarchy to
j

Directory Table

ISD DIR pointer to Directory

LIN -. DIR pointer to Directory

r"

NOD USE2 USETAB Pointer

NOD SUC Successor Pointer

NOD PRE Predecessor Pointer

PRE NOD statement number

SH SHD pointer to System Hierarchy to Directory Table
1

SHD DIR pointer to Directory

SUC + NOD statement number
j

SYM + USE1 USETAB Top Pointer

SYM DIR sequential	 search

USE1 SYM use Back Pointer and Back Pointer Code to find

beginning of linked list; then use Back Pointer

to SYMTAB

(These Tables(l and 2) are continued on the following page).

,y

L

!(M

3+

VI. 1. 28

Table 1	 Table 2	 Method

USE1	 USE2	 find first occurrance of the associated state-

ment number

USE1	 NOD	 statement number

USE2	 USE1	 use Back Pointer and Back Pointer Code to find

beginning of linked list

USE2	 NOD	 statement number

When TT is called and FBR indicates 'forward', the List Indicator

in the Control Stack is initially set to one, except when the list is

empty, in which case it is set to zero, or except for the following
3

cases:

TAB1	 TAB2

NOD	 SUC	 List Ind. = Successor Number Column Entry

NOD	 PRE	 List Ind. = Predecessor Number Column Entry

IS -* ISD	 List Ind. = Number of Entries Column Entry

SH	 SHD	 List Ind. = Number of Entries Column Entry

In these four transitions, from TAB1 to TAB2, the List Indicator is

set to the length of the list in TAB2.

When TT is called and FBR indicates 'backward', TT determines

if the end of the list has been reached.

For all but the lists enumerated below, the length of the list

is known. Tf ^-he list resides in one of the tables discussed above,

!	 its length is derived from another table, or else its length is one.

r

VI. 1.	 29

Each time TT is called with FDR set to 'backward', the List Indicator

is decremented by one until the List Indicator contains a zero.

This means the end of the list has been reached.

For the following lists, the length of the list is never known.

TT determines that the end of the list has been reached when the

following conditions hold:

Table	 Linkage	 End of List Condition

USE1	 Linked List	 When Forward Pointer = 0

USE2	 Sequential	 Upon entry to USE2, if

statement number n,

When statement number > n

LIN	 Linked List	 When Linkage Pointer	 0

Example for USE2:

index	 statement
number

25

26
	

f Entry point into list, n = 8

27

28
	

End of list, n	 8

29
	

{ Next list, m = 9, m > n

^'	 r

9

—	
21	

—3

3 20

^4 22

5 0

5	 _ µ
23..._._

5 6.7

386^

1r
linked

lists

^i

p .

VI.1.	 30

t

Example for linked list:

index

	

	 Link
Pointer

11	 12

12	 15

13

14 i	 ^y

E

15	 0	 *- end of list

Unlike any other table used in AIR, the Use Table contains two

types of lists which can be accessed by TT, sequential lists of
W ^	 y

statement numbers and linked lists. The linked lists connect all

references to a specific symbol string in the Use Table. The

sequential lists of statement numbers are the sequential appearances
3

of a specific statement number in the Use Table.

f

Use Table (abbreviated)

Statement	 Forward

index	 Number	 Pointer

17
sequential	 18

lists of	
19

statement	
20

numbers	
21

22

23

r

VI.1.	 31

Because TT must have the capability of accessing both lists,

AIR was designed to view the Use Table as two logical tables, both

occupying the same physical space. The linked lists are in the

Linked List Usage Table (USE1), while the sequential lists of
	 r

statement numbers are in the Statement Number Linked Usage Table

(USE2).

Important:

Note that USE1 and USE2 occupy the same physical space.

They also use the same length variable (LUSE), the same current

row pointer (PUSE), and the same pointer to the last non -empty

row MUSE).

Designer's Comment: In retrospect:, USE1 and USE2 should have their

own current row pointers, PUSE1 and PUSE2.

(770m---^
i

Legal Table to Table Transitions

Global

Tables

i

VI.1. 32

I

7

V

4

i
i

VI. 1.	 33

Calling_ Sequence Path Tracing.

A path is placed in the Trace Stack, one node at a time, starting

at a specified beginning point. Path construction continues until one

of the following conditions occurs:

a) The node at the top of the Trace Stack has no successors,

b) The path becomes circular, i.e., the path branches back

onto itself.

After one of the above conditions has occurred, the path is back-

tracked, one node at a time, until either a node is reached that has an

as yet unexamined succelp^,or or until the path is backtracked to its

starting point, i.e., the stack is empty. If a node has unexamined

immediate successors, then the trace of the path is again extended.

If the Trace Stack is empty, then no more processing occurs for paths

beginning at the specified starting point.

The immediate successors of a node are kept in a sequential list

in the System Hierarchy Tabies. When a node is placed into the Trace

Stack, the second column is set to the number of immediate successors

in the table, and the third column is set to the first immediate

successor in the sequential list. Each time an immediate successor

is added to the Trace Stack, the count column (column two) is dec

remented by one, and the pointer column (column'..three) is incremented

by one. Thus, the count column contains the number of unexamined

immediate successors, and the pointer column points to the next suc-

cessor to be examined. When the count column at the top of the Trace

Stack contains a zero, then the node at the top of the Trace Stack has

no unexamined immediate successors.

Sequential
Successor

List

6	 F	 a

7	 A

4
The following example illustrates the above discussion.

Node Diagram

Tables

Node	 Number of	 Pointer to
Successors	 First

Successor

A 2 1

B 2 3

C 1 5

D 0 0

E 2 6

F 0 0

r

I

VI. 1. 35

Trace Stack

D 0 0

B 2 3 1	 B 1 4	 No successors.	 B 1 4
---^	 --	 -- 0 Backtrack	 --^

A 2 1	 A 1 2	 A 1 2	 A 1 2

F 0 0

E 2 6 1	 E 1 7	 E 1 7

No successors.

---^	 B 0 5 —,*	 B 0 5 ---> Backtrack	 B 0 5 J

L-A 1 2	 A 1 2	 A 1 2

A 2 1
r

E 0 8	 The path is	 E 0 8 1	
No successors.

-^	
circular. .^ B

B 0 5	 Backtrack	 0 5	
Backtrack

A 1 2	 A 1 2

No successors.	 -
---^	

B 0 5	 Backtrack	 C 1 5

A 1 2	 A 1 2	 A 0 3

F 0 0

E 2 6 1	 E 1 7	 No successors.	 E 1 7
—i 	 ---^ --4 Backtrack	 --a

C 0 6	 C 0 6	 C 0 6

A 0 3	 A 0 3	 A 0 3

iI_

i

t.

r

VI.1. 36

A 2 1

E 0 8	 The path is	 E 0 8	
No successors.

-^	 circular. --^	 --^O Backtrack
C 0 6	 Backtrack	 C 10 6

A 0 3	 A 0 3

C 0 6	 No successors.	 No successors.
--'}	 --) Backtrack	 Backtrack

A 0 3	 A 0 3

Empty Stack. Processing

---^	 ---^
for starting node A is
complete.

I

II`

r^

Flow of Control Path Tracing

VI. 1. 37

A path is placed into the Path Stack, one node at a time,

starting at a pre-specified beginning point. The construction con-

tinues until one of the following condit , s;ns occurs:

a) the node at the top of the Path Stack has no successors,

b) the path has reached the end node (the pre-specified

ending point),

c) the path has become circular (the path branches back onto

itself).

After a path has been built, a backtrack operation occurs. This

means that the node at the top of the Path Stack is removed, and the

next node on the Path Stack is checked to see if it has any alternate

successors (alternate edges). If there are alternate successors, the

first successor is chosen, and a new path is built which passes through

the successor node. If there are no successors, the backtrack operation

continues until the path has been backtracked to its starting node. This

means that all non-circular paths, from a beginning point to an end point,

have been investigated.

All of the successors of anode are placed in the Alternate Edge

Stack. As each successor is needed, it is removed from the Alternate

Edge Stack and placed on the Path Stack.

The Path Stack consists of one column. Each entry is a node

in the same path. The bottom of the Path Stack contains the beginning

node of the path, and the top contains the node furthest down the path

that the system has yet reached.

i

VI. 1.	 38

The Alternate Edge Stack consists of two columns. The first

column contains a node that exists in the Path Stack. The second

column contains a successor to that node,

A node may have no alternate successors in the Alternate Edge

Stack, in which case it will not appear in that stack. On the other

hand, multiple successors means multiple occurrences of a node in the

Alternate Edge Stack.

The following examples illustrate the above discussion.

Example 1)	 1 A	 B	 Beginning Point = 1

2 DO 4 I= 1, K	 Ending Point = 5

3	 C=D

4 CONTINUE

5 RETURN

(

PATH	 ALTEDG	 PATH	 ALTEDG	 PATH	 ALTEDG

2
i	 1	 1	 2	 1

3	
---^	

3
22	 2i	

2 J
3	

1	
1	 3	 4

VI.1.	 39

PATH	 ALTEDG	 PATH	 ALTEDG	 PATH	 ALTEDG

5

	

--^ 4	 --3 4
	

---^ 4

	

3	 3	 3
i	 2	 2	 4	 5	 2

	

"1
	 4 2	 1	 4 2

2 already exists

4	 ---j	 in the PATH stack.	 4

3	 This is a circular	 3

1	 4 2	 path. Continue	 i
LLJ

backtrack.

At this point, the Alternate Edge Stack is empty. This implies

that there are no more possible paths to traverse. Thus, the path

search through all possible paths has been completed. End of com-

putation.

Example 2) 1	 K= Z+ J	 Beginning Point = 1

2	 GO TO (3, 5, 6), K	 Ending Point = 8

3	 J=M-

4 GO TO 1

5 GO TO 8

6 J

7 GO TO 1

8 RETURN

2
2-
2

6
5
3

6
2
1

2

2

5

3

f

6

2

1
2
1

6 7

2 5

2 3

P

VI.1. 40

q ^.

PATH
	

ALTEDG	 PATH
	

ALTEDG	 PATH
	

ALTEDG

^^ I

2

1	 l	 1	 2	 1

6
2 5 2

t

The successor to 7
---^

represents a circular	 s
7	 1

2	 5	
path. Start backtracking.

2 3

3
2

--- - ..

I

JR.

PATH	 ALTEDG	 PATH'

8
5	 5
2	 5 8	 2

L_J_I	 2	 3	 1 1

5
2	 2

LLJ	 I I

VI.1. 41

ALTEDG

The end point has

> been reached. Now

backtrack.

3
2

3

4; 4
3 3
2 2

11	 1	 1 j	 L.Lj 4 1

i"i

The Alternate Edge Stack is

The only successor	 empty in the backtrack mode.

of 4 is already in ---4 	 —>This implies that all non-

the Path Stack.	 circular paths between the

Backtrack,	 beginning point and end point

have been traversed.

End of computations.

Lk

l r

AIR	 - Driver of the AIR subsystem.

ALPHA	 - Determines if a character is an alphanumeric character.

ANSIST - Search for ANSI Standards function names not used,as

ANSI Standards functions.

ASNUSE - Search for local variables assigned values but'nevû,,,

used,

WILE -- Attach a list in a file to the List Table.

BLDCIT - Builds command item from command card data.

CBDIM	 COMMON Block Alignment Check for entry dimensionality

mismatch.

CBINDS - COMMON Block Alignment Check for individual entry size

mismatch.

CBNAME	 - COMMON Block Alignment Check for entry name mismatch.

CBNENT	 - COMMON Block Alignment Check for total number of entries

'mismatch.

t
CBTOTS - COMMON Block Alignment Check for total size mismatch,

CBTYPE	 COMMON Block Alignment Check for entry-type mismatch.

CMDEND - Terminal command card procedure.

COMBAL - Driver of the COMMON Block Alignment Check.

COMALC	 Construct the Alignment Tables for the COMMON Block

YI.1. 42

Rudimentary Discussion of Phase 2

Alignment

CONALP - Construct

Alignment

CONCOM - Construct

CONISH	 Construct

Hierarchy

Check.

the Alignment Tables for the Parameter List

Check.

the COMMON Block Reference Tables.

the Inverse System Hierarchy (the Called-by

Tables.

r

VI. 1.	 43

CONSH	 - Construct the System Hierarchy (the Calling Hierarchy)

Tables.

CONVER	 - Convert a vector of decimal digits in Al FORMAT into an inte-

ger value.

i CONVRT'	 - Convert an alphanumeric character string into.its integer

i
value.

CYCALL	 - Search for cyclic calling sequences.

w----
DATVAR	 - Search for DATA statements not in $LOCK DATA which contain

COMMON Block variables.

DEL	 - Delete a list and all lists that follow it from the List Table.

DIGIT -	 Determine if a character is a decimal digit.

DMPAIR	 - Dump the AIR control structures.

'

I

DMPCOM	 - Dump the COMMON Block Reference Tables. Ai

P
DMPSHT -	 Dump the System Hierarchy Tables and Inverse System Hierarchy

Tables.	
t

DOTERM	 - Search for DO Loop index variables used after the DO Loop

terminated normally.

EQUIVL	 - Place the name pointed to by the top of the Control- Stack

and any names EQUIVALCNCED to it into a list in the List

Table.

. ERHALT	 - An internal' terminal error has occurred. Halt AIR processing.

R
fACES2	 - Driver of Phase 2.

I F£tCOM	 - fetch an element from the COMMON Block NameTable.

FELDIR	 - Fetch an element from the Directory.

FELIS	 - Fetch an element from the Inverse System Hierarchy Table.	 r.

FELISD	 - Fetch an element from the Inverse System Hierarchy to

Directory Table.'

i

y

VI.1.	 44

k

FELLIN	 - Fetch an element from the	 Linked List Table.

FELNOD	 - Fetch an element from the Node Table.

FELPRE	 - Fetch an element from the Predecessor Table.

FELSH	 - Fetch an element from the System Hierarchy Table.

` FELSHD	 - Fetch an element from the System Hierarchy to Directory
f

Table.

FELSUC	 - Fetch an element from the Successor Table.

FELSYM	 - Fetch an element from the Symbol Table..

? FELUSE	 - Fetch an element from the Use Table:

FILCLS	 - Marks and closes Phase 2 files.
I

FILOPN	 - Opens and positions Phase 2 files.

FLD	 - Manipulate bits of a word as would_UNIVAC's FLD function.

FUNPAR	 - Search for function dummy parameters which are assigned

values within the function itself.

GETE	 - Get an element from a table.	 3

GETL	 - Get the local tables of a modulebrin 	 them into mainmodule(bring

memory) .

GETSCA	 - Get a scalar.

HASHSY	 - Hash into the Symbol Table.

IE	 - Perform a initial entry into a table. 	 Also follows lists.

IMPLDO -	 Determine if a variable is set by an implied DO Loop.

INCOM -	 Bring the COMMON Block Reference Tables into main memory.

INDIR -	 Bring the Directory into main memory.

INGHD =	 Bring the Global Header into main memory. 	 };

INISH -	 Bring the Inverse System Hierarchy Tables into main memory.

INSH -	 Bring the System Hierarchy Tables into main memory.

I'JTAIR	 - Initialize the AIR subsystem.

z

ti

__ _

r

i

r
VI.1.	 45

a

-LIRL -	 Load the Immediate Register from a list in the , List Table.
t

LNKAIR -	 Processes user query descriptions, initiates AIR process,
Is

and initiates and terminates files for AIR processing.

MANL -	 Manipulate a list's description in the List Table Map.

MODNAM -	 Find the name of a module.

MULBRA -	 Search for multiple branching statements which do not

F^ 	 w branch to the statement immediately following.

NXTCMD -	 Acquires next command item from the command card.
ti

{ OUTCOM -	 Move the COMMON Block Reference Tables out to secondary

storage.

If OUTGHD -	 Move the Global Header out to secondary storage.

OUTISH -	 Move the Inverse System Hierarchy Tables out to secondary

I' storage.

OUTSH -	 Move the System Hierarchy Tables out to secondary storage.

PARAL -	 Driver of the Parameter List Alignment Check.

PATHS -	 Build paths which reflect the flow of control through a

module.
a

PLDIM. -	 Parameter List Alignment Check for parameter dimensionality

mismatch.

PLNENT - ' Parameter List Alignment Check for total number of.parameters

mismatch.	 l

PLTYPE -	 Parameter List Alignment Check for parameter type mismatch.

POP -	 Pop the Control Stack.

PRTQLS- -	 Prints queries being performed by AIR

PUSH -	 Push the Control Stack

y

VI.1. 46

r	 +	 a11Y

V RDCTRL -	 Read of command card.

READLT -	 Read in the local tables of a module.

REDLOP -	 Search for DO Loop control variables assigned values

within the DO Loop itself.

RESWRD -	 Search for FORTRAN 'reserved' words used as names. #.

f SETSCA -	 Set a scalar.

SRCHDI -	 Search the Directory for a name.

TCOM -	 Perform a table to table transition from the COMMON Block

Name Table.

TDIR -	 Perform a table to table transition from the Directory.

TIS -	 Perform a table to table transition from the Inverse

System Hierarchy Table.

TISD -	 Perform a table to table transition from the Inverse

System Hierarchy to Directory Table.

TLIN -	 Perform a table to table transition from the Linked List

Table.

TNOD -	 Perform a table to table transition from the Node Table.

TPRE -	 Perform -a table to table transition from the Predecessor

Table.

TRACHI -	 Trace the calling hierarchy.

TSH -	 Perform a table to table transition from the System'

Hierarchy Table.

TSHD -	 Perform a table to table transition from the System j

Hierarchy to Directory Table. }

TSUC -	 Perform a table to table transition from the Successor

Table.

:

j

1 VI.1.	 47
4

A

TSYM -	 Perform a table to table transition from the Symbol Table.
F. I

TT -	 Driver of table to table transitions.	 Also follows lists.

1.
k!
L^ TUSE1 -	 Perform a table to table transition from the Linked List

'

Use Table (USED.

TUSE2 -	 Perform a table to table transitiop from the Statement

i 1 Number Linked Use Table (USE2).

UNINT -	 Search for uninitialized local variables.

i USERQ -	 Interprets user-requests from command card and constructs

R	 ' query list to be performed.

r

r ^I

^I

i

7

r

VI.1. 48

W	 Construction Conventions of AIR

I. Malfunctions

There are two classes of malfunctions that can occur in AIR.

1. Bad data in the tables produced by the FFE. AIR will try

to bypass any bad data. No error messages are printed.

2. AIR has committed an internal processing error. How AIR

reacts to the malfunction is determined by where the mal-

function was detected.

a. The malfunction was detected by a query. An error message

is printed. Processing on the query halts, although

system processing continues.

b. The malfunction was detected by a utility. An error
rt

;
-k ,0
	

message is printed. No recovery is attempte4. AIR pro-

cessing halts.

II. FORMAT Statements
a

1. A FORMAT statement immediately follows the first I/O statement

which references it.
E

2. FORMAT labels are always odd numbers. Tine last digit in the

FORMAT label is almost always 111.

III. Statement Labels

1	 Statement labels ending with '00' or '000' delineate major

sections of code.

2. Transfer labelsare always even numbers.

3. FORMAT labels are always odd numbers.

4. Sections dealing with internal AIR errors have statement labels

in the 900's and 9000's.

I	
T
-q

VI. 1.	 49

5. All statement labels are either used in transfers or

are used as FORMAT labels.

6. All statement labels are in increasing order.

IV. DO Loops

1. DO L000ps are intended.

2. Each DO Loop ends with its own CONTINUE statement.

V. Non-executable Statements.

1. Non-executable statements, except for FORMAT statements,

precede all executable statements.

2. COMMON Block declarations appear in alphabetical order.

VI. Protection Code

Code which es executed only if bad data is introduced a

during AIR processing is immediately preceded by

C****PROTECTION CODE

and immediately followed by

3

a

VII.1.	 1

VII. REPORT GENERATOR

Design Considerations

Purpose. The Report Generator subsystem,produces user

displays of information extracted by analysis of the software system.

Requirements. The Report Generator produces the primary inter

face with the user--report.resUlts. The report form should be easy

to follow. Report information should clearly identify how the analysis

results were detected. Information displayed should completely describe,

yet not bury, the user in.printout.

The Report Generator should not process FORTRAN constructions.

Interpretation of FORTRAN should be supplied by other system components.

The Report Generator should be isolated 'in so far as possible

from numerical codes assigned by other subsystems. Relational and

structural control tests are preferred to numerical value tests.

Need for reference manuals and auxiliary listings should be mini-

mized in interpreting the reports produced. Reference materials should

be required only for suspected malfunctions and subtle problems.

j	 The Report Generator should shield the user from redundant and

superfluous information generated by other subsystems.

Reports should contain connected , source-code events even if the

lines referenced are contained in different modules. Related problems

should be displayed ,on a single listing.`

Strategy. Users will be most familiar with compiler listing forms

of program displays. Therefore, a listing is used for display results.

This format provides not only a familiar form but also permits other

r-

VII.1.	 2

lines of interacting code to be examined.

i^	 To isolate the Report Generator from message codes, structural

'.	 relationships (e.g., A .GT. B) are used between present/last values

and current/next values of data items. Only the lowest level routines

use numerical values extensively.

i
r'	 To minimize I/O time on source code extraction, report generation

follows the order of the Source Code Catalogue.

For generality in operation, the Report Generator is largely

E	 driven by the contents of the analysis Flag file entries. flag data

values cause lines of source code to be extracted for display. Boundary

r conditions detected in report messages control listing boundaries.

Listing boundaries cause printout positioning and report heading prints.

F r	 The Flag sorting is exploited to achieve the following results:
t-

1. Source code reference order of analysis messages is the same

as the Source Code Catalogue entries.

2. Messages generated by independent routines are ordered on
j

the same line of source code text. Flags associated with a

single line group of source code are adjacent on the Flag

file.
a

3. Redundant Flag information becomes adjacent on the Flag file.

i
5

'i

f.

VII.1.	 3

Overview of Report.Generator Operation

Types of Reports

I. Primary Reports. Primary reports are full module listings

annotated with analysis.messages.

2. Secondary Reports. Secondary reports are composed of data

drawn from analysis investigations and selective lines of code extracted

from modules. Classifications of secondary reports are:

a. Display Reports. Displays of data extracted by program

analysis for which source code is not needed.

b. Secondary Listing Re crts. Truncated listings of one or

more modules generated to show a fragment of program

operation or provide adjacent display of source lines

from several modules.

i

Initial Conditions.

When the Report Generator is activated, source code for the

modules examined resides on the Source Code Catalogue file (SCAT) and

sorted fags from AIR and FFE reside on the Flag File (FLAG). The sort

order produces a sequence of flags associated first by global key number

and secondly by order of the source code on the Source Code Catalogue.

The primary report is always generated first, followed by any

secondary reports needed. Either report set may be empty (i.e., no

data printed for the report). Control of the report generation process

is determined by the report options selected and data contents of the
3

Flag File.	 i

G

^ X`
VII.1.	 4

4 For report production, individual Flag File entries are

'.. combined together into units called "messages".	 Messages are portions

of analysis results tied to a given set of source code lines with data

=.1
r

attached for a particular analysis result.	 For example, Flags generated s'

by CBTYPE which are associated with one line of code, are collected

together as a message.

Report Production

c Report Production exploits sorted aspects of the Flag File

m
contents and Source Code'Catalogue order.	 Report generation control

centers on the options selected in the REPORT card and value contents 5

of the Flag File entries. 	 The following events control report pro-

duction:

+ 1.	 Selection of the ALL option causes modules to be selected

from the directory entries in the order they appear on the

Source Code Catalogue.

2.	 The FLAG option causes modules to be selected in the order

indicated by the sorted contents of Flag File entries.

3.	 A change in the source code origin of Flag entries indicates

a new module's source code is being referenced.

4.	 Global sort key values are 	 1	 for primary messages and	 +N

for secondary report messages.

5.	 The end of a report is identified by a change in the global

key.	 Each report has a unique key value.

The primary report is always produced first.	 The primary report

consists of a series of annotated source code listings followed by 'a

i

M.< J

L.

VII.1.	 5

I
legend of explanations for the generated messages. The order of the

listings is the same as the order of the card images on the Source

Code Catalogue. Since the flags are sorted in the same order as the

source code, flags appear in an increasing sequence of card images.

Primary Report Production. The primary report production

requires the following actions

1. Selection of the next module to print.

2. Control listing of the modules and insertion of annotations

for messages.

3. Provide a descriptive legend of explanations for the

annotations.

Figure VII-I

Report Generator Routine Hierarchy

Controller
(RPTGEN)

Primary Report	 Secondary	 Display Report
Controller	 Listing Report	 Generator

	

(PRIMR)	 SECNDR	 DISFLG

Module Selection	 Print Source	 Print Message
(SELMOD)	 Lines	 for Line

	

LINEPR	 PRTNISG

Message	 Module
Positioning	 Listing

(MVI',SG)	 (PRTPRM)

Print SourcePrint Message

	

Lines	 for Source Line	
Print Explana-

	

LINEPR	 PRTMSG	
tion of Flags

PRTEXP	 r

VII.1.	 6
i

}	 Selecting the next module is governed by the user option and

the last module processed. If the ALL option is selected, all modules

are printed regardless of message content. If the FLAG option is se-

lected, only modules containing flags are printed.

In primary reports, the module text is printed, recording the

r	 messages generated for the module. At the end of the module, a legend

of messages generated for the module is printed.

To print the listing, source lines are printed through the end

of the last card indicated by the next message, then control is passed

to a message print routine to construct a series of text lines for user

display of the message text. If multiple messages appear on the same

line, new source text is suspended until all messages for the current

lines have been processed. After processing all messages for the

selected module, the remaining source text, if any, is printed and

control passes to the explanation printing routine.

The,next module is selected and the process repeated until all

selected modules have been processed.

Secondary Reports, After generating the primary report, a

series of secondary reports are issued until secondary messages are

exhausted. Secondary messages are those flags having a global key

number greater than 1. The principle discrimination between types of

secondary reports are whether source code is required for the report.

Each global key change causes a 'new secondary report to begin.

If the first message of the report indicates source code is not re-

quired for the report (empty source code origin and first card

VI1.1.	 7

descriptors), then the display report processor is activated.

The display report processor produces printed reports using;only

the data from the flag data fields. Control is returned to the report

generator when the data for the report is exhausted (i.e., the key

field changes).

Secondary Listing Reports. Secondary listing reports are truncated

listings of source code extracted from a portion of one module or from
	 r

several modules. The messages for a single secondary listing are identi-

r
	 fied by having the same global key value.

Secondary listings are produced by printing lines of source code

indicated by the message followed by the message text itself. If a

change of modules occurs During a secondary listing report, space is

provided between the source lines of the different modules.

Of

VII.1.	 8

Constructi ng Messages

r`	 Information is passed from analysis subsystems to the Report

j	 Generator via Flag File entries, The Flag File contains informa-

tional entries to be attached to source code or to be displayed by

itself. The Report Generator "does not distinguish the source of the
f	 _	

s

.p
information -- only the contents and rules of message construction

`	 are used by the Report Generator.

To facilitate report production, the sequential Flag File

entries are combined into processing units called "messages". Each
'i

message is a logical collection of associated data. An overview of

5

data flow is illustrated in Figure VII-2.
r

E	 ^4 ^%

i

M

1

1

S

i i

--I+

	

'	 L

VII.1.	 9

Message Construction Data Flow

Figure VII-•2

^

2

11

Sorted

Flags

4f

	

4	 Physical I/O	
R

(RDFLAG)

	

`.	
Flag Buffer

`((
	 /AFLAG/

	

j	 Next Flag Selection/' 	 a

Suppress Redundant Flags	 ti

(GETFLG)

I

A

Next _Flag Buffer

	

a	 i
/NXTFLG/

Message Construction/
Redundant Message Suppression

f
(GETMSG)	

t

	

^	 t

	

G	 Next Message

Buffer	 To Message Data

} Processing Routines/MTEXT/

4

VII.1.	 10

4 Combining fLao into Mcssan s..	 The sort fields of the Fla

t ` file entries are arranged to cause all messages associated with a

. single set of source code to become adjacent on the sorted file.

As a secondary effect, the more critical 	 information becomes the

first flag for a particular statement.

^u A series of flags are consumed to construct a message.	 The

first flag of the series establishes the global	 key number, source

code statements for which the message is intended, flag identification

information, occurrance number, and internal order number for the

entire message.	 Data text for the first flag becomes the first entry

of the message text.	 Subsequent flags are combined in the same message

if they have the same global'-key number, flag identification, source

^^	 t
code pointers, occurrence number and increasing values of internal

order.	 The message is completed when a flag is discovered that does

not belong to the current message.

An example of message construction is illustrated in Figure VII-3.

The first message is composed of two flags to be attached' to the module

with sourcecode origin 0, relative card number 6. 	 The second message

consists of a single flag to be attached to module source code with

` origin 34, card number 19.

Notice that messages 5 and 6 are both attached to modul e

origin 34, card 51.	 In the sort process, the order of the two messages

has been reversed;	 the occurrance number of SABORT is 2, and SYM UREC

is	 1.

Lcr . f
I	 '

I

VII.1.	 11

1

ur

I
OD

O Oo
i .r,	 C.)

>> >? >> ^)?	 ,-"N

cn

4-3
4.1

r- V .- NCO- — N 000L
G C)

v t^

Q1 .r ., (U t1;1., •..^ N i J .-..-....•r ... N C\ N N N N RI N .+.+^
L
7

Y U

r UI - O

M

"dam) UU ^ r-; U	 UUC:I. UIJ'JVI
P.- to O J C^: J	 Ul.)	 JOaO ^ a^.)(^E-{

4

'^ 9'	 a r-^ G l.: U _^ '_ t- f- y,: N ^-- J. '.L J (.:) u_ ;l :Y U: C: tY. a: a:CY. U
D }- F- U	 C^ a L	 :.:) ..0 cY [L U-	 (A

It_N F-F)1 <t< Y -'<;C > 'JOG7	 >	 YYC
.^- V)	 `)!_JL^w)'') rjJ))^	 LLLLU)V)vtu)v)vI ti) vtr
4. •X71

0 O NC\' N CV

^

n n 0 1 ri n N r^ NNmr)n r)N rlrr r) r)
r- z NN- -A 1%;" r N Qr fr 11.1 n,)lf)'f)L 'PfY) m
L

Z f? 'D G" rl .^ . .r ,^ c'^ Ci C^ 0 r!+ r) CT r*) r) r) rr, r) rl r) r r r)
.n)., uirf? f 1)0 u'DQ—N—(VCVNNNNCVNN

Q '
U '

ip C)C,:f)	 0Cr r,K)Nn, fl) n rte; r?M

• n. .,r: 'nU'i)'oQ\0Q C\J-4NNNCVNNNN Cv

U ^ ^
•

^ C

S- .., r r:r) ;tr,r)	 t,-)oo\t)czu000 n oo0=5 'r- .-^.r..C\ NN hN V NNN
O S
tN Co

LU .^ N ••1 ..^	 ^1	 r'f rd M' ewl r+•/ .^ A(.^f t"t !^I wl N .^1 .'A	 T^

f

IN	 I

s

VILL 12

and Message Protocalls. Semaphores areused to control

I/O and message data transfer. Semaphores.detect data not being

used and permit nonconsuming examination of data'to control sequencing.

When a processor places data in a buffer area, the semaphore

is set full (value 1 for single item buffers; length of +N for

multiple entry items). The semaphore is set empty (value 0) when the

data is consumed (e.g., a message is printed),.

Semaphores must be initialized to an empty state for proper

operation. Empty indicators stimulate the reading of the first data

in the system.

After the data is exhausted, the semaphores assume an empty

state causing processing to terminate.

Suppressing Redundant Messages. Flag informtion is assumed to.__

contain potentially redundant entries. This redundant data is suppressed

in report generation. Redundancy takes two forms:
a

1. Multiple adjacent Flag entries.

2. Multiple adjacent messages.

Redundant flags are suppressed by GETFLG. The suppression process

requires comparing the next flag to the last flag returned.

Redundant messages are ,suppressed by GETMSG. A redundant message

is identified by comparing the incoming flag sequence to the contents

of the last message. Redundant messages may contain superficial diffe-

rences; redundant messages may not be identical messages. Two messages

are redundant if they have:

VII.1.	 13

1. Same key number.

2. Same source code origin and relative card number.

3. Same Flag number.

4. Same . occurrance number.

5. New message date is a subset of data provided by the

previous message (i.e., no new information).

Redundancy suppression requires the old data values to be main...

tained intact. Thus, consuming processors of message data must not

destroy , data values if the redundancy mechanism is to function correctly.

In addition, initial values for data buffers must be established

to avoid suppressing the first message or flag as redundant.

Terminal Condito ni^n	 When flag data is exhausted, data

termination must be passed to calling routines. By convention, the end

f'	 of data is identified by an empty message. To cause termination of the

current report, if one is in progress, the key indicator is advanced.

For example, if the current key value is 5, an empty message with key

value 6 will be generated to cause termination of report 5 via key value

and termination of processing by the empty message.

If no flag data is present for a report ., an empty message will	 J

result with key value 1. This permits the ALL option to print unflagged

r listing of modules and FLAG option to produce no listings without

"special case" flags in the control structures of those routines.

Oversized Messages. Normally, FACES messages are rather short

sequences. The size of the message text array is established to accommo-

date the largest usual length. 	 x
6

r

Y	 i 	
t•

Mo Now

'ate.	
^	

,•	 I	 ^	 .

VII.'1.	 14

Some message sizes are dependent upon the source code

characteristics of the software being analyzed. For example, the

number of variables equivalenced cannot be predicted. Similarly, the

number of modules in a cyclic calling sequence is indeterminate.

Messages longer than the allocated size are called "oversized

messages".	 Acquisition of these messages requires multiple calls to

the message construction routine.

J On oversized messages, flags are consumed until the message

buffer is filled.	 Remaining flags for the message are withheld until

the current message buffer is processed. 	 On the next request for message

J^ data, remaining flags are provided until the buffer is filled or the

flags are exhausted.

F Since the first buffer is lost in the multiple call access,
t

redundant message suppression will not be operative for extremely long

' messages.	 Flag producing routines are responsible for avoiding redundant

messages where the length of message exceed the buffer size.

Multiple Messages for the same Line.	 Where several messages occur

r
for the same source line set on a given report, the source lines should

be printed only once, followed by the message set. 	 To facilitate Viis

processing, the source line printing routine(LINEPR) contains logic to

avoid multiple copies of the some line. 	 By convention, if the first

Tine of the set is numerically greater than the last line of the set,

no printing is performed.

The report .control routine tracks the last line printed for each

module, using the last line as a bound on the next line set. 	 Thus,	 if

s

VII A. is

two consecutive cards were found for relative cards 12 through 16,

the first message would cause the appropriate lines to be printed.

The second call to LINEPR will have "crossed pointers" and no lines

will be printed. The message is printed for both cases producing

the desired result: a single occurrance of the source code followed

by multiple messages.

Message Control. Since message content controls the report

r
	 sequencing and line printing activities, messages are normally one

F

	

	 ahead of current processing, That is, the end of a report is signaled

by finding a message for the next report. Under normal conditions,

report processors exit with a "live" message in the buffer. Similarly,

the end of all reports is indicated by finding an empty message.

The message moving routine (14VMSG) provides control for acquiring

the first message to initiate processing. MVMSG also permits recovery

if messages and source code lose synchronism through processing error

or bad data on the Flag file. Message positioning permits only

skipping messages from the incoming Flag File.	 3

Source Code Catalogue Control. The source code catalogue is

used in an index/sequential fashion._ The source code catalogue is

p6sitioned to an initial location, then a series of source lines are

extracted for display.

Source code catalogue control is located in ' the line printing

routine (LINEPR). The source code catalogue is usually properly

positioned during primary report generation;__ calls to MVSCAT are re-

dundant protection against lost synchronism. When secondary reports
	

i

1
VII.1.	 16

are being generated, WSCAT-performs the random access to sour^.e

code from multiple modules or selective access to a subset of module

source lines.

hP

	 ?--	 _-^	 T-1

	

7	
x

VIII.1.	 1

	

n ^'
	

VIII,
	 INPUT/OUTPUT FILE DESCRIPTION

4

i

R
FACES uses the simplest file structure possible to enable easy

r	
transportation among different host machines. Since resident file manipu-

lation facilities vary widely, preference is given to program resident

control of files.

Types of Files. FACES requires two types of files for operation:

1. Sequential files used in standard fashion.

2. Random Access Files used in index sequential fashion.

While operational efficiency will be seriously degraded, analysis could be

r '	 accomplished using only sequential files.
L

Sequential Files. Sequential files are utilized for user input,

print output, certain processing tables, and intermediate results. Variable
5

length sequential files are terminated by an end of file mark (EOF).

Fixed length sequential files are headed by a-descriptive record indicating

file content and length. Input files to FACES must contain the EOF for

proper operation. Sequential files generated by FACES are terminated by an

EOF mark during normal operation.

Random Access Files. Random access files are needed for storing

analysis tables and program source code presented for investigation. Nord

mally, the random file will be positioned to a given record followed by a

series of sequential reads or writes. Where fixed length files are required,

E
the size of the file is carried internally in FACES variables.

r

	

VIII.1.	 2

t

Internal file descriptions. Each file is described internally in

FACES by a COMMON block dedicated to the file. In addition, file I/O

is frequently accomplished through buffers dedicated to I/0; these buffers

are also implemented as COMMON blocks. (See System Conventions).

Sequential file manipulations. Sequential files are positioned with

the normal rewind and read operations. In addition to simple positioning,

sequential files created by FACES may be appended with new data.

To append new data to an existing file, the file is read until an

end of file mark is detected. The file is backspaced over the end of file

mark, and new data is written on the file. The new data is terminated by

a new end of file mark. After writing the EOF, the file is backspaced to

->^	 permit subsequent 'read sensing of the file status.

For compatability, empty files are created initially. An empty file

is one in which only an EOF mark is present. Due to a system problem en-

countered during installation, the Flag File is emptied by writing a dummy

record on the file followed by an EOF mark. The dummy record is discarded

in processing.
j
1

I/O Protocalls	 Where variable length sequential files (e.g., the

Source Code Input File) provide incoming data, I/O protocalls are used to

control I/O activities. The protocall involves setting an indicator when

physical reads occur and resenting the indicator when the data is used.
.	 _

The I/O protocall treats several unusual situat

r

ions unique to I/0.

1. Initial transient. Before the first read, the I/O buffer area

contains invalid or empty data. This data should be destroyed by the

VIII.1.	 3

;5
first read operation.

2. Nonconsuming inspectio n. Control may require inspecting the input

data to determine correct action. Based upon data contents, the buffer

may be used or left for later processing. The indicator permits cen-

tralized control of independent routines accessing common data or records 	
x`

the effects of previous calls to the same routine.

3. Final transient. The last read on a variable length sequential file

results in an EOF being read. Since this is not normal data, the indi-

cator is used to inform the calling processor that "empty" data was

received from the file.

Where the data is acquired into an array buffer, the pointer to the last
i

f ^	 nonempty entry is used as the I/O indicator. If data is read into fixed

A
scalar variables, a special variable is used for the indicator. The value

0 is used to indicate an empty buffer and a positive integer is used to

indicate nonempty contents.

Once an EOF has been read on a file, further calls will not perform

I/O activities unless the EOF has been cleared by an external routine.. This

technique permits error recovery control to remain in FACES rather than

abort the job through a possible system error ^ondition.

VIII.1.	 4

ANSI Standard Name File (ANSI)

The ANSI Standard Name File contains routine names used by AIR to

support restrictions on Programmer defined names. The file is read by

routine ATFILE. A fixed length sequential file of formatted records is

used to provide names to be restricted. The first record indicates the

file length and characteristics of the file records. The first record is

read with a format of,

FORMAT (14, 2X, Al, 2X, 14)

where first entry is the number of records

second entry is the type of each record entry

third entry is the length of elements expressed as the

number of associated records.

The header record isfollowed by data records containing alphanumeric

entries in A4 format, one entry per record. That is, the reading format is

FORMAT (A4)

The number of these records is established by the first header record count.

The number of records associated as a data unit is indicated by the last

count of the header record. For example, if the last count is 2, two se-

quential records are interpreted as a single datum.

For maintenance convenience, the data entries are stored in alpha-

betic order. , This order is not required for proper operation.

A

Flag File FLAG

The Flag File is a variable length formatted sequential file containing

r
diagnostic data for report generationi. Records contain data created during

HE source code analysis and AIR investigations. Records contain both sort

key information and report data to be processed by report generation.

ly
The contents of the Flag File are sorted prior to report generation.

Sorting the contents causes all report items to become adjacent on the file.

After the data has been consumed by the report process, the Flag File is
F

set empty by a rewind/EOF operation.

Flag File may contain redundant information. Redundant information

is not significant and is suppressed in report generation. Sorting records

`	 permits detection of redundant information.

Flag File creation requires cumulative addition to the file. As

processing proceeds, new entries are added to the file contents to accumulate

flags. for this reason, the Flag File is maintained with an end of file mark

to delimit the data. When new entries are added, the EOF is destroyed,
a

adding entries. The new file length is then _sealed with an EOF mark.

1

t

-

f

"I
	 VIII.1.	 6

Flat . File (Sr-L fil e) ̂ Format

Statt,m ,2nt	 i	 Violation
Location Fields	 i	 Flag Fields	 i

Global	 Source Coda First Card Last Card ;Integer 	 Alphanumeric;

Number Key	 Index Key i +;ev	 trey	 i:ey	 Keyi

l	 2	 3a	 3b	 4a	 0

I	 Data Fields
Number of	 Internal	 11i

Key• .,,^^y,:^	 ,,^,.^,u,^.,^^^..^ ^.^•

5	 6	 7a	 7b

There are seven sort fields and three data fields. All are integer

fields, except the alpha.numeric Fl ag Field and the alphanumeric Data
i	 3

j	 Field. Any field, alphanumeric orinteger, which does not contain any

information contains a zero. The output format is

FQRMAT(5(2X,I5), 2X, 2A4, 3(2X,,15), 2X, 2A4) 	 r

1. Global Number Key	 This sort key specifies whether the violation

is to ,appear in the primary ;;sting or in the secondary or display
At

listings. A one in this 'key indicates that the violation is to

Key.
	 ...

I-	 w

VIII.1.	 7

a
appear in the primary li sti , nq.- An inte9tr >1 indicates that

the violation is to appear in the secondary or display listing.

2. Source Code Index Key - This sort key specifies the location of

the beginning of the source code for the module in which the

violation occurs. If the violation does not occur in a specific

module, as in cyclic calls, then this key is zero.

3. Statement Location Fields •- This area consists of two sort fields,

L	
the First Card Key and the last Card Key.

a.. First Card Key - This sort key specifies the first card of the

statement in which the violation occurs. If the violation does

not occur -in a specific card, as in cyclic calls, then this key

contains a zero.

b. Last Card Key - This sort key specifies the lust card of the

statement in which the violation occurs. If the violation does

not occur in a specific card, as ii; cyclic calls, then this key

contains a zero.

4. Violation Flag Fields - This area consists of tt•r? fields, an

integer sort 'Field and an alphanumeric non-sort field.

a. Integer Violation Flag Key 'This sort key specifies which

violation has occurred. Each type.of violation has its own

4
	 integer code.. If a violation is to appear within the Primary

^,.	 listing or the secondary listing, this key specifies which.

o. Alphanumeric Violation Code - This field contains the alpha -

numeric name of the violation.

Y	 ,
i

VIII.1.	 8

Number of Occurrence trey - This sort key i:eeps track of the

"	 order in which violations of the same class occurred.

If the query searches for local violations, then this sort

key is set to zero each time a different module is examined, and

i ncremeritcd each time a violation occurs.

If ti-^e query searches For global violations not involving

path tracing (Parameter List Alignment and COMIMON . Block Alignment),

then this sort key is set to zero when the query is invoked, and

incremented each time a violatJon Occurs.

If the query searches for .global violations using path

tracing (Cyclic Call Search), this sort key is set to zero each tirj"c,

the query starts at a new path beginning.

6. Internal Ordering Key - This sort key specifies the internal
is

ordering of the data concerning a violation. Since a violation m;a^y 	 i

involve a great deal of information to be passed on to the user,
3

this information must be placed in some older. For example, in a

dimensional misir^atch, the violation information would include (in 	 i

the Data Fields) the name of the variable in violation, how many-

dimensions it has, and what those dimensions are. These pieces of

data must retai n, their proper order for the output to be intelligible.

7. Data Fields - This area consists of two fields, an integer data

field and an alphanumeric data field.

a. Integer Data Field -- This field contains integer data that des-

cribes or pinpoints' the violation, such as the size of a COMIMO v 	 i

Block.

r

VIII.11.	 9

b. Alphanumeri c Data Field - This field contains alphanumeri c data

that describes or pinpoints the violation, such as the name of

a variable.

MOO

	VIII.1.	 lox

Control Card File (CRTL)

s	 The Control Card File is a variable length sequential file

of 80 column card images. Each card image is a , single FACES command

card.

Since three phases are implemented for FACES, the control file

should contain three files. Each file may be empty (i.e. only and

EOF card) or contain commands appropriate to the pahse being executed.

The command set for each phase is terminated by an EOF card.

VIII.1.	 10

FORTRAN Message File (FMSG)

For this implementation, the FORTRAN message file is equivalenced

to the FLAG file. See Flag File description for characteristics.

a

Print File PRNT

The Print file is a standard formatted sequential file of 132

character positions. The file is assigned a variable name to assist

in accommodating default file numbers on different systems for the

r principal output device. Formal file controls are not applied to

print fire operations.

e

i

{.

VIII.1.	 12

Reserved Word File (RESW

The Reserved Word File is a sequential file of formatted records

containing FORTRAN "reserved words" for which restricted use is required.

Data of this file is used by AIR to detect the use of restricted character

strings used as Programmer defined elements. The file is read by routine

ATFILE.

The file structure is identical to the ANSI file, composed of a

header record describing the file followed by data entries. The header

record . f ormat is,

FORMAT (I4, 2X, Al, 2X, 14)

Data records are recorded with format,

FORMAT (A4)

For maintenance convenience, alphabetic order of the data entries

is used to store the file. This order is not required for proper operation.

7

r

VIII.1.	 13

a

Source Code Catalogue File (SCAT)

The Source Code Catalogue File is a formatted random access file

of source code card images. The file is generated sequentially by the

HE from input source code card images. SCAT records are 80 column card

images identical to the input source presented.

Through HE analysis, the first and last cards of FORTRAN modules

are identified. From this information, the origin of each module is

developed and stored in the Directory for the module. The origin is a

zero based absolute card image on SCAT. To retrieve a given relative card

from the file, the absolute record number is computed as,

Absolute Record = Origin + Relative Card Number

Thus, the origin is actually.the absolute card number of the card preceding

the first module card (zero value for the first module).

Source code order on SCAT is identical to the order in which cards

are presented to FACES. Thus, if source code is added to the system, the

source is appended to the end of the current images.

Since SCAT is identical to the input source, if the file is lost,

it can be reestablished by simply duplicating the source deck. Care should

be taken to insure identical card images are created if this procedure

is performed,

Special Note: Use of the value zero for the first module origin

conflicts with the convention that zero implies an empty value. Since

the first card image is nonzero, this value should be used rather than j

the origin to distinguish real modules from references.

G

w

VIII.1.	 14

Source Code Input File SCIN

The Source Code Input File is a formatted file of input source

code card images. Each record of the file is an 80 column card image

of FORTRAN source. A module set is delimited by an EOF mark. Several

files can be presented at one time. One file of source code is processed

for each ADD command.

VIII.1.	 15

Analysis Table File.(TABL)

The Analysis Table File is an unformatted random access file for

bulk storage of table data created by the FFE and AIR. 	 A fixed number

of records are allocated at the start of the file to store global data

describing the software system under analysis. 	 Global data records are

followed by a series of Local Table records associated with individual

modules presented for analysis.

The global data is composed of a global header and a series of

global tables.	 The global	 header records the system status of the run

creating the tables.	 Global data are tables which record the modules cur-

rently presented to the system and interaction among modules-in the sys-

tem.	 The Directory is created by the FFE as source code is presented for

analysis.	 Other global tables are created by AIR to support the analysis

of modules for indicated queries.

Module data is composed of a module header followed by the Local

Tables produced by the FFE for the module. 	 The local header contains

entriesindicating the active areas of table data (i.e., entries contain-

ing nonempty data).	 The Local Table records contain the full table space.

Module tables are accessed by the module number recorded in the

Directory entry.	 Given the space reserved for Global data, the module

number, and the space occupied by each modulq, the abso l ute record number
of

the Local Header can be computed.	 Table data.follows the header record.

Global data is allocated by fixed records.	 These areas are specified

by indicating the first record allocated for the global data.	 Global data

-- - - ------

^m

`JII1.1.	 16

r is stored in sequential records following the first record.

Record allocation is included in the COMMON block file description,

i

/TABL/.	 The Table File can be reallocated by modifying the values set in

the variables,	 however, current data files will become incompatable in the
r

v1

process.

R

I

d

C

i

1

:r
i

VIII.1.	 17

t
Table File Structul•e

Global
Global Header

Data
Global Tables

•^ Local	 Data
for

Miodul e 1

Local Data
for

` Module 2

i
3

Local	 Data
Local Header	 -

for
Modale i

Local 'fable Data

Local Data
for

Module
N

•
•	 A

,.	 '+fifl•see.:^,:a<r.>..*i^!.+.t••^-.^-.+-,.-:..-.r,""."t^Y-^'.....»--	 ^; -.	
.._	 ,.	 -.. --	 _

-

Table File	
VIII.1. 18

Global Tabl y . /111 ocation

p

Assoch&	 Starting	 Length

Common Block	 Record(words_ _ _

/cffu/

/DIR/

E

may,, f

18 400

22 400

26 300

29 1000

/ISD/

/Com/
:i

/L1 IV

GLOBAL
HEADER

MODULE
DIRECTORY

SYSTEM'

HIERARCHY
TABLE

SYSTEM
f II [RARCHY TO
DIRECTORY

TABLE

INVERSE
SYS-Ell
HIERARCHY
TABLE

I hJV E f?; E-
SYSTEM

HIERARCHY TO
DIRECTORY
TABLE

COMMON
BLOCK

NAME
TABLE

LINK LIST
FOR COMMON
NAMES

TABLE

	

1	 28

	

2	 800

	

10	 400

	

14	 400

:1

VIII.1.	 19

Local	 T^ah e File St.ructurc

forModule

4 Associated Starting Length
1 Common Block , Record Number in Words

LOCAL
N 6HEADER

biA 111
/SYM/ SYMTAB SYMBOL N+1 2800

TABLE

r
SYMBOL

/SYM/ SYMOVR OVEP,f LON' N+28 200
- TABLE

USF
/USE/ 'I'ABLl N+30 ON

NODE
TALLL: N+70 2800

SUCCESSOR
/SUC/ TABLE N+98 1000

PREDECESSOR
/PRE/ TABLE	 N+108 1000

where N determined from module number

l

f

entry of the Directory,

IX	 DATA STRUCTURES

Table of Contents

Alignment Tables

ALIGN 1.1

Begin/End Use Code Stacks

^--	 LSTSTK, SBESTK 2.1

COMMON Block Reference Tables

COMTAB, LINTAB 3.1

'	 Control Stack

MSTR, -TSTR, LSTR, PSTR 4.1

Directory
^r

DIREC 5.1	 i

Fortran Key Word Match Table

MATCH 6.1

Inverse System Hierarchy Tables j

ISTAB, ISDTAB 7.1

List Table, List Table Map
S

F
`i

LISTAB, MAP 8.1

Node Fable

NODTAB 9.1

Parsing Tables

SS, TSTAB,'TSTOVR 10.1

Path Stack, Alternate Edge Stack

PATH,,ALTEDG- 11.1

v

Predecessor Table

PRETAB 12,1

Scan Buffer

SCNELM 13.1

Successor Table

SUCTAB 14.1

Symbol Table, Symbol Overflow Table

SYMTAB, SYMOVR 15.1

System Hierarchy Tables

SHTAB, SHDTAB 16.1

Trace Stack

TRACE 17.1

Transition Pairs Table

TRIP 18.1

I^

ALIGN (2,300) - (Alignment Tables)

The two Alignment Tables ace temporary tables used during the

COMMON Block Alignment Check and the Parameter List Alignment Check.

