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A METHOD FOR ESTIMATING PROPORTIONS

L. F. Guseman, Jr. and Bruce P. Marion

1. Introduction
M

'	 Let (iZ,*.J/,P) be a probability space, and suppose that .l - u 11k
k-1	 '

where cacti IT i E e . , ri in n _ `d, 1 # j, and the unknown a priori pruba-
J

bilities ak = P(11 k ) are positive. Let X	 R  be a random vector

with condition	 Tensity functions f j = fXI ^ , 1 < j < m, and

m	

i

mixture density f - fX - 
ill 

aj f j . Suppose we are given a classifica-

tion procedure defined by regions R i , 1 < i < m, (which partition Rn)

and a decision function c defined for w e Sl by

c (w) - i if f X (w; e R 

Then the probability that w E Q is classified as belonging to n  is

given by

M

P([X E R i J) = P([X e R i ] n ( U IIj),
j=1

M
= P( lJ ([X E R i ] n lIj))

j.1

m

- I P([X E R i ] n :Ij)
j=1

m

P ( [ X I	 R i ]h j ) I' (ilf)
J=1

m

aj P([X E Ri] IIIj)	 .
j=1
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Lec Y - (Yl,...,Ym)T where Y 1 • X R o X and X R d pnotes the characteristic

function of the set R i C Rn , 1 < i < m. Then

E(Y i ) - E (X R (X))
i

f

• JR
in X R (x) f (x) dx

f (x) dx

R 

= J	 ^la^ f j (x) dx

i

m
^ la^ J R f^ (x) dx

M
F aj PQX c R i ] I nd ) .

J=1

Let wN = (w 1 , w ? ,
 
.... wN ) be a random sample of size N from Q. For a

given i, 1 < i < m, let

Y il (wN )	 Yi(wl)

Y i2 (wN ) = Yi(w2)

Y iN (c.N) = Yi(c.}N)
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Then for fixed i, Yil"**'YiN are independent random variables and each

has the a.twe distribution as Y  (17J); that ie, E(Y ik ) = E(Y 1 ), 1 < k < a.
1 h	

N	 Ni
Letting ei _ N j Yik	

we have e i (w ) - N , where N1 is the number

k=1

of elements in w  that are classified as being from N i' If e  = E(ei)

then

N

	

e i = E(e i )	 E( N I Yik)
k=1

	

N	 N

N	 E(Yik)	 N F C(Yi)

	

k = 1	 k=1

m

E(Y 1 ) = L u j P([X c. RiJjrj)

j =1

otl 	el	 ^1

Letting a	 e =	 e =

n	 e	 e
M	 m	 m

we have e = E(e)	 Pa, where P is an m x m matrix whose entry p ij , in

the ith row and j th column, is given hY

p ij = P ([ X F R i ] III j ) -
 fRj

(x) dx 9 1,j
1

N 	 i
We note that a classification procedure produces an estimate e i (w ) = N

of a i which is biased whenever e  = ':(e i ) # a i , 1 < 1 < m . The

equation e = E(e) = Pa holds for the error matrix P associated with the
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classification procedure used to determine a from a liven sample.

Consequently, an estimate of a could be given by a solution $ of the

following problem:

minimizp JlPa - ell	 (Euclidean norm)

in

subject to I a i = 1, a  > 0, 1 < i < m .

iwl

If P is invertible, then a - P-1 a is an unbiased estimate of Cl;

that is,

E(a) - E ( P-le) . 1,-1 E(e) - P-1 Pu - a .

