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A METHOD FOR ESTIMATING PROPORTIONS

L. F. Guseman, Jr. and Bruce P. Marion

l. Introduction

m
Let (ﬂ.gl!ﬁ?) be a probability space, and suppose that (i = U ]l

kel K»

where each Hi € oo, Hir\ﬂ =@, i # j, and the unknown a priori proba-

J

bilities - P(ﬂk) are positive. Let X : (I = R" be a random vector

with conditior iensity functions fj = f y 1 €j<m, and

x|nJ

m

mixture density f = fx = { aj fj. Suppose we are given a classifica-
J=1

tion procedure defined by regions Ri' 1 <1i<m, (which partition R“)

and a decision function ¢ defined for w e { by

c(w) = 1 1ff X(w, € Ri .
Then the probability that we §i is classified as belonging to ni is

given by

m
P([X € Ri] n (v nj>,

P([Xe R(])
i j=1

m
PCU ([Xe R, N 1,))
i=1 ¥

m
le P([Xe R N nj)

m
jglr([x i uijluj) (]

J)

m
= ] P([Xe R,JIML) .
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Lec Y = (Yl"“'Yn)T where Y o X and ¥ R denotes the characteristic

- X
i Ri §

function of the set R, C Rn, 1 <1<m Then

i

E(Yi) = E(x Ri(x))

= fn X R (x) [(x) dx
R i

-f £(x) dx
R

i

m
= J a, f,(x) dx
-/1;13-1j ]

m
- jglaj P([X ¢ R1]|ﬂj)

Let mN B (wl, mz,...,wN) be a random sample of size N from {{. For a
given 1, 1 < 1 < m, let

N
Yﬂ(w )

Yi(ml)

N
Yiz(w ) = Yi(wz)

N = N
YiN(m) ¥ ).



Then for fixed i, Yu....,Y1N are independent random variables and each

has the same distribution as Yi ([7]); that is, E(Yik) - E(Yi)' 1<k<N

N N
Letting € "N kzl Yik , we have ei(u ) N ! where N1 is the number
of elements in w" that are classified as being from Hi. If e, = E(Ei) R
then
%
e, = E(@,) = E(5 |
1 i N o 1k
N N
1l ¢ 1
== E(Y,,) =5 1 E(Y)
L
N bl ik N k=1 i
T |
- E(Y,) = J ag P(IX e RI{M .
=
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Letting a =} . e 3 ¢ - , =1 . i
o e é
m m m

we have e = E(é) = Pa, where P is an m X m matrix whose entry Pyyr in

the ith row and jth column, is given by

Py = P([X € Rillﬂj) = /;i fj(x) dx , 2, ® 1,2,00.,m,

N
We note that a classification procedure produces an estimate Ei(wN) = Ei

of a, which is biased whenever 5" :(61) ¢ Ay 1<i<m. The

equation e = E(€) = Pa holds for the error matrix P associated with the



classification procedure used to determine € from a given sample.
Conseyuently, an estimate of a could be given by a solution § of the

following problem:

minimize ||Pa - &|| (Euclidean norm)
(*)

m
subject to { a, =1, a

>0,1<4i<m.,
i=1

i i

If P is invertible, then g = P_l € 1s an unbiased estimate of «;

that is,
B =B 18) « P E@) =P lPa= a.

However, simple examples show that even in this case T = P-l é need

m
not satisfy the nonnegativity constraints even though E Ei L
i=]
For a given P and &, problem (*) above reduces to the following

quadratic programming problem:

minimize the convex functional

(%) T(a) = %'ar l"r Pa - ST

over the constraint set

Pa

m
S = {a = (al,....an)T =5 3

=1,a,20,1<4<m} .
ahe R i f

The functional T is convex (since PTP is positive semi-definite) and
continuous, Since S is compact and convex, a solution always exists.
When P s Invertible, then PTP is positive definite and T is strictly
convex so that the solution is unique. The above results on convexity of

T and uniqueness of the solution can be found in [5].



2. A Method For Computing P and &

Suppose that each conditional density fi for the random vector X

is multivariate normal with known (or estimated) mean vector L1 and

covariance matrix Zi. 1< 1 <m; that is, fi(x) ~ N(;& Ei),

1 <1i<m Under the assumption of equal a priori probabilities

(i.e. 9" ( %.....%)T), there exi: .s (see [4)) a 1 x n vector BO of

norm one such that
s(Bo) = min g(B),
where

g(B) = 1 - i max fi(y.E)dy
- 1<i<m

and fi(Y.B) ~ N(Bui, BZiﬂr), 1 <1i<m Then the entries in P = (pij}

can be readily computed using the expressions

P -f £.(v:B )8y , 1, = 1,2,...,8
1] R;(B)) 1 a

1
'h R,(B) = e R : f (y,B)= max f, (y,B) s R
where R, (B {y 1% 1<j<m 3 o } - -

Classifying the sample wN B (wl.....wN} according to the rule

c(w) = 14 1if and only if BO(X(w)) € R1 (Bo)

produces the values N, and hence 81. 1<1<m,



The minimizing vector Bo' decision regions Ri(Bo), 1 <1 <m,
and error matrix P = (pij) can be computed using the program LFSPMC
described in [3]. The sample u = (@ seevsly) 18 then classified
according to the above rule to produce € using the classification

capability of LFSPMC.