All salient information concerning a COMMON Block or a Parameter List

needed for an alignment check is packed into an Alignment Table. The

model for the comparison is placed in Table 1, while the structure to

be checked is placed in Table 2.

Each Alignment Table consists of one (1) column, which is

one (1) computer word wide.

I. COMMON Block Alignment

__- Name --- --

A1.1 salient inform-
	 Type

ation concerning a
COMMON B1 k	 bl
needed foorcthea C0^iM0^ I	

Total Size

Block Al ignment Check
Number of

r:

IX.1.	 2

Table Entries for COMMON Block Variables

1) Name - (Alphanumeric Code)

Name is composed of two A4 format elements,

which provide 8 characters for variable names.

2) Type - (Non-Negative Integer)

Type indicates the data type of the variable (see

coding).

3) Total Size- (Positive Integer)

Total Size indicates the total number of computer

words the variable has assigned to it. Being that

different machines use a different number of words for

different data types, Total Size is machine-dependent..

4) Number of Dimensions - (Non-Negative Integer)

Number of Dimensions indicates the number of

dimensions the variable has, be it a scalar or an array.

5) kth Dimensions - (Positive Integer)

The kth Dimension is the integer value of the kth

dimension of the array variable. Scalar variables do not

have this Alignment Table entry.

}	 Note that the dimensions of an array appear in the Alignment Table in

sequential order, with the left-most subscript of the array declaration

being the first member of the sequential list.

I 	 3

IX.1.	 3

Coding

Name

Value	 Meaning

ALPHA ALPHA	 Variable name in 2A4 format.

Type (as in the Type Codes of the Symbol Table)

Value	 Meaning

0	 Unknown

1	 Floating Point

2	 Double Precision

3	 Complex

4	 Logical

5	 Neutral

(.	 6	 Character Code (Hollerith)

7	 Integer

Total Size

Value	 Meaning

N	 The compiler allocates the variable a

total of N computer words

Number of Dimensions

Value	 Mea' nin9

0	 The variable it a scalar.

N	 The variable is an array and has N

dimensions.

a

r

{

I	 1

r

IX.1. 4

Coding (cont.)

kth Dimension

Value.	 Meanin g

N	 The-kth dimension of the array is N.

II. Parameter List Alignment

i

i

j Parameter
i

--- Name	 -_--
All	 salient inform-
ation concerning a

Type
parameter needed
for the Parameter
List Alignment

Class
Check

^. Number of i

j` Dimensions

I Name of lst
--Subscript ----- a

Class of 1st
Subscri pt

f Name of nt
h

Subscript ----

Class of nt
Subscript

Parameter

- Name

4 --- 1 word ----

r

i

r

IX.1. 5

^^
Table Entries for Parameter List Parameters

`i

r

1) Parameter Name - (Alphanumeric Code)

Parameter Name is composed of two A4 format elements,

which provide 8 characters for parameter names.

2) Type - (Non-Negative Integer)

Type indicates the data type of the parameter (see

coding).

3) Class - (Non-Negative Integer)

Class indicates the class definition of the parameter

(see coding).

4) Number of Dimensions - (Integer)

The absolute value of Number ofDimensions indicates the

number of dimensions the parameter has, be it a scalar or an ari-cy.

5) Name of kth subscript - (Alphanumeric Code)

This entry is composed of two A4 format elements,

which provide 8 characters far the name of the parameter's

kth subscript. Only parameters which are arrays have this

Alignment-Table entry.

6) Class of kth subscript - (Non-Negative Integer)

This entry indicates the class definition of the

parameter's kth subscript (see coding). Only parameters

which are arrays have this Alignment Table entry..

Note that descriptions of an array's subscripts appear in Alignment

Table in sequential order, with the array's left-most subscript being

-^	 the first member of the sequential list.

i
•	 s

IX.1. 6

y

Coding

Parameter Name

Value

ALPHA ALPHA

*SUB	 EXPR

Meaning

Parameter Name. The parameter is not an

arithmetic Lubexpression.

The parameter is an arithmetic subexpression.

Type (as in the Type Codes of the Symbol Table)

Value	 Meaning

	

0	 Unknown

	

1	 Floating Point

	

2	 Double Precision

	

3	 Complex

	

Ir
4 	 Logical

	

5	 Neutral

	

6	 Character Code (Hollerith)

	

7	 Integer

3

3
f
3

IX. 1.	 7

Coding	 (cont.)

Class	 (as in the Class Codes of the Symbol Table)

Value Meaning

t' 0 Unknown

1 Subroutine Name

2 Statement Function Name

' 3 Array Variable

4 Function Name

5 Statement Label

6 Scalar Variable
a

7 Common Block Label

8 Constant

9 Entry Point Name

10

11

12 Program Name

13 Temporary Variable

14
a

15 Statement Function Dummy Parameter

a

16 Explicit External Function or Subroutine

Number of Dimensions

Value Meaning

k
'i -N- The parameter is an array having N dimensions,

but appears in the parameter list without any

subscript.	 This is the only place a negative

value occurs in AIR.

0 The parameter is not an array.

N The parameter is an array having N dimensions.

ti
t

J

FW

r

IX.1. 8

`.	 Coding (cont.)

Name of kth Subscript

	

Value	 Meaning

ALPHA ALPHA	 Subscript name. The subscript is not an

arithmetic subexpression.	 r

*SUB	 EXPR	 The subscript is an arithmetic subexpression.

Class of kth Subscript (as in the Class Codes of the Symbol Table)

	

Value	 Meaning

0	 Unknown

1	 Subroutine Name

2	 Statement Function Name

3	 Array Variable

4	 Function Name

5	 Statement Label

6	 Scalar Variable

7	 Common Block Label

8	 Constant

9	 Entry Point Name

10

i	
11

12	 Program Name

13	 Temporary Variable

14
I`

15	 Statement Function Dummy Parameter

16	 Explicit External Function or Subroutine

J

1

2

3

4

5

6

7

8

9

10

Integer

{

a

IX.1.	 9

Assume all variables are of type integer and occupy one word

of memory:

Example 1)	 COMMON/A/I,J(5), KOUNT(2,3)

11

12

Integer	 13

14

15

16

17

Integer	 18

i

r

SUB

5

1

0

I

7

6

0

J

12

13

neutral 14

sub-
15

routine

16

17

18

integer 19

scalar 20

21

u 2

3

4

5

6

7

8

9

10

11

array

integer

constant

scalar

I

IX.1-	 10

Example 2)	 CALL SUB(I,J(1,NUMBER))

t

k

a^A

Example 3)	 FUNCTION KFUNC(I,J)

DIMENSION I(J)

1

2

3

4

5

6

7

8

9

10

KFUN 11

12

integer	 13,

external	
14

function

15

16

17

integer	 18

array

C

7

4

0

I

7

3

-1

scalar

integer

scalar

l

Top of
Stac

z

IX.2.	 1

't.	 BEGIN/END USE CODE STACKS

LSTSTK(10)	 (List Use Code Stack)

SBESTK(10)	 (Subexpression Use Code Stack)

Begin/End Use Stack

The List Use Code Stack and Subexpression Use Code Stack

have the same structure. They are distinguished by function only.,

Begin/End stacks are used to record USE Table positions in which Begin

USE codes were entered permitting connection of associated End USE
:i

codes within the same statement.

When the Begin .USE code is recorded, the USE Table position

is placed on the top of the stack. If another Begin code appears, the

stack is pushed down one level and the new USE Table position recorded.

When an End USE code appears, it is associated with the top

Begin stack entry. Linkage among the USE Table entries is established

and the top element removed from the stack.

Stack size determines the level of nesting permitted by intra-

statement list structures. Current use of structures is small- compared

to allocated nesting.

__

IX.3.	 1

r

COMMON BLOCK REFERENCE TABLES

COMTAB(3,100) - (COMMON Block Name Table)

	Name	 Name	 Linked List
(4 char.'s)	 (4 char.'s)	 Pointer

Physical	 Word 1	 Word 2	 Word 3
Construction

f
Logical	

Col.Col. 1	 Col.2
Construction

The COMMON Block Name Table is a sequential list containing

COMMON Block names and pointers to the Linked List of COMMON Blocks

Table. The COMMON Block Name Table records the name of the COMMON

Blocks which appear in the source code.

Each COMMON Block Name fable Entry consists of three (3) com-

puter words organized as two (2) logical columns.

g
Entry Contents - (Logical Columns)

1. COMMON Block Name - (Alphanumeric Code)	
m
1

The COMMON Block name is composed of two A4 format

elements, providing 8 characters for COMMON Block names.

2. Linked List Pointer - (Positive Integer)

The Linked List Pointer points to the firsi, member of

a linked list in the Linked List of COMMON Blocks Table.

IX.3. 2

LINTAB (2,500) - (Linked List of COMMON Blocks Table)

Linkage	 Directory
Pointer	 Pointer

Physical
Construction	 Word 1	 Word 2

Logical
Construction	 Col.l	 Col.2

The %inked List of COMMON Blocks Table is , a linked list con-

taining pointers to the Directory. The Linked List of COMMON Blocks

Table records the modules in which a COMMON Block occurs.

Each Linked List of COMMON Block Table Entry consists of two (2)

computer words organized as two,(2) logical columns.

1

Entry Contents - (Logical Columns)

1) Linkage Pointer - (Non-Negative Integer)

The Linkage Pointer either points to the next entry in

the linked list or indicates that this entry is the last entry

in the.linked list.

2) Directory Pointer (Positive Integer)

The Directory Pointer points to a module in the

s:	
Directory in which the COMMON Block (specified in the COMMON

Block Name Table) occurs.

IX.3.	 3

Coding

Linkage Pointer

Value	 Meanin

0	 Last member of linked list.

P	 Pointer to next member of linked list.

Directory Pointer

i

IX.3. 4

Example:

SUBROUTINE A

COMMON/X/..,..

COMMON/Y/.....

SUBROUTINE B

COMMON/X/.....

COMMON/Z/.....

FUNCTION C(Q,R)

COMMON/X/

COMMON/Z/.....

t	 I

l

,

y

COMMON BLOCK LINKED LIST DIRECTORY
;. NAME TABLE TABLE

COMMON	 Pointer Linkage Pointer to Module d

BLOCK to Linked Pointer Directory Names
Name List Index Index

X 1 1 3 4 1 B
r^

Y 2 2 0 1 2

Z 4 3 5 4 3

4 6
6 4

A

5 0 4 5

6 0
6 6 C

IX.4. I

F,

f
	

MSTR(20), TSTR(20), LSTR(20), PSTR(20) - (The Control Stack)

Module Number Table Name List Indicator Pointer
Stack Register Stack Register Stack Register Stack Register

Stack 1	 Stack 2	 Stack 3	 Stack 4

The Control Stack is a stack consisting of four single-column

stacks. It keeps track of which elements of which lists in which tables

of what modules are currently being examined by AIR. The top of the Con-

trol Stack contains information about the table currently being examined

by the AIR subsystem.

Each single-column stack entry consists of one (1) computer word.

Entry Contents - (Single-Column Stacks)

1) Module Number Stack Register - (Non-Negative Integer)

The top of this stack contains the module number of

the module that was last brought into main memory by AIR.

2) Table Name Stack Register - (Alphanumeric Code)

The top of this stack contains the table currently being

examined by AIR. It consists of one A4 format element which

provides 4 characters for table names.

3) List Indicator Stack Register - (Non-Negative Integer)

The top of this stack contains the list indicator for

the list (in the table indicated by the Table Name Stack

Register) currently being examined by AIR.

The positive value in the list indicator may either

a) refer to the length of the non-traversed part of the list

if the list is sequential and its overall length is known, or

t.
i

IX.4. 2

b) merely indicate that some other type of list, such as

a linked list, has not been completely traversed.

4) Pointer Stack Register - (Positive Integer)

The top of this stack points to the row (in the table

indicated by the Table Name Stack Register) currently being

examined by AIR. It is equal to'the current row pointer to

the table indicated by the Table Name Stack Register.

Coding: for top of the Stack entries.

Module Number Stack Register

	

Value	 Meaning

0	 A module has not yet been brought into main

memory.

N	 The module having module number N currently

resides in main memory.

Table Name Stack Register

	

Value	 Meaning

	

ALPHA	 Name of table currently being examined by

AIR.

List Indicator Stack Register

	

Value	 Meaning_

0	 List has been completely traversed

N	 List has not been completely traversed.

Pointer Stack Register

	

Value	 Meaning

r	
N	 Row N in the table indicated by the Table

I
	

Name Stack Register.

DIREC (4,200) - (Directory)

IX. 5. 1

i

_r

.s

iName Name
'

Module:Module
Code e 'S
ourceu	

: Dude
(4 char.'s) (4 char.'s) Type	 :Number

Origin :	 End

T

i

Physical
Construction Word 1 	 Word 2	 Word 3	 Word 4

Logical	 V

Construction	 Col.1	 Col.2	 Col.3	 Col.4	 Col.5

The Directory is a sequential table containing module names in

alphabetical order, module type, and access information to retrieve tables

and source code associated with the module.

Each Directory entry is composed of four (4) physical computer words

containing five,(5) logical columns of information.

Entry Contents (Logical Columns)

1) Module Name - (Alphanumeric Code)

The module name is composed of two A4 format elements

providing 8 characters for module names.

2) Module Type - (Positive Integer)

Module Type indicates the type of module the name

defines (see Codinq).

3) Module Number - (Noro-Negative Integer)

`j	Module numbers are assigned to modules as they are defined

by incoming source text. The module number provides location

key information for obtaining- local tables from the random

local table file.

1

k'

IX.5. 2

4) Source Code Origin - (Non-Negative Integer)

The Source Code Origin entry indicates the key to

the first source code card image on the source code

catalogue.

5) Source Coee End - (Non-Negative Integer)

The source code end contains a value indicating how

many source card images are recorded for the module.

Codin

The following codes are assigned to Directory entries:

Module Name

Value	 Meaning

0	 Empty Directory entry

ALPHA	 Module name.

Module Type

Value	 Meann

1	 Program

2	 Subroutine

3	 Function

4	 Block Data

5	 Secondary Subroutine Entry Point

6	 Secondary Function Entry Point.

I

i

IX. 5. 3

Module Number

Value	 Meali n j

0	 No tables for module exist. Source

code for this.module not yet received.

N	 Index value used to compute local

tables for module on random table file. I.

Source Code Origin

Value	 Meaningning

0	 No source text available.

N	 Absolute card image number of the card

preceding the first module card on source

catalog.

Source Code End

Value	 Meaning

0	 No source text available.

N	 Module contains N card images.

Remarks.
I

If the module type is a secondary entry point, the Module
F

Number, Source Code Origin, and Source Code End entries will be

j_	 duplicates of the primary entry .point values.

I
I

i

Imo_ ^ __.^E

d

r	 ^^

IX.6.	 1

MATCH(51) - (FORTRAN Key Word Match Table)

The FORTRAN Key Word Match Table contains the leading four

characters of FORTRAN statement key words set in BLOCK DATA. This

read-only table is used in parsing FORTRAN statements and establishing

Statement Type codes for Node Table entries.

Given the leading four characters of a key word, the table is

interrogated in the following fashion:

1. The third and fourth characters of the presented word are

extracted and converted to values between 0 and 26. The

values 1 through 26 correspond to the alphabetic charac-

ters A through Z. The value 0 represents all other

characters.

2. initial entry into thetable is accomplished by hash coded

access using the values developed. The hash formula used is:

entry = VAL3 + VAL4 + 10

where VAL3 and VAL4 are the alphabetic indices

developed from characters 3 and 4.

3. If the entry address is empty or outside the table range,

no match is found.

4. If the entry address matches the presented characters string,

a match is found.

5. If the.entry position is occupied•by a nonmatching entry,

searching is diverted to the list position indicated by BIAS,

where a sequential search is performed until a match is found

or an empty position is discovered (no match),

t

IX.6. 2

EXAMPLES:
9

1. Keyword DATA. Converting the T and A to numerical indices
ii

produces values 20 and 1 respectively. Inserting these into

the formula produces the entry value 20 + I + 10 = 31.

The character string matches the entry at position 31. 	 1

2. Keyword FORMAT. Converting R and M and applying the entry

formula produces 18 + 13 + 10 = 31. Comparing the string

r	 FORM to the entry does not match (entry 31 contains DATA).

A search is diverted to position 3 for a sequential search.

Position 3 contains the character string FORM producing a

j	 match.

3. Keyword PARAMETER. Converting R and A applying the formula

produces an entry address 18 + i + 10 = 29. Since table

position 29 is empty (value 0), no match is found.

4. Keyword IF. Since characters 3 and 4 are both blank, the

entry address for IF is 0 + 0 + 10, a matching location in

the table.

Design Considerations. The odd structure of MATCH merits some

explanation. The table is structured to minimize table searches.

The mapping f rmu a usually permits immediate access to matching key-

word positions with the first entry. Since direct matching entries

are tightly clustered, the offset of 10 produces empty table space in

which to place collision entries.

The use of a BIAS (collision area origin) equal to 3 is historic;';

exact reasoning for this choiceis unknown. Since table indices are

used for statement type codes, the original table structure was maintained.

	

1X.7.	 I

ISTAB (2,200) - (Inverse System Hierarchy Table)

a

I .

	Count of	
List

Referencing

	

Routines	
Pointer

r

	

	 r
Physical
Construction	 Word 1	 Word 2

{	 Logical	
Coll	 Col .2

Ii	 Construction

x

'l	 The Inverse System Hierarchy Table is a sequential table which

i
is basicallya horizontal extension of the Directory. Along with the

Inverse System Hierarchy to Directory Table (ISDTAB), this table

?	 records the called-by hierarchy of the software system being analyzed.

Each Inverse System Hierarchy Table Entry consists of two (2)

computer words organized as two (2) logical columns.

Entry Contents - (Logical Columns)
1

1) Count of Referencing Routines - (Non-Negative Integer)

This is a count of the number of different routines
q

the routine specified in the Directory is referenced by.

It is the length of the associated list in the Inverse

System Hierarchy to Directory Table.

2) List Pointer - (Non-Negative Integer)

The List Pointer points to the first member of a list

in the Inverse System Hierarchy to Directory Table.

of
r

__

IX.7.	 3

ISDTAB (400) - (Inverse System Hierarchy to Directory Table)

ISTAB
List. —	 Directory Pointer	

ISTAD Count of
Pointer	 ^	 Referencing

Directory Pointer	
Routines

Directory Pointer

^E---- 1 word ----^

The Inverse System Hierarchy to Directory Table is a set of

sequential lists whose structure is defined by ISTAB. Along with the

Inverse System Hierarchy Table, this table records the called-by

hierarchy of the software system being analyzed.

Each Inverse System Hierarchy to Directory Table Entry is one (1)

computer word wide. Entry into a list of referencing routines is by

way of the ISTAB List Pointer. The length of a list is determined by

the ISTAB Count of Referencing Routines.

Fntry Contents - (Positive Integer)

Each list entry points to a module in the Directory.

Example:

SUBROUTINE C

CALL SUB

SUBROUTINE D
	 r

CALL SUB

SUBROUTINE SUB

Inverse
Directory	 System Hierarchy

Index

1

2	 SUB	 5 .205	 2	 3

3

4

Inverse System
Hierarchy to Directory

Index

l

2

3	 5

4	 6

IX.8.	 1

x ^^

LISTAB (500) - (List Table)

MAP(6,20)	 (List Table Map)

Word 1	 Word 2	 Word 3	 Word 4	 Word 5	 Word 6

LISTAB

Total Number of
Beginning Current

Number of Remaining Type Length
Pointer Pointer

Entries Entries

MAP ENTRY

Beginning
Pointer	 Entry

Length Total
Entry	

Number of

Entry	
Entries

^--1 wordy

The List Table Map describes sequential lists in the List Table. 3

The nth description in the MAP, i.e., the n th row, refers to the

nth list in the List Table. Thus, the List Table's structure is`de-

fined by the List Table Map.

A List Table Map Entry consists of six (6) elements, each con-

sisting of one (1) computer word. Each List Table Entry consists of

at least one (1).computer word.

e

IX.8. 2

Al'

	

Entry Contents - (Words)

List Table Map

1) Total Number of Entries - (Non-Negative Integer)

This element specifies the total number of entries

there are in the nth list in the List Table.

2) Number of Remaining Entries - (Non-Negative Integer)

This element specifies the number of entries in the

list that have not been examined yet. It can also be

described as the length of the list that has not as yet

been traversed.

3) Type - (Alphanumeric Code)

This element specifies the type of the entries stored

in the nth sequential list.	 i
s

4) Length - (Positive Integer)

Thiselement specifies the length, in computer words,

of each entry in tale n th sequential list.

5) Beginning Pointer - (Positive Integer)

This element points to the beginning of the n th se-

quential list.

6) Current Pointer - (Non-Negative Inteaer)

This element points to the entry in the list which is

currently being examined.

List Table

Each entry of the List Table is a member of a sequential list

OV.	 whose structure is defined by the List Table Map. The contents of each

list are i ndependen't ' of each other.

IX.8.	 3
Coding

List Table MapE _

1) Total Number'of Entries

Value Meaning

i. 0 The list is empty,	 i.e.,	 a "null"	 list.

N The list has N entries.

2) Number of Remaining Entries

Value Meaning

0 The list has been completely,examined.

N The last N entries in the list are still

to be examined.

3) Type

Value Meaning

A The list contains alphanumeric information.

I The list contains integer information.

4) Length

Value Meaning

N
i

Each entry in the list consists of N com-

puter words.

5) Beginning Pointer

Value Meaning'

BP The first entry in the list is at row BP

in the List Table,

6). Current Pointer

Value Meaning	 -

_0 The examination of the list has not yet begun..

CP The list entry at row-CP is currently being

examined.

3 2 A 2 1 3

4 1 I 1 7 9

IX.8. 4

I	
Example:

List 1: ABLE BAKER, CHARLIE

List 2: 18, 16, 14, 10

t

y

t^^. N

Case 1: The lists have been loaded into the List Table and

their descriptions into the List Table Map, but no

other processing has yet occurred.

List Table Map

Total	 No. of	 Begin- Current
No. of Remaining Type	 Length ning	 pointer	 List Table

Index Entries Entries 	 Pointer	
Index

1

2

3 3 A 2 1 0

4 4 I 1 7 0

	1 	 ABLE t

2

	

3	 [TAKE

	4 	 R

	

5	 CHAR

	

6	 LIE

	

7	 18

	

8	 16
3

	

9	 14
Case 2: The MANL (Manipulate List Table Map) sub-

	

10	 l^'
routine has been called once for List 1^

11
and thrice for List 2.

12

Li st Table Map
Index

IX.9. 1

NODTAB (4,700) - (Node Table.)

4. X

Physical
Construction	 Word .1	 Word 2	 Word 3	 Word 4

Logical	
^'^3 ``^... 	 k___V - j \`— V_j `._.

Construction	 Col.1	 Col.2	 Col.3	 Col.4	 Col.5	 Col.6	 Col.7	 Col.8	 r

The Node Table is a sequential list characterizing each non-comment

source statement. The position of the Node Table entry corresponds to the

u	
position of the source statement in Node Table. For example, source

statement number 5 will be characterized by Node Table entry 5.

Node Table entries identify the type of source statement and access

information for the symbolic element uses by that statement. Graphical

flow of control generated by the statement is found through immediate

predecessor/successor relations recorded in the Predecessor Table and

Successor Table. The source code statement can be retrieved from the

source code catalogue using the first/last relative card pointer.

Each Node Table entry is composed of four (4) computer words or-

ganized as eight (8) logical columns.

Entry Contents (Logical Columns)

`	 1) Statement Type - (Non-Negative Integer)

The statement type is an integer code indicating the

type of source statement encountered.

Statement:USETAB SUCTAB	 :# of PRETAB	 :# of Pre- Begin	 :End
Type	 :Pointer Pointer	 :Successors Pointer	 :decessors Card # :Card #

IX.9.	 2

2) USETAB Pointer - (Non-Negative Integer)

The USETAB pointer is an integer value indicating the

I first Use Table entry for this statement.

4
3) SUCTAB Pointer - (Non-Negative Integer)

The SUCTAB Pointer is an integer index to the first

immediate successor of this statement.

4) Number of Successors - (Non-Negative Integer)

The number of successors indicates a count of SUCTAB

entries which belong to this statement.

5) PRETAB Pointer - (Non-Negative Integer)

The PRETAB Pointer is an integer index to th ,% first

- immediate predecessor of this statement.

6) Number of Predecessor - (Non-Negative Integer)

A count of immediate predecessors to this•statement.

7) Begin Card Number - (Positive Integer)

Card image count of the first source card on which

this statement begins. 	 The count is relative to the first

card of the source code module.

8) End Card Number - (Positive Integer)

Card image count of the last source card on which this

statement ends.	 The count is relative to the source module

origin.

c

{

{

IX.9.	 3

Coding

The following codes are assigned to the Node Table entries:

Statement Type

Value Meaning.
w

0 Empty entry - no statement exists

3 FORMAT

4 ,'RINT

5 IMPLICIT type declaration

6 NAMELIST

t 7 ENCODE

8 DECODE
3

9 PUNCH

' 10 IF
i

11 COMPLEX type declaration

12 EXTERNAL

13 BLOCK DATA

14 END

15 READ

20 ENDFILE

i
23 REAL type declaration

.	 j 24 BACKSPACE
},

26 LOGICAL type declaration

i
27 FUNCTION

f

28 DIMENSION

^	
r

. Statement Type (cont'd) 1A.V.	 w

Value Meaning

30 SUBROUTINE

31 DATA

32 PROGRAM

33 DOUBLE PRECISION type declaration

34 CALL

-- 35 INTEGER type declaration

36 COMMON

38 ASSIGN

39 WRITE

40 EQUIVALENCE

41 STOP

42 REWIND

44
3

CONTINUE

45 GOTO

48 ENTRY

50 PAUSE

51 RETURN

52 Assignment statement

53 DO statement

54 Statement function

99 Unrecognized statement

(Note:	 Integer	 values between 1 and 99 which do not appear are

unused codes.	 These values will not occur in Statement Type Entries.)

r

a

r	
IX.9.	 5

USETAB Pointer

Value	 Meaninn

0	 No uses recorded for this statement

r	 P	 List of uses for this statement begins

in position P of USETAB.

SUCTAB Pointer

Value	 Meaning

0	 No successors
a

SP	 The list of statement's.immediate

successors begins in position SP of SUCTAB.

Number of Successors

Value	 Meaning.

0	 90 successors

M-	 This statement has M successors.
a

Immediate successors are found in SUCTAB

positions SP through (SP+M-1).

PRETAB Pointer

Value	 Meaning
,i	

0	 No predecessors
r

!	 PP 	 The list of statement's immediate pre-

decessors begins in position PP of PRETAB.

a

1

I

IX:9. 6

Number of Predecessors

Value	 Meaning

0	 No predecessors

N	 This statement has N predecessors.

Immediate predecesssors are found in

PRETAB positions PP through (PP+N-1).

Ending Card Number

Value

NC

IX.9. 7

Beginning Card Numbers

I^
Value

MC

'Meaning

This source statement begins on card image

MC relative to source module origin. The

first card of the module is assigned a card

image count of 1.

Meaning

This source statement ends on card image

NC relative to source module origin.

IX.9.	 8

Remarks

Card Numbers
4

' In general, MC i_,NC i for a particular source statement.

Condition	 Meaning.

MC i =NC i	 Source statement occupies one card image.

MC i <NC i	Source statement occupies (NC i -MCi+1) card

image.

For two adjacent statements, NCi+1<MCi+1.

Condition	 Meaning

1+NCi=MCi+1
	 No comments between statements i and

i+1

1+NCi <MCi+1
	Comment cards between statements i and

I"
i+1.

If multiple statements appear on a single card image, values of NC

and MC will	 be identical for the statements.

If comments appear between continuation cards of a single statement, -a

the comment cards are catalogued as part of the source statement. 	 Comment

images for this case are included in the source statement and counts.

J

TSTAB TSTOVRISS

implied _$ 	Direct Data
association

-------1^ 1Indirect Data

count of words

N data words

IX. 10. 1

Parsing Tables

ISS (400) (Intermediate Symbol String)

TSTAB (2,300) (Temporary symbol Table)

TSTOVR (100) (Temporary Symbol Overflow Table)

The Parsing Tables are composed of an Intermediate .Symbol String

structure and associated Temporary Symbol Table data. The Parsing

Tables are constructed by the Scan process to normalize the presentation

of source text to the Parsing routines. One FORTRAN statement (with

continuation cards) is presented at a time.

The Intermediate Symbol String (ISS) is a sequential list.charac-

terizing statement entries found on the FORTRAN source code card image.

Entries of ISS classify the lexical items to be parsed. Single character

strings are also stored in ISS entries. The last entry in the list is an

End of Statement code.

f^	

f

IX.10. 2

Where multiple character strings are present, an ISS code entry has

implied association with a Temporary Symbol entry containing the characters.

If the character string is short enough to fit in the main Temporary Symbol

Table, the string is packed into the entry. If the character string is too

long for the Temporary Symbol main entry, the character string is placed in

the overflow data space and a pointer to the character string structure is

made.

Entry Contents

ISS code - (A Format character code)

Represents a character string classification of the associated

TSTAB entry, special characters found in the FORTRAN text, or an

End of statement code.

TSTAB Entry - (A Format characters or non-negative integer pointers)

Holds either the direct character string of FORTRAN lexical items

or an indirect pointer to the character string in the Overflow

table.

TSTOVR - (Data structure of a count followed by character data)

Holds oversized lexical character strings. The length of the data

structure is indicated by the first entry.

y^

IX.10.	 3
Coding

,
e	 !6	

t	 ^

ISS entries

Value Meaning

ti	
0 empty entry

V Alphanumeric character string
t

I Numeric character string

F Floating Point constant

D Double precision floating point constant
S

C Complex constant

H Character literal string (Hollerith)

T Logical constant

-IR Relational Operator

L Logical Operator

(

FORTRAN separators

$

+^

' y FORTRAN arithmetic operator symbols

$$ End of statement,tode

S

y

,f

1

1
	 TSTAB Entries

j	 ISS Code Value Meaning

is
any 0	 0 Empty

V ALPHA ALPHA 8 characters or less of alpha-
s

numeric character string in 2A4

format
I

F ALPHA ALPHA Direct character string data

D
6

of 8 characters or less in

C 2A4 format

H 0	 P Indirect pointer to character

string data structure held in

overflow table.

all others No TSTAB entry associated

TSTOVR Entries

i

Value Meaning

0 Empty

N Positive integer indicating length of character 3

string in words

'	 ALPHA Character string stored in A4 format

4

j

IX.10. 5

.	

1
	^^.	 Special Notes: Notice that not all ISS entries have associated TSTAB

entries. Only ISS entries corresponding to Operands (i.e., variables and

+	 constants) and FORTRAN keyword text are recorded in TSTAB. Since some

ISS entries do not have character strings stored, by convention the

pointer to TSTAB leads the pointer to ISS by one position. For example,

when a V entry of ISS is encountered, TSTAB is currently pointing to the

	

	 3I

y	 appropriate character string entry. When both are advanced, TSTAB is

positioned to the next character string entry associated with an ISS code.

The leading convention permits valid TSTAB pointer values to extend

one entry beyond the last nonempty entry pointer. This extra position is

permitted where special characters terminate ISS entries. Since there are

no further references to character string codes ISS entries, the actual 	 y
-	 z

`	 pointer value and table entry are not significant in processing.1'.

i

_	 ^e i

- '

 0IAT Y 	 i U L	 ,T	 1,^:G T; t ^.,;A= Y =vti+^^L	 TAB L^

-

Vf jF`f:W L EN GTH =	 1 7^
4^ Yf F '' TN	 _ La;T	 -^:T.	 T =	 7 U-? F-	 NT	 rrT €R =

7F,	 =7JAL S T s J'

IN	 f-rNT-NT -	 -

o 7
Z	 V
a	 + t

-	 V
(

h
T

V

11	 T

^	 ;	 I

1 `i
V

0

I N S `	 '^^^7I n TF	 SY'+^ ilL	 T.^I	 ;r
^V ^T' -

rV=;?FLCrh LFN„T'^ tTQY	 0LA:T ^`
Lr h.'H =	 4^C LnST	 :	 T•= l' = CL.^r-rNT	 n71ntTER = 7

L pgT	 -NTPY _	 17 r,j-) 2	 T f'. T ,	 ? =	 1
cull r_:_.^T	 Fr,INTG7Z^

nut v
y „mac IV7 Fif= LOW	 C7NTF'-JTS

T - ^ T

T n.)',- X	 CrNtT Ft.!T --
4''r t	 n 1.,I;=

# =`	 l	 V Cy J

I

i 4
I

7

V
T'	 `	 (r	 Ci

S t	 T .. -	 ---

t =	 1

1 rf
	 • f ;	 43

I	 T

T	 1 _

I 7 	 5^

ORIGIlvAL PAGE IS
OF POOR QL,TALITY

x
o
v

CARD NUMB	 STMT NUMB LABEL #SOURCE TEXT
1 1 COMPLEX FUNCTION C HECKL	 (Z I NPUT s MOLT)
2 1 C##################################^k#####^###########*####*#*#*##***SRC
3 1 C	 THIS ROUTINE PROVIDES TESTS FOR THE FOLLOWING STATEMENT TYPES 	 C
4 1 C	 FOUIVALENCE STATEMENTS	 C-
5 1 C	 COMPLEX VARIA-9Lk DECLARATION 	 AND COMPLEX STATEMENTS	 C

I NTERMFDIATE SYMBOL STRING	 TEMPORARY SYM30L TAOLF
LENGTH =	 400 LENGTH =	 303	 OVERFLOW LENGTH =	 100
LAST ENTRY = 9 LAST ENTRY =	 5	 LAST ENTRY =	 0
CUPRENT POINTER = 1	 CURRENT' POINTFR =	 1	 CURRENT POINTER =	 7
ZERO EQUAL SIGN = 0

INDEX	 CONTENTS INDEX	 CONTENTS	 WORDS	 OVERFLOW CONTENTS

##	 1	 V ##	 1	 CCMP LEXF
2	 V 2	 UNCT IONC
3	 V 3	 HECK L._-
4
5	 V 4	 ZINP UT
6	 t
T	 V

_
5	 MULT

P.)
9S

t-0

X

t+

CS

Go

s

r

1

a

1

__.

CHECKI =	 (ZINPUT +	 (34.78,	 29.6)) #MULT —	 (4.12E-2 9	6o5F+3)

INTERMEDIATE SYMBOL STRING TEMPORARY SYMOOL TABLE
LENGTH =	 400 LENGTH = 300 OVERFLOW LENGTH =	 100
LAST ENTRY =	 12 LAST ENTRY = 5 LAST ENTRY =	 9
CURRENT POINTER = I CURRENT POINTER =	 1 CURRENT POINTER =	 9
ZFRO EQUAL SIGN = 2

INDEX	 CONTENTS INDEX CONTENTS WORDS OVERFLOW CONTENTS

##	 1	 V ##	 1 CHEC K 1
2
3	 t
4	 V 2 ZINP UT
9	 +
6	 C 3 0	 1 3 (34.	 78,2 9.6)
l)
8	 #
9	 V 4 MUL T

10	 - J
11	 C 5 0	 5 4 (4.1	 2E-2 1 6.5 E+3)	 1

12	 SS

{
k

.rx
o

^o

IX.11.	 I

PATH (500)	 - (The Path Stack)

ALTEDG (2,500)	 - (The Alternate Edge Stack)

x

r

PATH Entry	 ALTEDG Entry

Node	 Node in	 Successor
Path Stack

The PATH Stack and the Alternate Edge Stack are two temporary

stacks used in tracing the flow of control through a subroutine, an

external function, or a main program. The top of the PATH Stack

contains the node (the statement number) that is currently being

examined.

The PATH Stack entry consists of one (1) computer word.

Each ALTEDG Stack entry consists of two (2) columns, each one

(1) computer word wide.

Entr Contents - Words)

Path Stack

1) Node - (Positive Integer)

Node contains the statement number of the node

being investigated in the flow of'controi.

Alternate Edge Stack

1) Node in PATH Stack	 (Positive Integgr)

This element contains the statement number of

a node which exists in the PATH Stack.

2) Successor	 (Positive Integer)

This element contains the identification of a

successor to the node specified in the Node in PATH Stack.

IX.11. 2

Coding

Path Stack

Y	 Node

	

Value	 Meaning

	

N	 Statement number N is a node in the path

being traced.

Alternate Edge Stack

Node in PATH Stack

	

Value	 Meaning

	

N	 Statement number N is a node in the path

being traced, and it has at least one

successor.

Successor (as in the Successor Codes in the Successor Table)

	

Value	 Meaning

M<10,000	 Statement number M is a successor of state-

ment number N.

	

10,000	 The successor contains an external procedure

reference.

	

•20',000	 The successor is a RETURN statement.

	

30,000	 The successor is an END statement,

	

40,000	 The successor represents a 'Program Halt'

	

50,000	 The :successor contains a statement function

reference.

	

60,000	 The successor branches through a variable.

	

90,000	 The successor transfers to an undefined label.

j

ix. 12. 1

r

PRETAB (1000) - (Predecessor Table)

5t	 NODTAB
Predecessor	 Statement No
Pointer

Statement No.	
NODTAB Count of
Predecessors

Statement No.

M	 ,

^----1 word---L-^

The Predecessor Table records immediate predecessor information

for each source code statement. The Predecessor Table is a set of sequential

Iistswhose structure is defined by NODTAB predecessor entries.

Each predecessor entry is one (1) computer word wide. Entry to

a list of predecessors is obtained from the NODTAB Predecessor Pointer.

The predecessor list length is determined by the NODTAB.predecessor

Count.

Entry Contents	 (Non-Negative Integer)

Each Predecessor entry contains either a source statement number

I	 (index to `a NODTAB position) or a special code indicating program

boundary control tansitions.

i

F

j

r,
5
f

i

SCNELM(140) -	 (Scan Buffer)

Reserve

Used
Pointer A

Reserve
Data

B

Pointer--4

B Current'
P

Current
' Pointer

Pointer
P

L
Last

L

Nonempty Last New
Entry Empty Nonempty ---Data---

Space Entry Empty

normal state-	 data added after	 f
compression

The Scan Buffer normalizes the presentation of ' FORTRAN statement

k	 text to the FORTRAN Front End, combining continuation cards into a

linear array. .Card image data is placed in the Scan Buffer one card at
r	 ,

i
a time as a string of Al format characters. For the first card,

columns 1 through 5 and columns 7 through 72 are placed in the top of the

Scan Buffer. If continuation cards are present, the continuation text in

F	 columns 7 through 72 is appended to the end of the buffer.

If more card image data is presented than can fit in the buffer at

one time, used data is discarded and the Scan Buffer is compressed by

i
moving elements to the top. *The Reserve Pointer marks the deletion

boundary of buffer text. As the scanner processes lexical items, the

j

	

	 Reserve Pointer is moved dcwn. The Current Pointer marks the next symbol

to be delivered to the scanner.

1

4
s

14

{

t

{
IX.13. 2

	

4	 The size of the Scan Buffer controls how many card images can

be processed without compression. The buffer size is set to accommodate
: 4

r
normal source code and compress on exceptionally long statements.

i

j,

j,
a

	

C' '	 a

IX. 14.	 1
r

SUCTAB (1000) - (Successor Table)

NODTAB
Successor

Statement. No.

1
Pointer

Statement No.
NODTAB Count of

Successors

i Statement No.

M

{
-----1 word---^

The Successor Table recordsimmediate successor information for

each source code statement.	 The Successor Table is a set of sequential lists

whose structure is defined by NODTAB successor descriptions.n, .I

Each successor entry is one (1) computer word wide.	 Entry to

a list of successors is obtained from the NODTAB Successor Pointer.

The length of the successor list is determined by the NODTAB Successor

Count.

Entry Contents - (Non-Negative Integer)

Each Successor entry contains either a source statement number

(index to a NODTAB position) or a special code indicating program

'- boundary control transitions.

t I N.

t

•	 A

r
SUCTAB 2

i_

' f IX.14.	 2
i

+ Coding

! y SUCTAB Entry

Value Meaning
5 ,

0 Empty Table position

P (<NODTAB length) Statement number (index to NODTAB

I' position) of immediate successor

in flow of control.°s

10,000 External procedure reference

20,000 RETURN

30,000 END statement

40,000 Program	 halt

50,000 Statement function reference

60,000 Branch through a variable

90,000 Transfer to undefined label

a

a

a

y

ti

^` i

:M

N

(4
Name
char.'s)

(4
Name

char.'s)

(4
Name

char.'s)

I .

SYMTAB (4,700) - (Symbol Table) IX.15. 1
F`

	 SYMOVR (200)	 - (Symbol Overflow Table)

r

SYMTAB ENTRY

Name Name Type	 Class Usetab : Usetab
(4 chr.'s) (4 char.'s) Code	 Code Top	 : Bottom

Physical

Construction	 Word 1	 Word 2	 Word 3	 Word 4

Logical	 V

u	 Construction	 Col.1	 Col.2	 Col.3	 Col.4 Col.5

SYMTAB
POINTER

Overflow Entr

Count of Entries

N entries	
y

A
3

Word 1

The Symbol Table is composed of a main symbol table (SYMTAB) and

an overflow table (SYMOVR). Shorter symbolic elements are inserted

f
directly into the main symbol table. Longer symboli c elements are in-

I'	 serted in the overflow table with the main symbol table entry containing

a pointer to the overflow entry.

Main Symbol Table entries are hash coded on the first symbolic unit

^`	 of element information. Overflow entries are sequential based upon the

ii
jy

F,.

IX.15.	 2

order of appearance in the source text.	 Overflow entries , are accessed

only through pointers in the Main Symbol Table.

Main Symbol Table entries are composed of four (4) computer words,

organized as five (5) logical columns.	 Overflow entries are an extension

of logical column 1 in the main symbol table.

h

B

1

—

e'

1

y
k
u
yû

,

r

1

IX-15. 3

Entry Contents - (Logical Columns)

Main Symbol Table

"	 1) Symbolic Element - (Alphanumeric Code or Non-Negative Integer)

The character code string composing the symbolic ele-

`'	 ment is provided by this entry element in one of the fol-

lowing ways:

a) Direct - The character string is provided

directly in the main symbol table entry. The

symbolic element is stored in two computer words,

each containing character code information in

A4 format. The leftmost word contains the

leading characters of the string.

b) Indirect - The main symbol table provides a

pointer to the overflow entry where the character

string is stored.

2) Type Code (Non-Negative Integer)

Type code indicates the data type of the symbolic

element (see coding).

3) Class Code - (Non-Negative Integer)

Class code indicates the category of name used in

the source text (see coding).

4) USETAB Top Pointer - (Non-Negative Integer)

The top pointer is an index to the first use of the

symbolic element by the module source code. This pointer

provides use table entry to the linked list of element

^^	 uses in the module. (See USETAB description.)

t

y.

IX.15. 4

5) USETAB Bottom Pointer - (,ion-Negative Integer)

The bottom pointer is an index to the last use

of the symbolic element in module source code.

Overflow Table

1) Count of Entries 	 (Positive Integer)

The count indicates how many words which follow are

symbols of the character string.

2) Symbolic Entry — (Alphanumeric Code)

Symbols of the character string stored in single

words. Leading characters are stored in the leftmost

position of the top word, progressing left to right, then

down the list. Each word contains character data in A4

format.

Coding

Main Symbol Table

11 Symbolic Element

Value	 Meaning	 "3

0	 0	 Empty entry in Symbol Table

ALPHA ALPHA	 Direct Symbolic Element character

data in 2A4 format

0	 P	 Indirect Symbolic Element data.

P is a positive integer pointing to

the COUNT entry of the overflow table.
t

x

-.	 n

IX.15.	 5

2)	 Type Codes

I
Value Moaning

0 Unknown

1 Floating Point

2 Double Precision

3 Complex r

4 Logical

5 Neutral

6 Character Code (Hollerith)

7 Integer

3)	 Class Code

Value Meaning

0 Unknown

1 Subroutine Name

a

2 Statement FunctionName

3 Array Variable

4 Function Name 3

5 Statement Label

6 Scalar Variable

7 Common Block Label

8 Constant

..
9 Entry Point Name

10

11

I 12 Program Name

13 Temporary Variable

14

15 Statement Function Dummy Parameter

16 Explicit External Function or Subroutine:

r ;

IX. 15.	 6

4) USETAB Top Pointer
r

Value	 Meaning

0	 No uses because of Use Table

overflow.

P	 Pointer to first use of symbol

in USETAB.

5) USETAB Bottom Pointer

Value	 Meaning

0	 No uses because of Use Table
r

.

overflow.

P	 Pointer to last use of symbol in

USETAB.

h

Overflow Table Entries

Value Meaning

N The next N entries contain word units of

i
character code in	 A4 format.

i ALPHA Character code of symbolic element in A4
M

format.

f

i

E

r

IX.15. 7

Hash Entry to Symbol Table

Entry to the Symbol Table is obtained by considering the

1
	

integer value of the first 8 characters of the symbol. The first

'	 4 characters and second 4 characters are used as follows to compute

the initial entry
4

VAL = ((first 4 chars.) + (last 4 chars.)) /2

Entry Point = (JVAL1 taken Module PRIME) + 1
4

where,
f

PRIME is the largest prime number smaller than

the Symbol Table size.

r	 (NOTE: On machines which permit more . than 4 characters to be	 y

stored in an integer word, the leading 4 character strings are

right justified with zero left fill rather than taking the absolute

value.)

If the initial table entry point is occupied, the table is 	 .`
.a

!	 searched in'wrap around fashion from the initial entry until a vacant

^,	 a

location is found or the whole table has been searched.

F

Iw

IX.15. 8

1a1	
Remarks

The ability to differentiate between Direct Data and Indirect

Pointers in the Main Symbol Table Symbolic Elements relies upon left

justified character data. If the entry contains left justified character

code, the value of the first word will be either a negative integer

(leading bit of first char. is 1) or a large positive integer (leading

e
bit of first char. is 0) . Thus, any negative value or value larger

than a leading character with all zeroes, will be direct data. A

positive value smaller than the smallest numeric value of a left justi-

fied character string will be a pointer.

For current implementation, the symbolic unit covers two computer

words, By right justifying the pointer in the symbolic unit, the leading

word contains zero, and the second word contains the pointer. Since an

all zero field is not a valid left justified, blank right fill structure

for any machine known to the developer, this technique should be trans-.

portable to any other computer. (Note: The value of character code is
	 ^a

not significant for this technique.)

i

I

IX.16.	 1

SHTAB (2,200) - (System Hierarchy Table)

Count of
gist

Referenced
Pointer

Routines

Physical
Construction Word 1 Word 2

Logical
Construction Coll Col.2

The System Hierarchy Table is a sequential table which is

basically a horizontal extension of the Directory. Along with the

System Hierarchy to Directory Table (SHDTAB), this table records the

calling hierarchy of the software system being analyzed.

Each System Hierarchy Table Entry consists of two (2) computer

words organized as two (2) logical columns.

Entry Contents	 (Logical Columns)

1. Count of Referenced Routines - (Non-Negative Integer)

This is a . count of the number of different subprograms

the routine specified in the Directory references. It is the

length of the associated list in the System Hierarchy to
S

Directory Table.

2. List Pointer - (Non-Negative Integer)

The List Pointer points to the first member of a list

in the System Hierarchy to Directory Table.

^z

I

IX.16. 2

Coding

Number of Referenced Routi nes

Value	 Meaning

	

0	 No routines are referenced.

	

I
N	 N different routines are referenced.

List Pointer

Value	 Meaning

	

0	 No routines are referenced.

i	LP	 The list of referenced routines in the

System Hierarchy to Directory Table begins

in position LP of SHDTAB.

j^

I

a

4	

i

7

r

dlslivt

IX. 16. 3

SHDTAB (400) - (System Hierarchy to Directory Table)

'.y
SHTAB
List	 Directory Pointer	

SHTAB Count
Pointer	 -	

of Referenced
Directory Pointer	

Routines

Directory Pointer

E

-- 1 word ---

The System Hierarchy to Directory Table is a set of sequential

lists whosw structure is defined by SHTAB. Along with the System

Hierarchy Table, this table records the calling hierarchy of the soft
i

ware system being analyzed. ,j

Each System Hierarchy to Directory Table Entry is one (1) com-

puter word wide. Entry into a list of referenced routines is by way of
j1

1

the SHTAB List Pointer. The length of a list is determined by the SHTAB

Count of Referenced Routines. --

Entry Contents	 (Positive Integer)

Each entry points to a module in the Directory.

g

IX.16.	 4
r

Exam 1 e :

g! SUBROUTINE ROUT

Call A

E

CALL B

System Hierarchy
E Directory	 System Hierarchy to Directory

s Index Index
}

4

2 ROUT 4 204 2 6 5

3 6 5

4 B 7 207 7 4

5 A 1101 210 8

6
S

r`'
Y

i

i

IX. 17. 1

TRACE (3,400) - (The Trace Stack)

Directory	 Number of	 Pointer to Next

Pointer	
Unexamined	 Successor to be
Successors	 Examined

The Trace Stack is a temporary stack used in the tracing

of system hierarchy paths. The top of the stack contains in-

formation about the location in the hierarchical path that is

currently being examined.

Each Trace Stack consists of three (3) computer words organized

as three (3) logical columns.

Entry Contents - (Words)

1) Directory Pointer	 (Positive Integer)

This element points to a module's identification
5

in the Directory.

2) Number of Unexamined Successors 	 (Non-Negative Integer)

This element contains the number of different sub

i	
programs referenced by the module indicated by the

I Directory Pointer that havo not yet been examined,

3) Pointer to Next Successor to be Examined - (Non-Negative

Integer)

This element points to the System Hierarchy to Direc-

tory Table (SHDTAB), which in turn points to a module's

identification in the Directory. Thus, this element is

i
actually an indirect address.

r

IX.17. 2

`	 Coding

Directory Pointer

Value

DP

Meaning

The module's identification is located in

row DP of the Directory.

Number of Unexamined Successors

Value	 Meaning

'E	 0	 There are no more successors (referenced

routines) to be examined.

N	 There are N successors.that have not yet

been examined.

1	
Pointer to the Next Successor to be Examined

Value	 Meaning

0	 The module indicated by the Directory

Pointer has no successors,; i,e	 does not

reference any subprograms.

N	 The location of the module in the Directory

is in row N of the System Hierarchy to

Directory Table (SHDTAB).

r

IX.18.: 1

^y
\ F

TRIP (2,300) - (Transitions Pairs Table)

I

PROC.	 i PREDECESSOR SUCCESSOR
ODE SPEC. SPEC.

2 Bits Word 1 Word 2
^-^-------v---'
Coll

ter---'
Col.2 Col.3

The transition pairs table is a sequential.list

characterizing the branching transitions within a module. Each

entry represents a transition other than the normal "next statement

successor to the present statement.