However, simple examples show that even in this case 7t M P-1 a need

m
not satisfy the nonnegativity constraints even though	 ai	 1.

i=1
For a given P and e, problem (*) above reduces to the following

quadratic programming; problem:

minimize the convex functional

(**^	 T(a)	 2 UT PT Pa_ eT Pa

over the constraint set

m
S	 'a	 Olt ... ,an ) T 	 cxi = 1, a i > 0, 1 < i < m^

i=1

The functional T is convex (since P 
T 
P is positive semi-definite) and

continuous. Since S is compact and convex, a solution alwa y s exists.

w1wit 1' is Invertible, then 
11 

P is positive definite aad T is strict1%

C011V ex do that the solution IS unique. 'rhe above results on convexit y of

'r and uniqueness of the solution can be found in 151.

7
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2. A Method For Computing 1 1 and e

Suppose that each conditional density f  for the random vector X

is multivariate normal with known (or estimated) mean vector yi alad

covariance matrix E i , 1 < i < m, that is, f i (x) - N(pi Ei),

1 < i < m. Under the assumption of equal a priori probabilities

(i.e. ao	 ( ....'m)T). there exi: _s 	 ( see (4)) a 1 x n vector Bo of

norm one such that

g(B0 ) = min g(B).

where

(B) = 1- ^ f Inax	 f i (y, P)dy
1<i<m

and f i (y,B) - N(BN i , BE i BT ), 1 < i < m. Then the entries in Y - (pig`

can be readily computed using the expressions

pi .l - f	
fj(Y.B0)dY , i . j - 1,2,...,m

Ri(B0)

where Ri(Bo)	 )y a R 1	 f i (Y.Bo )	 max f ^( y , Bo 	
1 < i < m

l^j<m

Classifying the sample wN	 (w ....,wN ) according to the rule
.	 1

c (w) - i if and only if Bo (X (w) ) e R i (Bo)

S

produces the values N i and hence e i , 1 < i < M.
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The minimizing vector Bo , decision regions R  (B0 ) , 1 < 1 < M.

and error matrix P = (p ij ) can be computed using the program LFSPMC

described in [3]. The sample w  . (w1,...,wN) is then classified

according to the above rule to produce a using the classification

capability of LFSPMC.

3. Preliminary numerical Results

The data for the numerical results presented in this section

consisted of 30 sets if training statistics and a sample ci 16-

dimensional vectors of size 8400 obtained from four registered passes

(May 5, May 23, June 11, June 29, 1973) of LANDSAT 1 MSS measurements

acquired over a 14 square mile test site in Hill County (h), Montana

(see [1J). For all runs made the error matrix P was determined from the

first of the 30 sets of training statistics provided. A subsample of

size 2417 of the original sample was used to compute a using the

classification procedure which gave rise to P. The sample of size

2417 was made up of vectors from the following five classes:

Wheat (784), Fallow (744), Barley (300), Grass (206), and Stubble

(383).

Three runs were made using all five classes. gun 1 used LFSPMC

and the training statistics fro»	 three registered passes of

May 23, Junc 11, and June 29 to determine P and e. Run 2 used LFSPMC

and the training statistics from the pass of Jui.e 11 to determine

P and e. }or purpose of comparison, Run 3 used an estimated error

matrix determined from a maximum likelihood classification of i2-

6



dimensional vectors randomly generated using the training statistics

for the aforementioned three registered passes. The same classifier

was used to determine a from the sample of size 2417.

Additional runs were made for the two class case (Wheat, Harley)

by using LFSPMC to determine P and a from three passes (Run 4) and

one { pass (Run 5) .

For a given P and e, two quadratic programming algorithms were

used to solve problem (**) of the ;revious section. An algorithm

based on the complementary pivot method of Lemke (see (6j) was

employed for the casa of nonsingular P. In the case where no unique

minimum exists (i.e. P sinrular), a modification of the Frank-Wolfe

algorithm (2J due to H. Charles; Peters, Jr. was used. The results

of the rusts are summarized in Tablet: 1 and 2.