3. Preliminary Numerical Results

The data for the numerical results presented in this section
consisted of 30 sets ~f training statistics and a sample cf 16-
dimensional vectors of size B400 obtained from four registered passes
(May 5, May 23, June 11, June 29, 1973) of LANDSAT 1 MSS measurements
acquired over a 14 square mile test site in Hill County (N), Montana
(see [1]). For all runs made the error matrix P was determined from the
first of the 30 sets of training statistics provided. A subsample of
size 2417 of the original sample was used to compute & using the
classification procedure which gave rise to P. The sample of size
2417 was made up of vectors from the following five classes:

Wheat (784), Fallow (744), Barley (300), Grass (206), and Stubble
(383).

Three runs were made using all five classes. Run 1 used LFSPMC
and the training statistics fron tl2 three registered passes of
May 23, Junc 11, and June 29 to determine P and €. Run 2 used LFSPMC
and the training statistics from the pass of June 11 to determine
P and €. }or purpose of comparison, Run 3 used an estimated error

matrix determined from a maximum likelihood classification ot 12-



dimensional vectors randomly generated using the training statistics
for the aforementioned three registered passes. The same classifier
was used to determine & from the sample of size 2417,

Additional runs were made for the two class case (Wheat, Barley)
by using LFSPMC to determine P and € from three passes (Run 4) and
one pass (Run 5).

For a given P and €, two quadratic programming algorithms were
used to solve problem (**) of the ,revious section. An algorithm
based on the complementary pivot method of Lemke (see [6]) was
employed for the cas® of nonsingular P. In the case where no unique
minimum exists (i.e. P sinpular), a modification of the Frank-Wolfe
algorithm [2] due to B. Charles Peters, Jr. was used, The results

of the runs are summarized in Tables 1 and 2.



ERROR MATRIX

.738
.003
P= .113
146
. 000

CLASSIFIED SAMPLE

e = (.288, .264,

. 003
625
. 000
. 206
166

137,

ESTIMATED PROPORTIONS

. 184
. 000
.809
. 007
. 000

.189,

G = (.347, .243, .121, .056,

RUN 1:

.088
«145
.000
767
. 000

BV

23T

.018
Jabg

.192
.3&%

Five Classes--Three Pass Case
P and & Determined By LFSPMC



ERKROP MATRIX
.752 ,001 .523 .052 .013
000 ,740 ,004 ,144  ,588
Pe= .173  .,000 .379 .000 .000

.075 .183 .093 .B805 .286
.000 .076 .000 ,000 .1l14

CLASSIFIED SAMPLE

& = (.332, .357, .098, .183, .030)"

ESTIMATED PROPORTIONS

& » (.376, .465, .084, .076, .000)

RUN 2: Five Classes--One Pass Case
P And € Determined by LFSPMC



.965 .,000 .025 .005 .000
.000 .,910 .000 .,000 ,075
P = .015 .015 .975 .000 .00O
.010 .005 .000 .970 .000
.010 .070 .000 ,025 .925

CLASSIFIED SAMPLE

& = (.316, .271, .142, .080, .192)T

ESTIMATED PROPORTIONS

& = (.324, .283, .135, .077, .180)T

RUN 3: Five Classes--Three Pass Case
Muximum Likelihood Classifier To Determine € And Estimate P

10



ERROR MATRIX CLASSIFIED SAMPLE
.959  ,038 . 696
P = B
L041  ,962 . 304

ESTIMATED PROPORTIONS

714
G =
. 286
i ,: Two Classes--Three Pass Case
P And @ Determined By LFSPMC
ERROR MATRIX CLASSIFIED SAMPLE
860 147 .658
P = é =
. 140 .853 . 342

ESTIMATED PROPORTIONS

.716

. 284

RUN 5: Two Classes--One Pass Case
P And € Determined by LFSPMC

11



True Estimated Three One
Proport.ons P-matrix Pass Pass
Wheat 324 324 L 347 .376
Fallow . 308 .283 .243 465
Barley 124 + 135 +121 . 084
Grass . 085 077 .056 076
Stubble . 159 .180 + 233 . 000
Table 1., Estimated Proportions: Five Classes
True Three One

Proportions Fass Pass

Wheat sl a3 « 714 .716

Barley wal7 .286 . 284

Table 2. Estimated Proportions: Two Classes

12
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4, Remarks

The proportion estimation procedure presented in the previous
sections has the advantage that the error matrix is det»rmined by the
trainiag statistics and thereby requires only one set of ground
truth., In addition, the error matvix is the error matrix for the
classification procedure used to determine €. It has the disadvantage
that the training statistics must be representative of the meun
vectors and covariance matrices for the populations from which the
sample was made.

The error matrix is directly related to the probability of
misclassification and should be more diagonally dominant with the
in .rease in number of passes used. It should also be mentioned
that, under the assumptions of distinct :lasses and equal a priori
probabilities, the error matrix computed by LFSPMC should (barring
numerical difficulties) always be nonsingular.

Both of the quadratic programming algorithms used were essentially
of f-the-shelf programs and require some refinements. The complementary
pivot algorithm failed to always meet the problem constraint,

m

121 8, = 1, to within machine accuracy, and the modified Frank-Wolfe
algorithm proved to converge slowly. In any event, the determination
of P and € using LFSPMC, and subsequent determination of 6 was
always accomplished in less than two minutes for the runs reported
here. Investigations into the development of more accurate and

efficient quadratic programming algorithms are underway.
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Theoretical investigations are also underway to extend the feature
selection algorithm to the case where the density function for e h
population is a convex combination of multivariate normal densities.
The resulting algorithm gives rise to a method for estimating propor-

tions which involves only two classes; namely wheat and non-wheat.
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