Transitions include the following:

1. Branches within the module.

2. References to external modules (CALL, Function

references.

3. References within the module (statement function

references) .

4. Boundary conditions (entry, return, program halt, etc.)

Entries are made during module processing,-marking positions

which require reexamination after all statement labels are defined.

Postprocessi.ng turns all entries into either node numbers or special

codes for unusual transfers.

Each TRIP table entry is composed of two words. The first word

contains a flag which is removed by the postprocessing procedure.

7

IX. 18. 2

Entry Contents

1) Processing Specification - (Two bit Flag)

The processing specification indicates whether 	 x

either the Predecessor or Successor specification must be

replaced by the node number of a label.

2) Predecessor Specification - (Non-Negative Integer)

The predecessor specification indicates the "from"

portion of the transition recorded.

3) Sucessor Specification - (Non-Negative Integer)

The Successor Specification indicates the "to"

portion of the transition recorded.

Coding

1) Processing Code.

Prior toost- rocessing the code flag indicatesP	
P,

entry positions requiring conversion to node numbers:

0 - No conversion required

1	 Convert successor to node number

2 Convert predecessor to node number
3 Convert both to node number.

After postprocessing, the flag is set to 0,

2) Predecessor Specification - (Non-Negative Integer)

0; Empty entry

Prior to conversion

+N - Symbol table position; of label (N-csymbol

table length)

IX.18. 3

After Conversion

+M - node number of predecessor (M<node table

length)

Special Codes (not converted)

70000 - primary entry point to module

80000 - secondary entry point to module

90000 - predecessor is undefined label.

3) Successor Specification

0 - Empty Entry

Prior to conversion

+N - Symbol table position of label (N<symbol

table length)

After conversion

+M node number of predecessor (Mnode table

length)

Special Codes (not converted)

10000 - Call to external routine

20000 - RETURN statement

30000 -,END statement	 a

40000 - Program halt

50000 - Statement function reference

60000 - Branch through an assign variable

90000 - Branch to undefined label

`	 l

9

AWA 1

F.^

IX.19. 1

USETAB (2,2000) - (Use Table)

;I
Al^

B.
Statement :	 Use	 P: Back : Forward

No.	 Code	 C:Pointer: Pointer. p ,	 ,

Physical	
1 bit

Construction	 Word'l	 Word 2

Logical
Construction Col.1
	 Col.2 Col.3 Col.4 	 Col.5

The Use Table is a sequential list with connective pointers
,r

to both the Symbol Table and Node Table. ` The Use Table entries record

how symbolic elements of the program are used by source code statements.'

Each Use Table entry consists of two (2) computer words organized

as four (4) logical columns.

Entry Contents - (Logical Columns) 'olumns)	 -

l) Statement Number - (Non-Negative Integer)

The Statement Number is an index to the Node Table

(NODTAB) indicating the source statement to which the

recorded use belongs.

2) Use Code	 (Non-Negative Integer)

The Use Code indicates how the symbolic element is used

in the source code,

3) Back Pointer Code	 (One Bit Flag)

The Back Pointer Code indicates whether the pointer

is associated with a Symbol Table position or a Use Table

,..	 Position.

a

IX.19. 2

4) Back Pointer

The Bay

linked list.

the symbolic

index of the

- (Flagged Non-Negative Integer)

:k Pointer forms the first pointer of a double

The Back Pointer indicates either the last usage of

element in a previous USETAB position, or the

symbolic element position i`n the Symbol Table.
r

5) Forward Pointer - (Non-Negative Integer)

The Forward Pointer forms the second pointer of a

double linked list. The Forward Pointer indicates the next

usage of the symbolic element in a succeeding USETAB position.

Coding

Statement Number

Value	 Meaning

0	 Empty USETAB entry

P	 Index to NODTAB for the statement

in which this use appears

•	 a

Use Codes

Value	 Meaning

0	 Empty Entry

1	 Output variable in assignment statement

_2	 Input to Assignment statement computation

3	 I/O Output variable

4	 I/O Input variable

5	 Do Loop index variable

i	
j

i

'	 Use Codes	 (cont.)
IX.19.	 3

i

. 	 Value Meanin

6 Do Loop starting value

7 Do Loop ending value

8 Do loop increment

--_	 9
(
t Label definition

i	 10 Transfer to a label
I

11 Common block entry

12 Data statement variable entry

13 Array declaration

14 Type statement entry

15 Subscript to array

16 Function dummy parameter

17 Subroutine dummy parameter

18 Function actual parameter

i

19 Subroutine actual parameter

20 Conditional Branch decision variable

21 External procedure reference (e.g., CALL)

22 Variable set in "ASSIGN" statement

23 Transfer through a variable value

24 Index variable used in°COMPUTED GO TO"

25 Do loop termination label

26 I/O. ►.snit specification

27 "FORMAT" reference (label or array name)

28 Multiple return point parameter

-^q

Use Codes (cont.)
IX.19.	 4

Value Meaning
I

29 Reference to the address of a label

30 BEGIN list bracket

31 END list bracket

32 BEGIN subexpression bracket

33 END subexpression bracket

34 Subexpression output variable

f'	 35 Subexpression input variable

"	 36 EQUIVALENCE list member

37 Procedure name in an EXTERNAL statement

38

39

I'	 40 Declaration'

41 DATA vali;e specification

42 Repeat specification

43 Identifying index

44

45

i

 E	
46 Statement function "CALL"

'	 y	 47 I/O record specification

IX. 19. 5

-	 Back Pointer

Value	 Meanin

BPCO	 Pointer

0	 0	 No symbol recorded due to Symbol Table

overflow or empty entry.
f	 t

0	 P	 Pointer value P is an index to the Use

Table position in which the symbolic element

was last used.

1	 P	 Pointer value P is an index to the Symbol

Table position where the symbolic element

is defined.

Forward Pointer

Value	 Meaning

0	 This is the last use of the symbolic element.
a

P	 The next use of the symbolic element is in 	 +'

position P of the Use Table.

ail AIM"

a

3

"N

t

1,11111p Imp 11 1 1 111"Plow	 -'qq

s

IX. 19. 6

List Brackets. BEGIN/END list bracket codes are used within

a single statement to group construction elements. This grouping clari-

fies the association of members for analysis. Two types of lisps are

formed:k	 ^^

`	 1. Independant lists. Simple markers surrounding the elements

which are associated. Members of the list are not attached

to any other program element.

2. Dependent lists. Dependent lists are subordinate to another

program element.. The list is attached to the referenced element

by the back pointer of the BEGIN bracket entry.

Lists are,currently used in FACES to set off the following

structures:

Independent Lists
r

1. DATA statement variable lists and constant lists

2. I/O lists enclosed in parenthesis pairs . (usually an

implied DO construction)

3. Variables associated by an EQUIVALENCE group.

4. Branch lists of Computed and Assigned GO TO statements.

Dependent Lists

1. Actual and Dummy parameter lists of Subroutine, Functions, and

Statement Functions,. The list is linked to the subprogram name

referenced or definition.
y

2. , COMMON variable Lists. The list is linked to the

COMMON label specified on the statement.

Subexpression Brackets. Subexpression brackets are used like

}row.

IX. 19. 7

list brackets to group elements participating in a subexpression. The

bracket pair always appears within one statement, delineating elements

used to "compute" a temporary variable value.

Special Notes. Most Use codes are self explanatory. In some

instances, however,the same code is used for several purposes. The following

is an enumeration of the , multiple uses:

Use	 Meaning	 Used For

5, 6, 7, 8	 DO variables	 DO statements and implied

DO loop constructions

15	 Subscript	 Both array declaration dimensions

and subscripts in array references
i

40	 Declaration	 Module names on header cards

Entry point names

Common lables of COMMON blocks

43	 Identification	 Used on STOP, PAUSE, etc. cards

for optional identification

rt..	 T

COMMON/ALI/ALIGN(2,300),	 PLALI(2)

ti

ALIGN(1,I) - Alignment Table 1. Contains description of model

COMMON Blocks or model parameter lists (formal
i

parameter lists) used in COMMON Block Alignment checks
f

or Parameter List Alignment checks respectively.
J

ALIGN(2,I)	 Alignment Table 2. Same as Alignment Table 1, except

contains description of comparison COMMON Blocks or

comparison parameter lists (actual parameter lists).

PLALI(1)	 - Pointer to last non-empty (valid) row in Alignment

Table 1.

PLALI(2)	 Pointer to last non-empty (valid) row in Alignment

Table 2.

Physical length of Alignment Tables is stored in COMMON Block /LTEMP/..

For a detailed discussion, see section describing structure of

Alignment Tables.

I

i

u

}

j

/ALINFO/. 1

t	 COMMON/ALINFO/NAME(2), MNAME(2,2), SCIND(2), FFIRST(2), LFIRST(2)9

FSTAT(2), LSTAT(2), NUMOCG

This COMMON Block contains information necessary for passing

COMMON Block and Parameter List alignment vidations to the sort/merge

file.

HIRST, LFIRST, FSTAT, and LSTAT all refer to locations in terms

of the relative card number.

a. For Parameter List Alignment, NAME contains the name of the

external reference, four characters per word, left adjusted.

For COMMON Block Alignment, NAME contains the name of the

COMMON Block, four characters per word, left adjusted.

b. MNAME(l,I) contains the name of the model module (the module

the contents of-Alignment Table One were derived from), four characters

per word, left adjusted.

r
j	 MNAME(2,I) contains the name of the comparison module Oche

module the contents of Alignment Table Two were derived from), four

characters per word, left adjusted,

c. SCIND(l) contains the source code index of the model module.

SCIND(2) contains the source code index of,the comparison

module.

d. FFIRST M contains the location of the first card of the

first statement in the model module.

FFIRST(2) contains the location of the first card of the

first statement in the comparison module.

i

/ALINFO/. 2

	

4	 e. LFIRST(1) contains the location'of the last card of therR,,

first statement in the model module.

LFIRST(2) contains the location of the last card of the

first statement in the comparison module.

f. FSTAT(1) contains the location of the first card of the

statement being compared in the model module.

FSTAT(2) contains the location of the first card of the state-

ment being compared in the comparison module.

	

r	 g. LSTAT(1) contains the location of the last card of the

f

statement being compared in the model module.

LSTAT(2) contains the location of the last card of the

statement being compared in the comparison module.

h. NUMOCC contains either a running total of the number of

occasions violations occurred for a given formal parameter list

during the Parameter List Alignment Check, or a running total of the

number of occasions violations occurrred for a given COMMON Block

during the COMMON Block Alignment Check.

COMMON/ALT/ALTEDG(2,500),	 PALT

ALTEDG - Alternate Edge Stack. Contains alternate paths

(alternate edges) to path described in Path Stack.

PALT	 Pointer to top of Alternate Edge Stack.

I
Physical length of Alternate Edge Stack is stored in COMMON Block

/LTEMP/.

^^	
a

For detailed discussion, see section describing structure of

Path Stack and Alternate Edge Stack.

i

i

3

/ANSI/. 1

COMMON /ANSI/ ANSIFL, RSANSI, L.GANSI, EFANSI, PTANSI

ANSI standard name File description

ANSIFL	 Unit specification for ANSI File

RSNASI - Record size (not currently used)

LGANSI - Length of file (not currently)

EFANSI - End of file indicator (not currently used)

PTANSI	 Pointer to file (not currently used)

iA
a

R'

i

2

/CDBUFF/. 1

Ap	 COMMON/CDBUFF/CARD(80), LCARD, PCARD, PLCARD

F.
This COMMON block holds the FORTRAN source code from a

single card image.

CARD	 Vector of characters in Al format

LCARD	 - Length of character vector
r

--	 PCARD	 Pointer to current card column

PLCARD - Pointer to last nonempty entry of vector

The card image is empty when PLCARD contains zero value.

a

9
i
3

9

i

1	 .

'

/CDCNT/. 1

..	 COMMON/CDCNT/SCINDX, CURCD, BGNCD, ENDCD

x This COMMON block contains Source Code Catalogue pointers

used by the HE while constructing the SCAT file. Used to estab-

lish SCAT position for FORTRAN statements. l

SCINDX - Source code origin index to the module being pro-

cessed. Contains a zero origin base balue for

SCAT file access to the start of a module. Initial

value is determined at the start of FFE operation

and advanced as modules are processed.

CURCD - Current card count relative to beginning of the

module. This is a module relative count for the
r

card image currently occupying the Source Code

Input Card Image Buffer. Contains value zeroP	 9

before any input source cards are read,
1

BGNCD	 Module relative count of the first card for a

FORTRAN statement. Set by the Scan Buffer Mana-

ger as card image source is transferred to the

Scan process.

ENDCD - Module relative count of the last card for a

FORTRAN statement, Set by the Scan Buffer Mana-

ger as subsequent card images are passed to the

Scan process.

i	 F—

3

/CIMAGE/. 1

COD^VON/CIMAGE/CMCD(80), LCMCD, PCMCD, PLCMCD
t	

I i

This COMMON block holds the command card image for a user

	

y	 1,
command.

r	 CMCD	 - Vector of characters in Al format.

LCMCD	 - Length of character vector.

PCMCD	 - Pointer to current command card column.

PLC14CD - Pointer to'last nonempty entry of command card

image text.

	

k	 The command card image is empty when PLCMCD contains a zero

value.

__rte

/CMDITM/. 1

COMMON/CMDITM/CLSFY, CITEM(20), LCITEM, PCITEM, PLCITEM

This COMMON Block contains a command item extracted from the

command card image. The command item is characterized by item text

and qualifiers.

1) CLSFY is a classification of the command item containing

one of the following codes:

$$	 - end of command card
ac

$$$$ - end of command set

A	 - alphabetic item

N	 - numeric item

AN	 - alphanumeric item
s

S	 - special symbol

2) CITEM is a vector of command item text.

CLSFY	 CITEM Contents
	 7

f

	

$$	 $$

$$$$	 $$$$

	A 	 Character of command item in Al format

N

AN

	

S	 single special symbol character.

3) LCITM	 - length of command item vector

4) PCITM	 pointer to command item vector position

5) PLCITM	 pointer to lust nonempty entry of command

item vector entries.

..........	 _

ii

A

	 /CMDSYM/. l

s^

v4

4

f

t

I,

COMMON/CMDSYM/ENDCMD, FINCMD, ALPHUM, ALPH, NUM, SPECL

Read - only table of command item classifications.

SYMBOL (A4) MEANING

ENDCMD -	 $$	 - Eyid of command card

FINCMD -	 $$$$	 - finish of command card set

ALPNUM -	 AN	 - Alphanumeric command item

ALPH	 -	 A	 - Alphabetic command item

NUM	 - N	 - Numeric command item

SPECL	 S	 Special symbol command item.

Used to establish command item classification for processing

control commands.

3

/COM/. 1

COMMON/COM/COMTAB(3,100), LCOM, PCOM, PLCOM

COMTAB - COMMON Block Name Table. Contains sequential list of all

COMMON Block names which appear in software system being

analyzed.	 1

LCOM	 - Physical length of COMMON Block IName Table.
	 r

PCOM	 - Current row pointer to COMMON Block Name Table.

PLCOM - Pointer to last non-empty (valid) row in COMMON Block Name

Table.

For a detailed discussion, see section describing structure of

COMMON Block Reference Tables.

/CONFIG/. 1

COMMON/CONFIG/VER, MODLVL, HOST(2), FORTRG(2)

Description of current configuration.

VER	 - Version of FACES current operating

(integer value).	 r

MODLVL - Modification level of current system

(integer value),

HOST - Character string of the host equipment for

which the system is adjusted. (Alphanumeric value)

FORTRG - FORTRAN target machine for which system is

adapted. (Alphanumeric value)

Used for configuration control. Included in global header

to . avoid old tables being provided to incompatible future version.

Used to print heading on output at start of run.

1

^	 ^i

/CTRL/. 1

*c COMMON /CTRL/ CTRLFL, RSCTRL, LGCTRL, EFCTRL, PT TRL

Control card file description

CTRLFL -	 Unit specification for Control FileV

RSCTRL -	 Record Size for Control File Records (not currently used)
ff

i LGCTRL -	 Length of control File in records (not currently used)

EFCTRL -	 End of file indicator

PTCTRL -	 Pointer to control file records (not currently used)

j

x

^a

/CURMOD/. 1

COMMON/CURMOD/MODNAM(2), MODTYP, MODNUM, SCORIG, SCEND

Description of current module being processed. Used in

HE to control table generation and in Report Generator to con-

trol primary listings.

MODNAM - Symbolic name of module being processed in

2A4 format. Set to zero prior to establishing

name.

MOOTYP - Module type code characterizing module.

(See DIRECTORY description for coding).

MODNUM - Module number established to connect module

with analysis tables for module.

SCORIG - Module source code origin in Source Code Cata-

logue. Zero origin base address to first card

of module.

/CURSTM/. 1

COMMON/CURSTM/STNO, STMTYP, FSTUSE, BCD, ECD

+h

` a	 Description of current statement being processed. Par-

tial image of NODE table entries to be inserted.

i STNO - Statement number assigned to FORTRAN statements

t	
(within a module.

^.	 STMTYP - Statement type code (See NODE table description

for values).

FSTUSE - First USE table position for USEs by statement

components. Contains value"of zero if USEs not

recorded for statement.

BCD	 - Module relative card number of first card on

1	 which statement text appears.

ECD	 - Module relative card number of last card on

which statement text appears. 	 •

i

3

3

i

I

^w

_	 __

/DIR/. I

COMMON/DIR/DIREC(4,200), LDIR, POIR, PLDIR

S •k DIREC Module directory. Contains names'of modules de-

fined and referenced by software system under

analysis. Each module is characterized by type.

f	 •
Each entry contains access information to module

local tables and source code card images. (See

data structure description for DIRECTORY).

LDIR	 Physical length of directory

PDIR - Current row pointer to directory entry

PLDIR - Last nonempty row pointer to valid entries

x

1 ^^

i
I

I'

/DIRCHR/. 1

COMMON/DIRCHR/AMTYP(6), LAMTYP, NOVAL

Character string decode of module type codes for Directory

entries.

AMTYP - Table of character strings in A4 format cor-

responding to module type codes of 1 through 6.

LAMTYP - Length of decode vector.

NOVAL - Character code in A4 format for invalid module

type codes.

/FFENAM/. 1

COMMON/FFENAM/BNAME(2), BLKDATA(2), EMPTY(2)

Read-only table of default names used by FFE.

BNAME - Symbolic name assigned to blank COMMON.

BLKDATA - Symbolic name assigned to BLOCK DATA.

,.	 EMPTY	 Empty name used to position symbol table to

empty entry.

e

LL:

f
.

/FFEOPT/. 1

y,

{	 COMMON/FFEOPT/PRTSRC, PRTPRS, PRTLTB, PRTDIR, LSTATS

Control variables to initiate maintenance trace options

for FFE checkout. Values are set by DATA statement to indicate

	

trace desired.	 r

Values	 Meaning

0	 No trace

1	 Trace action
E

	Variable	 Action

	

PRTSRC	 Print source code as it is analyzed by the FFE.

	

PRTPRS	 Print display of Parsing tables after Scan

and prior to beginning statement parse.

Y	 PRTLTB	 Print local tables produced for each module

analyzed.

	

PRTDIR	 Print contents of directory after all modules

analyzed.	
i

	

LSTATS	 Collect and display statistics on use of

local table space.

.	
A

1

t:

/FFESYM/. 1

COMMON/FFESYM/ENDSTM, HFUNC, HTION, HIF, HDO, HERR, HEND

FORTRAN Front End character string symbols,r

ENDSTM - $$ - end of statement code

HFUNC, HTION - FUNCTION

HIF	 IF

HDO	 DO	 Character strings

HERR	 - ERR	 used in parsing

E
HEND	 - END

F

r	
..

171P

/FLAG/. 1

a	 ,^s

COMMON' /FLAG/ FLAGFL, RSFLAG, LGFLAG, EFFLAG, PTFLAG

r

Flag File description
i

FLAGFL - Unit specification for file
i

RSFLAG - Record size for Flag File entries (not currently used)

LGFLAG - Length of Flag File (not currently used)

EFFLAG - end of file indicator .

PTFLAG - Pointer to Flag File records (not currently used)

Wow

/FMSG/. 1

COMMON /FMSG/ FMSGFL, RSFMSG, LGFMSG, EFFMSG, PTFMSG

a	 ^,

4 FORTRAN Message File Description

FMSGFL - unit specification for Fortran-Massage File

RSFMSG	 record size of Fortran Message records (not currently

used)

LGFMSG - Length of file (not currently used)

	

I	 EFFMSG - End of file indicator for Fortran Message File.

PTFMSG - Pointer to Fortran Message File (not currently used)

i
i

i

e
y

t

f

a

/GLOLNG/. 1

COMMON/GLOLNG/LNGGLO(7)

Read-only table of Global table lengths. Allocation of

entries is:

h	 M	 LNGGLO(1) - Length of Directory

	

..M	

LNGGLO(2) - Length of System Hierarchy table

LNGGLO(3) -.Length of System Hierarchy to Directory table

LNGGLO W - Length of Inverse System Hierarchy table

LNGGLO(5) - Length of Inverse System Hierarchy to Direc-

tory table

LNGGLO(6)	 Length of COMMON name table
I

LNGGLO(7) -length of Link List Table of COMMON names to

	

}	 S

I
Used for global header construction.and verification.

I
Ccntrols table size change compatibility with existing analysis

files.

F 9

r
, /GHD/. 1

COMMON BLOCK DESCRIPTION

COMMON/GHD[GHEADR(28), LGHD

GHEADR - Global header for table file

Allocated as follows:

GHEADR(1)	 FACES Version producing the tables (INTEGER)

GHEADR(2) - FACES Modification level producing the

tables (INTEGER)

GHEADR(3-4) - Host machine on which FACES ran to produce

tables (ALPHANUMERIC - 2A4 FORMAT)

GHEADR(5-6) - Target machine FORTRAN for which FACES was

adapted. (ALPHANUMERIC - 2A4 FORMAT)

GHEADR M End of SCAT file entries.

Last absolute card image on source code

catalog. (INTEGER)

GHEADR(8) - Last module number used for directory

entries. (INTEGER)

GLOBAL TABLE SIZES

GHEADR(9) - Directory length (INTEGER)

GHEADR(1O) - System [ii.erarchy table length (INTEGER)

.,r+UR0 i)	 ^;; ^t ^i 'pie;°archy to Directory List length

(INTEGER)

GHEADR(12)	 Inverse System Hierarchy table length

(INTEGER)

GHEADR(13) - Inverse System Hierarchy to Directory List

table length (INTEGER)

Global Table Sizes	 (cont.) /GHD/. 2

GHEADR(14) - Common Block table length (INTEGER)

GHFADR(15) - kink List of Common to Directory length

(INTEGER)

`	 LAST ENTRY POINTERS TO GLOBAL, TABLES

GHEADR(16) - Last Directory Entry (INTEGER) 	 r

GHEADR(17) - Last System Hierarchy Entry (INTEGER)

GHEADR(18) - Last System Hierarchy to Directory List

Entry (INTEGER)

GHEADR(19) - Last Inverse System Hierarchy Entry

(INTEGER)

GHEADR(20) - Last Inverse System Hierarchy to
i

Directory List Entry (INTEGER)

"W(20 - Lact ^'onlmon Block Table Entry (INTEGER)

'	 GHEADR(22)	 - Last Entry in Link List of Common to

Directory Table (INTEGER)

Local Table Sizes

GHEADR(23) - Symbol Table length (INTEGER)

GHEADR(24) - Symbol Overflow Table length (INTEGER)

GHFADR(25) Use 'Table length (INTEGER)

GHEADR(26) - Node Fable length (INTEGER)

GHEADR(27) - Successor Table length (INTEGER)

GHEADR(28) -- •Predecessor Table length (INTEGER)

COMMON/GLO/GLOBNO

i	 This is the Global Number count. Initially set to one, it is

incremented by one whenever a violation is to appear in the secondary

or display listings and

^.'	 1) An uninitialized variable is found.

2) A DO loop control used after the loop terminated normally

is located.

3) A different formal parameter list is being examined by the

Parameter List Alignment Check.

4) A different COMMON Block is being examined by the COMMON

'	 Block Alignment Check.

5) A different cyclic calling sequence is found.

5

1

i

g

COMMON /GLOQRY/ GQUERY(20), LGQ

Read cnly list of Global query numbers

GQUERY - vector containing global query numbers

LGQ	 length of global query vector

/H/. 1

COMMON/H/HA, HB, HC, ,.., HZ, H0, H1, ;.., H9, HEQ, HLP,,HRP,

HCO, HPE, HSL, HPL, HMI, HAS, HDOL, HQU, HDQU

Contains character set for system composed of:

HA through HZ - characters A through Z in Al format

	

>-	 HO through H9 characters 0 through 9 in Al format

Special Symbols:

in Al format

	

"	 r

dd

3

j

i
a

a
t

/INTSS/. 1

COMMON/INTSS/ISS(400), LISS, PISS, PLISS, LLISS, EFLAG

Intermediate Symbol String of Parsing Tables. Used by

FFE to parse statements.

ISS	 - Intermediate Symbol String vector. Contains

Alphanumeric and special symbol code that classify

items of FORTRAN text.

(See Parsing Tables Description for values)

LISS	 - Physical length of Intermediate Symbol String

PISS - Current pointer to Intermediate Symbol being processed

PLISS - Last nonempty entry of ISS for a statement's text

LLIS	 - Logical end of Intermediate Symbol String. Estab-

lishes fill limit for placing elements in ISS from

statement text.

EFLAG - First zero level equal sign indicator. Contains

zero if no zero level equal sign and position +N

of ISS if zero level equal sign is present.

/IS/. 1

COMMON/IS/ISTAB(2,200), LIS, PIS, PLIS

ISTAB - Inverse System Hierarchy Tables. Along with Inverse

System Hierarchy to Directory Table, ISTAB describes called-

by hierarchy of software system being analyzed.

LIS	 - Physical length of Inverse System Hierarchy Table.

PIS	 Current row pointer to Inverse System Hierarchy Table.
i

PLIS	 - Pointer to last non-empty (valid) row in Inverse System

Hierarchy Table.

i
For detailed discussion, see section describing structure of

Inverse System Hierarchy Tables.

i

t

v

/ISD/. 1

COMMON/ISD/ISDTAB(400), LISD, PLISD

ISDTAB - Inverse System Hierarchy to Directory Table. Along with

Inverse System Hierarchy Table, ISDTAB describes called-by

hierarchy of software system being analyzed.

LISD	 Physical length of Inverse System Hierarchy to Directory

Table.

PLISD	 - iointer to last non-empty (valid) row in Inverse System

Hierarchy to Directory Table.

r

For detailed-discussion, see section describing structure of

` Y	 Inverse System Hierarchy Tables.

j

J

I

i
j

r.

AW

/JUMPS/. I

4

COMMON/JUMPS/TRIP(2,300), LTRIP, PTRIP, PLTRIP

Transition Pairs Table used to record internal transitions

Ia	
within a module and references to external modules. (See Transition

Pairs Table data description).
E	 '

TRIP	 - Recording array for transitions found in a module.

LTRIP	 - Physical length of rjcording array.

PTRIP	 - Current pointer to transition pair entry.

PLTRIR - Pointer to last nonempty entry of transitions

IA recorded.

3

/LEXITM/. 1

a	
j

i

s
{

Y

I ?

COMMON/LEXITM/ILEX(66), LILEX, PILEX, PLILEX

Lexical item constructed by Scanner. Contains characters

of lexical item in Al format.

ILEX	 - Recording vector for character string of lexical

item characters.

LILEX	 Physical length of lexical item recording vector.

PILEX - Pointer to current character of lexical item.

PLILEX - Pointer to last nonempty character of lexical item.

1

{

i

r

z:

e.

AIN/. 1

COMMON/LIN/LINTAB(2,500), LLIN, PLIN', PLLIN

LINTAB - Linked List Table. Contains linked lists which indicate

in which modules specific COMMON Block declarations appear.

LLIN	 - Physical length of Linked List Table.

PLIN	 - Current row pointer to Linked List Table.

PLLIN	 - Pointer to last non-empty (valid) row in Linked List Table.

For detailed discussion, see section describing structure of

COMMON Block Reference Tables.

y

y

i

/LIS/. I

COMMON/LIS/LISTAR(500), LLIS, PLUS, MAP(6,20), LMAP, PMAP, PLMAP

LISTAB - List Table. Contains lists used during AIR execution.

LLIS	 Physical length of List Table.

PLUS	 - Pointer to last non-empty row in List Table.

MAP	 - List Table Map. Contains descriptions of lists which

currently reside in List Table.

LMAP	 - Physical 'length of List Table Map.

PMAP	 - Current row pointer to List Table Map.

PLMAP	 - Pointer tc, last non-empty (valid) row in List Table Map.

For detailed discussion, see section describing List Table and

List Table Map.

/LOCLNG/. 1

',-	 COMMON/LOCLNG/LNGLOC(6)

^I	 Read-only table of Local Table Lengths. Allocation of entries

is:
LNGLOC(1) - Main Symbol Table length

LNGLOC(2) - Symbol Table Overflow length

J	

LNGLOC(3)	 Use Table length

LNGLOC(4)	 NODE Table length

LNGLOC(5) - SUCCESSOR Table length

LNGLOC(6) - PREDECESSOR Table length.
k

Used for global header construction and verification. Controls

table sizes used for analysis file creation. Controls compatibility

of created tables with future systems.

	

•	 z

{

a7

rr

/LOCQRY/. 1

COMMON /LOCQRY/ LQUERY(1:1) 9 LLQ, SUBLOC

Read only table of Local query numbers

LQUERY - vector containing local query numbers

LLQ	 length of local query vector

SUBLOC - pointer to last local query entry to be inserted for

LOCAL or ALL specification. Queries in positions be-

low SUBLOC are selected only through the ONLY request.

/LSTSTK/, 1

z

COMMON/LSTSTK/LSTSTK(10). LIST, PLST. PLLST

Begin/End list bracket Use code stack. Push down stack for

connecting Begin/End Use codes within a statement.

LSTSTK - Recording vector for USE Table positions containing

Begin Bracket Use codes.

LLST	 - Physical length of stack

PLST	 Current pointer to stack

PLLST - Pointer to top stack entry.

t

«I j

ATEMPJ. 1

COMMON/LTEMP/LALI, LPATH, LALT, LTRA

This COMMON Block contains the length of the temporary data

structures. Each element of this COMMON Block is set in BLOCK DATA

and is read-only data.

For most data structures in FACES, the length of the data

structure is stored in the same COMMON Block which contains the data

structure. But these temporary data structures were designed to exist

in main memory at different times, overlaying one another, in an attempt

to conserve space. During the overlay process, the information stored

in the overlaid data structure simply disappears. Thus, their length

must be stored elsewhere.

a. LALI contains the physical length of the Alignment Table.

b. LPATH contains the physical length of the Path Stack.

c. LALT contains the physical length of the Alternate Edge Stack.

d. LTRA contains the physical length of the Trace Stack.

/MHD/. 1

1w rIq

COMMON/MHD/MHEAD(6), LMHD

This COMMON block contains the local modules header data

for local tables of a module.

MHEADR(1) - Length of SYMBOL table

MHEADR(2) - Last nonempty entry of SYMBOL OVERFLOW table

MHEADR(3) - Last nonempty entry of USE table

MHEADR(4) - Last nonempty entry of NODE table

MHEADR(5) - Last nonempty entry of SUCCESSOR table

MHEADR(6) - Last nonempty entry of PREDECESSOR table.

+r R

k

i

i

I

« r

j

i

r

A

Lfc.^_ .^:	
W17

e

COMMON/MISC/HSTARS, HSUB, HEXPR

This COMMON Block contains those literal strings needed during

the execution of AIR which do not belong to any other category. They

are grouped under the heading 'miscellaneous'. The are set in BLOCK

DATA and are read-only data.

a. HSTARS contains the literal string	 r

b. HSUB contains the literal string '*SUB'.

c. HEXPR contains the literal string 'EXPR'.

{

asy

A

NOW

/MSGVEC/. 1

k	 COMMON/MSGVEC/DONE(4), LDONE

FORTRAN Front End message vector to suppress multiple

table overflow messages.

i
DONE - Vector of overflow messages issued for a module.

0 - no message issued

j
1 - message already issued

DONE M - NODE table overflow

DONE(2) - PREDECESSOR table overflow

r	 DONE(3)	 SUCCESSOR table overflow

DONE(4) - USE table overflow

LDONE - Length of the message recording vector

t

/MTEXT/. 1

a

COMMON/MTEXT/KEY, SCATOG, CARDI, CARDN, FLGNUM, FLGCHR(2), OCCUR,

IORDER, ITEXT(20), ATEXT(2,20), LTEXT, PTEXT, PLTEXT, LASTPL

Flag message for attachment to source code of a report. 	 Consists

of one or more flags of message text.

KEY	 - Global sort key for message.

r
h	 SCATOG	 - Source code catalogue origin of module text to whichi

4^.
message is attached.

j	 CARDI	 - First relative card number of source code statement

to which message is attached.

CARDN	 - Last relative card number for source code sequence to

which message is attached.

FLGNUM	 - Flail number for message (integer value).

FLGCHR	 - Flag symbolic characters for message (Alphanumeric).

OCCUR	 -
)

Occurrance number from first flag in message.

IORDER	 - Internal order number of first flag in message.

ITEXT	 - Integer message text.

ATEXT	 - Alphanumeric message text.

LTEXT	 - Physical length of text arrays.

PTEXT	 - Pointer to text entries.

PLTEXT	 - Pointer to last nonempty text row.

LASTPL	 - Recording variable for length of last message delivered.

Used to suppress redundant messages.

/NOD/. 1

COMMON/NOD/NODTAB(4,100), LNOD, PN00, PLNOD

NODE Table in Local Tables. (See Local Table Data description

J
for contents).'ontents)..

NODTAB - NODE Table array for recording statements of the

source modules.

LNOD	 - Length of NODE Table array.

PNOD	 - Pointer to current NODE entry.

PLNOD - Pointer to last nonempty entry of NODE contents.

a

j

y
3

i
i

/NULL/. 1

COMMON/NULL/NULL

This COMMON block contains a single throw-away variable used

only to excite Functions which position search pointers. Values

placed in the variable are never used.

1	
.

.i

N

j

d

1

_r

7--Tpq

/ORIENT/. 1

COMMON/ORIENT/HBAK, HFOL

This COMMON Block contains those literal strings needed during

the execution of AIR which involve the direction, i.e., the orientation,

of a traversal of paths. They are set in'BLOCK DATA and are read-only

data.

Each element in this COMMON Block contains its own name as a

character string, less the leading 'H', left-adjusted.

a. HBAK contains the literal string 'BAK', which represents.

'Backtrack'.

b. HFOL contains the literal string 'FOL', which represents

'Follow'.

AV

J
x

d

/PAT/. 1

COMMON/PAT/PATH(500), 	 PPATH

PATH	 - Path Stack. Contains intra-modular flow of control path

currently being examined by AIR.

PPATH - Pointer to top of Path Stack.

Physical length of Path Stack is stored in COMMON Block /LTEMP/.

For detailed discussion, see section describing structure of

Path Stack and Alternate Edge Stack.

e

3

/PERSYM/. 1

r	COMMONIPERSYM/VVAL(16), SSCODE(16), LVVAL, PVVAL

r

Read-only table of character string templates which are

significant if found between a period pair. Used to detect logical

constants, relational operators, and logical operators.

VVAL	 - Contains symbolic character strings in A4 format.

Character strings are the first 4 characters of the

form to be recognized.

SSCODE - Contains symbolic Intermediate Symbol String code

for entry corresponding to the template matched.

LVVAL - Length of template table and ISS code vector.

PVVAL	 - Pointer to current entry of table during search.

3

3

a	 -i

a

r

/PRE/. 1

COMMON/PRE/PRETAB(1000), LPRE, PPRE, PLPRE

PREDECESSOR Table of Local Tables. (See Local Table Data

description for contents.)

PRETAB - PREDECESSOR Table for recording statement pre-

decessors of module statements.

LPRE	 - Length of PREDECESSOR Table.

PPRE	 Current pointer entry.

PLPRE	 - Pointer to last nonempty entry.,

i

6

^a

wA

/PRNT/. 1

t	 COMMON /PRNT/ PRNTFL, RSPRNT, LGANT, EFPRNT, PTPRNT

b

Print File Description

F	 PRNTFL - unit specification for Print file

RSPRNT - record size of Print File records (not currently used)

.`^	 LGPRNT - Length of Print File.(not currently used)

EFPRNT - End of File indicator (not currently used)

PTPRNT	 Pointer to Print File record (not currently used)

a

I

-	 /REDSTK/. 1

COMMON/REDSTK/CCOD(5), VLO-(5), BCOM(5), NSBE(5), RELPRN(5), PRSTK, LRSTK

k

Comma list reduction stack used by REDCOL to simplify actual

parameter lists and array subscript references.	 (See description of

REDCOL for description of reduction stack operation.)

CCOD	 - Class code of element being processed on current

' level.	 (See description of SYMBOL Table for Values.)

VLOC	 - Position of ISS containing the variable name fr,r a

form V().	 ak

VCOM	 - Position of ISS where parameter or subscript began.
r

Advanced after each subscript or parameter processed.

NSBE	 - Flag indicating whether the parameter or subscript

needs to be replaced by a subexpression to a temporary.

RELPRN	 - Relative parenthesis count used to distinguish

organizing parentheses of expressions from the closing

parenthesis of the parameter or subscript list.

PRSTK	 - Pointer to top of reduction stack.

LRSTk	 - Physical length of reduction stack.	 Established

nesting of V(forms allowd.

/RESW/. 1

COMMON /RESW/ RESWFL, RSRESW, LGRESW, EFRESW, PTRESW

Reserved Word File description

RESWFL - unit specification for file

RSRESW - record Size of file records (not currently used)

LGRESW - length of file (not currently used)

EFRESW - end of file indicator (not currently used)

PTRESW - pointer to file records (not currently used)

^ivr^M61M

/SBESTK/. 1

COMMON/SBESTK/SBESTK/SBESTK(lO), LSBE, PSBE, PLSBE

Subexpression push down stack for recording Begin/End Sub-

expression Use code within a statement. Used to create nested sub

expressions.

SBESTK - Recording vector for USE Table positions containing 	
r

Fegin Subexpression Use codes.

LSBE	 - Physical length of subexpression vector.

PSBE	 - Current row pointer to stack entry.

PLSBE	 - Pointer to top of stack.

i

I'

J

010 1001-e

JSCALAR/. 1

COMMON/SCALAR/HPLE, HPRM

This COMMON Elock contains the literal strings needed during

1'.	 the execution of AIR when referencing the scalar descriptors of a

data structure. The elements of this COMMON Block are set in BLOCK

DATA and are read-only data.

ii 	 J
Each element in this COMMON Block contains its own name as a

1

character string, less the leading 'H', left-adjusted,

1	 a. HPLE contains the literal string 'PLE', which refers to the

1	 pointer to the last non-empty row of a data structure.

b. HPRM contains the literal string 'PRM' which refers to the

prime number associated with a rash-coded tabl e.

a

9

1

1

4

t	 ^

/SCANBF/. 1

. 	 COMMON/SCANBF/SCNELM(140), LSCNE, PSCNE, PLSCNE, RSCNE

Scan buffer for FORTRAN statement text. (See Data Description

a of SCAN Buffer for contents.)

SCNELM - Scan buffer containing FORTRAN statement text.

I	 LSCNE	 - Physical length of Scan Buffer.

PSCNE	 - Pointer to current element of.text.

PLSCNE - Pointer to last entry of text contained in Buffer.

RSCNE - Reserve pointer to text which has not been completely

processed.
I

1-

5

{

3

hj

k

L

}	 a

-	 j

/SCAT/. 1

COMMON /SCAT/ SCATFL, RSSCAT, LGSCAT, EFS AL PTS AT
z

^i

Source code catalogue file description

SCATFL - Source Code Catalogue File unit specification

RSSCAT - Record Size of Source Code Catalogue records 	 j
;I	

LGSCAT - Lergth of Source Code Catalogue in number of records
7

EFSCAT - End of file indicator for Source Code Catalogue

PTSCAT - Pointer to Source Code Catalogue records. (i.e.

Associated variable). Points to next record to be

read or written.

a,

P

i

V

/SH/. 1

COMMON/SH/SHTAB % 2OO), LSH, PSH, PLSH

SHTAB - System Hierarchy Table. Along with System Hierarchy to

Directory Table, SHTAB describes calling hierarchy of soft-

ware system being analyzed.

LSH	 - Physical length of System Hierarchy Table.

PSH	 - Current row pointer to System Hierarchy Table.

PLSH	 - Pointer to last non-empty row in System Hierarchy Table:
	

W:

For detailed discussion, see section describing structure of

System Hierarchy Tables.

u

..	_.......	 ___	 _	 __

^T

/SHD/. 1

COMMONISHD/SHDTAB(400), LSHD, PLSHD

SHDTAB	 System Hierarchy to Directory Table. Along with System

Hierarchy Table, SHDTAB describes calling hierarchy of

software system being analyzed.

LSHD	 - Physical length of System Hierarchy to Directory Table.

PLSHD	 - Pointer to last non-empty (valid) row in System Hierarchy

to Directory Table.

For detailed discussion, see section describing structure of

System Hierarchy Tables.

S

3

/STACK/. 1

i
COMMON/STACK/MSTR(20), TSTR(20), LSTR(20), PSTR(20), LSTACK, PSTACK

This is the Control Stack. It consists of four stacks.

a

MSTR - Module Number Stack Register. Contains module numbers of

modules currently being examined by AIR.

TSTR - Table Name Stack Register. Contains names of tables

currently dieing examined by AIR.

LSTR	 - List Indicator Stack Register. Contains list indicators

for tables currently being examined by AIR.

PSTR	 - Pointer Stack Register. Contains pointers to table locations

currently being examined by AIR.

LSTACK	 Physical length of Control Stack.

PSTACK	 Pointer to top of Control Stack.

For detailed discussion, see section describing structure of

Control Stack.

a

i

/SPEREG/. 1

,.	 COMMON/SPEREG/ER(10), ERW, IR(10), IRW, TR, LR, PR, CR, FBR, MR

This COMMON Block contains special purpose registers.

a. ER is the Element Register. It contains an element taken

from an AIR accessible table which is placed i^*.o-ER by the GETE (Get

Element) subroutine.

b. ERW contains the width, in computer words, of the Element

Register.

c. IR is the Immediate Register. It contains an element taken

from a list in the List Table which is placed into IR by the LIRL (Load

Immediate Register from the List Table) subroutine.

d. IRW contains the width, in computer words, of the Immediate

Register..

e. TR is the Table Name Register. It contains the name of the

table that is about to be added to the Control Stack by the PUSH sub-

routine or has dust been removed from the Control Stack by the POP sub-

routine.

f. LR is the List Indicator Register. It contains the list in-

dicator for a list in the table that is about to be added to the Control

Stack by the PUSH subroutine or has just been removed from the Control

Stack by the POP subroutine.

g. PR is the Pointer Register. It contains the element's

location in a table that is about to be added to the Control Stack by

the PUSH subroutine or has just been removed from the Control Stack by

the POP subroutine.

TR, LR, and PR, are all simultaneously manipulated by the

POP subroutine.

OP

/SPEREG/. 2

x Y

h. CR is the Column Number Register. It contains the number

of the column most recently accessed by the GETE (Get Element) sub-

routine.	 It is only used in debugging.

i. FBR is the Forward-Backward Register. Originally, it was

designed to reflect the direction of the flow of control through AIR

routines. Currently, there are some exceptions to this definition.

For a full explanation, see the sections entitled, "AIR Basic Search

Technique" and "Traversing Lists".

j. MR is the Module Number Register. It contains the module

number of the module currently residing in main memory.

r

The Element Register and the Immediate Register have a specific

structure.. The first element of the array contains the type of infor-

mation contained in the register, alphanumeric or integer. The

second element contains the length, in computer words, of the infor-

mation contained in the register. The reamining eleiients contain the

actual information placed in the register, starting from the third

element.

Example: The character string 'TOGGLE'.

A	 2 TOGG LE

3

I

b:

r^

4

i

i

/ SUC/ . i

COMMON/SUC,I SUCTAB(1000), LSUC, PSUC, PLSUC

SUCCESSOR Table in Local Tables. (See Local Tables Data

description of contents.)

SUCTAB - SUCCESSOR Table for recording statement successors

of module statements.

LSUC	 - Physical length of SUCCESSOR Table.

PSUC	 - Current row pointer to SUCCESSOR entry.

PLSUC	 - Pointer to last nonempty entry of SUCCESSOR Table.

/SYM/.	 1

`	 COMMON/SYM/SYMTAB(4,700), LSYM, PSYM, SYMPRM, SYMOVR(200), LSYMO,

PSYMO,.PLSYMO

a	 ,
SYMBOL Table in Local Tables (See Local Tables Data description

for contents.) {

SYMTAB -	 Main Symbol Table.

LSYM
i'

-	 Physical length of Main Symbol Table.

j	 PSYM -	 Pointer to current entry of Main Symbol Table.

SYMPRM -	 Largest prime number smaller than physical length

of Main Symbol Table. 	 Used in computing hash entry

point into Symbol Table.

SYMOVR -	 Symbol Overflo ,.q Table.	 Contains entries too large

I to fit into Main Symbol Table data area.

PSYMO

y

-	 Pointer to current entry of Symbol Overflow Table.

PLSYMO
i

-	 Pointer to last nonempty entry of Symbol Overflow

Table.

I	 LSYMO -	 Physical length of Symbol Overflow Table.

i

^a

a

f

/SYSQRY/. 1

^: r

s

i

i

COMMON /SYSQRY/ SQUERY(3), LSQ

Read only table of System queries

SQUERY - vector of system query nuiiber

LSQ	 - length of system query vector
r

i

s

i

i

r

T

/TABL/. 1

s

COMMON /TABL/ TABLFL, RSTABL, LGTAOL, EFTABL, PTTABL, GHDTR,

DIRTR, SHTR, SHDTR, ISTR, ISDTR, COMTR, LINTR,

BASELT, SIZELT

Table File descriptor.

TABLFL	 - Unit specification for Analysis Table file

RSTABL	 - Record size of Table File data

LGTABL	 - Length of Table File in number of records

EFTABL	 - End of file indicator for Table File

PTTABL	 - Associated variable for pointing to Table File records.

Points to next record to be read or written.

GHDTR	 - Global Header Table File first record
s	

- Directory Table File first record

SHTR	 - System Hierarchy Table File first record

SHDTR	 - System Hierarchy to Directory Table File first

record

ISTR	 - Inverse System Hierarchy Table File first record

ISDTR	 - Inverse System Hierarchy to Directory Table file first

record

CONTR	 - Common Table Table File firstecordr	 l
LINTR	 - Common Table Link List Table.File first record

BASELT	 - Offset Table File space prior to the start of Local Table

records.

`^IZLLT	 - Number of records occupied by Local Tables of each module

r,

/TABLE/. 1

COMMON/TABLE/HCOM, HDIR, HIS, HISD, HLIN, HLIS, HMAP, HNOD,

HPRE, HSH, HSHD, HSTK, HSUC, HSYM, HUSE1, HUSE2

This COMMON Block contains those literal strings needed during

the execution of AIR when referencing specific data structures. The

elements of this COMMON Block are set in BLOCK DATA, and are read-only

i	

data.

-

	

	 Each element in this COMMON Block contains its own name as a

character string, less the leading 'H', left-adjusted.

a. HCOM contains the literal string 'COM', which is the abbre-

viation for the COMMON Block Name Table.

b. HDIR contains the literal string 'DIR", which is the abbre-

viation for the Directory.

r} HIS contains the literal string 'IS', which is the abbre-

viation for the Inverse System Hierarchy Table.

d. HISD contains the literal string 'ISD', which is the abbre-

viation for the Inverse System Hierarchy to Directory Table.

e. HLIN contains the literal string 'LIN', which is the abbre-

viation for the Linked List Table.

f. HLIS contains the literal string 'LIS', which is the abbre-

viation for the List Table.

g. HMAP contains the literal string 'MAP', which is the abbre

I
viation for the List Table Map.

h. HNOD contains the literal string 'NOD', which is the abbre-

viation for the Node Table.

i. HPRE contains the literal string 'PRE', which is the abbre-

viation for the Predecessor Table.	 1

i'

-i

/TABLE/. 2

HSH contains the literal string 'SH', which is the abbre-

viation for the System Hierarchy Table.

ka HSHD contains the literal string 'SHD', which is the abbre-

viation for the System Hierarchy to Directory Table.

'	 1.' HSTK contains the literal string 'STK', which is the abbre-

viation for the Stack.

m, HSUC contains the literal string ' SUC' , which is the abbre-

viation for the Successor Table.

n. HSYM contains the literal string 'SYM', which . is the abbre-

viation for the Symbol Table.

o. HUSE1 contains the literal string 'USE1 1 ,.which is the abbre-

viaition for the Linked List Usage Table.

I 	 p. HUSE2 contains the literal string 'USE2', which is the abbre-

viation for the Statement Number Linked Usage Table,

i
1

1

a

I

LMATCH, MATCH, BIAS

/TMATCH/. 1

;. •-u^^ly table of character string templates used to detect

FORTRAN key words.

CH	 _ Contains symbolic character strings in A4 format

and empty entries. Character strings are the leading

4 characters of FORTRAN keywords. Empty entries

contain zero values.

LIMATCH	 Physical Length of the template table.

Pointer to current entry of template table.

RIAs	 - Integer value used in collision process of flash

r' t ,	 access

description for FORTRAN Key Word Table Operation.

o.?rG1N
OF ppo L PAGES

QUALIT y

I

3

AN-

	

^	 t

/TLETER/.	 1

. RS(26), LLTRS, MRS

°'-or for establishing variable type code using first

	

^.i of 	 able.
E

Typing vector for alphabetic letters A through Z.

`"mains type code to be assigned for variables beginning
I	

a

	

1l -	 a,Ith associated letter.

Physical length of the typing vector.

	n k"	 Pointer to current vector position.

	

1:.	

LC

f ; L

ORIGINAL Pl=jr., >.,
OP POOR QUALITY

3

.3

A

/TMPNAM/. 1

r:

COMMONITMPNAM/TLEAD(8), LTLEAD, MODIF, MODINC, MODBGN

Table of characters and modifiers used to generate temporary

names in FFE.
s

TLEAD	 - Contains read-only character strings to use as the

	

`	 first 4 characters of a temporary name. Names are

selected by the type code of the temporary required.

1
LTLEAD	 - Physical length of the leading character template

i
vector.

MODIF	 - Modifier for unique temporary name generation. Used

as the second 4 characters of the temporary name.

	

l	
_

MODINC - Modifier increment used to advance the modifier

symbol string for next temporary.
i

MODBGN	 Beginning character for first temporary within a

module. a

4

i
ry

i

/TMPSYM/. 1

COMMON/TMPSYM/TSTAB(2,300), LTST, PTST, PLTST, TSTOVR(100)9

LTSTO, PTSTO, PLTSTO

Temporary Symbol Table of Parsing Tables. 	 The Temporary Symbol

Table replicates the structure of the Symbol Table.

TSTAB	 - Table array of main Temporary Symbol Table.

LTST	 - Physical length of main Temporary Symbol Table.

PTST	 - Current row pointer to Temporary Symbol Table entry.

PLTST	 - Pointer to last entry of main Temporary Symbol Table.