7
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. 003

P	 .113

.140

.000

.003 .184 .088 .018

.625 .000 .145 .444

.900 .809 .000 .000

.206 .007 .767 .192

.166 .000 .000 .347

i. z

8

ERROR MATRIX

CLASSIFIED SAMPLE

e - (.288, .264, .137, .189, .121)T

ESTIMATED PROPORTIONS

a - (.347, .243, .121, .056, .233)T

RUN 1: Five Classes--Three Pass Case
P and a Determined By LFSPMC

ai a
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EAROA MATRIX

.752 .001 .523 .052 .013

.000 .740 .004 .144 .588

P	 .173 .000 .379 .000 .000

.075 .183 .093 .805 .286

.000 .076 .000 .000 .114

CLASS I F I F:D SAMPLE

e = (.332, .357, .098, .183, .030)T

ESTIMATED PROPORTIONS

&	 (.376, .465, .084, .076, .000)



ERROR MATRIX

.965 .000 .025 .005 .000

.000 .910 .000 .000 .075

P -	 .015 .015 .975 .000 .000

.010 .005 .000 .970 .000

.010 .070 .000 .025 .925

CLASSIFIED SAMPLE

e - (.316, .271, .142, .080, .192)T

ESTIMA ""D PROPORTIONS

& e (.324, .283, .135, .077, .180)T

RUN 3: Five Classes--Three Pass Case

Maximum Likelihood Classifier To Determine a And Estimate P

.	 ,

10
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ERROR "1.'JR 1 X
	

CLASSIFIED SA.M.PLL

	.959	 .038
	 .696

Y -
	 fs

	.041	 .962
	 .304

ESTIMATED PROPORTIONS

.114 )

.286

0; k 	 Two Classes--Three Pass Case
P And ^ DuL#arwiaa.i By LYSP14L

ERROR MATRIX
	

CLASSIFIED SAMPLE:

	.960	 .147
	 .65b

P=
	

e

	

.140	 .853
	 .342

ESTIMATED PROPORTIONS

.716

8

.284

RCN 5: Two g lasses--One Pass Case
F And a Determined by LFSFMt
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True Estimated Three One
Proportions P-matrix Pass Pass

Wheat .324 .324 .347 .376

Fallow .308 .283 .243 .465

Barley .124 .1.3` .121 .084

Grass „085 .077 .056 .076

Stubble .159 .180 .233 .000

Table 1.	 Estimated	 Proportions:	 Five Classes

True	 Three
	

One
Proportions	 Fass
	

Pass

Wheat	 .723	 .714	 .716

Barley	 .277	 .286	 .284

Table 2. Estimated Proportions: Two Classes
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4. Remarks

The proportion estimation procedure presented in the previoub

sections has the advantage that the error matrix is determined by the

training statistics and thereby requires only one set of ground

truth. In addition, the error matrix is the error matrix for the

classification procedure used to determine e. It has the disadvantage

that the training statistics must be representative of the mt-,n

vectors and covariance matrices for the populations from which Lae

:sample was made.

The error matrix is directly related to the probability of

misclassification and should be more diagonally dominant with the

in:rease in number of passes used. It should also be mentioned

that, under the assumptions of distinct Masses and equal a priori

probabilities, ttie er ror matrix computed by LFSPMC should (barring

numerical difficulties) always be nonsingular.

Both of the quadratic programming algorittuns used were essentially

off-the-shelf programs and require some refinements. The complementary

pivot algoritiwi failed to always meet the problem constraint,

III

i=1 

^^ i = 1, to within machine accuracy, and the modified Frank-Wolfe

algorithm proved to converge slowly. In any event, the determination

of P and a using LFSPMC, and subsequent determination of & was

always accomplished in less than two minutes for the runs reported

here. Investigat'ons into the development of more accurate and

efficient quadratic programming; algorithms are underway.
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Theoretical investigations are also underway to extend the feature

selection algorithm to the case where the density function for a ..h

population is a convex combination of multivariate normal densities.

The resulting algorithm gives rise to a method for estimating propor-

tions which involves only two classes; namely wheat and non-wheat.
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