TSTOVR	 - Overflow space for Temporary Symbol Table entries

too long to fit in main entries.

PTSTO	 - Pointer to current entry of Temporary Symbol Table.

PLTSTO	 - Pointer to last nonempty entry of Temporary Symbol

Overflow space.

LTSTO	 - Physical length of Temporary Symbol Overflow space.

/TPCODE/. 1

A 0	 COMMON/'TPCODE/TYPNAM(16)

i.	

This COMMON Block contains alphabetic character strings usedy

during the printing of warning messages concerning type mismatches.

Each alphabetic string is stored in two consecutive words, four

characters per word.. left adjusted.

1. UNDEFINED

2. REAL

3. DBL PREC

4. COMPLEX

5. LOGICAL

6. NEUTRAL
r R	 _

7. Character

8. INTEGER

3

jl^
	 —1

M1

COMMON/USEAUSE, POSE, PLUSE

COMMON	 USETAB(2,2000)

USE Table for Local Tables (See Local Table data description

for contents).

LUSE - Physical_ length of USE Table.

PUSE - Current row pointer to USE Table entry.

PLUSE - Last nonempty entry of USE Table.

USETAB- USE Table array. Table space is carried in blank

COMMON since this is the largest of the Local Tables.

r

n	 .^
a

$f

s

XI.	 DETAILED MODULE DESCRIPTIONS

t^
R

11 ^7

j

{

:j

r

Machine Dependency

Xi. 1.	 1

XI. 1.	 2

Bit	 Character Random Sequential

Manipulations	 Codes Disk 1/0 110 (EOF detection)

INISH X

INSH X

LOFECH X
r	 ^

LOSTOR X
-a

MVSCAT X

OUTCOM X
i

OUTDIR X

OUTGHD X

OUTISH X

OUTLT X

OUTSH X

PAKCHR X
f

RDCTRL X

RDFLAG X i

RDFLGF X j

RDFLGH X

RDS CAT X

READLT X

SHIFTY X

t

ti •

f,

ACCTYP. 1

"'	
INTEGER FUNCTION ACCTYP (CURTYP, NEWTYP)

Mnemonic Origin: Accumulate Type

'.	 Classification: FFE parsing service routine

' Purpose: Accumulate type code for result of an arithmetic

expression.

Operation: ACCTYP develops the type code resulting from the evalua-

tionof an arithriletic expression by cumulative examination of ex-

pression operand type code.

Normally, the expression begins.with an empty type code

(value 0) As each member of the expression is processed, the type code

of the member is included in the expression type. The resulting type

is the highest type found in the expression.
t

Normal FORTRAN types included in the type accumulation with

hierarchy of:

COMPLEX
i

DOUBLE PRECISION

REAL
S

INTEGER

LOGICAL.

In addition, FACES extended type of CHARACTER (Hollerith) is a

weak member of an expression (same level as LOGICAL) 	 Any expression

member higher than LOGICAL or CHARACTER will irreversibly move the

accumulation higher than these types,.

y
S

t

ACCTYP. 2

A

Parameters:

CURTYP - Current type code for expression accumulated

previously,;

NEWTYP - New type code of an expression member to be in-,
x

eluded in the expression.

ACCTYP - Resulting type code returned through the functionk

name.

t

b

E

q

1

y

i

I- _ 1, F ___: —M

ADDXFR. 1 .

I„
	

SUBROUTINE ADDXFR (SCOL, SPCNOD, OARY, OLNG, OPTR, OVER)

Mnemonic Origin: Add Transfer list to a node.

Classification: HE graph constructing utility.

Purpose: Attach a list of explicit transfers from/to a given node

to the list of successors/predecessors to the node.

Operation: ADDXFR uses a sorted TRIP table and descriptors passed

by parameter--to insert explicit transfers of control to a list of

successors/predecessors being constructed.

By assumption, the order of node processing i.s the same as the

sorted order of the TRIP table. The specified node, if it has ex-

plicit transfers, will be on top of the current TRIP table entries.

If the specified node number is less than the top entry of TRIP
i3

nodes, no explicit transfers are made in the program from/to specified

node. If the specified node is equal to the top 'TRIP entry node, the

,explicit transfers follow sequentially in the TRIP table. If the

specified node is greater than the top TRIP entry, a processing error d
a

has occurred and attempts to resynchronize the process are made.
iy

If explicit transfers are found for a node, the list of trans-

fers is inserted into the list provided by parameters. The insertion

process is terminated when the node number of TRIP entries changes,

the TRIP entries are exhausted, or the provided vector for inserting

entries is filled.

ADDXFR is not actually aware of successor or predecessor proper-

ties; it works in terms of TRIP table columns. If the selected column,

is the predecessor entry of a transition pair, the selected node's

transfers will be successors of the s.elected node. Similarly, selecting

4

MW

c

ADDXFR. 2

the successor column of.the pair will produce predecessors for

the selected node.

Parameters.,	SCOL	 - Selected column of TRIP to locate node

numbers of the transition pair.

SPCNOD	 Specified node; the node number for which	 r

explicit transitions are required.

OARY - Output arrayy (vector) in which to place

explicit transitions found.

}	 OLNG	 - Output array length._

OPTR	 Pointer to output array. Advanced for each

explicit transfer inserted.

`	 OVER	 Overflow indicator. Set if explicit trans-

fers exceed available output array space.

Cross Reference: Also see description of TRIP table and explanation

of Program Graph Construction.
,

3

Mq

i

R,

.w

AINDX. 1

INTEGER FUNCTION AINDX(CHAR }

s

n moni _ OCjOL:	 Alphabetic Index

Clussif. ication: Character code support routine

Purpose:	 Convert alphabetic characters to an index value

O eration:	 Upon entry, a,character is presented for which a

}	 numeric index is required. If the character is an alphabetic

character, an index between 1 and 26 is returned. If the charac-

ter is any smbol other than an alphabetic character, the value 0

is returned.

Routine operation is machine dependent based upon the

character code values.

Parameters:	 CHAR - character presented in Al format.

AINDX - index value generated is returned through

the function name.

y
s

AIR. 1

SUBROUTINE AIR

Mnemonic'OriQin: Automatic Interrogation Routine

Classification:	 AIR Driver

Pur0 ;,- o :	 Drives AIR subsystem.i u: i+t..a ^.

Operation:	 Calls routine which satisfy system and user requests.

Also controls disposition of certain global tables (i.e., COM, LIN,

IS, ISD, SH, and SHD).

Algorithm:	 Initialize AIR subsystem. AIR assumes list

of system and user requests already resides in List Table. As list

in List Table is traversed, binary tree search locates external

reference to routine which can satisfy request.

Special Note:	 Zero,in request list represents null request.
1

If global table requested, bring table into main memory

if it exists; else create table and store it in secondary storage.

9

3

{

M	 _

_	 t

ALPHA. 1

LOGICAL FUNCTION	 ALPHA (CHAR)

Mnemonic Origin:	 Alphabetic character,

Classification:	 System Utility.

Purpose:	 Determine whether the presented character is alphabetic.

Operation: The character presented by par-amneter is examined for

alphabetic properties.	 A .TRUE. value; is returned if it is alpha-

betic;	 otherwise,	 .FALSE, is returned.

Evaluation of alphabetic properties requires machine dependent	
y

operations on the character codes assigned by the host machine. 	 Since

the characters are in Al format (large magnitude integer values), --

I care is required to avoid comparing positive and negative values;

if the compare is performed by subtraction, this could result in over-

` flow.

Parameter:	 CHAR	 -	 Subject character to examine for alphabetic

properties in Al format.

r

g

t

'	 .
F

AMBSYM. 1

w r
c

SUBROUTINE AMBSYMNAME, LNG, TYPE, CLASS(

Mnemonic Origin 	 Ambigious Symbol
v

Classification:	 FFE table recording routine

Purpose:	 Process ambiguous character strings for Symbol Table
r

}-
insertion.

3

Operation:	 Upon entry, a symbol has been discovered for which an

idential character string is found in the Symbol Table. 	 The Symbol

Table entry differs in class and/or type from th e currently pre-

sented symbol.	 The Symbol Table may be the desired symbol or a

different symbol which simply has the same character string. s

For example, if a variable "A" is found in FORTRAN text and

rF
^x a COMMON block label "W" has been declared, the Symbol Table entry

for both elements will be A. 	 Clearly,-these are two different
i

symbols with the same character string.

If, however, a declaration "INTEGER FUN" appears in the

source code followed later by a function reference "FUN(A,B)", the

Symbol Table entry will contain an entry for FUN as a scalar variable

when the function reference is encountered.	 In this case, the two

references are to the same symbol.	 The Symbol Table entry should be

`. changed from a scalar variable to a function name.

Typing differences may also cause ambiguities. 	 For example,

if the symbol "P" is passed as a subroutine parameter will be default

typed.	 If a later declaration of "INTEGER P" Appears, the type of P

will be forced to integer, causing a type ambiguity, in the Symbol

i

AMBSYM. 2

4

Table search. To resolve the problem, the sumbol entry type must

be changed.

To resolve the ambiguity, AMBSYM either decides to modify

the current Symbol table entry to accommodate the new character-

istics or make a new entry for the presented symbol. Since class 	 r

.,	 variations require more analysis, the Class conflict is treated

first. If the class can be resolved without 'insertion, type conflict

is ' resolved for the current entry. If Class resolution requires

t	
insertion, the sumbol is simply typed as required for a normal

insertion.

Upon entry, the Symbol Table is positioned to an entry which

has the same character string but differs in type and class specifi-

cation. The presented symbol's type and class are copied to local

variables to permit changing the specification if resoltuion requires

modifying the current Symbol Table entry. Note that more .than one

symbol may have the same character string in the table. The

positioned indicated is simply the first occurance of an _identical

character string. To properly process the ambiguity, all entries

of the table with matching symbol strings must be considered before a

"	 decision to insert the current symbol can be made. If the ambiguity

can be resolved with an entry, the search can be abandoned.

The upper loop treats class conflicts. The current Symbol

Table entryis examined extracting the specified class and type. A

processing case is selected based upon the required class specified

y	
_

,r	 ^	 g

AMBSYM. 3

by the presented symbol. Each case considers the current class

and other factors to determine if the selected Symbol Table entry

can be modified to satisfy the requirement. If the current

symbol cannot satisfy the requirements, insertion is requested.

Otherwise, the current entry description is modified and insertion
i

is not required.

If insertion is required by the processing case, the Symbol

Table contents are examined for another candidate position. Candidates

are exhausted when a matching entry cannot be found before the nextF

empty Symbol Table position is encountered or the Symbol Table is

spanned for the case of a Pull table.

Type Ambiguity is resolved either by inserting the symbol

`.'	 with 'normal typing or modifying the type code of the currently

selected position.

Parameters: NAME	 Symbolic name presented in a vector of

A4 formatted data.

LNG - Length of symbolic character string expressed

as number of vector positions.

TYPE - Type specification. Contains either a type

code or the value 0 (probably system error

if 0) .

Special Notes: The most common ambiguity is an array which is

recognized as a scalar variable. Since array names may appear

i

AMBSYM. 4

{.	 without explicit subscripts, little effort is made in parsing

routines to distinguish arrays from scalars.

This routine is responsible for linking the references

to statement function parameters.in the statement function

'	 expression. Incomming references to scalar variable requests are

;.,	 considered if a statement function is currently in progress.

^i

L

s	SUBROUTINE ANSI,ST

t	 Mneumonic Origin: ANSI Standards Function Names

Classification:	 AIR Query

Purpose: Searches for ANSI Standards function names used not

as ANSI Standards functions. Warning flags may be produced

for primary listing.

Operation: Algorithm: See Source Code Listing.

h

e

j
t

i

a
i

I
-	 is	 -f

n

,r

J

ANOMLY. 1

SUDROUIINE ANOMLY (ANOCOD, RNAMi,RNAM2, IVAL, AVAL1, AVAL2)

Mnemonic Qrigin: Processing Anomaly.

Classification: FFE error reporting.

Purpose: Report the occurrance of an unusual processing condition

detected during operation.

Operation: Anomaly reports are processing conditions detected during

operation which may indicate processing failures. In general, pro-

cessing anomalies are recoverable events which have been programmed

for;	 they may indicate bad results, however.

The anomaly is reported to indicate where the problem was

detected and what caused the difficulty. Since source code being

analyzed is not normally printed during FFE operation, the report

1d :

must also include the module being processed and the card within the

module on which the error occurred.

Since anomalies may be reported by the Scan, Parse, or Postprocess

routines, the card number is approximated by the larger of the card

numbers estrablished in any of these phases.

Parameters: ANOCOD - Numerical code indicating the nature of the

problem detected.

RNAM1 - Alphabetic name of the routine reporting the
RNAM2

'anomaly.

IVAL	 Numerical value of the suspicious variable

.if appropriate,

AVALI - Either alphabetic name of the variable or alpha.-
AVAL2

betic value detected and truncated variable name.

AOPER. I

LOGICAL FUNCTION AOPER (ISSCOD)

Mnemonic Orig.-in: Arithmetic Operator.

Classification:	 FFE parsing utility.

Purpose: Detect operators of arithmetic expressions.

Operation: AVER identifies Intermediate :Sy ►nbol String (ISS)

entries which correspond to arithmetic operators during arithmetic

expression_ processing. If the presented symbol is an ISS code for

arithmetic operators, .TRUE. is returned; otherwise, .FALSE. is

returned.

The logical operations of OR, AND, and NOT are considered

arithmetic operators. The arithmetic operator ** is treated as two

separate symbols * and * in the system; arithmetic expressions are

^-	 simply scanned, not actually parsed according to operator precedence

rules.

Parameters: ISSCOD - Intermediate Symbol String code to consider

as an arithmetic operator.

AOPER - Inspection results are passed through the

function 'name.

Cross Reference: See description of Parsing Tables and expression

processing.

t

J	
•,

ASNUSE. 1

AP	 SUBROUTINE ASNUSE

Y	 Mneumonic Origin: Variables Assigned Values But Never Used

Classification:	 AIR Query

Purpose: Searches for local variables assigned values but never used-.

Operations: Program boundaries are not crossed. Variables appearing-

in parameter list of subprogram are assumed to be " used" in subprogram.

Warning flags may be produced for primary listing only.

r	 Algorithm: See Source Code Listing.

{

^J

y

1

r

,.H

ATFILE. 1

SUBROUTINE ATFILE(FILE, LISTNO, ERRFLG)

Mnemonic- Origin: Attach File

Classification:	 AIR General Purpose Utility

Pur p ose:	 Adds the contents of a file to the List Table and List

Table Map as a list.

Operations:	 The contents of file FILE are treated as a list.

The first available slot in the list Table Map is located, and the

list and its description are placed in the List Table Map and List

Table. 'This list is list number LISTNO. If an error occurs, the

error flag ERRFLG is set to a positive integer.

Currently, FILE may refer only to the Reserved Word File

BAKSCN. 1

SUBROUTINE BAKSCN

Mnemonic Origin: Back up the Scan pointer.
r

} Classification:	 FFE scan untility.

Purpose: Correct for overscanning in multiple character lexical
i

items.

Operation: The Scan Buffer pointer is moved back one position to

recover from access to a character which did not belong to the

current lexical item. This short routine is coded stand-alone to

avoid proliferation of the Scan Buffer COMMON block to many places

in the Scan section of the FFE.

Cross Reference: See description of Source code Scanning in FFE

I

f' description.

r

BLDCIT, 1

SUBROUTINE BLDCIT

`	 Mnemonic Origin: Build Command Item.

Classification:	 Control Driver Command card interpretation.

Purpose: Construct the next Command item from Command card image

character information.

Operation: Upon entry, a nonempty Command card should occupy the

COMMON card image buffer. This information may have been partially

i
processed on previous calls. The pointer to the command card image

indicates the next nonblank character on the card image to use in the

construction of Command items.

The classification of the Command item is set empty to safe-

guard against malfunctions in which no item can be found. The card

characters are then extracted sequentially to construct the Command

item.

If the initial character is a special symbol, a single character
a

Command item is returned with classification "Special".

If the leading character is alphabetic, the classification of

"Alphabetic" is established; if numeric, "Numeric" classification

is assigned. In either case, characters are extracted until the next

I
blank character, special symbol, or end of card is found. If the

additional characters are not the same as the initial character, the

classification is altered to Alphanumeric.

After the Command item has been extracted, the pointer to the

first character of the Command item text is set and the pointer to

the Command card image advanced to the next nonblank character or theP-
1 end of the card.

AW

BLDCIT. 1

The Command item is returned to the calling routine with

the text character length set, Command item pointer established to

the first character, and classification set to either 'Special",

"Alphabetic", "Numeric", or "Alphanumeric".

SUBROUTINE BUFMGR

BUFMGR. 1

Mnemonic Origin: Scan Buffer Manager.

Classification:	 HE Scan service routine.

Purpose: Provide FORTRAN source code to scan routines from card

image data and catalogue source code.

-- _	 .__.Operation: The Scan Buffer Manager is the principal interpreter of

FORTRAN card format. FORTRAN text is extracted from the incoming

card images and passed to scanning routines through the Scan Buffer.

Card image data is passed one card at a time to the Scan

Buffer. As additional statement text is required, the Buffer Manager

is called to supply new card image data. Only FORTRAN statement text

is transferred, deleting continuation columns and card id fields.

Upon the first call, the card image will be empty since no

cards have been read yet. New card data is requested from the

physical I/O routine and the data is placed in the Scan Buffer. After

processing that data, the scan requests more data looking for con-

tinuation cards. If the next card is a continuation, additional card

data is placed in the Scan Buffer. If the next card is not a con-

tinuation, an end of statement code is placed in the scan buffer and

the card image held for the next "first card" request.

When card data is transferred from the card image to the Scan

Buffer, the card image is set empty, enabling the reading of additional

cards. If the card data is not-transferred, the card image buffer is

not reset, disabling additional reads.

i

BUFMGR. 2

i

i

The Buffer Manager distinguishes requests for first cards

from requests for continuation cards by examining the state of the

Scan Buffer. If the Buffer has been set empty externally, the

request is interpreted'as a first card request. If the Scan Buffer

is not empty, the request is construed as a request for continuation

cards.

Source Code Cataloguing. As source code card images are

retrieved from the Source Code Input file, the card data is passed

for recording on the Source Code Catalogue. In addition, the module

relative card pointers for individual statements are established

during the card reading. Acquiring the first card of a statement

causes the initial values of the beginning card and ending card to
i

be established for the statement node. If continuation cards are

processed, the ending card pointer is advanced.	 -j

Comment Cards. If a card image is found to be a comment card,
a

the card is catalogued but no data is transferred to the Scan Buffer.

Rather, the card image is set empty and a new card read.

Buffer Compression. Where a series of continuation cards require

more space than directly available in the Scan Buffer, the Buffer is

compressed. Used data already processed by the scan routines are re-

moved and the data entries moved up. Space is thus made available

for new card data.

Terminal Conditions. When an EOF is detected while reading a

new card, no card data is returned. Rather, the end of statement oode

is inserted in the Scan Buffer. This action is taken whether the card

requested is for a first card or a continuation card.

..

-

{

BUFMGR. 3

wx	 Summary. Upon return to the calling routine, FORTRAN card

image data is available from the next card for a statement. If the

card-is a first card, the card image (possibly empty) is returned.

i
If the card should be a continuation card, either continuation data

or an end of-statement code is returned.

Cross Reference: See Scan Operation description for FFE and data

description of Scan Buffer.

i

'A

r7^

`I

r

CBDIM. 1

SUBROUTINE CBDIM (PARAMI, PARAM2)

Mneumonic Origin: COMMON Block Dimensionality Mismatch

Classification:	 AIR Query

Purpose: Searches for corresponding COMMON Block entries not having

identical dimensions.

Operations: If PARAMI equals 420, warning flags may be produced

for primary listing. If PARAM2 equals 421, warning flags may be

produced for secondary listings.

Search for corresponding COMMON Block entries not having

identical dimensions. Define scalers of having zero dimensions.

Search through COMMON Block declaration halts after first mismatch

found.

Algorithm: See Source Code Listing.

Parameters: PARAMI - Input

PARAM2 - Input

See Also /ALI/ and "Alignment Tables

9

Y

r }

. y

I

t

i
^y

Y

CBINDS. 1

SUBROUTINE CBINDS (PARAMI, PARAM2)

Mneumonic Origin: Common Block Individual Size Mismatch

Classification:	 AIR Query

Purpose:	 Searches for corresponding COMMON Block entries not

having same size.

Operations:	 If PARAMI equals 450, warning flags may be produced

for primary listing. If PARAM2 equals 451, warning flags may be

produced for secondary listing.

Search for corresponding COMMON Block entries not having

identical sizes. Search through COMMON Block declaration halts

after first mismatch found.

Algorithm	 See Source-Code Listing.

Parameters:	 PARAMI - Input

PARAM2 - Input

See Also /ALI/ and "Alignment Tables".

W

	 SUBROUTINE CBNAME (PARAMI, PARAM2)

r
f	 ,

i
Mneumonic Origin: Common Block Name Mismatch

Classification:	 AIR Query
r

Purpose: Searches for corresponding COMMON Block entries not

r `	 having identical names.

Operations: If PARAMI equals 400 0'warning flags may be produced

for primary listing. If PARAM2 equals 401, warning flags may be

proudced for secondary listing.

Search for corresponding COMMON Block declarations not

having identical sizes. Search through COMMON Block declarationI`

halts after first mismatch found.

Algorithm: See Source Code Listing.

Parameters:	 PARAMI - Input

PARAM2 - Input

See Also /ALI/ and "Alignment Tables".

l

-	 i

^i

CBNENT. 1

"	 SUBROUTINE CBNENT (PARAMI, PARAM2)

Mneumonic Origin: COMMON Block Number of Entries Mismatch

Classification:	 AIR Query

Purpose:	 Searches for corresponding COMMON Block declarations

not having same number of entries.

Operations: If PARAM1 equals 400, warning flags may be produced for

primary listing. If PARAM2 equals 401, warning flags may be produced

for secondary listing.

Search for corresponding COMMON Block declarations not

CBTOTS. 1

SUBROUTINE CBTOTS (PARAMI, PARAM2)
t

r

Mneumonic Origin: COMMON Block Total Size Mismatch

Classification:	 AIR Query

t Purpose:	 Searches for corresponding COMMON Block declarations

not having same total size.

Operations: If PARAMI equals 460, warning flags may be produced

for primary listing. If PARAM2 equals 461, warning flags may be

produced for secondary listing.

Search for corresponding COMMON Block declarations not

having same total size.

Algorithm: See Source Code Listing.
f

Parameters: PARAMI - Input

PARAM2	 Input

See also /ALI/ and "Alignment Tables".y'
a

a

i
r

CBTYPE. 1

SUBROUTINE CBTYPE (PARAMI, PARAM2)

Mneumonic Origin: COMMON Block Type Mismatch

Classification:	 AIR Query

Purpose:	 Searches for corresponding COMMON Block entries not

having identical types.

Operations: If PARAMI equal 410, warning flags may be produced

for primary listing. If PARAM2 equals 411, warning flags may be

produced for secondary listing.

r

Search for corresponding COMMON Block entries not having

identical types.

Algorithm: See Source Code Listing.

Parameters:	 PARAMI - Input

s
PARAM2 - Input

I

See also /ALI/ and "Alignment Tables".

3
1
7

3

CDCATL. 1

SUBROUTINE	 CDCATL (CONTRL)

Mnemonic Origin:	 Card Catalogue.

k	 Classification:	 FFE physical	 I/O routine.

Purpose:	 Record Source code on the 'source Code Catalogue.

Operation:	 The resident card image of the FORTRAN Source Code

card is recorded in a sequential fashion on the source code catalogue.

The source code catalogue is a direct access file used in an

index sequential fashion.	 The card image is written on the file

unless file space is exhausted. 	 The write process automatically
4

a

advances the pointer to the file.

Parameters:	 The parameter to CDCATL is not actually used to control

activities.	 Only the value of O is used in calls to CDCATL.

z

t

3

4	 .i 4'

A

r

CDPRIN. 1

SUBROUTINE CDPRIN (CONTRA,)

Mnemonic Origin: Card Print.

Classification:	 FFE maintenance routine.

Pur ose: Provide card printing capability when maintaining or

checking the HE operation.

Operation: CDPRIN permits the printing of source code images as

they are processed by the FFE. The lising includes both the state-

ment number'and module relative card number alongside the source code

image.

CDPRIN is activated by setting the FFE maintenance variable

PRTSRC in COMMON block FFEOPT to the value 1.

The parameter to CDPRIN controls whether the call will result

in a source code image print or page restoration print. Page

restoration is performed at module boundaries when maintenance.printing

is active. Card image printing is requested when card images are read

and catalogued by the BUFMGR routine.

Parameter: CONTRL - determines whether page restoration or card image

print should be performed,

.t	 l

r

P

CDREAD. 1
f

a

SUBROUTINE	 CDREAD (ENDFIL)

f

Mnemonic Origin:	 Card Read

Classification:	 HE physical	 1/0 routine

a Purpose:	 Provide physical	 input from Source Code Input file.

Operation:	 CDREAD reads input source code from the Source Code Input

i file until an end of file is detected.	 Card images are placed in

the COMMON card image buffer and the nonempty pointer set to the end

i
of the card.	 The current column pointer is set to the first card

column.

ii
If a read is requested while the card image is still occupied,

no physical read occurs. 	 The nonexhausted card image is returned for

processing.

c If an end of file is detected while reading a card image, the

EOF condition is reported to the calling routine through parameter__

value and recorded in the File descriptor COMMON block. 	 The card-
i

image is set empty.	 No further reads will be made until the EOF in-

dicator is reset externally;	 any subsequent requests will return EOF/

empty card results.

With each physical read, the current card count is advanced._

The current card count is used to establish card to statement correla-

i

tion and source code catalogue entry values.

` Parameter:' ENDIL	 -	 logical output flag to calling routine that EOF

condition was encountered on the read or an EOF
i

condition was pending when the read was requested.

CDREAD. 2

Designer's Comments:- The avoidance of reads into nonempty buffers

was a protective strategy. This feature is not used in the system

and will be removed in future versions.

4

r

a

I

1

9

t

x

i	

777

eF All

1

y,

CHGCLS. 1

9

*f 1Y
	

SUBROUTINE CHGCLS (NECLS)

Mnemonic Origin: Change Class.

Classification:	 FFE table recording routine.

Purpose: Change the class of a symbol to another class.

Operation: Upon entry, the symbol* table is positioned to a symbol
ra

for which a change of class is required. 	 The new class code pre-

sented by parameter is inserted into the symbol's class code.

Parameters: NEVICLS - class code to substitute for current class

code of symbol.

Designer's Note: CHGCLS is an interim processing routine used to

accomplish class changes before the symbol ambiguity process

was crystallized. Class changes will be moved to the ambiguity

process in future versions (see AMBSYM).

u

d	
^

,J

CLRLTB. 1

SUBROUTINE CLRLTB

Mnemonic Origin: Clear Local Tables.
r	

Classification:	 FFE process preparation routine.

Pur'ose: Clear contents of local tables.

Operation: Local tables for a module are cleared and set empty.
i

The table contents are reset to zero values in all postions.

Pointers to last entries are set empty (value zero).
I-

Designer's Note: Currently, the full length of all tables are reset
L	

_

to zero value. Future versions may clear only the used areas

9

-

a
i

1

CLRMTB. I

^I	 SUBROUTINE CLRMTB
Y

Mnemonic Origin: Clear Module Tables.

Classification:	 FFE processing preparation routine.

Purpose: Reset module processing tables used by the HE to

analyze a module.

Operation: Processing vectors and tables unique to the HE are

reset prior to processing a module. Simple recording vectors and

tables are reset to zero value. The typing vector for*FORTRAN

variable names is reset to default typing. Temporary name genera-

tion is reset.

i
a

^ 3
l^	 3

A

CHFECH.	 1
a

' +r	 INTEGER FUNCTION	 CHFECH (ARRAY,.LNG, CHNUM)

Mnemonic Origin:	 Character Fetch.

Classification:	 FFE character manipulating utility.

Purpose:	 Extract a single character from a packed vector of

A4 character data.

4	 Operation:	 CHFECH is provided with a vector containing characters

packed in A4 format.	 A particular character is desired from this

r	 array.	 The character Js extracted left justified with zero right

file.	 Blank right fill is inserted to convert the character to Al

format.

If the character specification is inconsistent with the array

presented, an error is reported and the value zero returned.

Parameters:	 ARRAY	 -	 Vector containing data packed in A4 format.

LNG	 -	 Length of vector passed containing packed

characters.

CHNUM	 -	 Character number to extract from packed data.
a

Social Note:	 Dimensionality of the input packed data is not

bi

significant if the vector passed is of unit length.	 A scalar

word or multidimensional array can be treated by CHFECH provided

the length is indicated to be 1 and character number in the

bound of 1 to 4.

t
CMDEND. 1

p	 SUBROUTINE CMDEND

Mnemonic Origin: Command End.

Classification:	 Control Driver Command Card interpretation.

Purpose: Affirmative acknowledgement that a Command card has

been interpreted.

Operation: Upon entry, a Command card has been fully processed 	 a

by the interpretation routine. The card may contain extraneous

information or may be an unrecognizable command.

To flush this information, calls are issued requesting Command

items until an end of card classification is found. The end of card

is acknowledged by setting the Command item empty.

CMDEND provides a single synchronizing point for Command

processing on the variable format Command cards.

a
1

1
v

a

p
p̂

•	 ii

i

J

;i

^:b

's

i

COMBAL. 1

SUBROUTINE COMBAL (ARRAY, ARRSIZ)

Mneumonic Origin: Common Block Alignment Check

Classification:	 AIR Query Driver and AIR Query

Purpose:	 Drives COMMON Block Alignment Check and searches for COMMON

Blocks appearing in only one module.

Operations: All Information necessary for COMMON Block Alignment

Check is placed in Alignment Tables. Warning flags for COMMON

Blocks appearing in only one module may be produced for primary

listing only. Array ARRAY has ARRSIZ entries; each entry

specifies which COMMON Block Alignment Check is to be performed

and whether warning flags may be produced for primary or secondary

listings.

Algorithm: See Source Code Listing

Parameters: ARRAY	 Input

ARRSIZ - Input

S	 l	 Al 	 d 11A14gnmen
.	

t T blee a so / / an 	 a es .

i

1

f

^ r

At k

COMBAL

L-^ D	 '
CONALC 	 CBDIM CEED CBNAME GiD GED GED

CONVRT

Common Block Alignment Check,
CO3
ao
a

excluding General Purpose Utilities	
r

N

J

3

COMPRS. 1

SUBROUTINE COMPRS (NEED)

Mnemonic Origin: Compress the Scan Buffer.

Classification: FFE Scan support routine.

Purpose: Provide data space in the Scan Buffer by deleting

used character data.

Operation: Upon entry to COMPRS, the Scan Buffer is occupied with

r	 card image data from a single statement of FORTRAN text. To complete

the statement, additional text must be inserted in the Scan Buffer,

I	
but insufficient room remains.

Scan Buffer space is made available by deleting used data from

the Scan Buffer and compressing unused data to the top of the array.

fY	 The reserve pointer on the Scan buffer indicates the boundary between

used and unused data.

If the used data space is insufficient to accommodate the new --

data, unused data is discarded as an emergency measure and an anomaly

is reported. For protection, the smaller value of the reserve pointer

and current pointer to the Scan Buffer is used to establish the dele-

tion region.	 J;

After the unused data has been adjusted to the top of the Scan

Buffer, the pointers are adjusted to point to the same data items 	
4

they addressed upon entry.

Upon return from COMPRS, the required data space has been created

in the Scan Buffer.

Parameters: NEED	 Indicates how many Scan Buffer positions are

I^	 required to accommodate new data.

r - a.,..-T 	 r	 r

CONALC. 1

SUBROUTINE CONAL,C(TAB, OVFLAG, ERFLAG)

,Mnemonic Origin: Construct Alignment Tables for Common Block

Alignment Check

Classification:	 AIR Special Purpose Utility

(Referenced only during COMMON Block Al,ignment

Check).

Purpose:	 Places COMMON Block description in Alignment Table TAB

for COMMON Block Alignment Check.

Operations:	 Place all salient information concerning COMMON Block

named in array NAME (see /ALINFO/) in Alignment TableTAB (TAB

equals one or two). If the Alignment Table TAB overflows, set over-

flow flag OVFLAG to one. If unrecoverable error occurs, set error

flag ERFLAG to one.

Algorithm:	 See Source Code Listing.

Parameters:	 TAB	 Input

OVFLAG - Output

ERFLAG - Output

See also "Alignment Tables" and /ALI/.

CONALP-	 1
Y

SUBROUTINE CONALP (PBEGIN, TAB, FSTAT, LSTAT, OVFLAG, ERFLAG)

Mnemonic Origin: Construct Alignment Table for Parameter List 	 y

Alignment Check

Classification: AIR Special Purpose Utility

(referenced only during Parameter List Alignment

Check).

Purpose: Places Parameter List description in Alignment Table TAB

for Parameter List Alignment Check.

Operations: Place all salient information concerning parameter

list indicated by PBEGIN (which points to USE Table) in Alignment

Table TAB (TAB equals one or two). FSTAT and LSTAT are set to

location of first and last card respectively in which statement

containing parameter list resides. If Alignment_ Table TAB over-

flows, overflow flag OVFLAG is set to one. If unrecoverable

error occurs, error flag ERFLAG is set to one.

Algorithm:	 See Source Code Listing.

Parameters: TAB	 - Input

PBEGIN - Input

,FSTAT - Output

I
	

LSTAT - Output

OVFLAG - Output

ERFLAG	 Output

See also "Alignment Tables", /ALINFO/, and /ALI/.

R,

i

i

CONCOM. I

SUBROUTINE CONCOM

Mneumonic Origin: Construct COMMON Block Reference Tables

Classification:	 AIR Request Routine

Purpose:	 Construct COMMON Block Name Table and Linked List Table

Operation:	 Algorithm: See Source Code Listing

Update Global Header to reflect actual nonempty size of
each table.

!	 See also "COMMON Block Reference Tables

^;	 r

1

l
I,

f
i

CONISH. I

Al

SUBROUTINE CONISH

Mneumonic Origin: Construct Inverse System Hierarchy Tables

Classification:	 AIR System Request Routine

Purpose:	 Construct Inverse System Hierarchy Table and Inverse

Systee Hierarchy to Directory Table.

Operations: Inverse System Hierarchy Tables are derived directly

from System Hierarchy Tables. Update Global Header to reflect actual

nonempty size of each table.

See also "Inverse System Hierarchy Tables".

i

b

i
....,4

7

r

1

1

CONSH. 1

SUBROUTINE CONSH

Mneumonic Origin: Construct System Hierarchy Tables

Classification:	 AIR System Request Routine

Purpose:	 Construct System Hierarchy Table and System Hierarchy

to Directory Table

Operations:	 Algorithm: See Source Code Listing

Update Global header to reflect actual nonempty size of
each table.

See also "System Hierarchy Tables

i

CONVER. 1

INTEGER FUNCTION CONVER (ARRAY, COUNT)

Mnemonic Origin: Convert from alphabetic to numeric value.

Classification:	 System utility.

Purpose: Convert a decimal integer value represented as a vector

of single digits to a positive integer.

Operation: CONVER is passed an array (vector) containing decimal

digits in Al format. This number is to be converted to an integer

value.

For protection, leading characters which are not decimal digits,

are skipped if they are present in the vector. Remaining digits

are converted to a decimal equivalent until either the number of

positions have been spanned or a nondecimal character , is encountered.

Parameters: ARRAY - one dimensional vector containing decimal

digit characters in Al format.

COUNT - indicator of the number of digits contained

in the vector (i.e., the number of array

positions to consider in the conversion).

CONVER - the integer value converted is returned

through the function name.

FUNCTION CONVRT(WORD1, WORD2 }

Mnemonic Ori g in 	 Convert Character , String into Integer
i

Classification:	 AIR Special Purpose Utility

(Referenced only during COMMON Block Alignment check.)	 J

Purpose:	 Convert character string of numbers into decimal value.

Operations:	 CONVRT is set to the integer value of the character

string stored in WORDI and WORD2, four characters per word, left

adjusted, blank filled. Non-numeric characters in the character

string are ignored.

Algorithm: See Source Code Listing

Parameters:	 WORD1 - Input
i

WORD2 - Input

CONVRT - Output

CYCALL. 1

f

j

i

I

i

y,

^ r

It

SUBROUTINE CYCALL

Mneumatic Origin:

Classification:

Purpose: Searches

Operations: Syst

calling sequences.

Algorithm:

Cyclic Call

AIR Query

for cyclic calling sequences.

em Hierarchy tables are examined for cyclic

Warning flags produced for display listing only.

See Source Code Listing.

See also /TRA/ and "Trace Stack"

a

}

I	 ..

r,k

DATVAR. 1
X

SUBROUTINE DATVAR

I '	 Mneumonic Origin: DATA Statements containi.ng COMMON Variables

Classification:	 AIR Query

Purpose:	 Search for DATA statements not in BLOCK DATA containing

COMMON Block variables.

Operations : . Warning flags produced for primary listing only.

Algorithm: See Source Code Listing.

-	 i

j

a
t

I

:

5

i

1

r'

D

1

f

4

1

^	 3

SUBROUTINE DEL(LIST)

nemonii ,c Ori g in: Delete List

Classification:	 AIR General Purpose Utility

Purpose:	 Delete list and all succeeding lists from List Table and

List Table Map.

Operation: Delete list number LIST and all succeeding lists from

List Table and List Table Map. This conserves space.

Parameters:	 LIST INPUT

_	
11

DELISS. 1

SUBROUTINE DELISS (FROM, TO)

Mnemonic Origin: Delete entries from Intermediate Symbol String.

Classification: HE processing utility.

Purpose: Delete indicated entries from the Intermediate Symbol

String, compressing remaining entries in the process.

Operation Upon entry, a span of entries in the Intermediate Symbol

Table are to be removed. Parameters indicate the bounds of this de-

letion. Entries are deleted by moving entries below the deletion

f	 region (if any) upward and adjusting pointers to the reduced list.

As error protection, if the current pointer to ISS entries

is found in the deletion area, the pointer is moved to the end of the

r°	
deletion area. If this would be outside the valid ISS entries, the

pointer is positioned at the end of the new ISS list.

If the boundary pointers are crossed (i.e., FROM greater than

TO), no deletion occurs.

Note that in addition to adjustment to the current ISS pointer

and last nonempty pointer, the zero level equal sign pointer is ad-

justed if necessary.

Parameters	 FROM - the first ISS entry to be deleted.

TO	 the last ISS entry to be deleted.

4	

^	 ..swat	 ,.	 --

F,r

DELPTB. 1

SUBROUTINE DELPTB (FROM, T0 9 SPACE)

Mnemonic Origin: Delete entries from Parsing Tables.

Classification: FFE processing utility

Purpose Delete entries from parsing tables to make room for

replacement entries.

Operation: The parameters passed indicate Parsing Table positions

(ISS and TSTAB) entries to be removed in terms of ISS table positions.

These entries may be simply removed or replaced with another entry.

If replacement is to be performed, the number of vacant table

positions to reserve is indicated.

To accomplish the deletion, the boundary elements of ISS

and TSTAB are computed. Since Temporary Symbols are associated

only with operand entries in ISS, the last TSTAB entry must be

examined; if the last ISS entry is an operand, the boundary TSTAB

entry is to be deleted; otherwise, the boundary TSTAB entry belongs

to another ISS entry and should be kept.

Once the boundaries of deletion have been established, ISS

and TSTAB are individually reduced, adjusting pointers for the

r

reduced list. If the current pointers to ISS and TSTAB are found

in the area to be deleted, a system error is reported and the

pointers are moved to the area most likely to be desired.

The most likely area is guessed from the space requirement.

s, If space is to be reserved, the pointers are positioned to the

DELPTB. 2

,

replacement point. If no space is requested, the pointers are

N
positioned to the entry following the deleted area or the

end of the reduced list.

Parameters: FROM - First ISS entry in deletion area

' TO - Last ISS entry in deletion area

;^. SPACE - Table entries to reserve for replacement entries.
{

l

.c

9

t	
^

7 ,"1

DELTST. 1

SUBROUTINE DELTST (FROM, TO)

Mnemonic Origin: Delete entries from Temporary Symbol Table.
4	 ,

Classification:	 FFE processing utility

Purpose: Remove entries from the Temporary Symbol Table.

Operation: The provided parameters identify an area of the Temporary

Symbol Table to be removed. The indicated entries are deleted by

adjusting other entries into the vacant space and adjusting pointers.

Only the main Temporary Symbol Table entries are affected by

the deletion. If an entry has an overflow component, the pointers to

the overflow element are deleted, but the overflow table is not

affected. Overflow table space is not recovered.

Parameters: FROM - First Temporary Symbol Table entry to delete.

TO	 - Last Temporary Symbol Table entry to delete.

1

i^

DETFA. I

SUBROUTINE	 DETFA (NAMI, NAM2, CLASS)

tr'

rr; Mnemonic Origin:	 Determine function or array.

Classification:	 HE parsing support routine.

Purpose:	 Distinguish function names from array references.

Operation:	 A symbolic name is provided which is either a function

"r or an array.	 The name may be either an external function or statement

function;	 different return codes are required for these two cases.

k:
The determination is made by searching the Symbol Table. If the

name is not presently recorded-in the Symbol Table, the name is an

external function reference.	 If the name appears in the Symbol Table,

the the class is examined. 	 If the name is not recorded as an array,

the reference is a function;	 ol.-"erwise, the name is an array.

Note that the name may be recorded as a scalar variable (e.g.,
f

an entry in a type statement) on the first reference to the function.

In addition, the same character string could be present as a COMMON 	 y

block label or subroutine name.	 3

Parameters:	 NAM]
NAM2 ^	

Symbolic name of function or array in 2A4

format

CLASS	 -	 Class code to return indicating either an

array, function or statement function.

Af

DIGIT. I

'*4 AW

	 LOGICAL FUNCTION DIGIT (CHAR)

1	 Mnemonic Origin: Determine if character is a decimal digit.

i	 Classification:	 System utility.

Purpose: Determine if the symbol presented is a decimal digit.
t

Peration: The presented symbol is examined to determine if it is 	 r

a decimal digit.

Since the symbol is in Al format, the routine is machine

dependent upon the character set of the host machine. Care must be

4

taken to avoid comparison between positive and negative valued inte-

gers in A format. If the comparison is implemented as a subtraction

operation, overflow could result.

Parameters: CHAR - character in Al format to consider as a

decimal digit.
i

DIGIT - investigation. results are returned through the

function name.

i

j

1.	 _

t

r'

DISFLG. 1

I

SUBROUTINE DISFLG

Mnemonic Origin: Display Flag

' Classification:	 Report Generator report processor

Purpose:	 Produce reports constructed solely from Flag data.

Operation:	 Upon entry, a message has been detected which is

generated solely from data obtained in messages..

The .printer is advanced to start the 'report and the report

header line printed. The flag number of the message is examined

to determine if a valid Display Report has been requested.

The report is then produced.

Note that Display Reports may require more data than can

be accommodated in a single message unit. Therefore, the Display

Report must retrieve new messages until all data has been processed.

Data is complete when a message is received which differs from the

current report description.

The only report currently using display format is the

cyclic calling hazard report. Routine operation is keyed to this

single type. Expansivn will require recoding this routine.

Upon exit, the Display Report has been processed and the

message buffer is occupied by the first message of the next report.

Special Notes. If the Display'Report requires multiple message

buffers, redundant message suppression will not operate.

Display format analysis routines should not issue redundant

information each copy will produce a new report in this

event.

3

:
DMPAIR. 1

SUBROUTINE DMPAIR

Mnemonic Origin: Dump AIR

Classification:	 AIR General Purpose Utility

Purpose:	 Used as aid in debugging of AIP. subsystem.

Operation:	 Prints

---	 1. List Table Map and List Table

2. Control Stack

3. Special Purpose Registers
k	 .

See also List Table and List Table Map, Control Stack,

and /SPEREG/

i

i

I

a

M

DMPCOM. 1

SUBROUTINE DMPCOM

Mnemonic Origin: Dump COMMON Block Reference Tables

Classification:	 A;!R General. Purpose Utility

Purpose:	 Used as aid in debugging of AIR subsystem.

Operation:	 Prints COMMON Block Reference Tables (COMMON Block

Name Table and Linked List Table).

I

n

t

i

OMPDIR. 1

SUBROUTINE DMPDIR

Mnemonic Origin: Printer dump of Directory contents.

Classification:	 Maintenance utility._

Purpose: Display the contents of the Directory on a printed display.

Operation: The contents of the Directory and pointers to the

Directory entries are dis.:layed in a p , Inted form. The display pro-

cess interprets the structure of the Directory. Indices of Directory

entries are displayed to simplify interpretation of the display.

Table and pointer values are not affected by the display process.

DMPNOD. 1

r

4	
SUBROUTINE DMPNOD

Mnemonic Or igi n: Printer dump of Node Table contents.
4

'Classification:	 Maintenance utility.

Purpose: Display of the contents of the Node Table.
L

Operation: The contents of the Node Table are displayed on the

-t.	 printer. The display includes current pointer values as well as

contents of the table. Table and pointer values are not affected

by the display process.

The structure of the Node Table is interpreted to produce the

display. If Nodes have established Successors and/or Predecessors

at the time the dump is performed, the Successor and Predecessor
r

-	

Table contents are displayed with entries attached to the appropriate

nodes.

i

9

`^ a

s	 _

DMPPTB.1

Iy:

i SUBROUTINE DMPPTB

{

^.

Mnemonic Origin:	 Printer dump of Parsing Tables.

t
r

Classification:	 Maintenance Utility.

Purpose:	 Display contents of the Parsing Tables (ISS and TSTAB) in

a printer display.

y Operation:	 The contents of the Intermediate Symbol String (ISS) and

i Temporary Symbol Table (TSTAB) are displayed on the print'file. 	 In

addition to the printed contents of the table, the-current pointer

values are printed.	 Indices of entries are printed alongside the entry 	
1

. contents..	 Table and pointer values are not affected by the display

I
process.

The display is constructed for ease of interpretation. 	 Since

not all	 ISS entries have TSTAB entries, each print line may not have

TSTAB contents displayed. 	 Where ISS entries have TSTAB entries

associated, the TSTAB contents are displayed on the same line.

TSTAB contents may be directly in the main table entry or

located in the TSTAB overflow table. 	 Main entries are printed directly

in A format;	 overflow entries are printed with pointer/counter values_

extracted followed by the overflow character string.

As a visual aid, the symbol ** is placed alongside the current

pointer entries of both TSTAB and ISS value entries.

SUBROUTINE DMPSHT

i

Mnemonic Origin: Dump System Hierarchy Tables

Classification:	 AIR General Purpose Utility

Purpose:	 Used as aid in debugging of AIR subsystem.

Operations:	 Prints

1. System Hierarchy Tables

2. Inverse System Hierarchy Tables.

h	 -

j
A

1

3

3]

9
3q

9

3j

1

i

i

i

I

DMPSYM, 1

SUBROUTINE DMPSYM

Mnemonic Origin: Printer dump of Symbol Table.

Classification:	 Maintenance Utility.

Purpose: Display the contents of the Symbol Table on the Printer.

Operation: Since the Symbol Table is a hash coded structure, not

all entries contain data. Only entries containing nonempty data

are displayed. Additionally, the pointers to the Symbol Table are

displayed with the table contents.

Where Symbol Table entries are oversized (i.e., require over-

flow entries), the pointers to the overflow table are printed and the

contents of the addressed overflow entries are displayed.

Symbol Table format is interpreted to extract the contents.

Table and pointer contents are not affected by the display process..

^

I
I

R

r d

DMPTRP. 1

°	 SUBROUTINE DMPTRP

Mnemonic Origin: Printer dump of Transition Pairs Table (TRIP).

Classification:	 Maintenance Utility.
4

' Purpose: The contents of the TRIP table are extracted and displayed

along with the values of pointers to the table. Extraction requires

the interpretation of table construction. Table and pointer values
Y'

are not affected by the display prc::ess.

Flags on the Predecessor entry are separated from the Pre-

decessor specification prior to printing.

DMPUSE. 1

SUBROUTINE DMPUSE

Mnemonic Origin: Printer dump of Use Table contents.

Classification:	 Maintenance routine.

r
Purpose: Display the contents of the Use Table on the printer. 	 }

Operation: The contents of the Use Table are displayed along with

the pointer values at the time the print occurred. Pointer and

 '	 table contents are not affected by the display procedure.

The Use Table structure is interpreted for the display. Since

the Use Table entries contain link lists back to Symbol Table entries,

the links are traced to provide a more readable output format. In

addition, where nay statements begin, a line is skipped to group the

uses of one statement in the display.

n4

4.

f
C

e

DOTERM. 1

SUBROUTINE DOTERM (ARRAY, ARRSIZ)

Mneumonic Origin: DO Loop Index used after Loop Terminated

Normally

Classification	 AIR Query

Purpose:	 Searches for DO loop index variable used after loop
r

has terminated normally,

Operations: Array ARRAY has ARRSIZ entries which indicate whether

warning flags may be produced for primary or secondary listings.

4	 All paths from end of DO loop to use of DO loop index

variable are examined. Program boundaries are not crossed. It

is assumed all parameters receive values on other side of program

f.	
boundary.

Algorithm: See Source Code Listing. 	 a

Codes	 See Source Code Listing.
i

y

See also /PAT/ and PATHS•

i
a

I

f

i
i

f

l

}	 r

Do loop index variable used after loop terminated normally,

excluding General Purpose Utilities.

v0
m
3

t*T

J

ENDOFD. 1

SUBROUTINE ENDOFD (FILE, POINT, EOFVAR)

r

Mnemonic Origin: End of Data.

Classification:	 Control Driver file positioning routine.

Purpose: Move a sequential file to the end of current data.

Operation: A sequential file description is provided by parameters.

r
The file contains (possibly empty) data followed by an end of file

mark. This routine is to position the file to the end of file mark

so that subsequent data can be appended to the file. 	 R

For operat',onal purposes, ENDOFD assumes the file pointer may

not be accurate since not all sequential files use the pointer.

Additional protection is the initial backspace for the possible

position of the file already on the EOF mark. If the pointer is

accurate, ENDOFD will update the file pointer in an accurate fashion;

otherwise, accuracy of the pointer will not be significant to the

.calling routine.

Q
After the file is' backspaced, sequential reads are performed

until the end of file is detected. With each read, the pointer is a
X

advanced. When the end of file is detected, the file is backspaced
i

to position the file on top of the file mark, and the pointer is re-

duced by one to compensate for the backspace operation.

Finally, the end of file variable is reset to indicate the EOF

has not yet been.reached.(Note: one additional read will cause the

EOF to occur.)

ENDOFD. 2

Parameters: FILE	 - I/O unit number of sequential file.

POINT	 - File pointer associated with the sequential

file.

EOFVAR - Variable associated with the sequential file

used to record the EOF event.

Designer's Note: Care must be taken that sequential files do in

fact contain an EOF mark. FACES is careful to mark all se-

quential files created, however, errors in the users request

may result in unmanipulated files being passed to later pro-

cesses. On some host machines, this will result in the ,job

being aborted from a react attempt that exhausts the file space.

L	 ._

EQUIVL. 1

F

SUBROUTINE EQUIVL(LISTNO , * OVERFL)

' nemon'c'Oriain: EQUIVALENCE List Construction

Classification:	 AIR General Purpose Utility

Purpose:	 Places all names EQUIVALENCED to specified variable into

list.

w-- •'	 Operation: Algorithm: See Source Code Listing.

Parameters:	 LISTNO - INPUT

OVERFL - INPUT

Set LISTNO to first available list in List Table Map. If

variable indicated by top of Control Stack is in EQUIVALENCE list,

place all members of EQUIVALENCE list into list in List Table. If
t

insufficient room in List Table Map or list Table, set overflow

flag OVERFL to indicate overflow. 1
3

Limitations: If variable in question is array and array elements

occur in multiple EQUIVALENCE lists, only one EQUIVALENCE

list is assumed to reference array.

I	 Mnemonic Origin: Error Halt

`	 'Classification:	 AIR General Purpose Utility

Pur
p
ose:	 Closes files which can be saved when.AIR subsystem

commits unrecoverable error.

t	
Operations:	 Close Flag File. Print message, Halt. 	 4

i

g

a

FAEXP. 1

SUBROUTINE FAEXP (USE000, PARENS, INTYP)

Mnemonic Origin: FORTRAN Arithmetic Expression.

Classification:	 HE Parsing support routine.

Purpose: Process arithmetic expressions in FORTRAN statements.

Operation: Upon entry, the Parsing Tables are positioned to the first

element of an arithmetic expression. The expression is processed

recording operand elements with Uses indicated by parameter. As a

result of the processing, new symbolic operands are inserted in the

Symbol Table; Use references to existing symbols are extended.

The primary complication to arithmetic expression processing

is the recursive requirement presented by possible expressions as

subscript references or function actual parameters. Additionally,

functions are a problem since they represent calls being made to other

routines or references to statement function definitions within the

same routine. For the entry order in the Use Table to be consistent

with the reference order of compiled code, the computation of sub-

script/parameter expressions and calls to functions should preceed

the reference-to arrays and Use of the function result.

The arithmetic expression is processed as a simple arithmetic

expression up to the first subscripted array reference or function

call. The subscript list or parameter list is then processed. If

the operand is a function, the table entries corresponding to a function

reference are generated before returnfrom the reduction process.

Upon return from the reduction process, the subscript list of

arrays are simple operands. The array reference is processed individually

FAEXP. 2

rather than by the simple expression process. Use of the simple sub-

expression processing support routine would not permit return on the

next array reference; the routine would simply continue processing

other expression elements possibly producing faulty results.

After treating the array or function, control continues to pro-

cess a simple arithmetic expression. Processing continues until a

symbol other than an arithmetic operation, operand, or organizing

parenthesis is found.

Typing: The typing of the expression is accumulated as processing

progresses. The initial type is provided by the calling routine. this

parameter is updated as the expression is processed.

Parenthesis Counts. To distinguish organizing parenthesis within

the expression from an unbalanced right parenthesis, a count is main-

tained. For sharing the AEXP routine, the count is physically main=

tained in the calling routine. This permits interruption of arithmetic

expression processing and resumption at a later time.

Cross Reference: See description of arithmetic expression processing

in HE operation description.

Parameters: USECOD - Use code to assign to each member of the

arithmetic expression.

PARENS	 Parenthesis count for the arithmetic expression

INTYP - Initial type code for arithmetic expression

updated as expression is processed.

ir	
FASS, 1

SUBROUTINE FASS

Mnemonic Or_ igin: FORTRAN Assign Statement.

Classification:	 HE Statement Processor.

Purpose: Process ASSIGN statements.

Operation: Most of the effort in processing the ASSIGN statement

is the separation of character strings.- The blind scan process runs

all characters of the ASSIGN statement into a continuous string.

These characters must be separated into components of label, character

string T0; and variable name.

Character separation is accomplished by copying the text to a

local one dimensional array, then extracting characters to detect the

end of the statement label and characters of the variable name..

FASGMT. 1

SUBROUTINE FASGMT

Mnemonic Origin: FORTRAN Assignment Statement.

Classification:	 FFE Statement processor.

Purpose: Control the processing of Assignrrent'statements.

Operation: Upon entry, the Parsing tables are positioned to the

first element (assignment variable) of an Assignment statement. The

statement may be a simple assignment or the conditional statement of

t	 an IF statement.

For the Use table entries to appear in a sequence compatable

with the compiled operation, the expression on the right of the equal

sign is processed first. To this end, the Parsing Tables are first

positioned to the element following the equal sign.. The expression

on the right of the equal sign is processed assigning use codes of

"input to an assignment statement".

Upon return from the expression process, the Parsing Tables are

positioned to the end of the expression or to an error position found

in the expression process.

The Parsing Tables are moved back to the assignment variable,

At the end of processing,.the Parsing Tables are moved

once again to the end of the expression and the process terminates.

Special Conditions. In processing the assignment variable, the

Parsing Tables may require reduction to process subscript expressions

of array references. This reduction will affect the ISS position

recorded for the end of the expression. To sense this movement, the

shift in zero level equal sign is used as an adjustment. The equal

sign shift will be of the same amount as the end of the statement.

1
_	 1

k
FASGMT. 2

Note that if the statement is aborted by a badly formed

expression, processing still returns to process the assigned

variable specification. After processing the assignment, the Parsing

Tables are restored to the aborted position and processing terminates.

Alk

3

R	
1

7

1

9

a

i
f

W

#R4}IC 	 7RiYiPil.l+ctiF.^+r sws.x

FBRLST. 1

SUBROUTINE FBRLST
NX

Mnemonic Origin: FORTRAN branch list.

'	 Classification: FFE parsing support routine.

Purpose: Process a series of branch specifications separated by

commas and terminated by a noncomma.

Operation: Upon entry, the Parsing Tables are positioned to a series

of branch specifications {possibly of length one). Each specification

is separated by a comma. The list is terminated by a noncomma.

Each branch specification is either a transfer label or an un-

subscripted variable which has been set by an assign statement. The

branch specifications are extracted and recorded in the use table.

The transitions are recorded in the transition pairs table.

i

A^

FCALL. 1

Y SUBROUTINE	 HALL

Mnemonic Origin:	 FORTRAN! CALL statement.
r

Classification:	 FFE statement processing routine.

Purpose:	 Process CALLS to subroutine.
a

Operation:	 Upon entry, the Parsing Tables are positioned to a

-°~ CALL to a subroutine. 	 The subroutine name must be separated from

the characters CALL.	 If a parameter list is present, the list is

reduced to simple operands and arrays with simple subscripts by

processing out expressions and function calls appearing as actual

parameters and array subscripts.
l

Use table entries are recorded for the subroutine reference and

a transition recorded in the transition pairs table for the external

reference. 	 The parameter list, if present, is recorded as a list of

Uses attached to the subroutine name.

-

1

i

a

I
-

ti

I

NMI-

FCOMAL. 1

SUBROUTINE FCOMAL (USECOD, FTYP, FCLS, LSTPRO)

r

Mnemonic Origin: FORTRAN Comma List processor.

Classification: FFE parsing utility.

Purpose: Process FORTRAN comma separated operands which reference
F

program variables and constants. r

Operation: FCOMAL is a central processing routine for the FFE servicing

many subconstructions in the system. FCOMAL is used for almost all

comma-separated forms of lists.
1
3

Design Considerations. In FORTRAN, there are many forms of

constants and/or variables separated by commas. The members of these

i	 lusts normally have a uniform meaning. For example, type statements

have a series of variables separated by commas following the type speci-

fication; all these variables are assigned the same type.

}	 Other comma list forms are uniform up to a break point.. For

example, in the type declaration statement, the variables may be simple

names. Occasionally, an array declaration appears. Similarly, in

DATA statements, both the variable list and the data constant lists are

comma-separated forms. In the variable list, an array element may

be specified by an explicit subscript; in the constant list, a repeat

specification may be present.

FCOMAL is designed to process all list element forms until a

break is detected. The break is a deviation from the form "operand,'",

i
When the break is detected, control is returned to the calling routine

for interpretation. For example, when the * form "operand*" is found

in a data constant list, control is returned to the calling routine
OV,

r

y	'
1

t

......	

FCOMAL. 2

for interpretation. Similarly, if an (is found in an I/O list,

ffi	
control is returned.

The calling routine controls action at the breakpoint. By para-

meter, DCOMAL is informed if the last operand of the break is to be

processed. For example, in an I/O list, if the form "name(" is found,
r

the name is still an I/O variable, so the calling routine would request
the name be processed before returning. If the form "(" is found in

the comma list without a preceeding name, permission to process the last

operand would have not effect-- the break did not occur on an operand.

On the other hand, when pro>,:essing the constant list of a DATA

statement, the appearance of "operand*" would require different action.

The operand is a repeat specification, not a data value assignment.

In this case, the calling routine would request the operand not be
i

processed at breakpoints. The operand is returned for treatment in

the calling routine.

Operational Sequence. To accommodate superficial differences

in constructionsermitted, FCOMAL will permit a leading comma toP	 P	 g

begin the list	 This simplifies the housekeeping activities in the

passe. If a leading comma appears, it is discarded.

From that point, operands are processed so long as the pattern.

$'operand," is found. When either the operand or comma fails to appear,

the break has occurred. If the break occurs on an operand entry, the

calling routine control option dictates whether the operand is to be

processed.

All processed operands are recorded with use, type, and class

under the calling routine's control. The calling routine may default

the type and class to values implied by the ISS code or force a

5
n

t'

f COMAL . 3

particular type and/or class on list members.

At the end of processing, the Parsing Tables are positioned

to the last unprocessed ISS entry.

Parameters: USECOD 	 use code to assign to list members.

FTYP	 - type code specification provided for assign-

ment to lift members.

FCLS	 - class specification provided for assignment

to list members.

LSTPRO	 indicator as to whether the last operand of

the list is to be processed at the breakpoint.

FCOMON. 1

r

SUBROUTINE FCOMON

Mnemonic Origin: FORTRAN COMMON statement._

Classification:	 HE statement processor.

Purpose: Process FORTRAN COMMON statemen' s.

Operation: The processing of COMMON statements is complicated by

the blind scan run-on of character strings. If implied blank COMMON

is referenced, the character string of the first variable name will

be run on with the characters COMMON.
a

To determine if this has occurred, the character position

following COMMON is examined; if it contains a blank, there is no

"hidden variable".

If blank COMMON is referenced, the first variable name is ex-

tracted and replaces the Parsing Table entry to normalize the variable

representation as a series of variable names separated by commas. The

list of variables assigned to blank COMMON is then processed-until the
a

end of statement or next COMMON label is encountered.

Of implied blank COMMON is not referenced, then control passes

immediately to the series of explicit label COMMON specifications.
1

COMMON labels (including the form // indicating explicit blank COMMON)

are processed. The label is recorded and the variable list. This

process is repeated until no more COMMON block specifications are

found in the statement.

Designer's Comments: A methodology was initially sought for combining

the processing of implied blank COMMON with explicit labeled

VIEW

- I

FCOMON. 2

COMMON. However, algorithms which accomplished this

objective were judged more difficult to comprehend. For this

reason, the special case processing of blank COMMON was chosen

for implementation.

3

ks

9

is

FDATA. I

SUBROUTINE FDATA

Mnemonic Origin: FORTRAN DATA statements.

Classification:	 FF£ statement processor.

Purpose: Process DATA statements.

Operation: The first step in processing DATA statements is to

determine if the first variable name has been run-on with the

characters DATA. If the first DATA variable list begins with a

variable name, this condition will exist. If the first variable list

begins with an implied DO loop, run-on will not occur.

If the variable name is run-on with the characters DATA, the

name is extracted and Parsing Table entries replaced to normaleze the

list format.

The DATA specification is then processed as a series of variables

in the form of an I/O list, followed by data assigned constants. The

constants are bounded by a pair of /'s. The comma separatina the

last / and the next variable of a DATA variable list is of

Processing terminates upon finding a symbol after tl

other than a variable or comma.

FDATL. I

SUBROUTINE	 FDATL

Mnemonic Origin:	 FORTRAN Data List.

Classification:	 HE parsing utility.

Purpose:	 Process constant specification list of initial values.

h Operation:	 Upon entry, the parsing tables are positioned to the

first / delimiting a list of constant specifications. 	 The list may

contain simple constants, signed constants, or repeat specified

constants.	 Constant specifications are separated by commas.

The comma list processor is used on the operand list. 	 The

processor is instructed to force all list components to a constant

class.	 Further, the processing of the last entry at breakpoints is

inhibited to permit the contingency of repeat specifications. 	 This

mode of operation leaves FDATL with the responsibility of directly

processing the last constant itself.

Return from the comma list process may.be caused by an explicit

sign, the appearance of "operand*", or the last list element. 	 If a

sign appears, the sign is discarded and the signed operand processed.

If a repeat specification is detected, the repeat count and operand

are processed.	 Termination occurs when no comma is found after a list

entry.	 The trailing / is not used for termination since a keypunch

error omitting the / would cause a processing failure.

Specialcial Remarks:	 In some FORTRAN dialects, variable like constants

can be used in Data Lists (e.g., T or F for logical TRUE or
-

f

FALSE).	 FDATL will force the class, of these entries to constantL ^
s r

^permitting their recognition by other routines,#

r ..

r

r	
FDIME. 1

SUBROUTINE FDIME

Mnemonic Origin: FORTRAN DIMENSION statement.

i	 Classification:	 FFE statement processor.

Pur ose: Process DIMENSION statements.

l'	 Operation: Processing DIMENSION statements requires separating the

x	

first variable name from the characters DIMENSION. The extracted

1	 variable name is aligned on the first character and replaced in the

Parsing Tables. from this point, the statement is processed as a

variable declaration list. Uses are not recorded for appearance in

a DIMENSION statement; only the Use as an array declaration is

required.

d	
1
r
8

a

2

AA.

f

FDO. 1

b

SUBROUTINE FDO

t

Mnemonk Origin: FORTRAN DO statement.

Classification:	 FFE statement processor.

'	 Purpose: Process DO statements.

Operation: In processing DO statements, the characters DO, state-

ment label specification, and index variable must be separated from

the single character string developed by the blind scan process. Use

ri	 of the statement label and graphical transition for a DO statement

are recorded.

The index variable is extracted and recorded, followed by

processing of the DO loop control parameters.

t

t

3

A

1

^	
1

I
FDORNG. 1

SUBROUTINE FDORNG

Mnemonic Origin: FORTRAN range variables.

A,	 Classification:	 HE parsing support routine.

Purpose: Process the range control variables of DO and implied DO

constructions.

Operation: Control enters with the Parsing Tables positioned to the

t_.- . .
	 first variable (initial value specification) of a DO control construc-

tion. The control specifications may be signed or uns , igned constants

or variables.separated by commas. The increment specification is

optional.

To process the optional length of DO control specifications,

the processing is constructed in the form of a loop. The loop is

terminated when a comma is not found after a control specification

or the increment specification has been processed.

If • a sign is found leading the control specification, the sign

is discarded, The Use code assignment is dependent upon the numerical

adjacency •of Uses for initial, terminal, and increment specifications.

The Use code for the next control specification is developed by incre-

menting the last specificationby one.

Control returns to the calling routine with the Parsing Tables

positioned to the entry after the control specification.

i

y

FELxxx. 1

Q

4 SUBROUTINE	 FELxxx(LC, ROW, A

Mnemonic Origin:	 Fetch Element from Table xxx

Classification:	 AIR General Purpose Utility

Purpose:	 Allows access to values of elements in table xxx.

Operation:	 xxx may be one of the following:

` COM, DIR, IS, ISD, LIN, LIS, MAP, NOD, PRE, SH, SHD,

i
STK, SUC, SYM, USE.

E

Parameters:	 LC	 - Input

ROW - Input

A	 - Output

k,.
Element in row ROW and in logical column LC of Table xxx

x	 f and associated information is	 laced in array A.	 Element's typeP

(alphanumeric or integer) is placed in element one of array A.	 J

Element's width in computer words is placed in second element of

array.	 Element is placed in remaining elements of array, left-

adjusted.-

see also "AIR Abbreviations" and	 /SPEREG/

FENTRY. 1

^r SUBROUTINE	 FENTRY

Mnemonic Origin:	 FORTRAN ENTRY statement.

Classification:	 FFE statement processor.

Purpose:	 Process ENTRY statements.

!i Operation:	 Control enters with the Parsing Tables positioned to a

secondary entry point specification for either a subroutine or

function.	 The entry point name is extracted from the character string

run-on by the blind scan process.

1 The current module specification is examined to determine if

a subroutine or function entry point is specified.	 This information

{*
will influence the type code assigned to the entry point name and

class code of secondary entry parameters ('if any).

-the Symbol TableThe entry point name is recorded in 	 and a

secondary entry point recorded in the transition pairs table. 	 (Note:

If the entry point is a function entry point, the type code of the

name is determined independently from the primary entry point name.)
{

The parameter list, if specified, is then processed.

r

.ti

FEQUIV. 1

SUBROUTINE	 FEQUIV

Mnemonic Origin:	 FORTRAN EQUIVALENCE statement..

Classification:	 HE statement processor.
.	 j

Purpose:	 Process EQUIVALENCE statements.

Operation:	 Control enters with the Parsing Tables positioned to the

start of an EQUIVALENCE statement.	 The statement is composed of the

character string EQUIVALENCE followed by .a series of equivalence

group specifications.	 EQUIVALENCE groups are sets of variable speci-

fications enclosed in parentheses.	 The groups are separated by an

optional comma.

Within the group, individual specifications may be subscripted

{ or unsubscripted variable references.	 The processing of a group is
1

l;	 terminated by the absence of a comma following an element of the group.

The test for a right parenthesis is not used to protect against a

keypunch error in which the parenthesis might be omitted.

Additional error tolerance is permitting the absence of a right

parenthesis if the next symbol is a left parenthesis. 	 To guard against

the error of only the word EQUIVALENCE without any-specified group, a'

flag is maintained to indicate whether any EQUIVALENCE groups were

processed.

i

1

Y

y

J Al

^.=	 SUBROUTINE FEXTRIV

Mnemonic Origin: FORTRAN EXTERNAL statement.

Classification: HE statement processor.

Purpose: Process EXTERNAL statements.

Operation: Upon entry, the EXTERNAL statement has the first external

run-on with the keyword characters. Since the keyword EXTERNAL has

8 characters, alignment is not necessary; only skipping the first

8 characters is required. The list of names is then processed as a

simple comma separated list of entries.

i

i

1

r	

x

t

Y

3

SUBROUTINE FFE

FFE. 1

Mnemonic Origin: FORTRAN Front End.

Classification:	 Primary control for FORTRAN processing.

i

	

Pur p ose: Process a series of FORTRAN modules from the Source Code

Input File, producing Analysis Tables and Source Code

Catalogue entries.

---	 Operation:. Upon entry, the processing of a series of FORTRAN modules

from the Source Code Input file is required. Linkage must be established

to incorporate new modules on the Analysis and Source Code Catalogue

files. This linkage of library information is accomplished via the

Global Header.

The Source Code Catalogue index for the next module is acquired

L	
from the Global Header. The module relative card counts are initialized..

The last module number used is acquired from the Global Header (this

establishes the next Table file record available).

Modules are then processed in a cyclic fashion until the end of

the Source Code Input file is detected. Note that processing accommo-

dates the contingency of a module not being produced. This might occur 	
r ^

if the Source Code Input file was empty or extraneous cards are found

1

	 at the end of the file,

After a valid module has been processed, the Directory contents

are updated and maintenance printing processed if active. Results are

then stored on the;-Analysis Table file.

After all modules have been processed,'maintenance printing of the

Directory contents is performed if active, and the file information for

Source Code Catalogue and Analysis Table files is recorded in the Gobal

Header.

SUBROUTINE FGOTO

FGOTO. 1

Mnemonic Origin: FORTRAN GO TO statements.

Classification:
	

FFF statement processor..

Purpose: Process forms of GO TO statements.

Operation: Upon entry, a GO TO statement form has been identified,

The form may be a simple Unconditional GO TO, Assigned GO TO, or

Computed GO TO.

LTo process the statement, the branch target must be extracted

i
from the character string GOTO. If no branch target is found follow-

ing the GO TO, the form is a Computed GOTO; the left parenthesis caused

the building of character string entries to terminate with the charac-

ters GOTO.
l

In the Computed GO TO form, the potential transfer target list

is processed, followed by the GO TO index variable. The comma separating

the branch list from the index variable is optional.p	 al.

If a nonblank name is found after the GOTO character string, the

form is either an unconditional branch to a statement label 	 or an

Assigned GO TO. This distinction is made based on the characteristics
5

of the brainch target specified. If the branch target is a numeric

entity, _the Unconditional form is recognized; if the branch target is

a variable name, the Assigned form is present.

In Assigned GO TO forms, the list of potential branch targets is

optional. If the branch target list is specified, the list of statement

labels will be attached as successors to the GOTO statement. The comma

separating the branchswitch variable from the list of successors, is

optional

a_
u

FIDNO.

SUBROUTINE FIDNO (CNT, KU)

"	 Mnemonic Origin: FORTRAN Identification Number.

1
Classification:	 FFE parsing support function.

Purpose: Process optional identification indicators attached to

FORTRAN statements like PAUSE, STOP, etc.

5	 Operation: Upon entry, a statement form has been recognized which

--	
might have an identification attached. The statement is such that the

h.

character string returned from the scan process has run on the identi-

fication specification. FIDNO extracts the identification from the

character string and records a Use specified by the-calling routine

based on properties of the identification.	 {
•	 f

The parameters indicate how many leading characters precede the

identification. These characters are bypassed and the identification

position is examined. If blanks are found, no identification is

recorded; the identification has been optionally omitted.

If nonblank characters are found, the characters identifying the

statement (up to 8 characters) are extracted. If an alphabetic identi

fication is found, the isymbol is recorded as a scalar variable used as

specified by the parameter. If a numeric symbol is found, the symbol

is recorded as an integer constant used as specified by parameter.

Parameters: CNT	 integer count of the number of leading characters

which precede any identification specification.

KU - Use code specification to assign to the identi-

fication if one is found.

FILOPN. 1

SUBROUTINE FILOPN

Mnemonic Ori in: File Open.

Classification:	 Control Driver Fire manipulation routine.

Purpose: Perform opening activities for files to isolate initial

	

file positioning from required run configuration.	 f

Operation: FILOPN is a host machine dependent routine for positioning

files and opening activities required on a particular host. Sequential

files produced by FACES are reviound to permit internal sensing of

file status. The end of file indicators for sequential files is

cleared. The Source Code Input File is not positioned to avoid circum-

venting user control of input source code to be analyzed.

Random file routines are initialized, in this routine if necessary.

I

4

-

I

JL

	

4

j

a_
l^

i

k

. 1

FILCLS. 1

SUBROUTINE FILCLS

Mnemonic Origin: File Close.

Classification:	 Control Driver File manipulation routine.

Purpose: Perform closing actions necessary for termination of run.

Operation: FILCLS is a machine dependent routine provided to cen-

tralize any terminal file activity required on a particular host

machine. Actions performed by FILCLS are intended to secure data

generated by the FACES run and prepare data files for saving action

or manipulation external to FACES.

FIF. 1

SUBROUTINE FIF

Mnemonic Origin: FORTRAN IF statement.

Classification:	 FFE Statement Processor.

Purpose: Process IF statements,

Operation: Upon entry, a FORTRAN IF statement has been identified.

The IF statement is of the form,

Arithmetic IF with three branch transfer,

Logical IF with two branch transfer,

F	 Logical IF with conditional statement specified .

r
Note that the IF statement may be identified by the Keyword processing

section or from the Zero Level Equal Sign processor. If the form is

a conditional Assignment statement, the entry will be via the Zero

Level Equal Sign processor; otherwise, entry will be from the Keyword

processor.
i

The conditional expression is processed until a balancing right

parenthesis is found or an unknown symbol is encountered. The con-

ditional expression is viewed as a series of arithmetic expressions

separated by possible relational operators, organized by parentheses.

Some complication is presented by parentheses in the conditional ex-

pression. Since FACES processes relational expressions only in IF

statements, relational operators are processed as they appear in the

left to right parse. Since no global count . of parentheses is maintained,

care must be taken to account for all possible configuration of paren-

theses. Observe that parentheses may be used to:

i

FIF. 2

I. Organize the computation of an arithmetic expression.

2. Organize the relation application between two arithmetic

expressions.

,.	 3. Organize the computation of logical expressions from

relational results or logical variables.

^j	 4. Indeftnite levels of superfluous parentheses could be

present.

To illustrate operation, consider processing the form
r	

IF((((A+l .GT. B).OR.C.LT5).AND.(LOG))_)

Note that a superfluous pair of parentheses is used in the conditional

expression. As will be obvious, the scanning of expressions will

result in an execution profile quite different from traditional ex-

pression parsing. The example statement is processed as follows:

1. Processing the expression begins on the second left

parenthesis. An arithmetic expression is processed up to

the relation .GT. Control returns with a parenthesis count

equal to 3. (The "(" of "IF(" is not included in the count).

2. The relation .GT. is processed.

3. Control returns to'ari ,thmetic processing which proceeds to

the relational operator .LT. The elements B, C, and operator

.OR. are processed. The parentheses count upon return is

equal to 2.

4. The relation .LT. is processed.
m

5. Control returns to the arithmetic process and the elements 5

andlogical variable LOG are processed. Control returns with

the Parsing Tables positioned to the last right parenthesis

with a parentheses count of'0.

_x

FIF. 3

After processing the conditional expression of the IF, the

conditional action is examined. If the form "operand," is found,

a branch specification is assumed and the branch list processed

(Note: the number of branch targets specified are not checked in the

process.)

If a branch list is not found, a conditional execution is

assumed and control is returned to the calling routine with the

Parsing Tables positioned to the first entry of the conditional state-

ment for later processing.

FIMP.	 1

SUBROUTINE	 FIMP

i
Mnemonic Origin:	 FORTRAN IMPLICIT statement.

Classification:	 HE statement processor.

' Purpose:	 Process IMPLICIT statement and adjust typing of previously

. recorded symbols to conform to IMPLICIT requirements.

1

Operation:	 The IMPLICIT statement is composed of the character string

IMPLICIT followed by a comma separated series of type specifying

definitions for leading letters of variable names.	 Each type speci-

A
fication is of the form,

type indicator (letter specification)

where	 type indicator is a character string indicating the

type to be associated with the letters specified, and

letter specification is a comma separated list of either

l single letters or an inclusive range of letters (e.g.,	 "A-D").

In,processing,the statement, the type indicator is extracted and

identified.	 The type indicator establishes both the type code for

variables and the length of the type indicator expressed as the number

of packed words (e.g., INTEGER is a type indicator requiring l word of

storage).

The type identification is bypassed and the list of letter

specification processed.	 Each letter specification causes the typing

vector to be modified from the normal default type associated in

FORTRAN.	 Type vector positions are modified by the type specification

:

until a comma is not found between the end of the letter specification

and the next type identification.	 The search for comma absence is used

FIMP. 2

.. ^	 to control error processes in the e yent of a keypunch error.

After establishing new types for alphabetic leading

characters, the Symbol Table contents are reviewed. Any typable
F

entry which does not appear in an explicit type statement is retyped. .

f

r

a
5

a

R

4

d!"a.

e6i'i^Y^'t- ---	 .a:i:.Ga;_...^	 _..x	,.	 - -_.+::rm^ti»ay....s.^:..sa:.:^c.,. eem.. 	 .•._,-,- ., ., ..,.. _.	 ..	 _.

FIOARG. I

SUBROUTINE FIOARG

Mnemonic Origin: FORTRAN I/O control argument list.

Classification:	 FFE parsing support routine.

Purpose: Process the I/O control list of 1/0 statements.

Operatinn! ANSI Standard I/O requires specification of I/O unit

and format; many FORTRAN dialects also include End of File detection

and Error Recovery processing in this control list. Of the potentially

specified controls, only the I/O unit number is mandatory.

The I/O unit may be specified as either a constant or variable.

To accommodate FORTRAN dialects with direct access 1/0, a record

within the unit may be specified. The unit record specification is

restricted to a simple variable or constant.

The format specification is optional. If a format is specified,

it may be either the statement label of a FORMAT statement or an array.

Since the array may not appear with a subscript, FACES will accept a

scalar variable as a FORMAT specification.

Specification of End of File and Error condition processing take

the form of "END= branch target" and "ERR::-,branch target". The branch

target may be either a statement label or assigned variable. To process

the exception list, the control specification is first reviewed for ERR

and END specifications. If they are detected, the Parsing Table

positions of the branch target specification are recorded. At the end

of the review, the actions for END and/or ERR are processed. Thit

approach was selected so the branch order would always be END/ERR.

Since exception lists may be machine dependent, FIOARG is designed

to report exceptions not processed and attempt to skip unknown forms.

FIOARG.

x

Statement abortion is not performed since most of the important

information is in the 1/0 variable list which follows the control

specification.

` Designer's Note:	 A great deal of effort is expended to normalize

the order of exception processing. 	 For the most part, this is a

Wasted energy.	 Since the exceptions are optional, the order

6f exceptions is still unpredictable;	 from the tables generated,

a single exception specification cannot be identified as an END

or ERR branch.	 This area is candidate for change in future
y

-versions.

zi._,

r
L

a

a

r'
i
3

i

S

i

,y

.- -:	 ,:.	 ..	 ,.

F

FIOVAR. I

SUBROUTINE FIOVAR

i

Mnemonic Origin: FORTRAN I/O Variable List.

Classification:	 HE parsing support routine.

Pur ose: Process I/O form variable lists in I/O statements and

DATA statements.

Operation: Upon entry, an I/O form list of variables is to be pro-

cessed. The list may contain subscripted and unsubscripted variables,

implied DO loops, and superfluous grouping parentheses. Note that the

appearance of a left parenthesis does not guarantee an implied DO loop;

The ANSI Standard permits parentheses grouping without an implied DO.

Elements of the I/O list are assumed to be separated by commas.
i

The absence of a comma after a list element signals the end of the

list. The list is processed as a comma list with the processing of

entries inhibited at breakpoints. This restrictive action is required

to prevent the index variable of an implied DO.from being recorded as

an I/O variable in the list. As a result, FIOVAR is responsible for

processing the last I/O variable itself.
a

If control returns from the comma list processor positioned to

a variable entry, one of the following situations is possible:

1. The variable is the last variable of the I/O list.

?. The variable is subscripted. 	 s

3. The variable is the index variable of an implied DO loop.

If the return is caused by a right parenthesis," this is not the

right parenthesis of an implied DO; rather, the parenthesis is a super-

fluous parenthesis used in organizing the list. The right parenthesis

of the implied DO is processed in the DO specification case.

x-

R

	

'	 FIOVAR. 2

Special Notes:

The processing of parentheses is rather strange in FIOVAR.
r	 ^

The opening left parenthesis is processed by code located at the top

	

i^	 of the processing loop. The corresponding closing right parenthesis

is processed either as the right parenthesis of an implied DO or as

an independent right parenthesis organizing the I/O list for the user.

	

..	 Notice that FIOVAR deviates from other processing routines in

that the I/O list is assumed to be present. Calling F 0VAR with con-

structions having empty I/O lists (i.e., no list specified) will

.F	
cause processing errors. This feature should be amended in future

versions.

Table entries produced by FIOVAR have a major failing for analysis

of implied DO cases. The use of the DO loop index variable as an input

appears before the assignment of value in the Use Table. This should

be repaired in future versions.	 s

r

9
j

^I
f

9

r

r	 ;,

e FLD. I

FUNCTION FLD(POS, NOBITS, WORD)

I^

MDg4Il1c Origin: Univac's FLD Function

Classification:	 AIR General Purpose Utility
r	 •

Purpose:	 Pulls out bits from single word.

`v	Operations: NOBITS bits are pulled from word WORD, starting at

bit position POS, and are returned to calling routine, right-

^y Wusted.
i

Left-most bit in word is defined as having position zero.

Parameters: - POS - Input

NOBITS - Input

WORD - Input

r'	
FLD - Output

3

J	
^	 M.

FLGFUL. 1

5^}

..	 INTEGER FUNCTION FLGFUL (FLAG, FLGSIZ, FWORD)

Mnemonic Origin: Flag a Full word integer,
V

Classification:	 HE bit manipulating utility.

Purpose: Construct a full word integer composed of positive data

in LSB positions and flag baits in MSB positions.	 J

Operation: A bit pattern is to be inserted into the MSB bit positions

of a full integer word to construct a result.

Parameters describe the flag size of the 'LSB's of the flag

pattern to combine with the LSB's of integer data. This operation

requires machine dependent bit manipulations.

I

The MSB's of the integer data are cleared to zero value to

accommodate flag information. Then the LSB''s of the flag information

are shifted to the MSB position and combined with the full word data

to produce the result.

Parameters FLAG	 - full word integer containing flag bit pattern

in the LSB positions.

FLGSIZ - flag size measured in number of bi ts .

FWORD	 -full word integer data.

FLGFUL	 the constructed full word is returned through

the function name.

j

ak
n

y 1

a

s

f

0.

FLGHLF. 1

INTEGER FUNCTION FLGHLF (FLAG, FLGSIZ, HWORD)

Mnemonic Origin: Flag a Half Word integer.

Classification:	 FFE bit manipulating utility.

Purpose: Construct a flagged half word from a half word of data and

a flag specification.

Operation: FLGHLF constructs a full word integer which contains a

flagged half word of data in the'LSB bit positions. The MSB positions

of the integer contain zeroes.

The data is constructed by clearing the upper half word of the

provided data along with MSB of the lower half word which will

accommodate the flag. The size of the flag is indicated by parameter.

The flag to insert is located in the LSB positions of the Flag speci-

fication.

The actual flag bits are positioned to the MSB bit positions of

the lower half word and inserted in the positions prepared.

Parameters: FLAG	 contains flag data to be inserted in the MSB

of the result half word. Data bits are found

in the LSB positions.

FLGSIZ - Size of the flag field expressed in number of

bit positions.

HWORD	 full word integer containing data in the lower-

half word to be used in construction of the

result.

FLGHLF	 results returned through the function name.

FNDDIR. I

9

^VP	 LOGICAL FUNCTION FNDDIR (NAME)

Mnemonic Origin: Find Directory entry.

Classification:	 FFE Table search routine.

Purpose.: Search for the specified name in the Directory and position

the Directory pointer to the matching or insertion point.

Operation: A module name (possibly assigned by FACES) is presented.

If the name is found in the Directory, this event should be reported

r	
and the Directory pointer positioned to the matching entry. If the

name is not found in the Directory, the absence should be reported and

the Directory pointer positioned to the proper insertion point.

FNDDIR is constructed to give an alphabetic order to the Directory

`I y

	 entries. The Directory may be empty on the first insertion of a name.

If the Directory is empty, the no match condition is recognized

and the insertion point is the first Directory position.

If the Directory is not empty, the contents of the Directory is

searched for the module name. If a matching entry is found, the match

condition is recognized and the Directory pointer is positioned to the

matching name.

If the search process discovers an entry aplphabetically ahead of

the name used in the search, a no match condition is recognized and the

insertion point of the alphabetic entry is established.

Parameters: NAME	 - Module name to search for in the Directory in

2A4 format.

FNDDIR - the match/nomatch result is returned through

the function name.
I

ff ,

i

FNDDIR. 2

5 e^ cial Notes: Alphabetic order is host machine character code

dependent. Currently, all Directory entries begin with alpha-

betic characters. One problem was discovered during maintenance

where a nonalphabetic character was used as an assigned name.

The nonalphabetic character caused a positive and negative A format

item to be compared in the relational test. This resulted in an

overflow condition which was not reported at execution time, yet

resulted in an erroneous branch being taken. As a result, the

alphabetic order of the Directory was destroyed and insertion

processing collapsed from that point.

If the Directory is spanned without finding an alphabetically

preceeding entry or a match, the no match condition results and

the insertion point becomes the next nonempty Director; entry. Note

that the Directory bounds are not checked in establishing the in-

sertion point for this event. Checking of array space should be

performed by the insertion routine.

i

4
S

FNDSYM. 1

LOGICAL FUNCTION FNDSYM (NAME, LENGTH, TYPE, CLASS)

Mnemonic Origin: Find Symbol Table entry.

Classification:	 FFE tableiinsertion support routine.

Purpose: Search Symbol Table entries for the specified symbol . and

set the Symbol Table pointer to the insertion or match

position.

Operation: A symbol specification is presented by parameter. If the

symbol matches an existing Symbol Table position, the matching result

is reported and the Symbol Table pointer positioned'to the matching

entry. If the symbol is not present in the Symbol Table, the no match

condition is reported and the Symbol Table pointer positioned to the

proper insertion point for the symbol
j

In addition to the character string for the symbol, a type and

class specification are provided in examining Symbol Table entries. The

value of the specifications may be either an established code or the

value 0. The value 0 means the corresponding symbol qualifier is to be

ignored in the search. A nonzero value means the Symbol Table position

must match the qualifier in addition to.the character string to qualify

as the desired entry.

The hash coded entry point is computed based on the first 8

characters of the symbolic name. The Symbol Table entries are then 	 Y

searched in modulo table length fashion until a matching entry is found,

an empty position encountered, or all table entries have been searched.

A matching entry must satisfy the following requirements:

1. The length must be equal to the specified length.

2. The character content must be the same.

FNDSYM. 2

3. The class code must be computable with the specified

class.

4. The type code must'be computable with the specified type.

These conditions constitute logical AND operations. The AND is Imple-

mented as a series of successive branches. The logical outcome is

accumulated as the' tests are performed; any failure causes the table

position under examination to not qualify.

If the entire table is searched without finding an empty position

or matching entry, the Symbol Table is full; no space remains for entry

insertion. The no match condition is returned and the Symbol Table poin-

ter is set to 0 to indicate no space is available for insertion.

Since the Symbol Table is positioned by the search process, the

match condition simply requires maintaining the current Symbol Table

pointer value to indicate the matching position. Similarly, if an empty

table position halts the search, the current pointer value is the

appropriate Insertion point for the symbol.

If the symbol is oversized (i.e., will not fit in the main Symbol

Table position), the Symbol Overflow pointer may be set. If a match

occurred, the Symbol Overflow pointer is set to the position indicated

by the matching position. If no match was found, the overflow pointer

is not set.

Parameters: NAME	 Symbolic characters of the symbol being sought

in A4 format.

LENGTH - Length of the symbolic name expressed in the

E	 b	 fit	 d	 i A lnu	 o n "Clwor s regs^ re to hom er	 d the

character string.

t.

FNDSYM. 3

TYPE	 Type specification for matching condition.

Contains either the type code for an acceptable

entry or the value 0 (ignore type in the match

process).

CLASS	 Class specification for matching condition.

Either a class code or the value 0 for ignoring

class in the search.

FNDSYM	 The match/no match condition is reported through

the function name.

FNDTST. 1

'fit

INTEGER FUNCTION FNDTST (ISSLOC)

Mnemonic Origin: 'Find Temporary Symbol Table position.

Classification:	 FFE Parsing Table positioning routine.

Purpose: Identify the Temporary Symbol Table position corresponding

to the indicated ISS table entry.

Operation: FNDTST is used to determine Temporary Symbol Table positions

based upon ISS entries. By convention, the two tables are maintained

in synchronized fashion; therefore, the required entry sought is

normally not the currently addressed table entry.

Temporary symbols are recorded only for character strings corre-

sponding to variable names, constants, and FORTRAN keyword phrases. The

Temporary Symbol Table entries lead the ISS entries by one position.

(See discussion of Parsing Tables.)

FNDTST operates on the assumption that the two tables, ISS and

TSTAB, are properly synchronized. Based upon the current positonal

relationship, the Temporary Symbol Table position for the indicated

ISS position is produced. This operation is performed by using image

pointers to TSTAB and ISS. Modification of table contents and pointer

positions are expressly avoided.

The direction and number of ISS positions between the current

position and the desired position are determined. The value of the

TSTAB image pointer is then adjusted to the proper value by reviewing

ISS position contents. For ISS entry in which a ISM entry is recorded,
the image pointer value is adjusted. The final value is determined

when the image pointer to ISS is equal to the desired position indicated

by parameter.

r

-	 e

FNDTST. 2

Note that the "appropriate" position for TSTAB may be an

entry which leads the ISS position. For example, if the specified; ISS

position were to contain a "(", there is no directly associated TSTAB

entry; rather the TSTAB entry would be the next variable or constant

to be found , after the left parenthesis.

In addition, the leading convention between tables allows the

developed pointer value to exceed the last nonempty position value by

one. This would result, for example, when developing the TSTAB position

for a special symbol, say a ")", which appeared after the last variable

or constant in the statement. That is, all TSTAB entries were associated

with preceeding ISS entries.

Parameters. ISSLOC	 position of ISS for which the TSTAB pointer

value is desired.
i

FNDTST - pointer position is returned through the a

function name.

,a

i

11

MUSE. 1

LOGICAL FUNCTION MUSE (USEM)

Mnemonic Origin: Find Use of current symbol.

Classification:	 FFE table searching routine.

Purpose: Determine if the currently selected symbol has been used

in the specified fashion.

Operation: Upon entry, the symbol table is positioned to a symbol under

investigation. The decision is required as to whether the symbol is

used in a way indicated by parameter.

The last Use of the symbol is acquired and the chain of Uses from

the last to the first Use is examined. If the specified Use code is

found in this list, the TRUE condition is returned and the Use table

is left positioned to the first Use encountered (i.e., the most recent
i

occasion of the Use).

If the Symbol Table is in an overflow state, no active symbol is

recorded;, therefore, no Use is possible; The FALSE result is returned

in this case. Similarly, if no Uses for a recorded symbol have been

made, the FALSE result is returned. The Use table pointer is not

positioned in these cases.

If a Use list is found but the specified Use is not encountered

on the list, a FALSE result is returned and the Use Table pointer is left

positioned to the first Use of the symbol.

Parameters USECOD - use code to look for in the symbol's Use list.

MUSE	 results of the search returned through the

function name.

J

FPARLS. I

SUBROUTINE FPARLS (KU, KT, KC)

5
fti

Mnemonic Origin: FORTRAN Parameter List.

Class 4 fication:	 FFE parsing support routine.

Pur ose: Process forms of FORTRAN constructions consisting of a

comma list enclosed in a parenthesis pair which require

intra-statement Begin/End list brackets.

Operation: Upon entry, the Parsing Tables are positioned to the left

parenthesis of a "(comma list)" structure. These constructions are

R	 dummy parameter lists for functions, statement functions, and sub-

routine definitions.

The Symbol Table has previously been positioned to the name of

C	
the routine so the list generated becomes attached to the name as a

dependent list.

A Begin List Use code is recorded, followed by the list of actual

parameters. Finally, an End List is recorded.

Parameters: KU	 use code to assign to comma list members.

KT - type specification (possibly zero) for comma list
b

members.

KC	 class specification (possibly zero to assignP	 (P	 b y)	 n to9

comma list members.

Special Notes: The End list is recorded even if the statement is aborted

for an unrecognized actual parameter list structure. This may re-

sult in a system anomaly since abortion clears the Begin/End list

stack.

SUBROUTINE FPRNCL (USE, TYP, CLS)
F

Mnemonic Origin: FORTRAN Parentheses Comma List.

Classification:	 FFE parsing support routine.

Purpose: Process comma lists enclosed in parentheses.
r

Operation: FPRNCL processes FORTRAN constructions consisting of simple

operands separated by commas, enclosed in a pair of parentheses. The

elements of the list may not contain expressions, function calls, or

any form more complex than simple operands.

FPRNCL is used to process the following forms:

1. Simple operands of array subscript references.

2. Simple operand forms of function and subroutine

references.

3. Simple operand forms of function and subroutine

parameter declarations,

4. Simple operand forms of array dimension declarations.

Upon entry, the Parsing Tables are positioned to the left

parenthesis of the list. The list is processed as a simple comma list.

Control returns with the Parsing Tables positioned to the element

after the enclosing right parenthesis.

Parameters: USE	 Use code to assign to list members.

TYP	 Type specification for list members.

CLS .	Class specification for list members.

G

FPROG. 1

SUBROUTINE FPROG

Mnemonic Origin: FORTRAN PROGRAM statement.

Classification: HE statement processor.

Purpose: Process FORTRAN PROGRAM statements.

Operation: The program name is separated from the character string

PROGRAM. The program name is established as the module name. The

name is also recorded in the Symbol Table. The declaration Use of the

name is recorded in the Use Table. An initial entry into the module is

recorded as a transition. If a qualifier list enclosed in parentheses

is found, the list is skipped; this information is not used in analysis.

J
_	 __:

FPRPU. 1

SUBROUTINE FPRPU

Mnemonic Origin: FORTRAN PRINT or PUNCH statements.

Classification:	 FFE statement processor.
5

Purpose: Process PRINT and PUNCH statements.

Operation: Both PRINT and PUNCH are processed by this one routine 	 .^

since both are output type I/O statements, and the keywords are both

the same length (5 characters).

The FORMAT specification is extracted from the run on character

string PRINT or PUNCH. The FORMAT may be either a statement label or
k

	

	 3
a

a variable name. fhe distinction is made by examining the first

character of the specification; a numeric character indicates a state-

ment label

The FORMAT specification is recorded, then the I/O list is

processed if one exists. The presence of an I/O list is determined

by detecting a comma following the FORMAT specification.

rM

M loll

3

FREAD. 1

SUBROUTINE FREAD
i

I`
Mnemonic Ori in: FORTRAN READ statement.

Classification:	 HE statement processor.

Purpose: READ forms processed are limited by the ANSI Standard

I/O forms composed of an I/O control list enclosed in parentheses

followed by an optional variable list. If the leading left parenthesis

is not found, a machine dependent form of READ is present; this form
t

is not processed.

The I/O control arguement list is processed, followed by the

optional variable list of I/O variables.

G

FSIMEX. 1

SUBROUTINE FSIMEX (USECOD, INTYP, INPRN, SIMPLE, OUTTYP, PARENS)

'	 Menmonic Or_ igin: FORTRAN Simple arithmetic expression.

Classification:	 FFE parsing suppert routine.

Purpose: Process simple forms of arithmetic expressions, returning

control if a complex form is found.

Operation: FSIMEX is intended to process arithmetic expressions

whose-most complex component is an array reference with simple operand

(variables or constants) subscripts. FSIMEX is informed by the

calling routine if subscripts of arrays have been reduced. If they

j	 have, the array reference is processed; otherwise, control is re-

turned on encountering an array.

`	 FSIMEX is coded as a small control loop at the top with actual

manipulation service provided by Case processes for components of

arithmetic expressions. The expression is scanned rather than parsed

(i.e., operator precedence rules are ignored). Control returns to the

calling routine when one of the processing cases encounters a symbol

which indicates the end of the expression or a form is encountered which

is beyond the capacity of FSIMEX. All case processes return to the

common return point.

'	 Simple variable or constant operands are processed as components of

the arithmetic expression. The type contribution of the operand is

accumulated in the expression result type._

If an operand is encountered, the parsing symbol is examined for

the form "Variable(". If this form is found, either an array reference

or function reference has been detected.

al

_	 t	 _	 _A

FSIMEX. 2

r

.y

If a function or array is detected, the control parameter

to FSIMEX is examined. If the subscript list or function actual

parameter list has not yet been reduced, control is returned to the

calling routine with the Parsing Tables poisitioried to the function

or array name. Functions are treated elsewhere. Therefore, upon return

to FSIMEX the only possible construction with form V(is an array

reference with reduced subscripts, The reduced array form is processed

with the array variable type contributing to the type accumulation

of the expression.

Arithmetic operators are simply skipped. Note that the multi-

plication symbol ** is treated as two separate symbols. This is not

significant since the order of operands and precedence of operators

is not considered in the scan.

Parentheses processing requires distinguishing organizing

parentheses from terminal parentheses. A right parenthesis is terminal

if FSIMEX has not processed a corresponding left parenthesis. To

accomplish this, a parentheses count is maintained. Only the organizing

parenthesis of arithmetic expressions is considered in the count (i.e.,

parentheses of array references and function calls are not included in

the count). The parentheses count is a positive integer count with

zero having the meaning that all parentheses have been balanced. If a

left parenthesis is detected, the count is advanced; if a right paren-

thesis is found and the current count is already zero, control is re-

turned to the calling routine with the Parsing Tables positioned to the

right parenthesis. This case is the detection of an external closing

parenthesis of a more global structure (i.e., the closing parenthesis

FSIMEX. 3

	

ofsubroutine al	 'ch n	 to 1 parameter 1 aarithmetica 	 c 1 in why	a ac a pa	 ete	 s n ar

expression).

^A !	
Control is also returned if an entry is found in the Parsing

Tables which is not an arithmetic expression component (e.g., a comma).

To permit interruption of processing and resumption at a later

time, the parentheses count and type accumulation are maintained in

the calling routine. This implementation also permits FSIMEX to be

used for both arithmetic expression processing and to process arith-

metic expressions used as subscript or function actual parameters.

(See arithmetic expression processing discussion in FFE.)

Parameters: USECOD - Use code to assign to operand elements of

c'	 the arithmetic expression.

	

INTYP	 Type specification for expression upon entry

(may be 0 before any arithmetic expression	 a

operands processed).

	

INPRN	 Parentheses count upon entry.

SIMPLE - Logical control parameter set by calling

routine to indicate whether function para-

meters and array subscripts have been reduced.

OUTTYP - Accumulated type code from expression operands

processed and initial type indication.

PARENS - Parentheses count on return to calling routine.

FSTFUN. 1

;f

i

r^

.r. w.

r

SUBROUTINE FSTFUN

Mnemonic Origin: FORTRAN Statement Function.

Classification:	 HE statement processor.

Purpose: Process statement function definitions.

Operation: The statement function name and parameter list are

processed. Parameter list elements are recorded with a class code

of "statement function dummy parameter". If an error in the parameter

list is detected, recovery is made to the arithmetic expression on the

right of the equal sign.

The arithmetic expression corresponding to the statement

function definition is processed. Note that the expression may

reference both variables of the module as well as dummy parameters.

FSTFUN classifies all members of the arithmetic expression as simple

variables; the symbol ambiguity process is required to distinguish
a

program variables fromm dummy parameter references.

Special Note: The potential for error exists for function dummy

parameters with the same character string as program variables. The

ANSI Standard indicates these are independent quantities; FACES will.

not make the proper distinction if the variable is referenced first

(before the statement function definition in source code sequence).

The strategy for dummy parameter handling should be modified.

k	 SUBROUTINE FSUB

Mnemonic Ori in: FORTRAN SUBROUTINE definition.

Classification:	 FFE statement processor.

Purpose: Process SUBROUTINE statements.

Operation: The subroutine name is extracted from the run on character

string SUBROUTINE. The subroutine name is assigned as the current

module name and the module type set to "Subroutine". The name is

recorded in the symbol table and the initial entry transition is re-

corded. If a parameter list is present for the subroutine, the list
{

is processed.

I

5

b

x

FTYPE. 1

SUBROUTINE FTYPE (KT, HORCNT)

Mnemonic Origin: FORTRAN Type Statement.

Classification:	 HE statement processor.

Purpose: Process statement forms which begin with a type

declaration.

Operation: Upon entry, a statement has been recognized which begins

with a type declaration. The statement may be a simple type statement

or a function which is preceeded by an explicit type declaration.

By parameter, the type identifier and length of the identifier

is indicated by the calling routine. The type 'identifying characters

are skipped and the characters which follow the type are examined. If

the character string "FUNCTION(" is found, the statement is a function
a

declaration.

For function declarations, the function name is extracted and

aligned on the first character. The function name and type designation

are passed to the function statement processor.

If a function is not defined, the statement is a normal type de-

claration statement. The first variable is extracted and aligned on

the first character of the variable name. The aligned name is placed

in the Parsing Tables replacing_ current entries to normalize the declara.-

tion list appearance.

If the variable declaration process detects a /, control is re-

turned. A DATA initialization assignment is recognized. To treat this

i•arm, the variable being initialized must be recorded with a DATA

initialization use. This requires first positioning the symbol table

back to the variable.

i
i

FTYPE. 2

If the initial variable was unsubscripted, the symbol table is

already at the correct position. If, however, the variable was an

array declaration, the Parsing Tables must be moved back to the array

i name position. This is performed by searching the Parsing Tables back-

wards looking for the last left parenthesis.

After recovery to the array name, the symbol is rerecorded to

position the Symbol Table to the proper location.

The use as a Data initialized variable is recorded and processing

of the declaration list resumes.

Parameters: KT	 - type code corresponding to the type indicated

by the type identifier.

HDRCNT - number of characters in type identification.

4.

t

FUNCI. 1

SUBROUTINE FUNCI (X, KT)

Mnemonic Origin: FORTRAN FUNCTION declaration.

Classification:	 HE statement processor.

Purpose:	 Process Function declaration statement.
r

Operation: Entry to FUNCI may be gained either from the keyword

process or via an explicit type declaration of the name. If the

entry results from type processing, an explicit type declaration for

the function is passed by parameter. If the entry is via the keyword

process, the type is defaulted to the leafing character of the function

name.

The current statement type is set to .a function declaration to

override any previous assignment which might have resulted from leading
9

type declaration. The current module name is assigned the function

i
name. The state of the current module is examined; if the current

i
module is already in progress, the header card indicates the absence

of an END card on the current module. If this is the first statement
a

of the module, processing proceeds.

Processing the function definition involves recording the

function name in the symbol table and the initial entry transition.

The Use of the function name is recorded as a declaration. The para-

meter list is then processed recording dummy parameters in the Symbol

and Use tables.

Parameters: X	 Function name in 2A4 format, extracted prior to

callin FUNCIg

KT	 type specification for function name. Contains a

type code if explicit type specified and the value

a	 zero otherwise.

FUNPAR. 1

t

a

1

Aje

4

1

SUBROUTINE FUNPAR

Mneumonic Origin: Function Parameters

Classification:	 AIR Query

Purpose:	 Searches for function parameters assigned values within

function itself.

Operations:	 Warning flags may be produced for primary listing only.

Program boundaries are not crossed. It is assumed that external

references within function do not modify functions parameters.

Algorithm: See Source Code Listing.

F	 .

,..:^. MN

FUNREF. 1

SUBROUTINE FUNREF (CLASS)

Mnemonic Origin: Function Reference,

Classification: HE parsing support routine.

Purpose: Generate table entries for a function reference.

Operation: Upon entry, the Parsing Tables are positioned to a

function (external or statement function) which is being referenced.

The distinction between statement functions and external functions is

made by examining the parameter passed. The function name and Use are

recorded followed by a;call transition. The function actual parameters

acre then processed. By assumption, the function actual parameter list

I

has been reduced previously. Thus, entries are either simple operands

or array references with simple subscripts.

Control is returned with the Parsing Tables positioned to the e

entry following the right parenthesis of the parameter list. 	 a
s'

Parameters: CLASS - contains a class code for the function name.

Either a statement function or external

function._

{

I

o
FVARDC. 1

SUBROUTINE FVARDC (USECOD, TYP)

t
Mnemonic Origin: FORTRAN Variable Declarations.

Classification:	 FFE parsing support routine.

Purpose: Process declaration of variables.

Operation: Upon entry,.the Parsing tables are positioned to a comma

separated list of variables being declared by TYPE, COMMON, or

DIMENSION statements. If a subscripted variable is present, an array

declaration is assumed.

FVARDC accommodates two types of declarations: thoserequiring

Use code recording for appearance in the statement (e.g., COMMON) and

those not requiring Use codes for appearance in the statement (e.g.,

DIMENSION). If the variable requires recording statement appearance,

the calling routine passes a positive (i.e., nonzero) Use value by

parameter. If Uses are not required, the calling routine passes a

zero valued Use specification.

If no Uses are required, FVARDC scans the Parsing table entries

for the next array declaration. If the list is exhausted, control

returns to the calling routine. If an array declaration is found, the

array is processed.

If statement appearance Uses are required, variable entries are

recorded using the Use code provided by parameter:
I

Whether statement appearance Uses are required or not, an array

I,
declaration causes the Use table description of declared array

I
dimensionality to be recorded. The array name symbol must be changed

l	
from the initial recording of "scalar variable" to'array" in the Symbol

table. Following array declaration Use a series of dimensions are re-

corded.

FVARDC. 2

Processing terminates when a statement entry other than a

variable or declared array is detected in the Parsing tables.

Parameters: USECOD - use specification. If positive, the Use

code to assign to statement entries. If zero,

no uses are recorded except for declared arrays.

TYP	 - type specification for entries of the declara-

tion. Maybe forced to a particular type by

calling routine, or defaulted to type implied

by variable name (zero value).

W

r

i

i

FWRITE. I

SUBROUTINE FWRITE

Mnemonic Origin: FORTRAN Write statement.

Classification: HE statement processor.

Purpose: Process WRITE forms of statements.

Operation:	 Statement forms processed are the keyword WRITE

followed by an I/O control list and optional I/O variable list.

Any other form is considered a target machine dependent form and

not 'processed.

^r

y

yL

i

i

Y^

GENTEM. 1

SUBROUTINE GENTEM (TYPE, NAME)

Mnemonic Origin: Generate temporary name.

Classification:	 HE table production support routine.

Purpose: Produce a nonambiguous name for replacing a structure

by a temporary.

Operation: Upon entry, a nonambiguous name is required for assignment

of a substructure ^(e,g., the expression used as an actual parameter to

a subroutine). The type code of the resulting temporary is passed to

permit maintenance recognition of the temporary type generated.

The temporary is generated in two parts: the first integer word

is assigned a character string which cannot be a valid FORTRAN variable

name to avoid conflict with user selected names. The second word is

assigned a pattern which uniquely identifies the temporary within the

statement. After name generation, the second ward name generator is

advanced to insure uniqueness of the next name. Reset of the name

generator is performed by some external routine.

Parameters: TYPE - Type code for name to be generated.
{

NAME - return parameter for generated name in 2A4 format.

Special Notes: The character string generated by the current increment-

ation process may produce special characters or unprintable bit

patterns. This is not signification since temporary names always

have a nondefault type associated.

The first word of the temporary name is selected from a

list of templates set in BLOCK DATA. The leading character in-

dicates the type code specified when the name was generated.

GENTEM. 2

For protection, the leading characters are assigned to minimize

error potential in default typing if the type is erroneously

lost during processing.

i
3

7

r

Wroaffma "M I'l l 11 Noma—,

_Y.

GETCLS. I

SUBROUTINE GETCLS (CURCLS)

z

'	 Mnemonic Origin: Get Class code of current symbol.

Classification:	 FFE table searching routine.

Purpose: Indicate the class code assigned to the currently selected

Symbol table entry.	 J

Operation: Upon entry, the Symbol Table is positioned to an entry

for which the class must be investigated. Normally, this interrogation

is from a parsing routine which must distinguish processing cases through
r
s	 the class code. To prevent unnecessary access to the Symbol Table, this

routine interfaces the Symbol Table structure to the processing routine.

If the Symbol Table is not in an overflow state, (i.e., there

i^	 is a nonempty symbol selected), the class code of the symbol is returned

I
through the parameter.	 If the Symbol Table is in an overflow state,

no symbol is selected and the value 0 is returned.

r

Parameters: CURCLS - return parameter for extracted class code.

i

a

d

3
r

Al '.

T

GETE. 1

1	 SUBROUTINE GETE(TAB, LC)

Mnemonic Ori g in 	 Get Element

Classification:	 AIR General Purpose Utility

Purpose:	 Allows access to values of elements in permanent AIR

tables. (local and global tables)

Operation:	 Algorithm: Binary tree search through permanent table

R	 names, followed by fetching element and placing it into Element

Register.

Parameters: TAB - Input

r'	 LC - input

Column Register (CR) is set to logical column LC. Element
f

in table TAB at logical column LC and at row indicated by current

row pointer to table TAB, along with associated information,

is placed into Element Register (ER). 	 (see "AIR Abbreviations").

1

see also /SPEREG/

i
I

s s,

^ r

GETFLG. 1

SUBROUTINE GETFLG

t

Mbemonic Origin: 	 Get Flag

r
	

Classification:	 Report Generator.message construction routine

Purpose:	 Acquire the next flag from the Flag File and suppress

redundant adjacent flags on the file.

Operation:	 Upon entry,.the last flag returned occupies the next

flag COMMON data._ (This flag is initialized to a neutral confi-

guration for the first call). The next nonredundant flag is to

be returned to the calling routine.

The next flag description is set empty. If the current

flag buffer is empty a new flag is requested from the I/O service

routine. The flag buffer is then compared to the old next flag

contents. If they are the same, a redundant flag has appeared;

redundant data is discarded by simply setting the current flag

buffer empty and repeating the cycle.

When a nonduplicate is found, new data is transferred to

the next flag description marking the buffer full. If an end of

file occurs on the Flag File, the I/O service routine will return

an empty flag in the buffer. This action will terminate the search

loop since the next flag marker is set by the flag buffer variable.

End of file causes a neutral flag to be returned to the

calling routine advancing the global key. Global keyadvance

allows flag exhaustion to occur on a report boundary.

GETMSG. 1
o

SUBROUTINE GETMSG

Mnemonic Ori g in: Get Message

Classification: Report Generator message construction routine.

Purpose:	 Construct the.next message from flags, suppressing re-

dundant messages.-

Operation:	 Upon entry,%the next message is required from the

Flag File entries. The message buffer is occupied by the last 	 x

message transferred to report generating routines; the message

is initialized to a neutral state for the first call. Flags are

acquired and combined into a set of data constituting a message.

By convention, report processing routines are to confirm

the consumption and use of messages as they are passed. The
3

status of the last message is examined prior to constructing

the next. message. If the pointers indicate the last message was
i

not properly processed, a warning is issued.

The, current message length is set empty and the next flag

acquired if the next flag buffer is empty. A loop is then entered

to construct the message from a series of flags.

If the first flag of the message is empty, no more flags

are available. A neutral message is constructed with empty

length and a key value greater than the key of the last message.

This will cause the end of messages to occur at the beginning of

a new report, yet allow any report current in progress to complete.
a

i

i

GETMSG. 2

1
If the first flag is nonempty, operation is dependent

upon the characteristics of the next fl .ag . If a redundant mes-

sage is being constructed, the data contents of the message being

j	 built will be the same as the last message constructed. If message

identification (i.e. key value, relative card indicator, flag

indicator, and order indicators) are the same as the last message,

a
a potentially redundant message is recognized. Notice that the

i
data will be identical for a redundant message; therefore, no

i	 values* are inserted in the message descriptors. Insertion in

the message descriptors is only performed if a different message
a

is beginning.

After setting the message characteristics, flag data is

appended to the message until a flag with different characteris-

tics is found. To accomplish this function,_ data insertion is

performed only if the flag contains different data from the in-
I

formation currently resident in the message buffer. If new data

is encountered, the information is physically inserted in the

buffer; if identical data is detected, the current information

is allowed to remain undisturbed.

After processing data fields, the next flag is requested.

t
If the next flag contains an identification which differs from the

message identification established by the first flag, insertion

I
is halted. Insertion is halted also if the message data buffer is

filled.

f	

.

y

r	
t

GETMSG. 3

Notice that the data inserted in the first part of the

loop is derived from the initial flag on the first iteration,

then from the flag retrieved at the bottom of the loop on sub-

sequent iterations. This permits message construction to look

ahead at the incoming flags and accept data only if it belongs
to the current message.

After constructing the message, the results of the process

are examined. If a redundant message has been constructed, the

message is discarded and the process begins anew. Otherwise, the

length of the current message is recorded in a saving variable

for use on the next message. This length will be used to distin-

guish valid data in the message from left over entries in the com-

parison.

The pointer to the message text is set to the first entry

.of the message to initialize text processing by report generating

routines.

Specia l Notes: 	 The need to suppress redundant messages required

several unusual techniques. Since the data of the last message is

used to detect redundance, message processing routines should

not modify the contents of the message.- Modification of infor-

mation may defeat the redundancy mechanism resulting in duplicate

messages or undesired suppression of the next message.

Since message processing routines reportthe processing of

messages by setting the message length empty, the area occupied

by.data must be saved in the special COMMON variable LASTPL.

This value is used from'one call to the next in redundancy

searches. The value should not be accepted (except in initiali-

zation) by any other routine.

Reusing duplicate information rather than inserting the

Flag information may cause some confusion. The transfer of mul-

tiple items did not seem worthwhile since this would be totally

duplicate effort.

Notice that redundant-messages are not necessarily identical.

Superficial differences are permitted in the message description

fields. Additionally, if a second message is a proper subset of

the previous message, the message is suppressed as redundant.

{

i
i
I.

j

4

I

I^

GETL. 1

SUBROUTINE GETL(BF

Mnemonic Origin: Get Local Module

i
	

Classification:	 AIR General Purpose Utility
	

r

Purpose:	 Bring local module into main memory.

Operations:	 If Forward-Backward Register (FBR) indicates "forward",

bring local module indicated by Element Register (ER) into main

memory. If FBR indicates "backward", bring local module indicated

by top of Control Stack into main memory.

After requested module has been brought into main memory,

i
	

BF is set to one; if it is not brought in, BF is set to two.

Module Register (MR) is set to module number of module

brought in.

Parameters:	 BF - Output

See also /SPEREG/

 "T

GETSCA. 1

SUBROUTINE GETSCA(SCAL, TAB, VALUE)

Mnemonic Origin: Get Scalar

Classification:	 AIR General Purpose Utility

Purpose: Allows access to values of scalars associated with

permanent AIR data structures.

Operation:	 Algorithm: Binary tree search through permanent

data struu-ure names, followed by binary tree search through

scalar identifier names (see "AIR Abbreviations"). VALUE is then

set.

Scalars whose value may be accessed:

1. length of data structure (table or stack)

2. current row pointer to data structure 	 y

3. pointer to last non-empty (valid) row in data structure

4. prime number associated with hash-coded table.

Parameters: SCAL	 Input

TAB	 Input

VALUE - Output

VALUE is set to value of scalar indicated by SCAL associated

with data structure TAB.

see also SETSCA
•	 }	 a

X
a

SUBROUTINE GETTST (GARY, OLNG, PTR, OVER)

Mnemonic Origin: Get Temporary Symbol table entry.

Classification: HE table manipulation routine.

Purpose: Extract the contents of the currently addressed Temporary

Symbol Table entry and unpack the character string into

the provided array.

Operation: Upon entry, the currently selected Temporary Symbol Table

entry is required to construct an alternate form. The contents of the

entry are to be extracted and unpacked. Since the actual contents of

the symbol contain filler blanks inserted on the right of the symbol

character, unpacking need only proceed to the first blank character.

Accessing the symbol string requires interpretation of the

currently selected symbol. If the character string is less than

8 characters, the character string is contained in the main Temporary

Symbol Table entry; if more than 8 characters are involved in the

symbol, the character string is contained in the overflow table . of the

Temporary Symbol Table.

Once the character string is extracted, the characters are un-

packed and placed in the output vector until the character string is

spanned, a blank character is detected, or the output vector space

exhausted. If the output vector is filled before the character is com-

pletely extracted, processing is terminated and the overflow indicator

is set for calling routine interpretation.

Parameters: OARY - outpui vector for receiving unpacked characters

in Al format.

r
1
	

9
z
i

4-

a
GETTST. 2

OLNG	 length of output vector available for

receiving characters.

h	 PTR	 - insertion pointer for placing characters in the

ouput vector. Advanced with each character

i
inserted.

OVER - output indicator set to inform calling process

i
that the vector space was exhausted before the

 .b	
character string was fully unpacked.

t

r

	

J	 i

^	 J
_	 t

}	 T

GETTYP. 1

Ay
	 SUBROUTINE GETTYP (CURTYP)

Mnemonic Origin: Gat Type code of current symbol.

p	
Classification:	 HE table manipulation routine.

Purpose: Extract the Type code of the currently addressed Symbol

Table entry.

Operation: Upon entry, a processing routine requires inspection of

the Type code assigned to the currently selected Symbol Table position:

This routine interfaces Symbol Table construction to other routines to

avoid proliferation of the Symbol Table. 	 -

If the Symbol Table is not in an overflow state, the Type code

of the currently selected entry is extracted and returned to the

calling routine. If the Symbol Table is in overflow (no valid current

symbol), the value 0 is returned.

Parameters: CURTYP - return parameter of the Type code assigned to

the current symbol.

HASHSY. 1

FUNCTION HASHSY(NAME1 9 ANME2, CLASS, N)

i i

tMnem6nj Origin.: Hash into Symbol Table

CWWicatio. 	 AIR General Purpose Utility
w:

Purpose:	 Hash to location in Symbol Table.

Operations:	 Hash into Symbol Table, searching for symbol string

contained in NAME1 and NAME2, and having any class code contained
I

	

	 ,
in array CLASS (which has N entries).

E
f

	

	 If symbol string located with matching class code, HASHSY

set to location of symbol string in Symbol Table. Else, HASHSY

set to zero.

Parameters:	 NAME1 - Input

NAME2 -

CLASS

N	 -

HASHSY - Output

F

i

q

HIFECH. 1

INTEGER FUNCTION HIFECH (IWORD)

Mnemonic Origin: High Fetch of half word data.

Classification:	 System utility.

Purpose: Extract the upper half word of data from a full word integer.

Operation: A full integer data word 1s provided by parameter, The

 t	 upper half word of the data is extracted and right justified with zero

left fill. This information is returned to the calling routine via the

function name.

Parameters: IWORD - integer full word of data from which the upper

half word is to be extracted.

HIFECH - right justified half word returned through the

function name.
a

i

3

1

ai

1	
^,

E

HISTOR. 1

INTEGER FUNCTION HISTOR (LHALF, UHALF)

Mnemonic Origin: High Store.

Classification:	 System bit manipulation utility.

Purpose: Construct a packed full word integer from two lower half

words of data.
1

Operation: A full word integer is constructed from the least

significant bit positions of two integers. The resulting full word

is composed of packed data of the lower half words.

Parameters: LHALF - input parameter containing data in the LSB half

word. This data becomes the low half word of

the result.

UHALF - input parameter containing data in the LSB half

word. This data becomes the high half word of

the result.

HISTOR -• the constructed integer is returned through the

function name.

Special .Note: The parameters of HISTOR are intuitively reversed. The

original concept was the insertion of a low order half word into

the higher order half word bits of the other parameters. For

example in the call,

W = HISTOR (A, B)

the configuration returned to W is an integer construction:

B I A

`'	 where B has been inserted into the upper half of A.

1.

I

s

s
I

.y

IE. 1

SUBROUTINE	 E(TAB, BF)

nemon c *Origin,: Initial Entry into Table

Classification:	 AIR General Purpose Utility'

Purpose.	 Allows access to entire tables, from first to last entry.

Operatio ns 	 Algorithm: IE performs one of two complex operations,

depending on whether Forward-Backward Register (FBR) indicates

forward or backward.

Forward - Find initial entry point into table TAB, (i.e.,

first row in table). Place this information and associated In-

formation into top of Control Stack.

Backward - Find next row in table. Update information

at top of Control Stack.

Parameters:	 TAB - Input

BF	 Output

Traverse table TAB, one row at a time. If table entirely

traversed, branching flag BF is set to two; else, BF is set to one.

Table IE accesses:-COM, DIR, IS, NOD, SH, SYM, USE1, USE2.

(Se; "AIR Abbreviations")

See also TT, "AIR, Basic Search Technique", "Pattern

Searches", and "Traversing Lists".

i

IMPLDO. 1

SUBROUTINE IMPLDO(IFLAG)

Mnemonic. ' O' igin: Implied DO Loop Index Variable Search

Classification:	 AIR Special Purpose Utility

(Referenced only duri.ng search for uni ni ti al i zed

local variables and for DO loop index variables

used after loop has terminated normally).

Purpose:	 Determines if variable is set by implied DO loop.

Operation: IFLAG indicates whether or not variable indicated by

current row pointer to Statement Number Linked Use Table (USE1) is

set by implied DO loop.

Algorithm:	 See Source Code Listing.

Parameters:	 IFLAG - Output

Designer's Comment:	 This routine exists only because an implied

DO is not treated as a normal DO loop. This problem should

be rectified in the future.

'i

INxxx. 1

SUBROUTINE INxxx

s

+	 Mneumonic Origin: Input xxx ,(Global) Tables, where

xxx = COM, ISH, SH

Classification:	 AIR System Request Routine

Purpose:	 Read tables xxx into main memory from secondary storage.

Operations:	 COM: COMMON Block Reference Table and Linked

List Table

ISH: Inverse System Hierarchy Table and Inverse

System Hierarchy to Directory Table

SH:	 System Hierarchy Table and System Hierarchy

to Directory Table.

{

INDIR. I

SUBROUTINE INDIR

{	 I	 Mnemonic. Origin; Input DIRECTORY.

Classification:	 System I/O routine from Table File.

Purpose: Acquiring Directory from the Table File to initialize

system to last status.

--	 Operation: The Directory contents are read from the Table File con-

taining Directory records. The pointer to the last Directory entry
r

is acquired from the global header. To guard against invalid data from

incorrect file attachment, the pointer information is checked for con-

sistency. If incorrect data values are found, the Directory is set

empty and a warning message issued.

Upon return, the Directory has
-
been initialized to a state	 t'

Iusable by other system components.

j
F

Classification:	 System I/O routine.

i Purpose	 Read contents of Global Header from the Table File.

Operation: The Global Header contents are acquired from the Table

file. Contents of the Global Header are not checked; this verifica-

tion is performed elsewhere.

is
i

*	
33

a

i

:

I

i

i	 INTAIR. 1

i
SUBROUTINE INTAIR

I,

i'
Mnemonic Origin: Initialize AIR

i

Classification:	 AIR routine
I	

6

I

Purpose:	 Initialize AIR subsystem.

Operation:	 Set lengths of data structures.	 Initialize special

purpose registers.

i

i

Pz§

jY

i

-

-

11	 INTFFE. 1

SUBROUTINE INTFFE

k

Mnemonic Origin: Initialize FORTRAN Front End.

Classification:	 FFE initialization routine.

Purpose: Initialize FFE data constructions which are not needed by

other subsystems.

Operation: INTFFE acts as a surrogate BLOCK DATA for the FFE. The

k
purpose of INTFFE rather than BLOCK DATA is to isolate data structure

initialization from other FACES system processors enabling overlays

I	 to exclude COMMON data needed by HE from other overlays.

The length of local table and processing tables are established.

The initial values of I /O buffers and error message reporting data

f ^	 I
structures are initialized. An empty statement is inserted in the Parsing

tables to initiate processing of FORTRAN text.

INTRPT. 1

SUBROUTINE INTRPT

Mnemonic*Or^icin: 	 Initialize Report Generator

Classification:	 Report Generator'initialization

Purpose:	 Perform initialization for report generator data

which is not needed in all other subsystems.

aeration: lengths and initial values of Report Generator data

structures are established. Initial data accommodates the initial

transient of I/O routines and duplicate data suppression routines.

I

,

a

a
i

j

I

ISSCLS. 2

INTEGER FUNCTION ISSCLS (ISSCOD)

Mnemonic Origin: Intermediate Symbol String Class code.

Classification:	 FFE table construction support function.

Purpose: Assign a Class code for a Symbol Table entry based upon the

ISS code of the entry.

Operation: Upon entry, an ISS code is presented for which an implied 	 {

Class code is desired. If the presented symbol can be classed by

examination of ISS code, the Class code is returned. If the symbol

cannot be classed, the value 0 is returned.

Cross Reference: See description of Parsing Tables (ISS).

.N

Parameters: ISSCOD - ISS code of the entry needing class assignment.

ISSCLS - Assigned Class code returned through function

name.

r	 f

ISSTYP. 1

SUBROUTINE ISSTYP (ISSCOD)

Mnemonic Origin: Intermediate Symbol String Type code.

Classification:	 FFE table generating support routine.

Purpose: Assign a Type code based upon the ISS coded entry.

Operation: Upon entry, an ISS coded entry is presented for which the

Symbol Table Type code is needed. If the Type code can be determined

from the ISS code of the entry, the Type code is returned. If the

type cannot be determined from the ISS code, the value O is returned.

Parameters: ISSCOD - Intermediate Symbol String entry code.

ISSTYP - Type code assignment is returned through

the function name.

Cross Reference: See Parsing Table description for ISS Type codes

implied from ISS entries.

I

iI
1

ISYSTM. 1

SUBROUTINE ISYSTM (RERUN)

Mnemonic Origin: Initialize system.

Classification:	 Control Driver initialization routine.

Purpose: Initialize the FACES system by either acquiring system status

for existing table file data (rerun) or constructing an

`	 initially empty system (initial run).

Operation: Upon entry, the FACES system is about to begin operation.

The system is to be initialized from the current state of the software

under analysis, or set empty to receive the first set of modules for

a new software system. The passed control parameter is examined to

determine which activity to perform.
E

r

	

	

If an initial system is to be created, a Global Header is con-

structed. The source catalogue file is emptied and the Directory set
1

empty.

If a rerun is required, the system is initialized from Table

File data. The Global Header is acquired from the Table File and

verified. If fatal errors are detected in the Global Header, the run

is aborted. This may be caused by an invalid file being passed as the

Table File to the system.

If a valid header is read, the contents of the current Directory

are transferred from the Table File to the core resident COMMON block.

Parameters: RERUN

	

	 input control parameter indicating whether the

system is to be initialized for the first run

or linked to a system already created.

1`

KEYWDM. I

SUBROUTINE KEYWDM (WORD, INDEX)

Menmonic Origin: Key Word Match.

Classification:	 FFE parsing support routine.

Pur ose: Identify the presence of a FORTRAN Keyword.

Operation: Upon entry, KEYWDM is provided with the leading four

characters of a possible FORTRAN keyword. If this character string

matches the leading four characters of an established keyword, a posi-

tive index value is returned. If no match is found, the value zero

is returned as the index.

KEYWDM uses a read-only table of keywords which are loaded through

BLOCK DATA. Access to the table entries is made by using the third

and fourth characters of the presented character string (see description

of Keyword Match table, MATCH, for access method).

If a table entry is found which matches the presented character

string, the value of the table address is returned through the index

parameter. If the addressing method produces an invalid table address,

the no match condition is detected and a zero index is returned.

If the table search discovers an empty table position the search

is halted and the no match condition is returned.

Parameters:	 WORD	 leading four characters of the suspected keywr'ru

in A4 format,

INDEX - returned value of the table position matched or
	 i

the value 0 if no match found.

7

KEYWDM. 2

Special Notes: Value of the match pointer is not significant from

one search to another. This value is set equal to the return
i

value for the index to assist in maintenance tracing activity.

s

LINEPR. 1
t

SUBROUTINE LINEPR(ORIGIN, FIRSTC, LASTC)

Mnemonic Origin: Line print

Classification: Report Generator service routine

Purpose: Print a series of'source code lines for a report,

Operation: Upon entry, a (possibly empty) set of cards are to

be printed for a Primary or Secondary report. The card set is

described by a module origin in the Source Code Catalogue and

relative card numbers of the source to be printed.

If the card set description indicates an empty set, con-

trol is returned to the calling routine without printing any source

lines. If a nonempty set is described, the card set is printed.

The Source Code Catalogue is positioned to the first card

image of the set and the cards are printed in a loop. The number

of card images are computed a,-1 the card number of the first card

established. In addition to the actual source code image, an

identification of the card is printed to assist location of the

card in the sequence. The primary entry point name is obtained

from the current module description.

Parameters: ORIGIN - Source Code Catalogue origin of the card

image set.

FIRSTC - relative card number of the first card in

the set to be printed.

LASTC	 relative card number of the last card in

the set to be printed.

LINEPR. 2

Seci	 Notes:	 Source code catalogue positioning is a pro-

tective mechanism for Primary Reports. For Secondary reports,

this positioning is required for proper operation.

LIRL. I

SUBROUTINE LIRL(LIST)

Mnemg nic- Origin: Load Immediate Register from List

Classification:	 AIR General Purpose Utility

Purpose:	 Access information in lists of List Table.

Operation:	 Load Immediate Register array with List Table element

indicated by current pointer of list LIST in List Table Map.

First element in Immediate Register is set to type (alpha-

numeric or integer) of List Table element. Second element contains

width, in computer words, of List Table element„ List Table element

itself is placed in remaining elements of Immediate Register, left-

adjusted.

Parameters: LIST - Input

See also /LIS/, MANL, and List Table.

LNKAIR. 1

SUBROUTINE LNKAIR

Mnemonic Origin 	 Link Automatic Interrogation Routine

Classification:	 Control Driver subsystem linkage routine

Purpose: Position files, set controls, and activate the Automatic

Interrogation subsystem.

Operation:	 Upon entry, a QUERY command card has been recognized.

The Analysis Table File contains module descriptions to be inves-

tigated for the features specified on the QUERY card. QUERY op-

'"	 tions are interpreted to set controls for the AIR subsystem.

Files are positioned for the start of the AIR subsystem.

Read only data files are rewound and the Flag File is positioned

to the end. AIR flags will be appended to the end of the Flag

File.

Query options are interpreted and the selected queries

listed for user information. AIR is then activated. Upon return,

AIR flags have been produced fo g; the requested analysis and global

tables (if necessary) constructed for Analysis Table Files. The

Flag File is marked before return to seal information generated

for subsequent reports.

t	 ;

LNKFFE. 1

SUBROUTINE LNKFFE

Mnemonic Origin: Link to FORTRAN Front End.

Classification:	 Control Driver subsystem link routine.

Purpose: Position files and initiate activities for HE sybsystem

execution.

Operation: Upon entry, a user request to add FORTRAN modules to the

software system under analysis has been recognized. The Source Code

Catalogue is moved to the end of current FORTRAN text recorded. The

Flag File is positioned to the end of current recorded Flags (possibly

empty). The HE is activated to incorporate new FORTRAN modules in the

software system.

After addition to the software system, global tables recording

COMMON blccU, usage and Calls among routines are incomplete. The last

entries to these tables is reset.to zero to force their recreation.

The new end of Source Code Catalogue and Flag File entries is

recorded and . control returnsto the calling routine.

3

3

1

3

LNKRPT. 1

SUBROUTINE LNKRPT

Mnemonic Origin: Link Report Generator

Classification:	 Control'Driver subsystem link process

Purpose: Position files,and.interpret'.command for report genera-

tion.

.y	 Operation: Upon entry, a REPORT command has been recognized.

Report options are to be examined and the requested reports pro-

duced from Flag File information.

The Flag File is rewound for processing reports. At this

point in the processing, the flags have been sorted in ascenVng

f order on the Flag File.

Remaining entries (if any) on the REPORT card are examined

to set control variables for report generation. FLAGed reports

are defaulted unless an ALL report is requested. The Report

Generator is activated to produce the reports. Upon return,

the Flag File emptied since results have been reported to the user.

i

J	
-

r

LOCPRT. 1

SUBROUTINE LOCPRT

Mnemonic'Origin: Local Table Print.

Classification:	 FFE maintenance support routine.

i Purpose: Display the local tables of a module on a print display.

Operation: Upon entry, the local tables are occupied with data
r

V

belonging to the module indicated in /CURMOD/. A header line indicating

"	 the module is printed using values from /CURMOD/ followed by the table

data. Maintenance ` dump routines are used to actually perform the

table printing.

i

i

i

I.
	

LOFECH. 1,

INTEGER FUNCTION LOFECH (IWORD)

Mnemonic Origin: Low Fetch

Classification: System bit manipulation utility.

Purpose: Extract the lower half word from a full word.

Operation: The LSB half word is extracted from a full word integer.
.	 r

The resulting half word is returned with zero left fill in the upper

half word bit positions.

Parameters: IWORD - full word of integer data containing two half

word fields,

LOFECH - extracted half word returned through function

name,

tl

i

y9^

I

LOSTOR. 1

INTEGER FUNCTION LOSTOR (UHALF, LHALF)

"	 Mnemonic Orrin: low Store
}	

Classification:	 System Bit manipulation utility.

i
Pur ose: Construct a full word integer with two half word fields

from the upper half of one word and lower half of another

word.

Operation: The lower half word of an integer is cleared to zeroes

and the upper half word of the other integer is cleared to zero.

Racal+c frnm +ha rlaarinn nnar;%Hnn arc rnmhinad to rraat p a full

Parameters: UHALF - integer word containing data in the upper

'	 half word.

!
	 LHALF - integer word containing data in the lower

half word.

LOSTOR	 the constructed full word integer is returned
d

through the function name.

I

1

j

i

r

LSTLNK. 1

SUBROUTINE LSTLNK (USECOD)

^„ s

Mnemonic u igin: List link.

Classification: HE table generating routine.

Purpose: Create Use table linkage among Begin/End list bracket entries.

Operation: Upon entry, a Use Table entry is created which is either

a Begin or End List Bracket. Forward and backward pointer entries

are required for the Use entry.

Begin and End Use codes are treated separately. A single routine

.was implemented to ease the understanding of operation. Begin and End

entries are linked to one another on separate calls, using the List

Bracket Stack to record the last occurrance of Begin Use codes.

If the Use code is a Begin bracket, the pointer to the Symbol

Table is examined. If the Symbol Table is positioned to a nonempty eYtr^-

a dependent list is required linked to the selected symbol. If the

Symbol Table is in an overflow state or positioned to an empty entry, an

independent list is required.

Note that construction of dependent lists assumes that at least

one Use of the symbol has already occurred; therefore, a Begin list

bracket cannot point directly back to the Symbol Table entry. The Begin

list bracket points back to the most recent Use of the selected symbol.

On Begin List Use code, the backpointer is inserted in the current

Use Table position and the Use Table position of this Begin code is in-

serted in the List Bracket Stack. The forward pointer of the Begin Use

entry is not modified during this insertion.

When an End List Use code is encountered on a later call, the Use

Table position of the most recent Begin code is retrieved from the List

v
1

LSTLNK. 2

Y 1r
1

Bracket Stack. The forward pointer of the Begin Bracket Use code is set

to the current Use Table position and the backpointer of the current

Use Table entry is set to the Begin pointer position. In this way, the

two Bracket codes are linked together. The forward pointer of the End

Use code is set to zero. Note that recording list links for End list

code is the same whether the list is dependent or independent.

Parameters: USECOD - Use code indicating whether a Begin or End list

}	 code linkage is to be generated.

s
3

7

7

i

t

t

MODNAM. 1

^Ip
SUBROUTINE MODNAM(NUM, N1, N2)

Mnemonic Origin: Module Name Search

Classification:	 AIR General Purpose Utility

Purpose:	 Find name of module having module number NUM when AIR

suffers terminal error.

Operation:	 Place name of module having module number NUM in

N1 and N2, four characters per word, left-adjusted. If name is

not found, fill N1 and N2 with asterisks.

Parameters:	 NUM - Input

N1 - Output

N2	 Output

R

v

MULBRA. 1

SUBROUTINE MULBRA

Mneumonic Origin: Multiple Branch Statements

Classification:	 AIR Query

Purpose:	 Searches for multiple branching statements not branching

to statement immediately following

Operations: Warning flags may be produced for primary listing only.

Algorithm: See Source Code Listing

r	 .

i

MVMSG. 1

SUBROUTINE MVMSG(REPORT, OROGIN, CARD)

Mnemonic Origin	 Move Messages

'Classification:	 Report Generator service routine

Purpose:	 Position messages to the first message for the indicated

report.

Operation:	 Upon entry, a report is about to begin. The first

message is to be constructed from Flag File contents. The Flag

File, a sequential medium, may already be positioned to the pro-

per location, or contain information not properly processed on

the last report. MVMSG recovers from report processi .ng errors

and skips incorrect flags which might otherwise influence pro-

cessing.

If the current message is empty, or exhausted, ,a new mes-

sage is requested. If the message is empty, (i.e. no message

produced by the request), Flag File contents are exhausted. This

condition satisifies the movement requirement.

If the message is not empty, but a message is present

which is behind the requested message, messages are discarded

until a message is found which satisifies the required conditions,

or the end of Flags are encountered.

Parameters: REPORT	 integer input specification indicating the

Flag key field for an acceptable message.

ORIGIN - source code origin specification for an.

an acceptable message.

CARD	 relative card number specifcati^"^'^

acceptable message.

011 OWNM --

X

+`	 3

MVMSG. 2

a.

I	 SPedial Notes:tes: Current implementation of MVMSG requires requests

for messages to appear in the same order as the Flag File

contents are sorted. That is, a sequential Flag File and

report order request are assumed. If reports are requested

In random order, valid messages will be skipped where the

sequence of requests differs from the Flag File sort order.

MUSCAT. 1

SUBROUTINE ?-IVSCAT(ORIGIN, RECORD j

Mnemonic Origin: Move Source Code Catalogue

Classification:	 System I/O positioning routine

Purpose:	 Position the Source Code Catalogue to the indicated

record position:

Operation:	 Upon entry, it is necessary to position the Source

Code Catalogue to a given physical record position. The indicated

record position will be the next record to be read or written.

The physical record number is computed using the origin

and relative card number. If the record is within Source Code

i	 Catalogue bounds, the file is positioned to the requested location.
t

k	
Parameters: ORIGIN - Source Code Catalogue origin.

w

RECORD - Relative card number within specified origin.

i

1	 r

NEEDTP. 1
x

INTEGER FUNCTION NEEDTP (NAME, LNG, CLASS)

Mnemonic Origin: Need Type.

Classification:	 HE Table generation routine.

Purpose: Provide a Type code for defaulted Symbols when inserting

Symbol Table entries.

Operation: A symbol is presented for which a type is required before

inserting the symbol in the Symbol Table. NEEDTP has both active and

error protection code for the typing of symbols.

Normally, NEEDTYP processes symbols which are variable and

function names not previously assigned types. These entities are dis-

covered by examining the class code assigned. The symbols are typed by

examining the fir:t character of the symbol name.

Additionally, NEEDTYP provides type codes for alphabetic character

strings used in a constant context (e.g., DATA constants).

Other operations are error neutralizing activities used to cover

the possible omission of typing other processing routines. If an invalid

class code is discovered, the type of zero is returned.

Parameters: NAME	 - Symbol name of symbol in A4 format.

LNG	 Length of symbolic name in number of integer

words.

CLASS	 Class code assigned to symbolic name.

NEEDTYP - Assigned type code returned through function

name.

4.

t

r

NEWDIR. 1

SUBROUTINE NEWDIR

Mnemonic Origin: New Directory.

t	 Classification:	 FFE Table Generation Routine.

Purpose: Create new Directory entries from symbol references of

module processed.

Operation: Upon entry, a module has been processed. The tables

generated for the module are used to update the Directory contents.

The primary entry point to the module is contained in the current module

description, /CURMOD/. The module type is used to determine

the Class code of the module name found in the Symbol Table. The Symbol

i
Table is then searched for the module name (primary entry point) to

begin the investigation for Directory entries.

The primary entry point is recorded in the Directory along with
i

access information to the Table File entries and Source Code Catalogue 	 {

index information for module source. The other active symbols of the

module are then searched for recordable Directory entries.

i
Other recordable Directory entries are secondary entry points 	 a

and references to subroutines and functions. If a secondary entry point

is found, the entry is recorded with the same file access information

as 'the primary entry point. References to other routines are recorded

in the Directory with empty access information since these are references,

not definitions, of the modules.

If an EXTERNAL function or subroutine is found, the character

string may not be the name of the routine. For example, if the rout 4 ne

1	 name is passed by parameter, the name used in the CALL may not be the

routine name. Therefore, references to external declared routines are

a

NEWDIR. 2

entered in the Directory only if they appear in an EXTERNAL state-

ment. Since reference entries of the Directory are overridden by

definition of the module, the reference to an EXTERNAL routine is re-

corded in the Directory as a subroutine; if it turns out to be a

.function later, or already is defined as a function, the function

declaration will correct this error.

k	 Y

Tom'

H

to •:

{,..' 	 W,

_,.	 .».:^-+.s-Mw'::%s^i4`mmr ":	 ..^yu.r.a..,. ..,:.........:.;...... _....:... .+^-.yr..	.:.__.^„s...,;M....,,....u......:..: 	 .J.»-:w!.run•o4wnw'i^.r. altaro..:_ :	^-

S

NODGEN. 1

r	 i

SUBROUTINE NODGEN

F	 Mnemonic Origin: Node Generation.
{

Classification:	 FFE Table Generation Routine.

Purpose: Manage the production of graphical flow of control for
y

a module.	
r

Operation: NODGEN provides a processing sequence required to generate

^--	 graphical nodes of the module just processed. The transition pairs table

is first converted to replace references to symbolic labels with re-

ferences to node (statement) numbers. Then the program graph successors

are produced, followed by graphical predecessors.

ii

1

5

9

F

i
I

ion

NOPRO. 1

SUBROUTINE NOPRO

j

Mnemonic Origin: No Process Statement.
.r

Classification:	 FFE Parsing Support Routine.

Purpose: Provide artificial parsing of statements not processed

by FACES.

Operation: Upon entry, a FORTRAN statement has been recognized which

is not processed by current code. A warning flag is issued to inform

the user that the statement text will not be included in analysis. The

F	 Parsing Tables are positioned to the end of the recorded entries to

force completion of the statement. No entries are made in the Symbol

or Use tables for the statement.

r

Specialcial Note: NOPRO is not'called when ignoring a statement will not

influence the analysis. For example, ignoring a FORMAT statemen'^

text will not influence any current analysis.

i
1

Y

R

111-11 JIMI,

NORLNK. 1

SUBROUTINE NORLNK

Mnemonic Origin: Normal Link.j

Classification:	 HE Table Generation Routine.

Purpose: Provide normal Use Table linkage among entries.

Operation: Upon entry, a normally linked Use code is to be recorded

in the selected position of the Use Table. This Use code is not a special

bracket code. The Symbol Table is positioned to the symbol for which

the Use is to be recorded.

t.	
If the Symbol Table is in an overflow state or the Symbol Table

position is empty,.a warning message is issued. Otherwise, the linkage

of the Use entry to preceeding Uses of the symbol are recorded.

If this is the first Use of the symbol, the backpointer of the

Use Table entry is set to a flagged half word pointing to the Symbol

Table position. The first and the last Use pointers of the Symbol Table

entry are set to the current (first and only) Use position.

If the symbol has been used previously, the backpointer of the

new Use is set to the most recent Use, and the most recent Use forward

pointer is set to the current Use Table position. The forward pointer

for the current Use is set to zero since there is no Use in a forward

j	 position.

f;

a	
NXTCHR. 1

SUBROUTINE	 NXTCHR (KIND, OCHR)

Mnemonic Origin: Next Character.

Classification:	 FFE Scan Support Routine.

' Purpose:	 Provide the next character to FFE scan routines from the

V` Scan Buffer.

Operation: Upon entry, the next character is required from the Scan

Buffer for statement text of a FORTRAN statement.	 The pointer to the

Scan Buffer is advanced. 	 If the Scan Buffer data has been exhausted,
3

the buffer manager is called to provide more statement text.

A character is extracted from the Scan Buffer.	 If the request

is for the next sequential character (e.g., in scanning Hollerith 	 i

p character strings), the extracted character is returned. 	 If the request

is for a nonblank character, the character is discarded if blank; 	 blank

characters are continually discarded until a nonblank symbol 	 is found.

The end of statement is determined by the buffer manager. 	 The

-buffer manager is responsible for inserting end of statement codes in

the Scan Buffer when statement text is exhausted. 	 s

i

Parameters:	 KIND	 -	 input control parameter indicating the category

of character sought.

OCHR	 -	 output parameter receiving the symbol in A format.

s

l

y

NXTCMD. 1
s 1	

14 ^'	 SUBROUTINE NXTCMD

Mnemonic Origin: Next Command,

Classification:	 Control Driver Command Interpretation.

Purpose ,: Provide the next command item from the command cards.

Operation: Upon entry, the next command item is required from the

user ' s command card set. Several conditions may exist:

1. The first command is required from the first card.

2. A command card may currently be in progress.

3. A command card may be exhausted.

4. All command cards may have been processed.

If the first command from the first card is required, the command card

image contains an empty command card (onempty length pointer of zero

value) and the command item is also empty; these values are established

by initialization of the system.

If the current card is empty, a command card is requested from the

command card set. If cards are available, the text image is returned.

The command card is echo printed and the command card pointer is set to

the first nonblank column. If ,a blank card is read, the pointer adjust-

ment will cause an exhausted card to be indicated (i.e., the current

pointer beyond the last nonempty pointer).

If nonblank characters remain on the command card, a command item

is constructed from command card characters. Otherwise, the End of Card

command item is returned as the next command item, and the command card

image is set empty.

If, when requesting a new command card, no card is returned, the

Finish of command cards is indicated. The Finish command is returned

NXTCMD. 2

e	
^_

as the next command item. Notice that any subsequent call will

produce a Finish command item since the no cards will be available.

This feature is intended to contain any sequence errors in which the
i'	

t

Finish command is erroneously ignored by-processing routines.

Allowing both an empty command card and exhausted command card

state permits treatment of several boundary conditions. The primary

'.j	 function is to permit a last command item to be constructed and re-

turned, followed by an End of Command item which does not physically

occupy card columns. In addition, the command item constructed may
E	 .

ti	 occupy the last card column of the command card. Advancing past the

pointer to the last entry of the command card will terminate con-

struction of the command item. The last command item might also be a

'	 single symbol in the last card column. Therefore, the pointer to the

{	 command card must be permitted to exceed the last pointer to insure this

case is properly processed.

I
3

i

y

ry

}

^	 3

r

i

i_

OPERND. 1

LOGICAL FUNCTION	 OPERND (ISSCOD)

Mnemonic Origin:	 Operand.

Classification:	 FFE Support Routine.

Purpose:rpose:	 Identify Intermediate Symbol String entries corresponding

to operands.

Operation:	 Upon entry, an ISS coded entry is presented which may be
R

an operand (i.e., variable name or constant).	 If the entry presented

corresponds to an operand, a TRUE value is returned through the function

I name.	 Nonoperand entries produce a FALSE value.

Any ISS code which is an alphabetic symbol other than Relational

: and Logical operators is an o 	
i

operand.9	 P	 P
9

` OPERND is used in parsing routines to select operands used in 	 h:.

FORTRAN text.	 OPERND is also used in manipulations on the Parsing

Tables to detect ISS entries for which TSTAB character strings are

f

recorded.

j
Parameters:	 ISSCOD	 -	 Intermediate symbol string code to be inspected

as a possible operand.

OPERND	 -	 logical inspection result is returned through

l the Function name.

r_

wf 1

OUTxxx. 1

SUBROUTINE OUTXxx

Mneumonic Origin: Output xxx (Global) Tables where

xxx = COM, ISH, SH

Classification:	 AIR System Request Routine

Purpose:	 Write tables xxx out to secondary storage from main memory.
x

Operations: COM: COMMON Block Reference Fable and Linked

List Table

ISH: Inverse System Hierarchy Table and Inverse

System Hierarchy to Directory Table

SH:	 System Hierarchy Table and System Hierarchy

to Directory Table.

OUTDIR. 1

I '	 SUBROUTINE OUTDIR

n

Mnemonic Origin: Output Directory to Table File.

I'	 Classification:	 System I/O Routine.
.y

Purpose: Place the contents of the Directory on the Table File.

Operation: The contents of the Directory are written to Table File

records allocated for the Directory. The nonempty length of the

Directory contents is placed in the Global Header position allocated

for saving the 04, pectory status.

i
t

x

a

3

I

t

s—

4

,K>

4

i

1

E

r

((

	 y.

OUTGHD. 1

SUBROUTINE OUTGHD

Mnemonic Origin: Output Global Header.

ClassiFication: System I/O Routine.

Purpose: Write the contents of the Global Header to the Table File.

Operation: Contents of the Global Header are written to the Table

File to secure the data generated during the run. Writing the Global

Header updates Table File information and Source Code Catalogue data

created during the run for future access.

a

l

PAKCHR. 1

INTEGER FUNCTION PAKCHR (VECT, COUNT)

Mnemonic Origin: Pack Characters.

Classification: FFE Character Manipulation Routine.

Purpose: Pack characters provided in Al format into A4 format word.

Operation: Upon entry, a vector of Al formatted characters is pre-

sented for packing. The length of the character string is between 1

and 4. The first n-1 characters are packed into an integer word, left

justified with zero right fill. If n is less than 2, no characters are

packed by this operation.

Finally, the last character is placed in the word usin g the

trailing right fill from the last character as fill for the packed

string.

The.routine is coded in a more general form than the current use

as an A4 packing routine to peemit flexible use in expanded systems.

	

Parameters: VECT	 - one dimensional vector containing Al formatted

character string to be packed.

	

COUNT	 count of the number of characters to pack into

the return word.

PAKCHR - packed character string returned through the

function name.

E	 _

.	 l

PARAL. 1

, 	 SUBROUTINE PARAL (ARRAY, ARRSIZ)

Mneumonic Origin: Parameter List Alignment Check

Classification: AIR Query Driver

Purpose: Drives Parameter List Alignment Check

Operations.: All information necessary for Parameter List

Alignment Check is placed in Alignment Tables. Model for

Alignment Check is formal (dummy) parameter list; it is placed

in Alignment Table One. Array ARRAY has ARRSIZ entries; each

entry specifies which Paramete List Alignment Check is to be

performed and whether flags may be produced for primary or

secondary listings,

{ ,	 Algorithm: See Source Code Listing.

Parameters: ARRAY - Input

ARRSIZ	 Input

See also /ALT/ and "Alignment Tables

A	
w

PARSER. 1

SUBROUTINE PARSER

Mnemonic Origin: Parser Routine.
E

Classification:	 FFE Parsing Control Routine.

Purpose: Control the parsing of a single Module of FORTRAN code

producing tables for later analysis.

Operation: Upon entry, another module of FORTRAN is . available for

analysis. The module must be processed and analysis tables and

source code catalogued for the evaluation and report.

A module number is assigned for the module to allocate table

file space on the analysis Table File. If maintenance printing is

active, the printer is page restored for the start of the module.

The system is reset in acyclic fashion until a proper module

header is discovered. If stray source code is found between modules,

this action will flush the source text. The appearance of _a valid header

card is detected by a statement process routine assigning a module name

to the current module description. For protection, the failure of the

statement number to advance will cause loop exit; this wil l occur if

the source code is exhausted while looking for the module header card.

If a module header card is found, the source code origin_of the

module on the Source Code Catalogue is recorded and processing o f, moe.^l

text begins. PARSER looks for a module with the characteristics of a

Module header card followed by -a series of FORTRAN statements terminated

by an END card or the premature appearance of ,another module header card

(i.e., the current module missing an END card).

When the module processing halts cyclic operation by an END or

premature header card, graphical nodes are produced for the tables

r	 ^

NOW

PARSER. 2

y	 generated and the relative card counts are adjusted for the next

module.

The next module begins on the Current Card (CURCD) if a normal

	

'	 END card was processed. If a premature header card is detected, the

	

`	 Begin Card (BGNCD) is the first card of the next module.' The relative.

card counts are adjusted such that the first card of the next module will

be relative card number 1. Note that the contingency is permitted for

comment cards to appear between decks.

The source code origin for the next card is computed using the

number of relative cards contained in the current module just processed.

The count cards in the module are set in the current-module description

prior to return to the calling routine.

	

^ 	
Upon exit, the source code origin and relative card counts are

adjusted for the next module and the local tables for the current module

have been completely constructed.

Specialcial Note: Note ' that a premature header card will be loft for

processing on the next call to PARSER. Thus, processing routines

subordinate to PARSER should allow for this contingency.

F

k'

f

w

pry+"

PATHS. 1

SUBROUTINE PATHS(BEGINP, ENDP, FOLBAK, COND)

jQ drigin: Follow Paths

Classification:	 AIR Special Purpose Utility

(Referenced only during search for local unini-

tialized variables and for DO loop index variables

used after loop terminated normally.)

Purpose:	 Follow non-circular intra-modular paths.

Operation ' Build non-circular path from beginni .ng point BEGINP

to ending point ENOP, one point at a time. FOLBAK indicates whether

PATHS is following or backtracking along path. COND indicates con-

dition under which control was returned to calling routine.

Algorithm: See Source Code Listing.
F

Condition Codes: See Source Code Listing.

Parameters:	 BEGINP - Input

ENDP	 - Input

FOLBAK - "Input/Output

COND - Input /Output

Designer's Comment: Double Stack technique used in PATHS should

be replaced by single stack technique of TRACHI.
F_

See also "Flow of Control Path Tracing" and Path Stack.

x

r

i

r	 PLDIM. 1
t

SUBROUTINE PLDIM (PARAMI, PARAM2)

Mneumonic Origin: Parameter List Dimensionality Mismatch
5

Classification: AIR Query

Purpose: Searches for correspodning parameters not having

compatible dimensions. 	 {

Operations: If PARAMI equals 520, warning flags may be produced

for primary listing. If PARAM2 equals 521, warning flags may be

produced for secondary listing. i

Incompatible dimensions are defined as follows:

1. Actual parameter is array and dummy (formal) parameter

is scalar.

2. Actual parameter is element of array and dummy parameter

is entire array, except

a) when both parameter have same number of parameters

and subscripts of actual parameter are all ones.

3. Parameters do not have same number of dimensions.

4. Parameters have same number of dimensions, but dimensions

are not idnetical, except

a when dummy parameter has "dummy"-dimensions" • dimensionsYP	 Y

b) when dimensions of dummy parameter are all ones

Scalers are defined to have zero dimensions,

Algorithm: See Source Code Listing.

Parameters: PARAMI - Input

PARAM2 - Input

See also /ALT/ and "Alignment Tables"

IN-

{

4
i

i PLNENT. 1

SUBROUTINE PLNENT (PARAMI. PARAM2)

I

s

Menumonic Origin: Parameter List Number of Entries Mismatch

Classification: AIR Query

Purpose: Searches for corresponding parameter lists not having

same number of parameters.

Operations: If PARAMI equals 500, warning flags may be produced

for primary listing. If PARAM2 equals 501, warning flags may be

produced for secondary listing.

Algorithm: See Source Code Listing

Parameters: PARAMI - Input

PARAM2 - Input

See also /ALI/ and "Alignment Tables"

PLTYPE- 1

SUBROUTINE PLTYPE (PARAMI, PARAM2)

Mneumonic Origin: Parameter List Type Mismatch

Classification: AIR Query

Purpose: Searches for corresponding parameters not having identical

types.

`^'"	 Operations: If PARAMI equals 510, warning flags may be produced for
F

primary listing. If PARAM2 equals 511, warning flags may be produced

for secondary listing.

Algorithm: See Source Code Listing
t

Parameters: PARAMI - Input

PARAM2 - Input

See also /ALI/ and "Alignment Tables".

j

i

j	
a

i

F

Moelgonic	 in: Pop Control Stack

Classification:	 AIR General Purpose Utility

Purpose:	 Delete information at top of Control Stack.

Operation:	 Delete information at top of Control Stack. If table

Just deleted does not appear Control'Stack, set current row pointer

to table to zero. If table just deleted appears elsewhere in

Control Stack, set current row pointer to table to value of pointer

column of table's occurrence nearest top of Control Stack. Attempts

to pop empty Control Stack halts AIR processing.

Parameters:	 DUMMY - Unused

See also PUSH and Control Stack. 	 f

t.

PPTRIP. I

_^ SUBROUTINE PPTRIP

Mnemonic Origin: Postprocess TRIP Table.

Classification:	 HE Table Generation Routine.

Purpose: Convert references to statement labels in the transition

pairs table to the statement number where the label was

defined.

Operation: Upon entry, the transition pairs table (TRIP) contains

entries composed of node numbers (statement numbers), special codes,

and references to statement labels. Entries containing references to

statement labels are to be converted to the node number (statement

number) where the label is defined.

Entries containing statement label references are discovered

by examining the postprocessing code appended as a flag to the pre-

decessor entry of the transition table entry. The postprocessing flag,

predecessor specification, and successor specification are extracted

from each entry. If the flag indicates a label reference, the pointer

to the Symbol Table is set to select the required label. Uses of the

label are searched to detect the defining statement number. The

appropriate entry is then replaced with the label definition statement

number and the postprocessing flag is removed from the entry in th®

process.

If a label definition cannot be found, an error message is issued

for the module indicating the missing label will affect the graphical

examination. The missing label entry is replaced with an undefined label

code.

J	 rt

PREGEN. 1

SUBROUTINE PREGEN

Mnemonic Origin: Predecessor Generation.

Classification:	 HE Table Generation Routine.

Purpose: Upon entry, the transition pairs table has been converted

to special codes and node numbers indicating program flow transitions

in the module processed. (See PPTRIP.) The transition pairs table

is sorted on Successors entries. This forces the grouping of all

predecessors to a particular node to adjacent positions in TRIP and all

special code successors (i.e., those not attached to anode) to the

bottom of the TRIP table.

	

r'	
In processing predecessors to a particular node, the pointer to

the last entry of the Predecessor Table is used to record the predecessors

prior to insertion. The current pointer to the Predecessor Table is

used for insertion of predecessors to a particular node. After all pre-

decessors have been inserted (possibly empty set), the pointer to the

last entry is compared to the current pointer to the Predecessor Table.

If entries were actually made, the difference indicates the count of

predecessors added.

If node predecessors were inserted, the pointer to the first entry

and court are inserted in the Node Table position. If no predecessors

were found, zero values are placed in the Node Table entries for both

the pointer and count values.

Determining node predecessors requires processing both the explicit

predecessors (i.e., branch targets) and the implied predecessors (i.L

	

^	 era►.	
fall through transitions). The first node is processed to include only

PREGEN. 2

explicit transitions since there is no "previous node". On other

nodes, the implied predecessor (if any) is inserted followed by the

explicit predecessors (if any). A previous node is an implied pre-

decessor unless it is an explicit branch or termination of processing

statement.

If the Predecessor Table is exhausted before all nodes are pro-

cessed, an error process is executed. The error process distinguishes

overflow cases where the overflow occurred on the last node from overflow

on nodes before the last node. In the second case, the remaining nodes

k

are set to indicate no predecessors are recorded.

1I

I

JJ^
' 	

A

I

i

i

Y

_

PRIMR. 1

SUBROUTINE PRIMR

Mnerhonic. 0ri g in	 Primary Report

Classification	 Report Generator report processor

purpose:.	 Control the production of primary reports.

Operation:	 Upon entry, Primary Reports for flagged modules are

to be produced. The Primary Report set will be empty if the Flag

option is selected and no flags are present for Primary Reports.

The flag key value for Primary Report flags is set. The

current module description is set empty.

Primary reports are produced by a loop , selecting modules

for the report then producing the report. The loop is terminated

when no more modules are .,elected.

Module selection is performed by a service routine, reporting

by parameter when the report set is complete. If a module is

selected, the messages are positioned to the selected module and

the module report produced.

After issuing all Primary Reports, the messages are flushed

for any remaining flags which were not processed. This action is

protection code to prevent malfunction of the Primary Report pro-

cess from influencing Secondary Reports.

I	 ^

1

PRSKWD. 1

SUBROUTINE PRSKWD

Mnemonic Origin; Parse Key Word statements

Classification: f FF parsing control routine

Purpose: Direct the processing of FORTRAN statements which are

identified by a Keyword (i.e. do not contain a zero level

equal sign).

Operation: Upon entry, the Parsing Tables are positioned to the

first word of a FORTRAN statement which does not contain a zero

level equal sign (i.e. an equal sign outside parenthesis). The

first entry of the statement should be a FORTRAN Keyword.

The first four characters of the leading word are presented
c

.,	 for classification as a FORTRAN Keyword. If the word is not re-

cognized as a Keyword, the current statement type is marked as

unrecognizable and a message issued. The Parsing Tables are po-

sitioned to the end of the statement to terminate processing of

the unrecognized form.

If a valid Keyword is identified, the appropriate parsing

routine for processing the statement is selected. Simple state-

ment forms are processed directly by PRSKWD; more complex forms

require calling a statement processor for the appropriate type.

The .return index for the Keyword is used to establish the state-

ment type code of the current statement. This assignment will be

modified only by a FUNCTION declaration with:a leading type speci-

fication. In this case, PRSKWD will initially assign a type

k

a

PRSKWD. 2

statement code which is reversed to a FUNCTION type later.
7

If the statement is a header card (e.g. SUBROUTINE, PRO-

GRAM, BLOCK DATA) processing is halted unless this is the first

x' statement of the module. 	 This mechanism detects the premature
4

appearance of another module header.	 In this Event, the statement

type code is maintained, but the statement is not processed.

Rather, control is returned with the Parsing Tables positioned

to the first entry for later processing.

i FUNCTION header cards require special treatment. 	 Since the

FUNCTION may be preceded by a type declaration, entry to the FUN-

CTION statement processor may occur either through PRSKWD or in-

directly through preliminary analysis of the type declaration.

- For this reason, the FUNCTION statement processor is required to i

check for the premature header condition.	 In addition,.the linkage

through type statements entry, requires the function name to the

extracted prior to calling FUNCI for interface compatibility.

Processing FUNCTION declarations is the only process which over-

rides the statement type assigned by PRSKWD.

Mnemonic Origin: Parse Statement

Classification: FFE parsing control routine

Purpose: Process a single FORTRAN statement

Operation: Upon entry, the Parsing Tables may be empty or oc-

cupied. If they are occupied, the Parsing Tables may contain

the latter part of a two part statement (e.g.IF() A = B) or

t

a statement not processed on the last call (e.g. a premature

module header).

The first Use Table position is anticipated for the state-

ment and a new statement number assigned for the statement to be
r.

processed. The statement type of the current statement is set to

zero to detect statements not being processed.

If the Parsing-Tables are empty or exhausted, new statement

text is requested. I'f the new statement iF labeled, the label
s

definition is recorded.

If an empty statement is detected from the scan process,

the end of input source code has occurred and no statement text

is available for processing. Otherwise, normal processing is

j. accomplished on the statement.

If maintenance printing is active, the Parsing Tables are

displayed after processing labels.

I

-N-

a

I

PRSSTM. Z

The first card of the statement is recorded in the current

statement description and the statement text is processed. State-

	

f	 ment processing is governed by whether the text contains a zero

level equal sign (i.e. a equal sign not . enclosed in parenthesis.
i

After processing the statement text, the uses recorded are

inspected, If no uses were recorded, the'first use indicator is

	

j	 set empty. If a statement was produced, the last card number

	

t	 '

	

i	 relative to the module is inserted in the current statement posi-

tion and a Node Table entry is made to record the statement type,

Use table pointer, and card counts. (Note: Node predecessors and

successors are not yet determined. These elements are created

	

f	 after the module is completed.)

Control returns with the statement parsing tables left in

the last position remaining from statement processing routines.

Mnemonic Origin: Parse Zero Level Equal Sign statements

Classification: HE parsing control routine

Purpose: Control processing of FORTRAN statements containing

a zero level equal sign.

Operation: Upon entry, a FORTRAN statement occupies the Parsing

Tables which contain a zero level equal sign (i.e. a equal sign

not enclosed in parenthesis). The statement might be a simple

assignment statement, an assignment statement appended to a l.ogical

IF statement, a DO statement, or a statement function definition.

PRSZEQ determines the general type of statement and passes control
a

to the appropriate statement processing routine.

The first decision is made on whether the form is "variable

name(". If this form is found, the statement is not a DO state-

ment or an assignment to an unsubscripted variable. If the variable

name is IF, the statement form is either an IF statement, statement

function definition with function named IF, or assignment to an

array named IF. These cases are distinguished by searching for

the form "IFO=". If this form is found, the statement is 'an

assignment statement or statement function; otherwise, it is an IF

statement. (Note this search is only required for IF statement

forms which contain assignment statements for conditional execution.)

If the variable name in the form "Variable(is not IF, the

statement is either an assignment to an array element or a statement

r

PRSZEQ. 2

function definition. Assignments are distinguished from statement

functions by looking for a declared array with the specified variable

name. If a declared array is not found, the statement is processed

as d statement function definition. If an array name is found the

statement is processed as an assignment statement.

For statements where the initial form is not "variable("

the statement is either a DO statement or assignment statement.

Since the characters DO may be the leading symbols of a variable

name, the cases are distinguished by looking for the index control

variables following the equal sign. If the form "DO = name,"

or "DO = t name," is found, the statement is processed as a

DO statement. Otherwise, an assignment statement is processed.

Before control is passed to the statement processor, the

statement type is assigned for the current statement based on

analysis of statement type.

PRTDIR. 1

3-	
SUBROUTINE PRTDIR

i;	 Mnemonic'Origin: Print Directory

Classification: Control Driver User display routine

Purpose: Display contents of Directory for User information

Operation: The contents and status of Directory entries are

displayed for the user's information. The display includes the

i status of the Directory (i.e. amount of directory space filled

y	 I
and remaining), the module names entered in the Directory, and the

I'	 description of the modules recorded. If the Directory is empty,

j
the user is informed that no modules are currently recorded.

r
Otherwise, the contents of the Directory are extracted and dis-

played.

f>'
Description of each module includes the name of the module

and module characteristics. Modules characteristics include

whether the module is a Function Subroutine, or main program;

I
if a subprogram is a secondary entry, this information is conveyed

in the module type displayed. The description is obtained by in-

terpreting the module type code through a read-only table of al-

phabetic symbols set in Block Data.

l	 If the module is defined, a nonzero count of source code
I i	

cards is displayed.I_

f

^. _ AWL

u

PRTEXP. 1

SUBROUTINE PRTEXP

Mneip2ntr Origin: Print Explaination

Classification:	 Report Gernerator Primary Report service routine

Purpose:	 Print an explaination of flags for a module Primary

Report.

Operation: Upon entry, a set of inline user messages (possibly

empty) have been produced for a Primary Report. Some flags re-

quire additional information explaining their origin or potential

effect.

Flag occurance has been marked in the explaination vector.

'The contents of the explaination vector are searched for a non

.,	 empty entry. If at least one entry is found in the vector, a 	 fi

series of explainations are provided for flags which require ad-

ditional support text. Not all flags require this activity."

j

PRTMSG. 1

w

SUBROUTINE PRTMSG

Seri pj^, Ori icon: Print Message

'Classification:	 Report Generator service routine

Purpose:	 Compose a text message to inform the user.of a flagged

condition.

Operation:	 Upon entry, a listing report message is available
.f

for display to the user. The current message contains flag iden-

tification and supporting data for display. The message is inter-

preted based upon the flag number of the message. Each flag

number constitutes an independent case for processing.

The case for processing is selected using a ladder search

using the flag number. When the proper flag number is recognized,

a write statement is executed to produce the message. After pro-

cessing the message, the length of the current message is set

empty to inform the message construction routine that the data

was consumed,	 j

If the ladder search reaches the end of the list without

match, an invalid flag number is present. A warning is printed and
a

the message is discarded by setting the length empty.

S ecial Note:	 Processing some messages may require not printing

descriptive lines. These messages only force lines of node

to be displayed. The descriptive writeis not required.

z^

PRTPRM. 1

SUBROUTINE PRTPRM

Mnemonic Origin: Print Primary Report

'Classification:	 Report Generator Primary Report processor

Purpose 	 Produces the'Primary Report for a single module.

Operation:	 Upon entry, a module has been selected for which a

Primary Report is required. The module may or may not have

flagged lines of source code.

The printer page is restored and the header printed. The

flag explaination vector is cleared and the line number for source

code set empty. The explaination pointer is set empty to detect
i

the appearance of flags after the report is produced.

^.	 To produce the report, a loop is implemented. If no 	 flags

are present for the selected module, loop iterations are not per-

formed. If flags are present, source lines are printed from the

current position to the end of the flagged lines and the current

position is advanced. The flag.message is printed and the ap-

propriated flag occurance is recorded in the explaination vector.

The next message is acquired and the loop repeats. When a message

is detected which does not belong to the current module, the

looping process is terminated.

To complete the source code listing, source lines are

printed from the current position to the end of the module.

After printing the listing, the explaination of flags is produced

:ff•

PRTPRM. 2

for the module. This action is taken only if flags were encountered

in the source processing.

If there are no flags for the selected module, the loopi.ng

process is not executed; rather control passes directly to the

terminal procedure. This process prints the entire source code

body for the module. This action is taken for unflagged modules

listed resulting from the ALL option on'the REPORT command.

Special Notes:	 Notice that more than one message may be needed

for the same source code line set. By marking the current

line, later messages will not produce repeated line prints.

The line processing routine will recognize the described

set as an empty set.

i

Ir

PRTQLS. 1

SUBROUTINE PRTQLS

4

i

Mnemonic Origin: Print Query List

Classification:	 Control Driver user Print routine

Purpose:	 Inform the user of Queries constructed from Query

specifications.

Operation:	 Contents of the AIR List Table are displayed for user

inspection. The List Table contains selected queries correspon-

ding to actions about to be taken and empty (i.e., zero valued)
3

entries for queries turned off by the user.

 { Ir	 11

i

3

1

•	 r
fi

PUSH. 1

SUBROUTINE PUSH

Mne, onic Qrjgj.n: Push Control Stack (opposite of POP

C14ttifi64,tion:	 AIR General Purpose Utility

Furpote:	 Add information to top of Control Stack.	 r

Operation: Add information to top of Control Stack from Module

Number Register (MR), Table Name Register (TR), List Indicator

R	 Register (LR), and Pointer Register (PR).

If table being referenced is global table, module number

stored at top of Control Stack'is zero.

t
i

See also PUSH, Control Stack, and /SPEREG/

i

r

1

r.

RDFLAG: 1

SUBROUTINE RDFLAG

Mnemonic Ori4in: Read Flag

Classification:	 Physical I/O rotAine

ur ose	 Place the next flag information from the Flag File in

the flag buffer.

Operation: Upon entry, the next flag is required from the Flag
File. Physical reading is dependent upon the status of the Flag

File. If an end of file previously occurred, no information is

read; rather an empty flag is returned in the 1/0 buffer to inform

the calling routine that no more flags are available.

If end of file has not occurred, Flag data is read from the

I,	 file, and the buffer is set full. If an end of file occurs on this

read, the buffer is reset empty and the control variable set to

prevent future reads. This indicator must be reset externally

before physical I/O will be permitted again.

F

t
F

r

I

I

RDSCAT. 1

I

SUBROUTINE RDSCAT

Mnemonic Origin: Read Source Code Catalogue

Classification	 System I/O service routine

Purpose:	 Read a card image from the Source Code Catalogue.

Operation:	 The next record from the Source Code Catalogue is

read into the source code buffer. The next record has been estab-

lished by the pointer in the SCAT file COMMON Block. The pointer

is advance to the next record by the read process.

If the end of the source code file has been reached, the

end of file indicator is set. The fi1e'is protected from over-

reading past the file end.

RECDIR. 1

SUBROUTINE RECDIR(NAME, MTYP, MNUM, ORIG, SRCFND)

Mnemonic Origin:	 Record Directory entry

Classification:	 HE table generating routine

Purpose:	 Insert a module description in the Directory.

Operation:	 Upon entry, a module name is presented for recording

in the Directory. The module description may be a module defi-

nition or a'module reference to either previously defined or cur-

rently undefined module.

Processing the presented name requires three decisions:

1. Is the name a new entry in the Directory or is space

already allocated for the name? This decision is based upon a q

search of Directory entries.

2. Should the current description be inserted in the y

Directory? Insertion is required if a New entry is presented or

if the presented name is a module definition (i.e. not a simple

reference to a module). Definitions are distinguished as module

names assigned a positive integer module number (i.e. there are

i
analysis tables for the module).

3. Is the current entry a reference or definition entry?

The current entry is a reference entry is the module number is

zero or there is not current entry under the module name. Note

that the Directory pointer is set to the proper insertion point

by the searching process.

l

r,

r
r

i

r	 RECDIR. 2

If the module is new, space must be created in.the Direc-

tory to accommodate the new description. Otherwise, the current

entry will be used to insert the module description. Preparing.

space for new modules requires moving modules down in the Direc-

tory from the insertion point. If the insertion point is below

the last active entry, actual movement is not required.

r,
	 After preparing Directory space (if necessary), the new

description of the module is inserted. If the entry is currently

occupied by a defined module, the insertion is a replacement of

a previous definition. This action is reported for user information.

Parameters: NAME — module name passed in 2A4 format.

MTYP - module type code

MNUM - assigned module number assigned for access

to Analysis Table File data. Presented

as value 0 if reference rather than defi-

nition.

ORIG - Source code origin for source code card

images on Source Code Catalogue. Presented,

as valueO if only a reference to a module

name.
3

1

SRCEND - Number of card images recorded for module

source code if definition of module; pas-

sed as value 0 on sim ple references.

G

,r

RECSYM. I

SUBROUTINE RECSYM(NAME, LENGTH, TYPE, CLASS

n

Mnemonic Origin: Record Symbol

=	 Classification: FFE Table generation routine

Purpose: Position the Symbol table to the indicated symbol and
e

record new symbol in the Symbol Table

Operation: Upon entry, a symbol is presented which has been

encountered in the processing of a FORTRAN statement. The symbol

may be a new symbol or a reference to an existing symbol. If

this symbol is new, the symbol is recorded in the Symbol Table;

the Symbol Table is positioned to the insertion point in the pro
'	 3

cess. If the symbol is already recorded, the Symbol Table is posi-

tioned to the recorded position in the searching process. 	 j

The Symbol Table is searched for a symbol compatible with

the provided description. If a compatible symbol is found in the
a

search, the Symbol Table is left positioned to the matching table	 a

location,

If a compatible symbol is not detected by the search process,

the symbol will either be inserted or found to be compatible with

a similar existing symbol. The presented symbol may not match

an existing entry due to an ambiguity in the process. For example,

the symbol may presently be recorded as a scalar variable but used

as a function reference; the difference between a scalar variable

and function class is an ambiguity which needs resolution.

a

RECSYM. Z

1 I

l

If a symbol is an ambiguous reference, the character string

is the same as an existing symbol. The Symbol Table is search

for an entry which has the some character string (i.e. symbolic

name) ignoring type and class. If this condition is detected,

the ambiguous symbol process is initiated; ambiguity resolution

will either detect an ambiguous case or result in symbol insertion.

If the symbol string is not already in the Symbol Table,

a new entry is made. The class code is assumed to be resolved

by insertion time, but the type code may nct yet be assigned

(i.e. for example, in the case of variable names). If the type

code is not yet assigned, type is established using the assigned

class code and characteristics of the symbolic name. The developed

description is then placed in the Symbol Table. Note that the

typing operation does not modify the passed type specification;

this prevents modification of the presented parameter.

Parameters:	 NAME	 - input parameter containing the symbolic

name in A4' format.

LENGTH - Length of the symbolic name expressed

as the number of integer words required

to hold the character string.

TYPE - type specification indicating a type code

(positive, nonzero value) or defaulted

type (zero value).

CLASS - class code for the required -symbol.

RECUSE. 1

SUBROUTINE RECUSE (USECOD

v

Mnemonic Origin: Record Use

Classification: FFE Table generating routine

Purpose: Record the presented Use code in the next available

Use-Table position and link uses among each other and back

to the Symbol Table.

Operation: Upon entry, a Use is presented for the symbol currently

selected in the Symbol Table. The Use is to be,recorded in the

Use Table and the position linked to previous Uses of the symbol;

linkage points back to the Symbol Table for the first Use.

If Use Table space is available, a Use Table position is

allocated for recording the Use. Otherwise, an overflow condition

is reported and the Use is discarded.

If Use Table space is available, the Use is placed in the

Use Table and appropriate linkage is generated based upon the Use

code. Use linkage is dictated by whether the Use is a bracket

code or a normal Use code. If an invalid Use code is detected,

an anomoly is reported and the Use is recorded with normal linkage.

Parameters:	 USECOD	 input parameter indicating the Use code to

record for the currently selected symbol

ONO

-1 - ^- 'M

RDFLGF. 1

SUBROUTINE	 RDFLGF	 FWORD, FLGSIZ, FLAG, UNFLAG

Mnerh6nic Origin:	 Read Flagged Full Word

Classification:	 FFE bit manipulation routine

Separate the data and flag components of a flagged full

word integer.

Operation:	 Upon entry, a flagged full word integer is presented

along with a description of the flag size.	 The flag bits are

located in the MSB positions of the word; the LSB of the word

contain other data. 	 RDFLGF separates the flag from the data and

returns the separated results right justified with zero left fil

RDFLGF is a machine dependent routine.	 The flag value is

extracted by clearing data bits -from a copy of the presented word,

moving the flag value to the right most positions. 	 Left bit

positions are set to zero.

The data field is extracted by clearing the flag field in

a data word copywith zeroes, clearing the contribution of the flag.

Parameters:	 FWORD	 - Full word integer composed of flag bits and

data bits in adjacent fields.

FLGSIZ - integer input parameter describing the number

of MSB positions which constitute the flag bits.

UNFLAG	 output return parameter into which the data

bits are places with flag bits positions set,

to zero.

RDFLGH. 1

SUBROUTINE RDFLGH (HWORD, FLGSIZ, FLAG, UNFLAG)

Mnemonic Origin: Read Flagged Half Word

Classificatiop: FFE bit manipulation routine

Purpose: Separate the flag bits from the data bits of a half

word data value.

Operation: Upon entry, a data value is presented which contains

information bits in the lower half word positions. The information

is composed of a flag in the MSB position of the lower half word

followed by data bits in the LSB bits.

RDFLGH is a machine dependent routine. The flag bit values

are separated from the data bits by clearing the upper half word

then moving MSB field to the right clearing the left bits of the

results to zero left fill.

The data bits are extracted from the lower half word in LSB

positions of the half word clearing the bits containing flag infor-

mation to zero values.

Parameters: HWORD - integer input parameter contain information

in the lower half word composed of a flag

field followed by a data field. Upper half

wnrd rnntents are unknnwn_

FLGSIZ - description of flag field size expressed as

the number of bits in the lower half word

containing flag information.

FLAG	 output parameter containing the flag value

extracted from the half word returned right

justified with zero left fill.

r

P

RDFLGH. 2

UNFLAG - output parameter containing the unflagged

data present in the lower half word of

flagged information.

READLT.	 1'

SUBROUTINE READLT(MODNO)

Mnemonic Or_ icLin: Read Local Tables

Classifidation:	 AIR General Purpose Utility

Pur ose:	 Bring local tables of module into main memory.

Operation:	 Bring local tables for module with module number

MODNO into main memory from secondary storage. If module does

not exist, zero out local tables in main memory.

Parameters: MODNO - Input

REDCOL. 1

SUBROUTINE REDCOL (CLASS)

Mnemonic Origin;	 Reduce Comma List

Classification: FFE parsing support routine

Purpose: Reduce the complexity of actual parameters and

subscripts to single operands.

Operation: Upon entry, the Parsing Tables are positioned to the

name of a FORTRAN structure having a comma separated

access list enclosed in parenthesis. The FORTRAN

structure may be an array reference, subroutine call,

function reference, or statement function reference.
{

If the access list consists of simple operand entries, no

a	 action is taken; the list is simply examined. If the access list

contains arithmetic expressions, functions references, or nested

array references used as subscripts, the access . list is

reduced by processing the member and replacing it with a simple

operand. If the replaced member is a function reference , the

function name is substituted for the call. If the member is an

arithmetic expression, the expression is processed and replaced

with a temporary name. For example, the form,

CALL SUB (1, A+2, FUNC(3,4))

would be reduced to,

CALL SUB (1, temp, FUNC j

Complexity of REDCOL results from the need to process

recursive forms in a nonrecursive language. A stack is maintained

I

REDCOL. 2

to facilitate recursion on functions in functions, arrays

within arrays, etc. The stack records the processing state as

elements are processed. If a new structure is encountered, a

recursive call is effected to this routine again. In the call,

the stack is pushed down to begin a new processing description.

The stack is pulled when the final ")" 1s encountered. If no

recursive forms have been processed, a normal return is

performed to the calling routine. If a recursive form has been

found, the process returns to the next outer form and processing

resumes on the form.

Reduction stack entries contain the following information:

1. Class code of the structure

2. Parsing Table position of the structure name

3. Parsing Table position of the first element of the

current member being processed. Advanced as members

are processed in the comma list.

4. Need for subexpression indicator. Set if a member is

found to contain arithmetic expression.

5. Relative parenthesis count. Used to distinguish

parenthesis of .arithmetic expression from final

right parenthesis of the structure.

Items 1 and 2 are maintained during the processing of a structure.

Items 3 through 5 are modified as the processing proceeds from

one member of the comma list to the next.

To reduce the access list, individual members are examined

i

T

REDCOL. 3

v r

e °x.

m^

one at a time. The Parsing Table position of the first element of

the member is recorded in the stack for possible later processing.

Elements of the member are examined one at a time. If an

arithmetic expression symbol is encountered, the stack

subexpression indicator entry is set to indicate that at the end

of the member, a subexpression should be processed. When the

next comma or final right parenthesis is encountered, the member

has been spanned. If an arithmetic expression was encountered in

the review process, the expression is processed as a subexpression

and the expression replaced by a temporary name.

Once all members have been processed, the class of the

name symbol is examined. If the name is a function or statement

function reference, a function reference is processed. The

parameter list of the function is removed, leaving only the

function name in the access position.

Before returning control, the Parsing Tables are repos-

itioned to the name entry of the first structure processed.

Upon return, the structure has been simplified so the calling

routine can continue processing the structure it is working on.

Example. To illustrate the comma list reduction process. an

example of various states in the process is shown. The

Parsing Tables and reduction stack are shown as the structure is

processed. Suppose the statement is an assignment statement of

the form,

R - B(1, J+K, FUNC(3,5/R)+3

7

REDCOL. 4

i

The reduction process is applied to the array reference for B

in processing the arithmetic expression.

The position of B and the class code of "array" is entered

in the stack entry. The position of "1" is recorded as the

member location starting position and processing proceeds to the

first comma. Since a simple operand is found, no subexpression

is required.

Processing moves to the second subscript and the position

of "J" is recorded in the stack. Since the "+" indicates an

expression, the member is marked for replacement. Upon

reaching the second comma, the subexpression "J+K" is processed

and replaced with the temporary "I*TM A".

Processing then moves to the next subscript, an expression

involving a function call. Upon detecting the "FUNC", a recursive

call is effected, opening a new stack entry. The Parsing Table

position of "FUNC" and a class of "function" is recorded in the

stack. Processing of the actual parameter list then proceeds.

In a similiar fashion, the actual parameter."3" is scanned and

the expression "5/R" replaced by a temporary.

At the end, the function reference is processed and the

Parsing Tables modified to delete the actual parameter list,

leaving the function name.

Control then returns by a recursive return popping the

stack entry. In this fashion, processing of the subscript list

continues. The subexpression "FUNC + 3" is processed and

REDCOL. 5

replaced by the temporary "R*TM V.

Before return control to the calling routine, the

Parsing Tables are repositioned to the "B" entry, and the form

returned is,

R= B(1, I*TM A, R*TM C j

Parameters:

CLASS - class code of the outermost structure

presented for reduction.

Special Notes: REDCOL is given tie capability to process

function references used in access lists. This capability is

also exploited for processing function references passed for
r

reduction on the outermost level. If a function reference

`	 "FUNC (A ♦ 1, B)" is passed for actual parameter list reduction,

the form returned to the calling is simply the function named

"FUNC".

Note that subscripted array references which appear as

subscripts are reduced to subexpressions even though no

arithmetic operations are applied to the array element. If

the array name is presented without subscripts, no action is

taken.

,y	
Warning. REDCOL is used by the arithmetic expression

processing routine. Support processing for arithmetic expressions

discovered by REDCOL are limited to "simple arithmetic expressions"

to prevent a cyclic calling pattern.

TNVTF• 'av+F'r)IATF SYt1"()L STP1 r 'G	 Tc*iPIPAPY SYM30L TA8LF

	

L A 5 r r.J 'f	 =	 ,	 .._.._._•_________-LAST r N T RY =	 1?
(-,HP'J-NT 0 (,INT C :^' -	 1	 C11^'F1 PJT n i7TNT^ r 	_	 1

'	 7r7)r7 r- 01) A1	 9

T Y)'-	r-r`n,fi 	 1Vn v	 Cllt Tr..^^7

rr ..	 1	 \r

	

I	
`/

	

4	 f	 1

	

V	 ^..

	

u	 a K

	

I^	 t

	

1 '	 T	 7

1 ':

	

1- V	 y R

	

13).
1 ,3
?	 T	 10

	

?1)	 -

• k

REDCOL. 7
T A: 0 T ' OF I'll r1l'.

T NT 1 I M CE 0 1 A T c: c j y 4 (.FL	 P	 6 r'A'0'0 0 4 rxY —SVMq C)L * TA,%:,r7

	

L I-1-Jr.TH c	 4, q 7	 LENGTH s	 311"	 1,
LAST lT 1,1T9Y	 LAST k NTRY a
(71J-11)"NT	 CU14'*FNT POINTPQ

I "Vi X	 C -3 N T ' :"4 T	 INf)FX	 C rjN TF!NT s

	

I	 v

V
4

	9 	 T
v

	

7 v	 4 J
+
V

	

11 v	 6 FUNC
12

	1 7	 v	 C)	 p

+
?	 T	 1G	 i
21

	P07 U r"T I -',J	 F C l< 	 T A T IJ'i	 Lf VFL
	C' L.•1 S S 	 VA ,' L"1 C.	 r I-,., r) C. Ic	 UEL r;N CNT
	3 	 1	 (11	 1

7; c	 ^ozr	 1 C G I N N, I NG I

	

PF_!)1,C,T T (^:1	 ;T 1' K, -,T ITU-, '	L[:VPL

	

CLASS	 W, P L	 Am	 'I C S !) SP P-	 WEiL PRt, CNT
0

I Nf\'T'4(i 1. J

	

R F r, UCT I ON 5 T A C',', S T AT U i 	t. V F L
	C L A '-7;	 VA P L, C r-	 917, NI	 F 94	 1-4 P c- D 5,73E 	 REL PPN CNT

	

wiTH	 It-ITM -	 A

OL TA9LF
LFN^,TH	 400	 LENGTH	 3 01
LA I;T ENT r Y	 LAST FNTFY	 9
CtJ O ') r t\T PCINTF ,','	 CUPQFNT POINTEP	 4
7r-:Wi'! F'()OAL SIGN'

I N r)E X	 r f.' ?I IT FN T S	 INDFX	 CON T c: NT 5

I v

	

3 v	 2 F1

4

	7 v	 4 I*TM	 A

	

9 v	 UNC
10

	

1.3_^
I 	 ORIGINAL PAGE T3 --- 	

r b	 J	 :

	

14	 1OF POOP,

	

15 V 	 QUALITY

+

REDCOL.	 8

• N of - cm	
.
r^()CF'SS	 FOP	 M-NIFA E- 	PE - C, I tlt 14(",	1i&IC

PFMICT I rI N 	 % T l CK	 F,TATU	 LE V r L.	 =	 1
rL. 4 r-3	 VAr	 L rl C 	 Ng F`f	 P; r' F: D	 SiiE	 rFL	 rPN	 CNT

s
STAF'T	 OF	 m orM	 Fl1NC:

iI

I"ITC':kRFnIATF	 SYV , Cl.	 FTPTMG	 TEMPCPAPY	 nYMI()L TABLE
LF 1, 13 TH	 =	 4C n	 LFNGTH	 =	 300
Lr-,1	 ^JT1 v	 =	 LAST	 FNTF'Y	 =	 I_
CU'^F_PJ T 	i''(:1VTF'-	 _..CClF?^F`^NT'PtJINTf:F	 =	 5

j 7rPn	 FOIJAI.	 SIGV	 =	 ?

IM.)	 x	 C0tITF .N ITS	 IN(`CX	 CONTFNTS

^. 1	 V	 1	 f^

4
=,]	 3	 1

7	 V	 4	 I x 'TM	 A
r j

q	 V	 ,^ ,,.	 c	 FUN C
10

12
17	 I	 7	 5

1 4
I	 ,	 V	 F	 I^

..] u	 I	
C'

e

Pc' IU(- T T r'V	 ;TACK	 °l 1TL. c.	 I_F Vf'L	 _.
((A) C.	 V	 (.	 L,)f	 p(,>,i	 i}t.lI	 %t	 n	 qr.;L	 RrL	 P r-'M	 CNT

rFrCI^I	 enrCF	 ,	 F,l)"	 " F""'F` •	 aft, Y;	 P, I NIG	 ; F

A F f` E L C. 17 C- ',l	 S T ACK	 STATUS	 E E\/FL'
CLASG'	 VAF	 LAC	 EC,t	 VEVF	 F IFE) SPF	 PEL	 PPN	 CNT

ca	 0	 C
4	 c.] 1	 C	 0

CA .-7 (-,t r,	 r'P^C'r- S S	 FC F 	 MF F^t,rr,	 ^E.0 if N:	 INC,	 -

RFIUCT I CN	 FTA(- K' STATLS	 L E\/	 L=	 c
r7L A 5 S	 VA p	L')C	 E'CP: NE E MR	 S3E	 P F L	 P RN CNT

4	 0	 1'	 0	 0

or-PLACING '`EM P E C EXrPESSION FF T WEEN	 13 AND	 15

WITH TEMPDRAP.Y D *TM	 fl	 —

d fir

ORIGINAL PAGE IS
OF POOR QUALM y

REDCOL. 8

QE: FL A,,I fAG F'IN^TI,^	 4:j `i^i F'it., TEOti

f: 1 TF-	 t	 Tr,1 ^'C	
TFV,)rPAL:.Y Sven ^I;f_ TA^?I_,

L "- EJit }i 	 .S`J^	 •^

LfvC,TE _	 ^^^^	 LAST 4NTRY =
LA -) T F NT(- Y =	 1 r+	

r1^c.^=NT F. 01'4T:-P —	 13

r70U AL S I C,"I =	 '	 r

jNn .= X r rNTFNT

3 V

T
a.	 •	 4	 T :4 T r.1	 A

11	 I

1	 T',q	 '?
1	 V

j q)

I 	 a

e

'	 REDCOL. 9

t

' RFf)L,CTf'-'"J	 T^rK.	 - TA , L c _
CL A;S	 VAr2	 L r)C	 p 	 f	 'd r: r.1r ;rP7 0 ¢aF PFL Pr-N ChT

i IKITr-	 r:+_r T! T c-	 5 	 L	 ;T 	 I °J TF'A'-)7,!Ar,Y	 SYM -10L' TAHLci

LA :,T	 F1)T r Y	 =	 I , LAST	 r K.T CY 	 = ;^

CU'' r ':NT	 r' - T N T= . '	 =	 I CURS`---NT	 POINP:-- 0	 = 6
7 F--)n	rnUAL-	 ST G`A	 =

^i
Ir V)Fx	 rf'NT='jTS I'; ^"-'X.. - Lrtt^ °'i's

I	 V I ,

i4 s
S	 I -^ I
7	 V 4 r. i "^	 A

Y:	
I ^{

r + I	 !	 I ..	 F

Gj01	 A ,- TA.	 4 	 ^^I,.^, .^	 T .	 _.^
A	 rt	 I1

TH	 T F*AP -)PA r-)Y	 FM	 f

I"'T'=	:,/')I	 nT-	 ,Y	 L	 I.	 r Tr .r-,-7rtr,Y	 SY V ML TV,L' I
Lr	 i r , r 	 =	 [I ". L'c	 ^^I,TI^	 =	 ?^ j
L!+,T	

,"'JTPY	 =	 I : LAST	 .: Nll.	 Y	 _

CU'` ,_ l,.T	 F	 If K!T	 0 CIJr.	 1°Tf"JI":T.--R	 = 5
Vic • ;-,	 r ')tJAf.	 S I ;`J-	 ^ i

T^l rti ^	 (C	 N,rc . : T 0, 1',IT)t-:C r:`NT r NT

I	 v 1 ^'

ra

7)
^ I

7	 V y I ,^T'A	
A

ti

pAG^.
Yo^R

q^A^^o
r

_- - ^,

66

REDCOL. 10

r ^..	 a

r	
1

N

I

L

pNPI;IV.'7 TPOL ._s: A F! r- P 	 FFrU TI(."t : F'k',CFSS

TF'^r ^.FA Y SY' .L 3 r3L TA^?Lt
a.	 y	 IN:T17 lbi_01 A T'= ,	 F^Y% ,, 'L i^ IG	

r•N,TH
L /h .^ T	 ^^ T t7 Y

L sl 'N7 ^Y =	 I I	 ^Ur,-^FNT 0 71 1,IT: R =	 ?
CU - ^?tT ^1I^!T'=''

7F' ,-9 F')UAL 9 G

	

1*^^ x	 CC^,T r NI S

	

I N! ^ x	 rn , i, ^'.i T S	 3

'	 I	
v
	 t

xc s	 ;	 v

•

	

^	 T	 _.

+	 /	 T	 T
U

	i 	 r	
T

V	 !

•	 1.	 1

9

7

i

a

;E

^`x^l I<1	
I1

A

_-sue

•	 t

REDLOP. 1

SUBROUTINE REDLOP

Mneumonic Origin: Redifinition of DO Loop Control Variables

Classification:	 AIR Query

Purpose: Searches for DO Loop control variables assigned values

within loop itself.

Operations: Program boundaries are not crossed. It is assumed

that external references within the DO Loop do not modify control

variables.

Warning flags may be produced for primary listing.

Algorithm: See Source Code Listing.

RESWRD. 1

k	

^'

f	 .

E

i

SUBROUTINE RESWRD

Mneuironic Origin: FORTRAN Reserved Words

Classification: AIR Query

Purpose: Searches for FORTRAN "reserved words" being used as names.

Operations: Warning flags may be produced for primary listing.

Algorithm: See Source Code Listing.

i3

5

7

ws^

I

i

r

RPTGEN. 1

SUBROUTINE RPTGEN

Mnemonic Origin: Report Generator

Classification:	 Report Generation primary control routine

Purpose:	 Control the production of Reports.

Operation:	 Upon entry, a REPORT command has been processed and

report options selected. Primary Reports are produced followed

by Secondary Reports.

The Report Generation process is initialized and the first

message is acquired. Primary Reports are then produced. Page

restoration separates Primary and Secondary Reports.

Secondary Reports are then produced until an empty message

is detected. Secondary Reports -are of two types: 1) Secondary

Listing reports and 2) Secondary Display reports. These types

are distinguished by examining the source code card indicators of

the first report message. If source code cards are not required,

a Display report is produced. If source is required, the Listing

report is produced.

r

(I
1

II ^

T T

SABORT. 1

SUBROUTINE	 SABORT

Mnemonic Origin:	 Statement Abortion

Classification:	 FFE•statement parsing routine

Purpose:	 Abort the statement in progress,

Operation:	 Upon entry, the statement in progress is found to
i

contain an error.	 Continued processing of the statement might

produce invalid and misleading processing or result in malfunction

`	 potential for the system.	 The statement must be aborted to continue

processing.

The Parsing Tables are positioned to the construction being

processed when the malfunction is detected.	 The user is informed

via a generated error flag that statement processing was halted.

The Parsing Tables are positioned to the end of the statement

to neutralize further processing.
a

Since an imbalance in the statement text may be causing the

7

abortion, the Subexpression and Begin/End List stacks are reset to

isolate the error to the current statement.

Special Notes:	 The abortion of a statement does not necessarily

cause immediate halt of statement activity. 	 Processing routines

may continue examinations on the Parsing Table contents to complete
I

their activities.	 The abortion process simply conceals any further

text consideration by analysis routines.

Note that if the error occurs in the IF condition portion of

a logical IF statement, abortion will neutralize processing of the

conditional statement. x

SBELNK. 1

;

SUBROUTINE SBELNK (USECOD)

Mnemonic Origin: Subexpression Bracket Linkage

Classification: FFE Table Generating Routine

Purpose: Establish Use Table links for Begin/End Subexpression

Bracket Use Codes.

Operation: Upon entry, a Begin or End Subexpression Use Code is

to be recorded. Use Table links are required for this entry in the

Use Table.

Begin Subexpression Use Codes are processed separately from

End Use Codes; a single routine is implemented to surface the

interaction among these codes through the Subexpression Bracket

Stack.

When a Begin Subexpression Use code is encountered, the back-

ward pointer of the current Use Table position is set empty to cause

an independent list of Use Table entries to begin. The current

position of the Use Table is inserted in the top of the Subexpres-

sion Bracket Stack to record the last Begin Bracket position.

When an End Subexpression Use code is encountered on a later

call, the back pointer of the End Bracket is set to the last Begin

Bracket position and the forward pointer is set to zero. The

forward link of the last. Begin Bracket-Use Table position is set

to the current Use Table position (i.e. the location of the End

Subexpression bracket). The top entry of the Subexpression Bracket

is removed from the stack.

SBELNK. z

Parameters:	
USECOD • The code of either a Begin or End Sub-

expression code.

F

1

j

i

^ a

SCAN. 1

SUBROUTINE SCAN

Mnemonic Origin: Scan a Fortran Statement

Classification: HE Scan Process Control Routine

Purpose: Control the scanning of a FORTRAN statement to create

Parsing Tables.
	 I

Operation: Upon entry, the next statement of FORTRAN text is

required for processing. Parsing Table entries are to be con-

structed by spanning the statement text.

The Parsing Tables are set empty to clear the last state-

ment text. The Scan Buffer is set empty to indicate the next

card should be an initial FORTRAN statement card (i.e. not a

continuation card).

Scanning the statement requires two operations: 1) a pre-

liminary scan operation and,2) a scan postprocess operation. In

the preliminary scan operation, elementary statement-constructions

are extracted from the FORTRAN Test. In the postprocess, complex

constructions recognized as sequences of elementary constructions

are combined and the zero level equal sign (if any) is detected.

If a blank card is detected by the preliminary scan, the

card image is not returned; an empty card is returned only if the

input source is exhausted. An empty card is a card containing only

and End of Statement code without any other parsing text to process.

1

SCNPRO. 1

SUBROUTINE SCNPRO

Mnemonic Origin: Scan Process

Classification: HE Scan control routine

Purpose: Create preliminary entries in the Parsing Tables for

a FORTRAN statement.

Operation: Upon entry, the Parsing Table entries are to be

F
	

constructed for a single FORTRAN Statement. The statement is

composed of an initial.FORTRAN card and all continuation cards

of the statement.

Statement text is processed in a cyclic fashion until either

an end of statement code is detected or the Parsing Tables are

filled. The lexical item is reset and the reserve pointer to the

Scan Buffer set to the current entry (See Scan Buffer operation
a

description).

Based upon the first character of the next Scan entry, an

appropriate subprocess is initiated to create a Parsing Table entry.

The Parsing Tables are examined to insure at least one additional

position is available in both the Intermediate Symbol String and

Temporary Symbol Table. The lexical item is then constructed based

upon the first character from the Scan Buffer. If the first charac-

ter indicates a multiple character lexical item control is passed

to the appropriate support processor. If the first character is	
z

a special symbol which is not the leading character of a multiple

character item, the single character is inserted in the Intermediate

%F

SCNPRO. 2

The following multiple character lexical items are created

by the preliminary scan process:

1. Alphanumeric strings beginning with an alphabetic character.

2. Hollerith literal strings.

3. Numeric literal strings (both decimal and nondecimal based).

4. Relational and logical operators.

5. Logical constant literals.

Notice that Hollerith consCants must be processed by the

preliminary scan process since information on blank card columns

are lost after this process.

If the process terminated by overflow of a Parsing Table,

remaining text of the statement is flushed. This procedure posi-

tions the source code to the next statement preventing effects

of the overflow from influencing the next statement's process.

Finally, an end of statement code is inserted in the Inter-

mediate Symbol String. The code is forced into the Parsing Tables

if a processing error has caused all available entries to be used.

Special Note: Notice that the ISS entries are not fully available

for statement text. The logical end of ISS pointer is used to

control the number of entries allocated to statement elements.

In effect, this reserves space at the end of ISS for the end of

statement code and a`protective buffer of these codes.

I

IV

i

A

i
lip,

`h

4

i

t,

j

SCNPST. 1

SUBROUTINE SCNPST

Mnemonic Origin: Scan Post process

Classification: FFE Scan process control routine

Purpose:	 Post process the Parsing Table contents to identify

and combine complex constructions which appear as a sequence

of elementary entries and identify appearance-of zero level

equal sign.

Operation: Upon entry, the Parsing Tables contain elementary

entries produced by the preliminary scan process. These entries

are searched for complex forms appearing as a series of elementary

entries in the Parsing Tables. If a complex form is identified,

the Parsing Table entry is replaced by a combined construction.

The following complex forms are identified in the post process

procedure:

1. Floating point constants

2. Complex constants

The Parsing Tables are examined from the first entry to the last

nonempty entry for a series of adjacent elementary forms which

constitute a floating point or complex constant. Since the scan

process is blind to statement context, care must be taken to avoid

recognizing FORMAT statement entries as floating point constants.

Also, parameter lists should not be recognized as complex constants.

Scanning rules are developed to avoid these errors. Since

valid floating point constants in legal FORTRAN statements are

I

1

I	 44

SCNPST. 2

preceded by special symbols, the appearance of the form

"variable.number" is not a floa^_ing point constant. If this

form is found, elements in the Parsing Tables are skipped until

a separator other than a period is found. Similarly, two floating

point constants passed by parameter will have the form:

"variable(F, F)". The appearance of a variable prior to the 	 g

open parenthesis indicates the structure is not a complex constant.

Floating point constants are produced first in the tables 	 a
It

since floating point constants are substructures in complex cons- t
4

tants. Recognition of floating points constants key off the ap-

pearance of a period or integer. A service routine performs

detailed investigation for legitimate forms of floating point

constants.

r
Complex constants key off the trailing right parenthesis

of the form. Entries prior to the right parenthesis are searched

for a preceding loft parenthesis. If the required structural

form is detected, a closer investigation is performed for acceptable

construction components.

If floating point or complex constants are detected, the

elementary elements are replaced with a single entry.

After processing complex forms, the Parsing Tables are

searched for a zero level equal sign. This is an equal sign not

enclosed in parenthesis. If a zero level equal sign is found,

the Parsing Table position of the equal sign is recorded in the

t
zero level equal sign indicator for the statement. The position

i
r	 ^J

SCNPST. 3

marked is the first equal sign in a left to right scan.

After processing the Parsing Table contents, a protective

buffer of end of statement codes is inserted in the Parsing

Tables.

SECNDR. 1

SUBROUTINE SECNDR

Mnemonj 	 Secondary Reports

Classification:	 Report Generator control routine

Purpose 	 Produce a secondary report in Listing format.

Operation:	 Upon entry, a message has been detected for which

a secondary listing report is requires!. This format of report

requires extraction of source code to be displayed.

The report key value and source code origin are recorded

to enable detection of changing reports and modules. When a

message is found which differs from the message which began the

process, this report is over.

The page is adjusted and header printed. -A loop then pro-

duces the report until a change in messages is found. Within

the loop, a change in source code origin indicates a new module's

source code is participating in the display. Space is provided

between source code of different modules to increase readability

of the report. Additionally, the line count is reset on new

modules.

Source lines are printed from either the-next line or the

first card indicated by the message. This selection permits

multiple messages for the same line to produce only one instance

of source printing._ After printing the source code lines, the

current line indicator is advanced to the last card of the message

or the current position.

i
SECNDR. 2

After printing the appropriate source lines, the message

content is printed, and the next message retrieved. The process

is repeated while messages continue to appear with the same key

value.

Upon exit, a message has been detected with a different

key. This message is returned to the calling routine for analy-

sis.

3

i

P	 l

I
j
i	 -

i4

SELMOD. 1

SUBROUTINE SELMOD(FINISH

'Origin: Select Module

Classification:	 Report Generator service routine

Purpose:	 Select the next module for Primary Report generation.

Operation:	 Upon entry, the next module is required for Primary

Report production. The module is to be selected by considering
4

control options selected through the command card, current mes-_

sage contents, and Source Code Catalogue order. When all modules

have been processed for Primary Report production, the condition

is communicated to the calling routine.

The primary selection criteria is determined by whether
I,	

the ALL option is selected or not. If ALL is selected then modules

are to be listed whether they areflagged or not. This is accom-

plished using the source code origin of the current module to deter-

mine the nearest neighbor on the Source Code Catalogue. Notice
	 y

that the absolute card image of the last card in the current module

is used rather than the source code origin. This is required to

overcome the initial transient where the module desired has a sourr.e

code origin of zero. Since negative numbers are to be avoided,

the current module description is initialized to zero origin, zero

relative card numbers. The next module is thus the module beginning

J`	 with origin zero, relative card number 1.
j
I

9ti

^•a.^ ^_^^s_ml 	 a, .11iie9.t.ns.iw-s 'wumwwca.^s^z...—,-.-.	 ^._.^..v-.	 ^..

SELMOD. Z .

h

To search the Directory, the first entry is arbitrarily

established as the current "closest" module to the current module.

The initial distance is established as a large number which is

greater than the largest number of "garbage" cards which are

likely to appear between two modules. If garbage cards are de-

tected between modules, the card images are recorded on the

Source Code Catalogue during analysis but no module definition is

entered in the Directory. These cards cause "gaps" to apRear be-

tween the end of one module and beginning of another. If no

cards appear between decks, the first card of the next module

will be one card ahead of the last card of the previous module.

To detect the next module in an ALL option, the Directory

entries are searched for the "closest" module. This search is

performed by comparing the distance between the Directory entry

Source code Origin and the last card of the current module. If

a closer entry is found, the Directory pointer is copied to the

selected entry and the new distance is established. Finding

.a closer entry also causes the completion indicator to be reset,

enabling continuation of Primary Reports.

If the FLAG option is selected explicitly or by default,

module selection is simplier. The next module is the module

specified by the next message. If all Primary Report messages

are complete, module selection is over. After establishing

the source code origin of the next module, the Directory is

searched for an entry with the specified origin. If no module

r

SELMOD. 3

is found with the indicated origin, a warning message is issued and k

a phantom module description is established as the current module.

t
The Directory pointer is set empty to disable extraction of module

description from the Directory.

After module selection process is complete, module charac-

teristics are extracted from the Directory entry.	 These data

r	items are placed in the current module description prior to

returning control to the calling routine.

Parameters:	 FINISH - logical decision parameter to communicate

the end of Primary Report modules to the

calling routine.

Specialcial	 Notes: ,	 Caution must be observed in selecting modules

from the Directory.	 Secondary entry points are recorded

with the same source code origin and card indicators as

the primary entry point.	 The primary entry point name

should be retrieved rather than a secondary entry point.

Additional care is required in selecting the

first module (i.e. with source code origin 0) since modules

which are only references are recorded with origin value
1

zero.	 Reference modules can be identified by either having

a zero card count (i.e. no source code) or a zero module

number entry (. e. no table file).

i

SETRES. 1

SUBROUTINE SETRES

Mnemonic'Ori in: Set reserve pointer

Classification: HE scan support routine

Purpose: Set the reserve pointer to the Scan Buffer.

Operation:	 The reserve pointer is set to the current Scan Buffer

position to establish the deletion bound in the event Scan Buffer

compression i5 required. This routine is coded as a small stand

alone procedure to prevent proliferation of the Scan Buffer COMMON

Block to other routines.

r

l i=

IlI

^^ j

SETSCA. I

r

ii

SUBROUTINE SETSCA(VALUE, SCAL, TAB)

Mnemonic Origin: Set Scalar

Classification:	 AIR General Purpose Utility

Purpose:	 Allows scalars associated with permanent AIR data

structures to be set.

Operations:	 Algorithm: Binary tree search through permanent

data structure names, followed by binary tree search through

scalar identifier names (see "AIR Abbreviations ,-). The desired

scalar then receives a value.

Scalars which may be set:

1. current row pointer to data structure (table or stack)

2. pointer to last non-empty (valid) row in data structure

Parameters: VALUE - Input

SCAL - Input

TAB - Input

Scalar indicated by SCAL associated with data structure

TAB is set to value of VALUE.

see also GETSCA

J"

^(Az_

i

SHIFTY. 1

SUBROUTINE SHIFTY (OUTVEC, INVCC, CHRPOS, CNT)

Mnemonic Origin: Shifting routine

Classification: FFE bit manipulation routine

Purpose:	 Shift character strings packed in A4 format.

Operation:	 Upon entry a vector of packed characters is presented

from which a subset character string is to be extracted. The

extracted characters are placed in an output vector in A4 format.

Processing begins by verifying the passed parameter des-

cription of the characters to be extracted. If an error is de-

tected,an anomoly is issued and the input parameters values are

adjusted to the limits of operation.

Character extraction is performed by cyclic operation which

halts if the required character subset is spanned, the input

vector is exhausted, or output vector is exhausted. This proce-

dure protects against requests for character strings which exceed

the physical bounds of the holding data structures.

The input vector position containing the first character of

the desired string is selected and a character number within that

position computed.

Characters are first selected in sets of 4, selecting a subset

of the character string from the current and next position of the

input vector. If the input vector is at the boundary entry,

blank characters are substituted for the next vector position.

Aabw

x	 SHIFTY. 2

'	 With the transfer of each set of four characters, the output

vector is advanced, the count reduced by four, and the input

vector advanced. This procedure may cause the count to go

negative.

When the count becomes zero or negative, the major loop

C	 is abandoned and the last entry is adjusted if needed. If the

 count is zero, a modulo 4 character string was extracted. If

the count is negative, more characters were transferred than

desired; the amount of the negative count indicates this charac-

ter surplus. To correct for excess character transfer, the

last output entry is extracted and the surplus characters removed

and replaced by blanks.

^.	 Finally, if the output vector is not completely filled,

C	 blank character strings are inserted in the remaining output

vector positions.

Parameters: OUTVEC - output vector receiving the selected

character substring in A4 format. 	 a1

INVEC	 input vector containing the desired substring

r in A4 format.

CHRPOS - Character position within the input vector

i indicating the first character in the de-

sired substring.

CNT	 chp.t•acter count indicating the length of

of the substring expressed as the number

Ov.	 of characters,

-i

a

...._	 _	 _ _	 _	 _	 _	 _

SHIFTY. 3

Specialcial Notes: SHIFTY was an old-routine originally developed

for FACES yersion,l. The parameter list order is the same

as the original version. The routine was recoded in a more

flexible form pursuant to changes anticipated in future

versions of the system. Operation will be generalized to

simplify character selection allowing other than three

dimensional arrays in the newer application.

f

SUBRQUTINE	 SIDCPX(AT, CPXC)

SIDCPX. 1

Mnemonic Origin: Scan Identification of Complex Constants

Classification: FFE Scan Support Routine

Purpose:	 Determine if a structure of elementary entries in the

Parsing Tables is a complex Constant.

Operation:	 Upon entry, a Parsing Table position is indicated

which contains a left parenthesis of a possible complex constant.

This routine examines the structure to determine if the Parsing

Table structure is a complex constant. Notice that the indicated

position is not the current position of the Parsing Table,

Recognition is coded as a series of conditions required

for the entries to contain a complex constant. If the Parsing

Tables contain an acceptable structure, the interior of the text

is reached and the form.is accepted; otherwise, failure of any

one of the conditions results in an unaccepted form.

If the symbol preceding the left parenthesis is a variable,

or there is no preceding symbol, the structure is not a complex

constant. Otherwise, the form is inspected for a pair of Floating

point constants which may be real or double precision separated

by a comma and enclosed in parenthesis. Either or both the con-

stants may be optionally signed.

If the form is identified as a complex constant, the return

parameter is set TRUE; otherwise, the return parameter is set FALSE.

a

1

i

r

SIDCPX. 2

Note that only ISS entries are examined in the search and

that the pointers to the Parsing Tables are not modified in the

examination.

Parameters: AT	 - Position of ISS containing the left parenthesis

of the candidate complex constant form

CPXC - Return parameter indicating whether the form

is identified as a complex constant or not.

3

4

SIDFPC. 1

SUBROUTINE	 SIDFPC(AT, FPC)

Mnemonic Origin: Scan identification of Floating Point Constant

Classification: HE scan support routine

Purpose: Examine a structure in the Parsing Tables to identify

the presence of a Floating Point constant construction.

Operation: Upon entry, a Parsing Table construction is presented

for examination as a floating point constant. The first element

of the construction is indicated by parameter. Parsing Table

entries are examined to determine if the entry is a floating

point constant.

If the entry is a variable character string or there is

no preceding entry, the construction is not a floating point

constant. A floating point constant is indicated by a integer/

fraction specification (i.e. mantissa) with an optional exponent

specification (i.e. characteristic). The integer/fraction speci-

fication may omit either the integer or the fraction. If an-ex-

plicit exponent is specified, the decimal point following the

integer specification may be omitted.

Parameters: AT	 input parameter indicating ISS position of

Parsing Tables containing the first element

of a potential floating Point constant.

FPC - output parameter indicating whether the form

is a floating point constant or not.

t

_,.. ,.

r

i

ow 0

jt	
SMATCH. I

LOGICAL FUNCTION SMATCH(NAME, LENGTH)

Mnemonic Origin: Symbol Match

Classification: FFE table generation support routine

Purpose: Compare the specified symbolic name to the Symbol Table

symbolic name of the current symbol table entry.

Operation:	 Upon entry, a symbolic name is presented for 4

comparison t^j the current (i.e. pointer addressed) Symbol Table

entry. .If the symbolic content is identical, a TRUE result is

returned.

The symbol must match in both length and content. Therefore,

it is first determined if the symbolic content is located in the

main Symbol Table entry or the Symbol Overflow Table. If the

presented symbol is^a standard size but the Symbol Table entry is

oversized, no match is present. If both are standard size, the

character strings results in a match condition.

If the presented symbol is oversized, the Symbol Table entry

must also be oversized also for a match condition. In addition,

the length of the symbol string in the Overflow Table must be

equal to the presented symbol before a_match is possible. If

both are the same length, the character content of the Symbol

Overflow entry is inspected; if they are the same, a match

condition is present.

Notice that an empty Symbol Table position is allowed in

the matching process. If a zero valued symbol (i.e. a symbolic

f

j	 name of two zeroes) is presented, an^empty Symbol Table position

I

1
i

	

a'

	
SMATCH. 2

will match the presented symbol. If a nonempty symbolic name is

compared to an empty Symbol Table position, no match will be found.
S

Parameters; NAME - Symbolic name to be compared presented.

	

t	 as a one dimensional vector.

LENGTH - Length of the symbolic name expressed

as the number of words in the vector.
i

m
ti

i

P

r^

SNALPH. 1'

r	
SUBROUTINE SNALPH(INCHR)

Mnemonic Ori in:	 Scan Alphanumeric character strings

Classification:	 FFE Scan support routine

Pur ose:	 Scan lexical items which are alphanumeric character

strings beginning with an alphabetic character.

Operation:	 This routine may be entered directly from the pre-

liminary scan process or another scan service routine. As a

result, the lexical item may already contain characters when the

routine is entered.

Storage of character strings is different for alphanumeric

items than for other lexical items; alphanumeric character

strings are stored in groups of 8 characters or less in sequential

positions of the Parsing Tables. Overflow entries are not made

for these lexical items. 	 -

Therefore, processing begins by examining the lexical item.

If 8 characters or more are already present in the lexical item,

entries are made in the Parsing Tables until the number of lexical

item character is less than 8.

Scan characters are processed until a character other than

an alphabetic or numeric symbol is encountered. While alphanumeric

characters are added, the length of the lexical item is monitored.

If the length reaches 8 characters, a Parsing Tabl,9 entry is made

and the lexical item reset empty.

a

r`

Mq

k

}

f	

^	

i^^^.. may. 	 -q `1

SNALPH. 2

After a terminal character is encountered, the lexical item

is examined for residual characters. If characters are detected,

the character string (less than 8 characters) is entered in the

Parsing Tables.

Parameters: T NCHR - First character passed by calling routine

to be added to alphanumeric string.

a,

character string of the constant.

I

j

r

4

F

i

SNCPX. I

SUBROUTINE SNCPX

MnemoM c Orrin: Scan Complex Constant

Classification:	 HE scan service routine

Purpose:	 Scan complex constant construction for Parsing Table

insertion.

Operation:	 Upon entry, a complex constant form has been detected

among the elementary entries of the Parsing Tables. The Parsing

Tables are positioned to the left parenthesis of the complex

constant form. Characters of the complex constant between and

including the parenthesis are extracted from existing Parsing

Table entries and inserted in the lexical item in a cu

fashion.

After extracting the complex constant string, th

Table entries containing the elementary symbols are de

a space for inserting the constructed complex constant

is replaced with a complex constant ISS code and the s

C

SNFLPT. 1

SUBROUTINE SNFLPT

Mnemonic Origin:	 Scan Floating Point constant

Classification:	 FFE scan service routine

Purpose:	 Extract Floating Point constant constructions from

elementary entries in Parsing Tables.

Operation:	 Upon entry, the Parsing Tables are positioned to

the first element of a construction which has been identified

as a Floating Point constant. The constant may be either a single

or double precision constant.

The mantissa entry is extracted from the Parsing Table

entries and placed in the lexical item. These entries consist

of the integer, decimal point, and fraction components of the

mantissa. Not all components are necessarily present in the

mantissa description.

The optional explicit exponent specification is then pro-

cessed. Since the exponent precision character may be run on with

the exponent value, the first character of the exponent speci-

fication is extracted to determine the Intermediate Symbol String

code to be assigned to the resulting Floating Point constant

construction.

If an explicit exponent is present, the characters of the

exponent specification are extracted from Parsing Table entries

and accumulated with mantissa characters in the lexical item.

j

SNFLPRT. 2

After extracting the characters of the Floating Point constant,

the current Parsing Table entries are replaced with a single entry.

This requires deleting the elementary entries in the Parsing Tables,

reserving space to insert the collected characters and new ISS code.

SNHOLL. I
11 Q

SUBROUTINE SNHOLL(INCHR

C

Mnemonic Origin:	 Scan Hollerith Literal strings

Classification:	 FFE Scan process service routine

Purpose:	 Process Hollerith literal strings to construct Parsing

Table entries for character data.

Operation:	 Upon entry, the start of a Hollerith literal string

sequence has been detected from incoming card data. The literal

string may be of the character count/string form or quote mark

delimited form. The passed parameter is used to distinguish the

two forms.

If the form is the count/string form, the count is presented

as entries in the lexical item. The state of the lexical item

buffer is examined to determine if the string can be accommodated

in the available space. If not, the character string will be

truncated to the symbols which can be stored. Sequential charac-

ters are obtained from the card image and inserted in the lexical

item until the character string is spanned or the available space

is exhausted. If an end of statement code is encountered, card

image data is exhausted before the specified number of characters

were processed. If more characters are present than available

space, additional characters are discarded to position the scan_

to the character following the character literal string.. Control

is then transferred to the storage process to make Parsing Table

entries.

I

x

SNHOLL. 2

If the character string is a quote delimited form, charac-

ters are extracted until the terminal quote mark is encountered.

The delimiting mark may be either a single quote mark (i.e. apos-

trophe) or a double quote mark (i.e. formal quote mask). The
y

jtype of delimiting mark is recorded. To accommodate the use of

-^-`	 a double delimit mark as a single character, the process looks

ahead one character. If two occurances of the delimit are detected, t

only one character is stored and the second mark is discarded.

If the lexical items ace is exhausted the^	 pprocess recordsP

a truncation condition. The overflow situation simply discards
I

characters without placing them in the lexical item. major pro-

cessing activities continue to scan past the character string of

the literal to achieve proper positioning for the next card item.

If an end of statement code is found while processing deli-

mited forms, the terminal mark is missing on the card image.

This event causes termination of the processing loop after issuing

a message that the symbolic form is erroneous.

After detecting the terminal mark in the normal string form,

the Scan Buffer is backed up one position to correct for character

look ahead. ` Control is transferred to the storing procedure for

making Parsing Table entries.

After, detecting the terminal mark in the normal string form,

the Scan Buffer is backed up one position to correct for character

look ahead. Control is transferredto the storing procedure for

 making Parsing Table entries,

f

{^ A

'e

The storing procedure reports truncation effects detected

during string processing and makes Parsing Table entries. The

ISS code is stored in the next position and the character string
E	 '

held in the lexical item transferred to the next Temporary Symbol

Table position.

N	 Parameters: INCHR - input character which was detected by the

calling routine indicating a Hollerith

constant present.

Special Remarks: Note that the Hollerith scan process differs

from other scan routines in selecting the next,sequential

character rather than the next non:blank character,

w
N

}

A

i

SNNUM6. 1

r Mnemonic Qrig_n: Scan Numbers

Classification:	 FFE Scan Service routine
i

Pte; Scan lexical items beginning with a number.

Op rLtim: Upon entry, a lexical item is discovered which begins

with a numeric entry. The item may be a simple integer (statement

label or constant) or a component of a more complex form. If

the integer is a simple constant, the character string is pro-
.

cessed and stored by this routine. If the integer is a portion

l	 of a complex form which is processed in the preliminary scan pro-

cedure, control is passed to another routine for completion of

the processing.

Characters are retrieved from the card image data and placed

in the lexical item until a nondigit character is detected. The

terminating character is examined to determine if control should

be transferred to another routine or the item stored as an integer

entry.

If the terminating character indicates the integer is a

count specification of a Hollerith character string, control is 	 ;--

passed to the Hollerith string process.

If the terminal character indicates the item is a nondecimal

constant representation, control is passed to the nondecimal

constant process.

SNNUMB. 2

If a simple integer item is to be stored in the Parsing

Tables, the entry is made inserting an ISS code and Temporary

Symbol Table entry. The Scan Buffer is backed up to recover

from overrun created by extracting the terminal character.

Parameters: INCHR - input parameter contain the character used

to determine that an integer string is in

progress.

Special Notes: SNNUMB is used to process statement labels, In

FACES, a statement label is simply an integer as the first

entry of the statement; no valid FORTRAN statement begins

with an integer constant.

Labels receive no special treatment in processing. They

are, however, not permitted to imply a count for Hollerith

or nondecimal constants. If a statement label is present,

it will be the first Parsing Table entry.
_y

r

f

	
r	 _

SNPERD. 1

SUBROUTINE SNPERD(INCHR)

Mnemonic Origin: Scan Period delimited forms

Classification:	 FFE scan service routine

Purpose:	 Scan lexical item forms which are delimited by a pair

of periods.

Operation:	 Upon•entry, a form may be present consisting of a

variable character string enclosed in a pair of periods. This

form may be a logical constant, relational operator, or logical

operator.

The form is first identified to determine if the structure

.V. is present in the Parsing Tables. The last period is passed

by parameter. The structure .V is found in the last two ISS

entries. If the form is not found, the period is stored in the

Parsing Tables and control returned to the calling routine.

If the form V. is detected, the character string associated

with the V entry of ISS is examined from the Temporary Symbol

Table entry. The symbolic content of this entry is compared to

a series of read-only templates established in Block Data. If

a template matches, the entry is identified as a period delimited

form.

Associated with the matching template is an ISS entry code

for he form. These values are also assigned in Block Data.

If the ISS entry requires a Temporary Symbol Table entry to

be stored, the character string of the matching character string

r

t

SNPERD. 2

Is surrounded by periods in the lexical item and replaces the

current entry in TSTAB. If no entry is required, the current

TSTAB entry is remove.

ISS entries are replaced by the indicated code whether a

Temporary Symbol entry is required or not. This is accomplished

by removit'eg the current elementary entries from the last ISS

table-positions prior to storing the new ISS code.

Parameters.: INCHR - contains the symbol period detected by the

calling routine.

4

1

SNZPRO. 1

SUBROUTINE SNZPRO(INCHR

Mnemonic Origin	 Scan Z form lexical items.

Classification:	 FFE Scan Service routine

Purpose:	 Process nondecimal constant forms.

Operation:	 Upon entry, a lexical item is detected which may

be a nondecimal constant form. (These forms were denoted as Z

forms historically in the'system development.) The lexical item

may be identified definitely as a nondecimal form or may be a

variable specification which appears to be similar to a nondecimal

constant form. If a nondecimal constant can be identified con-

clusively, the form is accepted as a nondecimal form. If the form

is ambiguous with a potential variable, control is passed to the

alphabetic processor with processed charactars residing in the

lexical item.

Three basic forms of nondecimal constants are processed:

1. Count/indicator character/nondecimal string

2. Indicator character/nondecimal string

3. Nondecimal string/indicator character

Notice that type 2 is the same form as a variable declaration.

It can only be distinguished from a variable name by having more

characters than a variable name in the target FORTRAN or by being

used in a constant context (e.g. a DATA statement constant list).

Since FACES uses a blind scan, the context of the statement is

not known; the symbol is recognized as a variable character string

f -

SNZPRO. 2

by the scan process with correction required by later processing

If this is a constant.
i

Different forms are distinguished by the calling routine

and contents of the lexical item when control is initiated. If

the form is a count followed by an indicator character Z, and
r

unambiguous nondecimal constant form of hexidecimal characters

is found. The count, present in the current lexical item entries,

is converted to an integer value. Subsequent characters are

extracted from the card image data until a symbol other than a

digit or alphabetic character is detected or the count is exhausted.

Notice that the base of the symbols is assumed correct; valid

base 16 alphabetic characters are not checked.

Character symbols of the constant are inserted in the lexi-

cal item if sufficient space remains. If the lexical item space

is exhausted, the truncation indicator is set and the character
a

is discarded. This technique allows the scan to proceed past the

truncated characters and position to the proper character of the

next lexical item.

The lexical item is then inserted in the Parsing Table

entries. An ISS code is selected for the item based upon the

memory requirements of the target machine. The code selected

indicates the memory required for a constant of the indicated

length in words of target machine storage.

SNZPRO. 3

4

\ ^	 1

"Leading character" indicated lexical items may

begin with either the character 0 or Z; 0 indicates an octal

constant; Z indicates a hexidecimal character string represen-

tation. The only difference in processing these two forms is

the conditional test for subsequent characters of the constant.

Characters are accepted from the card image until an unacceptable

symbol for the constant string is detected. Received characters

are placed in the lexical item.

After terminating character acceptance, the length

of the accepted string is examined. If the number of characters

is less than the number of characters permitted in variable names

of the target FORTRAN, the character string must be classified

as a variable name for processing. In this event, control is

passed the alphabetic service routine with the extracted charac-

ters residing in the lexical item and the terminating character

passed by parameter.

If the accepted string is longer than a variable name

in the target FORTRAN, the string is stored as a nondecimal constant.

An ISS code of integer is attached to the symbol string.

The third form is a digit string terminated by an

indicator character. When control is gained, the lexical item

already contains the digit string. The indicator character is

appended to the lexical item and the item is stored in a Parsing

Table entry assigning an integer ISS node.

SRCHDI. 1

FUNCTION SRCHDI(NAME1, NAME2)

Mnemoiik Qrigjn: Search Directory for Name

Classification: -AIR General Purpose Utility

Pur p ose:	 Search for name in Directory.

Operation:	 Search Directory character string contained in

NAME1 and NAME2. If character string found, set SRCHDI to location

of string. If not found, set SRCHDI to zero.

Parameters:	 NAME1	 Input

NAME2 - Input

SRCHDI - Output

SUBROUTINE STATL

STATL. 1

r'
tj

E'

Mnemonic Origin:	 Statistics on local table usage

Classification:	 FFE maintenance support

Purpose 	 Provide statistics on usage of local tables to con-

figure table allocation for typical runs.

Operation: Upon entry, the Local Tables of a module have been

produced. Information is required on the space used in the current

Local Table allocation to determine if insufficient space is al-

located to a Local Table or significant unused space has been al-

located.

The current used of Local Tables for the individual module

is required to be reported and a cumulative indicator of the

largest space used by any routine needed. Since the Symbol Table

Is a hash coded structure, the contents of the table must be re-

viewed to determine how many entries are actually active.

The current table usage values are then combined with

previous results from other modules processed during this run to

obtain the peak value for each table on the run.

Special Notes:	 Note that the cumulative value variables are local

to this routine. They are set by a resident DATA statement.

Since this module is only a maintenance support routine,

capacity to participate in overlay is not considered sig-

nificant. At most,a potential for-incorrent accumulated

value is present if the module is overlayed:

a

ti

t	 C
r

s

f

r

a

.Y -

STOW. 1

SUBROUTINE STOW(PLACE

Mnemonic Origin:	 Store item in Temporary Symbol Table

Classification:	 FFE Scan support routine

Purpose:	 Place the contents of the lexical item in a Temporary

Symbol Table entry.

Operation:	 Upon entry, the lexical item is occupied by charac-

ters which constitute an entry in the Temporary Symbol Table.

These characters are to be packed into A4 format and inserted

in a Temporary Symbol Table position. The position is either the

next available position at the end of the table or a specific po-

sition indicated by the calling routine.

The specified table position is first examined for validity.

If an explicit table location is specified, the specification

is examined for valid range. If the table position is defaulted

4	
to the next available position at the end of'the table, space is

allocated for the entry.

If table space is available to accommodate the entry,

insertion of the item is performed; if the table does not have

space to accommodate the entry, an error message is issued and

the last table position is overwritten with the lexical item.

Insertion of the lexical item is dependent upon the length

of the character string. If the item is too long to fit in the

main table entry, space is required in the overflow table. If

storing the lexical item data would result in exceeding the over-

flow table space, the _lexical 'item is truncated to fit available

_	
f

i

r- ti

STOW. 2

space. To prevent exceptionally long items from consuming all
4

' t	 the overflow entries, the lexical item is permitted to occupy only
t

half the remaining space of the overflow table. Notice that trun-

cating the item will eventually result in.items being reduced to

lengths of 8 characters or less. This permits shorter items to

use main table entries as truncated forms when the overflow space

becomes shorter. Truncating the item is accomplished by simply

reducing the pointer to the last nonempty,entry of the lexical

items.

After allocating table space for the lexical item, the item

is inserted in the Temporary Symbol Table. If the lexical item

will fit in the main symbol table entry, the character string is

converted to a 2A4 format entry and inserted in the table position.

If the item is longer than 8 characters, the main entry is set

to an empty first word and pointer to the overflow table space
u

allocated for the character string. In the overflow table, the

first entry is a count of words containing characters belonging

to the entry. This is immediately followed by the characters

packed in A4 format.

Parameters: PLACE - input parameter indicating the table location

to be used in storing the item. Contains a

positive integer value if a specific table ad-

dress is required by the calling routine. If

the next available table location is desire,

the value zero is passed.

r	 E

STMEND.1

SUBROUTINE	 STMEND

Mnemonic Origin:	 Statement End

Classification:	 FFE parsing support routine

Purpose:	 Terminate the processing of a FORTRAN statement.

Operation:	 Upon entry, a FORTRAN statement has been completely

processed.	 A call to this routine is an assertion that all entries

of the Parsing Tables have been consumed.	 If an alien statement

construction has resulted in premature termination of the statement,

some additional text may not be processed.

If the Parsing Tables are positioned to the end of state-

ment code, the statement was completely processed. 	 Otherwise, only

r" a portion of the statement was processed and a truncated statement

' message is required.	 If the statement is truncated, the Parsing

Tables are positioned to the end of the structure to flush unused

1

{I

f

E

text.

_

S

S

I

1

lid

y

Mnemonic Origin: 	 Successor Generation

Classification:	 FFE table generation routine

Purpose:	 Generate list of successors for statements recorded

in Node Table.
4

Operation:	 Upon entry, program statements (nodes) have been

entered in the Node Table.	 Program transitions have been converted

to statement numbers in the transition pairs table. 	 It is now
a

required to enumerate the successor nodes to each statement.

Successors to a statement are both the explicit successors

recorded in the transition pairs table and the implied successors

3
resulting from normal statement to statement transition in non-

branching flow.

The transition pairs table entries are first sorted on

predecessor entries.	 This causes the successors of a statement

to appear in adjacent table positions and forces special codes
i

to the bottom of the table.	 Nodes are then examined one at a

time from the first node to the last to develop a list of suc-

cessors for each node.

Node table entries are processed from the first entry to

the Next to last entry.	 Since the last node of the program has

no implied successor (i.e. no next statement is present), this

case is treated separately.	 First the implied successor is in-

serted in the successor list.	 The next statement is an implied

i

art	 , 	 m
	

'	 SUBROUTINE SUCGEN

SUCGEN. 1

{
fy

Y

SUCGEN. 2

successor if the current node is not a transfer of control state-

ment or a program termination statement.

After processing implied successor entries, the explicit
4

successors, if any, are added to the successor list. These entries

may be either transfer targets of branching statements'or special

code transitions for calls, statement function references, or

program boundary transition.

To construct successor lists, entries are made, using the 3

current pointer to the Successor Table. The last nonempty pointer

value is preserved to permit computing the number of successors

entered and protect against overflow of the Successor Table space.

After all successors for a node have been entered, the count is

computed for the number of entries and the pointer/counter entry

made in the Node Table position. If no successors are present

for the node, the pointer and counter are set empty in the Node

Table entry. After making entries for the node, the last nonempty

pointer to the Successor Table is advanced to the end of the

Successor Table list.

The last node table entry is processed by considering_ only

the explicit transfers from the node. These entries are made in

a similar fashion to the Successors Table entries produced for

other nodes.

x

M

SUCGEN. 3

-If Successor Table space is exhausted while processing the

list, an error process is executed. The error process distinguishes

between space exhaustion while processing the successors of a

statement and space exhaustion which occured on the first successor

of a statement. To issue the error message, the card count must

be moved to the node being processed. This is required since the

construction of successors occurs after the progrpm has been

processed; the current values of the card count are positioned

to the end of the module.

Finally, the error process clears remaining Node Table

successor entries to an empty state.

r

f

t	 ,

9

Txxx. 1

SUBROUTINE Txxx(TAB, BF)

t	

Mnemonic Origin: Transition from Table xxx to Table TAB

Classification:	 AIR General Purpose Utillty

Purpose:	 Extend pattern search from'iist in one table to list

	

.	 r
in another table.

Operations:	 Using information concerning list in table xxx,

find entry point in list in table TAB, Place location information

	4	 in Table Name Register (TR), List Indicator Registor (LR), and

	

I`	 Pointer Register (PR), If entry point does not exist, set registers

to zero.

If entry point found, set Branching Flag BF to one; else,

BF to zero.
3

Parameters:	 TAB - Input

BF - Output

xxx	 TAB

COM	 LIN

DIR	 IS, SH, SYM

IS	 ISD

ISD	 DIR

	
{

LIN	 DIR

NOD -► PRE SUC USE2

PRE	 NOD

SH	 SHD

s
j

XXXI	 TAB

SHD + DIR

SUC + NOD

SYM + DIR : USE1

USE1 + NOD, SYM, USE2

USE2 + NOD, USE1

See also TT, /SPEREG/, "Traversing Lists", and "Legal

Table to Table Transition".

1

TRACHI. 1

AV

i
a

i'

M'

i^

SUBROUTINE TRACHI(MODBGN, FOLBAK, COND)

Mnemonic Origin: Trace System Hierarchal Paths

Classification:	 AIR Special Purpose Utility

'^ r-^^ I ^+ -rl v during search for cyclic

calling sequence).

Purpose:	 Follow calling sequence paths.

Operation:	 Trace calling sequences, one module at ,a time, starting

at module.specified at location MODBGN in Directory. FOLBAK in-

dicates whether path is being followed or backtracked. COND in-

dicates condition under which control was returned to calling

routine. f

Algorithm:	 See Source Code Listing.

Condition Codes:	 See Source Code Listing.

Parameters:	 MODBGN - Input

FOLBAK Output

COND	 Input/Output

i

i

9

See also "Calling Sequence Path Tracing" and Trace Stack.

3

z

__	 l	 a

TRACHI.	 2

4

1
Possible table to table transition:

COM -► L I N

DIR '► IS, SH, SYM

IS + ISD

-°`	 ISD + DIR

LIN + DIR

Y	 !,	 NOD PRE, SUC, USE2
F

PRE + NOD

SH + SHD

.	 SHD -► DIR

SUC + NOD

SYM + DIR, USEl

USE1 NOD, SYM, USE2

USE2 NOD, USE1

See also IE, , "AIR Basic Search Technique", "'Pattern

Searches", "Traversing lists", and "Legal Table to Table

Transitions".	 a

It

r

TRANS. 1

SUBROUTINE TRANS(MOD)

Mnemonic Origin:	 Transition in program

Classification:	 FFE' table construction routine

Purpose 	 Record program transitions while processing FORTRAN

statements.

Operation.'	 Upon entry, a transition is discovered for the

current statement being processed. The transition may reference

a symbolic location in the program; in this event, the Symbol

Table is currently positioned to the referenced symbol.

The transition may be an explicit branch caused by the

current statement (e.g. branch target of an IF statenent), a

program reference to a procedure (e.g. subroutine or statement

function reference), program boundary condition (e.g. entry point

or termination), or a branch condition imposed on a future state-

ment (e.g. DO statement). The type of transition is indicated

by the control parameter passed.

Normally, one entry is made in the transition pairs table

for each call to TRANS. In some instances, two entries are re-

quired to record the transition. The exact linkage is processed

by,a series of independent cases which establish the predecessor,

successor, and postprocessing specification to be recorded in

the transition pairs table entry. A predecessor of the current

statement, requiring one TRIP entry, without postprocessing is

i

TRANS. 2

is established by default. These values are the most commonly

required but may be overridden by individual cases.
A	

After establishing the required entry values, space is

r
examined in the transition pairs table. If sufficient space

remains, the entries are made at the end of the table. At two

re
-i

bit postprocessing code is attached to required entries to

cord the need to convert references to statement Labels to node	 -

numbers. Since a statement label may be referenced before it

is defined, no attempts are made to convert the definition point

until the end of the program.

Parameters: MOD - control paramter used to indicate the type

of transition to be recorded,

Unusual Cases:	 DO statements: Since the ANSI standard

indicates DO statement bodies are always executed once, 	 -y

the graph transitions generated require two entries.

When the DO statement is recognized and the statement

label recorded, transitions are made from the terminal

statement back to the DO statement. The normal statement

to statement implied transition is assumed to achieve

f	 loop fall through from the terminal statement. Note i
i	 that the transitions are recorded before the terminal

i

statement is processed. Also note that the DO terminal

statement may terminate multiple loops,

Logical IF statement: logical If state-

^'^	 ments with a conditional statement execution are processed

x

i,i

i

i
F.

5

TRANS. 3

as two statements. While processing the IF condition

portion, the transition is recorded from the IF statement

to the next statement and from the IF statement to the

statement after the next statement, Statement numbers to

be assigned are implied from the current statement number.
1

t

I

^.,f	
T

TRPSRT. 1

f

f'

H

DI

wSUBROUTINE TRPSRT(COL)
i

r

^'	 I

Mnemonic Origin:	 TRIP Sort

Classification:	 FFE table manipulation routine

Purpose:	 Sort the contents of the transition pairs table (TRIP)

to order the contents for processing.

Operation:	 Upon entry, the Transition Pairs Table . (TRIP) con-

tains entries indicating program transitions within the module.

Entries have been converted to statement numbers and special codes.

The entries are to be sorted in an ascending fashion to process

the transitions of individual statements.

This routine is capable of sorting on either the predecessor

or successor entries. Since table entries have been converted,

the flag field of entries are now cleared to zero valued bits.

As a result, all entries contain positive values at this point

in the process.

The passed parameter controls whether the contents are

ordered by successor entry contents or predecessor entry contents.

The control parameter is used to establish the selected column

(i.e. either predecessor or successor) of the table structure.

The other column becomes the nonsort column.

Sorting is accomplished by a standard shuffle sort.

Entries are examined one at a time looking for out of order entries

between the current entry and the next entry. If an out of order

entry is detected, the entry is moved back in the list to a
e

position where proper order is achieved.

a	 TRPSRT. 2

Alip
Note that the sort process maintains the relative

order of entries. That is, if two entries contain the same

value as the sort key, the relative order of the entries is main-

tained.

Note also that special codes are numerically much larger

values than statement numbers. Therefore, the sorting effectively

moves special codes to the bottom of the list.

Parameters: COL - input control parameter which determines

R

whether the sorting is accomplished on pre-

decessor or successor entries of the table

contents.

TT.	 1

SUBROUTINE	 TT(TAB, BF)

Mnemonic Ori in:	 Table to Table Transition

Classification:	 AIR General Purpose Utility

Purpose:	 Allows access to entire lists in tables, from first

list element to last.

Operation:	 Traverse list in table TAB, one list element at a

time.	 Which list in table TAB is determined by information at

top of Control Stack. 	 (Transition is from table indicated at top

of Controi,Stack to table TAB.)	 If list entirely traversed,

.	 branching flag BF is set to two; else, BF is set to one.

Algorithm:	 TT performs one of two complex operation,

depending on whether Forward-Backward Register FBR indicates

forward or backward..

Forward - Find initial entry point into list in table TAB

from table indicated by top of Control Stack.	 Place this informa-

tion and associated information into top of Control Stack.

Backward - Find next list element. 	 Update information at

top of Control Stack.

Parameters:	 TAB - Input

BF	 - Output

TYPCHK. 1

wow

J

All

SUBROUTINE TYPCHK(NAM, ITYP)

Mnemonic 0riain:	 Type check

r.	 Classification:	 HE table generation routine.

'Purposes Type symbolic names extracted from FORTRAN text
i

using the first letter of the name.

Operation:	 Upon entry, a symbolic name has been encountered

I
for which a type code is required based upon the first character

of the name.. The first character is extracted from the symbolic

name and converted to a numeric index from 1 to 26 corresponding

to the alphabetic characters A to Z. 	 Using this code, the typing

I
vector is addressed to access the appropriate type code.

Protection code is provided to protest against invalid

character strings and oossIble contamination of the typing9	 ► 	 yp 9

vector. If the presented character string begins with a symbol

other than an alphabetic character, integer type is assigned.

If the typing vector addressed contains an invalid type code,

default type is assigned using FORTRAN default types based on	 a

the first character.

Parameters: NAM - first characters of the symbolic name in A

format.

ITYP output parameter receiving the assigned type

code based upon the character string presented.

I

x
3

j

UNINT. 1 .

SUBROUTINE UNINT (ARRAY, ARRSIZ)

Mneumonic Ori4in: Uninitialized Variable,

Classification: AIR Query

Purpose: Searches for uninitialized local variables.

.	 Operations: All paths between entry point of module and variable

under investigation are examined.

Program boundaries are not crossed. It is assumed that any

variable appearing in parameter list is assigned value on other

side of program boundary.

Array ARRAY has ARRSIZ entries which indicate whether

I'	
warning messages may be produced for primary or secondary listings.

I'	 Algorithm: See Source Code Listing.

t
Codes	 See Source Code listing.

Parameters: ARRAY - Input

i
ARRSIZ - Input

See also /PAT/ and PATHS.

Al

a

f	 ii

Uninitialized Local Variable Search,

excluding General Purpose Utilities

c
z
z

N

d

i

SUBROUTINE UPNOD

UPNOD. 1

Mnemonic Origin:	 Update Node Table

x	 Classification:	 HE table generating routine

Purpose:	 Place the current statement description in the next

Node Table position.

a--	 Operation:	 Upon entry, the current statement contains a partial

description of a node in the program. Successor and predecessor

x
information is still lacking in the description.

A Node Table entry is made using the partial description

to establish the statement type, first Use Table position related

to the node, and module relative card counts for the statement.

q JI; Since the statement number is advanced sequentially, the Node

Table insertion position is established from, this counter. To

protect against possible errors, the pointer to the last entry

is established using the cumulative maximum of statement numbers

found to this point in the process. With this mechanism, gaps

in the sequence will at most produce empty statement entries in

the Node Table.

UPSYM. 1

z r

h
SUBROUTINE	 UPSYM(NAME, LENGTH, TYPE, CLASS)

y

Mnemonic Origin 	 Update Symbol Table

1 Classification:	 FFE table generation routine..

Purpose:	 Insert a symbol in the Symbol Table

Operation:	 Upon entry, a symbol is presented for insertion

in the Symbol Table.	 The type and class are also provided for

insertion to describe the symbol. 	 The pointer to the Symbol

f Table has been positioned to the proper insertion point.

Insertion processing depends upon the length of the

symbol entry.	 If the symbol is longer than the main table entry

can accommodate, the character string is to be stored in the

^'	 (Symbol Overflow Table. 	 If insufficient space is available in

x
the Overflow Table, the symbol is truncated to a size which can

be accommodated in the main table entry.	 Since the truncated

! representation may match a symbol previously recorded, 	 (i.e. pre-

viously truncated) the Symbol Table contents are then investigated

for a matching entry; 	 if one is found, the insertion process is

suspended.

Oversized entries are inserted with a pointer to the over-

flow entry data structure in the main Symbol Table entry. 	 The

type and class code of the symbol are placed in the main Symbol

Table structure;	 only the character string is diverted to the

` overflow structure.
i^

UPSYM. 2

Overflow Table entries are made with a count heading

the character string of the symbolic.characters. The count in-

dicates how many words follow containing the oversized character

string.

Symbols which will fit in the main Symbol Table entry are

directly inserted in the entry.

Parameters: NAME - symbolic characters of symbol packed in

A4 format.

LENGTH - length of the symbol expressed as the

number of integer words needed to accommodate

the character string.

TYPE - type code to assign.to Symbol Table entry.

e

	

4

	 USERQ. 1

SUBROUTINE USERQ

S
Mnemonic Origin: User Queries

Classification:	 Control Driver command card interpretation

	

`.	 Purpose:	 Construct the queries to be executed by the AIR Sub-

system.

Operation:	 Upon entry, a QUERY command has been recognized.

The command card has been processed through the entry QUERY.

User specifications are to be examined to establish the queries

to be executed. Executed queries are communicated to AIR routines

through values set in the List Table.

The next command item is requested from the command card

and List Table is set empty. Note that the List Table is do

AIR data structure. Therefore, the length of the List Table is

controlled in INTAIR. To accommodate the ambiguous and possible {{

flexible length, a local variable is used to govern insertion In

the List Table entries. Proper operation is insured so long as

the local variable is not longer than the List Table data space.

Query lists are processed by cases established through

examination of the first option field on the QUERY card. The

cases are implemented as a ladder search of potential entries.

Processing options requires the insertion of one or more cafe-

goriles of queries in the List Table. The queries available are

retrieved from read only data vectors set by BLOCK DATA. Cate-

gories of available queries are LOCAL, GLOBAL, and SYSTEM.

.t

a

USERQ. 2

System queries are internally required queries needed to cause

Global Tables to be constructed.

If the QUERY card has no option specified, all queries

are inserted in the list. If local tests are requested, the de-

fault grouping of local tests is inserted in the list. Notice that

local queries are not all inserted by the LOCAL test; expensive

path tracing queries are requested only by explicit request.

The boundary is established by a pointer to the Local query list

data structure.

If Global queries are requested, both system and global

queries are inserted in the query list. This will cause global

tables to be constructed in case they are needed by global queries.

The system queries must appear prior to global tests in the list

for proper operation.

If an ONLY option is specified, the user is providing

queries to be inserted in the list. System queries are inserted

in case a global query is presented. In processing user specified

lists, queries are extracted one at a time from the list until no

more commas are found after the last entry. Each specified query

is compared to the list of available numbers to verify the validity

of the specified number. Queries are inserted in the List Table

fin the orular received from the corlmlanu cZrd.

After establishing the query list, the EXCEPT option is

examined. If an exception list is present, queries in the List

Table are examined and turned off. Turning off a query is accomp-

r

USERQ. 3

complished by setting the corresponding entry empty.

After establishing values in the List Table, the first

Map entry is set to describe the list to the AIR system for inter-

a,
pretation of instruction.

Special Notes:	 System queries will only result in table construc-

tion actions if the tables are not already present. Thus,

the cost of executing system queries is negligible if the

tables are already present. For this reason, system queries

are produced whenever the potential need is present.

)

i
Y^

i

F-

i

I.	
_

1

VFYGHD. 1

SUBROUTINE VFYGHD(ABORT)

Mnemonic Origin:	 Verify Global Header

Classification:	 Control driver initialization procedure

Purpose:	 Verify the contents of the global header on the table

file as containing valid entries compatible with FACES

operation.

Operation:	 Upon Entry, the global header of the Table File has

been acquired for a run. To verify that a proper file has been

attached as the Table File and that data contents are compatible

with the current version of FACES, the contents of the global header

are compared to data values set by the current configuration.

Some header errors may result in erroneous or questionable

results;' others are likely to produce serious problems. Less

severe problems are simply reported to the User; dangerous situa-

tions cause the system to cease operation.

The version and modification level.of the current system

are compared to the system which produced the analysis table.

Similarly, the Host, machine used for table production and Target

machine for which the system was adapted are compared to those

for which the tables were produced. Differences are noted but

the run is allowed to continue.

t
Global header entries for Source Code Catalogue and

Analysis Table File positions end locations are examined. If

i

{

t+
y

9

^l

4

VFYGHD. 2

negative values are found, the run is aborted since an obviously

invalid file is being presented as the Analysis Table File.

Similarly, invalid entries for the lengths of Local or

Global Tables and pointers to the last nonempty entries of Global

Tables will result in abortion of the run. These indicate an

incorrect file has been presented as the Analysis Table file.
Parameters: ABORT - output parameter set TRUE to indicate the

the run should halt due to configuration

incompatibilities. Set FALSE if the global

header contents are compatible with the

current configuration.

i

........._	 _

x

r

4

WRFMSG. 1

SUBROUTINE WRFMSG(ONCE, MNUM MCNR1, MCNR2)

Mnemonic Origin:	 Write FORTRAN Message

Classification:	 HE error reporting routine

Purpose : 	 Write a message to the Flag file to inform user of

error condition which limits analysis.

Operation:	 Upon entry, the HE has discovered a condition

which is to be reported to the user. To communicate this infor-,

mation records are placed on the Flag File for use in generating

reports. The message is associated with the current statement

being processed.

The message to be transmitted may require a single flag

or several flags. A single entry is recorded if the total message

can be transmitted with one record of information. The number

of flags is governed by the amount of data to the transmitted

in the message.
4

Data for transmission has been placed in the message

COMMON Block prior to calling this routine. The data may be

empty (i.e. have length zero) if fl ag indentification information

is sufficient to explain the problem

Because of implementation technique, some errors may

occur many times while processing a module; these messages are

significant only on the first report. For example, if a table

^:	 ^i

WRFMSG. 2

overflows, the error may be reported with each attempt to store

an item. To suppress this unnecessary repetition, a vector is_

established to record the first occurance. The calling routine

identifies messages which require suppression. If the parameter

is zero, the message is to be reported on each occurance; if

the parameter is a positive integer, the message is to be reported

only if it has not occured previously.

Processing begins by examining the control parameter to

determine if the call should actually produce error messages.

If the message should be reported, card information for the

error is inserted in the message variables. Card information

i
is obtained from the current statement description.

The flag number (integer value) and descriptive characters

(alphabetic characters) are inserted in the output message. If

the length of the message is zero, neutral values are inserted

as data fields in the flag to be written.

Using the constructed information, as many flags are writ-

ten as data items contained in the constructed message. If more

than one flag is written, theinternal order is advanced with

each flag output.

After processing, the message length is reset empty to

condition the message COMMON Block for the next message.

+	
WRFMSG.3

j	 Parameters: ONCE - control parameter used to suppress unneces-
^	 P	 PP

}	 sary error reports on errors which occur

more than-once in a module. Contains either

the index to the suppression array used to

record error occurances or the value zero

indicating no suppression is to be applied.

-,..	
MNUM - integer value for the flags to be written.

MCHR1_ Alphanumeric characters to be written as

MCHR2 the alphanumeric description of the flag,

a

1

SUBROUTINE XFRISS

Mnemonic Ori g in 	 Transfer Intermedlat6'Symbol String

Classification:	 FFE error reportin(, routine

Purpose:	 Insert the contents of the Intermediate Symbol String

in the error message COMMON block to identify the error

location of a processing error.

Operation:	 Upon entry, the HE has discovered an error in the

FORTRAN code which limit processing. An error message is to

be issued to inform the user of the error location. The Parsing

Tables are currently at the error position. To communicate the

error location, the contents of the ISS entries in the vacinity

of the error are to be inserted as error message data.

r	 The data transferred is limited to the six entries of ISS

including the error position to prevent excessively long message

information. These entries are extracted and placed in the

alphabetic data fields of the error message COMMON structure.

The associated integer data field is set to zero values. Finally,

the length of the inserted message is set to communicate how

much data is to be transferred.

r
4
i

i

I

XFRLEX. 1

SUBROUTINE XFRLEX

Mnemonic Origin:	 Transfer Lexical Item

Classification:	 FFE error reporting--routine

Purpose:	 Present the contents of the Lexical Item for user

information to explain an error message.

,Operation:	 Upon entry, the lexical item contains character

data which supports an error condition detected. The infor-

mation in the lexical item is transferred to the error reporting

COMMON Block to transmit this information to the user on the

report to be generated.

The character string space requirements are examined

first to determine if the active lexical data can be accommodated

in the error message reporting data structure. This analysis

predicts the space needed for packed items of characters. If

sufficient space is available in the recording vector.

Elements of the lexical item are then extracted and packed

in A4 format for error reporting. These items are placed in

the alphabetic data fields of the error message, setting the cor-

responding integer data fields_ to zero values. If no data is

transferred in this process or a nonmodulo 8 number of characters

are processed, remaining alphabetic fields are set to bank

characters.

XFRSYM. 1

SUBROUTINE XFRSYM(TSTLOC, TYPE, CLASS)

Sx	 J

Mnemonic Origin 	 Transfer Symbol

Classification:	 FFE table generating routine

Purpose:	 Transfer a symbol from the Temporary Symbol Table to

M'	 the Symbol Table.

--	 P~	 Operation: Upon entry, a Temporary Symbol Table entry is to be

transferred to the Symbol Table. The type and class assigned

y to the entry is presented by parameter.

The temporary symbol entry length is examined to accomplish

the transfer. If the symbolic characters are located in the main

Temporary Symbol Table entry, the characters are extracted and

passed to the Symbol Table recording routine:

If the characters are located in the Temporary Symbol

d	 d fromOverflow table, the character strip is accessed an passedg	 P

the overflow entry.

Parameters: TSTLOC - Temporary Symbol Table location containing

the symbol to be transferred.

TYPE	 - type specification assigned to the symbol

being recorded.

CLASS - class code assigned to the symbol being

recorded.

I

a.

